Science.gov

Sample records for alkaline hydrolysis

  1. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  2. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  3. Release of bound procyanidins from cranberry pomace by alkaline hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Procyanidins in plant products are present as extractable or unextractable/bound forms. We optimized alkaline hydrolysis conditions to liberate bound procyanidins from dried cranberry pomace. Five mL of sodium hydroxide (2, 4, or 6N) was added to 0.5 g of cranberry pomace in screw top glass tubes,...

  4. Experimental investigation of the kinetics of hydrolysis of sodium borohydride aqueous-alkaline solutions

    NASA Astrophysics Data System (ADS)

    Nesteruk, A. A.; Kalinin, V. I.; Minkina, V. G.; Martynenko, V. V.; Shabunya, S. I.

    2011-09-01

    Distinctive features of an experimental procedure for determination of the conversion of sodium borohydride in hydrolysis in an aqueous-alkaline medium are described; the procedure is based on measuring the amount of the released hydrogen. Technical and methodological features of implementation of this procedure and measurement errors are discussed; a technique for calculation of the conversion of sodium borohydride in hydrolysis is presented. Experimental data in the form of the constants of a quasistationary hydrolysis regime are given for different isothermal conditions. The range of experiments covers temperatures from 20 to 95°C and alkali concentrations from 10-2 to 5 M.

  5. Recovery of phosphorus and nitrogen from alkaline hydrolysis supernatant of excess sludge by magnesium ammonium phosphate.

    PubMed

    Bi, Wei; Li, Yiyong; Hu, Yongyou

    2014-08-01

    Magnesium ammonium phosphate (MAP) method was used to recover orthophosphate (PO₄(3-)-P) and ammonium nitrogen (NH4(+)-N) from the alkaline hydrolysis supernatant of excess sludge. To reduce alkali consumption and decrease the pH of the supernatant, two-stage alkaline hydrolysis process (TSAHP) was designed. The results showed that the release efficiencies of PO₄(3-)-P and NH₄(+)-N were 41.96% and 7.78%, respectively, and the pH of the supernatant was below 10.5 under the running conditions with initial pH of 13, volume ratio (sludge dosage/water dosage) of 1.75 in second-stage alkaline hydrolysis reactor, 20 g/L of sludge concentration in first-stage alkaline hydrolysis reactor. The order of parameters influencing MAP reaction was analyzed and the optimized conditions of MAP reaction were predicted through the response surface methodology. The recovery rates of PO₄(3-)-P and NH₄(+)-N were 46.88% and 16.54%, respectively under the optimized conditions of Mg/P of 1.8, pH 9.7 and reaction time of 15 min. PMID:24880806

  6. AN ALKALINE HYDROLYSIS TISSUE DIGESTION SYSTEM FOR A BSL-3-AG CONTAINMENT FACILITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alkaline hydrolysis tissue digestion system was installed at the Arthropod-borne Animal Diseases Research Laboratory (ABADRL) Biosafety Level (BSL) 3-AG containment facility in 2000 to replace the antiquated pathologic waste incinerator because of significant costs for upgrading this incinerator ...

  7. Fast and sensitive collagen quantification by alkaline hydrolysis/hydroxyproline assay.

    PubMed

    da Silva, Cassia Maria Lins; Spinelli, Eliani; Rodrigues, Silvana Vianna

    2015-04-15

    A preparative protein alkaline hydrolysis procedure, as part of a spectrophotometric collagen quantification method, is presented. The procedure is suitable for small amounts of fresh solid or liquid samples. Various aspects of the procedure, such as the NaOH concentration, time needed to hydrolyse different collagen contents, buffer strength of the reagent solution, pH control of the hydrolysate and spectrophotometric conditions, were evaluated. Compared to other procedures that use alkaline hydrolysis, the sensitivity of this procedure was increased by a factor of 5. Compared to the conventionally used Association of Official Analytical Chemists (AOAC) acid hydrolysis method, the reaction time was reduced from 16 h to 40 min and the amount of sample from 4 g to 3-20 mg, producing equivalent results when applied to porcine liver and sausage samples. PMID:25466067

  8. Total fractionation of green tea residue by microwave-assisted alkaline pretreatment and enzymatic hydrolysis.

    PubMed

    Tsubaki, Shuntaro; Azuma, Jun-ichi

    2013-03-01

    Total refinery of constituents of green tea residue was achieved by combination of microwave-assisted alkaline pretreatment and enzymatic hydrolysis. Alkaline pretreatment was effective at separating pectic polysaccharides, protein, phenolic compounds and aliphatic compounds (probably originating from cuticular components), and the solubilization rate was attained 64–74% by heating at 120–200 °C. The higher heating value (HHV) of alkali-soluble fraction attained 20.1 MJ/kg, indicating its usability as black-liquor-like biofuel. Successive cellulolytic enzymatic hydrolysis mainly converted cellulose into glucose and attained the maximum solubilization rate of 89%. Final residue was predominantly composed of aliphatic cuticular components with high proportion in 9,10,18-trihydroxyoctadecanoic acid (30.1–48.6%). These cuticular components are potential alternative feedstock for aliphatic compounds commonly found in oil plants. PMID:23384782

  9. Kinetic study of alkaline protease 894 for the hydrolysis of the pearl oyster Pinctada martensii

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Chen, Hua; Cai, Bingna; Liu, Qingqin; Sun, Huili

    2013-05-01

    A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.

  10. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    NASA Astrophysics Data System (ADS)

    Brassé, C.; Buch, A.; Raulin, F.; Coll, P.; Poch, O.; Ramirez, S.

    2013-09-01

    Titan, the largest moon of Saturn, is known for its dense and nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are objects of astrobiological interest. In this paper we focus on their potential chemical evolution when they reach the surface and interact with putative ammonia-water cryomagma[1]. In this context we have studied the evolution of alkaline pH hydrolysis of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at ambient and low temperature. However, we identified oxygenated molecules in non-hydrolyzed tholins meaning that oxygen gets in the PLASMA reactor during the tholins synthesis [2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. After confirming the non-presence of oxygen in tholins produced with this new experimental setup, the study of oxygen-free tholins' evolution has been carried out. A recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less [3]), as previously described by other teams [2,4]. Thus new hydrolysis experiments will take this lower value into account. Additionally, a new report [5] provides upper and lower limits for the bulk content of Titan's interior for various gas species. It also shows that most of them are likely stored and dissolved in the subsurface water ocean. But considering the plausible acido-alkaline properties of the ammonia-water ocean, additional species could be dissolved in the ocean and present in the magma. They were also included in our hydrolysis experiments. Taking into account these new data, four different hydrolysis have been applied to oxygen-free tholins. For each type of hydrolysis, we also follow the influence of the hydrolysis temperature on the organic molecules production. The preliminary qualitative and quantitative results of those experiments will be presented at EPSC.

  11. Lignin recovery from alkaline hydrolysis and glycerolysis of oil palm fiber

    NASA Astrophysics Data System (ADS)

    Hassan, Nur Syakilla; Badri, Khairiah Haji

    2014-09-01

    In the present work, two types of treatment namely alkaline hydrolysis and glycerolysis have been conducted for lignin extraction from oil palm empty fruit bunch (EFB) fiber. Lignin has been retrieved from two sequential methods, which was the klason lignin from residue and lignin from precipitation of the filtrate. Alkaline hydrolysis was performed using 10% NaOH solution at room condition. This has extracted 13.0 % lignin. On the other hand, glycerolysis was carried out using 70% glycerol catalyzed with 5% of 1 M NaOH at 60-70 °C. This has successfully extracted 16.0% lignin. The SEM micrographs exhibited some physical changes on the surface where the impurities and waxes have been removed, exposing the, lumen. Besides that, FTIR analysis was conducted on untreated EFB, treated EFB and extracted lignin. Delignification of EFB fiber was confirmed based on the intensity reduction at 1245 cm-1 that showed lignin was removed from the fiber. The presence of CO, CC and CC aromatic peaks in the FTIR spectra of the dried filtrate gave an evidence on the presence of lignin.

  12. Effect of acid hydrolysis on regenerated kenaf core membrane produced using aqueous alkaline-urea systems.

    PubMed

    Padzil, Farah Nadia Mohammad; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Kaco, Hatika; Gan, Sinyee; Ng, Peivun

    2015-06-25

    Bleached kenaf core pulps (BKC) were hydrolyzed in H2SO4 (0.5M) at different time (0min to 90min) at room temperature. After the hydrolysis process, the viscosity average molecular weight (Mŋ) for BKC sample has reduced from 14.5×10(4) to 2.55×10(4). The hydrolyzed BKC was then dissolved in NaOH:urea:water and in LiOH:urea:water mixed solvent at the ratio of 7:12:81 and 4.6:15:80.4, respectively. The increased in hydrolysis time has decreased Mŋ of cellulose leading to easy dissolution process. Higher porosity and transparency with lower crystallinity index (CrI) of regenerated membrane produced can be achieved as the Mŋ reduced. The properties of membrane were observed through FESEM, UV-vis spectrophotometer and XRD. This study has proven that acid hydrolysis has reduced the Mŋ of cellulose, thus, enhanced the properties of regenerated membrane produced with assisted by alkaline/urea system. PMID:25839807

  13. Enhanced alkaline hydrolysis and biodegradability studies of nitrocellulose-bearing missile propellant

    NASA Technical Reports Server (NTRS)

    Sidhoum, Mohammed; Christodoulatos, Christos; Su, Tsan-Liang; Redis, Mercurios

    1995-01-01

    Large amounts of energetic materials which have been accumulated over the years in various manufacturing and military installations must be disposed of in an environmentally sound manner. Historically, the method of choice for destruction of obsolete or aging energetic materials has been open burning or open detonation (OB/OD). This destruction approach has become undesirable due to air pollution problems. Therefore, there is a need for new technologies which will effectively and economically deal with the disposal of energetic materials. Along those lines, we have investigated a chemical/biological process for the safe destruction and disposal of a double base solid rocket propellant (AHH), which was used in several 8 inch projectile systems. The solid propellant is made of nitrocellulose and nitroglycerin as energetic components, two lead salts which act as ballistic modifiers, triacetin as a plasticizer and 2-Nitrodiphenylamine (2-NDPA) as a stabilizer. A process train is being developed to convert the organic components of the propellant to biodegradable products and remove the lead from the process stream. The solid propellant is first hydrolyzed through an enhanced alkaline hydrolysis process step. Following lead removal and neutralization, the digested liquor rich in nitrates and nitrites is found to be easily biodegradable. The digestion rate of the intact ground propellant as well as the release of nitrite and nitrate groups were substantially increased when ultrasound were supplied to the alkaline reaction medium compared to the conventional alkaline hydrolysis. The effects of reaction time, temperature, sodium hydroxide concentration and other relevant parameters on the digestion efficiency and biodegradability have been studied. The present work indicates that the AHH propellant can be disposed of safely with a combination of physiochemical and biological processes.

  14. Impact of enzymatic and alkaline hydrolysis on CBD concentration in urine

    PubMed Central

    Bergamaschi, Mateus M.; Barnes, Allan; Queiroz, Regina H. C.; Hurd, Yasmin L.

    2013-01-01

    A sensitive and specific analytical method for cannabidiol (CBD) in urine was needed to define urinary CBD pharmacokinetics after controlled CBD administration, and to confirm compliance with CBD medications including Sativex—a cannabis plant extract containing 1:1 Δ9-tetrahydrocannabinol (THC) and CBD. Non-psychoactive CBD has a wide range of therapeutic applications and may also influence psychotropic smoked cannabis effects. Few methods exist for the quantification of CBD excretion in urine, and no data are available for phase II metabolism of CBD to CBD-glucuronide or CBD-sulfate. We optimized the hydrolysis of CBD-glucuronide and/or -sulfate, and developed and validated a GC-MS method for urinary CBD quantification. Solid-phase extraction isolated and concentrated analytes prior to GC-MS. Method validation included overnight hydrolysis (16 h) at 37 °C with 2,500 units β-glucuronidase from Red Abalone. Calibration curves were fit by linear least squares regression with 1/x2 weighting with linear ranges (r2>0.990) of 2.5–100 ng/mL for non-hydrolyzed CBD and 2.5–500 ng/mL for enzyme-hydrolyzed CBD. Bias was 88.7–105.3 %, imprecision 1.4–6.4 % CV and extraction efficiency 82.5–92.7 % (no hydrolysis) and 34.3–47.0 % (enzyme hydrolysis). Enzyme-hydrolyzed urine specimens exhibited more than a 250-fold CBD concentration increase compared to alkaline and non-hydrolyzed specimens. This method can be applied for urinary CBD quantification and further pharmacokinetics characterization following controlled CBD administration. PMID:23494274

  15. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.

    PubMed

    Banerjee, Goutami; Car, Suzana; Liu, Tongjun; Williams, Daniel L; Meza, Sarynna López; Walton, Jonathan D; Hodge, David B

    2012-04-01

    Alkaline hydrogen peroxide (AHP) has several attractive features as a pretreatment in the lignocellulosic biomass-to-ethanol pipeline. Here, the feasibility of scaling-up the AHP process and integrating it with enzymatic hydrolysis and fermentation was studied. Corn stover (1 kg) was subjected to AHP pretreatment, hydrolyzed enzymatically, and the resulting sugars fermented to ethanol. The AHP pretreatment was performed at 0.125 g H(2) O(2) /g biomass, 22°C, and atmospheric pressure for 48 h with periodic pH readjustment. The enzymatic hydrolysis was performed in the same reactor following pH neutralization of the biomass slurry and without washing. After 48 h, glucose and xylose yields were 75% and 71% of the theoretical maximum. Sterility was maintained during pretreatment and enzymatic hydrolysis without the use of antibiotics. During fermentation using a glucose- and xylose-utilizing strain of Saccharomyces cerevisiae, all of the Glc and 67% of the Xyl were consumed in 120 h. The final ethanol titer was 13.7 g/L. Treatment of the enzymatic hydrolysate with activated carbon prior to fermentation had little effect on Glc fermentation but markedly improved utilization of Xyl, presumably due to the removal of soluble aromatic inhibitors. The results indicate that AHP is readily scalable and can be integrated with enzyme hydrolysis and fermentation. Compared to other leading pretreatments for lignocellulosic biomass, AHP has potential advantages with regard to capital costs, process simplicity, feedstock handling, and compatibility with enzymatic deconstruction and fermentation. Biotechnol. Bioeng. 2012; 109:922-931. © 2011 Wiley Periodicals, Inc. PMID:22125119

  16. Determination of Lutein from Fruit and Vegetables Through an Alkaline Hydrolysis Extraction Method and HPLC Analysis.

    PubMed

    Fratianni, Alessandra; Mignogna, Rossella; Niro, Serena; Panfili, Gianfranco

    2015-12-01

    A simple and rapid analytical method for the determination of lutein content, successfully used for cereal matrices, was evaluated in fruit and vegetables. The method involved the determination of lutein after an alkaline hydrolysis of the sample matrix, followed by extraction with solvents and analysis by normal phase HPLC. The optimized method was simple, precise, and accurate and it was characterized by few steps that could prevent loss of lutein and its degradation. The optimized method was used to evaluate the lutein amounts in several fruit and vegetables. Rich sources of lutein were confirmed to be green vegetables such as parsley, spinach, chicory, chard, broccoli, courgette, and peas, even if in a range of variability. Taking into account the suggested reference values these vegetables can be stated as good sources of lutein. PMID:26540023

  17. Effect of cosolvent on alkaline hydrolysis of monomethyl ester of terephtalic acid. Experimental and theoretical investigations

    SciTech Connect

    Benko, J.; Cernusak, I.; Holba, V.

    1987-06-01

    The kinetics of alkaline hydrolysis of monomethyl ester of terephtalic (MET) acid was studied in water-glycol mixtures. The transfer functions of the monoester anion from water to mixtures with glycol, methanol and t-butanol were evaluated from solubilities of the sodium monomethylterephtalate (NaMET). In order to explain the role of the cosolvent on the molecular level, the interaction energies of the hydroxyl ion with water, methanol, and glycol were calculated by means of the ab initio HF/4-31G procedure. The correlations of interaction energies with transfer functions of the hydroxyl ion and with the kinetic parameters of the reaction were investigated. The influence of the organic cosolvent on the solvation of initial and transition state is discussed.

  18. Efficacy of Alkaline Hydrolysis as an Alternative Method for Treatment and Disposal of Infectious Animal Waste.

    PubMed

    Kaye, Gordon; Weber, Peter; Evans, Ann; Venezia, Richard

    1998-05-01

    The efficacy of alkaline hydrolysis as an alternative for incineration or autoclaving during treatment and disposal of infectious waste was evaluated by testing for the destruction of samples of pure cultures of selected infectious microorganisms during digestion of 114 to 136-kg loads of animal carcasses in an animal tissue digestor at the Albany Medical College. Ten milliliter samples of pure cultures of each microorganism were divided among 3 dialysis bags made from narrow diameter dialysis tubing, and each of these bags was placed inside another dialysis bag made from larger diameter dialysis tubing. Each double-bagged sample was suspended from the cover of the carcass basket of the tissue digestor so that it was completely covered by hot alkaline digestion solution during the carcass digestion process. The following organisms were required by the New York State Department of Health as representative pathogens for testing sterilization capabilities of the procedure: Staphylococcus aureus, Mycobacterium fortuitum, Candida albicans, Bacillus subtilis, Pseudomonas aeruginosa, Aspergillus fumigatus, Mycobacterium bovis BCG, MS-2 bacteriophage, and Giardia muris. Animal carcasses included pigs, sheep, rabbits, dogs, rats, mice, and guinea pigs. The tissue digestor was operated at 110 to 120 C and approximately 15 lb/in2 (gauge) for 18 h before the system was allowed to cool to 50 C and dialysis bags were retrieved and submitted for microbial culture. None of the samples obtained from the dialysis bags after the digestion process yielded indicator bacteria or yeast. Giardia cysts were completely destroyed; only small fragments of what appeared to be cyst wall could be recognized with light microscopic examination. No plaque-forming units were detected with MS-2 bacteriophage after digestion. Samples of the hydrolyzate also did not yield growth on culture media. Animal carcasses were completely solubilized and digested, with only the inorganic components of the bones and teeth remaining after draining and rinsing of the digestion vessel. Alkaline hydrolysis, as performed in this tissue digestor, completely destroyed all representative classes of potentially infectious agents as well as disposing of animal carcasses by solubilization and digestion. PMID:12456159

  19. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene: Characterization of Products by 13C and 15N NMR

    USGS Publications Warehouse

    Thorn, K.A.; Thorne, P.G.; Cox, L.G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp 3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp 2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to microbial or chemical degradation of the polymeric materials remain unknown.

  20. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability

    PubMed Central

    2014-01-01

    Background A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Results Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. Conclusions This work demonstrates that this two-stage pretreatment process is well suited for converting lignocellulose to fermentable sugars and biofuels, such as ethanol. This approach achieved high enzymatic sugars yields from pretreated corn stover using substantially lower oxidant loadings than have been reported previously in the literature. This pretreatment approach allows for many possible process configurations involving novel alkali recovery approaches and novel uses of alkaline pre-extraction liquors. Further work is required to identify the most economical configuration, including process designs using techno-economic analysis and investigating processing strategies that economize water use. PMID:24693882

  1. [The inversion of soil alkaline hydrolysis nutrient content with hyperspectral reflectance based on wavelet analysis].

    PubMed

    Luan, Fu-Ming; Xiong, Hei-Gang; Wang, Fang; Zhang, Fang

    2013-10-01

    One hundred thirty for soil samples of Qitai in Xinjiang were selected, and the first derivative spectrum of the soil sample logarithmic reflectance was decomposed to many layers by using 4 wavelet functions respectively, and PLSR was used to establish the prediction models respectively, and precision values were tested. The results show that: 1-3 layers low-frequency coefficients of wavelet decomposition were better, while the rest were worse. In 6 layers of all function decomposition, the highest accuracy of inversion models constructed by low-frequency coefficients were all ca2, while with increasing the decomposition layers, the precision and significance decreased significantly. In the same scale, there was little accuracy difference between inversion models constructed by 4 wavelet functions low-frequency coefficients, while Bior1.3 was optimal. The best inversion model was ca2 that built by Bior 1.3, with R2 and RMSE being 0.977 and 7.51 mg x kg(-1) respectively, reaching to significant level. Upon testing, it can be used to estimate the alkaline hydrolysis nitrogen content quickly and accurately. PMID:24409744

  2. Enhanced osteogenic activity of a poly(butylene succinate)/calcium phosphate composite by simple alkaline hydrolysis.

    PubMed

    Arphavasin, Suphakit; Singhatanadgit, Weerachai; Ngamviriyavong, Patcharee; Janvikul, Wanida; Meesap, Preeyapan; Patntirapong, Somying

    2013-10-01

    Bone engineering offers the prospect of alternative therapies for clinically relevant skeletal defects. Poly(butylene succinate) (PBSu) is a biodegradable and biocompatible polyester which may possess some limitations in clinical use due to its hydrophobicity. In order to overcome these limitations and increase the bioactivity, a simple and convenient surface hydrolysis of PBSu, PBSu/hydroxyapatite and PBSu/β-tricalcium phosphate (TCP) films was performed. The resulting surfaces (i.e., HPBSu, HPBSu/HA and HPBSu/TCP) were tested for their physicochemical property, biocompatibility and osteogenic potency. The results showed that surface hydrolysis significantly increased surface roughness and hydrophilicity of the composites, with the HPBSu/TCP possessing the most pronounced results. All the materials appeared to be biocompatible and supported in vitro growth and osteoblast differentiation of hMSCs, and the alkaline hydrolysis significantly enhanced the hMSC cell proliferation and the osteogenic potency of PBSu/TCP compared with the non-hydrolyzed sample. In conclusion, the HPBSu/TCP possessed better hydrophilicity, biocompatibility and osteogenic potency in vitro, suggesting that this simple and convenient alkaline hydrolysis could be used to augment the biological property of PBSu-based composites for bone engineering in vivo. PMID:24057872

  3. Inorganic nanofibers with tailored placement of nanocatalysts for hydrogen production via alkaline hydrolysis of glucose

    NASA Astrophysics Data System (ADS)

    Hansen, Nathaniel S.; Ferguson, Thomas E.; Panels, Jeanne E.; Alissa Park, Ah-Hyung; Lak Joo, Yong

    2011-08-01

    Monoaxial silica nanofibers containing iron species as well as coaxial nanofibers with a pure silica core and a silica shell containing high concentrations of iron nanocrystals were fabricated via electrospinning precursor solutions, followed by thermal treatment. Tetraethyl-orthosilicate (TEOS) and iron nitrate (Fe(NO3)3) were used as the precursors for the silica and iron phases, respectively. Thermal treatments of as-spun precursor fibers were applied to generate nanocrystals of iron with various oxidation states (pure iron and hematite). Scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to probe the fiber morphology and crystal structures. The results indicated that the size, phase, and placement of iron nanocrystals can be tuned by varying the precursor concentration, thermal treatment conditions, and processing scheme. The resulting nanofiber/metal systems obtained via both monoaxial and coaxial electrospinning were applied as catalysts to the alkaline hydrolysis of glucose for the production of fuel gas. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and bulk weight change in a furnace with residual gas analysis (RGA) were used to evaluate the performance of the catalysts for various ratios of both Fe to Si, and catalyst to glucose, and the oxidation state of the iron nanocrystals. The product gas is composed of mostly H2 (>96 mol%) and CH4 with very low concentrations of CO2 and CO. Due to the clear separation of reaction temperature for H2 and CH4 production, pure hydrogen can be obtained at low reaction temperatures. Our coaxial approach demonstrates that placing the iron species selectively near the fiber surface can lead to two to three fold reduction in catalytic consumption compared to the monoaxial fibers with uniform distribution of catalysts.

  4. Evaluation of white-rot fungi-assisted alkaline/oxidative pretreatment of corn straw undergoing enzymatic hydrolysis by cellulase.

    PubMed

    Yu, Hongbo; Zhang, Xiaoyu; Song, Lili; Ke, Jing; Xu, Chunyan; Du, Wanqing; Zhang, Ji

    2010-12-01

    In this study, the effects of biological treatment prior to alkaline/oxidative (A/O) pretreatment using three white-rot fungi (Ganoderma lucidum, Trametes versicolor and Echinodontium taxodii) were evaluated for the enzymatic hydrolysis of corn straw. Among these fungi, Echinodontium taxodii significantly enhanced the efficiency of chemical pretreatment. Subsequent to treatment of corn straw with Echinodontium taxodii for 15 days, the straw was subjected to digestion by 0.0016% NaOH and 3% H?O? at room temperature for 24 h, which increased the reducing sugar yield by 50.7%. The hydrolysis model and kinetic parameters were determined from time course data collected throughout the hydrolysis. The initial hydrolysis rate, V?, of the corn straw increased by 68.5% compared to A/O pretreatment alone, which resulted from an increase in the initial adsorption. The lignin content of the corn straw decreased more significantly after biological and A/O pretreatment than after A/O pretreatment alone. After 72 h of enzymatic hydrolysis, the adsorbed cellulase decreased by 24.8% (from 3.67 to 2.76 mg ml?) compared to A/O pretreatment alone. These results indicate that biological treatment improves the desorption of cellulase by enhancing delignification during A/O pretreatment. PMID:20817594

  5. Kinetics of the alkaline hydrolysis of 2,4,6-trinitrotoluene in aqueous solution and highly contaminated soils

    SciTech Connect

    Emmrich, M.

    1999-11-01

    During the two World Wars, large amounts of TNT were released into the environment. Until today, high concentrations of TNT can be found in the soil of former ammunition plants. To obtain basic data for a novel treatment process for highly contaminated soils, the homogeneous aqueous hydrolysis of TNT in the pH range from 10 to 12 and the alkaline treatment of two contaminated soils at pH 11 and pH 12 were investigated. The experimental data were described for their respective pH values using a pseudo-first-order model. In the homogeneous experiments, 95--97% of the TNT was hydrolyzed. During alkaline hydrolysis, up to two nitrogroups per TNT molecule were released, indicating the irreversible destruction of TNT. Except for the formation of small traces of amino dinitrotoluenes and trinitrobenzenes, no nitroaromatic benzenes or toluenes were detected during GC analysis. For the less contaminated soil, ELBP2, with an initial TNT concentration of 116 mg/kg, a destruction of 99% was achieved. The highly contaminated soil, HTNT2 (16.1 g of TNT/kg), showed a hydrolyzation level of 90-94%. The results show that the alkaline treatment of highly contaminated soils may prove to be effective as an alternative treatment technology.

  6. Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse.

    PubMed

    Mesquita, Jéssica Faria; Ferraz, André; Aguiar, André

    2016-03-01

    Sugarcane bagasse is a by-product from the sugar and ethanol industry which contains approximately 70 % of its dry mass composed by polysaccharides. To convert these polysaccharides into fuel ethanol it is necessary a pretreatment step to increase the enzymatic digestibility of the recalcitrant raw material. In this work, sugarcane bagasse was pretreated by an alkaline-sulfite chemithermomechanical process for increasing its enzymatic digestibility. Na2SO3 and NaOH ratios were fixed at 2:1, and three increasing chemical loads, varying from 4 to 8 % m/m Na2SO3, were used to prepare the pretreated materials. The increase in the alkaline-sulfite load decreased the lignin content in the pretreated material up to 35.5 % at the highest chemical load. The pretreated samples presented enhanced glucose yields during enzymatic hydrolysis as a function of the pretreatment severity. The maximum glucose yield (64 %) was observed for the samples pretreated with the highest chemical load. The use of 2.5 g l(-1) Tween 20 in the hydrolysis step further increased the glucose yield to 75 %. Semi-simultaneous hydrolysis and fermentation of the pretreated materials indicated that the ethanol yield was also enhanced as a function of the pretreatment severity. The maximum ethanol yield was 56 ± 2 % for the sample pretreated with the highest chemical load. For the sample pretreated with the lowest chemical load (2 % m/m NaOH and 4 % m/m Na2SO3), adding Tween 20 during the hydrolysis process increased the ethanol yield from 25 ± 3 to 39.5 ± 1 %. PMID:26718203

  7. [Influencing Factors for Hydrolysis of Sewage Sludge Pretreated by Microwave-H2O2-Alkaline Process].

    PubMed

    Jia, Rui-lai; Wei, Yuan-song; Liu, Ji-bao

    2015-06-01

    Pretreatment can improve carbon source utilization of sludge. In this study, influencing factors of hydrolysis including hydrolysis time, ratio of seed sludge and temperature were investigated for sewage sludge pretreated by microwave-H2O2-alkaline process through batch experiments. Meanwhile, effects of hydrolysis and releasing characteristics of organic matters were also investigated under the optimized conditions. The results showed that the optimal hydrolysis time was 12 h and the optimized inoculum to substrate ratio (I/S) was 0.07. Under optimized conditions (12 h, I/S =0.07), SCOD, soluble proteins, soluble sugars and total VFAs content increased with increasing temperature, reaching the maximum at 65 degrees C. Acetic, propionic and iso-valeric acids were the dominant VFAs produced, and the percentage of acetic acid accounting for total VFAs was between 42.7% and 59.7%. In terms of carbon source composition, SCOD accounted for 37.8%-40.8% of total COD, soluble proteins accounted for 38.3%-41.3% of SCOD, soluble sugars accounted for 9.0%-9.3% of SCOD and total VFAs accounted for 3.3%-5.5% of SCOD. The COD/TN watio was between 15.79 and 16.50 in the sludge supernatant. The results of the three-dimensional fluorescence spectra and apparent molecular weight distributions showed that the fluorescence intensity of tyrosine-like substances in the soluble microbial products was the highest and increased with the increasing temperature in the sludge supernatant. After the sewage sludge was pretreated by microwave-H2O2-OH process, a lot of organic matters were released, including small molecule organics (M 100-350), while after hydrolysis, M, 3000-60,000 organics were degraded. PMID:26387329

  8. Extraction of phenolic acids by alkaline hydrolysis from the solid residue obtained after prehydrolysis of trimming vine shoots.

    PubMed

    Max, Belén; Salgado, José Manuel; Cortés, Sandra; Domínguez, José Manuel

    2010-02-10

    Contents of hydroxycinnamic and hydroxybenzoic acids were determined in trimming vine shoots after sequential treatments of prehydrolysis and alkaline hydrolysis. These treatments allow the complete use of the main fractions involved: cellulose, hemicelluloses and lignin. The alkaline hydrolysis was studied using a factorial design where reaction time (in the range 30-120 min), temperature (50-130 degrees C), and NaOH concentration (4-12 wt % of solution) were the independent variables. The interrelationship between dependent and operational variables was well fitted (R(2) > 0.90) to models including linear, interaction and quadratic terms. Ferulic acid was the most abundant hydroxycinnamate with concentrations ranging from 25.7 to 141.0 mg/L followed by p-coumaric acid (15.5-31.5 mg/L). Gallic acid was the hydroxybenzoic acid released in higher concentration (in the range 2.5-164.6 mg/L). Because of their properties and low toxicity, these compounds are widely used in the food, pharmaceutical and cosmetic industries. Additionally, ferulic acid is used as feedstock for the biotechnological production of flavorings and aroma compounds, including vanillin and vinylguaiacol, or as a constituent in the preparation of foods and skin protection agents, or as a cross-linking agent for the elaboration of food gels. Consequently, ferulic acid solutions can be obtained from renewable plant cell wall materials as a prospective pathway. PMID:20000463

  9. Alkaline hydrolysis of hexahydro-1,3,5-trinitro-1,3,5-triazine: M06-2X investigation.

    PubMed

    Sviatenko, Liudmyla K; Gorb, Leonid; Hill, Frances C; Leszczynska, Danuta; Okovytyy, Sergiy I; Leszczynski, Jerzy

    2015-09-01

    Alkaline hydrolysis mechanism of possible environmental contaminant RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) was investigated computationally at the PCM(Pauling)/M06-2X/6-311++G(d,p) level of theory. Results obtained show that the initial deprotonation of RDX by hydroxide leads to nitrite elimination and formation of a denitrated cyclohexene intermediate. Further nucleophilic attack by hydroxide onto cyclic CN double bond results in ring opening. It was shown that the presence of hydroxide is crucial for this stage of the reaction. The dominant decomposition pathway leading to a ring-opened intermediate was found to be formation of 4-nitro-2,4-diazabutanal. Hydrolytic transformation of its byproduct (methylene nitramine) leads to end products such as formaldehyde and nitrous oxide. Computational results are in a good agreement with experimental data on hydrolysis of RDX, suggesting that 4-nitro-2,4-diazabutanal, nitrite, formaldehyde, and nitrous oxide are main products for early stages of RDX decomposition under alkaline conditions. PMID:25911044

  10. QSAR study and the hydrolysis activity prediction of three alkaline lipases from different lipase-producing microorganisms

    PubMed Central

    2012-01-01

    The hydrolysis activities of three alkaline lipases, L-A1, L-A2 and L-A3 secreted by different lipase-producing microorganisms isolated from the Bay of Bohai, P. R. China were characterized with 16 kinds of esters. It was found that all the lipases have the ability to catalyze the hydrolysis of the glycerides, methyl esters, ethyl esters, especially for triglycerides, which shows that they have broad substrate spectra, and this property is very important for them to be used in detergent industry. Three QSAR models were built for L-A1, L-A2 and L-A3 respectively with GFA using Discovery studio 2.1. The models equations 1, 2 and 3 can explain 95.80%, 97.45% and 97.09% of the variances (R2adj) respectively while they could predict 95.44%, 89.61% and 93.41% of the variances (R2cv) respectively. With these models the hydrolysis activities of these lipases to mixed esters were predicted and the result showed that the predicted values are in good agreement with the measured values, which indicates that this method can be used as a simple tool to predict the lipase activities for single or mixed esters. PMID:23016923

  11. Branched poly(lactide) synthesized by enzymatic polymerization: effects of molecular branches and stereochemistry on enzymatic degradation and alkaline hydrolysis.

    PubMed

    Numata, Keiji; Srivastava, Rajiv K; Finne-Wistrand, Anna; Albertsson, Ann-Christine; Doi, Yoshiharu; Abe, Hideki

    2007-10-01

    In this article the effects of the number of molecular branches (chain ends) and the stereochemistry of poly(lactide)s (PLAs) on the enzymatic degradation and alkaline hydrolysis are studied. Various linear and branched PLAs were synthesized using lipase PS (Pseudomonas fluorescens)-catalyzed ring-opening polymerization (ROP) of lactide monomers having different stereochemistries (L-lactide, D-lactide, and D,L-lactide). Five different alcohols were used as initiators for the ROP, and the monomer-to-initiator molar feed ratio was varied from 10 to 100 and 1000 for each branch in the polymer architecture. The properties of branched PLAs that would affect the enzymatic and alkaline degradations, i.e., the glass transition temperature, the melting temperature, the melting enthalpy, and the advancing contact angle, were determined. The PLA films were degraded using proteinase K or 1.0 M NaOH solution, and the weight loss and changes in the number average molecular weight (Mn) of the polymer were studied during 12 h of degradation. The results suggest that an increase in the number of molecular branches of branched PLAs enhances its enzymatic degradability and alkali hydrolyzability. Moreover, the change in Mn of the branched poly(L-lactide) (PLLA) by alkaline hydrolysis indicated that the decrease in Mn was in the first place dependent on the number of molecular branches and thereafter on the length of the molecular branch of branched PLA. The branched PLLA, poly(D-lactide) (PDLA), and poly(D,L-lactide) (PDLLA) differed in weight loss and change in Mn of the PLA segment during the enzymatic degradation. It is suggested that the branched PDLLA was degraded preferentially by proteinase K. PMID:17722879

  12. Investigation of Unexpected Reaction Intermediates in the Alkaline Hydrolysis of Methyl 3,5-Dinitrobenzoate

    ERIC Educational Resources Information Center

    Silva, Clesia C.; Silva, Ricardo O.; Navarro, Daniela M. A. F.; Navarro, Marcelo

    2009-01-01

    An experimental project aimed at identifying stable reaction intermediates is described. Initially, the studied reaction appears to involve the simple hydrolysis, by aqueous sodium hydroxide, of methyl 3,5-dinitrobenzoate dissolved in dimethyl sulfoxide. On mixing the substrates, however, the reaction mixture unexpectedly turns an intense red in…

  13. On the hydrolysis of iodine in alkaline solution: A radiation chemical study

    NASA Astrophysics Data System (ADS)

    Buxton, George V.; Mulazzani, Quinto G.

    2007-06-01

    A reaction set has been constructed that describes the radiolysis of N 2O-saturated aqueous solutions of iodide ion. The kinetics and mechanism of the hydrolysis of iodine has been reassessed from conductivity measurements at pH 9.5-11.1 using pulse radiolysis (present work) and previously published data on the yields of I 2+I 3-, HOI+IO - and IO 3- produced by the γ-radiolysis of unbuffered solutions [Buxton, G.V., Sellers, R.M., 1985. Radiation induced redox reactions of iodine species in aqueous solutions J. Chem. Soc., Faraday Trans. I 81, 449-471]. The conductivity data are consistent with a value of k5(I+OH)=1×1010 dm mol s and with the other hydrolysis parameters having values in the following ranges: k-8(HOI+I)=(0.3-3)×109 dm mol s, K5(I+OH⇌IOH)=5-50 dm mol, K8(IOH⇌HOI+I)=8.3-0.83 mol dm, based on K5K8=41.5. The values of K5 obtained here are much smaller than the literature values of ca. 1.6×10 4 dm 3 mol -1 [Lengyel, I., Epstein, I.R., Kustin, K., 1993. Kinetics of iodine hydrolysis. Inorg. Chem. 32, 5880-5882]. The γ-radiolysis results are well described by these hydrolysis parameters.

  14. Investigation of Unexpected Reaction Intermediates in the Alkaline Hydrolysis of Methyl 3,5-Dinitrobenzoate

    ERIC Educational Resources Information Center

    Silva, Clesia C.; Silva, Ricardo O.; Navarro, Daniela M. A. F.; Navarro, Marcelo

    2009-01-01

    An experimental project aimed at identifying stable reaction intermediates is described. Initially, the studied reaction appears to involve the simple hydrolysis, by aqueous sodium hydroxide, of methyl 3,5-dinitrobenzoate dissolved in dimethyl sulfoxide. On mixing the substrates, however, the reaction mixture unexpectedly turns an intense red in

  15. [Effect of Residual Hydrogen Peroxide on Hydrolysis Acidification of Sludge Pretreated by Microwave -H2O2-Alkaline Process].

    PubMed

    Jia, Rui-lai; Liu, Ji-bao; Wei, Yuan-song; Cai, Xing

    2015-10-01

    Previous studies have found that in the hydrolysis acidification process, sludge after microwave -H2O2-alkaline (MW-H2O2-OH, pH = 10) pretreatment had an acid production lag due to the residual hydrogen peroxide. In this study, effects of residual hydrogen peroxide after MW-H2O2-OH (pH = 10 or pH = 11) pretreatment on the sludge hydrolysis acidification were investigated through batch experiments. Our results showed that catalase had a higher catalytic efficiency than manganese dioxide for hydrogen peroxide, which could completely degraded hydrogen peroxide within 10 min. During the 8 d of hydrolysis acidification time, both SCOD concentrations and the total VFAs concentrations of four groups were firstly increased and then decreased. The optimized hydrolysis times were 0.5 d for four groups, and the optimized hydrolysis acidification times were 3 d for MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group. The optimized hydrolysis acidification time for MW-H2O2-OH (pH = 11) group was 4 d. Residual hydrogen peroxide inhibited acid production for sludge after MW-H2O2-OH (pH = 10) pretreatment, resulting in a lag in acidification stage. Compared with MW-H2O2-OH ( pH = 10) pretreatment, MW-H2O2-OH (pH = 11 ) pretreatment released more SCOD by 19.29% and more organic matters, which resulted in the increase of total VFAs production significantly by 84.80% at 5 d of hydrolysis acidification time and MW-H2O2-OH (pH = 11) group could shorten the lag time slightly. Dosing catalase (100 mg x -L(-1)) after the MW-H2O2-OH (pH = 10 or pH = 11) pretreatment not only significantly shortened the lag time (0.5 d) in acidification stage, but also produced more total VFAs by 23.61% and 50.12% in the MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group, compared with MW-H2O2-OH (pH = 10) group at 3d of hydrolysis acidification time. For MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH(pH = 11) + catalase group, the dominant VFAs were acetic, iso-valeric and n-butyric acids. For MW-H2O2-OH (pH = 11) group, the dominant VFAs were acetic, propionic and iso-valeric acids. In the optimized hydrolysis acidification time for each group, percentages of the three main acids accounted for more than 75% of total VFAs, and percentages of acetic acid accounted for more than 41% of total VFAs. PMID:26841615

  16. Alkaline hydrolysis of dimethyl terephthalate in the presence of [LiAl{sub 2}(OH){sub 6}]Cl.2H{sub 2}O

    SciTech Connect

    Lei Lixu . E-mail: lixu.lei@seu.edu.cn1; Zhang Weifeng; Hu Meng; Zheng Hegen

    2006-11-15

    The alkaline hydrolysis of dimethyl terephthalate (DMT) in the presence of [LiAl{sub 2}(OH){sub 6}]Cl has been investigated to demonstrate a possible application of anion exchange facility of layered double hydroxides (LDHs) to control chemical reactions. The results show that (i) in the alkaline hydrolysis of DMT in the presence of [LiAl{sub 2}(OH){sub 6}]Cl, most of the interlayer Cl{sup -} of [LiAl{sub 2}(OH){sub 6}]Cl is quickly replaced by OH{sup -} in the alkaline solution because the LDH host favors OH{sup -} more; (ii) the alkaline hydrolysis of DMT in the presence of [LiAl{sub 2}(OH){sub 6}]Cl is faster than the reaction of DMT and [LiAl{sub 2}(OH){sub 6}]OH; (iii) The hydrolysis of DMT in a buffer solution of pH{approx}8 takes longer time to reach equilibrium than the alkaline hydrolysis of DMT in the presence of [LiAl{sub 2}(OH){sub 6}]Cl. It is believed that the selective anion exchange chemistry of the LDH plays a key role in storage and controlled release of active reactant, that is, OH{sup -}, thus make the hydrolysis proceeds in a controlled way. - Graphical abstract: XRD patterns of the solid products of the alkaline hydrolysis of dimethyl terephthalate (DMT) in the presence of [LiAl{sub 2}(OH){sub 6}]Cl at 70 deg. C halted at different time, which shows that [LiAl{sub 2}(OH){sub 6}]Cl turns out to be [LiAl{sub 2}(OH){sub 6}]OH, and [LiAl{sub 2}(OH){sub 6}]{sub 2}TP forms gradually. In this reaction, the alkaline hydrolysis of DMT is controlled by replacement of Cl{sup -} in [LiAl{sub 2}(OH){sub 6}]Cl by OH{sup -}, and subsequent replacement of OH{sup -} in [LiAl{sub 2}(OH){sub 6}]OH by terephthalate anion.

  17. Reduction and alkaline hydrolysis of 5-oxoindeno(1,2-b)pyridinium salts

    SciTech Connect

    Mutsenietse, D.Kh.; Zandersons, A.Z.; Lusis, V.K.; Dubur, G.Ya.

    1987-07-01

    5,9b-dihydro derivatives of indeno(1,2-b)pyridine were obtained by the reduction of the corresponding 1,2-dimethyl-4-acryl-5-oxoindeno(1,2-b)pyridinium perchlorates. 1,2-dimethyl-3-ethoxycarbonyl-4-phenyl-5-oxoindeno(1,2-b)pyridinium perchlorate forms in alkaline medium with splitting, recyclization and deamination products.

  18. Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation-alkaline pretreatment

    NASA Astrophysics Data System (ADS)

    Yin, Yanan; Wang, Jianlong

    2016-06-01

    Pretreatment of wheat straw with gamma irradiation and NaOH was performed to enhance the enzymatic hydrolysis of wheat straw for production of reducing sugar. The results showed that the irradiation of wheat straw at 50 kGy decreased the yield of reducing sugar, however, the reducing sugar yield increased with increasing dose from 50 kGy to 400 kGy. The irradiation of wheat straw at 100 kGy can significantly decrease NaOH consumption and treatment time. The reducing sugar yield could reach 72.67% after irradiation at 100 kGy and 2% NaOH treatment for 1 h. The combined pretreatment of wheat straw by gamma radiation and NaOH immersion can increase the solubilization of hemicellulose and lignin as well as the accessible surface area for enzyme molecules.

  19. EFFECT OF ANATOMICAL FRACTIONATION ON THE ENZYMATIC HYDROLYSIS OF ACID AND ALKALINE PRETREATED CORN STOVER

    SciTech Connect

    K. B. Duguid; M. D. Montross; C. W. Radtke; C. L. Crofcheck; L. M. Wendt; S. A. Shearer

    2009-11-01

    Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated by hand and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0, 0.4, or 0.8% NaOH for 2 hours at room temperature, washed, autoclaved and saccharified. In addition, acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.

  20. Surface potential and osteoblast attraction to calcium phosphate compounds is affected by selected alkaline hydrolysis processing.

    PubMed

    Smith, I O; Baumann, M J; Obadia, L; Bouler, J-M

    2004-08-01

    This study examines the link(s) between the suspension behavior of calcium deficient apatites (CDAs) and biphasic calcium phosphate (BCP), as measured by the zeta-potential, with respect to both whole bone and osteoblasts. CDA is fabricated by hydrolyzing an acidic CaP such as dicalcium diphosphate dihydrate (DCPD; CaHPO4.2H2O) and has a structure and composition close to bone apatite. Sintering CDA results in the formation of BCP ceramics consisting of mixtures of hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP), with the HA/beta-TCP weight ratio proportional to the Ca/P ratio of CDA. The choice of the base for the DCPD hydrolysis allows various ionic partial substitution of the formed CDA. Na for Ca partial substitution is of interest because of the resulting improvement in mechanical properties of the resulting BCP ceramics and NH4OH was used as a negative control. The zeta-potential was measured for these materials and the stability of the ceramic to bone interaction calculated. zeta-potential values decrease for CDA(NH4OH) versus CDA(NaOH) and increase for BCP(NH4OH) versus BCP(NaOH). While results of these analyses indicate that NH4OH and NaOH processed CDA and BCP will likely yield osteoblast attachment in vivo, differences in the zeta-potentials may explain varying degrees of cell attachment. PMID:15477734

  1. A new method for the determination of the nitrogen content of nitrocellulose based on the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis.

    PubMed

    Alinat, Elodie; Delaunay, Nathalie; Archer, Xavier; Mallet, Jean-Maurice; Gareil, Pierre

    2015-04-01

    A new method was proposed to determine the nitrogen content of nitrocelluloses (NCs). It is based on the finding of a linear relationship between the nitrogen content and the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis. Capillary electrophoresis was used to monitor the concentration of nitrite and nitrate ions. The influences of hydrolysis time and molar mass of NC on the molar ratio of nitrite-to-nitrate ions were investigated, and new insights into the understanding of the alkaline denitration mechanism of NCs, underlying this analytical strategy is provided. The method was then tested successfully with various explosive and non-explosive NC-containing samples such as various daily products and smokeless gunpowders. Inherently to its principle exploiting a concentration ratio, this method shows very good repeatability in the determination of nitrogen content in real samples with relative standard deviation (n = 3) inferior to 1.5%, and also provides very significant advantages with respect to sample extraction, analysis time (1h for alkaline hydrolysis, 3 min for electrophoretic separation), which was about 5 times shorter than for the classical Devarda's method, currently used in industry, and safety conditions (no need for preliminary drying NC samples, mild hydrolysis conditions with 1M sodium hydroxide for 1h at 60 °C). PMID:25562808

  2. Mechanisms and Kinetics of Alkaline Hydrolysis of the Energetic Nitroaromatic Compounds 2,4,6-Trinitrotoluene (TNT) and 2,4-Dinitroanisole (DNAN)

    SciTech Connect

    Salter-Blanc, Alexandra; Bylaska, Eric J.; Ritchie, Julia J.; Tratnyek, Paul G.

    2013-07-02

    The environmental impacts of energetic compounds can be minimized through the design and selection of new energetic materials with favorable fate properties. Building predictive models to inform this process, however, is difficult because of uncertainties and complexities in some major fate-determining transformation reactions such as the alkaline hydrolysis of energetic nitroaromatic compounds (NACs). Prior work on the mechanisms of the reaction between NACs and OH− has yielded inconsistent results. In this study, the alkaline hydrolysis of 2,4,6-trinitrotoluene (TNT) and 2,4-Dinitroanisole (DNAN) were investigated with coordinated experimental kinetic measurements and molecular modeling calculations. For TNT, the results suggest reversible formation of an initial product, which is likely either a Meisenheimer complex or a TNT anion formed by abstraction of a methyl proton by OH−. For DNAN, the results suggest that a Meisenheimer complex is an intermediat in the formation of 2,4-dinitrophenolate. Despite these advances, the remaining uncertainties in the mechanisms of these reactions - and potential variability between the hydrolysis mechanisms for different NACs - mean that it is not yet possible to generalize the results into predictive models (e.g., quantitative structure-activity relationships, QSARs) for hydrolysis of other NACs.

  3. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines

    PubMed Central

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Kaeppler, Shawn M.; de Leon, Natalia; Hodge, David B.

    2015-01-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. PMID:25871649

  4. A calixpyridinium-based supramolecular tandem assay for alkaline phosphatase and its application to ATP hydrolysis reaction.

    PubMed

    Wang, Kui; Cui, Jian-Hua; Xing, Si-Yang; Dou, Hong-Xi

    2016-02-24

    We have successfully implemented the supramolecular tandem assay principle for the real-time, continuous, direct, and label-free monitoring of alkaline phosphatase activity through a fluorescence "switch-off" assay based on a novel calixpyridinium/dye reporter pair. Because several diseases can be preliminarily diagnosed in light of an abnormal level of alkaline phosphatase in serum, the application of tandem assays to selectively monitor alkaline phosphatase activity has feasible implications in disease diagnosis. PMID:26830788

  5. Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment.

    PubMed

    Chen, Xiaohua; Gu, Yu; Zhou, Xuefei; Zhang, Yalei

    2014-07-01

    Recently, anaerobic digestion of lignocellulosic biomass for methane production has attracted considerable attention. However, there is little information regarding methane production from asparagus stem, a typical lignocellulosic biomass, by anaerobic digestion. In this study, alkaline pretreatment of asparagus stem was investigated for its ability to increase hydrolysis rate and methane production and to improve biodegradability (BD). The hydrolysis rate increased with increasing NaOH dose, due to higher removal rates of lignin and hemicelluloses. However, the optimal NaOH dose was 6% (w/w) according to the specific methane production (SMP). Under this condition, the SMP and the technical digestion time of the NaOH-treated asparagus stem were 242.3 mL/g VS and 18 days, which were 38.4% higher and 51.4% shorter than those of the untreated sample, respectively. The BD was improved from 40.1% to 55.4%. These results indicate that alkaline pretreatment could be an efficient method for increasing methane production from asparagus stem. PMID:24841574

  6. Evaluation of gardenia yellow using crocetin from alkaline hydrolysis based on ultra high performance liquid chromatography and high-speed countercurrent chromatography.

    PubMed

    Inoue, Koichi; Tanada, Chihiro; Nishikawa, Hiroaki; Matsuda, Satoru; Tada, Atsuko; Ito, Yusai; Min, Jun Zhe; Todoroki, Kenichiro; Sugimoto, Naoki; Toyo'oka, Toshimasa; Akiyama, Hiroshi

    2014-12-01

    Gardenia yellow is globally the most valuable spice and food color. It is generally a mixture of water-soluble carotenoid glycosyl esters which consist of crocetin bis(gentiobiosyl) ester as the main component. Crocetin is a natural carotenoid dicarboxylic acid that may be a candidate drug for pharmaceutical development, however, it is either present in trace amounts or is absent in natural gardenia yellow products. We here propose that crocetin produced by alkaline hydrolysis can be used to qualitatively evaluate gardenia yellow products using an ultra high performance liquid chromatographic assay. A useful and efficient isolation technique for isolating high-purity crocetin from gardenia yellow using high-speed countercurrent chromatography is described. High-speed countercurrent chromatographic fractionation followed by an ultra high performance liquid chromatographic assay showed that trans-crocetin is easily converted to about 15% cis-crocetin (85% trans-crocetin). Crocetin in gardenia yellow was quantitatively evaluated. Our approach is based on the hydrolysis process for converting crocetin glycosyl esters to crocetin before evaluation and isolation using the ultra high performance liquid chromatographic and high-speed countercurrent chromatographic methods. The combination of hydrolysis and chromatographic methods allows evaluation of the purity and quantity of crocetin in gardenia yellow. PMID:25296622

  7. Functionalization of poly(ε-caprolactone) surface with lactose-modified chitosan via alkaline hydrolysis: ToF-SIMS characterization.

    PubMed

    Tortora, Luca; Concolato, Sofia; Urbini, Marco; Giannitelli, Sara Maria; Basoli, Francesco; Rainer, Alberto; Trombetta, Marcella; Orsini, Monica; Mozetic, Pamela

    2016-06-01

    Functionalization of poly(ε-caprolactone) (PCL) was performed via hydrolysis and subsequent grafting of lactose-modified chitosan (chitlac) at two different degrees of derivatization (9% and 64%). Time of flight secondary ion mass spectrometry (ToF-SIMS) and multivariate analysis (principal component analysis) were successfully applied to the characterization of PCL surface chemistry, evidencing changes in the biopolymer surface following base-catalyzed hydrolysis treatment. ToF-SIMS analysis also confirmed positive EDC/NHS-catalyzed (EDC: N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide; NHS: N-hydroxysuccinimide) immobilization of chitlac onto activated PCL surface, with formation of amide bonds between PCL surface carboxyl groups and amine residues of chitlac. Yield of grafting reaction was also shown to be dependent upon the lactosilation degree of chitlac. PMID:26905217

  8. Effect of ethylene glycol on micellization and micellar-catalyzed alkaline hydrolysis reaction of a cationic surfactant at 293-313 K

    NASA Astrophysics Data System (ADS)

    Liu, Sanxian; Shen, Yuhua; Xie, Anjian; Wang, Xiufang; Zhang, Weiqiang; Pan, Zhongwen

    2009-12-01

    Changes in critical micellar concentrations (CMC’s) of gemini surfactant, α, ω-ethane bis(dimethyl cetyl ammonium bromide) (C16-2-C16) with different concentrations of ethylene glycol (EG) addition have been investigated by electrical conductivity method. Subsequently, alkaline hydrolysis of ethyl acetate (EA) in the presence of C16-2-C16 and C16-2-C16-EG has been studied conductometrically at 303.2 and 313.2 K, respectively. It was found that an increase in concentrations of EG added to C16-2-C16 aqueous solutions caused an increase in CMC’s of C16-2-C16, provoked by the decrease in the interfacial Gibbs energy contribution to G {M/∘}. The hydrolysis of EA showed catalytic and restrained dual behavior in the presence of surfactant, it may be related to higher microviscosity and change of morphology with increased surfactant for C16-2-C16 at higher concentration. Addition of EG did not change microenvironment in micellar interfacial region significantly, which had less effect on gemini C16-2-C16 micellar catalytic efficiency.

  9. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose

    SciTech Connect

    Bjerre, A.B.; Olesen, A.B.; Fernqvist, T.; Ploeger, A.; Schmidt, A.S.

    1996-03-05

    The wet oxidation process of wheat straw has been studied as a pretreatment method to attain the main goal: to break down cellulose to glucose enzymatic, and secondly, to dissolve hemicellulose (e.g., for fermentation) without producing microbial inhibitors. Wet oxidation combined with base addition readily oxidizes lignin from wheat straw facilitating the polysaccharides for enzymatic hydrolysis. By using a specially constructed autoclave system, the wet oxidation process was optimized with respect to both reaction time and temperature. The best conditions (20 g/L straw, 170 C, 5 to 10 min) gave about 85% w/w yield of converting cellulose to glucose. The process water, containing dissolved hemicellulose and carboxylic acids, has proven to be a direct nutrient source for the fungus Aspergillus niger producing exo-{beta}-xylosidase. Furfural and hydroxymethyl-furfural, known inhibitors of microbial growth when other pretreatment systems have been applied, were not observed following the wet oxidation treatment.

  10. Determination of the nitrogen content of nitrocellulose from smokeless gunpowders and collodions by alkaline hydrolysis and ion chromatography.

    PubMed

    López-López, María; Alegre, Jose María Ramiro; García-Ruiz, Carmen; Torre, Mercedes

    2011-01-31

    In this work, a method to determine the nitrogen content of nitrocellulose from gunpowders and collodions is proposed. A basic hydrolysis of nitrocellulose with 1.0% (m/v) NaOH at 150°C during 30 min was carried out for nitrocellulose from gunpowders (after its previous isolation by a protocol optimized by our research group) and from collodion samples. The concentration of nitrate and nitrite ions in the hydrolysate was determined by ion chromatography with suppression and conductimetric detection. The nitrogen content of nitrocellulose was calculated from the values of the concentration of both ions. The quantitative method was evaluated in terms of selectivity, sensitivity, robustness, limits of detection and quantification, and precision, measured as repeatability and intermediate precision. These parameters were good enough to demonstrate the validity of the method and its applicability to the determination of the nitrogen content of nitrocellulose contained in different types of gunpowders (single- and double-base gunpowders, manufactured from 1944 to 1997) and in commercial collodion samples. For gunpowders, the nitrogen content determined with the optimized method was compared with the values reported by the official label of the ammunition (obtained by a digestion/titration method) and errors, by defect, ranging from 1% to 15.2% (m/m) were calculated. The highest errors were obtained for the oldest gunpowders and could be attributed to the loss of nitro groups in the nitrocellulose molecule during aging. For collodion samples, errors could not be calculated since the real nitrogen content for these samples was not given in the label. In addition, the analysis time (2h for nitrocellulose isolation, 1.5h for nitrocellulose hydrolysis, and 0.2h for chromatographic separation) was about 10 times lower than in the digestion/titration method nowadays used for gunpowder samples. PMID:21168569

  11. The hydrolysis of polyimides

    NASA Technical Reports Server (NTRS)

    Hoagland, P. D.; Fox, S. W.

    1973-01-01

    Thermal polymerization of aspartic acid produces a polysuccinimide (I), a chain of aspartoyl residues. An investigation was made of the alkaline hydrolysis of the imide rings of (I) which converts the polyimide to a polypeptide. The alkaline hydrolysis of polyimides can be expected to be kinetically complex due to increasing negative charge generated by carboxylate groups. For this reason, a diimide, phthaloyl-DL-aspartoyl-beta-alanine (IIA) was synthesized for a progressive study of the hydrolysis of polyimides. In addition, this diimide (IIA) can be related to thalidomide and might be expected to exhibit similar reactivity during hydrolysis of the phthalimide ring.

  12. Phosphate Hydrolysis by the Fe2-Ca3-Dependent Alkaline Phosphatase PhoX: Mechanistic Insights from DFT calculations.

    PubMed

    Liao, Rong-Zhen; Siegbahn, Per E M

    2015-12-21

    PhoX is a pentanuclear metalloenzyme that employs two ferric ions and three calcium ions to catalyze the hydrolysis of phosphomonoesters. On the basis of the X-ray structure of PhoX ( Science 2014 , 345 , 1170 - 1173 ), a model of the active site is designed, and quantum chemical calculations are used to investigate the reaction mechanism of this enzyme. The calculations support the experimental suggestion, in which the two high spin ferric ions interact in an antiferromagnetic fashion. The two step mechanism proposed by experimentalists has been investigated. The nucleophilic attack of a trinuclear bridging oxo group on the phosphorus center was calculated to be the first step, which is concomitant with the departure of the phenolate, which is stabilized by a calcium ion. The second step is a reverse attack by a water molecule activated by a calcium-bound hydroxide, leading to the regeneration of the bridging oxo group. The second step was calculated to have a barrier of 27.6 kcal/mol. The high barrier suggests that the alternative mechanism involving phosphate release directly from the active site seems to be more likely. All five metal ions are involved in the catalysis by stabilizing the pentacoordinated trigonal bipyramidal transition states. PMID:26651528

  13. Unimolecular and hydrolysis channels for the detachment of water from microsolvated alkaline earth dication (Mg2+, Ca2+, Sr2+, Ba2+) clusters

    SciTech Connect

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2014-02-07

    We examine theoretically the three channels that are associated with the detachment of a single water molecule from the aqueous clusters of the alkaline earth dications, [M(H2O)n]2+, M = Mg, Ca, Sr, Ba, n ≤ 6. These are the unimolecular water loss (M2+(H2O)n-1 + H2O) and the two hydrolysis channels resulting to the loss of hydronium ([MOH(H2O)n-2]+ + H3O+) and Zundel ([MOH(H2O)n-3]+ + H3O+(H2O)) cations. The Potential Energy Curves (PECs) corresponding to those three channels were constructed at the Møller-Plesset second order perturbation (MP2) level of theory with basis sets of double- and triple-ζ quality. We furthermore investigated the water and hydronium loss channels from the mono-hydroxide water clusters with up to four water molecules, [MOH(H2O)n]+, 1 ≤ n ≤ 4. Our results indicate the preference of the hydronium loss and possibly the Zundel cation loss channels for the smallest size clusters, whereas the unimolecular water loss channel is preferred for the larger ones as well as the mono-hydroxide clusters. Although the charge separation (hydronium and Zundel cation loss) channels produce more stable products when compared to the ones for the unimolecular water loss, they also require the surmounting of high energy barriers, a fact that makes the experimental observation of fragments related to these hydrolysis channels difficult.

  14. Limited hydrolysis of bovine plasma albumin at neutral and alkaline pH catalyzed by associated proteinases.

    PubMed

    Aoki, K; Foster, J F

    1975-08-12

    Proteinase contaminants in some plasma albumin samples have previously been shown to produce cleavage of the albumin molecule at acid pH. The F conformer, existing at pH 3.8, is cleaved near erisidue number 400 to yield a large N-terminal fragment of approximately 46,000 daltons. No cleavage was found at pH above approximately 4.4. It is shown in this paper that the proteinase contaminants are active over a broad pH range from 2.5 to 11.4 provided conditions are such as to induce some breakdown of the native conformation of the albumin molecule. Addition of Tris-borate buffer (0.1 M) at pH 7.5-9 is sufficient to permit cleavage. At pH near 9 this occurs predominantly 42,000 and 27,000 daltons. Near neutral pH substantial cleavage occurs in 4-8 M urea solution or in the presence of sodium dodecyl sulfate (AD110 complex). Under these conditions there are two large fragments (42,000 and 47,000 daltons) and essentially two small ones (20,000-27,000 daltons). Under conditions where there is no cleavage at 38-40 degrees, substantial cleavage results at 50-65 degrees but enzyme inactivation also occurs toward the top of this range. The alkaline activity is inhibited by soybean trypsin inhibitor but not by pepstatin; the reverse is true of the low pH activity. Cleavage at neutral or alkaline pH under the various conditions occurs primarily at X-Leu bonds while the low pH activity was already shown to occur at X-Phe. These facts suggest the presence of at least two enzymes. There is surprisingly little pH dependence over the range 7.5-9 in any of the media examined, even though albumin is known to undergo a significant conformational change in this range, the N leads to B transition. This transition is thought to be essentially a tertiary change with little loss of helix content. It is suggested that loss of native secondary structure, especially uncoiling of helical regions, is crucial to permit attack by these enzymes. PMID:240384

  15. Analysis of the effect of temperature changes combined with different alkaline pH on the β-lactoglobulin trypsin hydrolysis pattern using MALDI-TOF-MS/MS.

    PubMed

    Chelulei Cheison, Seronei; Brand, Janina; Leeb, Elena; Kulozik, Ulrich

    2011-03-01

    Temperature and pH influence the conformation of the whey protein β-lactoglobulin (β-Lg) monomer, dimer, and octamer formation, its denaturation, and solubility. Most hydrolyses have been reported at trypsin (EC 3.4.21.4) optimum conditions (pH 7.8 and 37 °C), while the hydrolysate mass spectrometry was largely limited to peptides with <4 kDa. There are few reports on trypsin peptide release patterns away from optimum. This work investigated the influence of alkaline (8.65 and 9.5) and optimum (7.8) pH at different temperatures (25, 37.5, and 50 °C) on β-Lg (7.5%, w/v) hydrolysis. Sample aliquots were drawn out before the addition of trypsin (blank sample) and at various time intervals (15 s to 10 min) thereafter. Matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS) was used to monitor peptide evolution over time with the use of two matrixes: α-cyano-4-hydroxycinnamic acid (HCCA) and 2.5-dihydroxyacetophenone (DHAP). Mass analysis showed that the N- and C-terminals (Lys(8)-Gly(9), Lys(100)-Lys(101), Arg(124)-Thr(125), Lys(141)-Ala(142), and Arg(148)-Leu(149)) of β-Lg were cleaved early (15 s) implying the ease of trypsinolysis at the exposed terminals. Hydrolyses at 25 °C and pH 7.8 as well as at 50 °C and pH 9.5 were slowed down and ordered. Nonspecific chymotrypsin-like behavior occurred more at higher temperatures (50 °C) than at lower ones (25 and 37.5 °C). In addition to our earlier work in the acid pH region, it can be concluded that there is potential for controlled hydrolysis outside the trypsin optimum, where different target peptides with predictable biofunctionalities could be produced. PMID:21319805

  16. Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases

    PubMed Central

    2014-01-01

    Background Efficient conversion of lignocellulosic biomass to fermentable sugars requires the synergistic action of multiple enzymes; consequently enzyme mixtures must be properly formulated for effective hydrolysis. The nature of an optimal enzyme blends depends on the type of pretreatment employed as well the characteristics of the substrate. In this study, statistical experimental design was used to develop mixtures of recombinant glycosyl hydrolases from thermophilic and anaerobic fungi that enhanced the digestion of alkaline peroxide treated alfalfa hay and barley straw by mixed rumen enzymes as well as commercial cellulases (Accelerase 1500, A1500; Accelerase XC, AXC). Results Combinations of feruloyl and acetyl xylan esterases (FAE1a; AXE16A_ASPNG), endoglucanase GH7 (EGL7A_THITE) and polygalacturonase (PGA28A_ASPNG) with rumen enzymes improved straw digestion. Inclusion of pectinase (PGA28A_ASPNG), endoxylanase (XYN11A_THITE), feruloyl esterase (FAE1a) and β-glucosidase (E-BGLUC) with A1500 or endoglucanase GH7 (EGL7A_THITE) and β-xylosidase (E-BXSRB) with AXC increased glucose release from alfalfa hay. Glucose yield from straw was improved when FAE1a and endoglucanase GH7 (EGL7A_THITE) were added to A1500, while FAE1a and AXE16A_ASPNG enhanced the activity of AXC on straw. Xylose release from alfalfa hay was augmented by supplementing A1500 with E-BGLUC, or AXC with EGL7A_THITE and XYN11A_THITE. Adding arabinofuranosidase (ABF54B_ASPNG) and esterases (AXE16A_ASPNG; AXE16B_ASPNG) to A1500, or FAE1a and AXE16A_ASPNG to AXC enhanced xylose release from barley straw, a response confirmed in a scaled up assay. Conclusion The efficacy of commercial enzyme mixtures as well as mixed enzymes from the rumen was improved through formulation with synergetic recombinant enzymes. This approach reliably identified supplemental enzymes that enhanced sugar release from alkaline pretreated alfalfa hay and barley straw. PMID:24766728

  17. PHTHALATE ESTER HYDROLYSIS: LINEAR FREE ENERGY RELATIONSHIPS

    EPA Science Inventory

    Alkaline hydrolysis rate constants were measured for dimethyl, diethyl, di-n-butyl, di-iso-butyl, and di-(2-ethylhexyl) phthalate esters in water. A linear free energy relationship (LFER) was established for estimating alkaline hydrolysis rate constants for other phthalate esters...

  18. QM/MM analysis suggests that Alkaline Phosphatase (AP) and Nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily

    PubMed Central

    Hou, Guanhua

    2011-01-01

    Several members of the Alkaline Phosphatase (AP) superfamily exhibit a high level of catalytic proficiency and promiscuity in structurally similar active sites. A thorough characterization of the nature of transition state for different substrates in these enzymes is crucial for understanding the molecular mechanisms that govern those remarkable catalytic properties. In this work, we study the hydrolysis of a phosphate diester, MpNPP−, in solution, two experimentally well-characterized variants of AP (R166S AP, R166S/E322Y AP) and wild type Nucleotide pyrophosphatase/phosphodiesterase (NPP) by QM/MM calculations in which the QM method is an approximate density functional theory previously parameterized for phosphate hydrolysis (SCC-DFTBPR). The general agreements found between these calculations and available experimental data for both solution and enzymes support the use of SCC-DFTBPR/MM for a semi-quantitative analysis of the catalytic mechanism and nature of transition state in AP and NPP. Although phosphate diesters are cognate substrates for NPP but promiscuous substrates for AP, the calculations suggest that their hydrolysis reactions catalyzed by AP and NPP feature similar synchronous transition states that are slightly tighter in nature compared to that in solution, due in part to the geometry of the bimetallic zinc motif. Therefore, this study provides the first direct computational support to the hypothesis that enzymes in the AP superfamily catalyze cognate and promiscuous substrates via similar transition states to those in solution. Our calculations do not support the finding of recent QM/MM studies by López-Canut and coworkers, who suggested that the same diester substrate goes through a much looser transition state in NPP/AP than in solution, a result likely biased by the large structural distortion of the bimetallic zinc site in their simulations. Finally, our calculations for different phosphate diester orientations and phosphorothioate diesters highlight that the interpretation of thio-substitution experiments is not always straightforward. PMID:22097879

  19. CAPTAN HYDROLYSIS

    EPA Science Inventory

    Captan (N-(trichloromethylthio)-4-cyclohexene-1,2-dicarboximide) undergoes hydrolysis readily in water with a maximum half-life of 710 min. Over the pH range 2-6, the reaction is pH independent and the pseudo-first-order rate constant is (1.8 + or - 0.1) x 10 to the -5th power/s....

  20. Reproductive and sphingolipid metabolic effects of fumonisin B1 and its alkaline hydrolysis product in LM/Bc mice: hydrolyzed fumonisin B1 did not cause neural tube defects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are mycotoxins produced by Fusarium verticillioides. They are toxic to animals and exert their effects through mechanisms involving disruption of sphingolipid metabolism. Fumonisins and their hydrolyzed analogues are found in alkaline-cooked, maize-based foods such as tortillas and the c...

  1. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    PubMed Central

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  2. Alkaline ingestions.

    PubMed

    Howell, J M

    1986-07-01

    Alkaline ingestion is a potentially life-threatening problem that may confront the emergency physician. It is similar to many other toxins in that children and those who attempt suicide are its most common victims; however, implications in terms of initial stabilization and definitive care are quite distinct. Mucosal exposure to lye results in a quick, deep liquefactive necrosis. Consequently, blind nasotracheal intubation may result in the perforation of damaged tissues in the pharynx and trachea. For similar reasons, the blind passage of a nasogastric tube is contraindicated. The use of diluents in this setting is controversial. If a diluent is used, water and milk are considered the liquids of choice. They may be used to irrigate oropharyngeal burns, but are contraindicated in the face of respiratory compromise, shock, liquid lye ingestion, and perforation of the esophagus or stomach. Cathartics and charcoal are not used after alkaline ingestion. Cathartics, however, are used in miniature alkaline battery ingestions to diminish bowel transit time. Esophagoscopy should be done within 12 to 24 hours after ingestion to directly observe the extent of damage. This procedure should be stopped at the first sign of injury to protect against iatrogenic esophageal perforation. Steroids should be started for circumferential esophageal burns and in those patients with significant injury who are unable to undergo esophagoscopy. IV antibiotics are administered for gastrointestinal perforation and may be used concomitantly with steroids. Miniature alkaline batteries lodged in the esophagus must be removed immediately. The available modalities include fluoroscopy-directed Foley catheter removal, endoscopy, and surgery.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3524323

  3. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    PubMed

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. PMID:25898249

  4. Nicosulfuron: alcoholysis, chemical hydrolysis, and degradation on various minerals.

    PubMed

    Sabadie, Jean

    2002-01-30

    Alcoholysis (methanol or ethanol) and hydrolysis (pH ranging from 4 to 11) of the herbicide nicosulfuron at 30 degrees C principally involves the breakdown of the urea part of the molecule. A high yield of the corresponding carbamate was obtained along with aminopyrimidine during alcoholysis. Hydrolysis led to both aminopyrimidine and pyridylsulfonamide. The latter compound may be easily cyclized (pH > or = 7). First-order kinetics describe the rates of alcoholysis and hydrolysis well. The rate constants (0.44 days(-1) for methanolysis) decreased from 0.50 to 0.002 days(-1) as pH increased from 4 to 8, then remained stable under alkaline conditions. In acidic or neutral solution, the hydrolysis path appeared prevalent (> or =70%), whereas in an alkaline medium it decreased when pH increased. The chemical degradation of nicosulfuron on various dry minerals (calcium bentonite, kaolinite, silica gel, H(+) bentonite, montmorillonite K10, and alumina) was investigated at 30 degrees C. The best conditions for the degradation are obtained on acidic minerals after herbicide deposition using the liquid method. Under these conditions an acceptable correlation with pseudo-first-order kinetics was observed, and the major degradation path is similar to that proposed for chemical hydrolysis. Conversely, alumina seemed to favor other unknown degradation processes. The hydrolysis paths of nicosulfuron and rimsulfuron appeared to be different. PMID:11804524

  5. [Effect of alkaline and ultrasonic pretreatment on the sludge disintegration].

    PubMed

    Yang, Jie; Ji, Min; Han, Yu-hong; Liu, Wei-hua; Zhang, Xu-qiang

    2008-04-01

    In order to enhance the efficiency of anaerobic digestion, the effects of ultrasonic pretreatment, alkaline pretreatment and the combination of these two methods have been studied on sludge disintegration by using multifrequency ultrasonic batch. The results showed that the combining of ultrasonic and alkaline treatment was more effective than alkaline or ultrasonic treatment alone in releasing SCOD and VSS solubilization. The VSS reduction rate was 15.98% with ultrasonic pretreatment alone, 22.12% with alkaline pretreatment alone(NaOH/TS = 0.04). When the sludge was pretreated by the alkaline treatment (NaOH/TS = 0.04) for 24 h followed by ultrasonic vibration for 60 min, and simultaneous ultrasonic (60 min) and alkaline( NaOH/TS = 0.04) treatment, the VSS reduction rate could reach 51.45% and 54.45% respectively. Two distinct phases of hydrolysis were observed. The first phase was a very rapid increase in solubilization, followed by a much slower second phase. According to kinetic analysis for first rapid phase, the simultaneous alkaline and ultrasonic treatment could not only get the highest hydrolysis rate among these methods, but also reduce the pretreatment time in ultrasonic pretreatment and alkaline dose in alkaline treatment. PMID:18637353

  6. Structure-activity correlations for organophosphorus ester anticholinesterases. Part 2: CNDO/2 calculations applied to ester hydrolysis rates

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1984-01-01

    Quantitative structure-activity relationships are presented for the hydrolysis of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. CNDO/2 calculations provide values for molecular parameters that correlate with alkaline hydrolysis rates. For each subset of esters with the same leaving group, X, the CNDO-derived net atomic charge at the central phosphorus atom correlates well with the alkaline hydrolysis rate constants. For the whole set of esters with different leaving groups, equations are derived that relate charge, orbital energy and bond order to the hydrolysis rate constants.

  7. Progressing batch hydrolysis process

    DOEpatents

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  8. Topochemistry of environmentally friendly pretreatments to enhance enzymatic hydrolysis of sugar cane bagasse to fermentable sugar.

    PubMed

    Mou, Hongyan; Heikkil, Elina; Fardim, Pedro

    2014-04-23

    In this work, dilute alkaline and alkaline peroxide pretreatments were conducted in comparison with hydrotropic pretreatment to improve the delignification of bagasse prior to enzymatic hydrolysis. The surface chemical composition of bagasse after pretreatments was investigated by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The surface distribution of lignin and extractives on the bagasse fiber was significantly changed by dilute alkaline, alkaline peroxide, and hydrotropic pretreatments. Hydrotropic pretreatment typically showed, other than the decrease of surface coverage by lignin and extractives, dramatic removal of xylan, thereby leading to more cellulose exposed on the fiber surface after pretreatment. Fiber morphology after pretreatments was more favorable for enzyme hydrolysis as well. However, the hydrotropic treatment had clear advantages because the enzymatic hydrolysis yields of glucan and xylan of pretreated bagasse were 83.9 and 14.3%, respectively. PMID:24689355

  9. Reaction pathways and free energy profiles for spontaneous hydrolysis of urea and tetramethylurea: Unexpected substituent effects

    PubMed Central

    Yao, Min; Tu, Wenlong; Chen, Xi; Zhan, Chang-Guo

    2013-01-01

    It has been difficult to directly measure the spontaneous hydrolysis rate of urea and, thus, 1,1,3,3-tetramethylurea (Me4U) was used as a model to determine the “experimental” rate constant for urea hydrolysis. The use of Me4U was based on an assumption that the rate of urea hydrolysis should be 2.8 times that of Me4U hydrolysis because the rate of acetamide hydrolysis is 2.8 times that of N,N-dimethyl-acetamide hydrolysis. The present first-principles electronic-structure calculations on the competing non-enzymatic hydrolysis pathways have demonstrated that the dominant pathway is the neutral hydrolysis via the CN addition for both urea (when pH<~11.6) and Me4U (regardless of pH), unlike the non-enzymatic hydrolysis of amides where alkaline hydrolysis is dominant. Based on the computational data, the substituent shift of free energy barrier calculated for the neutral hydrolysis is remarkably different from that for the alkaline hydrolysis, and the rate constant for the urea hydrolysis should be ~1.3×109-fold lower than that (4.2×10−12 s−1) measured for the Me4U hydrolysis. As a result, the rate enhancement and catalytic proficiency of urease should be 1.2×1025 and 3×1027 M−1, respectively, suggesting that urease surpasses proteases and all other enzymes in its power to enhance the rate of reaction. All of the computational results are consistent with available experimental data for Me4U, suggesting that the computational prediction for urea is reliable. PMID:24097048

  10. Progressing batch hydrolysis process

    DOEpatents

    Wright, John D.

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  11. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... Also known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  12. Synergistic degradation of konjac glucomannan by alkaline and thermal method.

    PubMed

    Jin, Weiping; Mei, Ting; Wang, Yuntao; Xu, Wei; Li, Jing; Zhou, Bin; Li, Bin

    2014-01-01

    The application of konjac glucomannan (KGM) in the food industry is always limited by its high viscosity. Hereby, low-viscosity KGM was prepared by alkaline-thermal degradation method. This process was demonstrated by the changes of average molecular weight and a kinetic model was developed. The results revealed that high alkalinity and high temperature had a synergetic effect on degradation. The structure of hydrolysates was evaluated by periodate oxidation and their fluidly properties were researched by rheology measurements. The degradation was divided into two regimes. The rate of the first regime (within 1h) is higher than that of the second one (last 1h). It is found that alkaline hydrolysis and deacetylation have a synergistic effect on the degradation under high alkalinity (pH 9.2) and low temperature condition (25 °C). Finally, rheology parameters showed alkaline-thermal degradation is a promising way that can be applied in practice to degrade KGM. PMID:24274506

  13. Chemostat Culture of Escherichia coli K-12 Limited by the Activity of Alkaline Phosphatase

    PubMed Central

    King, Stagg L.; Francis, J. C.

    1975-01-01

    The growth-limiting reaction of a chemostat culture of Escherichia coli K-12 was the hydrolysis of β-glycerophosphate by alkaline phosphatase. The culture was buffered at pH 5.2 where alkaline phosphatase was unable to supply phosphate to the cell at a rate sufficient to sustain the maximum rate of growth. Alkaline phosphatase activity in this system is discussed in terms of the so-called Flip-Flop mechanism. PMID:240310

  14. A novel alkaline oxidation pretreatment for spruce, birch and sugar cane bagasse.

    PubMed

    Kallioinen, Anne; Hakola, Maija; Riekkola, Tiina; Repo, Timo; Leskelä, Markku; von Weymarn, Niklas; Siika-aho, Matti

    2013-07-01

    Alkaline oxidation pretreatment was developed for spruce, birch and sugar cane bagasse. The reaction was carried out in alkaline water solution under 10 bar oxygen pressure and at mild reaction temperature of 120-140°C. Most of the lignin was solubilised by the alkaline oxidation pretreatment and an easily hydrolysable carbohydrate fraction was obtained. After 72 h hydrolysis with a 10 FPU/g enzyme dosage, glucose yields of 80%, 91%, and 97%, for spruce, birch and bagasse, respectively, were achieved. The enzyme dosage could be decreased to 4 FPU/g without a major effect in terms of the hydrolysis performance. Compared to steam explosion alkaline oxidation was found to be significantly better in the conditions tested, especially for the pretreatment of spruce. In hydrolysis and fermentation at 12% d.m. consistency an ethanol yield of 80% could be obtained with both bagasse and spruce in 1-3 days. PMID:23711947

  15. Hydrolysis of biomass material

    DOEpatents

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  16. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev (Latham, NY)

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  17. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is…

  18. Alkaline igneous rocks

    SciTech Connect

    Fitton, J.G.; Upton, B.G.J.

    1987-01-01

    In this volume, an international team of scientists provides an up-to-date overview of the nature, origin, and evolution of alkaline magmas. Particular attention is paid to carbonatites, lamprophyres, and lamproites which are rock suites of current interest not recently reviewed elsewhere. Recent work on the classical alkaline provinces of East Africa, South Greenland, and the Kola Peninsula is included together with reviews of other areas of alkaline magmatism in North and South America, East Greenland, Europe, West Africa, and the ocean basins. Other papers discuss the impact of experimental isotopic and geochemical studies of the petrogenesis of alkaline rocks. This book will be of interest to petrologists and geochemists studying alkaline igneous rocks, and to other earth scientists as a reference on the rapidly expanding field of igneous petrology.

  19. HOMOGENEOUS HYDROLYSIS RATE CONSTANTS FOR SELECTED CHLORINATED METHANES, ETHANES, ETHENES, AND PROPANES

    EPA Science Inventory

    Hydrolysis rate constants of 18 chlorinated methanes, ethanes, ethenes, and propanes have been measured in dilute aqueous solutions within the temperature range of 0 to 180 oC and at pH values of 3 to l4. rrhenius parapmeters were determined for both neutral and alkaline hydrolys...

  20. Vacuolar Acid hydrolysis as a physiological mechanism for sucrose breakdown.

    PubMed

    Echeverria, E; Burns, J K

    1989-06-01

    Sucrose breakdown in mature acidic ;Persian' limes (Citrus aurantifolia [Christm.] Swing.) occurred at a rate of 30.6 picomoles per milliliter per day during 9 weeks storage at 15 degrees C. Neither enzyme of sucrose catabolism (sucrose synthase or acid/alkaline invertase) was present in extracts of mature storage tissue. The average vacuolar pH, estimated by direct measurement of sap from isolated vacuoles and by the methylamine method, was about 2.0 to 2.2. In vitro acid hydrolysis of sucrose at physiological concentrations in a buffered solution (pH 2.2) occurred at identical rates as in matured limes. The results indicate that sucrose breakdown in stored mature acidic limes occurs by acid hydrolysis. PMID:16666803

  1. The enzymatic hydrolysis of leather waste with chromium recycling

    SciTech Connect

    Kim, M.S.; Clesceri, L.S.

    1996-11-01

    The work of Taylor et al. (1990) has shown the potential for alkaline hydrolase enzymes for the solubilization of waste from the tanning industry. The authors have carried this work further to examine the mechanism whereby enzymes release chromium from leather waste. An alkaline digest of waste leather was used in this work. Treatment with strong alkali produced a thick slurry that contained 7,000 ppm chromium. The objective of this work is to optimize a closed cycle system for the recycling of chromium salts for tanning as well as a chrome-free product for use as a fertilizer. The authors are able to track the progress of the leather protein hydrolysis with polyacrylamide gel electrophoresis (PAGE). By means of PAGE, it is possible to determine the relationship between chromium release and the extent of protein hydrolysis. Rate constant for hydrolysis and chromium release have been developed for various hydrolysis conditions. Chemical precipitation of chromium from the hydrolysate results in a purified product for reuse in tanning. The chrome-free hydrolysate can be applied as a fertilizer either directly or as a dried product. There are more than 56,000 metric tons of tannery waste produced annually in the US. The majority of the organic solids can be converted into high quality fertilizers. Since the nitrogen is organic rather than inorganic, release is at a controlled rate since the microbody in the soil must make the nitrogen available for plant growth. Leather manufacturing is a world-wide industry. Conversion of leather waste to fertilizers can improve global productivity as well as solve a waste problem.

  2. Hydrolysis reactor for hydrogen production

    DOEpatents

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  3. Precambrian alkaline magmatism

    NASA Astrophysics Data System (ADS)

    Blichert-Toft, J.; Arndt, N. T.; Ludden, J. N.

    1996-04-01

    There are very few alkaline rocks in Precambrian terrains. The oldest well-documented examples are 2.7 Ga trachytes and leucite phonolites from the Kirkland Lake region of Canada. These rocks are highly potassic, with major- and trace-element characteristics closely resembling those of shoshonitic lavas in modern island arcs. Other examples of Archean alkaline rocks are limited to rare, volumetrically insignificant lamprophyric dikes and syenitic intrusions. Archean alkaline rocks similar to those of modern oceanic islands have not been reported. The oldest oceanic island suites are found in the 2.0-1.9 Ga Circum-Superior Belt of Canada which contains several successions of transitional to strongly alkaline volcanic rocks. Explanations for the paucity of Precambrian alkaline rocks fall into two main categories. (a) Alkaline magmatism was not uncommon in the Precambrian, but the rocks that formed did not survive. The alkaline rocks may have been destroyed preferentially because they formed late-stage volcanoes composed of friable pyroclastics and unstable feldspathoids, and were thus particularly vulnerable to erosion. Alternatively, the alkaline rock sequences may have erupted as part of a volcanic series that did not normally become incorporated in growing Archean continents, as would have been the case if oceanic plateaus made up the bulk of greenstone belts. (b) Alkaline rocks may indeed have been very rare because conditions in the Archean mantle were not appropriate for the formation of this type of magma. Higher temperatures may have led to more extensive partial melting, such that low-degree melts either were not produced or were overwhelmed by high-degree melts. Other possible factors include lower CO 2 contents in melting regions, which inhibited the formation of silica-undersaturated magmas, and the absence of metasomatized lower lithosphere, which precluded the formation of rift-type magmas. The late-Archean shoshonites apparently formed in a subduction environment. At present our knowledge of Archean volcanic rocks and Archean tectonic processes is insufficient to decide between the various possible interpretations.

  4. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  5. Kinetics of iodine hydrolysis in unbuffered solutions

    SciTech Connect

    Palmer, D.A.; Lyons, L.J.

    1988-01-01

    The kinetics of hydrolysis or disproportionation of hypoiodite were studied spectrophotometrically in basic solution at an ionic strength of 0.2 M as a function of pH, iodide and total iodine concentration, and temperature. The existence of three independent pathways for this second-order process was confirmed. The pH-stat method was used to monitor the corresponding reaction of hypoiodous acid in weakly alkaline solution. The generalized rate law for the disproportionation is: /minus/d((HOI) + (OI/sup /minus//))dt = k /sub a/(HOI)/sup 2/ + k/sub b/(HOI) (OI/sup /minus//) + k/sub c/(OI/sup /minus//)/sup 2/ + k/sub d/(I/sub 2/OH/sup /minus//) (OI/sup /minus//). The values of k/sub a/ and k/sub b/ are substantially smaller than previously reported. However, an unexplained contribution to the rate law resulting from the pH-stat measurements was also obtained. The rapid recombination of iodide and iodate in HClO/sub 4/ solutions was followed by stopped-flow spectrophotometry at three ionic strengths, and over a range of iodide and hydrogen ion concentrations, and at eight temperatures. Fifth-order kinetics were observed with no detectable induction period. 14 refs., 4 figs., 1 tab.

  6. Hydrolysis of polydimethylsiloxane fluids in controlled aqueous solutions.

    PubMed

    Ducom, Gaëlle; Laubie, Baptiste; Ohannessian, Aurélie; Chottier, Claire; Germain, Patrick; Chatain, Vincent

    2013-01-01

    Accelerated degradation tests were performed on polydimethylsiloxane (PDMS) fluids in aqueous solutions and in extreme chemical conditions (pH 2-4 and 9-12). Results confirmed that silicones can be degraded by hydrolysis. Higher degradation levels were achieved in very acidic and alkaline conditions. Degradation products are probably polar siloxanols. In alkaline conditions, the counter-ion was found to have a strong influence on degradation level. Degradation kinetic studies (46 days) were also performed at different pH values. Supposing zeroth-order kinetics, degradation rate constants at 24 °C were estimated to 0.28 mgSi L(-1) day(-1) in NaOH solution (pH 12), 0.07 mgSi L(-1) day(-1) in HCl solution (pH 2) and 0.002 mgSi L(-1) day(-1) in demineralised water (pH 6). From these results, the following hypothesis was drawn: PDMS hydrolysis could occur in wastewater treatment plants and in landfill cells. It may be a first step in the formation of volatile organic silicon compounds (VOSiCs, including siloxanes) in biogas: coupled to biodegradation and (self-) condensation of degradation products, it could finally lead to VOSiCs. PMID:23985511

  7. HYDROLYSIS OF CHLOROSTILBENE OXIDE: I. HYDROLYSIS IN HOMOGENEOUS SYSTEMS

    EPA Science Inventory

    The hydrolysis kinetics of 4-chlorostilbene oxide (CSO) in buffered distilled water, in natural waters, and in sediment associated water are reported. he disappearance of CSO followed pseudo-first-order kinetics in buffered water over the experimental pH range of 3 to 11. elow pH...

  8. Economics of enzymatic hydrolysis processes

    SciTech Connect

    Wright, J.D.

    1988-02-01

    Enzymatic hydrolysis processes have the ability to produce high yields of sugars for fermentation to fuel ethanol from lignocellulosic biomass. However, these systems have been plagued with yields, product concentrations, and reactions rates far below those that are theoretically possible. Engineering and economic analyses are presented on several fungal enzyme hydrolysis processes to illustrate the effects of the important process parameters, to quantify the progress that has been made to date, and to estimate the cost reductions that can be made through research improvements. All enzymatic hydrolysis processes require pretreatment, hydrolysis, fermentation, and enzyme production. The key effect of pretreatment is to allow access of the enzymes to the substrate. Pretreatments have been devised that make the biomass completely digestible that increase the xylose yield and concentration, and that integrate pretreatment with lignin utilization. Major improvements in enzyme activity and use of simultaneous saccharification and fermentation (SSF) have greatly reduced the inhibition of the enzymes. It now appears that ethanol inhibition of the yeast is the limiting factor. Enzyme production costs have been dramatically reduced because use of SSF has reduced enzyme loading. However, further improvements may be possible by using soluble carbon sources for production. Over the past decade, the predicted cost of ethanol from such processes has dropped from more than $4.00/gallon to approximately $1.60. Research is currently under way in the United States and has the potential to reduce the projected cost to less than $1.00/gallon. 65 refs., 16 figs., 1 tab.

  9. Enzymatic hydrolysis of organic phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orthophosphate-releasing enzymatic hydrolysis is an alternative means for characterizing organic phosphorus (Po) in animal manure. The approach is not only simple and fast, but can also provide information difficult to obtain by other methods. Currently, commercially available phosphatases are mainl...

  10. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  11. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A., III

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a standard method "hot peroxide" acidity titration, provided that labs report negative values. The authors recommend the third approach; i.e., net alkalinity = -Hot Acidity. ?? 2005 Elsevier Ltd. All rights reserved.

  12. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass.

    PubMed

    Kim, Jun Seok; Lee, Y Y; Kim, Tae Hyun

    2016-01-01

    The native form of lignocellulosic biomass is resistant to enzymatic breakdown. A well-designed pretreatment that can promote enzymatic hydrolysis of biomass with reasonable processing cost is therefore necessary. To this end, a number of different types of pretreatment technologies have been developed with a common goal of making biomass more susceptible to enzymatic saccharification. Among those, a pretreatment method using alkaline reagent has emerged as one of the most viable process options due primarily to its strong pretreatment effect and relatively simple process scheme. The main features of alkaline pretreatment are that it selectively removes lignin without degrading carbohydrates, and increases porosity and surface area, thereby enhancing enzymatic hydrolysis. In this review, the leading alkaline pretreatment technologies are described and their features and comparative performances are discussed from a process viewpoint. Attempts were also made to give insights into the chemical and physical changes of biomass brought about by pretreatment. PMID:26341010

  13. Ozonation and alkaline-peroxide pretreatment of wheat straw for Cryptococcus curvatus fermentation

    NASA Technical Reports Server (NTRS)

    Greenwalt, C. J.; Hunter, J. B.; Lin, S.; McKenzie, S.; Denvir, A.

    2000-01-01

    Crop residues in an Advanced Life Support System (ALS) contain many valuable components that could be recovered and used. Wheat is 60% inedible, with approximately 90% of the total sugars in the residue cellulose and hemicellulose. To release these sugars requires pretreatment followed by enzymatic hydrolysis. Cryptococcus curvatus, an oleaginous yeast, uses the sugars in cellulose and hemicellulose for growth and production of storage triglycerides. In this investigation, alkaline-peroxide and ozonation pretreatment methods were compared for their efficiency to release glucose and xylose to be used in the cultivation of C. curvatus. Leaching the biomass with water at 65 degrees C for 4 h prior to pretreatment facilitated saccharification. Alkaline-peroxide and ozone pretreatment were almost 100% and 80% saccharification efficient, respectively. The sugars derived from the hydrolysis of alkaline-peroxide-treated wheat straw supported the growth of C. curvatus and the production of edible single-cell oil.

  14. Phthalate hydrolysis under landfill conditions.

    PubMed

    Jonsson, S; Vavilin, V A; Svensson, B H

    2006-01-01

    Experimental data from a study using a landfill simulation reactor were used to develop and calibrate a one-dimensional distributed model of co-digestion of municipal solid waste and three phthalic acid diesters with different water solubilities. The three diesters were diethyl phthalate, dibutyl phthalate, and di-2-ethylhexyl phthalate. Two types of municipal solid wastes were assumed, easily degradable and recalcitrant. The model considered inhibition of hydrolysis of the recalcitrant fraction and phthalic acid esters, and also methanogenesis at acidic pH. The results indicated that the prolonged steady-state concentrations of the diesters in the leachates could be explained by equilibrium between physicochemical desorption and sorption processes for the three diesters. When methanogenic conditions were induced in the acidogenic landfill simulation reactor, inhibition of both hydrolysis of recalcitrant MSW and of phthalic acid esters ceased. PMID:16784196

  15. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin; Liu, Weiguo

    2015-04-01

    The objective of this study was to get fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose from sugarcane bagasse. Hemicellulose could be easily hydrolyzed by dilute acid as sugars. The remained solid residue of acid hydrolysis was utilized to get levoglucosan by fast pyrolysis economically. Levoglucosan yield from crystalline cellulose could be as high as 61.47%. Dilute acid hydrolysis was also a promising pretreatment for levoglucosan production from lignocellulose. The dilute acid pretreated sugarcane bagasse resulted in higher levoglucosan yield (40.50%) in fast pyrolysis by micropyrolyzer, which was more effective than water washed (29.10%) and un-pretreated (12.84%). It was mainly ascribed to the effective removal of alkali and alkaline earth metals and the accumulation of crystalline cellulose. This strategy seems a promising route to achieve inexpensive fermentable sugars from lignocellulose for biorefinery. PMID:25690683

  16. Alkaline galvanic cell

    SciTech Connect

    Inoue, T.; Maeda, Y.; Momose, K.; Wakahata, T.

    1983-10-04

    An alkaline galvanic cell is disclosed including a container serving for a cathode terminal, a sealing plate in the form of a layered clad plate serving for an anode terminal to be fitted into the container, and an insulating packing provided between the sealing plate and container for sealing the cell upon assembly. The cell is provided with a layer of epoxy adduct polyamide amine having amine valence in the range of 50 to 400 and disposed between the innermost copper layer of the sealing plate arranged to be readily amalgamated and the insulating packing so as to serve as a sealing agent or liquid leakage suppression agent.

  17. High solids enzymatic hydrolysis of pretreated lignocellulosic materials with a powerful stirrer concept.

    PubMed

    Ludwig, Daniel; Michael, Buchmann; Hirth, Thomas; Rupp, Steffen; Zibek, Susanne

    2014-02-01

    In this study, we present a powerful stirred tank reactor system that can efficiently hydrolyse lignocellulosic material at high solid content to produce hydrolysates with glucose concentration > 100 g/kg. As lignocellulosic substrates alkaline-pretreated wheat straw and organosolv-pretreated beech wood were used. The developed vertical reactor was equipped with a segmented helical stirrer, which was specially designed for high biomass hydrolysis. The stirrer was characterised according to mixing behaviour and power input. To minimise the cellulase dosage, a response surface plan was used. With the empirical relationship between glucose yield, cellulase loading and solid content, the minimal cellulase dosage was calculated to reach at least 70% yield at high glucose and high substrate concentrations within 48 h. The optimisation resulted in a minimal enzyme dosage of 30 FPU/g dry matter (DM) for the hydrolysis of wheat straw and 20 FPU/g DM for the hydrolysis of beech wood. By transferring the hydrolysis reaction from shaking flasks to the stirred tank reactor, the glucose yields could be increased. Using the developed stirred tank reactor system, alkaline-pretreated wheat straw could be converted to 110 g/kg glucose (76%) at a solid content of 20% (w/w) after 48 h. Organosolv-pretreated beech wood could be efficiently hydrolysed even at 30% (w/w) DM, giving 150 g/kg glucose (72%). PMID:24242162

  18. Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis.

    PubMed

    Carta, Daniela; Cao, Giacomo; D'Angeli, Claudio

    2003-01-01

    In this paper we review an interesting method of PET recycling, i.e. chemical recycling; it is based on the concept of depolymerizing the condensation polymer through solvolytic chain cleavage into low molecular products which can be purified and reused as raw materials for the production of high-quality chemical products. In this work our attention is confined to the hydrolysis (neutral, acid and alkaline) and glycolysis processes of PET chemical recycling; operating conditions and mechanism of each method are reported and described. The neutral hydrolysis has an auto accelerating character; two kinetic models have been proposed: an half-order and a second order kinetic model. The acid hydrolysis could be explained by a modified shrinking core model under chemical reaction control and the alkaline hydrolysis by a first-order model with respect to hydroxide ion concentration. To describe glycolysis, two different kinetic models have been proposed where EG can act or not as internal catalyst. Further experimental and theoretical investigations are required to shed light on the promising processes of PET chemical recycling reviewed in this work. PMID:14699998

  19. Cellulose degradation in alkaline media upon acidic pretreatment and stabilisation.

    PubMed

    Testova, Lidia; Nieminen, Kaarlo; Penttilä, Paavo A; Serimaa, Ritva; Potthast, Antje; Sixta, Herbert

    2014-01-16

    The present study reports on a revised kinetic model for alkaline degradation of cellulose accounting for primary peeling/stopping reactions as well as for alkaline hydrolysis followed by secondary peeling. Oxalic acid pretreated cotton linters was utilised as the model substrate for the prehydrolysis-soda anthraquinone process. The main emphasis was investigating the effect of end-group stabilising additives such as sodium borohydride (BH), anthraquinone (AQ), and anthraquinone-2-sulphonic acid sodium salt (AQS) on the rates of the yield loss reactions. BH and AQS ensured a cellulose yield gain of 13% and 11%, respectively, compared to the reference. Both stabilisation agents decreased the content of the reducing end groups in the samples, while in the case of AQS stabilisation a 25% increase in carboxyl group content compared to the reference was also observed. As expected, the addition of end group stabilisers resulted in a significant decrease in the peeling-to-stopping rate constants ratio. PMID:24188853

  20. HYDROLYSIS

    EPA Science Inventory

    Hydrolytic processes provide the baseline loss rate for any chemical in an aqueous envi- ronment. Although various hydrolytic pathways account for significant degradation of certain classes of organic chemicals, other organic structures are completely inert. Strictly speaking, hy...

  1. Alkaline fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  2. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar

    DOE PAGESBeta

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J.; Fountain, Mackenzie; Ralph, John; Hodge, David B.; Hegg, Eric L.

    2016-02-09

    Background: Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Results: Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10more » h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. In conclusion: This study demonstrated that the fed-batch, two-stage Cu-AHP pretreatment process was effective in pretreating hybrid poplar for its conversion into fermentable sugars. Results showed sugar yields near the theoretical maximum were achieved from enzymatically hydrolyzed hybrid poplar by incorporating an alkaline extraction step prior to pretreatment and by efficiently utilizing H2O2 during the Cu-AHP process. Significantly, this study reports high sugar yields from woody biomass treated with an AHP pretreatment under mild reaction conditions.« less

  3. Products of aminolysis and enzymic hydrolysis of the cephalosporins

    PubMed Central

    Hamilton-Miller, J. M. T.; Newton, G. G. F.; Abraham, E. P.

    1970-01-01

    1. The reaction of cephalosporins with ammonia, amino acids and other simple amino compounds in weakly alkaline aqueous solutions yields labile compounds with λmax. 230nm. The reaction of deacetyl- and deacetoxy-cephalosporins under similar conditions yields compounds with λmax. 260nm. 2. Hydrolysis with a β-lactamase results in the formation of compounds with λmax. 230nm from deacetylcephalosporins and cephalosporins, but not from deacetoxycephalosporins. 3. These different compounds decompose to give penaldates and penamaldates derived from the side chain and the carbon atoms of the β-lactam ring. 4. Derivatives similar to those obtained with simple amino compounds appear to be formed when cephalosporins and their analogues react with lysine polymers. 5. Some of the chemical and physical properties of the various derivatives have been studied and tentative structures for them are proposed. 6. Possible implications of the results in relation to the immunological properties of the cephalosporins are discussed. PMID:5435685

  4. Alkaline Phosphatase and Hypophosphatasia.

    PubMed

    Millán, José Luis; Whyte, Michael P

    2016-04-01

    Hypophosphatasia (HPP) results from ALPL mutations leading to deficient activity of the tissue-non-specific alkaline phosphatase isozyme (TNAP) and thereby extracellular accumulation of inorganic pyrophosphate (PPi), a natural substrate of TNAP and potent inhibitor of mineralization. Thus, HPP features rickets or osteomalacia and hypomineralization of teeth. Enzyme replacement using mineral-targeted TNAP from birth prevented severe HPP in TNAP-knockout mice and was then shown to rescue and substantially treat infants and young children with life-threatening HPP. Clinical trials are revealing aspects of HPP pathophysiology not yet fully understood, such as craniosynostosis and muscle weakness when HPP is severe. New treatment approaches are under development to improve patient care. PMID:26590809

  5. High consistency enzymatic hydrolysis of hardwood substrates.

    PubMed

    Zhang, Xiao; Qin, Wenjuan; Paice, Michael G; Saddler, John N

    2009-12-01

    The feasibility of using a laboratory peg mixer to carry out high consistency enzymatic hydrolysis of lignocellulosic substrates was investigated. Two hardwood substrates, unbleached hardwood pulp (UBHW) and organosolv pretreated poplar (OPP), were used in this study. Hydrolysis of UBHW and OPP at 20% substrate consistency led to a high glucose concentration in the final hydrolysate. For example, a 48 h enzymatic hydrolysis of OPP resulted in a hydrolysate with 158 g/L of glucose. This is the highest glucose concentration ever obtained from enzymatic hydrolysis of lignocellulosic substrates. Fermentation of UBHW and OPP hydrolysates with high glucose content led to high ethanol concentrations, 50.4 and 63.1 g/L, respectively after fermentation. Our results demonstrate that using common pulping equipment to carry out high consistency hydrolysis can overcome the rheological problems and greatly increase the sugar and ethanol concentrations after the hydrolysis and fermentation. PMID:19643602

  6. Site of intestinal dipeptide hydrolysis.

    PubMed

    Wiseman, G

    1977-12-01

    1. Sacs of everted small intestine of the hamster have been used to study the site of final hydrolysis of twelve dipeptides. 2. The results suggest that L-alanyl-glycine, glycyl-glycine, L-valyl-L-valine, L-alanyl-L-valine, L-valyl-L-alanine and L-prolyl-glycine are hydrolysed beyond the locus of the active transport mechanism for D-glucose, perhaps even within the cell. These may be designated class 1 (deep) dipeptides. 3. In contrast, superficial (perhaps even surface) hydrolysis seems to occur with L-alanyl-L-alanine, L-leucly-L-leucine, glycyl-L-alanine, L-alanyl-L-leucine, L-leucyl-L-alanine and glycyl-L-proline. These may be designated class 2 (superficial) dipeptides. 4. All the dipeptides were able to partially inhibit D-glucose active transport, the findings supporting the view that more than one mechanism may exist for the active absorption of the sugar. PMID:604456

  7. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  8. Hydrolases in Polymer Chemistry: Part III: Synthesis and Limited Surface Hydrolysis of Polyesters and Other Polymers

    NASA Astrophysics Data System (ADS)

    Guebitz, Georg M.

    Limited enzymatic surface hydrolysis of polyamides, polyethyleneterphthalates (PET) and polyacrylonitriles has been demonstrated to be a powerful and yet mild strategy for directly improving polymer surface properties (e.g., hydrophilicity) or activating materials for further processing. Recently, mechanistic details on enzymatic surface hydrolysis have become available, especially for the functionalisation of PET, which has been investigated in most detail. Generally, enzymes show a strong preference for amorphous regions of polymers. Consequently, during hydrolysis, the degree of crystallinity increases according to FTIR and DSC analysis. MALDI-TOF analysis has shown that PET hydrolases (i.e. cutinases and lipases) cleave the polymer endo-wise, in contrast to alkaline hydrolysis. As a result, an increase in the amount of carboxyl and hydroxyl groups has been found upon enzymatic hydrolysis, according to X-ray photoelectron spectroscopy and various derivatisation and titration methods recently adapted for this purpose. These mechanistic data, combined with advances in structural and molecular biology, help to explain the considerably different activities of closely related enzymes (e.g. cutinases) on polymers.

  9. Acid Hydrolysis of Trioxalatocobaltate (III) Ion

    ERIC Educational Resources Information Center

    Wiggans, P. W.

    1975-01-01

    Describes an investigation involving acid hydrolysis and using both volumetric and kinetic techniques. Presents examples of the determination of the rate constant and its variation with temperature. (GS)

  10. ATP and ADP hydrolysis in cell membranes from rat myometrium.

    PubMed

    Milošević, Maja; Petrović, Snježana; Veličković, Nataša; Grković, Ivana; Ignjatović, Marija; Horvat, Anica

    2012-12-01

    Extracellular nucleotides affect female reproductive functions, fertilization, and pregnancy. The aim of this study was to investigate biochemical characteristics of ATP and ADP hydrolysis and identify E-NTPDases in myometrial cell membranes from Wistar albino rats. The apparent K (m) values were 506.4 ± 62.1 and 638.8 ± 31.3 μM, with a calculated V (max) (app) of 3,973.0 ± 279.5 and 2,853.9 ± 79.8 nmol/min/mg for ATP and ADP, respectively. The enzyme activity described here has common properties characteristic for NTPDases: divalent cation dependence; alkaline pH optimum for both substrates, insensitivity to some of classical ATPase inhibitors (ouabain, oligomycine, theophylline, levamisole) and significant inhibition by suramine and high concentration of sodium azides (5 mM). According to similar apparent K(m) values for both substrates, the ATP/ADP hydrolysis ratio, and Chevillard competition plot, NTPDase1 is dominant ATP/ADP hydrolyzing enzyme in myometrial cell membranes. RT-PCR analysis revealed expression of three members of ectonucleoside triphosphate diphosphohydrolase family (NTPDase 1, 2, and 8) in rat uterus. These findings may further elucidate the role of NTPDases and ATP in reproductive physiology. PMID:22956447

  11. Hydrolytic depolymerization of hydrolysis lignin: Effects of catalysts and solvents.

    PubMed

    Mahmood, Nubla; Yuan, Zhongshun; Schmidt, John; Xu, Chunbao Charles

    2015-08-01

    Hydrolytic depolymerization of hydrolysis lignin (HL) in water and water-ethanol co-solvent was investigated at 250°C for 1h with 20% (w/v) HL substrate concentration with or without catalyst (H2SO4 or NaOH). The obtained depolymerized HLs (DHLs) were characterized with GPC-UV, FTIR, GC-MS, (1)H NMR and elemental analyzer. In view of the utilization of depolymerized HL (DHL) for the preparation of rigid polyurethane foams/resins un-catalyzed depolymerization of HL employing water-ethanol mixture appeared to be a viable route with high yield of DHL ∼70.5wt.% (SR yield of ∼9.8wt.%) and with Mw as low as ∼1000g/mole with suitable aliphatic (227.1mgKOH/g) and phenolic (215mgKOH/g) hydroxyl numbers. The overall % carbon recovery under the selected best route was ∼87%. Acid catalyzed depolymerization of HL in water and water-ethanol mixture lead to slightly increased Mw. Alkaline hydrolysis helped in reducing Mw in water and opposite trend was observed in water-ethanol mixture. PMID:25936442

  12. Characteristics and enzymatic hydrolysis of cellulose-rich fractions from steam exploded and sequentially alkali delignified bamboo (Phyllostachys pubescens).

    PubMed

    Sun, Shao-Ni; Cao, Xue-Fei; Zhang, Xue-Ming; Xu, Feng; Sun, Run-Cang; Jones, Gwynn Lloyd

    2014-07-01

    In this study, cellulose-rich fractions from bamboo were prepared with steam explosion pretreatment (SEP) followed by a successive alkaline delignification to improve the enzymatic digestibility for an efficient bioethanol production. The cellulose-rich fractions obtained were characterized by FT-IR, XRD, CP/MAS (13)C NMR, SEM, and BET surface area. It was found that the SEP alone significantly removed partial hemicelluloses, while the synergistic treatment by SEP and alkaline delignification removed most hemicelluloses and lignin. Results from enzymatic hydrolysis showed that SEP alone improved the enzymatic hydrolysis rate by 7.9-33.1%, while the synergistic treatment by SEP and alkaline delignification enhanced the rate by 45.7-63.9%. The synergistic treatment by SEP at 2.0 MPa for 5 min with water impregnation followed by a successive alkaline delignification with 0.5% NaOH and 70% ethanol containing 1.5% NaOH resulted in a maximum enzymatic hydrolysis rate of 70.6%. PMID:24830378

  13. Alkaline Phosphatase Assay for Freshwater Sediments: Application to Perturbed Sediment Systems

    PubMed Central

    Sayler, Gary S.; Puziss, Marla; Silver, Martin

    1979-01-01

    The p-nitrophenyl phosphate hydrolysis-phosphatase assay was modified for use in freshwater sediment. Laboratory studies indicated that the recovery of purified alkaline phosphatase activity was 100% efficient in sterile freshwater sediments when optimized incubation and sonication conditions were used. Field studies of diverse freshwater sediments demonstrated the potential use of this assay for determining stream perturbation. Significant correlations between phosphatase and total viable cell counts, as well as adenosine triphosphate biomass, suggested that alkaline phosphatase activity has utility as an indicator of microbial population density and biomass in freshwater sediments. PMID:16345464

  14. Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production.

    PubMed

    Diaz, Ana Belen; Moretti, Marcia Maria de Souza; Bezerra-Bussoli, Carolina; Carreira Nunes, Christiane da Costa; Blandino, Ana; da Silva, Roberto; Gomes, Eleni

    2015-06-01

    A pretreatment with microwave irradiation was applied to enhance enzyme hydrolysis of corn straw and rice husk immersed in water, aqueous glycerol or alkaline glycerol. Native and pretreated solids underwent enzyme hydrolysis using the extract obtained from the fermentation of Myceliophthora heterothallica, comparing its efficiency with that of the commercial cellulose cocktail Celluclast®. The highest saccharification yields, for both corn straw and rice husk, were attained when biomass was pretreated in alkaline glycerol, method that has not been previously reported in literature. Moreover, FTIR, TG and SEM analysis revealed a more significant modification in the structure of corn straw subjected to this pretreatment. Highest global yields were attained with the crude enzyme extract, which might be the result of its content in a great variety of hydrolytic enzymes, as revealed zymogram analysis. Moreover, its hydrolysis efficiency can be improved by its supplementation with commercial β-glucosidase. PMID:25795445

  15. Isotope fractionation during peptide bond hydrolysis

    SciTech Connect

    Bada, J.L.; Schimmelmann, A. ); Schoeninger, M.J. )

    1989-12-01

    Isotopic fractionation of nitrogen and carbon is considered during peptide bond hydrolysis. Theoretical considerations suggest that hydrolysis will enrich residual, unhydrolyzed protein in {sup 15}N while {sup 13}C should be relatively unaffected. Preliminary experimental results support this conclusion, although further studies are required to quantify the magnitude of this effect as a function of protein degradation, in particular under natural environmental conditions.

  16. Microwave Pretreatment For Hydrolysis Of Cellulose

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; George, Clifford E.; Lightsey, George R.

    1993-01-01

    Microwave pretreatment enhances enzymatic hydrolysis of cellulosic wastes into soluble saccharides used as feedstocks for foods, fuels, and other products. Low consumption of energy, high yield, and low risk of proposed hydrolysis process incorporating microwave pretreatment makes process viable alternative to composting.

  17. Rate of Hydrolysis of Tertiary Halogeno Alkanes

    ERIC Educational Resources Information Center

    Pritchard, D. R.

    1978-01-01

    Describes an experiment to measure the relative rate of hydrolysis of the 2-x-2 methylpropanes, where x is bromo, chloro or iodo. The results are plotted on a graph from which the relative rate of hydrolysis can be deduced. (Author/GA)

  18. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    PubMed Central

    2013-01-01

    Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor) and alkali loading based on biomass solids (g alkali/g dry biomass) have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass) governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline pretreatment technology indicates that the main challenge for commercialization is chemical recovery. However, repurposing or co-locating a biorefinery with a paper mill would be advantageous from an economic point of view. PMID:23356733

  19. Synthesis of oxygen-free Titan tholins: implications in organic molecules product from hydrolysis

    NASA Astrophysics Data System (ADS)

    Brassé, C.; Raulin, F.; Coll, P.; Buch, A.

    2013-09-01

    Titan, the largest moon of Saturn, is known for its dense and nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are objects of astrobiological interest. In this paper we focus on their potential chemical evolution when they reach the surface and interact with putative ammonia-water cryomagma[1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at low temperature. Our group identified urea as the main product of tholins hydrolysis along with several amino acids (alanine, glycine and aspartic acid). However, those molecules have also been detected in non-hydrolyzed tholins meaning that oxygen gets in the PLASMA reactor during the tholins synthesis [2]. So the synthesis system has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the terrestrial atmosphere. After confirming the non-presence of oxygen in tholins produced with this new experimental setup, we performed alkaline pH hydrolysis of oxygen-free tholins in order to verify that organic molecules cited above are indeed in-situ produced. Those results will be exposed on the poster.

  20. Smart nanoprobes for the detection of alkaline phosphatase activity during osteoblast differentiation.

    PubMed

    Lim, Eun-Kyung; Keem, Joo Oak; Yun, Hui-suk; Jung, Jinyoung; Chung, Bong Hyun

    2015-02-21

    Gold nanoparticle-conjugated fluorescent hydroxyapatite (AuFHAp) was developed as a smart nanoprobe for measuring alkaline phosphatase (ALP) activity. AuFHAp showed NIR fluorescence due to the hydrolysis of its phosphate groups by ALP. In addition, gold nanoparticles help reduce the nonspecific signal by absorbing nonspecific fluorescence. Through in vitro tests, we confirmed that the AuFHAp probe was capable of detecting ALP levels related to osteoblast activity in living cells with high fluorescence intensity. PMID:25623488

  1. ORGANOPHOSPHATE AND ORGANOPHOSPHOROTHIONATE ESTERS: APPLICATION OF LINEAR FREE ENERGY RELATIONSHIPS TO ESTIMATE HYDROLYSIS RATE CONSTANTS FOR USE IN ENVIRONMENTAL FATE ASSESSMENT

    EPA Science Inventory

    Hydrolysis rate constants required for assessing the environmental fate of certain organophosphate and organophosphorothionate esters may be estimated by use of linear free energy relationships (LFERs). LFERs for the second-order alkaline rate constants and the pKa of the conjuga...

  2. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China.

    PubMed

    Zhou, Yingjun; Takaoka, Masaki; Wang, Wei; Liu, Xiao; Oshita, Kazuyuki

    2013-07-01

    Co-digestion of wasted sewage sludge, restaurant kitchen waste, and fruit-vegetable waste was carried out in a pilot plant with thermal hydrolysis pre-treatment. Steam was used as heat source for thermal hydrolysis. It was found 38.3% of volatile suspended solids were dissolved after thermal hydrolysis, with digestibility increased by 115%. These results were more significant than those from lab studies using electricity as heat source due to more uniform heating. Anaerobic digesters were then operated under organic loading rates of about 1.5 and 3 kg VS/(m³ d). Little difference was found for digesters with and without thermal pre-treatment in biogas production and volatile solids removal. However, when looking into the digestion process, it was found digestion rate was almost doubled after thermal hydrolysis. Digester was also more stable with thermal hydrolysis pre-treatment. Less volatile fatty acids (VFAs) were accumulated and the VFAs/alkalinity ratio was also lower. Batch experiments showed the lag phase can be eliminated by thermal pre-treatment, implying the advantage could be more significant under a shorter hydraulic retention time. Moreover, it was estimated energy cost for thermal hydrolysis can be partly balanced by decreasing viscosity and improving dewaterability of the digestate. PMID:23419457

  3. Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion.

    PubMed

    Vlyssides, A G; Karlis, P K

    2004-01-01

    This work studied the hydrolysis kinetics and the solubilization of waste activated sludge under a medium range temperature (50-90 degrees C) and pH in the alkaline region (8-11), as a pretreatment stage for anaerobic digestion. The hydrolysis rate for the solubilization of volatile suspended solids (VSS) followed a first-order rate. A linear polynomial hydrolysis model was derived from the experimental results leading to a satisfactory correlation between the hydrolysis rate coefficient, pH, and temperature. At pH 11 and a temperature of 90 degrees C the concentration of the VSS was 6.82%, the VSS reduction reached 45% within ten hours and at the same time the soluble COD was 70.000 mg/l and the total efficiency for methane production 0.28 l of CH4 per g of VSS loading. PMID:14592751

  4. Feasibility study of an alkaline-based chemical treatment for the purification of polyhydroxybutyrate produced by a mixed enriched culture.

    PubMed

    Jiang, Yang; Mikova, Gizela; Kleerebezem, Robbert; van der Wielen, Luuk Am; Cuellar, Maria C

    2015-12-01

    This study focused on investigating the feasibility of purifying polyhydroxybutyrate (PHB) from mixed culture biomass by alkaline-based chemical treatment. The PHB-containing biomass was enriched on acetate under non-sterile conditions. Alkaline treatment (0.2 M NaOH) together with surfactant SDS (0.2 w/v% SDS) could reach 99% purity, with more than 90% recovery. The lost PHB could be mostly attributed to PHB hydrolysis during the alkaline treatment. PHB hydrolysis could be moderated by increasing the crystallinity of the PHB granules, for example, by biomass pretreatment (e.g. freezing or lyophilization) or by effective cell lysis (e.g. adjusting alkali concentration). The suitability of the purified PHB by alkaline treatment for polymer applications was evaluated by molecular weight and thermal stability. A solvent based purification method was also performed for comparison purposes. As result, PHB produced by mixed enriched cultures was found suitable for thermoplastic applications when purified by the solvent method. While the alkaline method resulted in purity, recovery yield and molecular weight comparable to values reported in literature for PHB produced by pure cultures, it was found unsuitable for thermoplastic applications. Given the potential low cost and favorable environmental impact of this method, it is expected that PHB purified by alkaline method may be suitable for other non-thermal polymer applications, and as a platform chemical. PMID:25642402

  5. Effects of ultrasound and ultrasound assisted alkaline pretreatments on the enzymolysis and structural characteristics of rice protein.

    PubMed

    Li, Suyun; Yang, Xue; Zhang, Yanyan; Ma, Haile; Liang, Qiufang; Qu, Wenjuan; He, Ronghai; Zhou, Cunshan; Mahunu, Gustav Komla

    2016-07-01

    The objectives of this study were to investigate the effects of multi-frequency energy-gathered ultrasound (MFEGU) and MFEGU assisted alkaline pretreatments on the enzymolysis and the mechanism of two pretreatments accelerating the rice protein (RP) proteolysis process. The results showed that MFEGU and MFEGU assisted alkaline pretreatments improved significantly (P<0.05) the degree of hydrolysis (DH) and the protein elution amount of RP. Furthermore under the same DH conditions, ultrasound and ultrasound assisted alkaline pretreatments were more save the enzymolysis time than the unpretreatment. The changes in UV-vis spectra, fluorescence emission spectra indicated unfolding and destruction of RP by MFEGU and MFEGU assisted alkaline pretreatments. The circular dichroism analysis showed that both pretreatments decreased α-helix but increased β-sheet and random coil of RP. Amino acid composition revealed that MFEGU and MFEGU assisted alkaline pretreatments could increase the protein elution amount and the ratio of hydrophobic amino acids. Atomic force microscopy (AFM) indicated that both pretreatments destroyed the microstructures and reduced the particle size of RP. Therefore, MFEGU and MFEGU assisted alkaline pretreatments are beneficial to improving the degree of hydrolysis due to its sonochemistry effect on the molecular conformation as well as on the microstructure of protein. PMID:26964920

  6. Cardiotoxicity of commercial 5-fluorouracil vials stems from the alkaline hydrolysis of this drug.

    PubMed Central

    Lemaire, L.; Malet-Martino, M. C.; de Forni, M.; Martino, R.; Lasserre, B.

    1992-01-01

    The cardiotoxicity of 5-fluorouracil (FU) was attributed to impurities present in the injected vials. One of these impurities was identified as fluoroacetaldehyde which is metabolised by isolated perfused rabbit hearts into fluoroacetate (FAC), a highly cardiotoxic compound. FAC was also detected in the urine of patients treated with FU. These impurities were found to be degradation products of FU that are formed in the basic medium employed to dissolve this compound. To avoid chemical degradation of this antineoplastic drug, the solution of FU that will be injected should be prepared immediately before use. PMID:1637660

  7. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of catonic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrogen hydrolysis rate constant.

  8. The improvement of enzymatic hydrolysis efficiency of rape straw and Miscanthus giganteus polysaccharides.

    PubMed

    Swiątek, Karolina; Lewandowska, Małgorzata; Swiątek, Magdalena; Bednarski, Włodzimierz; Brzozowski, Bartosz

    2014-01-01

    The research was carried out with the aim to determine the impact of various combinations of cellulase and hemicellulase preparations on the effectiveness of enzymatic hydrolysis of polysaccharides of rape straw and Miscanthus giganteus after alkaline pretreatment. Their effectiveness was evaluated based on the quantity of saccharides released during enzymatic reaction and yield calculated in respect of the sum of polysaccharides present in native substrates. The complex of preparations produced from Trichoderma longibrachiatum fungi turned out to be the most effective. The study demonstrated a significant effect of xylanases from T. longibrachiatum, the presence of which evoked a 27-45% increase in the effectiveness of polysaccharides hydrolysis compared to the enzymatic complexes without their addition. In addition, results achieved in this study confirmed the necessity of applying the pretreatment in lignocellulose substrates conversion into bioethanol. PMID:24269826

  9. Functional characterisation and transcript analysis of an alkaline phosphatase from the arbuscular mycorrhizal fungus Funneliformis mosseae.

    PubMed

    Liu, Qianhe; Parsons, Anthony J; Xue, Hong; Jones, Chris S; Rasmussen, Susanne

    2013-05-01

    Alkaline phosphatases (ALP) in arbuscular mycorrhizal (AM) fungi have been suggested to be involved in transfer of phosphate from the mycorrhizal fungus to the host plant, but exact mechanisms are still unknown, partially due to the lack of molecular information. We isolated a full-length cDNA (FmALP) from the AM fungus Funneliformis mosseae (syn. Glomus mosseae) showing similarity with putative ALP genes from Rhizophagus intraradices (syn. Glomus intraradices) and Gigaspora margarita. For functional characterisation FmALP was expressed heterologously in the yeast Pichia pastoris. The recombinant FmALP protein had a pH optimum of 9.5, and catalysed the hydrolysis of glycerolphosphate and, to a lesser extent of glucose-1- and 6-phosphate, confirming it to be an alkaline phosphatase belonging to the family of alkaline phosphomonoesterases (EC 3.1.3.1). FmALP did not catalyse the hydrolysis of ATP or polyP. Relative FmALP transcript levels were analysed in intra- and extraradical hyphae isolated from F. mosseae infected ryegrass (Lolium perenne) using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). FmALP was highly expressed in intraradical hyphae at low P(i) supply, and its expression was repressed by high P(i) supply. Taken together this study provides evidence for mycorrhizal alkaline phosphatases playing a role in P mobilisation from organic substrates under P starvation conditions. PMID:23474124

  10. CoO nanocrystals as a highly active catalyst for the generation of hydrogen from hydrolysis of sodium borohydride

    NASA Astrophysics Data System (ADS)

    Lu, Aolin; Chen, Yuanzhi; Jin, Jiarui; Yue, Guang-Hui; Peng, Dong-Liang

    2012-12-01

    We report the excellent catalytic performance of CoO nanocrystals on the catalytic hydrolysis of alkaline NaBH4 solutions. CoO nanocrystals with octahedral and near-spherical shapes are synthesized using a facile chemical solution method that employed cobalt acetate tetrahydrate as metal precursor in the presence of oleylamine. The octahedral CoO nanocrystals typically have a size of 40-50 nm, while the near-spherical nanocrystals have a size varying from 8 to 13 nm. Both of them have a face centered cubic (fcc) crystalline phase. Catalytic tests show that the as-synthesized CoO nanocrystals exhibit very high activities for the H2 generation from the hydrolysis of alkaline NaBH4 solutions. The maximum hydrogen generation rate of the as-synthesized CoO nanocrystals exceeds most reported values of transition metal or noble metal contained catalysts performed in alkaline NaBH4 solutions. The influences of shape on the catalytic behaviors of as-synthesized CoO nanocrystals are also compared and analyzed. The results presented in this study indicate that CoO nanocrystals are a promising candidate to replace noble metal catalysts in the H2 generation from the hydrolysis of borohydrides.

  11. Hydrolysis and alcoholysis of diorganylphosphinous iodides

    SciTech Connect

    Gomelya, N.D.; Feschenko, N.G.

    1988-01-20

    It was shown that unlike diorganylphosphinous chlorides, diorganylphosphinous iodides in hydrolysis and alcoholysis reactions react with the hydrogen iodide formed. There then occurs the reduction and oxidation of the diorganylphosphinous iodides, for which those reactions had a general character.

  12. Effect of surfactants on cellulose hydrolysis

    SciTech Connect

    Helle, S.S.; Duff, S.J.B. . Pulp and Paper Centre and Dept. of Chemical Engineering); Cooper, D.G. . Chemical Engineering Dept.)

    1993-08-20

    The effect of surfactants on the heterogeneous enzymatic hydrolysis of Sigmacell 100 cellulose and of steam-exploded wood was studied. Certain biosurfactants (sophorolipid, rhamnolipid, bacitracin) and Tween 80 increased the rate of hydrolysis of Sigmacell 100, as measured by the amount of reducing sugar produced, by as much as seven times. The hydrolysis of steam-exploded wood was increased by 67% in the presence of sophorolipid. At the same time, sophorolipid was found to decrease the amount of enzyme absorbed onto the cellulose at equilibrium. Sophorolipid had the greatest effect on cellulose hydrolysis when it was present from the beginning of the experiment and when the enzyme/cellulose ratio was low.

  13. Modeling the mechanisms of biological GTP hydrolysis.

    PubMed

    Carvalho, Alexandra T P; Szeler, Klaudia; Vavitsas, Konstantinos; Åqvist, Johan; Kamerlin, Shina C L

    2015-09-15

    Enzymes that hydrolyze GTP are currently in the spotlight, due to their molecular switch mechanism that controls many cellular processes. One of the best-known classes of these enzymes are small GTPases such as members of the Ras superfamily, which catalyze the hydrolysis of the γ-phosphate bond in GTP. In addition, the availability of an increasing number of crystal structures of translational GTPases such as EF-Tu and EF-G have made it possible to probe the molecular details of GTP hydrolysis on the ribosome. However, despite a wealth of biochemical, structural and computational data, the way in which GTP hydrolysis is activated and regulated is still a controversial topic and well-designed simulations can play an important role in resolving and rationalizing the experimental data. In this review, we discuss the contributions of computational biology to our understanding of GTP hydrolysis on the ribosome and in small GTPases. PMID:25731854

  14. Continuous steam hydrolysis of tulip poplar

    SciTech Connect

    Fieber, C.A.; Roberts, R.S.; Faass, G.S.; Muzzy, J.D.; Colcord, A.R.; Bery, M.K.

    1982-01-01

    The continuous hydrolysis of poplar chips by steam at 300-350 psi resulted in the separation of hemicellulose (I) cellulose and lignin components. The I fraction was readily depolymerised by steam to acetic acid, furfural, methanol, and xylose.

  15. Modification of potato peel waste with base hydrolysis and subsequent cationization.

    PubMed

    Lappalainen, Katja; Kärkkäinen, Johanna; Joensuu, Päivi; Lajunen, Marja

    2015-11-01

    Potato peel waste (PW) is a starch containing biomaterial produced in large amounts by food processing industry. In this work, the treatment of PW by alkaline hydrolysis and cationization in the water phase is reported. In order to improve the cationization of starch, PW was hydrolyzed by heating with alkaline (NaOH) ethanol solution (80%) in a water bath. The impact of variable molar ratios of anhydroglucose unit (AGU):NaOH, heating temperatures and times was studied on the degradation of starch and the molecular size distribution of the product. The hydrolyzed PW was cationized subsequently in water by using glycidyltrimethylammonium chloride and catalyzed by NaOH under microwave irradiation or in an oil bath. The impact of the various reaction conditions on the cationization and degree of substitution of starch was studied. The degree of substitution of the cationized starch varied in the range of 0-0.35. PMID:26256329

  16. Alkaline protease from Neurospora crassa. Purification and partial characterization

    SciTech Connect

    Lindberg, R.A.; Eirich, L.D.; Price, J.S.; Wolfinbarger, L. Jr.; Drucker, H.

    1981-01-25

    A simple purification procedure was developed for the extracellular alkaline protease from Neurospora crassa. Key steps in the purification were: (1) the choice of gelatin as the protein inducer, which induces optimally at a much lower concentration than other commonly employed protein inducers; (2) heat treatment, during which the inducer is digested by the protease; and (3) a concentration step that eliminates the usual precipitation procedures and removes much of the digested protein inducer. The preparation was homogeneous and had a molecular weight of approx. 30,500. The protease has 100% activity from pH 6.0 to 10.0, is heat labile above 45/sup 0/C, and susceptible to autodigestion. Hydrolysis of the ..beta.. chain from insulin indicates a preferential cleavage on the carboxyl group side of neutral and aromatic amino acids.

  17. RECLAMATION OF ALKALINE ASH PILES

    EPA Science Inventory

    The objective of the study was to develop methods for reclaiming ash disposal piles for the ultimate use as agricultural or forest lands. The ashes studied were strongly alkaline and contained considerable amounts of salts and toxic boron. The ashes were produced from burning bit...

  18. Alkaline twin-screw extrusion pretreatment for fermentable sugar production

    PubMed Central

    2013-01-01

    Background The inevitable depletion of fossil fuels has resulted in an increasing worldwide interest in exploring alternative and sustainable energy sources. Lignocellulose, which is the most abundant biomass on earth, is widely regarded as a promising raw material to produce fuel ethanol. Pretreatment is an essential step to disrupt the recalcitrance of lignocellulosic matrix for enzymatic saccharification and bioethanol production. This paper established an ATSE (alkaline twin-screw extrusion pretreatment) process using a specially designed twin-screw extruder in the presence of alkaline solution to improve the enzymatic hydrolysis efficiency of corn stover for the production of fermentable sugars. Results The ATSE pretreatment was conducted with a biomass/liquid ratio of 1/2 (w/w) at a temperature of 99°C without heating equipment. The results indicated that ATSE pretreatment is effective in improving the enzymatic digestibility of corn stover. Sodium hydroxide loading is more influential factor affecting both sugar yield and lignin degradation than heat preservation time. After ATSE pretreatment under the proper conditions (NaOH loading of 0.06 g/g biomass during ATSE and 1 hour heat preservation after extrusion), 71% lignin removal was achieved and the conversions of glucan and xylan in the pretreated biomass can reach to 83% and 89% respectively via subsequent enzymatic hydrolysis (cellulase loading of 20 FPU/g-biomass and substrate consistency of 2%). About 78% of the original polysaccharides were converted into fermentable sugars. Conclusions With the physicochemical functions in extrusion, the ATSE method can effectively overcome the recalcitrance of lignocellulose for the production of fermentable sugars from corn stover. This process can be considered as a promising pretreatment method due to its relatively low temperature (99°C), high biomass/liquid ratio (1/2) and satisfied total sugar yield (78%), despite further study is needed for process optimization and cost reduction. PMID:23834726

  19. Review: Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-07-16

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  20. Isolation of alkaline mutagens from complex mixtures

    SciTech Connect

    Ho, C.H.; Guerin, M.R.; Clark, B.R.; Rao, T.K.; Epler, J.L.

    1981-05-01

    A method for the preparative-scale enrichment of alkaline mutagens from complex natural and anthropogenic mixtures is described. Mutagenic alkaline fractions were isolated from cigarette smoke, crude petroleum, and petroleum substitutes derived from coal and shale.

  1. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  2. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  3. Camptothecin-catalyzed phospholipid hydrolysis in liposomes.

    PubMed

    Saetern, Ann Mari; Skar, Merete; Braaten, Asmund; Brandl, Martin

    2005-01-01

    Hydrolysis of phospholipid (PL) within camptothecin (CPT)-containing liposomes was studied systematically, after elevated lyso-phosphatidylcholine (LPC)-concentrations in pH 5, CPT-containing liposomes (22.1+/-0.9 mol%) relative to control-liposomes (7.3+/-0.5 mol%) occasionally had been observed after four months storage in fridge. Liposomes were prepared by dispersing freeze-dried PL/CPT mixtures in 25 mM phosphate buffered saline (PBS) of varying pH (5.0-7.8) and CPT concentrations (0, 3 and 6 mM). PL-hydrolysis was monitored by HPTLC, quantifying LPC. In an accelerated stability study (60 degrees C), a catalytic effect of CPT on PL-hydrolysis was observed after 40 h, but not up to 30 h of incubation. The pH profile of the hydrolysis indicated a stability optimum at pH 6.0 for the liposomes independent of CPT. The equilibrium point between the more active lactone- and the carboxylate-form of CPT was found to be pH 6.8. As a compromise, pH 6.0 was chosen, assuring >85% CPT to be present in the lactone form. At this pH, both control- and CPT-liposomes showed only minor hydrolysis after autoclaving (121 degrees C, 15 min). Storage at room temperature and in fridge (2 months), as well as accelerated ageing (70 degrees C, 25 h), gave a significant elevation of LPC content in CPT-liposomes relative to control-liposomes. This study demonstrates a catalytic effect of CPT on PL-hydrolysis, the onset of which seems to require a certain threshold level of hydrolytic degradation. PMID:15607259

  4. Hydrolysis and isomerization of trans,trans-farnesyl diphosphate by Andrographis tissue-culture enzymes.

    PubMed

    Mackie, H; Overton, K H

    1977-07-01

    Incubation of (3R,5S)-[5-3H1]mevalonate + (3RS)-[2-14C]mevalonate with Andrographis cell-free extract leads to trans,trans-farnesol and cis,trans-farnesol which both totally retain tritium. 2. This conflicts with our previous results which predict one third tritium loss in the cis,trans-farnesol. Inversion at C-1 during hydrolysis of trans,trans-farnesyl diphosphate to trans,trans-farnesol could explain this anomaly. 3. (1s)-trans,trans-[1-3H1]Farnesyl diphosphate and phosphate and (1R)-trans,trans-[1-3H1]-farnesyl diphosphate and phosphate, all prepared chemically, were hydrolysed with Andrographis phosphatase, and alkaline phosphatase and hydrogenolysed with lithium aluminium hydride and the product alcohols exchanged with liver alcohol hydrogenase. 4. Both Andrographis phosphatase and alkaline phosphatase hydrolyse trans,trans-farnesyl diphosphate and trans,trans-farnesyl phosphate with retention. 5. Hydrolysis of trans,trans-[1-18O]farnesyl diphosphate in H2(18O with both phosphatases supports P-O fission. 6. The C-1 configuration in (1S)-TRANS,TRANS-[1-3H1]farnesyl diphosphate and phosphate and (1R)-trans,trans-[1-3H1]farnesyl diphosphate and phosphate is progressively racemised in 0.01 M NH4OH/MeOH (1/9) AT - 20 degrees C. PMID:198206

  5. Alkaline Phosphatase-Mimicking Peptide Nanofibers for Osteogenic Differentiation.

    PubMed

    Gulseren, Gulcihan; Yasa, I Ceren; Ustahuseyin, Oya; Tekin, E Deniz; Tekinay, Ayse B; Guler, Mustafa O

    2015-07-13

    Recognition of molecules and regulation of extracellular matrix synthesis are some of the functions of enzymes in addition to their catalytic activity. While a diverse array of enzyme-like materials have been developed, these efforts have largely been confined to the imitation of the chemical structure and catalytic activity of the enzymes, and it is unclear whether enzyme-mimetic molecules can also be used to replicate the matrix-regulatory roles ordinarily performed by natural enzymes. Self-assembled peptide nanofibers can provide multifunctional enzyme-mimetic properties, as the active sequences of the target enzymes can be directly incorporated into the peptides. Here, we report enhanced bone regeneration efficiency through peptide nanofibers carrying both catalytic and matrix-regulatory functions of alkaline phosphatase, a versatile enzyme that plays a critical role in bone formation by regulating phosphate homeostasis and calcifiable bone matrix formation. Histidine presenting peptide nanostructures were developed to function as phosphatases. These molecules are able to catalyze phosphate hydrolysis and serve as bone-like nodule inducing scaffolds. Alkaline phosphatase-like peptide nanofibers enabled osteogenesis for both osteoblast-like and mesenchymal cell lines. PMID:26039144

  6. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  7. Glucans from the alkaline extract of an edible mushroom, Pleurotus florida, cv Assam Florida: isolation, purification, and characterization.

    PubMed

    Ojha, Arnab K; Chandra, Krishnendu; Ghosh, Kaushik; Islam, Syed S

    2010-10-13

    Three different glucans (PS-I, PS-II, and PS-III) were isolated from the alkaline extract of the fruiting bodies of an edible mushroom Pleurotus florida, cultivar Assam Florida. On the basis of total acid hydrolysis, methylation analysis, periodate oxidation, Smith degradation, and NMR experiments ((1)H, (13)C, DEPT-135, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC), the structure of the repeating unit of these polysaccharides was established as follows: [Formula: see text]. PMID:20800223

  8. Towards zero discharge of chromium-containing leather waste through improved alkali hydrolysis.

    PubMed

    Mu, Changdao; Lin, Wei; Zhang, Mingrang; Zhu, Qingshi

    2003-01-01

    The treatment of chromium-containing leather waste (CCLW), the major solid waste generated at the post-tanning operations of leather processing, has the potential to generate value-added leather chemicals. Various alkali and enzymatic hydrolysis were compared, and calcium oxide was found to be important for effective (but still incomplete) hydrolysis. Three possible reasons are given for the incomplete hydrolysis under alkaline conditions. Data for 19 amino acids are presented for four different treatment products. On the basis of the results, a novel three-step CCLW treatment process is proposed. The gelatin extracted in the first step is chemically modified to produce leather finishing agents. The collagen hydrolysates isolated in the second step are used as proteinic retanning agents by chemical modification. The remaining chrome cake is further hydrolyzed with acids in the third step, and the obtained chromium-containing protein hydrolysates could be used for the preparation of chromium-containing retanning agents for leather industry. The proposed three-step process provides a feasible zero discharge process for the treatment of CCLW. PMID:14583246

  9. Enhanced enzymatic hydrolysis of cellulose in microgels.

    PubMed

    Chang, Aiping; Wu, Qingshi; Xu, Wenting; Xie, Jianda; Wu, Weitai

    2015-07-01

    A cellulose-based microgel, where an individual microgel contains approximately one cellulose chain on average, is synthesized via free radical polymerization of a difunctional small-molecule N,N'-methylenebisacrylamide in cellulose solution. This microgelation leads to a low-ordered cellulose, favoring enzymatic hydrolysis of cellulose to generate glucose. PMID:26035077

  10. Phosphatase hydrolysis of organic phosphorus compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatases are diverse groups of enzymes that deserve special attention because of the significant roles they play in mineralizing organic phosphorus (P) into inorganic available form. For getting more insight on the enzymatically hydrolysis of organic P, in this work, we compared the catalytic pa...

  11. Thioglycoside hydrolysis catalyzed by {beta}-glucosidase

    SciTech Connect

    Shen Hong; Byers, Larry D.

    2007-10-26

    Sweet almond {beta}-glucosidase (EC 3.2.1.21) has been shown to have significant thioglycohydrolase activity. While the K{sub m} values for the S- and O-glycosides are similar, the k{sub cat} values are about 1000-times lower for the S-glycosides. Remarkably, the pH-profile for k{sub cat}/K{sub m} for hydrolysis of p-nitrophenyl thioglucoside (pNPSG) shows the identical dependence on a deprotonated carboxylate (pK{sub a} 4.5) and a protonated group (pK{sub a} 6.7) as does the pH-profile for hydrolysis of the corresponding O-glycoside. Not surprisingly, in spite of the requirement for the presence of this protonated group in catalytically active {beta}-glucosidase, thioglucoside hydrolysis does not involve general acid catalysis. There is no solvent kinetic isotope effect on the enzyme-catalyzed hydrolysis of pNPSG.

  12. Phosphatase Hydrolysis of Soil Organic Phosphorus Fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant available inorganic phosphorus (Pi) is usually limited in highly weathered Ultisols. The high Fe, Al, and Mn contents in these soils enhance Pi retention and fixation. The metals are also known to form complexes with organic phosphorus (Po) compounds. Hydrolysis of Po compounds is needed for P...

  13. COMPUTERIZED EXTRAPOLATION OF HYDROLYSIS RATE DATA

    EPA Science Inventory

    The program RATE was developed to aid in the extrapolation and interpretation of hydrolysis rate data to a format that is useful for environmental risk assessment. ydrolysis data typically are reported in the literature as pseudo-first-order rate constants at the temperature and ...

  14. Non-catalytic steam hydrolysis of fats

    SciTech Connect

    Deibert, M.C.

    1992-08-28

    Hydrolysis of fats and oils produces fatty acid and glycerol. The catalyzed, liquid phase Colgate-Emry process, state-of-the-art, produces impure products that require extensive energy investment for their purification to commercial grade. Non-catalytic steam hydrolysis may produce products more easily purified. A bench-scale hydrolyzer was designed and constructed to contact descending liquid fat or oil with rising superheated steam. Each of the five stages in the reactor was designed similar to a distillation column stage to promote intimate liquid-gas contact. Degree of hydrolysis achieved in continuous tests using tallow feed were 15% at 280C and 35% at 300C at a tallow-to-steam mass feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300C. Decomposition was strongly evident at 325C but not at lower temperatures. Soybean oil rapidly polymerized under reaction conditions. Batch tests at 320C produced degrees of hydrolyses of between 44% and 63% using tallow and palm oil feeds. Over 95% fatty acids were present in a clean, readily separated organic portion of the overhead product from most tests. The test reactor had serious hydraulic resistance to liquid down-flow which limited operation to very long liquid residence times. These times are in excess of those that tallow and palm oil are stable at the reaction temperature. Little glycerol and extensive light organics were produced indicating that unexplained competing reactions to hydrolysis occurred in the experimental system. Further tests using an improved reactor will be required.

  15. HYDROLYSIS RATE CONSTANTS FOR ENHANCING PROPERTY-REACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Rate constants for hydrolysis in water of ten classes of organic compounds are examined with the objective of establishing new, or expanding existing, property reactivity correlations. These relationships then can be used to predict the environmental hydrolysis of chemicals that ...

  16. Technical bases for precipitate hydrolysis process operating parameters

    SciTech Connect

    Bannochie, C.J.

    1992-10-05

    This report provides the experimental data and rationale in support of the operating parameters for precipitate hydrolysis specified in WSRC-RP-92737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF).

  17. Anode conductor for alkaline cells

    SciTech Connect

    Schrenk, D.J.; Murphy, P.E.

    1988-12-13

    This patent describes an electrochemical cell comprised of an anode comprised of zinc; a cathode; and alkaline electrolyte; and a current collector comprised of a silicon bronze alloy that is comprised of 85-98% by weight copper and 1-5% by weight silicon with the remainder being comprised of at least one of manganese, iron, zinc, aluminum, tin, lead, or mixtures thereof; and a strip of metal tab stock welded to the current collector, the tab stock being a metal other than silicon bronze alloy.

  18. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  19. Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis.

    PubMed

    Lin, Zengxiang; Huang, He; Zhang, Hongman; Zhang, Lin; Yan, Lishi; Chen, Jingwen

    2010-11-01

    Ethanol can be produced from lignocellulosic biomass with the usage of ball milling pretreatment followed by enzymatic hydrolysis and fermentation. The sugar yields from lignocellulosic feed stocks are critical parameters for ethanol production process. The research results from this paper indicated that the yields of glucose and xylose were improved by adding any of the following dilute chemical reagents: H(2)SO(4), HCl, HNO(3), CH(3)COOH, HCOOH, H(3)PO(4), and NaOH, KOH, Ca(OH)(2), NH(3)·H(2)O in the ball milling pretreatment of corn stover. The optimal enzymatic hydrolysis efficiencies were obtained under the conditions of ball milling in the alkali medium that was due to delignification. The data also demonstrated that ball milling pretreatment was a robust process. From the microscope image of ball milling-pretreated corn stover, it could be observed that the particle size of material was decreased and the fiber structure was more loosely organized. Meanwhile, the results indicate that the treatment effect of wet milling is better than that of dry milling. The optimum parameters for the milling process were ball speed of 350 r/min, solid/liquid ratio of 1:10, raw material particle size with 0.5 mm, and number of balls of 20 (steel ball, Φ = 10 mm), grinding for 30 min. In comparison with water milling process, alkaline milling treatment could increase the enzymatic hydrolysis efficiency of corn stover by 110%; and through the digestion process with the combination of xylanase and cellulase mixture, the hydrolysis efficiency could increase by 160%. PMID:20593309

  20. New insights on the mechanism of palladium-catalyzed hydrolysis of sodium borohydride from 11B NMR measurements.

    PubMed

    Guella, G; Zanchetta, C; Patton, B; Miotello, A

    2006-08-31

    To gain insight on the mechanistic aspects of the palladium-catalyzed hydrolysis of NaBH(4) in alkaline media, the kinetics of the reaction has been investigated by (11)B NMR (nuclear magnetic resonance) measurements taken at different times during the reaction course. Working with BH(4)(-) concentration in the range 0.05-0.1 M and with a [substrate]/[catalyst] molar ratio of 0.03-0.11, hydrolysis has been found to follow a first-order kinetic dependence from concentration of both the substrate and the catalyst (Pd/C 10 wt %). We followed the reaction of NaBH(4) and its perdeuterated analogue NaBD(4) in H(2)O, in D(2)O and H(2)O/D(2)O mixtures. When the process was carried out in D(2)O, deuterium incorporation in BH(4)(-) afforded BH(4)(-)(n)D(n)(-) (n = 1, 2, 3, 4) species, and a competition between hydrolysis and hydrogen/deuterium exchange processes was observed. By fitting the kinetics NMR data by nonlinear least-squares regression techniques, the rate constants of the elementary steps involved in the palladium-catalyzed borohydride hydrolysis have been evaluated. Such a regression analysis was performed on a reaction scheme wherein the starting reactant BH(4)(-) is allowed both to reversibly exchange hydrogen with deuterium atoms of D(2)O and to irreversibly hydrolyze into borohydroxy species B(OD)(4)(-). In contrast to acid-catalyzed hydrolysis of sodium borohydride, our results indicate that in the palladium-catalyzed process the rate constants of the exchange processes are higher than those of the corresponding hydrolysis reactions. PMID:16927996

  1. Reduction of chromium(VI) to chromium(III) with sodium borohydride in an alkaline medium

    SciTech Connect

    Khain, V.S.; Martynova, V.F.; Volkov, A.A.

    1988-08-01

    In many cases it is necessary to extract chromium from spent industrial solutions. The method in use is based on the reduction of the chromate to chromium(III) with metallic aluminum in a strongly alkaline medium. It was demonstrated earlier that in solutions with pH = 8-10 chromium(VI) is slowly reduced by sodium borohydride to chromium(III) hydroxide. Responsible for the reaction are not the BH/sub 4/ ions, but its hydrolysis products: mono-, di-, and trihydroxyborohydrides. With the aim of understanding more accurately the mechanism of the process and of finding the optimum conditions for the separation of chromium from the solutions, we studied the quantitative rules governing the reduction of the chromate ion in weakly alkaline solutions of NaBH/sub 4/.

  2. Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls.

    PubMed

    Grabber, John H; Hatfield, Ronald D; Lu, Fachuang; Ralph, John

    2008-09-01

    Incorporating ester interunit linkages into lignin could facilitate fiber delignification and utilization. In model studies with maize cell walls, we examined how partial substitution of coniferyl alcohol (a normal monolignol) with coniferyl ferulate (an ester conjugate from lignan biosynthesis) alters the formation and alkaline extractability of lignin and the enzymatic hydrolysis of structural polysaccharides. Coniferyl ferulate moderately reduced lignification and cell-wall ferulate copolymerization with monolignols. Incorporation of coniferyl ferulate increased lignin extractability by up to 2-fold in aqueous NaOH, providing an avenue for producing fiber with less noncellulosic and lignin contamination or of delignifying at lower temperatures. Cell walls lignified with coniferyl ferulate were more readily hydrolyzed with fibrolytic enzymes, both with and without alkaline pretreatment. Based on our results, bioengineering of plants to incorporate coniferyl ferulate into lignin should enhance lignocellulosic biomass saccharification and particularly pulping for paper production. PMID:18712922

  3. Continuous steam hydrolysis of tulip poplar

    SciTech Connect

    Fieber, C.; Colcord, A.R.; Faass, S.; Muzzy, J.D.; Roberts, R.S.

    1982-08-01

    To produce ethanol from hardwood it is desirable to fractionate the hardwood in order to produce a relatively pure cellulosic pulp for dilute acid hydrolysis. An experimental investigation of continuous steam hydrolysis of tulip poplar wood chips indicates that over 90% of the lignin present can be extracted by 0.1N sodium hydroxide, resulting in a cellulose pulp containing over 90% hexosan. The study was performed using a Stake Technology, Ltd., continuous digester rated at one oven dry ton per hour of wood chips. The yields of hexosans, hexoses, xylan, xylose, lignin, furfural, acetic acid and methanol were determined as a function of residence time and steam pressure in the digester. The information provides a basis for establishing a material and energy balance for a hardwood to ethanol plant.

  4. Pretreatment of sallow prior to enzymatic hydrolysis

    SciTech Connect

    Galbe, M.; Zacchi, G.; Scott, C.D.

    1986-01-01

    Pretreatment of fast-growing sallow by steam explosion prior to enzymic hydrolysis was investigated to find optimum conditions regarding pretreatment temperature and time. Some preliminary experiments with impregnation of the material with H/sub 2/SO/sub 4/ or Na/sub 2/SO/sub 3/ were performed to reduce the byproduct formation and to increase the xylose yield. A temperature of 220 degrees for 15 minutes gave the highest yield, approximately 80% of the glucose available based on raw material. The xylose recovered was equal to or less than 20% when no chemicals were added. Impregnation with Na/sub 2/SO/sub 3/ gave an improvement compared with the unimpregnated material. About 30% of the xylose content could thus be recovered after the enzymic hydrolysis. The results are promising. (Refs. 5).

  5. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  6. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  7. Enhanced enzymatic hydrolysis of palm pressed fiber based on the three main components: cellulose, hemicellulose, and lignin.

    PubMed

    Lin, Lili; Yan, Rong; Jiang, Wenju; Shen, Fei; Zhang, Xiaohong; Zhang, Yanzong; Deng, Shihuan; Li, Zhuang

    2014-05-01

    The enzymatic hydrolysis of the native and the pretreated palm pressed fiber (PPF) was deeply investigated by using the enzyme cocktail ACCELLERASE 1500. Together with the spent PPF from the first hydrolysis and the further doubly-treated PPF, the proportions of three main components were determined and analyzed based on a triangle figure. The proportion (cellulose/hemicelluloses/lignin) in the spent PPF was equal to 44:23:33 and the surface morphology of the spent PPF looks very similar to the native PPF surface showing poor hydrolysis efficiency. After further double treatment, the proportion was changed evidently from the original 44:23:33 to 54:21:25 and the surface structure was significantly disrupted showing a potential to be hydrolyzed completely. Additionally, all samples were characterized by Fourier transform infrared spectroscopy and X-ray diffractogram through considerations of alkaline solution treatment, so as to understand better the nature of biomass hydrolysis, from the aspect of three biomass components. PMID:24652599

  8. Fungal secretomes enhance sugar beet pulp hydrolysis

    PubMed Central

    Kracher, Daniel; Oros, Damir; Yao, Wanying; Preims, Marita; Rezic, Iva; Haltrich, Dietmar; Rezic, Tonci; Ludwig, Roland

    2014-01-01

    The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored. In a second step, the ability of the culture supernatants to hydrolyze thermally pretreated SBP was tested in batch experiments. The supernatant of Sclerotium rolfsii, a soil-borne facultative plant pathogen, was found to have the highest hydrolytic activity on SBP and was selected for further hydrolyzation experiments. A low enzyme load of 0.2 mg g–1 protein from the culture supernatant was sufficient to hydrolyze a large fraction of the pectin and hemicelluloses present in SBP. The addition of Trichoderma reesei cellulase (1–17.5 mg g–1 SBP) resulted in almost complete hydrolyzation of cellulose. It was found that the combination of pectinolytic, hemicellulolytic, and cellulolytic activities works synergistically on the complex SBP composite, and a combination of these hydrolytic enzymes is required to achieve a high degree of enzymatic SBP hydrolysis with a low enzyme load. PMID:24677771

  9. Sugarcane bagasse hydrolysis using yeast cellulolytic enzymes.

    PubMed

    Souza, Angelica Cristina de; Carvalho, Fernanda Paula; Silva e Batista, Cristina Ferreira; Schwan, Rosane Freitas; Dias, Disney Ribeiro

    2013-10-28

    Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important technologies for sustainable development. To use this biomass, it is necessary to circumvent the physical and chemical barriers presented by the cohesive combination of the main biomass components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on sugarcane bagasse pre-treated with H2SO4. Among the 103 and 214 yeast isolates from the Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively, were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant β- glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura sugarcane bagasse was pre-treated with 2% H2SO4 for 30 min at 150oC. Subsequently, the obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32% of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction, suggesting that C. laurentii is a good β-glucosidase producer. The results presented in this study highlight the importance of isolating microbial strains that produce enzymes of biotechnological interest, given their extensive application in biofuel production. PMID:23851270

  10. Fungal secretomes enhance sugar beet pulp hydrolysis.

    PubMed

    Kracher, Daniel; Oros, Damir; Yao, Wanying; Preims, Marita; Rezic, Iva; Haltrich, Dietmar; Rezic, Tonci; Ludwig, Roland

    2014-04-01

    The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored. In a second step, the ability of the culture supernatants to hydrolyze thermally pretreated SBP was tested in batch experiments. The supernatant of Sclerotium rolfsii, a soil-borne facultative plant pathogen, was found to have the highest hydrolytic activity on SBP and was selected for further hydrolyzation experiments. A low enzyme load of 0.2 mg g(-1) protein from the culture supernatant was sufficient to hydrolyze a large fraction of the pectin and hemicelluloses present in SBP. The addition of Trichoderma reesei cellulase (1-17.5 mg g(-1) SBP) resulted in almost complete hydrolyzation of cellulose. It was found that the combination of pectinolytic, hemicellulolytic, and cellulolytic activities works synergistically on the complex SBP composite, and a combination of these hydrolytic enzymes is required to achieve a high degree of enzymatic SBP hydrolysis with a low enzyme load. PMID:24677771

  11. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  12. Optimization of alkaline sulfite pretreatment and comparative study with sodium hydroxide pretreatment for improving enzymatic digestibility of corn stover.

    PubMed

    Liu, Huan; Pang, Bo; Wang, Haisong; Li, Haiming; Lu, Jie; Niu, Meihong

    2015-04-01

    In this study, alkaline sulfite pretreatment of corn stover was optimized. The influences of pretreatments on solid yield, delignification, and carbohydrate recovery under different pretreatment conditions and subsequent enzymatic hydrolysis were investigated. The effect of pretreatment was evaluated by enzymatic hydrolysis efficiency and the total sugar yield. The optimum pretreatment conditions were obtained, as follows: the total titratable alkali (TTA) of 12%, liquid/solid ratio of 6:1, temperature of 140 °C, and holding time of 20 min. Under those conditions, the solid yield was 55.24%, and the removal of lignin was 82.68%. Enzymatic hydrolysis rates of glucan and xylan for pretreated corn stover were 85.38% and 70.36%, and the total sugar yield was 74.73% at cellulase loading of 20 FPU/g and β-glucosidase loading of 10 IU/g for 48 h. Compared with sodium hydroxide pretreatment with the same amount of total titratable alkali, the total sugar yield was raised by about 10.43%. Additionally, the corn stover pretreated under the optimum pretreatment conditions was beaten by PFI at 1500 revolutions. After beating, enzymatic hydrolysis rates of glucan and xylan were 89.74% and 74.06%, and the total sugar yield was 78.58% at the same enzymatic hydrolysis conditions. Compared with 1500 rpm of PFI beating after sodium pretreatment with the same amount of total titratable alkali, the total sugar yield was raised by about 14.05%. PMID:25773993

  13. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing.

    PubMed

    Toquero, Cristina; Bolado, Silvia

    2014-04-01

    Pretreatment is essential in the production of alcohol from lignocellulosic material. In order to increase enzymatic sugar release and bioethanol production, thermal, dilute acid, dilute basic and alkaline peroxide pretreatments were applied to wheat straw. Compositional changes in pretreated solid fractions and sugars and possible inhibitory compounds released in liquid fractions were analysed. SEM analysis showed structural changes after pretreatments. Enzymatic hydrolysis and fermentation by Pichia stipitis of unwashed and washed samples from each pretreatment were performed so as to compare sugar and ethanol yields. The effect of the main inhibitors found in hydrolysates (formic acid, acetic acid, 5-hydroxymethylfurfural and furfural) was first studied through ethanol fermentations of model media and then compared to real hydrolysates. Hydrolysates of washed alkaline peroxide pretreated biomass provided the highest sugar concentrations, 31.82g/L glucose, and 13.75g/L xylose, their fermentation yielding promising results, with ethanol concentrations reaching 17.37g/L. PMID:24531149

  14. Design and parametric evaluation of an enzymatic hydrolysis process (separate hydrolysis and fermentation)

    SciTech Connect

    Wright, J.D.; Power, A.J.; Douglas, L.J.

    1986-08-01

    A separate fungal enzyme hydrolysis and fermentation process for converting lignocellulose to ethanol was evaluated. Although the current state-of-the-art process is expensive, research now under way has the potential to reduce projected selling prices by a factor of three. While the cost of pretreatment can have a major effect on the performance of hydrolysis and enzymen production. Increases in the beta-glucosidase component of the enzyme mixture have led to greatly improved performance, and continued improvement is possible. Other important improvements include reductions in enzyme loadings, reduced agitation requirements in hydrolysis, higher productivity in enzyme manufacture, fermentation of xylose to ethanol, and better utilization of the lignin fraction. 24 refs., 8 figs., 2 tabs.

  15. Effect of hydrolysis time on the physicochemical and functional properties of corn glutelin by Protamex hydrolysis.

    PubMed

    Zheng, Xi-qun; Wang, Jun-tong; Liu, Xiao-lan; Sun, Ying; Zheng, Yong-jie; Wang, Xiao-jie; Liu, Yue

    2015-04-01

    The physicochemical and functional properties, such as surface hydrophobicity, disulphide bond content, thermal properties, molecular weight distribution, antioxidant properties, of corn glutelin hydrolysates catalysed by Protamex at different hydrolysis times were evaluated. The hydrolysis influenced the properties of corn glutelin significantly, and not only decreased its molecular weight and disulphide bond content, but also eventually transformed its insoluble native aggregates to soluble aggregates during the hydrolysis process. Corn glutelin hydrolysates were found to have a higher solubility, which was associated with their relatively higher foaming and emulsifying properties compared to the original glutelin. Corn glutelin and its hydrolysates maintained a high thermal stability. In addition, the hydrolysates exhibited excellent antioxidant properties measured through in vitro assays, namely DPPH and OH radical scavenging activity, Fe(2+)-chelating capacity and reducing power; the values were 58.86%, 82.64%, 29.92% and 0.236% at 2.0mg/mL, respectively. PMID:25442571

  16. The Alkaline Denaturation of DNA

    PubMed Central

    Ageno, M.; Dore, E.; Frontali, C.

    1969-01-01

    A kinetic study of the alkaline transition of DNA, in clearly defined physico-chemical conditions, is presented, which allows us to identify, within the alkaline transition region, different pH ranges, corresponding to different ratelimiting factors. This analysis brings into consideration three distinct intervals of time which characterize the whole process, namely the time necessary for full hyperchromicity to be reached, the time required for strand separation in the case of a single DNA molecule, and the time for complete denaturation to be reached in the case of a DNA solution. The results obtained from ultracentrifugal, and spectrophotometric measurements, involving rapid mixing experiments, seem to indicate the following conclusions: whereas, in the lower pH ranges considered within the transition region, the denaturation process is limited by the first time constant, this same constant becomes extremely short at higher pH. On the other hand the fact that, in the higher pH range, the second and third time constants do not coincide (the time to unwind a single T2 DNA molecule being at least one order of magnitude shorter than the time required for bulk denaturation to be reached) suggests that in this pH range the overall denaturation rate is limited by a statistical process governing the initiation of unwinding. These observations are discussed in terms of a model in which the unwinding energy is given by the electrostatic repulsions which originate in the deprotonated DNA molecule. The model itself suggests some experiment which seem to confirm it. ImagesFigure 2Figure 3 PMID:4982056

  17. Study on the hydrolysis/precipitation behavior of Keggin Al13 and Al30 polymers in polyaluminum solutions.

    PubMed

    Chen, Zhaoyang; Luan, Zhaokun; Jia, Zhiping; Li, Xiaosen

    2009-06-01

    The hydrolysis/precipitation behaviors of Al(3+), Al(13) and Al(30) under conditions typical for flocculation in water treatment were investigated by studying the particulates' size development, charge characteristics, chemical species and speciation transformation of coagulant hydrolysis precipitates. The optimal pH conditions for hydrolysis precipitates formation for AlCl(3), PAC(Al13) and PAC(Al30) were 6.5-7.5, 8.5-9.5, and 7.5-9.5, respectively. The precipitates' formation rate increased with the increase in dosage, and the relative rates were AlCl(3)>PAC(Al30)>PAC(Al13). The precipitates' size increased when the dosage increased from 50 microM to 200 microM, but it decreased when the dosage increased to 800 microM. The Zeta potential of coagulant hydrolysis precipitates decreased with the increase in pH for the three coagulants. The iso-electric points of the freshly formed precipitates for AlCl(3), PAC(Al13) and PAC(Al30) were 7.3, 9.6 and 9.2, respectively. The Zeta potentials of AlCl(3) hydrolysis precipitates were lower than those of PAC(Al13) and PAC(Al30) when pH>5.0. The Zeta potential of PAC(Al30) hydrolysis precipitates was higher than that of PAC(Al13) at the acidic side, but lower at the alkaline side. The dosage had no obvious effect on the Zeta potential of hydrolysis precipitates under fixed pH conditions. The increase in Zeta potential with the increase in dosage under uncontrolled pH conditions was due to the pH depression caused by coagulant addition. Al-Ferron research indicated that the hydrolysis precipitates of AlCl(3) were composed of amorphous Al(OH)(3) precipitates, but those of PAC(Al13) and PAC(Al30) were composed of aggregates of Al(13) and Al(30), respectively. Al(3+) was the most un-stable species in coagulants, and its hydrolysis was remarkably influenced by solution pH. Al(13) and Al(30) species were very stable, and solution pH and aging had little effect on the chemical species of their hydrolysis products. The research method involving coagulant hydrolysis precipitates based on Al-Ferron reaction kinetics was studied in detail. The Al species classification based on complex reaction kinetic of hydrolysis precipitates and Ferron reagent was different from that measured in a conventional coagulant assay using the Al-Ferron method. The chemical composition of Al(a), Al(b) and Al(c) depended on coagulant and solution pH. The Al(b) measured in the current case was different from Keggin Al(13), and the high Al(b) content in the AlCl(3) hydrolysis precipitates could not used as testimony that most of the Al(3+) was converted to highly charged Al(13) species during AlCl(3) coagulation. PMID:19409689

  18. Zinc-air alkaline batteries - A review

    NASA Astrophysics Data System (ADS)

    Chakkaravarthy, C.; Waheed, A. K. A.; Udupa, H. V. K.

    1981-07-01

    The basic principles involved in the operation of an alkaline zinc-air system are considered. Fully developed primary and mechanically rechargeable cells and their applications are reviewed. Various obstacles pertaining to the development of an electrically rechargeable zinc-air alkaline battery and possible means of overcoming them to some degree are summarized.

  19. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process. PMID:26652215

  20. Alkaline assisted thermal oil recovery: Kinetic and displacement studies

    SciTech Connect

    Saneie, S.; Yortsos, Y.C.

    1993-06-01

    This report deals with two major issues of chemical assisted flooding - the interaction of caustic, one of the proposed additives to steam flood, with the reservoir rock, and the displacement of oil by a chemical flood at elevated temperatures. A mathematical model simulating the kinetics of silica dissolution and hydroxyl ion consumption in a typical alkaline flooding environment is first developed. The model is based on the premise that dissolution occurs via hydrolysis of active sites through the formation of an intermediate complex, which is in equilibrium with the silicic acid in solution. Both static (batch) and dynamic (core flood) processes are simulated to examine the sensitivity of caustic consumption and silica dissolution to process parameters, and to determine rates of propagation of pH values. The model presented provides a quantitative description of the quartz-alkali interaction in terms of pH, salinity, ion exchange properties, temperature and contact time, which are of significant importance in the design of soluble silicate flooding processes. The modeling of an adiabatic hot waterflood assisted by the simultaneous injection of a chemical additive is next presented. The model is also applicable to the hot alkaline flooding under conditions of negligible adsorption of the generated anionic surfactant and of hydroxide adsorption being Langmuirian. The theory of generalized simple waves (coherence ) is used to develop solutions for the temperature, concentration, and oil saturation profiles, as well as the oil recovery curves. It is shown that, for Langmuir adsorption kinetics, the chemical resides in the heated region of the reservoir if its injection concentration is below a critical value, and in the unheated region if its concentration exceeds this critical value. Results for a chemical slug injection in a tertiary recovery process indicate recovery performance is maximized when chemical resides in the heated region of the reservior.

  1. Physicochemical properties of alkaline serine proteases in alcohol.

    PubMed

    Chen, S T; Chen, S Y; Tu, C C; Chiou, S H; Wang, K T

    1995-05-01

    The alkaline proteases subtilisin Carlsberg and alcalase possess substantial enzymatic activity even when dissolved in ethanol. The crude enzymes were purified by gel filtration and the main fractions suspended in ethanol to give a translucent suspension. Both the supernatant and the resuspended precipitate after high-speed centrifugation were found to have enzymatic activities. The solubility of subtilisin Carlsberg in anhydrous ethanol was found to be 45.1 micrograms/ml and that of alcalase was 48.1 micrograms/ml by Coomassie blue dye-binding method using bovine serum albumin as a standard. In the presence of water, the solubility of both enzymes increased with water content. The stability of enzymes incubated in ethanol was assayed by their amidase and transesterase activities using Ala-Ala-Pro-Phe-pNA as substrate in phosphate buffer (pH8.2) and Moz-Leu-OBzl as substrate in anhydrous ethanol, respectively. The soluble enzymes have a half-life of about 36 hr and that of suspended enzymes about 50 hr in the amidase activity assay, whereas the same soluble enzymes have a half-life of about several hours and that of suspended enzymes 1 h by the transesterase activity assay. The stability of both enzymes decreased as water concentration increased. The diastereoselectivity of the enzyme-catalyzed hydrolysis of diastereo pairs of tetrapeptide esters, L-Ala-L-Ala-(D- or L-)Pro-L-Phe-OMe and L-Ala-L-Ala-(D- or L-)Ala-L-Phe-OMe, in phosphate is as high as that of the transesterification of these substrates in ethanol. It is concluded that active sites and selectivity of alkaline serine proteases in anhydrous alcohol are probably very similar to those in aqueous solution in spite of the fact that a lower reactivity is usually associated with the enzymes in nonaqueous solvents. PMID:7662108

  2. Hydrolysis of ferric chloride in solution

    SciTech Connect

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox{trademark} process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200{degrees}C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl{sub 3 liquid} + H{sub 2}O {r_arrow} FeOCl{sub solid} + 2 HCl{sub gas} During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl{sub solid} + H{sub 2}O {r_arrow} Fe{sub 2}O{sub 3 solid} + 2 HCl{sub gas}. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way.

  3. Improved method for detection of starch hydrolysis

    SciTech Connect

    Ohawale, M.R.; Wilson, J.J.; Khachatourians, G.G.; Ingledew, W.M.

    1982-09-01

    A new starch hydrolysis detection method which does not rely on iodine staining or the use of color-complexed starch is described. A linear relationship was obtained with agar-starch plates when net clearing zones around colonies of yeasts were plotted against enzyme levels (semilogarithm scale) produced by the same yeast strains in liquid medium. A similar relationship between starch clearing zones and alpha-amylase levels from three different sources was observed. These observations suggest that the method is useful in mutant isolations, strain improvement programs, and the prediction of alpha-amylase activities in culture filtrates or column effluents. (Refs. 18).

  4. Urea hydrolysis and calcium carbonate reaction fronts

    NASA Astrophysics Data System (ADS)

    Fox, D. T.; Redden, G. D.; Henriksen, J.; Fujita, Y.; Guo, L.; Huang, H.

    2010-12-01

    The mobility of toxic or radioactive metal contaminants in subsurface environments can be reduced by the formation of mineral precipitates that form co-precipitates with the contaminants or that isolate them from the mobile fluid phase. An engineering challenge is to control the spatial distribution of precipitation reactions with respect to: 1) the location of a contaminant, and 2) where reactants are introduced into the subsurface. One strategy being explored for immobilizing contaminants, such as Sr-90, involves stimulating mineral precipitation by forming carbonate ions and hydroxide via the in situ, microbially mediated hydrolysis of urea. A series of column experiments have been conducted to explore how the construction or design of such an in situ reactant production strategy can affect the temporal and spatial distribution of calcium carbonate precipitation, and how the distribution is coupled to changes in permeability. The columns were constructed with silica gel as the porous media. An interval midway through the column contained an adsorbed urease enzyme in order to simulate a biologically active zone. A series of influent solutions were injected to characterize hydraulic properties of the column (e.g., bromide tracer), profiles of chemical conditions and reaction products as the enzyme catalyzes urea hydrolysis (e.g., pH, ammonia, urea), and changes that occur due to CaCO3 precipitation with the introduction of a calcium+urea solutions. In one experiment, hydraulic conductivity was reduced as precipitate accumulated in a layer within the column that had a higher fraction of fine grained silica gel. Subsequent reduction of permeability and flow (for a constant head condition) resulted in displacement of the hydrolysis and precipitation reaction profiles upstream. In another experiment, which lacked the physical heterogeneity (fine grained layer), the precipitation reaction did not result in loss of permeability or flow velocity and the reaction profile, characterized by the pH profile and hydrolysis reaction species, was extended downstream of the enzyme zone. Downstream extension of the reaction profile was due partially to the partial mobility of the enzyme in the column. The experiments are helping to illustrate the complexity of transient reaction fronts as well as the needs and challenges for advanced modeling approaches. A modeling platform developed at the Idaho National Laboratory, which is capable of simulating tightly coupled physical-chemical processes (the Reactive Transport simulator), is being applied to pre-experimental simulations and post-experimental interpretation of results.

  5. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis process. Up to 72% of hexose yield and 94% of pentose yield were obtained using "modified" steam explosion with 2% sulfuric acid at 140°C for 30 min and enzymatic hydrolysis with cellulase (15 FPU/g cellulose) and beta-glucosidase (50 CBU/g cellulose).

  6. Cytoskeleton Dynamics: A Continuum Cooperative Hydrolysis Model

    NASA Astrophysics Data System (ADS)

    Xu, Jian-Wei; Cheng, Bo; Feng, Yu-Yu; Wang, Zi-Qing; Wang, Guo-Dong

    2015-05-01

    Cytoskeleton is a network of filamentous proteins, such as actin filaments and microtubules. We propose a continuum cooperative hydrolysis model which possesses exactly analytical solution to describe the dynamics of filament. The results show that the cooperativity leads to non negative-exponential distribution of T (ATP or GTP) subunits. As an application, we investigate the treadmilling phenomenon using our model. It is shown that the cooperativity remarkably affects the length of filament. Supported by Chinese Universities Scientific Fund under Grant No. 2014YB029 and National Natural Science Foundation of China under Grant No. 11205123

  7. Developmental Transition from Enzymatic to Acid Hydrolysis of Sucrose in Acid Limes (Citrus aurantifolia).

    PubMed

    Echeverria, E

    1990-01-01

    The sucrose breakdown mechanisms in juice sacs of acid lime (Citrus aurantifolia [Christm.] Swing.) were investigated throughout fruit development. All three enzymes of sucrose catabolism (sucrose synthase, acid, and alkaline invertase) are present during the initial stages. The activities of these enzymes declined rapidly and disappeared by stage 5 (80% development) but not before vacuolar pH had decreased to approximately 2.5. At this stage, sucrose breakdown occurs by acid hydrolysis. By attaining a vacuolar pH of 2.5 prior to enzyme disappearance, the cell maintains a continuous ability to break down sucrose throughout ontogeny. Thus, acid limes possess a unique and coordinated system for sucrose breakdown that involves both enzymatic and nonenzymatic pathways. PMID:16667241

  8. Thermo-chemical pretreatment and enzymatic hydrolysis for enhancing saccharification of catalpa sawdust.

    PubMed

    Jin, Shuguang; Zhang, Guangming; Zhang, Panyue; Li, Fan; Fan, Shiyang; Li, Juan

    2016-04-01

    To improve the reducing sugar production from catalpa sawdust, thermo-chemical pretreatments were examined and the chemicals used including NaOH, Ca(OH)2, H2SO4, and HCl. The hemicellulose solubilization and cellulose crystallinity index (CrI) were significantly increased after thermo-alkaline pretreatments, and the thermo-Ca(OH)2 pretreatment showed the best improvement for reducing sugar production comparing to other three pretreatments. The conditions of thermo-Ca(OH)2 pretreatment and enzymatic hydrolysis were systematically optimized. Under the optimal conditions, the reducing sugar yield increased by 1185.7% comparing to the control. This study indicates that the thermo-Ca(OH)2 pretreatment is ideal for the saccharification of catalpa sawdust and that catalpa sawdust is a promising raw material for biofuel. PMID:26802185

  9. Multisystemic functions of alkaline phosphatases.

    PubMed

    Buchet, René; Millán, José Luis; Magne, David

    2013-01-01

    Human and mouse alkaline phosphatases (AP) are encoded by a multigene family expressed ubiquitously in multiple tissues. Gene knockout (KO) findings have helped define some of the precise exocytic functions of individual isozymes in bone, teeth, the central nervous system, and in the gut. For instance, deficiency in tissue-nonspecific alkaline phosphatase (TNAP) in mice (Alpl (-/-) mice) and humans leads to hypophosphatasia (HPP), an inborn error of metabolism characterized by epileptic seizures in the most severe cases, caused by abnormal metabolism of pyridoxal-5'-phosphate (the predominant form of vitamin B6) and by hypomineralization of the skeleton and teeth featuring rickets and early loss of teeth in children or osteomalacia and dental problems in adults caused by accumulation of inorganic pyrophosphate (PPi). Enzyme replacement therapy with mineral-targeting TNAP prevented all the manifestations of HPP in mice, and clinical trials with this protein therapeutic are showing promising results in rescuing life-threatening HPP in infants. Conversely, TNAP induction in the vasculature during generalized arterial calcification of infancy (GACI), type II diabetes, obesity, and aging can cause medial vascular calcification. TNAP inhibitors, discussed extensively in this book, are in development to prevent pathological arterial calcification. The brush border enzyme intestinal alkaline phosphatase (IAP) plays an important role in fatty acid (FA) absorption, in protecting gut barrier function, and in determining the composition of the gut microbiota via its ability to dephosphorylate lipopolysaccharide (LPS). Knockout mice (Akp3 (-/-)) deficient in duodenal-specific IAP (dIAP) become obese, and develop hyperlipidemia and hepatic steatosis when fed a high-fat diet (HFD). These changes are accompanied by upregulation in the jejunal-ileal expression of the Akp6 IAP isozyme (global IAP, or gIAP) and concomitant upregulation of FAT/CD36, a phosphorylated fatty acid translocase thought to play a role in facilitating the transport of long-chain fatty acids into cells. gIAP, but not dIAP, is able to modulate the phosphorylation status of FAT/CD36. dIAP, even though it is expressed in the duodenum, is shed into the gut lumen and is active in LPS dephosphorylation throughout the gut lumen and in the feces. Akp3 (-/-) mice display gut dysbiosis and are more prone to dextran sodium sulfate-induced colitis than wild-type mice. Of relevance, oral administration of recombinant calf IAP prevents the dysbiosis and protects the gut from chronic colitis. Analogous to the role of IAP in the gut, TNAP expression in the liver may have a proactive role from bacterial endotoxin insult. Finally, more recent studies suggest that neuronal death in Alzheimer's disease may also be associated with TNAP function on certain brain-specific phosphoproteins. This review recounts the established roles of TNAP and IAP and briefly discusses new areas of investigation related to multisystemic functions of these isozymes. PMID:23860646

  10. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  11. Ultrasound enhanced enzymatic hydrolysis of Parthenium hysterophorus: A mechanistic investigation.

    PubMed

    Singh, Shuchi; Agarwal, Mayank; Bhatt, Aditya; Goyal, Arun; Moholkar, Vijayanand S

    2015-09-01

    This study has attempted to establish the mechanism of the ultrasound-induced enhancement of enzymatic hydrolysis of pretreated and delignified biomass of Parthenium hysterophorus. A dual approach of statistical optimization of hydrolysis followed by application of sonication at optimum conditions has been adopted. The kinetics of hydrolysis shows a marked 6× increase with sonication, while net sugar yield shows marginal rise of ∼ 20%. The statistical experimental design reveals the hydrolysis process to be enzyme limited. Profile of sugar yield in ultrasound-assisted enzymatic hydrolysis has been analyzed using HCH-1 model coupled with Genetic Algorithm optimization. The trends in the kinetic and physiological parameters of HCH-1 model reveal that sonication enhances enzyme/substrate affinity and reaction velocity of hydrolysis. The product inhibition of enzyme in all forms (free, adsorbed, complexed) also reduces with ultrasound. These effects are attributed to intense micro-convection induced by ultrasound and cavitation in the liquid medium. PMID:26094188

  12. Hydrolysis of lignocelluloses by penicillium funiculosum cellulase

    SciTech Connect

    Mishra, C.; Rao, M.; Seeta, R.; Srinivasan, M.C.; Deshpande, V.

    1984-04-01

    Enzymatic hydrolysis of cellulose is a promising method for the conversion of waste cellulose to glucose. During the past few years, the development of this technology has proceeded rapidly, with significant advances made in enzyme production, pretreatment, and hydrolysis. A variety of fungi are reported to produce cellulases but among these Trichoderma reesei and its mutants are powerful producers of cellulases. However, the search for new and possibly better sources of cellulase is continued due to the low levels of beta-glucosidase of T. reesei. Penicillium funiculosum produces a complete cellulase having endo-beta-1,4-glucanase (15-20 U/mL), exo-beta-1,4-glucanase (1.5-2.0 U/mL), and high beta-glucosidase (8-10 U/mL). The saccharification of alkali-treated cotton and bagasse by P. funiculosum enzyme was 70 and 63%, respectively. It was possible to obtain glucose concentration as high as 30% using 50% bagasse. It is of interest that the percent saccharification of cellulosic substrates with the Penicillium enzyme is comparable to that of T. reesei cellulase when the same amount of filter paper activity is used, although the endo-glucanase activity of the latter is two to three times higher. This communication reports the studies on saccharification of lignocelluloses by P. funiculosum cellulase and certain studies on the kinetic aspects. (Refs. 15).

  13. Technical bases for precipitate hydrolysis process operating parameters

    SciTech Connect

    Bannochie, C.J.; Lambert, D.P.

    1992-11-09

    This report provides the experimental data and rationale in support of the operating parameters for tetraphenylborate precipitate hydrolysis specified in WSRC-RP-92-737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF). The program was in conjunction with reducing the nitrite ion level in DWPF feed.

  14. Simulation of continuous and batch hydrolysis of willow

    SciTech Connect

    Zacchi, G.; Dahlbom, J.; Scott, C.D.

    1986-01-01

    The influence of product and enzyme concentrations on the kinetics of the enzymic hydrolysis of alkali-pretreated willow is studied. The hydrolysis was performed in a UF-membrane reactor in which the product concentration was kept constant. An empirical 4-parameter rate equation that gives a good correlation to both continuous and batch hydrolysis data is presented. The model comprises the effects of enzyme concentration and product inhibition. (Refs. 11).

  15. Alkaline solution neutralization capacity of soil.

    PubMed

    Asakura, Hiroshi; Sakanakura, Hirofumi; Matsuto, Toshihiko

    2010-10-01

    Alkaline eluate from municipal solid waste (MSW) incineration residue deposited in landfill alkalizes waste and soil layers. From the viewpoint of accelerating stability and preventing heavy metal elution, pH of the landfill layer (waste and daily cover soil) should be controlled. On the other hand, pH of leachate from existing MSW landfill sites is usually approximately neutral. One of the reasons is that daily cover soil can neutralize alkaline solution containing Ca(2+) as cation. However, in landfill layer where various types of wastes and reactions should be taken into consideration, the ability to neutralize alkaline solutions other than Ca(OH)(2) by soil should be evaluated. In this study, the neutralization capacities of various types of soils were measured using Ca(OH)(2) and NaOH solutions. Each soil used in this study showed approximately the same capacity to neutralize both alkaline solutions of Ca(OH)(2) and NaOH. The cation exchange capacity was less than 30% of the maximum alkali neutralization capacity obtained by the titration test. The mechanism of neutralization by the pH-dependent charge can explain the same neutralization capacities of the soils. Although further investigation on the neutralization capacity of the soils for alkaline substances other than NaOH is required, daily cover soil could serve as a buffer zone for alkaline leachates containing Ca(OH)(2) or other alkaline substances. PMID:20395123

  16. Muscarinic receptor activation of phosphatidylcholine hydrolysis. Relationship to phosphoinositide hydrolysis and diacylglycerol metabolism

    SciTech Connect

    Martinson, E.A.; Goldstein, D.; Brown, J.H. )

    1989-09-05

    We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of (3H)choline and (3H)phosphorylcholine ((3H)Pchol) from cells containing (3H)choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of (3H)phosphatidic acid ((3H)PA) in cells containing (3H)myristate-labeled PC. (3H)Diacylglycerol ((3H)DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with (3H)myristate and (14C)arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol.

  17. Alkaline ring complexes in Sudan

    NASA Astrophysics Data System (ADS)

    Vail, J. R.

    An anorogenic petrographic province containing nearly 100 alkaline ring complexes extends across Sudan. These anorogenic complexes are distinct from late-orogenic granite-gabbro, calcalkaline plutonic centres particularly in the eastern part of Sudan, many of which also take the form of ring complexes. The biggest, most closely spaces, and most numerous ring complexes occur in a discontinuous belt of alkali granites and syenites, rarer foid syenites, and associated extrusive trachytes, rhyolites and ignimbrites exposed intermittently across 100 km from the Bayuda Desert and Nile River Valley near Khartoum to northern Kordofan Province and the Nuba Mountains region of central Sudan. These complexes range in age from Ordovician to Jurassic, but show no progressive change in age or distribution pattern other than a tendency to align locally in NW-trending bands, which might reflect zones of weakness in the underlying basement rocks. Mesozoic syenites and alkali granites forming plugs and ring complexes lie in a belt parallel to the coast in the Red Sea Hills of eastern Sudan. In the north-west of the country, alkali granites and foid syenites of Tertiary age crop out in the basement inlier of J. Uweinat, and Mesozoic granites, syenites and foid syenites form igneous plutons in Equatoria Province in the extreme south.

  18. Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood.

    PubMed

    Tengborg, C; Galbe, M; Zacchi, G

    2001-06-01

    Softwood constitutes the main source of lignocellulosic material in Sweden which can be used for ethanol production from renewable resources. To make the biomass-to-ethanol process more economically feasible, it is preferable to include the sugar-rich prehydrolysate, i.e. the liquid obtained after the pretreatment step, in the enzymatic hydrolysis of the solid fraction. This study shows that the prehydrolysate inhibits cellulose conversion in the enzymatic hydrolysis step. When the prehydrolysate was included in the enzymatic hydrolysis, the cellulose conversion was reduced by up to 36%. However, this inhibition can be overcome by fermentation of the prehydrolysate prior to enzymatic hydrolysis. PMID:11397466

  19. A process for reduction in viscosity of coffee extract by enzymatic hydrolysis of mannan.

    PubMed

    Chauhan, Prakram Singh; Sharma, Prince; Puri, Neena; Gupta, Naveen

    2014-07-01

    Mannan is the main polysaccharide component of coffee extract and is responsible for its high viscosity, which in turn negatively affects the technological processing involved in making instant coffee. In our study, we isolated mannan from coffee beans and extract of commercial coffee and it was enzymatically hydrolyzed using alkali-thermostable mannanase obtained from Bacillus nealsonii PN-11. As mannan is found to be more soluble under alkaline conditions, an alkali-thermostable mannanase is well suited for its hydrolysis. The process of enzymatic hydrolysis was optimized by response surface methodology. Under the following optimized conditions viz enzyme dose of 11.50 U mannanase g(-1) coffee extract, temperature of 44.50 °C and time of 35.80 min, significant twofold decrease in viscosity (50 mPas to 26.00 ± 1.56 mPas) was achieved. The application of this process in large-scale industrial production of coffee will help in reduction of energy consumption used during freeze-drying. It will also make technological processing involved in making coffee more economical. PMID:24390577

  20. A Factorial Analysis Study on Enzymatic Hydrolysis of Fiber Pressed Oil Palm Frond for Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Hashim, F. S.; Yussof, H. W.; Zahari, M. A. K. M.; Illias, R. M.; Rahman, R. A.

    2016-03-01

    Different technologies have been developed to for the conversion of lignocellulosic biomass to suitable fermentation substrates for bioethanol production. The enzymatic conversion of cellulose seems to be the most promising technology as it is highly specific and does not produce substantial amounts of unwanted byproducts. The effects of agitation speed, enzyme loading, temperature, pH and reaction time on the conversion of glucose from fiber pressed oil palm frond (FPOPF) for bioethanol production were screened by statistical analysis using response surface methodology (RSM). A half fraction two-level factorial analysis with five factors was selected for the experimental design to determine the best enzymatic conditions that produce maximum amount of glucose. FPOPF was pre-treated with alkaline prior to enzymatic hydrolysis. The enzymatic hydrolysis was performed using a commercial enzyme Cellic CTec2. From this study, the highest yield of glucose concentration was 9.736 g/L at 72 hours reaction time at 35 °C, pH 5.6, and 1.5% (w/v) of enzyme loading. The model obtained was significant with p-value <0.0001. It is suggested that this model had a maximum point which is likely to be the optimum point and possible for the optimization process.

  1. Cationic gemini surfactants with cleavable spacer: chemical hydrolysis, biodegradation, and toxicity.

    PubMed

    Tehrani-Bagha, A R; Holmberg, K; van Ginkel, C G; Kean, M

    2015-07-01

    The paper describes synthesis and characterization of a new type of cationic gemini surfactant, which has dodecyl tails and a spacer that contains an ester bond. The nomenclature used to describe the structure is 12Q2OCO1Q12, with Q being a quaternary ammonium group and the numbers indicating the number of methylene or methyl groups. Due to the close proximity to the two quaternary ammonium groups, the ester bond is very stable on the acid side and very labile already at slightly alkaline conditions. The hydrolysis products are two single chain surfactants (i.e. 12Q2OH and 12Q1COOH) which are less surface active than the intact gemini surfactant. 12Q2OCO1Q12 was found to be readily biodegradable, i.e. it gave more than 60% biodegradation after 28 days. This is interesting because similar gemini surfactants but with ester bonds in the tails instead of the spacer, have previously been found not to be readily biodegradable. The gemini surfactant was found to be toxic to aquatic organisms (ErC50 value of 0.27 mg/l), although less toxic than the two hydrolysis products. PMID:25446957

  2. [Role of genistein in enzymatic albumin hydrolysis in the presence of nitrates (III) and (V)].

    PubMed

    Tokarz, Andrzej; Pokorska-Lis, Grazyna; Popiel, Elzbieta

    2008-01-01

    Polyphenols and nitrates are essential ingredients of human diet. Harm caused by nitrates is well know and studied. Positive role of polyphenols is investigated. The aim of the study was to analyze interactions between nitrates (III) and (V) and genistein in systems of enzymatic protein (albumin) hydrolysis. In vitro model of enzymatic acidic-alkaline albumine hydrolysis in the presence of nitrates, polyphenols and vitamin C in different concentrations was used. Content of nitrates was measured in dialysation fluid spectrophotometrically according to Griess' method. The study revealed inhibiting influence of genistein on nitrares(III) concentration in external compartment. The influence depended on polyphenol dose (for nitrates (III) between 11.21% and 7.27%, for nitrates (V) between 95.64% and 79.64% of dialysis). When genistein was introduced in too high concentrations--over 2,4 mg/system--it did not improve the effect, but inhibited it. The influence of genistein was synergic with resveratrol and vitamin C. PMID:19143429

  3. Interactions of caged-ATP and photoreleased ATP with alkaline phosphatase.

    PubMed

    Zhang, Le; Buchet, Rene; Azzar, Gerard

    2005-03-11

    Photolytic release of ATP from inactive P(3)-[1-(2-nitrophenyl)]ethyl ester of ATP (NPE-caged ATP) provides a means to reveal molecular interactions between nucleotide and enzyme by using infrared spectroscopy. Reaction-induced infrared difference spectra of bovine intestinal alkaline phosphatase (BIAP) and of NPE-caged ATP revealed small structural alterations on the peptide backbone affecting one or two amino-acid residues. After photorelease of ATP, the substrate could be hydrolyzed sequentially by the enzyme producing three Pi, adenosine, and the photoproduct nitrosoacetophenone. It was concluded that NPE-caged ATP could bind to BIAP prior to the photolytic cleavage of ATP and that Pi could interact with BIAP after photolysis of NPE-caged ATP and hydrolysis, yielding infrared spectra with distinct structure changes of BIAP. This suggests that the molecular mechanism of ATP hydrolysis by BIAP involved small structural adjustments of the peptide backbone in the vicinity of the active site during ATP hydrolysis which continued during Pi binding. PMID:15694389

  4. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A. (Oak Ridge, TN); Sachleben, Richard A. (Knoxville, TN); Bonnesen, Peter V. (Knoxville, TN)

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  5. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  6. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  7. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  8. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Chundawat, Shishir P S; Balan, Venkatesh; Dale, Bruce E

    2008-04-15

    Several factors will influence the viability of a biochemical platform for manufacturing lignocellulosic based fuels and chemicals, for example, genetically engineering energy crops, reducing pre-treatment severity, and minimizing enzyme loading. Past research on biomass conversion has focused largely on acid based pre-treatment technologies that fractionate lignin and hemicellulose from cellulose. However, for alkaline based (e.g., AFEX) and other lower severity pre-treatments it becomes critical to co-hydrolyze cellulose and hemicellulose using an optimized enzyme cocktail. Lignocellulosics are appropriate substrates to assess hydrolytic activity of enzyme mixtures compared to conventional unrealistic substrates (e.g., filter paper, chromogenic, and fluorigenic compounds) for studying synergistic hydrolysis. However, there are few, if any, high-throughput lignocellulosic digestibility analytical platforms for optimizing biomass conversion. The 96-well Biomass Conversion Research Lab (BCRL) microplate method is a high-throughput assay to study digestibility of lignocellulosic biomass as a function of biomass composition, pre-treatment severity, and enzyme composition. The most suitable method for delivering milled biomass to the microplate was through multi-pipetting slurry suspensions. A rapid bio-enzymatic, spectrophotometric assay was used to determine fermentable sugars. The entire procedure was automated using a robotic pipetting workstation. Several parameters that affect hydrolysis in the microplate were studied and optimized (i.e., particle size reduction, slurry solids concentration, glucan loading, mass transfer issues, and time period for hydrolysis). The microplate method was optimized for crystalline cellulose (Avicel) and ammonia fiber expansion (AFEX) pre-treated corn stover. PMID:18306256

  9. Effects of feed solutions on refuse hydrolysis and landfill leachate characteristics.

    PubMed

    He, Pin-Jing; Shao, Li-Ming; Qu, Xian; Li, Guo-Jian; Lee, Duu-Jong

    2005-05-01

    Tap water, aerobically pre-treated leachate, and anaerobically pre-treated leachate, were each fed into the top of a series of three simulated landfills columns, filled with municipal solid waste collected in Shanghai, China. Changes in leachate, including pH, total organic carbon (TOC), and volatile fatty acids (VFAs), and the produced biogas were monitored over time. The tap-water-fed columns had a low hydrolysis rate that yielded an acidic environment (pH 4.8-5.4) in the leachate that inhibited methanogenesis reaction in the refuse. When aerobically pre-treated leachate was fed into the columns, the hydrolysis rate of total organic carbon fluctuated between 200 and 400 mg d-1 and methanogenesis in the refuse column was only partly activated. The hydrolysis rate of refuse fed with anaerobically pre-treated leachate was the highest among the three solutions. The high alkaline levels of the anaerobically pre-treated leachate and its methanogenic bacteria led to an early activation of methanogenesis in the refuse columns. The VFAs contributed approximately 40-60% of TOC in tap-water-fed columns, 60-80% of TOC in the columns fed aerobically pre-treated leachate, and up to 70-90% of TOC in columns fed with anaerobically pre-treated leachate. The feed solution had considerably affected leachate characteristics, and then the build-up of the methanogenesis in the refuse column and the composition of fermentation products in the leachate. The success of a bioreactor landfill depends on whether the recycled leachate could yield a favorable methanogenic environment in the top refuse layer, or whether an appropriate pre-treatment is adopted to modify the leachate characteristics. PMID:15811412

  10. Immobilization of Yarrowia lipolytica Lipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction

    PubMed Central

    Sun, Jingjing; Chen, Yiling; Sheng, Jun; Sun, Mi

    2015-01-01

    To improve the reusability and organic solvent tolerance of microbial lipase and expand the application of lipase (hydrolysis, esterification, and transesterification), we immobilized marine microbial lipase using different methods and determined the properties of immobilized lipases. Considering the activity and cost of immobilized lipase, the concentration of lipase was fixed at 2 mg/mL. The optimal temperature of immobilized lipases was 40°C and 5°C higher than free lipase. The activities of immobilized lipases were much higher than free lipase at alkaline pH (more than 50% at pH 12). The free lipase lost most activity (35.3%) and immobilized lipases retained more than 46.4% of their initial activity after 3 h heat treatment at 70°C. At alkaline pH, immobilized lipases were more stable than free lipase (more than 60% residue activity at pH 11 for 3 h). Immobilized lipases retained 80% of their activity after 5 cycles and increased enzyme activity (more than 108.7%) after 3 h treatment in tert-butanol. Immobilization of lipase which improved reusability of lipase and provided a chance to expand the application of marine microbial lipase in organic system expanded the application range of lipase to catalyze hydrolysis and esterification in harsh condition. PMID:26240816

  11. Acid-functionalized nanoparticles for biomass hydrolysis

    NASA Astrophysics Data System (ADS)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during the catalytic reactions. PS nanoparticles were further evaluated for the pretreatment of corn stover in order to increase digestibility of the biomass. The pretreatment was carried out at three different catalyst load and temperature levels. At 180°C, the total glucose yield was linearly correlated to the catalyst load. A maximum glucose yield of 90% and 58% of the hemicellulose sugars were obtained at this temperature.

  12. Enhanced enzymatic hydrolysis of pretreated almond-tree prunings for sugar production.

    PubMed

    Cuevas, Manuel; García, Juan Francisco; Sánchez, Sebastián

    2014-01-01

    Almond-tree prunings (ATP), an agricultural residue largely available in Mediterranean countries, were pretreated with either hot water or dilute sulphuric acid at 180-230 °C. Solids derived from hot water pretreatments were further submitted to alkaline peroxide delignification. In addition, all solids obtained from the three mentioned processes were hydrolysed by cellulases and β-glucosidases to investigate their enzymatic digestibilities. Hot water pretreatment led to high oligosaccharide yields (18.2 g/100 g ATP at 190 °C) while dilute acid pretreatment provided the highest monosaccharide yields (24.0 g/100 g ATP at 190 °C) along with low concentrations of fermentation inhibitors. Glucose yields from enzymatic hydrolysis were strongly affected by both pretreatment type and pretreatment temperature. The highest temperature assayed for both hydrothermal and dilute sulphuric acid pretreatment maximized the glucose recovery (49.2% and 72.8%, respectively) while solids derived from alkaline peroxide treatment achieved maximal glucose concentrations (41.9 g/L, 58.4% of potential yield). PMID:24274571

  13. Hydrolysis of Baltic amber during thermal ageing--an infrared spectroscopic approach.

    PubMed

    Pastorelli, Gianluca; Shashoua, Yvonne; Richter, Jane

    2013-04-01

    To enable conservation of amber in museums, understanding of chemical changes is crucial. While oxidation has been investigated particularly well for this natural polymer, further degradation phenomena in relation to humidity and pollutants are poorly studied or still unknown. Attenuated total reflectance-Fourier transform infrared spectroscopy was explored with regard to Baltic amber. A systematic spectroscopic survey of a wide range of thermally aged model amber samples, exposed to different microclimatic conditions, showed significant changes in their spectra. Samples aged in a humid and acidic environment or exposed to a humid and alkaline atmosphere generally exhibited a higher absorbance intensity of carbonyl groups at frequencies assigned to acids than unaged samples, samples aged in drier conditions and samples immersed in an alkaline solution. Baltic amber comprises succinate ester, which may be hydrolysed into communol and succinic acid. The survey thus provided evidence about the progress of hydrolytic reactions during degradation of Baltic amber. Infrared spectroscopy was shown to have significant potential for providing qualitative and quantitative chemical information on hydrolysis of amber, which will be of interest for the development of preventive conservation techniques for museum collections of amber objects. PMID:23376267

  14. Hydrolysis of Baltic amber during thermal ageing - An infrared spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Pastorelli, Gianluca; Shashoua, Yvonne; Richter, Jane

    2013-04-01

    To enable conservation of amber in museums, understanding of chemical changes is crucial. While oxidation has been investigated particularly well for this natural polymer, further degradation phenomena in relation to humidity and pollutants are poorly studied or still unknown. Attenuated total reflectance-Fourier transform infrared spectroscopy was explored with regard to Baltic amber. A systematic spectroscopic survey of a wide range of thermally aged model amber samples, exposed to different microclimatic conditions, showed significant changes in their spectra. Samples aged in a humid and acidic environment or exposed to a humid and alkaline atmosphere generally exhibited a higher absorbance intensity of carbonyl groups at frequencies assigned to acids than unaged samples, samples aged in drier conditions and samples immersed in an alkaline solution. Baltic amber comprises succinate ester, which may be hydrolysed into communol and succinic acid. The survey thus provided evidence about the progress of hydrolytic reactions during degradation of Baltic amber. Infrared spectroscopy was shown to have significant potential for providing qualitative and quantitative chemical information on hydrolysis of amber, which will be of interest for the development of preventive conservation techniques for museum collections of amber objects.

  15. Composite seal reduces alkaline battery leakage

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Plitt, K. F.

    1965-01-01

    Composite seal consisting of rubber or plastic washers and a metal washer reduces alkaline battery leakage. Adhesive is applied to each washer interface, and the washers are held together mechanically.

  16. Toxicity of alkalinity to Hyalella azteca

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Reinert, R.E.

    1997-01-01

    Toxicity testing and chemical analyses of sediment pore water have been suggested for use in sediment quality assessments and sediment toxicity identification evaluations. However, caution should be exercised in interpreting pore-water chemistry and toxicity due to inherent chemical characteristics and confounding relationships. High concentrations of alkalinity, which are typical of sediment pore waters from many regions, have been shown to be toxic to test animals. A series of tests were conducted to assess the significance of elevated alkalinity concentrations to Hyalella azteca, an amphipod commonly used for sediment and pore-water toxicity testing. Toxicity tests with 14-d old and 7-d old animals were conducted in serial dilutions of sodium bicarbonate (NaHCO3) solutions producing alkalinities ranging between 250 to 2000 mg/L as CaCO3. A sodium chloride (NaCl) toxicity test was also conducted to verify that toxicity was due to bicarbonate and not sodium. Alkalinity was toxic at concentrations frequently encountered in sediment pore water. There was also a significant difference in the toxicity of alkalinity between 14-d old and 7-d old animals. The average 96-h LC50 for alkalinity was 1212 mg/L (as CaCO3) for 14-d old animals and 662 mg/L for the younger animals. Sodium was not toxic at levels present in the NaHCO3 toxicity tests. Alkalinity should be routinely measured in pore-water toxicity tests, and interpretation of toxicity should consider alkalinity concentration and test-organism tolerance.

  17. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  18. Pretreatment and enzymatic hydrolysis of corn fiber

    SciTech Connect

    Grohmann, K.; Bothast, R.J.

    1996-10-01

    Corn fiber is a co-product of the corn wet milling industry which is usually marketed as a low value animal feed ingredient. Approximately 1.2 x 10{sup 6} dry tons of this material are produced annually in the United States. The fiber is composed of kernel cell wall fractions and a residual starch which can all be potentially hydrolyzed to a mixture of glucose, xylose, arabinose and galactose. We have investigated a sequential saccharification of polysaccharides in corn fiber by a treatment with dilute sulfuric acid at 100 to 160{degrees}C followed by partial neutralization and enzymatic hydrolysis with mixed cellulose and amyloglucosidase enzymes at 45{degrees}C. The sequential treatment achieved a high (approximately 85%) conversion of all polysaccharides in the corn fiber to monomeric sugars, which were in most cases fermentable to ethanol by the recombinant bacterium Escherichia coli KOll.

  19. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  20. Improved absorption of caseinophosphopeptide-bound iron: role of alkaline phosphatase.

    PubMed

    Ani-Kibangou, Bertille; Bouhallab, Saïd; Mollé, Daniel; Henry, Gwénaële; Bureau, François; Neuville, Dominique; Arhan, Pierre; Bouglé, Dominique

    2005-07-01

    Hydrolysis of proteins could lessen their inhibiting effect on the poor absorption of cow's milk iron (Fe), which is responsible for the high incidence of Fe deficiency worldwide. When bound to Fe, caseinophosphopeptides (CPP) derived from milk proteins resist luminal digestion, enhance Fe solubility and could improve its bioavailability; brush border enzyme alkaline phosphatase activity could influence iron absorption by releasing free Fe; this study assessed its role in the absorption of CPP-bound Fe. Rat duodenal loops were perfused with Fe gluconate or Fe bound to the CPP of beta casein [beta-CN (1-25)], with or without the addition of an inhibitor of alkaline phosphatase, Na2WO4. The uptake of Fe-beta-CN (1-25) was greater than Fe gluconate. Na2WO4 enhanced the uptake of Fe-beta-CN (1-25) and not of Fe gluconate. So the release of free, insoluble Fe, by alkaline phosphatase seems to be prevented by providing Fe in the Fe-beta-CN (1-25) complex form. Its good disappearance rate makes beta-CN (1-25)-bound Fe a candidate for food fortification. PMID:15992677

  1. Enhanced functional properties of tannic acid after thermal hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal hydrolysis processing of fresh tannic acid was carried out in a closed reactor at four different temperatures (65, 100, 150 and 200°C). Pressures reached in the system were 1.3 and 4.8 MPa at 150 and 200°C, respectively. Hydrolysis products (gallic acid and pyrogallol) were separated and qua...

  2. Class Projects in Physical Organic Chemistry: The Hydrolysis of Aspirin

    ERIC Educational Resources Information Center

    Marrs, Peter S.

    2004-01-01

    An exercise that provides a hands-on demonstration of the hydrolysis of aspirin is presented. The key to understanding the hydrolysis is recognizing that all six process may occur simultaneously and that the observed rate constant is the sum of the rate constants that one rate constant dominates the overall process.

  3. Ultrasound Enhancement of Enzymatic Hydrolysis of Cellulose Plant Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The work reported here is based on acceleration of enzymatic hydrolysis of plant biomass substrate by introduction of low intensity, uniform ultrasound field into a reaction chamber (bio-reactor). This method may serve as improvement of rates in the hydrolysis of cellulosic materials to sugars, whi...

  4. pH-stat vs. free-fall pH techniques in the enzymatic hydrolysis of whey proteins.

    PubMed

    Fernández, Ayoa; Kelly, Phil

    2016-05-15

    Enzymatic hydrolysis of a commercial whey protein isolate (WPI) using either trypsin or Protamex® was compared using controlled (pH-stat) and uncontrolled (free-fall) pH conditions. pH-stat control at the enzyme's optimum value led to a more rapid rate of WPI hydrolysis by trypsin, while the opposite was the case when Protamex® was used. Furthermore, the choice of alkaline solution used to maintain constant pH during pH-stat experiments appeared to affect the reaction rate, being higher when KOH is added to the reaction mixture instead of NaOH. It would appear that potassium may play a role as co-factor or activator for the activity of this particular protease preparation. Although pH-stat techniques are usually considered to yield better hydrolysis kinetics, these findings suggest that the response of proteolytic enzyme preparations to static or free-fall pH control should be checked in advance, particularly when undertaking large scale production of WPI hydrolysates. PMID:26775989

  5. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes...

  6. The effect of varying organosolv pretreatment chemicals on the physicochemical properties and cellulolytic hydrolysis of mountain pine beetle-killed lodgepole pine.

    PubMed

    Del Rio, Luis F; Chandra, Richard P; Saddler, Jack N

    2010-05-01

    Mountain pine beetle-killed lodgepole pine (Pinus contorta) chips were pretreated using the organosolv process, and their ease of subsequent enzymatic hydrolysis was assessed. The effect of varying pretreatment chemicals and solvents on the substrate's physicochemical characteristics was also investigated. The chemicals employed were MgCl2, H2SO4, SO2, and NaOH, and the solvents were ethanol and butanol. It was apparent that the different pretreatments resulted in variations in both the chemical composition of the solid and liquid fractions as well in the extent of cellulolytic hydrolysis (ranging from 21% to 82% hydrolysis after 12 h). Pretreatment under acidic conditions resulted in substrates that were readily hydrolyzed despite the apparent contradiction that pretreatment under alkaline conditions resulted in increased delignification (approximately 7% and 10% residual lignin for alkaline conditions versus 17% to 19% for acidic conditions). Acidic pretreatments also resulted in lower cellulose degree of polymerization, shorter fiber lengths, and increased substrate porosity. The substrates generated when butanol/water mixtures were used as the pretreatment solvent were also hydrolyzed more readily than those generated with ethanol/water. This was likely due to the limited miscibility of the solvents resulting in an increased concentration of pretreatment chemicals in the aqueous layer and thus a higher pretreatment severity. PMID:19820908

  7. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products.

    PubMed

    Oliveira, Fernando M V; Pinheiro, Irapuan O; Souto-Maior, Ana M; Martin, Carlos; Gonçalves, Adilson R; Rocha, George J M

    2013-02-01

    Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatment performed at 200°C. Alkaline treatment of the pretreated materials led to lignin solubilization of 86.7% at 180°C, and only to 81.3% in the material pretreated at 200°C. All pretreatment conditions led to high hydrolysis conversion of cellulose, with the maximum (80.0%) achieved at 200°C. Delignification increase the enzymatic conversion (from 58.8% in the cellulignin to 85.1% in the delignificated pulp) of the material pretreated at 180°C, but for the material pretreated at 190°C, the improvement was less remarkable, while for the pretreated at 200°C the hydrolysis conversion decreased after the alkaline treatment. PMID:23306125

  8. Study of the conversion products of dipin in hydrochloric acid and alkaline media by TLC and mass spectrometry

    SciTech Connect

    Chistyakov, V.V.; Anisimova, O.S.; Sheinker, Yu.N.; Safonova, T.S.

    1986-03-01

    In an investigation of the metabolism of the antitumor preparation dipin(tetraethylenimide of 1,4-diperazinediphosphoric acid) the authors studied its conversion in hydrochloric acid and in alkaline media. The mass spectra of the isolated compounds are given. The chromatographic separation of dipin conversion products is presented. A check on the composition of the solutions was done by mass spectrometry and TLC. Dipin in hydrochloric acid medium is subject to conversion with the formation of products of addition of HCl at the ethylenimine groups with formation of a beta-chloroethylamine group and also of products of hydrolysis at P-N bonds.

  9. Combined pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber.

    PubMed

    Zakaria, Mohd Rafein; Hirata, Satoshi; Hassan, Mohd Ali

    2014-10-01

    Hydrothermal pretreatment of oil palm mesocarp fiber was conducted in tube reactor at treatment severity ranges of log Ro = 3.66-4.83 and partial removal of hemicellulose with migration of lignin was obtained. Concerning maximal recovery of glucose and xylose, 1.5% NaOH was impregnated in the system and subsequent ball milling treatment was employed to improve the conversion yield. The effects of combined hydrothermal and ball milling pretreatments were evaluated by chemical composition changes by using FT-IR, WAXD and morphological alterations by SEM. The successful of pretreatments were assessed by the degree of enzymatic digestibility of treated samples. The highest xylose and glucose yields obtained were 63.2% and 97.3% respectively at cellulase loadings of 10 FPU/g-substrate which is the highest conversion from OPMF ever reported. PMID:25058299

  10. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: differences between autohydrolysis, alkaline and acid pretreatment.

    PubMed

    van der Pol, Edwin; Bakker, Rob; van Zeeland, Alniek; Sanchez Garcia, David; Punt, Arjen; Eggink, Gerrit

    2015-04-01

    Sugarcane bagasse is an interesting feedstock for the biobased economy since a large fraction is polymerized sugars. Autohydrolysis, alkaline and acid pretreatment conditions combined with enzyme hydrolysis were used on lignocellulose rich bagasse to acquire monomeric. By-products found after pretreatment included acetic, glycolic and coumaric acid in concentrations up to 40, 21 and 2.5 g/kg dry weight bagasse respectively. Alkaline pretreated material contained up to 45 g/kg bagasse DW of sodium. Acid and autohydrolysis pretreatment results in a furan formation of 14 g/kg and 25 g/kg DW bagasse respectively. Enzyme monomerization efficiencies of pretreated solid material after 72 h were 81% for acid pretreatment, 77% for autohydrolysis and 57% for alkaline pretreatment. Solid material was washed with superheated water to decrease the amount of by-products. Washing decreased organic acid, phenol and furan concentrations in solid material by at least 60%, without a major sugar loss. PMID:25643957

  11. Synthesis, hydrolysis and stability of psilocin glucuronide.

    PubMed

    Martin, Rafaela; Schürenkamp, Jennifer; Pfeiffer, Heidi; Lehr, Matthias; Köhler, Helga

    2014-04-01

    A two-step synthesis of psilocin glucuronide (PCG), the main metabolite of psilocin, with methyl 2,3,4-tri-O-isobutyryl-1-O-trichloroacetimidoyl-α-d-glucopyranuronate is reported. With the synthesized PCG, hydrolysis conditions in serum and urine were optimized. Escherichia coli proved to be a better enzyme source for β-glucuronidase than Helix pomatia. It was essential to add ascorbic acid to serum samples to protect psilocin during incubation. Furthermore the stability of PCG and psilocin was compared as stability data are the basis for forensic interpretation of measurements. PCG showed a greater long-term stability after six months in deep frozen serum and urine samples than psilocin. The short-term stability of PCG for one week in whole blood at room temperature and in deep frozen samples was also better than that of psilocin. Therefore, PCG can be considered to be more stable than the labile psilocin and should always be included if psilocin is analyzed in samples. PMID:24513688

  12. Enzymatic hydrolysis of biomass from wood.

    PubMed

    Álvarez, Consolación; Reyes-Sosa, Francisco Manuel; Díez, Bruno

    2016-03-01

    Current research and development in cellulosic ethanol production has been focused mainly on agricultural residues and dedicated energy crops such as corn stover and switchgrass; however, woody biomass remains a very important feedstock for ethanol production. The precise composition of hemicellulose in the wood is strongly dependent on the plant species, therefore different types of enzymes are needed based on hemicellulose complexity and type of pretreatment. In general, hardwood species have much lower recalcitrance to enzymes than softwood. For hardwood, xylanases, beta-xylosidases and xyloglucanases are the main hemicellulases involved in degradation of the hemicellulose backbone, while for softwood the effect of mannanases and beta-mannosidases is more relevant. Furthermore, there are different key accessory enzymes involved in removing the hemicellulosic fraction and increasing accessibility of cellulases to the cellulose fibres improving the hydrolysis process. A diversity of enzymatic cocktails has been tested using from low to high densities of biomass (2-20% total solids) and a broad range of results has been obtained. The performance of recently developed commercial cocktails on hardwoods and softwoods will enable a further step for the commercialization of fuel ethanol from wood. PMID:26833542

  13. Effect of corosolic acid on the hydrolysis of disaccharides.

    PubMed

    Takagi, Satoshi; Miura, Toshihiro; Ishibashi, Chinami; Kawata, Takanori; Ishihara, Eriko; Gu, Yeunhwa; Ishida, Torao

    2008-06-01

    The banaba leaf (Lagerstroemia speciosa L.) has been used in traditional Oriental medicine to treat diabetes in the Philippines. It contains corosolic acid (CA), a compound which has a hypoglycemic effect. We examined the effect of CA on blood glucose levels and the hydrolysis of disaccharides in the small intestine in mice. CA (10 mg/kg body weight) improved hyperglycemia after an oral administration of sucrose, and significantly reduced the hydrolysis of sucrose in the small intestine. These results suggest that the hypoglycemic activity of CA is derived, at least in part, due to the inhibition of the hydrolysis of sucrose. PMID:18635916

  14. Hydrolysis and Partial Recycling of a Chloroaluminate Ionic Liquid

    PubMed Central

    Fang, Ming-Hong; Wang, Li-Sheng

    2007-01-01

    Hydrolysis of the ionic liquid Et3NHCl-2AlCl3 and a process for recycling the triethylamine were studied. When the hydrolysis was carried out at a relatively high temperature, the released HCl could be absorbed more easily. With addition of sodium hydroxide to the aqueous hydrolysis solution, a feasible process for recycling triethylamine was developed, involving first distillation of triethylamine, followed by filtration of the aluminium hydroxide. The yield of recovered triethylamine was about 95%. The triethylhydrogenammonium chloride prepared from the recycled triethylamine was of good purity and could be reused to synthesize new chloroaluminate ionic liquids.

  15. Formation of artifactual metabolites of doxylamine following acid hydrolysis.

    PubMed

    Holder, C L; Korfmacher, W A; Rushing, L G; Thompson, H C; Slikker, W; Gosnell, A B

    1987-08-01

    This study describes the use of gas chromatographic-mass spectrometric, high-performance liquid chromatographic and capillary column gas chromatographic separation techniques in demonstrating the production of several artifactual compounds reported in the literature as metabolites of doxylamine. Rhesus monkey urinary extracts which contained doxylamine and doxylamine metabolites were examined with and without acid hydrolysis. The production of 1-phenyl-1-(2-pyridinyl)ethanol and 1-phenyl-1-(2-pyridinyl)ethylene under acid hydrolysis conditions was demonstrated. These artifactual products were shown to originate from the acid hydrolysis of 2-[1-phenyl-1-(2-pyridinyl)ethoxy] acetic acid and not from doxylamine. PMID:3667771

  16. Effects of acid/alkaline pretreatment and gamma-ray irradiation on extracellular polymeric substances from sewage sludge

    NASA Astrophysics Data System (ADS)

    Xie, Shuibo; Wu, Yuqi; Wang, Wentao; Wang, Jingsong; Luo, Zhiping; Li, Shiyou

    2014-04-01

    In order to investigate the mechanism of extracellular polymeric substances (EPS) influencing sludge characteristics, variations of extractable EPS from municipal sewage sludge by acid/alkaline pretreatment and gamma-ray irradiation were studied. The changes in constituents of EPS were analyzed by UV-vis spectra and SEM images. The effects of alkaline pretreatment and gamma-ray irradiation on the functional groups in EPS were investigated by Fourier transform infrared (FTIR) spectrometer. Results showed that the extractable EPS increased clearly with increasing irradiation dose from 0 to 15 kGy. UV-vis spectra indicated that a new absorption band from 240 nm to 300 nm existed in all irradiated samples, apart from acid condition. The results of FTIR spectroscopic analysis indicated that, irradiation influenced major functional groups in EPS, such as protein and polysaccharide, and these effects were clearer under alkaline condition. SEM images provided that after alkaline hydrolysis, gamma-ray irradiation was more effective in resulting in the sludge flocs and cells broken, compared with acid pretreatment (pH 2.50).

  17. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion.

    PubMed

    Ketnawa, Sunantha; Martínez-Alvarez, Oscar; Benjakul, Soottawat; Rawdkuen, Saroat

    2016-02-01

    This work aims to evaluate the ability of different alkaline proteases to prepare active gelatin hydrolysates. Fish skin gelatin was hydrolysed by visceral alkaline-proteases from Giant catfish, commercial trypsin, and Izyme AL®. All antioxidant activity indices of the hydrolysates increased with increasing degree of hydrolysis (P<0.05). The hydrolysates obtained with Izyme AL® and visceral alkaline-proteases showed the highest and lowest radical scavenging capacity, while prepared with commercial trypsin was the most effective in reducing ferric ions and showed the best metal chelating properties. The hydrolysate obtained with Izyme AL® showed the lowest iron reducing ability, but provided the highest average molecular weight (⩾ 7 kDa), followed by commercial trypsin (2.2 kDa) and visceral alkaline-proteases (1.75 kDa). After in vitro gastrointestinal digestion, the hydrolysates showed significant higher radical scavenging, reducing ferric ions and chelating activities. Gelatin hydrolysates, from fish skin, could serve as a potential source of functional food ingredients for health promotion. PMID:26304317

  18. Degradation of halogenated carbons in alkaline alcohol

    NASA Astrophysics Data System (ADS)

    Nakagawa, Seiko; Shimokawa, Toshinari

    2002-02-01

    1,1,2-Trichloro-trifluoroethane, 1,2-dibromo-tetrafluoroethane, 2,3,4,6-tetrachlorophenol, 1,2,4-trichlorobenzene, and 2,4,6-trichloroanisole were dissolved in alkaline isopropyl alcohol and irradiated with 60Co gamma rays after purged with pure nitrogen gas. The concentration of the hydroxide ions and the parent molecules decreased with the dose, while that of the halide ions and the organic products, with less halogen atoms than the parent, increased. Chain degradation will occur in alkaline isopropyl alcohol.

  19. Alkaline Capacitors Based on Nitride Nanoparticles

    NASA Technical Reports Server (NTRS)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  20. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  1. Experimental survey of rechargeable alkaline zinc electrodes

    NASA Astrophysics Data System (ADS)

    Binder, L.; Odar, W.

    1984-09-01

    Rechargeable alkaline zinc-air cells and zinc-manganese dioxide cells need zinc electrodes working for at least 100 cycles under anode limiting conditions. The discharge of the manganese dioxide cathode especially must be limited to a definite fraction (1/3) of its available capacity to obtain a good cycle life. This study proposes a new test cell for investigations on pasted alkaline zinc powder electrodes. When, following experimentation, the value of the construction was established, a series of different electrode mixtures was cycled. It was found that 100 full discharges could be obtained with a zinc utilization of about 30 percent in the final cycles.

  2. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis. [quantitative structure-activity relationship, complete neglect of differential overlap

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of cationic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR-primeP(O)X, where R and R-prime are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrolysis rate constant.

  3. Stability of a Lipase Extracted from Seeds of Pachira aquatica in Commercial Detergents and Application Tests in Poultry Wastewater Pretreatment and Fat Particle Hydrolysis.

    PubMed

    Polizelli, Patrcia Peres; Facchini, Fernanda Dell Antonio; Bonilla-Rodriguez, Gustavo Orlando

    2013-01-01

    A protein extract containing a plant lipase from oleaginous seeds of Pachira aquatica was tested using soybean oil, wastewater from a poultry processing plant, and beef fat particles as substrate. The hydrolysis experiments were carried out at a temperature of 40C, an incubation time of 90 minutes, and pH 8.0-9.0. The enzyme had the best stability at pH 9.0 and showed good stability in the alkaline range. It was found that P. aquatica lipase was stable in the presence of some commercial laundry detergent formulations, and it retained full activity up to 0.35% in hydrogen peroxide, despite losing activity at higher concentrations. Concerning wastewater, the lipase increased free fatty acids release by 7.4 times and promoted the hydrolysis of approximately 10% of the fats, suggesting that it could be included in a pretreatment stage, especially for vegetable oil degradation. PMID:24455209

  4. Stability of a Lipase Extracted from Seeds of Pachira aquatica in Commercial Detergents and Application Tests in Poultry Wastewater Pretreatment and Fat Particle Hydrolysis

    PubMed Central

    Polizelli, Patrícia Peres; Facchini, Fernanda Dell Antonio

    2013-01-01

    A protein extract containing a plant lipase from oleaginous seeds of Pachira aquatica was tested using soybean oil, wastewater from a poultry processing plant, and beef fat particles as substrate. The hydrolysis experiments were carried out at a temperature of 40°C, an incubation time of 90 minutes, and pH 8.0-9.0. The enzyme had the best stability at pH 9.0 and showed good stability in the alkaline range. It was found that P. aquatica lipase was stable in the presence of some commercial laundry detergent formulations, and it retained full activity up to 0.35% in hydrogen peroxide, despite losing activity at higher concentrations. Concerning wastewater, the lipase increased free fatty acids release by 7.4 times and promoted the hydrolysis of approximately 10% of the fats, suggesting that it could be included in a pretreatment stage, especially for vegetable oil degradation. PMID:24455209

  5. Hydrolysis of fMet-tRNA by Peptidyl Transferase

    PubMed Central

    Caskey, C. T.; Beaudet, A. L.; Scolnick, E. M.; Rosman, M.

    1971-01-01

    Escherichia coli and rabbit reticulocyte (f[3H]Met-tRNA·AUG·ribosome) intermediates undergo hydrolysis, with release of f[3H]methionine, upon addition of tRNA or CpCpA in the presence of acetone. This ribosomal catalyzed reaction has similar requirements, pH optimum, and antibiotic sensitivity to those of peptidyl transferase. Two antibiotics, lincomycin with E. coli ribosomes and anisomycin with reticulocyte ribosomes, inhibit peptide-bond formation and transesterification activities of peptidyl transferase, but stimulate hydrolysis of f[3H]Met-tRNA. Earlier studies have suggested peptidyl transferase activity is essential for R factor-dependent hydrolysis of f(3H)Met-tRNA. These studies indicate that peptidyl transferase has the capacity for f(3H)Met-tRNA hydrolysis and, therefore, may be responsible for peptidyl-tRNA cleavage during peptide chain termination. PMID:4943558

  6. Hydrolysis of Al3+ from constrained molecular dynamics.

    PubMed

    Ikeda, Takashi; Hirata, Masaru; Kimura, Takaumi

    2006-02-21

    We investigated the hydrolysis reactions of Al(3+) in AlCl(3) aqueous solution using the constrained molecular dynamics based on the Car-Parrinello molecular-dynamics method. By employing the proton-aluminum coordination number as a reaction coordinate in the constrained molecular dynamics the deprotonation as well as dehydration processes are successfully realized. From our free-energy difference of DeltaG(0) approximately 8.0 kcal mol(-1) the hydrolysis constant pK(a1) is roughly estimated as 5.8, comparable to the literature value of 5.07. We show that the free-energy difference for the hydrolysis of Al(3+) in acidic conditions is at least 4 kcal mol(-1) higher than that in neutral condition, indicating that the hydrolysis reaction is inhibited by the presence of excess protons located around the hydrated ion, in agreement with the change of the predominant species by pH. PMID:16497053

  7. Enzymatic hydrolysis of steryl glycosides for their analysis in foods.

    PubMed

    Münger, Linda H; Nyström, Laura

    2014-11-15

    Steryl glycosides (SG) contribute significantly to the total intake of phytosterols. The standard analytical procedure involving acid hydrolysis fails to reflect the correct sterol profile of SG due to isomerization of some of the labile sterols. Therefore, various glycosylases were evaluated for their ability to hydrolyse SG under milder conditions. Using a pure SG mixture in aqueous solution, the highest glycolytic activity, as demonstrated by the decrease in SG and increase in free sterols was achieved using inulinase preparations (decrease of >95%). High glycolytic activity was also demonstrated using hemicellulase (63%). The applicability of enzymatic hydrolysis using inulinase preparations was further verified on SG extracted from foods. For example in potato peel Δ(5)-avenasteryl glucoside, a labile SG, was well preserved and contributed 26.9% of the total SG. Therefore, enzymatic hydrolysis is suitable for replacing acid hydrolysis of SG in food lipid extracts to accurately determine the sterol profile of SG. PMID:24912717

  8. Optimization of enzymatic hydrolysis of cassava to obtain fermentable sugars*

    PubMed Central

    Collares, Renata M.; Miklasevicius, Luiza V. S.; Bassaco, Mariana M.; Salau, Nina P. G.; Mazutti, Marcio A.; Bisognin, Dilson A.; Terra, Lisiane M.

    2012-01-01

    This work evaluates the enzymatic hydrolysis of starch from cassava using pectinase, ?-amylase, and amyloglucosidase. A central composite rotational design (CCRD) was carried out to evaluate the effects of amyloglucosidase, pectinase, reaction time, and solid to liquid ratio. All the experiments were carried out in a bioreactor with working volume of 2 L. Approximately 98% efficiency hydrolysis was obtained, resulting in a concentration of total reducing sugar released of 160 g/L. It was concluded that pectinase improved the hydrolysis of starch from cassava. Reaction time was found to be significant until 7 h of reaction. A solid to liquid ratio of 1.0 was considered suitable for hydrolysis of starch from cassava. Amyloglucosidase was a significant variable in the process: after its addition to the reaction media, a 30%50% increase in the amount of total reducing sugar released was observed. At optimal conditions the maximum productivity obtained was 22.9 g/(Lh). PMID:22761249

  9. Responsive behavior of regenerated cellulose in hydrolysis under microwave radiation.

    PubMed

    Ni, Jinping; Na, Haining; She, Zhen; Wang, Jinggang; Xue, Wenwen; Zhu, Jin

    2014-09-01

    This work studied the responsive behavior of regenerated cellulose (RC) in hydrolysis under microwave radiation. Four types of RC with different crystallinity (Cr) and degree of polymerization (DP) are produced to evaluate the reactivity of RC by step-by-step hydrolysis. Results show Cr is the key factor to affect the reactivity of RCs. With hydrolysis of amorphous region and the formation of recrystallization, the Cr of RC reaches a high value and thus weakens the reactivity. As a result, the increment of cellulose conversion and sugar yield gradually reduces. Decrease of the DP of RC is helpful to increase the speed at the onset of hydrolysis and produce high sugar yield. But, there is no direct influence with the reactivity of RC to prolong the time of pretreatment. This research provides an accurate understanding to guide the RC preparation for sugar formation with relative high efficiency under mild reaction conditions. PMID:24971946

  10. Kinetics of the hydrolysis of guanosine 5'-phospho-2-methylimidazolide

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1986-01-01

    The hydrolysis kinetics of guanosine 5'-phospho-2-methylimidazolide (2-MeImpG) in aqueous buffered solutions of various pH's was studied at 75 and 37 C, using spectrophotometric and HPLC techniques. The hydrolysis was found to be very slow even at low pH. At 75 C and pH at or below l.0, two kinetic processes were observed: the more rapid one was attributed to the hydrolysis of the phosphoimidazolide P-N bond; the second, much slower one, was attributed to the cleavage of the glycosidic bond. It is noted that the P-N hydrolysis in phosphoimidazolides is very slow compared to other phosphoramidates, and that this might be one of the reasons why the phosphoimidazolides showed an extraordinary ability to form long oligomers under template-directed conditions.

  11. A General Approach for Teaching Hydrolysis of Salts.

    ERIC Educational Resources Information Center

    Aguirre-Ode, Fernando

    1987-01-01

    Presented is a general approach and equation for teaching the hydrolysis of salts. This general equation covers many more sets of conditions than those currently in textbooks. The simplifying assumptions leading to the known limiting equations are straightforward. (RH)

  12. Energetic approach of biomass hydrolysis in supercritical water.

    PubMed

    Cantero, Danilo A; Vaquerizo, Luis; Mato, Fidel; Bermejo, M Dolores; Cocero, M José

    2015-03-01

    Cellulose hydrolysis can be performed in supercritical water with a high selectivity of soluble sugars. The process produces high-pressure steam that can be integrated, from an energy point of view, with the whole biomass treating process. This work investigates the integration of biomass hydrolysis reactors with commercial combined heat and power (CHP) schemes, with special attention to reactor outlet streams. The innovation developed in this work allows adequate energy integration possibilities for heating and compression by using high temperature of the flue gases and direct shaft work from the turbine. The integration of biomass hydrolysis with a CHP process allows the selective conversion of biomass into sugars with low heat requirements. Integrating these two processes, the CHP scheme yield is enhanced around 10% by injecting water in the gas turbine. Furthermore, the hydrolysis reactor can be held at 400°C and 23 MPa using only the gas turbine outlet streams. PMID:25536511

  13. Celluclast and Cellic® CTec2: Saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing.

    PubMed

    Rodrigues, Ana Cristina; Haven, Mai Østergaard; Lindedam, Jane; Felby, Claus; Gama, Miguel

    2015-11-01

    The hydrolysis/fermentation of wheat straw and the adsorption/desorption/deactivation of cellulases were studied using Cellic(®) CTec2 (Cellic) and Celluclast mixed with Novozyme 188. The distribution of enzymes - cellobiohydrolase I (Cel7A), endoglucanase I (Cel7B) and β-glucosidase - of the two formulations between the residual substrate and supernatant during the course of enzymatic hydrolysis and fermentation was investigated. The potential of recyclability using alkaline wash was also studied. The efficiency of hydrolysis with an enzyme load of 10 FPU/g cellulose reached >98% using Cellic(®) CTec2, while for Celluclast a conversion of 52% and 81%, was observed without and with β-glucosidase supplementation, respectively. The decrease of Cellic(®) CTec2 activity observed along the process was related to deactivation of Cel7A rather than of Cel7B and β-glucosidase. The adsorption/desorption profiles during hydrolysis/fermentation revealed that a large fraction of active enzymes remained adsorbed to the solid residue throughout the process. Surprisingly, this was the case of Cel7A and β-glucosidase from Cellic, which remained adsorbed to the solid fraction along the entire process. Alkaline washing was used to recover the enzymes from the solid residue. This method allowed efficient recovery of Celluclast enzymes; however, this may be achieved only when minor amounts of cellulose remain present. Regarding the Cellic formulation, neither the presence of cellulose nor lignin restricted an efficient desorption of the enzymes at alkaline pH. This work shows that the recycling strategy must be customized for each particular formulation, since the enzymes found e.g. in Cellic and Celluclast bear quite different behaviour regarding the solid-liquid distribution, stability and cellulose and lignin affinity. PMID:26320717

  14. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  15. Effects of Alkaline Phosphatase Activity on Nucleotide Measurements in Aquatic Microbial Communities †

    PubMed Central

    Karl, D. M.; Craven, D. B.

    1980-01-01

    Alkaline phosphatase (APase) activity was detected in aquatic microbial assemblages from the subtropics to Antarctica. The occurrence of APase in environmental nucleotide extracts was shown to significantly affect the measured concentrations of cellular nucleotides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, guanosine triphosphate, uridine triphosphate, and cytidine triphosphate), adenylate energy charge, and guanosine triphosphate/adenosine triphosphate ratios, when conventional methods of nucleotide extraction were employed. Under the reaction conditions specified in this report, the initial rate of hydrolysis of adenosine triphosphate was directly proportional to the activity of APase in the sample extracts and consequently can be used as a sensitive measure of APase activity. A method was devised for obtaining reliable nucleotide measurements in naturally occurring microbial populations containing elevated levels of APase activity. The metabolic significance of APase activity in microbial cells is discussed, and it is concluded that the occurrence and regulation of APase in nature is dependent upon microscale inorganic phosphate limitation of the autochthonous microbial communities. PMID:16345634

  16. In vitro stability and metabolism of O2', O3', O5'-tri-acetyl-N6-(3-hydroxylaniline) adenosine in rat, dog and human plasma: chemical hydrolysis and role of plasma esterases.

    PubMed

    Liu, Yin; He, Jiuming; Abliz, Zeper; Zhu, Haibo

    2011-07-01

    O2', O3', O5'-tri-acetyl-N(6)-(3-hydroxylaniline)adenosine (WS070117), a new structure-type lipid regulator, is being developed in pre-clinical study. In order to monitor drug kinetics it is essential to understand pre-analytical factors that may affect drug assay. In vitro stability and metabolism were investigated using high-performance liquid chromatography (HPLC) method in this study. The hydrolysis products were identified by HPLC-mass spectrometry (MS)/MS method. The esterases involved in WS070117 hydrolysis was assigned via inhibition rate assay. It was found that WS070117 was chemically unstable in alkaline solutions compared to acidic and near neutral solutions. Enzymatic hydrolysis was even more rapid. Hydrolytic rate constants differ between species, being 4.24, 5.96 × 10(-3) and 6.85 × 10(-2) min(-1) in rat, dog and human plasma at 37°C, respectively. The hydrolysis was catalyzed by plasma esterase because NaF (sodium fluoride: a general esterase inhibitor) inhibited WS070117 hydrolysis and metabolite production. Hydrolysis was fast in rat plasma and was catalysed by carboxylesterase and butyrylcholinesterase. In dog plasma, carboxylesterase, butyrylcholinesterase and paraoxonase were mainly responsible. Butyrylcholinesterase was the major esterase involved in WS070117 hydrolysis in human plasma. The WS070117 hydrolysis in plasma proceeded by gradual loss of acetyl groups. The knowledge of in vitro drug stability and metabolic pathways identified in this study will be essential for future pre-clinical and clinical pharmacokinetics studies. PMID:21486191

  17. Furfural/ethanol coproduction from biomass feedstocks using acid hydrolysis

    SciTech Connect

    Barrier, J.W.; Bulls, M.M.; Broder, J.D.

    1996-12-31

    The Tennessee Valley Authority (TVA) has been involved in research and development to produce high-value chemicals from biomass for over 15 years. Use of biomass releases less carbon dioxide than use of fossil fuels, and thus represents a more environmentally friendly source of chemicals and fuels. Two biomass conversion processes have been developed as a result of TVA`s work--concentrated acid hydrolysis and dilute acid hydrolysis. Both processes use sulfuric acid as a catalyst. Early hydrolysis research focused on improving ethanol yields through hydrolysis and five-carbon sugar fermentation research. Both processes have been demonstrated at the pilot plant scale. Current work is focused on the development of integrated systems for producing ethanol and a variety of other chemicals and products from biomass. Production of furfural and ethanol from high hemicellulose feedstocks has been identified by TVA as an integrated system with technical and economic potential for commercial success. A system design has been developed to produce ethanol and furfural using dilute acid hydrolysis of sycamore. Furfural yields for the system are estimated at 180--240 pound/ton. Ethanol process yields are 25--38 gallon/ton. Capital and operating costs for a 4,500 ton/day facility are estimated to be $609 million and $183 million, respectively. The dilute acid hydrolysis process proposed by TVA will be described along with additional process economics and potential furfural markets.

  18. Site- and species-specific hydrolysis rates of heroin.

    PubMed

    Szöcs, Levente; Orgován, Gábor; Tóth, Gergő; Kraszni, Márta; Gergó, Lajos; Hosztafi, Sándor; Noszál, Béla

    2016-06-30

    The hydroxide-catalyzed non-enzymatic, simultaneous and consecutive hydrolyses of diacetylmorphine (DAM, heroin) are quantified in terms of 10 site- and species-specific rate constants in connection with also 10 site- and species-specific acid-base equilibrium constants, comprising all the 12 coexisting species in solution. This characterization involves the major and minor decomposition pathways via 6-acetylmorphine and 3-acetylmorphine, respectively, and morphine, the final product. Hydrolysis has been found to be 18-120 times faster at site 3 than at site 6, depending on the status of the amino group and the rest of the molecule. Nitrogen protonation accelerates the hydrolysis 5-6 times at site 3 and slightly less at site 6. Hydrolysis rate constants are interpreted in terms of intramolecular inductive effects and the concomitant local electron densities. Hydrolysis fraction, a new physico-chemical parameter is introduced and determined to quantify the contribution of the individual microspecies to the overall hydrolysis. Hydrolysis fractions are depicted as a function of pH. PMID:27130543

  19. Development of complete hydrolysis of pectins from apple pomace.

    PubMed

    Wikiera, Agnieszka; Mika, Magdalena; Starzyńska-Janiszewska, Anna; Stodolak, Bożena

    2015-04-01

    Enzymatically extracted pectins have a more complex structure than those obtained by conventional methods. As a result, they are less susceptible to hydrolysis, which makes the precise determination of their composition difficult. The aim of the study was to develop a method of complete hydrolysis of enzymatically extracted apple pectins. Substrates were pectins isolated from apple pomace by the use of xylanase and multicatalytic preparation Celluclast and apple pomace. Hydrolysis was performed by a chemical method with 2M TFA at 100 °C and 120 °C and a combined acidic/enzymatic method. After hydrolysis, the contents of galacturonic acid and neutral sugars were measured by HPLC. Complete hydrolysis of polygalacturonic acid occurred after 2.5h incubation with 2M TFA at 120 °C. The efficient hydrolysis of neutral sugars in pectins was performed with 2M TFA at 100 °C for 2.5h. Monomers most susceptible to concentrated acid were rhamnose, mannose and arabinose. PMID:25442606

  20. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis.

    PubMed

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K; Dean, Dennis R; Hoffman, Brian M; Antony, Edwin; Seefeldt, Lance C

    2013-10-01

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s(-1), 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s(-1), 25 °C), (ii) ATP hydrolysis (kATP = 70 s(-1), 25 °C), (iii) Phosphate release (kPi = 16 s(-1), 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s(-1), 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein-protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Fe(ox)(ADP)2 protein and the reduced MoFe protein. PMID:24062462

  1. DNA Catalysis of a Normally Disfavored RNA Hydrolysis Reaction

    PubMed Central

    Parker, Darren J.; Xiao, Ying; Aguilar, John M.; Silverman, Scott K.

    2013-01-01

    We recently used in vitro selection to identify many deoxyribozymes that catalyze DNA phosphodiester bond hydrolysis and create 5′-phosphate and 3′-hydroxyl termini. Alternatively, numerous deoxyribozymes have been identified for catalysis of RNA cleavage by 2′-hydroxyl transesterification, forming 2′,3′-cyclic phosphate and 5′-hydroxyl termini. In this study, we investigated the ability of DNA to catalyze RNA cleavage by hydrolysis rather than transesterification, although normally the hydrolysis reaction is substantially disfavored relative to transesterification. Via a series of in vitro selection experiments, we found that reselection of a DNA-hydrolyzing deoxyribozyme leads either to transesterification or hydrolysis, depending on exclusion or inclusion of a stringent selection pressure for hydrolysis. An entirely new selection starting from a random DNA pool, using an all-RNA substrate and imposing the same selection pressure, also leads to RNA hydrolysis. Collectively, these results establish experimentally that small DNA sequences have the catalytic ability to direct a chemical reaction down a disfavored pathway, even when a more favorable mechanism is readily available. Our view of DNA catalysis is therefore expanded beyond merely increasing the rates of reactions that would have occurred more slowly without the catalyst. PMID:23697866

  2. Hydrolysis of ammonia borane and metal amidoboranes: A comparative study.

    PubMed

    Banu, Tahamida; Debnath, Tanay; Ash, Tamalika; Das, Abhijit K

    2015-11-21

    A gas phase mechanistic investigation has been carried out theoretically to explore the hydrolysis pathway of ammonia borane (NH3BH3) and metal amidoboranes (MNH2BH3, M = Li,Na). The Solvation Model based on Density (SMD) has been employed to show the effect of bulk water on the reaction mechanism. Gibbs free energy of solvation has also been computed to evaluate the stabilization of the participating systems in water medium which directly affects the barrier heights in the potential energy surface of hydrolysis reaction. To validate the experimentally observed kinetics studies, we have carried out transition state theory calculations on these hydrolysis reactions. Our result shows that the hydrolysis of both the metal amidoboranes exhibits greatly improved kinetics over the neat NH3BH3 hydrolysis which corroborates well with the experimental observation. Between the two amidoboranes, hydrolysis of LiNH2BH3 is found to be kinetically favored over that of NaNH2BH3, making it a better candidate for releasing molecular hydrogen. PMID:26590535

  3. Hydrolysis of ammonia borane and metal amidoboranes: A comparative study

    NASA Astrophysics Data System (ADS)

    Banu, Tahamida; Debnath, Tanay; Ash, Tamalika; Das, Abhijit K.

    2015-11-01

    A gas phase mechanistic investigation has been carried out theoretically to explore the hydrolysis pathway of ammonia borane (NH3BH3) and metal amidoboranes (MNH2BH3, M = Li,Na). The Solvation Model based on Density (SMD) has been employed to show the effect of bulk water on the reaction mechanism. Gibbs free energy of solvation has also been computed to evaluate the stabilization of the participating systems in water medium which directly affects the barrier heights in the potential energy surface of hydrolysis reaction. To validate the experimentally observed kinetics studies, we have carried out transition state theory calculations on these hydrolysis reactions. Our result shows that the hydrolysis of both the metal amidoboranes exhibits greatly improved kinetics over the neat NH3BH3 hydrolysis which corroborates well with the experimental observation. Between the two amidoboranes, hydrolysis of LiNH2BH3 is found to be kinetically favored over that of NaNH2BH3, making it a better candidate for releasing molecular hydrogen.

  4. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  5. ISSUES WITH ALKALINE TREATMENT OF SLUDGE

    EPA Science Inventory

    This presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA arrive at i...

  6. Alkaline electrochemical cells and method of making

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  7. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  8. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    PubMed

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management. PMID:27136151

  9. Enzymatic Hydrolysis of Pretreated Sugarcane Straw: Kinetic Study and Semi-Mechanistic Modeling.

    PubMed

    Pratto, Bruna; de Souza, Renata Beraldo Alencar; Sousa, Ruy; da Cruz, Antonio Jose Gonçalves

    2016-04-01

    Although there are already commercial-scale productions of second generation (2G) ethanol, focusing efforts on process optimization can be of key importance to make the production cost-effective in large scale. In this scenario, mathematical models may be useful in design, scale-up, optimization, and control of bioreactors. For this reason, the aim of this work was to study the kinetics of the enzymatic hydrolysis of cellulose from sugarcane straw. Experiments using hydrothermally pretreated sugarcane (HPS) straw (195 °C, 10 min, 200 rpm) with and without alkaline delignification (4 % NaOH m/v, 30 min, 121 °C) were carried out in shake flasks (50 °C, pH 5.0, 200 rpm). Solid load was varied in a range of 0.8 to 10 % (m/v), in initial velocity and long-term assays. Enzyme concentration (Cellic®CTec2) was varied from 5 to 80 filter paper unit (FPU) gcellulose (-1). It was possible to fit Michaelis-Menten (MM), modified MM, with and without competitive inhibition by glucose, and Chrastil models. Chrastil model and modified MM with inhibition (both suitable for heterogeneous system, with high resistance to internal diffusion) showed more appropriate than pseudo-homogeneous MM model. The fitted models were able to identify key features of the hydrolysis process and can be very useful within the perspective of bioreactors engineering. PMID:26701144

  10. Hydrolysis of carbaryl by carbonate impurities in reference clay SWy-2.

    PubMed

    Arroyo, L Jacqueline; Li, Hui; Teppen, Brian J; Johnston, Cliff T; Boyd, Stephen A

    2004-12-29

    The influence of clay preparation methods on the sorption and hydrolysis of carbaryl (1-naphthyl, N-methyl carbamate) by K+-saturated reference smectite SWy-2 was studied. Four methods were utilized: (1) The reference (or specimen) clay used as received was K+-saturated (hereafter referred to as whole clay). (2) High-speed centrifugation (3295g) of whole clay resulted in a pellet with three discrete bands. The upper, light-colored, low-density band was obtained by manual separation (light fraction). The high-density, dark-colored material comprising the lower band (heavy fraction) was also obtained manually. (3) SWy-2 was subjected to overnight gravity sedimentation to obtain the <2 microm particles (clay-sed.) and then K+-saturated. (4) SWy-2 was subjected to low-speed centrifugation (58-60g) to separate the <2 microm particle size (clay-cent.) and then K+-saturated. Each preparation of mineral fractions manifested significantly different abilities to hydrolyze carbaryl to 1-naphthol, decreasing in the order whole clay > heavy fraction > clay-sed. > light clay > clay-cent. The extent of 1-naphthol disappearance from solution, accompanied by a progressive darkening of the clay, followed the order whole clay > heavy fraction > light clay > clay-sed. > clay-cent. Using ring labeled [14C]carbaryl, approximately 61 and 15% of the total 14C activity added to the whole clay and light fraction, respectively, remained unextractable. X-ray diffraction of the heavy fraction revealed several peaks corresponding to minor impurities, including calcite and dolomite. Aqueous slurries of whole clay, light fraction, clay-sed., and heavy fraction were alkaline, whereas the pH of slurried clay-cent. was neutral. It was concluded that dissolution of inorganic carbonate impurities in SWy-2 caused alkaline conditions in the slurries leading to the hydrolysis of carbaryl. Dissolution of carbonates with sodium acetate buffer eliminated hydrolytic activity associated with SWy-2. None of the four preparation methods reliably removed inorganic carbonates. The use of commercial or reference smectites in surface chemistry studies should be accompanied by a treatment with acetate buffer to remove carbonate impurities. PMID:15612797

  11. Recent Alkaline Lakes: Clues to Understanding the Evolution of Early Planetary Alkaline Oceans and Biogenesis

    NASA Astrophysics Data System (ADS)

    Kempe, S.; Hartmann, J.; Kazmierczak, J.

    2008-09-01

    Abstract New models suggest that terrestrial weathering consumes 0.26GtC/a (72% silicate-, 28% carbonateweathering), equivalent to a loss of one atmospheric C content every 3700a. Rapid weathering leads in volcanic areas to alkaline conditions, illustrated by the crater lake of Niuafo`ou/Tonga and Lake Van/Turkey, the largest soda lake on Earth. Alkaline conditions cause high CaCO3 supersaturation, permineralization of algal mats and growth of stromatolites. Alkaline conditions can nearly depress free [Ca2+] to levels necessary for proteins to function. Therefore early oceans on Earth (and possibly on Mars) should have been alkaline (i.e. "Soda Oceans"). Recent findings of MgSO4 in top soils on Mars may be misleading about the early history of martian oceans.

  12. Solvation and glass transition in supercooled organic solutions of alkaline perchlorate and alkaline tetrafluoroborate

    NASA Astrophysics Data System (ADS)

    Takeda, K.; Kubochi, I.; Fukunaka, Y.; Kinoshita, N.; Terashima, Y.; Honda, M.

    2013-02-01

    Raman and DSC measurements for binary solutions of polyhydric alcohols and polyamines mixed with alkaline perchlorates and alkaline tetrafluoroborates are presented as a function of temperature and salt concentration. In these systems, the glass transition temperature increases with salt concentration, whereas highly concentrated systems showed an inflection anomaly. This glass transition anomaly is discussed in relation to the solvation of ions surrounded by organic solvents. The solvation structure is interpreted on the basis of the thermal excitation of the hydroxyl and amino groups.

  13. Hydrolysis and fractionation of lignocellulosic biomass

    DOEpatents

    Torget, Robert W.; Padukone, Nandan; Hatzis, Christos; Wyman, Charles E.

    2000-01-01

    A multi-function process is described for the hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components such as extractives and proteins; a portion of the solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising one or more of the following: optionally, as function 1, introducing a dilute acid of pH 1.0-5.0 into a continual shrinking bed reactor containing a lignocellulosic biomass material at a temperature of about 94 to about 160.degree. C. for a period of about 10 to about 120 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of extractives, lignin, and protein by keeping the solid to liquid ratio constant throughout the solubilization process; as function 2, introducing a dilute acid of pH 1.0-5.0, either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing either fresh biomass or the partially fractionated lignocellulosic biomass material from function 1 at a temperature of about 94-220.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of hemicellulosic sugars, semisoluble sugars and other compounds, and amorphous glucans by keeping the solid to liquid ratio constant throughout the solubilization process; as function 3, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 2 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process; and as function 4, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 3 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process.

  14. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis.

    PubMed

    Ometto, Francesco; Quiroga, Gerardo; Pšenička, Pavel; Whitton, Rachel; Jefferson, Bruce; Villa, Raffaella

    2014-11-15

    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatments on three microalgae species, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. The analysis of the composition of the soluble COD released and of the TEM images of the cells showed two main degradation actions associated with the processes: (1) cell wall damage with the release of intracellular AOM (thermal, thermal hydrolysis and ultrasound) and (2) degradation of the cell wall constituents with the release of intracellular AOM and the solubilisation of the cell wall biopolymers (enzymatic hydrolysis). As a result of this, enzymatic hydrolysis showed the greatest biogas yield increments (>270%) followed by thermal hydrolysis (60-100%) and ultrasounds (30-60%). PMID:25150520

  15. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am - the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting ...

  16. LC method for determination of prasugrel and mass spectrometry detection for thermal and alkaline degradation products.

    PubMed

    Rigobello, C; Barden, A T; Steppe, M

    2015-08-01

    A stability-indicating RP-LC method for the determination of prasugrel in tablets was developed and validated. Stress testing of prasugrel was carried out in accordance with ICH guidelines, where the drug was submitted to acidic and basic hydrolysis, oxidative, thermal and photolytic conditions. Prasugrel was unstable under all the conditions and the degradations products were analyzed by HPLC-UV. Furthermore, two main degradation products found under alkaline and thermal conditions were investigated by LC-MS. Based on the fragmentation patterns, two products resulted from hydrolysis of the acetate ester moiety of prasugrel were observed. Due the chemical equilibrium, tautomerism occurs between the ketone and alcohol functions justifying the similar molecular weight and fragment pattern obtained in degradation products analysis. Successful separation was achieved on a RP-18 octadecyl silane column using acetonitrile and triethylamine 0.5% mixture (50:50, v/v) as the mobile phase at 25 degrees C. The flow rate was 1.0 mL/min and the detector wavelength was 263 nm. The method proposed in this work was successfully applied to quality control of prasugrel and contribute to stability assessment of pharmaceutical products containing this drug. PMID:26380520

  17. Identification of Carboxylesterase-Dependent Dabigatran Etexilate Hydrolysis

    PubMed Central

    Parker, Robert B.; Herring, Vanessa L.; Hu, Zhe-Yi

    2014-01-01

    Dabigatran etexilate (DABE) is an oral prodrug that is rapidly converted to the active thrombin inhibitor, dabigatran (DAB), by serine esterases. The aims of the present study were to investigate the in vitro kinetics and pathway of DABE hydrolysis by human carboxylesterase enzymes, and the effect of alcohol on these transformations. The kinetics of DABE hydrolysis in two human recombinant carboxylesterase enzymes (CES1 and CES2) and in human intestinal microsomes and human liver S9 fractions were determined. The effects of alcohol (a known CES1 inhibitor) on the formation of DABE metabolites in carboxylesterase enzymes and human liver S9 fractions were also examined. The inhibitory effect of bis(4-nitrophenyl) phosphate on the carboxylesterase-mediated metabolism of DABE and the effect of alcohol on the hydrolysis of a classic carboxylesterase substrate (cocaine) were studied to validate the in vitro model. The ethyl ester of DABE was hydrolyzed exclusively by CES1 to M1 (Km 24.9 ± 2.9 μM, Vmax 676 ± 26 pmol/min per milligram protein) and the carbamate ester of DABE was exclusively hydrolyzed by CES2 to M2 (Km 5.5 ± 0.8 μM; Vmax 71.1 ± 2.4 pmol/min per milligram protein). Sequential hydrolysis of DABE in human intestinal microsomes followed by hydrolysis in human liver S9 fractions resulted in complete conversion to DAB. These results suggest that after oral administration of DABE to humans, DABE is hydrolyzed by intestinal CES2 to the intermediate M2 metabolite followed by hydrolysis of M2 to DAB in the liver by CES1. Carboxylesterase-mediated hydrolysis of DABE was not inhibited by alcohol. PMID:24212379

  18. Hydrolysis of cisplatin--a first-principles metadynamics study.

    PubMed

    Lau, Justin Kai-Chi; Ensing, Bernd

    2010-09-21

    Cisplatin, or cis-[Pt(NH(3))(2)Cl(2)], was the first member of a new revolutionary class of anticancer drugs that is still used today for the treatment of a wide variety of cancers. The mode of action of cisplatin starts inside the cell with the hydrolysis of Pt-Cl bonds to form a Pt-aqua complex. The solvent environment plays an essential role in many biochemical processes in general, and is expected to have a particular strong effect on the activation (hydrolysis) of cisplatin and cisplatin derivatives. To investigate these solvent effects, we have studied the explicit solvent structures during cisplatin hydrolysis by means of Car-Parrinello molecular dynamics simulations. Since hydrolysis is an activated process, and thus a rare event on the simulation timescale, we have applied the metadynamics sampling technique to map out the free energy landscape from which the reaction mechanism and activation free energy are obtained. Our simulations show that hydrogen bonding between solvent water molecules and metal complexes in the hydrolyzed product systems is stronger than that in the reactant cisplatin system. In addition, the free energy profiles from our metadynamics simulations for the cisplatin hydrolysis shows that the second hydrolysis of cisplatin is thermodynamically favourable, which is in good agreement with experimental results and previous static density functional theory calculations. The reactant channels for both hydrolysis steps are rather wide and flat, indicative of a continuous spectrum of allowed mechanisms with no strong preference for either concerted dissociative or concerted associative pathways. Three or five coordinated metastable intermediates do not exist in aqueous solution. PMID:20582358

  19. High volume hydrogen production from the hydrolysis of sodium borohydride using a cobalt catalyst supported on a honeycomb matrix

    NASA Astrophysics Data System (ADS)

    Marchionni, Andrea; Bevilacqua, Manuela; Filippi, Jonathan; Folliero, Maria G.; Innocenti, Massimo; Lavacchi, Alessandro; Miller, Hamish A.; Pagliaro, Maria V.; Vizza, Francesco

    2015-12-01

    Hydrogen storage and distribution will be two very important aspects of any renewable energy infrastructure that uses hydrogen as energy vector. The chemical storage of hydrogen in compounds like sodium borohydride (NaBH4) could play an important role in overcoming current difficulties associated with these aspects. Sodium borohydride is a very attractive material due to its high hydrogen content. In this paper, we describe a reactor where a stable cobalt based catalyst supported on a commercial Cordierite Honeycomb Monolith (CHM) is employed for the hydrolysis of alkaline stabilized NaBH4 (SBH) aqueous solutions. The apparatus is able to operate at up to 5 bar and 130 °C, providing a hydrogen generation rate of up to 32 L min-1.

  20. FINAL REPORT. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Investigation of behavior of actinides in alkaline media containing Al(III) showed that no aluminate complexes of actinides in oxidation states (III-VII) were formed in alkaline solutions. At alkaline precipitation (pH 10-14) of actinides in presence of Al(III) formation of alumi...

  1. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome

    PubMed Central

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E.

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L−1 day−1 organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the “ML635J-40 aquatic group” while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  2. A Comparison between Lime and Alkaline Hydrogen Peroxide Pretreatments of Sugarcane Bagasse for Ethanol Production

    NASA Astrophysics Data System (ADS)

    Rabelo, Sarita C.; Filho, Rubens Maciel; Costa, Aline C.

    Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2 × 2 × 2 factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse as it comes from an alcohol/ sugar factory and bagasse in the size range of 0.248 to 1.397 mm (12-60 mesh). The results show that when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for nonscreened bagasse using 0.40 g lime/g dry biomass at 70 °C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of nonscreened bagasse are not very different.

  3. Matrix diffusion of some alkali- and alkaline earth-metals in granitic rock

    SciTech Connect

    Johansson, H.; Byegaard, J.; Skarnemark, G.; Skaalberg, M.

    1997-12-31

    Static through-diffusion experiments were performed to study the diffusion of alkali- and alkaline earth-metals in fine-grained granite and medium-grained Aespoe-diorite. Tritiated water was used as an inert reference tracer. Radionuclides of the alkali- and alkaline earth-metals (mono- and divalent elements which are not influenced by hydrolysis in the pH-range studied) were used as tracers, i.e., {sup 22}Na{sup +}, {sup 45}Ca{sup 2+} and {sup 85}Sr{sup 2+}. The effective diffusivity and the rock capacity factor were calculated by fitting the breakthrough curve to the one-dimensional solution of the diffusion equation. Sorption coefficients, K{sub d}, that were derived from the rock capacity factor (diffusion experiments) were compared with K{sub d} determined in batch experiments using crushed material of different size fractions. The results show that the tracers were retarded in the same order as was expected from the measured batch K{sub d}. Furthermore, the largest size fraction was the most representative when comparing batch K{sub d} with K{sub d} evaluated from the diffusion experiments. The observed effective diffusivities tended to decrease with increasing cell lengths, indicating that the transport porosity decreases with increasing sample lengths used in the diffusion experiments.

  4. Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. [Trichoderma reesei

    SciTech Connect

    Gould, J.M.

    1984-01-01

    Approximately one-half of the lignin and most of the hemicellulose present in agricultural residues such as wheat straw and corn stover are solubilized when the residue is treated at 25/sup 0/C in an alkaline solution of hydrogen peroxide. The delignification reaction is most efficient when the ratio of hydrogen peroxide to substrate is at least 0.25 (w/w) and the pH is 11.5. The supernatant fraction from a given pretreatment, after addition of makeup peroxide and readjustment of the pH, can be recycled to treat at least six additional batches of substrate, resulting in a substantial concentration of hemicellulose and soluble lignin degradation products. Hydrolysis of the insoluble fraction with Trichoderma reesei cellulase after alkline peroxide treatment yields glucose with almost 100% efficiency, based upon the cellulose content of the residue before treatment. These data indicate that alkaline peroxide pretreatment is a simple and efficient method for enhancing the enzymatic digestibility of lignocellulosic crop residues to levels approaching the theoretical maximum.

  5. Arginine Coordination in Enzymatic Phosphoryl Transfer: Evaluation of the Effect of Arg166 Mutations in Escherichia Coli Alkaline Phosphatase

    SciTech Connect

    O'Brien, P.J.; Lassila, J.K.; Fenn, T.D.; Zalatan, J.G.; Herschlag, D.

    2009-05-22

    Arginine residues are commonly found in the active sites of enzymes catalyzing phosphoryl transfer reactions. Numerous site-directed mutagenesis experiments establish the importance of these residues for efficient catalysis, but their role in catalysis is not clear. To examine the role of arginine residues in the phosphoryl transfer reaction, we have measured the consequences of mutations to arginine 166 in Escherichia coli alkaline phosphatase on hydrolysis of ethyl phosphate, on individual reaction steps in the hydrolysis of the covalent enzyme-phosphoryl intermediate, and on thio substitution effects. The results show that the role of the arginine side chain extends beyond its positive charge, as the Arg166Lys mutant is as compromised in activity as Arg166Ser. Through measurement of individual reaction steps, we construct a free energy profile for the hydrolysis of the enzyme-phosphate intermediate. This analysis indicates that the arginine side chain strengthens binding by {approx}3 kcal/mol and provides an additional 1-2 kcal/mol stabilization of the chemical transition state. A 2.1 {angstrom} X-ray diffraction structure of Arg166Ser AP is presented, which shows little difference in enzyme structure compared to the wild-type enzyme but shows a significant reorientation of the bound phosphate. Altogether, these results support a model in which the arginine contributes to catalysis through binding interactions and through additional transition state stabilization that may arise from complementarity of the guanidinum group to the geometry of the trigonal bipyramidal transition state.

  6. Hydrolysis of VX on Concrete: Rate of Degradation by Direct Surface Interrogation using an Ion Trap Secondary Ion Mass Spectrometer

    SciTech Connect

    Groenewold, Gary Steven; Appelhans, Anthony David; Gresham, Garold Linn; Olson, John Eric; Rowland, B.; Williams, j.; Jeffery, M. T.

    2002-09-01

    The nerve agent VX (O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate) is lethal at very low levels of exposure, which can occur by dermal contact with contaminated surfaces. Hence, behavior of VX in contact with common urban or industrial surfaces is a subject of acute interest. In the present study, VX was found to undergo complete degradation when in contact with concrete surfaces. The degradation was directly interrogated at submonolayer concentrations by periodically performing secondary ion mass spectrometry (SIMS) analyses after exposure of the concrete to VX. The abundance of the [VX + H]+ ion in the SIMS spectra was observed to decrease in an exponential fashion, consistent with first-order or pseudo-first-order behavior. This phenomenon enabled the rate constant to be determined at 0.005 min-1 at 25 C, which corresponds to a half-life of about 3 h on the concrete surface. The decrease in [VX + H]+ was accompanied by an increase in the abundance of the principal degradation product diisopropylaminoethanethiol (DESH), which arises by cleavage of the P-S bond. Degradation to form DESH is accompanied by the formation of ethyl methylphosphonic acid, which is observable only in the negative ion spectrum. A second degradation product was also implicated, which corresponded to a diisopropylvinylamine isomer (perhaps N,N-diisopropyl aziridinium) that arose via cleavage of the S-C bond. No evidence was observed for the formation of the toxic S-2-diisopropylaminoethyl methylphosphonothioic acid. The degradation rate constants were measured at four different temperatures (24-50 C), which resulted in a linear Arrhenius relationship and an activation energy of 52 kJ mol-1. This value agrees with previous values observed for VX hydrolysis in alkaline solutions, which suggests that the degradation of submonolayer VX is dominated by alkaline hydrolysis within the adventitious water film on the concrete surface.

  7. Granular starch hydrolysis for fuel ethanol production

    NASA Astrophysics Data System (ADS)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea addition were evaluated in the dry grind process using GSHE (GSH process). Addition of proteases resulted in higher ethanol concentrations (15.2 to 18.0% v/v) and lower (DDGS) yields (32.9 to 45.8% db) compared to the control (no protease addition). As level of proteases and GSHE increased, ethanol concentrations increased and DDGS yields decreased. Proteases addition reduced required GSHE dose. Ethanol concentrations with protease addition alone were higher than with urea or with addition of both protease and urea. Corn endosperm consists of soft and hard endosperm. More exposed starch granules and rough surfaces produced from soft endosperm compared to hard endosperm will create more surface area which will benefit the solid phase hydrolysis as used in GSH process. In this study, the effects of protease, urea, endosperm hardness and GSHE levels on the GSH process were evaluated. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from dry milling pilot plant. Soft endosperm resulted in higher ethanol concentrations (at 72 hr) compared to ground corn or hard endosperm. Addition of urea increased ethanol concentrations (at 72 hr) for soft and hard endosperm. The effect of protease addition on increasing ethanol concentrations and fermentation rates was more predominant for soft endosperm, less for hard endosperm and least for ground corn. The GSH process with protease resulted in higher ethanol concentration than that with urea. For fermentation of soft endosperm, GSHE dose can be reduced. Ground corn fermented faster at the beginning than hard and soft endosperm due to the presence of inherent nutrients which enhanced yeast growth.

  8. Enhanced recovery of alkaline protease from fish viscera by phase partitioning and its application

    PubMed Central

    2013-01-01

    Background Too many different protein and enzyme purification techniques have been reported, especially, chromatographic techniques. Apart from low recovery, these multi-step methods are complicated, time consuming, high operating cost. So, alternative beneficially methods are still required. Since, the outstanding advantages of aqueous two phase system (ATPS) such as simple, low cost, high recovery and scalable, ATPS have been used to purify various enzymes. To improve purification efficiency, parameters affected to enzyme recovery or purity was investigated. The objectives of the present study were to optimize of alkaline protease recovery from giant catfish fish viscera by using ATPS and to study of hydrolytic patterns against gelatin. Results Using 70% (w/w) crude enzyme extract (CE) in system (15% PEG2000-15% sodium citrate) provided the highest recovery, PF and KE. At unmodified pH (8.5) gave the best recovery and PF with compare to other pHs of the system. The addition of 1% (w/w) NaCl showed the recovery (64.18%), 3.33-fold and 15.09 of KE compared to the system without NaCl. After addition of 10% (w/w) sodium citrate in the second ATPS cycle, the highest protease recovery (365.53%) and PF (11.60-fold) were obtained. Thus, the top phase from the system was subjected to further studied. The protein bands with molecular weights (MWs) of 20, 24, 27, 36, 94 and 130 kDa appeared on the protein stained gel and also exhibited clear zone on casein-substrate gel electrophoresis. The β, α1, α2 of skin gelatin extensively degraded into small molecules when treated with 10 units of the extracted alkaline protease compared to those of the level of 0.21 units of Flavourzyme. Conclusions Repetitive ATPS is the alternative strategy to increase both recovery and purity of the alkaline protease from farmed giant catfish viscera. Extracted alkaline protease exposed very high effectiveness in gelatin hydrolysis. It is suggested that the alkaline protease from this fish viscera can further be used in protein hydrolysate production. PMID:23631530

  9. Radiation inactivation of bovine intestinal alkaline phosphatase

    NASA Astrophysics Data System (ADS)

    Hasan, N. M.; McCall, P. R.; Moore, J. S.; Power, D. M.

    1994-03-01

    The effects of 60Co γ-radiation on aqueous solutions of alkaline phosphatase have been studied. The primary radicals of water radiolysis, e -aq, OH· and H· all contribute to the observed inactivation with inactivating efficiencies of 0.019, 0.019 and 0.04, respectively; O -2 also causes inactivation (efficiency = 0.014). The radical anions (SCN) -2, (Br) -2 and (I) -2 cause inactivation at neutral pH and evidence is presented that cysteine and histidine residues are sites for radical anion reaction. Kinetic evidence suggests that inactivation is due to general denaturation of the protein, rather than destruction of the substrate binding site. Fractionation of the irradiated solution using FPLC following by analysis using fluorescence spectroscopy suggests that one process which leads to inactivation is the formation of alkaline phosphatase dimerized via tyrosine residues.

  10. Photolysis of alkaline-earth nitrates

    NASA Astrophysics Data System (ADS)

    Kriger, L. D.; Miklin, M. B.; Dyagileva, E. P.; Anan'ev, V. A.

    2013-02-01

    Peroxynitrite and nitrite ions are the diamagnetic products of photolysis (with light at a wavelength of 253.7 nm) of alkaline-earth nitrates; the paramagnetic products and hydrogen peroxide were not found. The structural water in alkaline-earth nitrate crystals did not affect the qualitative composition of the photodecomposition products. The quantum yield of nitrite ions was 0.0012, 0.0038, 0.0078, and 0.0091 quanta-1 and that of peroxynitrite ions was 0.0070, 0.0107, 0.0286, and 0.0407 quanta-1 for Sr(NO3)2, Ba(NO3)2, Ca(NO3)2 · 4H2O, and Mg(NO3)2 · 6H2O, respectively.

  11. Modulation of the hydrolysis rate of the ADP-insensitive phosphoenzyme of the sarcoplasmic reticulum ATPase by H+ and Mg2+.

    PubMed

    Wakabayashi, S; Ogurusu, T; Shigekawa, M

    1987-07-01

    Effects of H+ and Mg2+ on the hydrolysis rate of the ADP-insensitive phosphoenzyme intermediate (E2P) of the sarcoplasmic reticulum ATPase were investigated at 6 degrees C in the presence and absence of K+. In the absence of K+, the pH dependence of the E2P hydrolysis rate obtained in the absence of divalent cations showed a bell-shaped profile with an optimum at pH 9. At neutral pH, Mg2+ or other divalent cations accelerated the E2P hydrolysis while they strongly inhibited it at alkaline pH. The accelerating effect occurred on the cytoplasmic side of the membrane whereas the inhibitory effect occurred on the luminal side of the membrane, presumably at the low affinity calcium transport sites. The presence of Mg2+ or other divalent cations, therefore, shifted the pH activity profile to the acidic side while the magnitude of this shift and the activity obtained at the optimum pH depended on the species and the concentration of the divalent cation used. Simulation of a set of the pH activity curves obtained in 0 to 40 mM Mg2+ suggests that the marked activation of E2P hydrolysis by high Mg2+ observed at neutral pH is primarily caused by a Mg2+-induced increase in the dissociation constant of the ionizing group(s) rather than a markedly increased rate constant for E2P hydrolysis. In the presence of K+, the stimulatory effect of Mg2+ at pH 7 was less pronounced but its inhibitory effect at pH 9 was similar to that observed in the absence of K+. These effects of Mg2+ and other divalent cations should be taken into account when the role of H+ in the ATPase reaction is investigated. PMID:2954958

  12. Fluoride incorporation into apatite crystals delays amelogenin hydrolysis

    PubMed Central

    DenBesten, Pamela; Zhu, Li; Li, Wu; Tanimoto, Kotaro; Liu, Haichuan; Witkowska, Halina Ewa

    2012-01-01

    Enamel fluorosis has been related to an increase in the amount of amelogenin in fluorosed enamel as compared to normal enamel in the maturation stage. In this study we tested the hypothesis that fluoride incorporated into carbonated apatite alters amelogenin hydrolysis. Recombinant human amelogenin (rh174) was allowed to bind to 0.15 mg of carbonated hydroxyapatite (CAP) or fluoride-containing carbonated hydroxyapatite (F-CAP) synthesized to contain 100, 1000 or 4000 ppm F-. After 3 h digestion with recombinant human MMP20 or KLK4, bound protein was characterized by reverse-phase HPLC. Proteolytic fragments formed after 24 h digestion of amelogenin, were identified by LC tandem mass spectrometry (LCMS/MS). The hydrolysis of amelogenin bound to F100-CAP by both MMP20 and KLK4 was significantly reduced in a dose dependent manner as compared to CAP. After 24 h hydrolysis, the number of cleavage sites in bound amelogenin by MMP20 were similar in CAP and F100-CAP, whereas there were 24 fewer cleavage sites identified for the KLK4 hydrolysis on F100-CAP as compared to CAP. These results suggest that the reduced hydrolysis of amelogenins in fluorosed enamel may be partially due to the increased fluoride content in fluoride containing apatite, contributing to the hypomineralized enamel matrix phenotype observed in fluorosed enamel. PMID:22243219

  13. Factors affecting the rate of hydrolysis of starch in food.

    PubMed

    Snow, P; O'Dea, K

    1981-12-01

    After accurate determination of the content of available carbohydrate in a wide variety of cereals, as in vitro method was used to study factors that influence hydrolysis rates of starch in foods. Fiber, physical form, cooking, and the possible presence of a natural amylase inhibitor were all shown to affect hydrolysis rates of starch. Fiber only exerted an inhibiting effect on the rate of hydrolysis when it formed a physical barrier to limit access of the hydrolytic enzymes to the starch (as in whole brown rice, for example). Particle size played an important role in determining the rate of hydrolysis. Cooking made the starch much more readily available for enzymic hydrolysis presumably by gelatinizing it. Stoneground wholemeal flour was hydrolyzed more slowly than white flour. This is consistent with the presence of a natural amylase inhibitor that has been isolated from wheat germ in the whole grain. Our results suggest that such amylase inhibitor activity is destroyed by passage through the roller mill, since the starch in wheat germ and standard wholemeal flour (i.e., not stoneground but reconstituted after passage through the roller mill) was hydrolyzed at a rate identical to white flour. PMID:6172034

  14. Enzymatic hydrolysis of fractionated products from oil thermally oxidated

    SciTech Connect

    Yashida, H.; Alexander, J.C.

    1983-01-01

    Enzymatic hydrolysis of the acylglycerol products obtained from thermally oxidized vegetable oils was studied. Corn, sunflower and soybean oils were heated in the laboratory at 180/sup 0/C for 50, 70 and 100 hr with aeration and directly fractionated by silicic acid column chromatography. By successive elution with 20%, then 60% isopropyl ether in n-hexane, and diethyl ether, the thermally oxidized oils were separated into three fractions: the nonpolar fraction (monomeric compounds), slightly polar fraction (dimeric compounds), and polar fraction comprising oligomeric compounds. Enzymatic hydrolysis with pancreatic lipase showed that the monomers were hydrolyzed as rapidly as the corresponding unheated oils, the dimers much more slowly, and the oligomeric compounds barely at all. Overall, the hydrolysis of the dimers was less than 23% of that for the monomers, with small differences among the oils. Longer heating periods resulted in greater reductions in hydrolysis of the dimeric compounds. These results suggest that the degree of enzymatic hydrolysis of the fractionated acylglycerol compounds is related to differences in the thermal oxidative deterioration, and amounts of polar compounds in the products. (33 Refs.)

  15. Linking hydrolysis performance to Trichoderma reesei cellulolytic enzyme profile.

    PubMed

    Lehmann, Linda; Rønnest, Nanna P; Jørgensen, Christian I; Olsson, Lisbeth; Stocks, Stuart M; Jørgensen, Henrik S; Hobley, Timothy

    2016-05-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, for example, by spiking with single enzymes and monitoring hydrolysis performance. In this study, a multivariate approach, partial least squares regression, was used to see whether it could help explain the correlation between enzyme profile and hydrolysis performance. Diverse enzyme mixtures were produced by T. reesei Rut-C30 by exploiting various fermentation conditions and used for hydrolysis of washed pretreated corn stover as a measure of enzyme performance. In addition, the enzyme mixtures were analyzed by liquid chromatography-tandem mass spectrometry to identify and quantify the different proteins. A multivariate model was applied for the prediction of enzyme performance based on the combination of different proteins present in an enzyme mixture. The multivariate model was used for identification of candidate proteins that are correlated to enzyme performance on pretreated corn stover. A very large variation in hydrolysis performance was observed and this was clearly caused by the difference in fermentation conditions. Besides β-glucosidase, the multivariate model identified several xylanases, Cip1 and Cip2, as relevant proteins to study further. Biotechnol. Bioeng. 2016;113: 1001-1010. © 2015 Wiley Periodicals, Inc. PMID:26524197

  16. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes.

    PubMed

    Qing, Qing; Yang, Bin; Wyman, Charles E

    2010-12-01

    Typically, the enzymatic hydrolysis rate of lignocellulosic biomass is fast initially but then slows down more rapidly than can be explained by just consumption of substrate. Although several factors including enzyme inhibition, enzyme deactivation, a drop in substrate reactivity, or nonproductive binding of enzyme to lignin could be responsible for this loss of effectiveness, we recently reported evidence that xylose, xylan, and xylooligomers dramatically decrease conversion rates and yields, but clarification was still needed for the magnitude of their effect. Therefore, in this study, xylan and various xylooligomers were added to Avicel hydrolysis at low enzyme loadings and found to have a greater effect than adding equal amounts of xylose derived from these materials or when added separately. Furthermore, xylooligomers were more inhibitory than xylan or xylose in terms of a decreased initial hydrolysis rate and a lower final glucose yield even for a low concentration of 1.67 mg/ml. At a higher concentration of 12.5mg/ml, xylooligomers lowered initial hydrolysis rates of Avicel by 82% and the final hydrolysis yield by 38%. Mixed DP xylooligomers showed strong inhibition on cellulase enzymes but not on beta-glucosidase enzymes. By tracking the profile change of xylooligomers, a large portion of the xylooligomers was found to be hydrolyzed by Spezyme CP enzyme preparations, indicating competitive inhibition by mixed xylooligomers. A comparison among glucose sugars and xylose sugars also showed that xylooligomers were more powerful inhibitors than well-established glucose and cellobiose. PMID:20708404

  17. Enzymatic Hydrolysis of Hydrotropic Pulps at Different Substrate Loadings.

    PubMed

    Denisova, Marina N; Makarova, Ekaterina I; Pavlov, Igor N; Budaeva, Vera V; Sakovich, Gennady V

    2016-03-01

    Enzymatic hydrolysis of cellulosic raw materials to produce nutrient broths for microbiological synthesis of ethanol and other valuable products is an important field of modern biotechnology. Biotechnological processing implies the selection of an effective pretreatment technique for raw materials. In this study, the hydrotropic treatment increased the reactivity of the obtained substrates toward enzymatic hydrolysis by 7.1 times for Miscanthus and by 7.3 times for oat hulls. The hydrotropic pulp from oat hulls was more reactive toward enzymatic hydrolysis compared to that from Miscanthus, despite that the substrates had similar compositions. As the initial substrate loadings were raised during enzymatic hydrolysis of the hydrotropic Miscanthus and oat hull pulps, the concentration of reducing sugars increased by 34 g/dm(3) and the yield of reducing sugars decreased by 31 %. The findings allow us to predict the efficiency of enzymatic hydrolysis of hydrotropic pulps from Miscanthus and oat hulls when scaling up the process by volume. PMID:26634840

  18. Surfactant-enhanced alkaline flooding field project

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  19. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  20. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  1. Alkaline phosphatase activity in mouse teratoma.

    PubMed

    Berstine, E G; Hooper, M L; Grandchamp, S; Ephrussi, B

    1973-12-01

    In tumors and embryoid bodies of mouse teratoma a correlation has been established between specific activity of alkaline phosphatase (EC 3.1.3.1) and content of embryonal carcinoma, the stem cell of the tumor. A histochemical study of embryoid bodies has shown that high levels of the enzyme are confined to embryonal carcinoma. Fifteen tissue culture lines could be classified into three groups: (a) lines identifiable as pluripotential embryonal carcinoma by their morphology, tumorigenicity, and capacity to differentiate in vivo; (b) nullipotential embryonal carcinoma, resembling pluripotential embryonal carcinoma in morphology and malignancy but giving rise to undifferentiated tumors; and (c) lines of apparently nonmalignant somatic cells. Both types of embryonal carcinoma possess levels of alkaline phosphatase 5- to a 100-fold higher than the somatic cell lines. The embryonal carcinoma enzyme resembles the enzymes from kidney and placenta in kinetics of thermal inactivation and sensitivity to the inhibitor L-phenylalanine, but is distinguishable from the alkaline phosphatases of liver and intestine. These findings are discussed in relation to the use of teratoma for the study of cell differentiation. PMID:4521215

  2. Beta-type calcium phosphates with and without magnesium: From hydrolysis of brushite powder to robocasting of periodic scaffolds.

    PubMed

    Richard, Raquel C; Sader, Márcia S; Dai, Jisen; Thiré, Rossana M S M; Soares, Gloria D A

    2014-10-01

    Several approaches have attempted to replace extensive bone loss, but each of them has their limitation. Nowadays, additive manufacture techniques have shown great potential for bone engineering. The objective of this study was to synthesize beta tricalcium phosphate (β-TCP), beta tricalcium phosphate substituted by magnesium (β-TCMP), and biphasic calcium phosphate substituted by magnesium (BCMP) via hydrolysis and produce scaffolds for bone regeneration using robocasting technology. Calcium deficient apatites, with and without magnesium were obtained by hydrolysis, calcined and physico-chemically characterized. Colorimetric cell viability assay, calcium nodule formation, and the expression of alkaline phosphatase, osteocalcin, transforming growth factor beta-1 and collagen were assessed using a mouse osteoblastic cell line (MC3T3-E1). Direct-write assembly of cylindrical periodic scaffolds was done via robotic deposition using β-TCP, β-TCMP, and BCMP colloidal inks. The sintered scaffolds were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, Archimede's method, and uniaxial compression test. According to the cell viability assay, the powders induced cell proliferation. Calcium nodule formation and bone markers activity suggested that the materials present potential value in bone tissue engineering. The scaffolds built by robocasting presented interconnected porous and exhibited mean compressive strength between 7.63 and 18.67 MPa, compatible with trabecular bone. PMID:24277559

  3. The fate of added alkalinity in model scenarios of ocean alkalinization

    NASA Astrophysics Data System (ADS)

    Ferrer González, Miriam; Ilyina, Tatiana

    2014-05-01

    The deliberate large-scale manipulation of the Earth's climate (geo-engineering) has been proposed to mitigate climate change and ocean acidification. Whilst the mitigation potential of these technologies could sound promising, they may also pose many environmental risks. Our research aims at exploring the ocean-based carbon dioxide removal method of alkalinity enhancement. Its mitigation potential to reduce atmospheric CO2 and counteract the consequences of ocean acidification, risks and unintended consequences are studied. In order to tackle these questions, different scenarios are implemented in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology. The model configuration is based on the 5th phase of the coupled model intercomparison project following a high CO2 future climate change scenario RCP8.5 (in which radiative forcing rises to 8.5 W/m² in 2100). Two different scenarios are performed where the alkalinity is artificially added globally uniformly in the upper ocean. In the first scenario, alkalinity is increased as a pulse by doubling natural values of the first 12 meters. In the second scenario we add alkalinity into the same ocean layer such that the atmospheric CO2 concentration is reduced from RCP8.5 to RCP4.5 levels (with the radiative forcing of 4.5 W/m² in 2100). We investigate the fate of the added alkalinity in these two scenarios and compare the differences in alkalinity budgets. In order to increase oceanic CO2 uptake from the atmosphere, enhanced alkalinity has to stay in the upper ocean. Once the alkalinity is added, it will become part of the biogeochemical cycles and it will be distributed with the ocean currents. Therefore, we are particularly interested in the residence time of the added alkalinity at the surface. Variations in CO2 partial pressure, seawater pH and saturation state of carbonate minerals produced in the implemented scenarios will be presented. Collateral changes in ocean biogeochemistry and climate will be also discussed.

  4. STIMULATION OF MICROBIAL UREA HYDROLYSIS IN GROUNDWATER TO ENHANCE CALCITE PRECIPITATION

    SciTech Connect

    Yoshiko Fujita; Joanna L. Taylor; Tina L. Gresham; Mark E. Delwiche; Frederick S. Colwell; Travis McLing; Lynn Petzke; Robert W. Smith

    2008-04-01

    Sequential addition of molasses and urea was tested as a means of stimulating microbial urea hydrolysis in the Eastern Snake River Plain Aquifer in Idaho. Ureolysis is an integral component of a novel remediation approach for divalent trace metal and radionuclide contaminants in groundwater and associated geomedia, where the contaminants are immobilized by coprecipitation in calcite. The generation of carbonate alkalinity from ureolysis promotes calcite precipitation. In calcite-saturated aquifers, this represents a potential long-term contaminant sequestration mechanism. In a single well experiment, dilute molasses was injected three times over two weeks to promote overall microbial growth, followed by one urea injection. With molasses addition, total cell numbers in the groundwater increased one to two orders of magnitude. Estimated ureolysis rates in recovered groundwater samples increased from <0.1 nmol L-1 hr-1 to >25 nmol L-1 hr-1. A quantitative PCR assay for the bacterial ureC gene indicated that urease gene numbers increased up to 170 times above pre-injection levels. Following urea injection, calcite precipitates were recovered. Estimated values for an in situ first order ureolysis rate constant ranged from 0.016 to 0.057 day-1. The results are promising with respect to the potential to manipulate in situ biogeochemical processes to promote contaminant sequestration.

  5. Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation.

    PubMed

    Fujita, Yoshiko; Taylor, Joanna L; Gresham, Tina L T; Delwiche, Mark E; Colwell, Frederick S; Mcling, Travis L; Petzke, Lynn M; Smith, Robert W

    2008-04-15

    Addition of molasses and urea was tested as a means of stimulating microbial urea hydrolysis in the Eastern Snake River Plain Aquifer in Idaho. Ureolysis is an integral component of a novel remediation approach for divalent trace metal and radionuclide contaminants in groundwater and associated geomedia, where the contaminants are immobilized by coprecipitation in calcite. Generation of carbonate alkalinity from ureolysis promotes calcite precipitation. In calcite-saturated aquifers, this represents a potential long-term contaminant sequestration mechanism. In a single-well experiment, dilute molasses was injected three times over two weeks to promote overall microbial growth, followed by one urea injection. With molasses addition, total cell numbers in the groundwater increased 1-2 orders of magnitude. Estimated ureolysis rates in recovered groundwater samples increased from < 0.1 to > 25 nmol L(-1) hr(-1). A quantitative PCR assay for the bacterial ureC gene indicated that urease gene numbers increased up to 170 times above pre-injection levels. Following urea injection, calcite precipitates were recovered. Estimated values for an in situ first order ureolysis rate constant ranged from 0.016 to 0.057 d(-1). Although collateral impacts such as reduced permeability were observed, overall results indicated the viability of manipulating biogeochemical processes to promote contaminant sequestration. PMID:18497161

  6. Effects of enzymatic hydrolysis of buckwheat protein on antigenicity and allergenicity

    PubMed Central

    Sung, Dong-Eun; Lee, Jeongok; Han, Youngshin; Shon, Dong-Hwa; Ahn, Kangmo

    2014-01-01

    BACKGROUND/OBJECTIVES Due to its beneficial health effects, use of buckwheat has shown a continuous increase, and concerns regarding the allergic property of buckwheat have also increased. This study was conducted for evaluation of the hydrolytic effects of seven commercial proteases on buckwheat allergens and its allergenicity. MATERIALS/METHODS Extracted buckwheat protein was hydrolyzed by seven proteolytic enzymes at individual optimum temperature and pH for four hours. Analysis was then performed using SDS-PAGE, immunoblotting, and competitive inhibition ELISA (ciELISA) with rabbit antiserum to buckwheat protein, and direct ELISA with pooled serum of 21 buckwheat-sensitive patients. RESULTS Alkaline protease, classified as serine peptidase, was most effective in reducing allergenicity of buckwheat protein. It caused decomposition of the whole buckwheat protein, as shown on SDS-PAGE, and results of immunoblotting showed that the rabbit antiserum to buckwheat protein no longer recognized it as an antigen. Allergenicity showed a decrease of more than 50% when pooled serum of patients was used in ELISA. Two proteolytic enzymes from Aspergillus sp. could not hydrolyze buckwheat allergens effectively, and the allergenicity even appeared to increase. CONCLUSIONS Serine-type peptidases appeared to show a relatively effective reduction of buckwheat allergenicity. However, the antigenicity measured using rabbit antiserum did not correspond to the allergenicity measured using sera from human patients. Production of less allergenic buckwheat protein may be possible using enzymatic hydrolysis. PMID:24944772

  7. Degradation of 1,2,3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc.

    PubMed

    Sarathy, Vaishnavi; Salter, Alexandra J; Nurmi, James T; O'Brien Johnson, Graham; Johnson, Richard L; Tratnyek, Paul G

    2010-01-15

    1,2,3-Trichloropropane (TCP) is an emerging contaminant because of increased recognition of its occurrence in groundwater, potential carcinogenicity, and resistance to natural attenuation. The physical and chemical properties of TCP make it difficult to remediate, with all conventional options being relatively slow or inefficient. Treatments that result in alkaline conditions (e.g., permeable reactive barriers containing zerovalent iron) favor base-catalyzed hydrolysis of TCP, but high temperature (e.g., conditions of in situ thermal remediation) is necessary for this reaction to be significant. Common reductants (sulfide, ferrous iron adsorbed to iron oxides, and most forms of construction-grade or nano-Fe(0)) produce insignificant rates of reductive dechlorination of TCP. Quantifiable rates of TCP reduction were obtained with several types of activated nano-Fe(0), but the surface area normalized rate contants (k(SA)) for these reactions were lower than is generally considered useful for in situ remediation applications (10(-4) L m(-2) h(-1)). Much faster rates of degradation of TCP were obtained with granular Zn(0), (k(SA) = 10(-3) - 10(-2) L m(-2) h(-1)) and potentially problematic dechlorination intermediates (1,2- or 1,3-dichloropropane, 3-chloro-1-propene) were not detected. The advantages of Zn(0) over Fe(0) are somewhat peculiar to TCP and may suggest a practical application for Zn(0) even though it has not found favor for remediation of contamination with other chlorinated solvents. PMID:20000732

  8. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    PubMed

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries. PMID:24755261

  9. Determining yields in high solids enzymatic hydrolysis of biomass.

    PubMed

    Kristensen, Jan B; Felby, Claus; Jørgensen, Henning

    2009-05-01

    As technologies for utilizing biomass for fuel and chemical production continue to improve, enzymatic hydrolysis can be run at still higher solids concentrations. For hydrolyses that initially contain little or no free water (10-40% total solids, w/w), the saccharification of insoluble polymers into soluble sugars involves changes of volume, density, and proportion of insoluble solids. This poses a new challenge when determining the degree of hydrolysis (conversion yield). Experiments have shown that calculating the yield from the resulting sugar concentration in the supernatant of the slurry and using the assumed initial volume leads to significant overestimations of the yield. By measuring the proportion of insoluble solids in the slurry as well as the sugar concentration and specific gravity of the aqueous phase, it is possible to precisely calculate the degree of conversion. The discrepancies between the different ways of calculating yields are demonstrated along with a nonlaborious method for approximating yields in high solids hydrolysis. PMID:18836690

  10. In vitro hydrolysis of monofluorophosphate by dental plaque microorganisms.

    PubMed

    Jackson, L R

    1982-07-01

    Enzymic hydrolysis of sodium monofluorophosphate by suspensions of dental microorganisms has been demonstrated at pH 5.1, pH 7.0, and pH 8.4, using a fluoride-selective electrode. The extracellular medium from viable Streptococcus mutans K1R cells contained low MFPase and paranitrophenyl phosphatase activity. It is hypothesized that the enzymes responsible for MFP hydrolysis by S. mutans K1R are intracellular, and that cell disruption is necessary for hydrolysis to be manifested; this question requires further study. In vitro MFPase activity was of a magnitude consistent with the hypothesis that it may significantly raise the fluoride ion concentration of plaque within the several minutes MFP would be in the mouth during toothbrushing. PMID:6282948

  11. Calculating sugar yields in high solids hydrolysis of biomass.

    PubMed

    Zhu, Yongming; Malten, Marco; Torry-Smith, Mads; McMillan, James D; Stickel, Jonathan J

    2011-02-01

    Calculation of true sugar yields in high solids enzymatic hydrolysis of biomass is challenging due to the varying liquid density and liquid volume resulting from solid solubilization. Ignoring these changes in yield calculations can lead to significant errors. In this paper, a mathematical method was developed for the estimation of liquid volume change and thereafter the sugar yield. The information needed in the calculations include the compositions of the substrate, initial solids loading, initial liquid density, and sugar concentrations before and after hydrolysis. All of these variables are measurable with conventional laboratory procedures. This method was validated experimentally for enzymatic hydrolysis of dilute sulfuric acid pretreated corn stover at solid loadings up to 23% (w/w). The maximum relative error of predicted glucose yield from the true value was less than 4%. Compared to other methods reported in the literature, this method is relatively easy to use and provides good accuracy. PMID:21109427

  12. Mesozoic mafic alkaline magmatism of southern Scandinavia

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian

    2004-11-01

    More than 100 volcanic necks in central Scania (southern Sweden) are the product of Jurassic continental rift-related mafic alkaline magmatism at the southwest margin of the Baltic Shield. They are mainly basanites, with rarer melanephelinites. Both rock groups display overlapping primitive Mg-numbers, Cr and Ni contents, steep chondrite-normalized rare earth element patterns (LaN /YbN = 17 27) and an overall enrichment in incompatible elements. However, the melanephelinites are more alkaline and have stronger high field strength element enrichment than the basanites. The existence of distinct primary magmas is also indicated by heterogeneity in highly incompatible element ratios (e.g. Zr/Nb, La/Nb). Trace element modelling indicates that the magmas were generated by comparably low degrees of melting of a heterogeneous mantle source. Such a source can best be explained by a metasomatic overprint of the mantle lithosphere by percolating evolved melts. The former existence of such alkaline trace element-enriched melts can be demonstrated by inversion of the trace element content of green-core clinopyroxenes and anorthoclase which occur as xenocrysts in the melanephelinites and are interpreted as being derived from crystallization of evolved mantle melts. Jurassic magmatic activity in Scania was coeval with the generation of nephelinites in the nearby Egersund Basin (Norwegian North Sea). Both Scanian and North Sea alkaline magmas share similar trace element characteristics. Mantle enrichment processes at the southwest margin of the Baltic Shield and the North Sea Basin generated trace element signatures similar to those of ocean island basalts (e.g. low Zr/Nb and La/Nb) but there are no indications of plume activity during the Mesozoic in this area. On the contrary, the short duration of rifting, absence of extensive lithospheric thinning, and low magma volumes argue against a Mesozoic mantle plume. It seems likely that the metasomatic imprint resulted from the earlier Permo-Carboniferous rifting episode which affected the entire study area and clearly was accompanied by plume activity (Ernst and Buchan in American Geophysical Union, pp 297 337, 1997). Renewed rifting in Jurassic times triggered decompression melting in the volatile-enriched lithospheric mantle and the alkaline melts generated inherited the earlier “stored” plume signature.

  13. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    SciTech Connect

    Ruiz-Santaquiteria, C.; Fernandez-Jimenez, A.; Palomo, A.

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  14. Microwave-assisted hydrolysis of polysaccharides over polyoxometalate clusters.

    PubMed

    Tsubaki, Shuntaro; Oono, Kiriyo; Ueda, Tadaharu; Onda, Ayumu; Yanagisawa, Kazumichi; Mitani, Tomohiko; Azuma, Jun-ichi

    2013-09-01

    Polyoxometalate (POM) clusters were utilized as recyclable acid catalysts and microwave-absorbing agents for the microwave-assisted hydrolysis of corn starch and crystalline cellulose. Phosphotungstic (PW) and silicotungstic (SiW) acids showed high hydrolyzing activity, while phosphomolybdic acid (PMo) showed lower glucose stability. The PW catalyst could be recycled by ether extraction at least 4 times without changing its catalytic activity. The addition of PW could reduce the energy demand required for running the hydrolysis by 17-23%. The dielectric property of the aqueous PW solution was important for increasing the microwave-absorption capability of the reaction system and reducing the energy consumption. PMID:23859983

  15. Benzene/nitrous oxide flammability in the precipitate hydrolysis process

    SciTech Connect

    Jacobs, R A

    1989-09-18

    The HAN (hydroxylamine nitrate) process for destruction of nitrite in precipitate hydrolysis produces nitrous oxide (N2O) gas as one of the products. N2O can form flammable mixtures with benzene which is also present due to radiolysis and hydrolysis of tetraphenylborate. Extensive flame modeling and explosion testing was undertaken to define the minimum oxidant for combustion of N2O/benzene using both nitrogen and carbon dioxide as diluents. The attached memorandum interprets and documents the results of the studies.

  16. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    PubMed Central

    Thygesen, Lisbeth G.; Thybring, Emil E.; Johansen, Katja S.; Felby, Claus

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood. Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry, particularly when it comes to up-scaling of processes based on insoluble feed stocks. PMID:25232741

  17. Hydrolysis of sugarcane bagasse by mycelial biomass of Penicillium funiculosum

    SciTech Connect

    Rao, M.; Deshpande, V.; Seeta, R.; Srinivasan, M.C.; Mishra, C.

    1985-07-01

    Cellulose bioconversion has great promise for producing unlimited quantities of fermentable feedstocks and liquid fuels. Extensive studies on the production of extracellular cellulase and on the saccharification of various cellulosic substrates using cellulases have been reported. Use of mycelial biomass having cell bound cellulase for saccharification of cellulose was studied in Aspergillus terreus by Miller and Srinivasan. Extracellular cellulase production by P. funiculosum and its application for cellulose hydrolysis have been reported earlier by the authors. The present communication reports the hydrolysis of lignocellulose using mycelial biomass of P. funiculosum cultivated on cellulose and its reuse potential. 10 references.

  18. Effect of ketogenic diet on nucleotide hydrolysis and hepatic enzymes in blood serum of rats in a lithium-pilocarpine-induced status epilepticus.

    PubMed

    da Silveira, Vanessa Gass; de Paula Cognato, Giana; Mller, Alexandre Pastoris; Figueir, Fabrcio; Bonan, Carla Denise; Perry, Marcos L Santos; Battastini, Ana Maria Oliveira

    2010-06-01

    The ketogenic diet (KD) is a high-fat and low-carbohydrate diet, used for treating refractory epilepsy in children. We have previously shown alterations in nucleotidase activities from the central nervous system and blood serum of rats submitted to different models of epilepsy. In this study we investigated the effect of KD on nucleotidase activities in the blood serum, as well if KD has any influence in the activity of liver enzymes such as alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase activities in Wistar rats submitted to the lithium-pilocarpine model of epilepsy. At 21 days of age, rats received an injection of lithium chloride and, 18-19 h later, they received an injection of pilocarpine hydrochloride for status epilepticus induction. The results reported herein show that seizures induced by lithium-pilocarpine elicit a significant increase in ATP hydrolysis and alkaline phosphatase activity, as well as a decrease in ADP hydrolysis and aspartate aminotransferase activity. The KD is a rigorous regimen that can be associated with hepatic damage, as shown herein by the elevated activities of liver enzymes and 5'-nucleotidase in blood serum. Further studies are necessary to investigate the mechanism of inhibition of lithium on nucleotidases in blood serum. PMID:20443057

  19. Status of ELENCO's alkaline fuel cell technology

    NASA Astrophysics Data System (ADS)

    van den Broeck, H.; van Bogaert, G.; Vennekens, G.; Vermeeren, L.; Vlasselaer, F.

    Low-temperature alkaline fuel cells which can be operated with air, oxygen-enriched air, and pure oxygen are discussed. Aspects of the electrochemical stack development, including manufacturing techniques, performance levels, and reactant purity, are first reviewed. Design, engineering, and operating aspects of the 1.5 kW, 15 kW, and 50 kW prototype fuel cell systems are considered. An ejector device based on the venturi principle is used to improve the H2 gas circulation and to reduce the H2 losses. Various industrial and aerospace applications of the modules are discussed.

  20. Bioabatement with xylanase supplementation to reduce enzymatic hydrolysis inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioabatement, using the fungus Coniochaeta ligniaria NRRL30616 can effectively eliminate enzyme inhibitors from pretreated biomass hydrolysis. However, our recent research suggested that bioabatement had no beneficial effect on removing xylo-oligomers which were identified as strong inhibitors to ce...

  1. Atmospheric Plasma-Enhanced Soft Hydrolysis of Southern Pine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of fermentable sugars from southern pine using atmospheric plasma (AP) was studied. AP processing in the dielectric barrier discharge (DBD) configuration was coupled with acid hydrolysis in an effort to determine how AP can impact a standard conversion technique. The effects of plas...

  2. The Preparation and Enzymatic Hydrolysis of a Library of Esters

    ERIC Educational Resources Information Center

    Sanford, Elizabeth M.; Smith, Traci L.

    2008-01-01

    An investigative case study involving the preparation of a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver esterase and orange peel esterase is described. Students work collaboratively to prepare and characterize the library of esters and complete and evaluate…

  3. Summary of the precipitate hydrolysis task team peer review

    SciTech Connect

    Jacobs, R.A.

    1988-12-05

    On November 22, 1988, the activities of the Precipitate Hydrolysis Task Team (PHTT) were reviewed by an external peer review panel in the TNX Area Exhibit Room, 704-T. The agenda for the meeting and the meeting participants are attached. This memorandum serves as the minutes for the meeting, a summary of the highlights of the review, and documentation of the follow up items.

  4. Designer xylanosomes: protein nanostructures for enhanced xylan hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work is the first report of the successful design, construction, and application of multi-functional, self-assembling biocatalysts for targeted xylan hydrolysis, termed xylanosomes. Using the architecture of cellulosomes found in some anaerobic cellulolytic microbes, four different xylanosomes...

  5. Radiolysis and Hydrolysis of TRUEX-NPH solvent.

    SciTech Connect

    Simonzadeh, N.; Crabtree, A. M.; Trevorrow, L. E.; Vandegrift, G. F.

    1992-07-01

    The TRUEX solvent extraction process separates transuranic (TRU) elements from aqueous nitrate and chloride solutions. During contact with high-level wastes, which may be highly radioactive and highly acidic, the radiolysis and hydrolysis ofTRUEX-NPH solvent can affect the process not only by destroying the extractant CMPO in the solvent, but also by generating products of CMPO destruction, some of which are powerful extractants at low acidities and can prevent the stripping of Am and Pu from solvent that is to be recycled. To provide an experimental basis from which mathematical expressions of these effects could be derived, samples of solvent were degraded by radiolysis and hydrolysis while in contact with acidic aqueous solutions. Following this treatment, the distribution of americium between degraded solvent and aqueous HNO3 was used as a measure of the extent of degradation. Mathematical expressions were derived to represent the distribution coefficient, DAm, as a function of hydrolysis time and/or radiation dose. Assumptions about the dependence of DAm on CMPO concentration were used to derive expressions for the hydrolysis rate for CMPO and also to calculate values of radiation chemical yield for CMPO radiolysis. Also experimentally investigated were changes in acidity of both the aqueous and organic phases as functions of contact time, the effects of a carbonate wash in removing acidic degradation products that function as extractants at low acidities, and changes in compositions of some of the aqueous and organic phases during contact.

  6. Acid hydrolysis of sweet potato for ethanol production

    SciTech Connect

    Kim, K.; Hamdy, M.K.

    1985-01-01

    Studies were conducted to establish optimal conditions for the acid hydrolysis of sweet potato for maximal ethanol yield. The starch contents of two sweet potato cultivars (Georgia Red and TG-4), based on fresh weight, were 21.1 +/- 0.6% and 27.5 +/- 1.6%, respectively. The results of acid hydrolysis experiments showed the following: (1) both hydrolysis rate and hydroxymethylfurfural (HMF) concentration were a function of HCL concentration, temperature, and time; (2) the reducing sugars were rapidly formed with elevated concentrations of HCl and temperature, but also destroyed quickly; and (3) HMF concentration increased significantly with the concentration of HCl, temperature, and hydrolysis time. Maximum reducing sugar value of 84.2 DE and 0.056% HMF (based on wet weight) was achieved after heating 8% SPS for 15 min in 1N HCl at 110/sup 0/C. Degraded 8% SPS (1N HCl, 97/sup 0/C for 20 min or 110/sup 0/C for 10 min) was utilized as substrate for ethanol fermentation and 3.8% ethanol (v/v) was produced from 1400 mL fermented wort. This is equal to 41.6 g ethanol (200 proof) from 400 g of fresh sweet potato tuber (Georgia Red) or an ethanol yield potential of 431 gal of 200-proof ethanol/acre (from 500 bushel tubers/acre).

  7. ACID AND ENZYMATIC HYDROLYSIS OF SALINE BIOMASS FOR SUGAR PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saline crops were evaluated for their potential to be used as feedstock for fermentable sugar production via dilute acid pretreatment and enzymatic hydrolysis. The saline crops included two woods, Athel (Tamarix aphylla L) and Eucalyptus (Eucalyptus camaldulensis), and two grasses, Jose Tall Wheatgr...

  8. Oxygen-17 NMR studies on uranium (VI) hydrolysis and gelation

    SciTech Connect

    King, R.B.; King, C.M.; Garber, A.R.

    1989-12-31

    Hydrolysis and gelation processes in uranyl solutions are observed using the strong sharp uranyl oxygen-17 resonance. The ability to follow the hydrolysis of uranyl salts by observation of the sharp uranyl oxygen-17 resonance provides a clear indication of the dependence of uranyl hydrolysis on the counteranion (nitrate versus chloride) but not on the means of introducing hydroxide into the solution (Me{sub 4}NOH versus R{sub 3}N extraction). In addition, two different pathways for gelation are suggested. In the first pathway the uranyl hydrolysis is conducted with a base (HMTA in these studies) which preferentially forms trimeric (UO{sub 2}){sub 3} ({mu}{sub 3}-O) units which can then condense into the polymeric UO{sub 2}O{sub 6/3} layers of a gel based on the hexagonal structure of {proportional_to}UO{sub 2}(OH){sub 2}. In the second gelation pathway a uranyl derivative is treated with excess hydroxide in the absence of a metal or hydrogen-bonding ammonium cations which form insoluble solids uranates. Consensation of the resulting solution of soluble UO{sub 2}(OH)n{sup 2-n} anions can then lead to a similar polymer UO{sub 2}O{sub 4/2} or UO{sub 2}O{sub 6/3} structure of a gel. 9 refs., 2 figs.

  9. Oxygen-17 NMR studies on uranium (VI) hydrolysis and gelation

    SciTech Connect

    King, R.B. . Dept. of Chemistry); King, C.M. ); Garber, A.R. . Dept. of Chemistry)

    1989-01-01

    Hydrolysis and gelation processes in uranyl solutions are observed using the strong sharp uranyl oxygen-17 resonance. The ability to follow the hydrolysis of uranyl salts by observation of the sharp uranyl oxygen-17 resonance provides a clear indication of the dependence of uranyl hydrolysis on the counteranion (nitrate versus chloride) but not on the means of introducing hydroxide into the solution (Me{sub 4}NOH versus R{sub 3}N extraction). In addition, two different pathways for gelation are suggested. In the first pathway the uranyl hydrolysis is conducted with a base (HMTA in these studies) which preferentially forms trimeric (UO{sub 2}){sub 3} ({mu}{sub 3}-O) units which can then condense into the polymeric UO{sub 2}O{sub 6/3} layers of a gel based on the hexagonal structure of {proportional to}UO{sub 2}(OH){sub 2}. In the second gelation pathway a uranyl derivative is treated with excess hydroxide in the absence of a metal or hydrogen-bonding ammonium cations which form insoluble solids uranates. Consensation of the resulting solution of soluble UO{sub 2}(OH)n{sup 2-n} anions can then lead to a similar polymer UO{sub 2}O{sub 4/2} or UO{sub 2}O{sub 6/3} structure of a gel. 9 refs., 2 figs.

  10. The Preparation and Enzymatic Hydrolysis of a Library of Esters

    ERIC Educational Resources Information Center

    Sanford, Elizabeth M.; Smith, Traci L.

    2008-01-01

    An investigative case study involving the preparation of a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver esterase and orange peel esterase is described. Students work collaboratively to prepare and characterize the library of esters and complete and evaluate

  11. Evaluation of Cation Hydrolysis Schemes with a Pocket Calculator.

    ERIC Educational Resources Information Center

    Clare, Brian W.

    1979-01-01

    Described is the use of two models of pocket calculators. The Hewlett-Packard HP67 and the Texas Instruments TI59, to solve problems arising in connection with ionic equilibria in solution. A three-parameter regression program is described and listed as a specific example, the hydrolysis of hexavalent uranium, is provided. (BT)

  12. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  13. Radioactive demonstration of the late wash'' Precipitate Hydrolysis Process

    SciTech Connect

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-06-30

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the late wash'' flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests.

  14. Radioactive demonstration of the ``late wash`` Precipitate Hydrolysis Process

    SciTech Connect

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-06-30

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the ``late wash`` flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests.

  15. DFT STUDY OF THE HYDROLYSIS OF SOME S-TRIAZINES

    EPA Science Inventory

    The acid-catalyzed hydrolysis of atrazine and related 2-chloro-s-triazines to the corresponding 2-hydroxy-s-triazines was investigated using the B3LYP hybrid density functional theory method. Gas-phase calculations were performed at the B3LYP/6-311++G(d,p)//B3LYP/6-31G* level of ...

  16. HYDROLYSIS OF CHLORPYRIFOS IN AQUEOUS AND COLLOIDAL SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrolysis of chlorpyrifos [o,o-diethyl o-(3, 5, 6-trichloro-2-pyridyl) phosphorothioate] to TCP (3,5,6-trichloro-2-pyridinol) is an important degradation process influencing the fate of chlorpyrifos in aquatic environments. The effects of water chemistry and suspended colloids (smectites, humic ac...

  17. Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particle size reduction is a crucial factor in transportation logistics as well as cellulosic conversion. The effect of particle size on enzymatic hydrolysis of pretreated Miscanthus x giganteus was determined. Miscanthus was ground using a hammer mill equipped with screens having 0.08, 2.0 or 6.0...

  18. Acid hydrolysis of Jerusalem artichoke for ethanol fermentation

    SciTech Connect

    Kim, K.; Hamdy, M.K.

    1986-01-01

    An excellent substrate for ethanol production is the Jerusalem artichoke (JA) tuber (Helianthus tuberosus). This crop contains a high level of inulin that can be hydrolyzed mainly to D-fructose and has several distinct advantages as an energy source compared to others. The potential ethanol yield of ca. 4678 L/ha on good agricultural land is equivalent to that obtained from sugar beets and twice that of corn. When JA is to be used for ethanol fermentation by conventional yeast, it is first converted to fermentable sugars by enzymes or acids although various strains of yeast were used for the direct fermentation of JA extracts. Fleming and GrootWassink compared various acids (hydrochloric, sulfuric, citric, and phosphoric) and strong cation exchange resin for their effectiveness on inulin hydrolysis and reported that no differences were noted among the acids or resin in their influence on inulin hydrolysis. Undesirable side reactions were noted during acid hydrolysis leading to the formation of HMF and 2-(2-hydroxy acetyl) furan. The HMF at a level of 0.1% is known to inhibit growth and ethanol fermentation by yeast. In this study the authors established optimal conditions for complete acid-hydrolysis of JA with minimum side reactions and maximum sugar-ethanol production. A material balance for the ethanol production was also determined.

  19. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    SciTech Connect

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  20. Penicillin Hydrolysis: A Kinetic Study of a Multistep, Multiproduct Reaction.

    ERIC Educational Resources Information Center

    McCarrick, Thomas A.; McLafferty, Fred W.

    1984-01-01

    Background, procedures used, and typical results are provided for an experiment in which students carry out the necessary measurements on the acid-catalysis of penicillin in two hours. By applying kinetic theory to the data obtained, the reaction pathways for the hydrolysis of potassium benzyl penicillin are elucidated. (JN)

  1. Small peptides hydrolysis in dry-cured meats.

    PubMed

    Mora, Leticia; Gallego, Marta; Escudero, Elizabeth; Reig, Milagro; Aristoy, M-Concepción; Toldrá, Fidel

    2015-11-01

    Large amounts of different peptides are naturally generated in dry-cured meats as a consequence of the intense proteolysis mechanisms which take place during their processing. In fact, meat proteins are extensively hydrolysed by muscle endo-peptidases (mainly calpains and cathepsins) followed by exo-peptidases (mainly, tri- and di-peptidyl peptidases, dipeptidases, aminopeptidases and carboxypeptidases). The result is a large amount of released free amino acids and a pool of numerous peptides with different sequences and lengths, some of them with interesting sequences for bioactivity. This manuscript is presenting the proteomic identification of small peptides resulting from the hydrolysis of four target proteins (glyceraldehyde-3-phosphate dehydrogenase, beta-enolase, myozenin-1 and troponin T) and discusses the enzymatic routes for their generation during the dry-curing process. The results indicate that the hydrolysis of peptides follows similar exo-peptidase mechanisms. In the case of dry-fermented sausages, most of the observed hydrolysis is the result of the combined action of muscle and microbial exo-peptidases except for the hydrolysis of di- and tri-peptides, mostly due to microbial di- and tri-peptidases, and the release of amino acids at the C-terminal that appears to be mostly due to muscle carboxypeptidases. PMID:25944374

  2. Effects of hydrolysis and carbonization reactions on hydrochar production.

    PubMed

    Fakkaew, K; Koottatep, T; Polprasert, C

    2015-09-01

    Hydrothermal carbonization (HTC) is a thermal conversion process which converts wet biomass into hydrochar. In this study, a low-energy HTC process named "Two-stage HTC" comprising of hydrolysis and carbonization stages using faecal sludge as feedstock was developed and optimized. The experimental results indicated the optimum conditions of the two-stage HTC to be; hydrolysis temperature of 170 °C, hydrolysis reaction time of 155 min, carbonization temperature of 215 °C, and carbonization reaction time of 100 min. The hydrolysis reaction time and carbonization temperature had a statistically significant effect on energy content of the produced hydrochar. Energy input of the two-stage HTC was about 25% less than conventional HTC. Energy efficiency of the two-stage HTC for treating faecal sludge was higher than that of conventional HTC and other thermal conversion processes such as pyrolysis and gasification. The two-stage HTC could be considered as a potential technology for treating FS and producing hydrochar. PMID:26051497

  3. Structural modifications of lignocellulosics by pretreatments to enhance enzymatic hydrolysis

    SciTech Connect

    Gharpuray, M.M.; Lee, Y.F.; Fan, L.T.

    1983-01-01

    In this work an evaluation was made of a wide variety of single and multiple pretreatment methods for enhancing the rate of enzymatic hydrolysis of wheat straw. A multiple pretreatment consisted of a physical pretreatment followed by a chemical pretreatment. The structural features of wheat straw, including the specific surface area, crystallinity index, and lignin content, were measured to understand the mechanism of the enhancement in the hyrolysis rate upon pretreatment. It has been found that, in general, multiple pretreatments were not promising, since the hydrolysis rates rarely exceeded those achieved by single pretreatments. Ball-milling pretreatment was found to be effective in increasing the specific surface area and decreasing the crystallinity index. Treatment with ethylene glycol was highly effective in increasing the specific surface area, in addition to a high degree of delignification. Peracetic acid pretreatment was highly effective in delignifying substrate. Among multiple pretreatments, those involving peracetic acid treatment generally had lower crystallinity indices and lignin content values. The relationship between the hydrolysis rate and the set of structural features indicated that an increase in surface area and a decrease in the crystallinity and lignin content enhance the hydrolysis; the specific surface area is the most influential of the structural features, followed by the lignin content. (Refs. 23).

  4. Hydrolysis of hemicellulose to produce fermentable monosaccharides by plasma acid.

    PubMed

    Wang, Ying; Yuan, Bo; Ji, Yingchao; Li, Hong

    2013-09-12

    In this paper, plasma acid was obtained by treating distilled water with dielectric barrier discharge to hydrolyze hemicellulose. The orthogonal experiment L??(5(6)) was used to optimize such hydrolysis conditions. The total reducing sugar (TRS) was measured by the DNS method. To determine whether the oligosaccharide existed in the hydrolysis products, it was hydrolyzed by sulfuric acid for a second time following the same procedure as reported earlier. The monosaccharide compositions of the hydrolyzed sample were analyzed by high-performance liquid chromatography (HPLC) and Fourier transformed infrared spectroscopy (FTIR). The results showed that pH 2.81 of plasma acid, 100 C and 50 min were assigned as an optimal hydrolysis condition by plasma acid. Under this condition, the hemicellulose was hydrolyzed completely to produce monosaccharides including xylose, glucose, and galactose with the mole ratio being 17:3:1. The yields of xylose, glucose, and galactose were 38.67%, 9.28% and 3.09%, respectively. Compared with the hemicellulose hydrolysis results by sulfuric acid, it is concluded that plasma acid is an environmental-friendly and efficient method to explore and hydrolyze the hemicellulose existed in biomass. PMID:23911479

  5. A ?-glucan from the alkaline extract of a somatic hybrid (PfloVv5FB) of Pleurotus florida and Volvariella volvacea: structural characterization and study of immunoactivation.

    PubMed

    Maity, Kankan K; Patra, Sukesh; Dey, Biswajit; Bhunia, Sanjoy K; Mandal, Soumitra; Bahera, Birendra; Maiti, Tapas K; Sikdar, Samir R; Islam, Syed S

    2013-04-01

    A water soluble polysaccharide isolated from the alkaline extract of the somatic hybrid mushroom (PfloVv5FB), obtained through protoplast fusion between Pleurotus florida and Volvariella volvacea strains was found to contain d-glucose only. Structural investigation was carried out using acid hydrolysis, methylation analysis; periodate oxidation, and NMR studies ((1)H, (13)C, DEPT-135, TOCSY, DQF-COSY, NOESY, ROESY, HSQC, and HMBC). On the basis of the above mentioned experiments the structure of the repeating unit of the polysaccharide was established as: This polysaccharide exhibited strong immunoactivation of macrophages, splenocytes as well as thymocytes. PMID:23419942

  6. Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation.

    PubMed

    Ruan, Zhenhua; Zanotti, Michael; Zhong, Yuan; Liao, Wei; Ducey, Chad; Liu, Yan

    2013-04-01

    The herbaceous perennial energy crops miscanthus, giant reed, and switchgrass, along with the annual crop residue corn stover, were evaluated for their bioconversion potential. A co-hydrolysis process, which applied dilute acid pretreatment, directly followed by enzymatic saccharification without detoxification and liquid-solid separation between these two steps was implemented to convert lignocellulose into monomeric sugars (glucose and xylose). A factorial experiment in a randomized block design was employed to optimize the co-hydrolysis process. Under the optimal reaction conditions, corn stover exhibited the greatest total sugar yield (glucose + xylose) at 0.545 g g(-1) dry biomass at 83.3% of the theoretical yield, followed by switch grass (0.44 g g(-1) dry biomass, 65.8% of theoretical yield), giant reed (0.355 g g(-1) dry biomass, 64.7% of theoretical yield), and miscanthus (0.349 g g(-1) dry biomass, 58.1% of theoretical yield). The influence of combined severity factor on the susceptibility of pretreated substrates to enzymatic hydrolysis was clearly discernible, showing that co-hydrolysis is a technically feasible approach to release sugars from lignocellulosic biomass. The oleaginous fungus Mortierella isabellina was selected and applied to the co-hydrolysate mediums to accumulate fungal lipids due to its capability of utilizing both C5 and C6 sugars. Fungal cultivations grown on the co-hydrolysates exhibited comparable cell mass and lipid production to the synthetic medium with pure glucose and xylose. These results elucidated that combining fungal fermentation and co-hydrolysis to accumulate lipids could have the potential to enhance the utilization efficiency of lignocellulosic biomass for advanced biofuels production. PMID:23124976

  7. Non-catalytic steam hydrolysis of fats. Final report

    SciTech Connect

    Deibert, M.C.

    1992-08-28

    Hydrolysis of fats and oils produces fatty acid and glycerol. The catalyzed, liquid phase Colgate-Emry process, state-of-the-art, produces impure products that require extensive energy investment for their purification to commercial grade. Non-catalytic steam hydrolysis may produce products more easily purified. A bench-scale hydrolyzer was designed and constructed to contact descending liquid fat or oil with rising superheated steam. Each of the five stages in the reactor was designed similar to a distillation column stage to promote intimate liquid-gas contact. Degree of hydrolysis achieved in continuous tests using tallow feed were 15% at 280C and 35% at 300C at a tallow-to-steam mass feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300C. Decomposition was strongly evident at 325C but not at lower temperatures. Soybean oil rapidly polymerized under reaction conditions. Batch tests at 320C produced degrees of hydrolyses of between 44% and 63% using tallow and palm oil feeds. Over 95% fatty acids were present in a clean, readily separated organic portion of the overhead product from most tests. The test reactor had serious hydraulic resistance to liquid down-flow which limited operation to very long liquid residence times. These times are in excess of those that tallow and palm oil are stable at the reaction temperature. Little glycerol and extensive light organics were produced indicating that unexplained competing reactions to hydrolysis occurred in the experimental system. Further tests using an improved reactor will be required.

  8. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    SciTech Connect

    Delegard, C.H.; Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K.

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  9. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  10. Advanced inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  11. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions. PMID:25051401

  12. Discovery of Alkaline Volcanic Rocks on Mars

    NASA Astrophysics Data System (ADS)

    McSween, H. Y.; Team, A. S.

    2006-05-01

    Based on remote sensing measurements and the compositions of martian meteorites, the surface of Mars is inferred to be dominated by subalkaline mafic volcanic rocks. However, the Spirit rover has recently discovered lavas of alkalic composition. Picritic (Adirondack class) basalts with high alkali and low silica contents were previously analyzed on the plains of Gusev Crater, and two new classes of dark, fine-grained, relatively unaltered volcanic rocks with distinctive thermal emission spectra have now been found as float and in a possible dike at high elevations in the Columbia Hills. Chemical analyses indicate that these rocks are mildly alkaline basalt and trachybasalt, respectively. Their mineralogy consists of Na- and K-rich feldspar(s), low- and high-Ca pyroxenes, ferroan olivine, Fe-Ti (and possibly Cr) oxides, phosphate, and possibly glass. Chemical compositions of these rocks lie along a MELTS-calculated liquid line of descent for Adirondack class basalt. Systematic changes in normative mineralogy are consistent with the calculated magmatic fractionation. We infer that Backstay- and Irvine-class magmas may have formed by low-pressure fractionation of primitive, oxidized Adirondack-class magmas and were possibly emplaced coevally with the plains basalts. The compositions of these rocks reveal that the Gusev magmatic province is alkaline, distinct from the subalkaline volcanic rocks thought to dominate most of the planet's surface. This discovery may have implications for the composition of the martian mantle source region and the conditions under which it melted.

  13. Solubility of uranium in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.

    1994-03-29

    The solubility of uranium in alkaline salt solutions was investigated to screen for significant factors and interactions among the major salt components and temperature. The components included in the study were the sodium salts of hydroxide, nitrate, nitrite, aluminate, sulfate, and carbonate. General findings from the study included: (1) uranium solubilities are very low (1-20 mg/L) for all solution compositions at hydroxide concentrations from 0.1 to 17 molar (2) carbonate, sulfate, and aluminate are not effective complexants for uranium at high hydroxide concentration, (3) uranium solubility decreases with increasing temperature for most alkaline salt solutions, and (4) uranium solubility increases with changes in solution chemistry that reflect aging of high level waste (increase in nitrite and carbonate concentrations, decrease in nitrate and hydroxide concentrations). A predictive model for the concentration of uranium as a function of component concentrations and temperature was fitted to the data. All of the solution components and temperature were found to be significant. There is a significant lack of fit for the model, which suggests that the dependence on the uranium solubility over the wide range of solution compositions is non-linear and/or that there are other uncontrolled parameters which are important to the uranium solubility.

  14. A kinetic study of hydrolysis of polyester elastomer in magnetic tape

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Watanabe, H.

    1994-01-01

    A useful method for kinetic study of the hydrolysis of polyester elastomer is established which uses the number-average molecular weight. The reasonableness of this method is confirmed and the effect of magnetic particles on hydrolysis is considered.

  15. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    PubMed

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. PMID:26253917

  16. The effect of alkaline agents on retention of EOR chemicals

    SciTech Connect

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  17. Alkalinity and carbon budgets in the Mediterranean Sea

    SciTech Connect

    Copin-Montegut, C. )

    1993-12-01

    The carbon budget of the Mediterranean Sea has never been assessed. This paper reports the results of numerous measurements of pH and alkalinity in the spring of 1991. This concentration in inorganic carbon was deduced from the measurements. The existence of simple relationships between alkalinity and salinity or inorganic carbon and salinity made it possible to assess the budget of alkalinity and carbon in the Mediterranean Sea. 55 refs., 4 figs., 4 tabs.

  18. Digestive Alkaline Proteases from Zosterisessor ophiocephalus, Raja clavata, and Scorpaena scrofa: Characteristics and Application in Chitin Extraction

    PubMed Central

    Nasri, Rim; Younes, Islem; Lassoued, Imen; Ghorbel, Sofiane; Ghorbel-Bellaaj, Olfa; Nasri, Moncef

    2011-01-01

    The aim of this work was to study some biochemical characteristics of crude alkaline protease extracts from the viscera of goby (Zosterisessor ophiocephalus), thornback ray (Raja clavata), and scorpionfish (Scorpaena scrofa), and to investigate their applications in the deproteinization of shrimp wastes. At least four caseinolytic proteases bands were observed in zymogram of each enzyme preparation. The optimum pH for enzymatic extracts activities of Z. ophiocephalus, R. clavata, and S. scrofa were 8.0-9.0, 8.0, and 10.0, respectively. Interestingly, all the enzyme preparations were highly stable over a wide range of pH from 6.0 to 11.0. The optimum temperatures for enzyme activity were 50°C for Z. ophiocephalus and R. clavata and 55°C for S. scrofa crude alkaline proteases. Proteolytic enzymes showed high stability towards non-ionic surfactants (5% Tween 20, Tween 80, and Triton X-100). In addition, crude proteases of S. scrofa, R. clavata, and Z. ophiocephalus were found to be highly stable towards oxidizing agents, retaining 100%, 70%, and 66%, respectively, of their initial activity after incubation for 1 h in the presence of 1% sodium perborate. They were, however, highly affected by the anionic surfactant SDS. The crude alkaline proteases were tested for the deproteinization of shrimp waste in the preparation of chitin. All proteases were found to be effective in the deproteinization of shrimp waste. The protein removals after 3 h of hydrolysis at 45°C with an enzyme/substrate ratio (E/S) of 10 were about 76%, 76%, and 80%, for Z. ophiocephalus, R. clavata, and S. scrofa crude proteases, respectively. These results suggest that enzymatic deproteinization of shrimp wastes by fish endogenous alkaline proteases could be applicable to the chitin production process. PMID:22312476

  19. The corrosion resistance of thermoset composites in alkaline environments

    SciTech Connect

    Kelley, D.H.; Thompson, M.J.

    1998-12-31

    Corrosion engineers need guidelines for selecting thermoset resins for aggressive applications such as hot alkali and alkaline peroxide. The suitability of fiberglass-reinforced plastic (FRP) for alkaline service depends on factors such as the ester content of the resin, the unsaturated monomer composition, and the cure system. The purpose of the present paper is to show the effect of these factors on the alkaline corrosion resistance of FRP and provide corrosion engineers with the guidance needed for selecting the best epoxy vinyl ester resins for alkaline environments.

  20. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in Δ(7)-Sterols.

    PubMed

    Münger, Linda H; Jutzi, Sabrina; Lampi, Anna-Maija; Nyström, Laura

    2015-08-01

    In this study, we present the difference in sterol composition of extracted steryl glycosides (SG) hydrolyzed by either enzymatic or acid hydrolysis. SG were analyzed from foods belonging to the plant families Cucurbitaceae (melon and pumpkin seeds) and Amaranthaceae (amaranth and beetroot), both of which are dominated by Δ(7)-sterols. Released sterols were quantified by gas chromatography with a flame ionization detector (GC-FID) and identified using gas chromatography/mass spectrometry (GC-MS). All Δ(7)-sterols identified (Δ(7)-stigmastenyl, spinasteryl, Δ(7)-campesteryl, Δ(7)-avenasteryl, poriferasta-7,25-dienyl and poriferasta-7,22,25-trienyl glucoside) underwent isomerization under acidic conditions and high temperature. Sterols with an ethylidene or methylidene side chain were found to form multiple artifacts. The artifact sterols coeluted with residues of incompletely isomerized Δ(7)-sterols, or Δ(5)-sterols if present, and could be identified as Δ(8(14))-sterols on the basis of relative retention time, and their MS spectra as trimethylsilyl (TMS) and acetate derivatives. For instance, SG from melon were composed of 66% Δ(7)-stigmastenol when enzymatic hydrolysis was performed, whereas with acid hydrolysis only 8% of Δ(7)-stigmastenol was determined. The artifact of Δ(7)-stigmastenol coeluted with residual non-isomerized spinasterol, demonstrating the high risk of misinterpretation of compositional data obtained after acid hydrolysis. Therefore, the accurate composition of SG from foods containing sterols with a double bond at C-7 can only be obtained by enzymatic hydrolysis or by direct analysis of the intact SG. PMID:25757602

  1. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization.

    PubMed

    Fang, Wei; Zhang, Panyue; Zhang, Guangming; Jin, Shuguang; Li, Dongyi; Zhang, Meixia; Xu, Xiangzhe

    2014-09-01

    To improve anaerobic digestion efficiency, combination pretreatment of alkaline and high pressure homogenization was applied to pretreat sewage sludge. Effect of alkaline dosage on anaerobic sludge digestion was investigated in detail. SCOD of sludge supernatant significantly increased with the alkaline dosage increase after the combined pretreatment because of sludge disintegration. Organics were significantly degraded after the anaerobic digestion, and the maximal SCOD, TCOD and VS removal was 73.5%, 61.3% and 43.5%, respectively. Cumulative biogas production, methane content in biogas and biogas production rate obviously increased with the alkaline dosage increase. Considering both the biogas production and alkaline dosage, the optimal alkaline dosage was selected as 0.04 mol/L. Relationships between biogas production and sludge disintegration showed that the accumulative biogas was mainly enhanced by the sludge disintegration. The methane yield linearly increased with the DDCOD increase as Methane yield (ml/gVS)=4.66 DDCOD-9.69. PMID:24703958

  2. MATHEMATICAL MODELING OF ENZYMATIC HYDROLYSIS OF STARCH: APPLICATION TO FUEL ETHANOL PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymatic hydrolysis of starch in corn is an important step that determines fermentation efficiency. Corn genetics, post harvest handling and process conditions are factors that affect starch hydrolysis. There is a lack of mathematical models for starch hydrolysis in the dry grind corn process tha...

  3. Switching Catalysis from Hydrolysis to Perhydrolysis in Pseudomonas fluorescens Esterase

    SciTech Connect

    Yin, D.; Bernhardt, P; Morley, K; Jiang, Y; Cheeseman, J; Purpero, V; Schrag, J; Kazlauskas, R

    2010-01-01

    Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of {var_epsilon}-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k{sub cat}, but K{sub m} also increased so the specificity constant, k{sub cat}/K{sub m}, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of {var_epsilon}-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access for larger alcohol moieties but binds {var_epsilon}-caprolactone more tightly. These results are consistent with the natural function of perhydrolases being either hydrolysis of peroxycarboxylic acids or hydrolysis of lactones.

  4. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in converting cellulose to fermentable sugars in subcritical and supercritical water differs because of the difference in their activation energies. Cellulose and starch were both hydrolyzed in micro- and tubular reactors and at subcritical and supercritical conditions. Due to the difficulty involved in generating an aqueous based dissolved cellulose and having it reacted in subcritical water, dissolved starch was used instead. Better yield of water soluble hydrolysates, especially fermentable sugars, were observed from the hydrolysis of cellulose and dissolved starch in subcritical water than at supercritical conditions. The concluding phase of this project focuses on establishing the mode of scission of cellulose chains in the hydrothermal reactor. This was achieved by using the simulated degradation pattern generated based on different scission modes to fingerprint the degradation pattern obtained from experiment.

  5. Dolomite Dissolution in Alkaline Cementious Media

    NASA Astrophysics Data System (ADS)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal of Mg2+ as brucite (Mg(OH)2) precipitates. Brucite and calcite were detected insitu by Raman spectroscopy surrounding partially dissolved dolomite grains. Dolomite dissolution under alkaline condition is a dynamic process of dissolution and precipitation stimulated by high Ca2+ content, high ionic strength, low temperature and high pH with the consequence of low Mg2+ concentration. References: Katayama, T., 2004. How to identify carbonate rock reactions in concrete. Materials Characterization 53, 85-104. Parkhurst, D. L., Appelo, C. A. J. 1999. User's guide to PHREEQC. U.S. Geol. Sur.: 312. Schmidt, T., Lothenbach, B., Romer, M., Neuenschwander, J., Scrivener K., 2009. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements. Cement and Concrete Research 39, 1111-1121.

  6. Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology.

    PubMed

    vila-Lara, Abimael I; Camberos-Flores, Jesus N; Mendoza-Prez, Jorge A; Messina-Fernndez, Sarah R; Saldaa-Duran, Claudia E; Jimenez-Ruiz, Edgar I; Snchez-Herrera, Leticia M; Prez-Pimienta, Jose A

    2015-01-01

    Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (?15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3?min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8?min and 8.5% solids loading. PMID:26442260

  7. Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology

    PubMed Central

    Ávila-Lara, Abimael I.; Camberos-Flores, Jesus N.; Mendoza-Pérez, Jorge A.; Messina-Fernández, Sarah R.; Saldaña-Duran, Claudia E.; Jimenez-Ruiz, Edgar I.; Sánchez-Herrera, Leticia M.; Pérez-Pimienta, Jose A.

    2015-01-01

    Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3 min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8 min and 8.5% solids loading. PMID:26442260

  8. Hydrologic analyses of acidic and alkaline lakes

    SciTech Connect

    Chen, C.W.; Gherini, S.A.; Peters, N.E.; Murdoch, P.S.; Newton, R.M.; Goldstein, R.A.

    1984-12-01

    Woods and Panther lakes in the Adirondack Mountains of New York respond differently to the same acidic deposition. A mathematical model study has shown that lake water becomes acidic when hydrologic conditions force precipitation to flow to the lakes as surface flow or as lateral flow through the shallow organic soil horizon. Hydrographic data, capacity of flow through inorganic soil horizons, runoff recession curves, and groundwater level fluctuations of Woods and Panther lake basins provide independent evidence to support the thesis that the acidic state of a lake depends on the paths the tributary water takes as it passes through the terrestrial system. It is concluded that Panther Lake is more alkaline than Woods Lake, because a larger proportion of the precipitation falling on the basin passes through deeper mineral soil horizons.

  9. Hydrologic Analyses of Acidic and Alkaline Lakes

    NASA Astrophysics Data System (ADS)

    Chen, C. W.; Gherini, S. A.; Peters, N. E.; Murdoch, P. S.; Newton, R. M.; Goldstein, R. A.

    1984-12-01

    Woods and Panther lakes in the Adirondack Mountains of New York respond differently to the same acidic deposition. A mathematical model study has shown that lake water becomes acidic when hydrologic conditions force precipitation to flow to the lakes as surface flow or as lateral flow through the shallow organic soil horizon. Hydrographic data, capacity of flow through inorganic soil horizons, runoff recession curves, and groundwater level fluctuations of Woods and Panther lake basins provide independent evidence to support the thesis that the acidic state of a lake depends on the paths the tributary water takes as it passes thorough the terrestrial system. It is concluded thot Panther Lake is more alkaline than Woods Lake, because a larger proportion of the precipitation falling on the basin passes through deeper mineral soil horizons.

  10. Alkaline oxide conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  11. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry; Giner, Jose

    1987-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  12. Alkaline dechlorination of chlorinated volatile organic compounds

    SciTech Connect

    Gu, B.; Siegrist, R.L.

    1996-06-01

    The vast majority of contaminated sites in the United States and abroad are contaminated with chlorinated volatile organic compounds (VOCs) such as trichloroethylene (TCE), trichloroethane (TCA), and chloroform. These VOCs are mobile and persistent in the subsurface and present serious health risks at trace concentrations. The goal of this project was to develop a new chemical treatment system that can rapidly and effectively degrade chlorinated VOCs. The system is based on our preliminary findings that strong alkalis such as sodium hydroxide (NaOH) can absorb and degrade TCE. The main objectives of this study were to determine the reaction rates between chlorinated VOCs, particularly TCE, and strong alkalis, to elucidate the reaction mechanisms and by-products, to optimize the chemical reactions under various experimental conditions, and to develop a laboratory bench- scale alkaline destruction column that can be used to destroy vapor- phase TCE.

  13. Polyvinyl alcohol membranes as alkaline battery separators

    SciTech Connect

    Sheibley, D.W.; Gonzalez-Sanabria, O.; Manzo, M.

    1982-01-01

    Polyvinyl alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  14. Development of an alkaline fuel cell subsystem

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  15. Polyvinyl alcohol membranes as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  16. Enzyme–microbe synergy during cellulose hydrolysis by Clostridium thermocellum

    PubMed Central

    Lu, Yanpin; Zhang, Yi-Heng Percival; Lynd, Lee R.

    2006-01-01

    Specific cellulose hydrolysis rates (g of cellulose/g of cellulase per h) were shown to be substantially higher (2.7- to 4.7-fold) for growing cultures of Clostridium thermocellum as compared with purified cellulase preparations from this organism in controlled experiments involving both batch and continuous cultures. This “enzyme–microbe synergy” requires the presence of metabolically active cellulolytic microbes, is not explained by removal of hydrolysis products from the bulk fermentation broth, and appears due to surface phenomena involving adherent cellulolytic microorganisms. Results support the desirability of biotechnological processes featuring microbial conversion of cellulosic biomass to ethanol (or other products) in the absence of added saccharolytic enzymes. PMID:17060624

  17. Accelerated Hydrolysis of Aspirin Using Alternating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Reinscheid, Uwe M.

    2009-08-01

    The major problem of current drug-based therapy is selectivity. As in other areas of science, a combined approach might improve the situation decisively. The idea is to use the pro-drug principle together with an alternating magnetic field as physical stimulus, which can be applied in a spatially and temporarily controlled manner. As a proof of principle, the neutral hydrolysis of aspirin in physiological phosphate buffer of pH 7.5 at 40 C was chosen. The sensor and actuator system is a commercially available gold nanoparticle (NP) suspension which is approved for animal usage, stable in high concentrations and reproducibly available. Applying the alternating magnetic field of a conventional NMR magnet system accelerated the hydrolysis of aspirin in solution.

  18. Alcohol fermentation of sweet potato. Membrane reactor in enzymatic hydrolysis

    SciTech Connect

    Azhar, A.; Hamdy, M.K.

    1981-06-01

    Use of ultrafiltration membrane systems in stirred cell and in thin-channel systems for immobilizing enzyme (sweet potato intrinsic and crystalline /beta/-amylase) in hydrolysis of sweet potato through a continuous operation mode were studied. Both the filtration rate and reducing sugars, produced as the result of enzymatic hydrolysis, decreased with the filtration time. THe immobilized enzymes in the thin-channel system showed a much better performance compared to that in the stirred cell system. Addition of crystalline sweet potato /beta/-amylase to the sweet potato increased both the filtration rate and reducing-sugars content. Alcoholic fermentation of the filtrate resulted in an alcohol content of 4.2%. This represented fermentation of 95% of the sugars with an efficiency of 88%. 17 refs.

  19. Alcohol fermentation of sweet potato. Membrane reactor in enzymic hydrolysis

    SciTech Connect

    Azhar, A.; Hamdy, M.K.

    1981-01-01

    Use of ultrafiltration membrane systems in stirred cell and in thin-channel systems for immobilizing enzyme (sweet potato intrinsic and crystalline beta-amylase) in hydrolysis of sweet potato through a continuous operation mode were studied. Both the filtration rate and reducing sugars, produced as the result of enzymic hydrolysis, decreased with the filtration time. The immobilized enzymes in the thin-channel system showed a much better performance compared to that in the stirred cell system. Addition of crystalline sweet potato beta-amylase to the sweet potato increased both the filtration rate and reducing-sugars content. Alcohol fermentation of the filtrate resulted in an alcohol content of 4.2%. This represented fermentation of 95% of the sugars with an efficiency of 88%.

  20. Simultaneous pretreatment and enzymatic hydrolysis of forage biomass

    SciTech Connect

    Henk, L.; Linden, J.C.

    1993-12-31

    Sweet sorghum is an attractive fermentation feedstock because as much as 40% of the dry weight consists of readily femented sugars such as sucrose, glucose and frutose. Cellulose and hemicellulose comprise another 50%. However, if this material is to be used a year-round feedstock for ethanol production, a stable method of storage must be developed to maintain the sugar content. A modified version of the traditional ensiling process is made effective by the addition of cellulolytic/hemicellulolytic enzymes and lactic acid bacteria to freshly chopped sweet sorghum prior to the production of silage. In situ hydrolysis of cellulose and hemicellulose occurs concurrently with the acidic ensiling fementation. By hydolyzing the acetyl groups using acetyl xylan esterase and 3-0-methyl glucuronyl side chains using pectinase from hemicellulose, cellulose becomes accessible to hydrolysis by cellulase, both during in situ ensiling with enzymes and in the simultaneous saccharification and fermentation (SSF) to ethanol.

  1. Investigation of the Polymorphs and Hydrolysis of Uranium Trioxide

    SciTech Connect

    Sweet, Lucas E.; Blake, Thomas A.; Henager, Charles H.; Hu, Shenyang Y.; Johnson, Timothy J.; Meier, David E.; Peper, Shane M.; Schwantes, Jon M.

    2013-04-01

    This work focuses on progress in gaining a better understanding of the polymorphic nature of the UO3-water system, one of several important materials associated with the nuclear fuel cycle. The UO3-water system is complex and has not been fully characterized, even though these species are common throughout the fuel cycle. Powder x-ray diffraction, Raman and fluorescence characterization was performed on polymorphic forms of UO3 and UO3 hydrolysis products for the purpose of developing some predictive capability of estimating process history and utility, e.g. for polymorphic phases of unknown origin. Specifically, we have investigated three industrially relevant production pathways of UO3 and discovered a previously unknown low temperature route to β-UO3. Pure phases of UO3, hydrolysis products and starting materials were used to establish optical spectroscopic signatures for these compounds.

  2. Snapshots of the maltose transporter during ATP hydrolysis

    SciTech Connect

    Oldham, Michael L.; Chen, Jue

    2011-12-05

    ATP-binding cassette transporters are powered by ATP, but the mechanism by which these transporters hydrolyze ATP is unclear. In this study, four crystal structures of the full-length wild-type maltose transporter, stabilized by adenosine 5{prime}-({beta},{gamma}-imido)triphosphate or ADP in conjunction with phosphate analogs BeF{sub 3}{sup -}, VO{sub 4}{sup 3-}, or AlF{sub 4}{sup -}, were determined to 2.2- to 2.4-{angstrom} resolution. These structures led to the assignment of two enzymatic states during ATP hydrolysis and demonstrate specific functional roles of highly conserved residues in the nucleotide-binding domain, suggesting that ATP-binding cassette transporters catalyze ATP hydrolysis via a general base mechanism.

  3. Catalysis of a Flavoenzyme-Mediated Amide Hydrolysis

    SciTech Connect

    Mukherjee, Tathagata; Zhang, Yang; Abdelwahed, Sameh; Ealick, Steven E.; Begley, Tadhg P.

    2010-09-13

    A new pyrimidine catabolic pathway (the Rut pathway) was recently discovered in Escherichia coli K12. In this pathway, uracil is converted to 3-hydroxypropionate, ammonia, and carbon dioxide. The seven-gene Rut operon is required for this conversion. Here we demonstrate that the flavoenzyme RutA catalyzes the initial uracil ring-opening reaction to give 3-ureidoacrylate. This reaction, while formally a hydrolysis reaction, proceeds by an oxidative mechanism initiated by the addition of a flavin hydroperoxide to the C4 carbonyl. While peroxide-catalyzed amide hydrolysis has chemical precedent, we are not aware of a prior example of analogous chemistry catalyzed by flavin hydroperoxides. This study further illustrates the extraordinary catalytic versatility of the flavin cofactor.

  4. Simultaneous hydrolysis-esterification of wet microalgal lipid using acid.

    PubMed

    Takisawa, Kenji; Kanemoto, Kazuyo; Kartikawati, Muliasari; Kitamura, Yutaka

    2013-12-01

    This research demonstrated hydrolysis of wet microalgal lipid and esterification of free fatty acid (FFA) using acid in one-step process. The investigation of simultaneous hydrolysis-esterification (SHE) of wet microalgal lipid was conducted by using L27 orthogonal design and the effects of water content, volume of sulphuric acid, volume of methanol, temperature and time on SHE were examined. As a result, water content was found to be the most effective factor. The effects of various parameters on fatty acid methyl ester (FAME) content and equilibrium relation between FAME and FFA were also examined under water content 80%. Equimolar amounts of sulphuric acid and hydrochloric acid showed similar results. This method has great potential in terms of biodiesel production from microalgae since no organic solvents are used. PMID:24080318

  5. Thermal hydrolysis of secondary scum for control of biological foam.

    PubMed

    Jolis, Domènec; Marneri, Matina

    2006-08-01

    Thermal hydrolysis of secondary scum at 9 bars and 170 degrees C was shown to completely destroy Gordonia sp. cells and reduce its foaming potential, so that it can be recycled to headworks or sent to the solids-handling side of the plant without the risk of causing foaming problems in the activated sludge system and anaerobic digesters. This process shows promise for biological foam control in wastewater treatment plants where solids retention time control and selective wasting cannot be applied and/or selector installation is not possible. An initial cost comparison of thermal hydrolysis and several widely accepted foam-management strategies shows it to be competitive; however, optimization of operating pressure and temperature is necessary. PMID:17059137

  6. Hydrolysis of flavonoid glycosides by propolis β-glycosidase.

    PubMed

    Zhang, Cui-Ping; Liu, Gang; Hu, Fu-Liang

    2012-01-01

    Flavonoids generally occur as O-glycosides with sugars bound in nature, while aglycones and their derivatives are the main flavonoids in propolis. The objective of this work was to study the propolis β-glycosidase activities toward flavonoid β-glycosides and their conjugated forms. β-Glycosidase was extracted from propolis, incubated with flavonoid glycosides, and analysed for aglycone formation by HPLC. The results demonstrated that glucose conjugates were rapidly hydrolysed, but not conjugates with other sugars, i.e. rutin and naringin. The rate and extent of deglycosylation depends on the structure of the flavonoid and the position of the sugar substituitions. Quercetin 3-O-glucoside had the highest percent of hydrolysis, while quercetin 7-O-glucoside was the least hydrolysed. The K(m) values for hydrolysis of apigenin 7-glucoside and luteolin-7-O-glucoside were 13 µM and 20 µM, respectively. PMID:21851328

  7. Role of bifidobacteria in the hydrolysis of chlorogenic acid

    PubMed Central

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-01-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. PMID:25515139

  8. Novel agents for enzymatic and fungal hydrolysis of stevioside

    PubMed Central

    Milagre, H.M.S.; Martins, L.R.; Takahashi, J.A.

    2009-01-01

    A comparative study on the potential of some biological agents to perform the hydrolysis of stevioside was carried out, aiming at establishing an alternative methodology to achieve the aglycon steviol or its rearranged derivative isosteviol, in high yields to be used in the preparation of novel bioactive compounds. Hydrolysis reactions were performed by using filamentous fungi (Aspergillus niger, Rhizopus stolonifer and Rhizopus arrhizus), a yeast (Saccharomyces cerevisiae) and enzymes (pancreatin and lipases PL250 and VFL 8000). Pancreatin showed the best hydrolytic activity, furnishing isosteviol at 93.9% of yield, at pH 4.0, using toluene as a co-solvent. Steviol was produced using both pancreatin at pH 7.0 (20.2% yield) and A. niger at pH 7 (20.8% yield). PMID:24031374

  9. Enzymatic hydrolysis and fermentation of agricultural residues to ethanol

    SciTech Connect

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1984-01-01

    A combined enzymatic hydrolysis and fermentation process was used to convert steam-treated wheat and barley straw to ethanol. Maximum conversion efficiencies were obtained when the substrates were steamed for 90 s. These substrates could yield over 0.4 g ethanol/g cellulose following a combined enzymatic hydrolysis and fermentation process procedure using culture filtrates derived from Trichoderma harzianum E58. When culture filtrates from Trichoderma reesei C30 and T. reesei QM9414 were used, the ethanol yields obtained were 0.32 and 0.12 g ethanol/g cellulose utilized, respectively. The lower ethanol yields obtained with these strains were attributed to the lower amounts of ..beta..-glucosidase detected in the T. reesei culture filtrates.

  10. Enzymatic hydrolysis of cellulosic materials: a kinetic study

    SciTech Connect

    Beltrame, P.L.; Carniti, P.; Focher, B.; Marzetti, A.; Sarto, V.

    1984-01-01

    A kinetic study of the enzymatic hydrolysis of two celluloses with different structural features was performed at various temperatures (26-50/sup 0/C). The enzymatic system consisted of three types of enzymes: E/sub 1/-..beta..-1,4-glucan glucanohydrolase; E/sub 2/-..beta..-1,4-glucan cellobiohydrolase; and E/sub 3/-..beta..-glucosidase. A mathematical model for the mechanism of the hydrolysis of cellulosic materials catalyzed by a multienzymatic system was checked and a good rationalization of the experimental results was achieved. Uncompetitive and competitive glucose inhibition on E/sub 1/ and E/sub 2/, respectively, appeared to occur for both substrates. Inhibition by cellobiose was checked at 34/sup 0/C on one substrate. The V/sub max/, K/sub m/, and glucose inhibition constants were optimized and their dependence on temperature determined.

  11. The Nickel(111)/Alkaline Electrolyte Interface

    NASA Technical Reports Server (NTRS)

    Wang, Kuilong; Chottiner, G. S.; Scherson, D. A.; Reid, Margaret A.

    1991-01-01

    The electrochemical properties of Ni (111) prepared and characterized in ultra high vacuum, UHV, by surface analytical techniques have been examined in alkaline media by cyclic voltammetry using an UHV-electrochemical cell transfer system designed and built in this laboratory. Prior to the transfer, the Ni(111) surfaces were exposed to saturation coverages of CO in UHV in an attempt to protect the surface from possible contamination with other gases during the transfer. Temperature Programmed Desorption, TPD, of CO-dosed Ni (111) surfaces displaying sharp c(4x2), LEED patterns, subsequently exposed to water-saturated Ar at atmospheric pressure in an auxiliary UHV compatible chamber and finally transferred back to the main UHV chamber, yielded CO2 and water as the only detectable products. This indicates that the CO-dosed surfaces react with water and/or bicarbonate and hydroxide as the most likely products. Based on the integration of the TPD peaks, the combined amounts of H2O and CO2 were found to be on the order of a single monolayer. The reacted c(4x2)CO/Ni(111) layer seems to protect the surface from undergoing spontaneous oxidation in strongly alkaline solutions. This was evidenced by the fact that the open circuit potential observed immediately after contact with deaerated 0.1 M KOH was about 0.38 V vs. DHE, drifting slightly towards more negative values prior to initiating the voltametric scans. The average ratio of the integrated charge obtained in the first positive linear scan in the range of 0.35 to 1.5 V vs. DHE (initiated at the open circuit potential) and the first (and subsequent) linear negative scans in the same solution yielded for various independent runs a value of 3.5 +/- 0.3. Coulometric analysis of the cyclic voltammetry curves indicate that the electrochemically formed oxyhydroxide layer involves a charge equivalent to 3.2 +/- 0.4 layers of Ni metal.

  12. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes

    PubMed Central

    2012-01-01

    Background For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP) pretreatment and subsequent enzymatic deconstruction. Results We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility) of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88–95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. Conclusions It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses exhibiting a diversity of lignin structures and compositions could be linked to quantifiable changes in the composition of the cell wall and properties of the lignin including apparent content of the p-hydroxycinnamates while the limitations of S/G estimation in grasses is highlighted. PMID:22672858

  13. DWPF integrated cold runs revised technical bases for precipitate hydrolysis

    SciTech Connect

    Landon, L.F.

    1992-06-01

    The report defines new precipitate hydrolysis process operating parameters for DWPF Chemical runs assuming the precipitate feed simulants to be processed reflect the decision to implement a final wash of the tetraphenylborate slurry before transfer to DWPF (i.e. the Late Wash Facility). Control of the nitrite content of the tetraphenylborate slurry to 0.01M or less has eliminated the need for hydroxylamine nitrate (HAN) during hydrolysis. Consequently, the oxidant nitrous oxide will not be generated. However, nitric oxide (NO) is expected to be generated (reaction of formic acid with nitrite) and some fraction of the NO can be expected to be oxidized to nitrogen dioxide. The rate of NO generation with low nitrite feed has not been quantified at this time nor is the extent to which the NO is oxidized to NO{sub 2} known. A mass spectrometer is being installed in the Precipitate Hydrolysis Experimental Facility (PHEF) which will enable the NO generation rate to be defined as well as the extent to which the NO is oxidized to NO{sub 2}. There is some undocumented data available for C{sub 6}H{sub 6}/NO and C{sub 6}H{sub 6}/NO{sub 2} with N{sub 2} as the diluent but no similar data for CO{sub 2}. Development of test data in the required time frame is not possible. However, MOC`s will be estimated for benzene/NO/NO{sub 2}/CO{sub 2} gas mixtures (the MOC is expected to be approximately 60% less than for the HAN process). Once these data are obtained, and NO/NO{sub 2} concentration profiles are obtained from PHEF hydrolysis process demonstrations, a flammability control strategy for the DWPF Salt Processing Cell will be developed. Implementation of the HAN process purge strategy upon startup of the SPC with the late wash process would be conservative.

  14. Allergenicity of Peanut Proteins is Retained Following Enzymatic Hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rationale: Hydrolysis of peanut proteins by food-grade enzymes may reduce allergenicity and could lead to safer forms of immunotherapy. Methods: Light roasted peanut flour extracts were digested with pepsin (37°C, pH 2), Alcalase (60°C pH 8), or Flavourzyme (50°C, pH 7) up to 1 hr, or sequentially w...

  15. Fructan Hydrolysis Drives Petal Expansion in the Ephemeral Daylily Flower.

    PubMed Central

    Bieleski, R. L.

    1993-01-01

    Dry weight, water content, soluble carbohydrate content, and carbohydrate composition of daylily (Hemerocallis hybrid cv Cradle Song) flower petals were monitored in the 3 d leading up to full opening and in the first day of senescence. Timing of events was related to the time (hour 0) when flower expansion was 60% complete. Petal dry weight increased linearly from hour -62 (tight bud) to hour 10 (fully developed flower), then fell rapidly to hour 34 as senescence advanced. Increase in water content was proportional to dry weight increase from hour -62 to hour -14, but was more rapid as the bud cracked and the flower opened, giving an increase in fresh weight/dry weight ratio. Soluble carbohydrate was 50% of petal dry weight up to hour 10, then decreased during senescence to reach 4% by hour 34. Up until hour -14, fructan accounted for 80% of the soluble carbohydrate in the petals, whereas hexose accounted for only 2%. Fructan hydrolysis started just prior to bud crack at hour -14, reaching completion by hour 10 when no detectable fructan remained, and fructose plus glucose accounted for more than 80% of the total soluble carbohydrate. The proportion of sucrose remained constant throughout development. Osmolality of petal cell sap increased significantly during fructan hydrolysis, from 0.300 to 0.340 osmolal. Cycloheximide applied to excised buds between hour -38 and hour -14 halted both fructan hydrolysis and flower expansion. The findings suggest that onset of fructan hydrolysis, with the concomitant large increase in osmoticum, is an important event driving flower expansion in daylily. PMID:12231928

  16. Evaluation of disk method for hippurate hydrolysis by Campylobacter species.

    PubMed Central

    Nicholson, M A; Patton, C M

    1995-01-01

    A disk method for hippurate hydrolysis was compared with the ninhydrin tube method by using 140 genetically confirmed Campylobacter strains. Results were similar for 129 (92%) strains when the inoculum size for the disk method was standardized. Six strains (4.2%) showed variable results by each method. Our results conflict with those obtained in studies by others, who found the two methods to be dissimilar. PMID:7615752

  17. Endo-exo Synergism in Cellulose Hydrolysis Revisited*

    PubMed Central

    Jalak, Jürgen; Kurašin, Mihhail; Teugjas, Hele; Väljamäe, Priit

    2012-01-01

    Synergistic cooperation of different enzymes is a prerequisite for efficient degradation of cellulose. The conventional mechanistic interpretation of the synergism between randomly acting endoglucanases (EGs) and chain end-specific processive cellobiohydrolases (CBHs) is that EG-generated new chain ends on cellulose surface serve as starting points for CBHs. Here we studied the hydrolysis of bacterial cellulose (BC) by CBH TrCel7A and EG TrCel5A from Trichoderma reesei under both single-turnover and “steady state” conditions. Unaccountable by conventional interpretation, the presence of EG increased the rate constant of TrCel7A-catalyzed hydrolysis of BC in steady state. At optimal enzyme/substrate ratios, the “steady state” rate of synergistic hydrolysis became limited by the velocity of processive movement of TrCel7A on BC. A processivity value of 66 ± 7 cellobiose units measured for TrCel7A on 14C-labeled BC was close to the leveling off degree of polymerization of BC, suggesting that TrCel7A cannot pass through the amorphous regions on BC and stalls. We propose a mechanism of endo-exo synergism whereby the degradation of amorphous regions by EG avoids the stalling of TrCel7A and leads to its accelerated recruitment. Hydrolysis of pretreated wheat straw suggested that this mechanism of synergism is operative also in the degradation of lignocellulose. Although both mechanisms of synergism are used in parallel, the contribution of conventional mechanism is significant only at high enzyme/substrate ratios. PMID:22733813

  18. Facilitated transport of alkaline and alkaline earth metals through liquid membranes with acidic extractants

    SciTech Connect

    Kocherginsky, N.M.; Stucki, J.W.

    1995-12-01

    The removal of radioactive Cs and Sr from the liquid waste of nuclear plants is an important problem for both the defense arid the energy industries. Experiments with bulk liquid membranes and liquid membranes, immobilized on porous support, demonstrated the applicability of these systems for active transport of alkaline cations and Sr from alkaline to acidic solution against the concentration gradient of the metal. The mechanism of transport facilitated by fatty acids for alkali metals, or by di-2-ethylhexyl phosphoric acid for Sr in the presence of Ca and EDTA, corresponds to the {open_quotes}big carrousel{close_quotes} model, according to which the carrier is distributed between the membrane and aqueous solutions, where metal/H{sup +}- ion exchange takes place. The rate limiting step is the reextraction of Sr from the membrane into the acceptor (acidic) solution and is determined by the diffusion of the protonated carrier from the stripping acidic solution through the corresponding unstirred layer.

  19. Fatty acid hydrolysis of acyl marinobactin siderophores by Marinobacter acylases.

    PubMed

    Kem, Michelle P; Naka, Hiroaki; Iinishi, Akira; Haygood, Margo G; Butler, Alison

    2015-01-27

    The marine bacteria Marinobacter sp. DS40M6 and Marinobacter nanhaiticus D15-8W produce a suite of acyl peptidic marinobactin siderophores to acquire iron under iron-limiting conditions. During late-log phase growth, the marinobactins are hydrolyzed to form the marinobactin headgroup with release of the corresponding fatty acid tail. The bntA gene, a homologue of the Pseudomonas aeruginosa pyoverdine acylase gene, pvdQ, was identified from Marinobacter sp. DS40M6. A bntA knockout mutant of Marinobacter sp. DS40M6 produced the suite of acyl marinobactins A-E, without the usual formation of the marinobactin headgroup. Another marinobactin-producing species, M. nanhaiticus D15-8W, is predicted to have two pvdQ homologues, mhtA and mhtB. MhtA and MhtB have 67% identical amino acid sequences. MhtA catalyzes hydrolysis of the apo-marinobactin siderophores as well as the quorum sensing signaling molecule, dodecanoyl-homoserine lactone. In contrast to hydrolysis of the suite of apo-marinobactins by MhtA, hydrolysis of the iron(III)-bound marinobactins was not observed. PMID:25588131

  20. Enzymatic catalyzed palm oil hydrolysis under ultrasound irradiation: diacylglycerol synthesis.

    PubMed

    Awadallak, Jamal A; Voll, Fernando; Ribas, Marielen C; da Silva, Camila; Filho, Lucio Cardozo; da Silva, Edson A

    2013-07-01

    Diacylglycerol (DAG) rich oils have an organoleptic property like that of regular edible oils, but these oils do not tend to be accumulated as fat. Palm oil ranks first in the world in terms of edible oil production owing to its low cost. The aim of this study was to propose a new methodology to produce diacylglycerol by hydrolysis of palm oil using Lipozyme RM IM commercial lipase as a catalyst under ultrasound irradiation. The reactions were carried out at 55 °C with two different methods. First, the reaction system was exposed to ultrasonic waves for the whole reaction time, which led to enzymatic inactivation and water evaporation. Ultrasound was then used to promote emulsification of the water/oil system before the hydrolysis reaction, avoiding contact between the probe and the enzymes. An experimental design was used to optimize the ultrasound-related parameters and maximize the hydrolysis rate, and in these conditions, with a change in equilibrium, DAG production was evaluated. Better reaction conditions were achieved for the second method: 11.20 wt.% (water+oil mass) water content, 1.36 wt.% (water+oil mass) enzyme load, 12 h of reaction time, 1.2 min and 200 W of exposure to ultrasound. In these conditions diacylglycerol yield was 34.17 wt.%. PMID:23402907

  1. Programmed Hydrolysis in Designing Paclitaxel Prodrug for Nanocarrier Assembly

    PubMed Central

    Fu, Q.; Wang, Y.; Ma, Y.; Zhang, D.; Fallon, J. K.; Yang, X.; Liu, D.; He, Z.; Liu, F.

    2015-01-01

    Nanocarriers delivering prodrugs are a way of improving in vivo effectiveness and efficiency. For therapeutic efficacy, the prodrug must hydrolyze to its parent drug after administration. Based on the fact that the hydrolysis is impeded by steric hindrance and improved by sufficient polarity, in this study, we proposed the PTX-S-S-VE, the conjugation of paclitaxel (PTX) to vitamin E (VE) through a disulfide bridge. This conjugate possessed the following advantages: first, it can be encapsulated in the VE/VE2-PEG2000/water nanoemulsions because of favorable hydrophobic interactions; second, the nanoemulsions had a long blood circulation time; finally, the concentrated glutathione in the tumor microenvironment could cleave the disulfide bond to weaken the steric hindrance and increase the polarity, promoting the hydrolysis to PTX and increasing the anticancer activity. It was demonstrated in vitro that the hydrolysis of PTX-S-S-VE was enhanced and the cytotoxicity was increased. In addition, PTX-S-S-VE had greater anticancer activity against the KB-3-1 cell line tumor xenograft and the tumor size was smaller after the 4th injection. The present result suggests a new way, use of reduction, to improve the in vivo anticancer activity of a prodrug for nanocarrier delivery by unshielding the ester bond and taking off the steric block. PMID:26166066

  2. Treatment of heterotopic ossification through remote ATP hydrolysis

    PubMed Central

    Peterson, Jonathan R.; De La Rosa, Sara; Eboda, Oluwatobi; Cilwa, Katherine E.; Agarwal, Shailesh; Buchman, Steven R.; Cederna, Paul S.; Xi, Chuanwu; Morris, Michael D.; Herndon, David N.; Xiao, Wenzhong; Tompkins, Ronald G.; Krebsbach, Paul H.; Wang, Stewart C.; Levi, Benjamin

    2015-01-01

    Heterotopic ossification (HO) is the pathologic development of ectopic bone in soft tissues because of a local or systemic inflammatory insult, such as burn injury or trauma. In HO, mesenchymal stem cells (MSCs) are inappropriately activated to undergo osteogenic differentiation. Through the correlation of in vitro assays and in vivo studies (dorsal scald burn with Achilles tenotomy), we have shown that burn injury enhances the osteogenic potential of MSCs and causes ectopic endochondral heterotopic bone formation and functional contractures through bone morphogenetic protein–mediated canonical SMAD signaling. We further demonstrated a prevention strategy for HO through adenosine triphosphate (ATP) hydrolysis at the burn site using apyrase. Burn site apyrase treatment decreased ATP, increased adenosine 3′,5′-monophosphate, and decreased phosphorylation of SMAD1/5/8 in MSCs in vitro. This ATP hydrolysis also decreased HO formation and mitigated functional impairment in vivo. Similarly, selective inhibition of SMAD1/5/8 phosphorylation with LDN-193189 decreased HO formation and increased range of motion at the injury site in our burn model in vivo. Our results suggest that burn injury–exacerbated HO formation can be treated through therapeutics that target burn site ATP hydrolysis and modulation of SMAD1/5/8 phosphorylation. PMID:25253675

  3. Hydrolysis of whey protein isolate using subcritical water.

    PubMed

    Espinoza, Ashley D; Morawicki, Rubén O; Hager, Tiffany

    2012-01-01

    Hydrolyzed whey protein isolate (WPI) is used in the food industry for protein enrichment and modification of functional properties. The purpose of the study was to determine the feasibility of subcritical water hydrolysis (SWH) on WPI and to determine the temperature and reaction time effects on the degree of hydrolysis (DH) and the production of peptides and free amino acids (AAs). Effects of temperature (150 to 320 °C) and time (0 to 20 min) were initially studied with a central composite rotatable design followed by a completely randomized factorial design with temperature (250 and 300 °C) and time (0 to 50 min) as factors. SWH was conducted in an electrically heated, 100-mL batch, high pressure vessel. The DH was determined by a spectrophotometric method after derivatization. The peptide molecular weights (MWs) were analyzed by gel electrophoresis and mass spectrometry, and AAs were quantified by high-performance liquid chromotography. An interaction of temperature and time significantly affected the DH and AA concentration. As the DH increased, the accumulation of lower MW peptides also increased following SWH (and above 10% DH, the majority of peptides were <1000 Da). Hydrolysis at 300 °C for 40 min generated the highest total AA concentration, especially of lysine (8.894 mg/g WPI). Therefore, WPI was successfully hydrolyzed by subcritical water, and with adjustment of treatment parameters there is reasonable control of the end-products. PMID:22122092

  4. Hydrolysis of organonitrate functional groups in aerosol particles

    SciTech Connect

    Liu, Shang; Shilling, John E.; Song, Chen; Hiranuma, Naruki; Zaveri, Rahul A.; Russell, Lynn M.

    2012-10-19

    Organonitrate (ON) groups are important substituents in secondary organic aerosols. Model simulations and laboratory studies indicate a large fraction of ON groups in aerosol particles, but much lower quantities are observed in the atmosphere. Hydrolysis of ON groups in aerosol particles has been proposed recently. To test this hypothesis, we simulated formation of ON molecules in a reaction chamber under a wide range of relative humidity (0% to 90%). The mass fraction of ON groups (5% to 20% for high-NOx experiments) consistently decreased with increasing relative humidity, which was best explained by hydrolysis of ON groups at a rate of 4 day-1 (lifetime of 6 hours) for reactions under relative humidity greater than 20%. In addition, we found that secondary nitrogen-containing molecules absorb light, with greater absorption under dry and high-NOx conditions. This work provides the first evidence for particle-phase hydrolysis of ON groups, a process that could substantially reduce ON group concentration in the atmosphere.

  5. Enzymatic hydrolysis of defatted mackerel protein with low bitter taste

    NASA Astrophysics Data System (ADS)

    Hou, Hu; Li, Bafang; Zhao, Xue

    2011-03-01

    Ultrasound-assisted solvent extraction was confirmed as a novel, effective method for separating lipid from mackerel protein, resulting in a degreasing rate (DR) of 95% and a nitrogen recovery (NR) of 88.6%. To obtain protein hydrolysates with high nitrogen recovery and low bitter taste, enzymatic hydrolysis was performed using eight commercially available proteases. It turned out that the optimum enzyme was the `Mixed enzymes for animal proteolysis'. An enzyme dosage of 4%, a temperature of 50°, and a hydrolysis time of 300 min were found to be the optimum conditions to obtain high NR (84.28%) and degree of hydrolysis (DH, 16.18%) by orthogonal experiments. Glutamic acid was the most abundant amino acid of MDP (defatted mackerel protein) and MDPH (defatted mackerel protein hydrolysates). Compared with the FAO/WHO reference protein, the essential amino acid chemical scores (CS) were greater than 1.0 (1.0-1.7) in MDPH, which is reflective of high nutritional value. This, coupled with the light color and slight fishy odor, indicates that MDPH would potentially have a wide range of applications such as nutritional additives, functional ingredients, and so on.

  6. Pretreatment for cellulose hydrolysis by carbon dioxide explosion

    SciTech Connect

    Zheng, Y.; Lin, H.M.; Tsao, G.T.

    1998-11-01

    Cellulosic materials were treated with supercritical carbon dioxide to increase the reactivity of cellulose, thereby to enhance the rate and the extent of cellulose hydrolysis. In this pretreatment process, the cellulosic materials such as Avicel, recycled paper mix, sugarcane bagasse and the repulping waste of recycled paper are placed in a reactor under pressurized carbon dioxide at 35 C for a controlled time period. Upon an explosive release of the carbon dioxide pressure, the disruption of the cellulosic structure increases the accessible surface area of the cellulosic substrate to enzymatic hydrolysis. Results indicate that supercritical carbon dioxide is effective for pretreatment of cellulose. An increase in pressure facilitates the faster penetration of carbon dioxide molecules into the crystalline structures, thus more glucose is produced from cellulosic materials after the explosion as compared to those without the pretreatment. This explosion pretreatment enhances the rate of cellulosic material hydrolysis as well as increases glucose yield by as much as 50%. Results from the simultaneous saccharification and fermentation tests also show the increase in the available carbon source from the cellulosic materials for fermentation to produce ethanol. As an alternative method, this supercritical carbon dioxide explosion has a possibility to reduce expense compared with ammonia explosion, and since it is operated at the low temperature, it will not cause degradation of sugars such as those treated with steam explosion due to the high-temperature involved.

  7. A single molecule study of cellulase hydrolysis of crystalline cellulose

    NASA Astrophysics Data System (ADS)

    Liu, Yu-San; Luo, Yonghua; Baker, John O.; Zeng, Yining; Himmel, Michael E.; Smith, Steve; Ding, Shi-You

    2010-02-01

    Cellobiohydrolase-I (CBH I), a processive exoglucanase secreted by Trichoderma reesei, is one of the key enzyme components in a commercial cellulase mixture currently used for processing biomass to biofuels. CBH I contains a family 7 glycoside hydrolase catalytic module, a family 1 carbohydrate-binding module (CBM), and a highlyglycosylated linker peptide. It has been proposed that the CBH I cellulase initiates the hydrolysis from the reducing end of one cellulose chain and successively cleaves alternate β-1,4-glycosidic bonds to release cellobiose as its principal end product. The role each module of CBH I plays in the processive hydrolysis of crystalline cellulose has yet to be convincingly elucidated. In this report, we use a single-molecule approach that combines optical (Total Internal Reflection Fluorescence microscopy, or TIRF-M) and non-optical (Atomic Force Microscopy, or AFM) imaging techniques to analyze the molecular motion of CBM tagged with green fluorescence protein (GFP), and to investigate the surface structure of crystalline cellulose and changes made in the structure by CBM and CBH I. The preliminary results have revealed a confined nanometer-scale movement of the TrCBM1-GFP bound to cellulose, and decreases in cellulose crystal size as well as increases in surface roughness during CBH I hydrolysis of crystalline cellulose.

  8. Whey protein isolate polydispersity affects enzymatic hydrolysis outcomes.

    PubMed

    O'Loughlin, I B; Murray, B A; Brodkorb, A; FitzGerald, R J; Robinson, A A; Holton, T A; Kelly, P M

    2013-12-01

    The effects of heat-induced denaturation of whey protein isolate (WPI) on the enzymatic breakdown of α-La, caseinomacropeptide (CMP), β-Lg A and β-Lg B were observed as hydrolysis proceeded to a 5% degree of hydrolysis (DH) in both unheated and heat-treated (80 °C, 10 min) WPI dispersions (100 g L(-1)). Hydrolysis of denatured WPI favoured the generation of higher levels of free essential amino acids; lysine, phenylalanine and arginine compared to the unheated substrate. LC-MS/MS identified 23 distinct peptides which were identified in the denatured WPI hydrolysate - the majority of which were derived from β-Lg. The mapping of the detected regions in α-La, β-Lg, and CMP enabled specific cleavage points to be associated with certain serine endo-protease activities. The outcomes of the study emphasise how a combined approach of substrate heat pre-treatment and enzymology may be used to influence proteolysis with attendant opportunities for targeting unique peptide production and amino acid release. PMID:23870966

  9. Thiogalactopyranosides are resistant to hydrolysis by α-galactosidases.

    PubMed

    Adlercreutz, Dietlind; Yoshimura, Yayoi; Mannerstedt, Karin; Wakarchuk, Warren W; Bennett, Eric P; Dovichi, Norman J; Hindsgaul, Ole; Palcic, Monica M

    2012-07-23

    Fluorescently tagged glycosides containing terminal α(1→3) and α(1→4)-linked thiogalactopyranosides have been prepared and tested for resistance to hydrolysis by α-galactosidases. Eight fluorescent glycosides containing either galactose or 5-thiogalactose as the terminal sugar were enzymatically synthesized using galactosyltransferases, with lactosyl glycosides as acceptors and UDP-galactose or UDP-5'-thiogalactose, respectively, as donors. The glycosides were incubated with human α-galactosidase A (CAZy family GH27, a retaining glycosidase), Bacteroides fragilis α-1,3-galactosidase (GH110, an inverting glycosidase), or homogenates of MCF-7 human breast cancer cells or NG108-15 rat glioma cells. Substrate hydrolysis was monitored by capillary electrophoresis with fluorescence detection. All compounds containing terminal O-galactose were readily degraded. Their 5-thiogalactose counterparts were resistant to hydrolysis by human α-galactosidase A and the enzymes present in the cell extracts. B. fragilis α-1,3-galactosidase hydrolyzed both thio- and O-galactoside substrates; however, the thiogalactosides were hydrolyzed at only 1-3 % of the rate of O-galactosides. The hydrolytic resistance of 5-thiogalactose was also confirmed by an in vivo study using cells in culture. The results suggest that 5-thiogalactosides may be useful tools for the study of anabolic pathways in cell extracts or in single cells. PMID:22740420

  10. Characterization of ester hydrolysis in terms of microscopic rate constants.

    PubMed

    Noszl, Bla; Visky, Dra; Kraszni, Mrta

    2006-07-27

    Hydroxide-catalyzed ester hydrolysis for molecules of coexisting species is quantitated in terms of microscopic rate constants, a new, species-specific physicochemical parameter. Relationships between the overall and component reactions, as well as the macroscopic and microscopic rate constants are deduced. Experimental techniques, evaluation methods, and feasibility are discussed. Species-specific, pH-independent rate constants of four coexisting, differently hydrolyzing microspecies are determined for the first time. Protonation of an alpha-amino and beta-imidazolyl site in amino acid esters has been found to accelerate the hydroxide-catalyzed hydrolysis by factors of 120 and 7.5, respectively, whereas they jointly exert a nearly 3000-fold acceleration. A total of 20 microscopic protonation equilibrium constants, as component parameters in the rate equations, have also been determined. The species-specific rate constants have been found to correlate with the site- and species-specific basicity of the leaving group and the NMR chemical shift of an adjacent proton. Individual contributions of the various microforms to the overall hydrolysis rate are depicted in microscopic reaction fraction diagrams. PMID:16854163

  11. A new route to improved glucose yields in cellulose hydrolysis

    SciTech Connect

    Zhao, Haibo; Holladay, John E.; Kwak, Ja Hun; Zhang, Z. Conrad

    2007-08-01

    An unusual inverse temperature-dependent pathway was discovered for cellulose decrystallization in trifluoroacetic acid (TFA). Cellulose was completely decrystallized by TFA at 0 °C in less than 2 hours, a result not achieved in 48 hours at 25°C in the same medium. The majority of TFA used in cellulose decrystallization was recycled via a vacuum process. The small remaining amount of TFA was diluted with water to make a 0.5% TFA solution and used as a catalyst in dilute acid hydrolysis. After one minute, under batch conditions at 185 °C, the glucose yield reached 63.5% without production of levulinic acid. In comparison, only 15.0% glucose yield was achieved in the hydrolysis of untreated cellulose by 0.5% H2SO4 under the same condition. Further improvement of glucose yield is possible by optimizing reaction conditions. Alternatively, the remaining TFA can be completely removed by water while keeping the regenerated cellulose in a highly amorphous state. This regenerated cellulose is much more reactive than untreated cellulose in hydrolysis reactions, but still less reactive than corn starch. The lower temperatures and shorter reaction times with this activated cellulose makes it possible to reduce operating costs and decrease byproduct yields such as HMF and levulinic acid.

  12. The Chemistry of Paper Preservation Part 4. Alkaline Paper.

    ERIC Educational Resources Information Center

    Carter, Henry A.

    1997-01-01

    Discusses the problem of the inherent instability of paper due to the presence of acids that catalyze the hydrolytic degradation of cellulose. Focuses on the chemistry involved in the sizing of both acid and alkaline papers and the types of fillers used. Discusses advantages and problems of alkaline papermaking. Contains 48 references. (JRH)

  13. Dynamic model of in-lake alkalinity generation

    SciTech Connect

    Baker, L.A.; Brezonik, P.L.

    1988-01-01

    In-lake alkalinity generation (IAG) is important in regulation of alkalinity in lakes with long residence times, particularly seepage lakes. An IAG model based on input/output modeling concepts is presented that describes budgets for each ion involved in alkalinity regulation by a single differential equation that includes inputs, outputs, and a first-order sink term. These equations are linked to an alkalinity balance equation that includes inputs, outputs, IAG (by sulfate and nitrate reduction), and internal alkalinity consumption (by ammonium assimilation). Calibration using published lake budgets shows that rate constants are generally similar among soft water lakes (k/sub SO/sub 4// approx. 0.5 m/yr; k/sub NO/sub 3// approx. = 1.3 yr/sup -1/; k/sub NH/sub 4// approx. 1.5 yr/sup -1/). Sensitivity analysis shows that predicted alkalinity is sensitive to water residence time, but less sensitive to modest changes in rate constants. The model reflects the homeostatic nature of internal alkalinity generation, in which internal alkalinity production increases with increasing acid input and decreases with decreasing acid inputs of HNO/sub 3/ or H/sub 2/SO/sub 4/.

  14. TOTAL ALKALINITY OF SURFACE WATERS OF THE US

    EPA Science Inventory

    This map provides a synoptic illustration of the national patterns of surface water alkalinity in the conterminous United States. Alkalinity is the most readily available measure of the acid-neutralizing capacity of surface waters and provides a reasonable estimate o...

  15. Alkalinity regulation in soft-water Florida lakes

    SciTech Connect

    Baker, L.A.; Pollman, C.D.; Eilers, J.M.

    1988-01-01

    Major ion chemistry data collected as part of the Environmental Protection Agency (EPA) Eastern Lake Survey was examined to evaluate the mechanisms and extent of alkalinity regulation in 37 undisturbed, soft-water lakes in Florida. Comparison of major ion-Cl ratios in atmospheric deposition and in lake water shows the reactions resulting in retention of sulfate and nitrate are the dominant sources of alkalinity; production of organic acids and ammonium retention are the major alkalinity-consuming processes. Based on average reactions, enrichment of major cations accounted for only 12% of net alkalinity generation in the study lakes. In general, calcium and potassium were depleted in low-ANC lakes, presumably by in-lake sinks, and were enriched in most higher ANC lakes by ground water inputs. Differences in alkalinity among these lakes reflect hydrologic factors and the proximity of clay and carbonate deposits to the lake bed. Overall, net-alkalinity generation nearly balanced H+ predicted from evaporative concentration of atmospheric acid inputs; the close balance suggests that the alkalinity status of these lakes is very sensitive to changes in atmospheric loadings and groundwater alkalinity inputs.

  16. Removal of plutonium and americium from alkaline waste solutions

    DOEpatents

    Schulz, Wallace W.

    1979-01-01

    High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.

  17. ANNUAL REPORT. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am-the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting the...

  18. Alkaline cleaner replacement for printed wiring board fabrication

    SciTech Connect

    Goldammer, S.E.; Pemberton, S.E.; Tucker, D.R.

    1997-04-01

    A replacement alkaline cleaning chemistry was qualified for the copper cleaning process used to support printed wiring board fabrication. The copper cleaning process was used to prepare copper surfaces for enhancing the adhesion of dry film photopolymers (photoresists and solder masks) and acrylic adhesives. The alkaline chemistry was used to remove organic contaminates such as fingerprints.

  19. Increased river alkalinization in the Eastern U.S

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Likens, G. E.; Utz, R.; Pace, M.; Grese, M.; Yepsen, M.

    2013-12-01

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km2. We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These 3 variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  20. [Salt-alkaline tolerance of sorghum germplasm at seedling stage].

    PubMed

    Gao, Jian-Ming; Xia, Bu-Xian; Yuan, Qing-Hua; Luo, Feng; Han, Yun; Gui, Zhi; Pei, Zhong-You; Sun, Shou-Jun

    2012-05-01

    A sand culture experiment with Hoagland solution plus NaCl and Na2CO3 was conducted to study the responses of sorghum seedlings to salt-alkaline stress. An assessment method for identifying the salt-alkaline tolerance of sorghum at seedling stage was established, and the salt-alkaline tolerance of 66 sorghum genotypes was evaluated. At the salt concentrations 8.0-12.5 g x L(-1), there was a great difference in the salt-alkaline tolerance between tolerant genotype 'TS-185' and susceptive 'Tx-622B', suggesting that this range of salt concentrations was an appropriate one to evaluate the salt-alkaline tolerance of sorghum at seedling stage. At the salt concentrations 10.0 and 12.5 g x L(-1), there existed significant differences in the relative livability, relative fresh mass, and relative height among the 66 genotypes, indicating a great difference in the salt-alkaline tolerance among these genotypes. The genotype 'Sanchisan' was highly tolerant, 16 genotypes such as 'MN-2735' were tolerant, 32 genotypes such as 'EARLY HONEY' were mild tolerant, 16 genotypes such as 'Tx-622B' were susceptive, and genotype 'MN-4588' was highly susceptive to salt-alkaline stress. Most of the sorghum genotypes belonging to Sudangrasses possessed a high salt-alkaline tolerance, while the sorghum genotypes belonging to maintainer lines were in adverse. PMID:22919841

  1. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids.

    PubMed

    Marino, M G; Kreuer, K D

    2015-02-01

    The alkaline stability of 26 different quaternary ammonium groups (QA) is investigated for temperatures up to 160 °C and NaOH concentrations up to 10 mol L(-1) with the aim to provide a basis for the selection of functional groups for hydroxide exchange membranes in alkaline fuel cells and of ionic-liquid cations stable in basic conditions. Most QAs exhibit unexpectedly high alkaline stability with the exception of aromatic cations. β-Protons are found to be far less susceptible to nucleophilic attack than previously suggested, whereas the presence of benzyl groups, nearby hetero-atoms, or other electron-withdrawing species promote degradation reactions significantly. Cyclic QAs proved to be exceptionally stable, with the piperidine-based 6-azonia-spiro[5.5]undecane featuring the highest half-life at the chosen conditions. Absolute and relative stabilities presented herein stand in contrast to literature data, the differences being ascribed to solvent effects on degradation. PMID:25431246

  2. Combination of alkaline and microwave pretreatment for disintegration of meat processing wastewater sludge.

    PubMed

    Erden, G

    2013-01-01

    Meat processing wastewater sludge has high organic content but it is very slow to degrade in biological processes. Anaerobic digestion may be a good alternative for this type of sludge when the hydrolysis, known to be the rate-limiting step of biological sludge anaerobic degradation, could be eliminated by disintegration. This investigation deals with disintegration of meat processing wastewater sludge. Microwave (MW) irradiation and combined alkaline pretreatment and MW irradiation were applied to sludge for disintegration purposes. Disintegration performance of the methods was evaluated with disintegration degree based on total and dissolved organic carbon calculations (DD(TOC)), and the solubilization of volatile solids (S(VS)) in the pretreated sludge. Optimum conditions were found to be 140 degrees C and 30 min for MW irradiation using response surface methodology (RSM) and pH = 13 for combined pretreatment. While DD(TOC) was observed as 24.6% and 54.9, S(VS) was determined as 8.54% and 42.5% for MW pretreated and combined pretreated sludge, respectively. The results clearly show that pre-conditioning of sludge with alkaline pretreatment played an important role in enhancing the disintegration efficiency of subsequent MW irradiation. Disintegration methods also affected the anaerobic biodegradability and dewaterability of sludge. An increase of 23.6% in biogas production in MW irradiated sludge was obtained, comparing to the raw sludge at the end of the 35 days of incubation. This increase was observed as 44.5% combined pretreatment application. While MW pretreatment led to a little improvement of the dewatering performance of sludge, in combined pretreatment NaOH deteriorates the sludge dewaterability. PMID:23837322

  3. Salt- and alkaline-tolerance are linked in Acacia.

    PubMed

    Bui, Elisabeth N; Thornhill, Andrew; Miller, Joseph T

    2014-07-01

    Saline or alkaline soils present a strong stress on plants that together may be even more deleterious than alone. Australia's soils are old and contain large, sometimes overlapping, areas of high salt and alkalinity. Acacia and other Australian plant lineages have evolved in this stressful soil environment and present an opportunity to understand the evolution of salt and alkalinity tolerance. We investigate this evolution by predicting the average soil salinity and pH for 503 Acacia species and mapping the response onto a maximum-likelihood phylogeny. We find that salinity and alkalinity tolerance have evolved repeatedly and often together over 25 Ma of the Acacia radiation in Australia. Geographically restricted species are often tolerant of extreme conditions. Distantly related species are sympatric in the most extreme soil environments, suggesting lack of niche saturation. There is strong evidence that many Acacia have distributions affected by salinity and alkalinity and that preference is lineage specific. PMID:25079493

  4. Tailoring electrode hydrophobicity to improve anode performance in alkaline media

    NASA Astrophysics Data System (ADS)

    Naughton, Matt S.; Gu, Geun Ho; Moradia, Akash A.; Kenis, Paul J. A.

    2013-11-01

    Limitations in anode performance have been a major obstacle to widespread alkaline fuel cell usage. In contrast to water management in acidic cathodes, water management in alkaline anodes has not received a lot of attention. Here, we use a methodology based on individual electrode plots to analyze and improve anode performance, especially by changing the hydrophobicity. Specifically, we determine the role of hydrophobicity as it affects performance for backing layers, catalyst layers, and catalyst binders. We use both individual electrode plots and recirculating experiments to determine the optimal PTFE loading was 20 wt% in alkaline media. We investigated PTFE and Fumion binders, determining that their use yields higher overpotentials than when using Nafion in alkaline media. Furthermore, we determined that Nafion alternatives for application in alkaline media would require significant hydrophilicity and anion-conductivity to result in good fuel cell performance.

  5. Catalytic hydrolysis of kalium borohydride using CoTiO 3/cordierite

    NASA Astrophysics Data System (ADS)

    Dong, Guojun; Wang, Guixiang; Han, Huanbo; Ru, Xiuling

    2007-07-01

    CoTiO 3/cordierite catalyzer was synthesized with high specific surface area cordierite of clear and near as carrier, coating with TiO II and loading cobalt chloride by hydrothermal synthesis, then baking at 500°C and soaking in kalium borohydride (KBH 4) solution. The catalyzer was characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Test results above show that the active component of catalyzer is CoTiO 3 produced by the reaction of TiO II with Co 3O 4. The performance of hydrogen evolution of catalyzer after soaking in KBH 4 solution has improved because of the reductive of KBH 4. The Co 3O 4 unreacted with TiO II cumber the catalyzer performance of hydrogen evolution, but the KBH 4 can deoxidize the Co 3O 4 as Co and the Co can fall off from the surface of the catalyzer. SEM shows that on the surface of the catalyzer there is sheet CoTiO 3, the thickness of which are many decades nanometers. Experiment research shows that it has superior performance of hydrogen evolution after soaking in KBH 4 solution, and its performance of catalytic hydrolysis in alkaline KBH 4 solution is better than that in the solution without alkali. The maximum hydrogen generation rate as a function of 0.34g catalyzer in 10% KBH 4 solution with approximate 18% NaOH is 160 mLÂ.min -1 at room temperature.

  6. Hydrolysis of organosolv wheat pulp in formic acid at high temperature for glucose production.

    PubMed

    Kupiainen, Laura; Ahola, Juha; Tanskanen, Juha

    2012-07-01

    Organosolv methods can be used to delignify lignocellulosic crop residues for pulp production or to pretreat them prior to enzymatic hydrolysis for bioethanol production. In this study, organic solvent was used as an acidic hydrolysis catalyst to produce glucose. Hydrolysis experiments were carried out in 5-20% formic acid at 180-220 °C. Wheat straw pulp delignified with a formicodeli™ method was used as a raw material. It was found that glucose yields from pulp are significantly higher than yields from microcrystalline cellulose, a model component for cellulose hydrolysis. The results indicate that cellulose hydrolysis of real fibers takes place more selectively to glucose than hydrolysis of microcrystalline cellulose particles does. The effect of the particle size on pulp hydrolysis was investigated, the crystallinity of hydrolyzed pulp was measured by XRD analysis, and the product distribution and its influence on the process was discussed. PMID:22609651

  7. Improving the efficiency of enzyme utilization for sugar beet pulp hydrolysis.

    PubMed

    Zheng, Yi; Cheng, Yu-Shen; Yu, Chaowei; Zhang, Ruihong; Jenkins, Bryan M; VanderGheynst, Jean S

    2012-11-01

    Sugar beet pulp (SBP) is a carbohydrate-rich residue of table sugar processing. It shows promise as a feedstock for fermentable sugar and biofuel production via enzymatic hydrolysis and microbial fermentation. This research focused on the enzymatic hydrolysis of SBP and examined the effects of solid loading (2-10 %, dry basis), enzyme preparation, and enzyme recycle on the production of fermentable sugars. The enzyme partitioning to the solid and liquid phases during SBP enzymatic hydrolysis and loss during recycling were investigated using SDS-PAGE and Zymogram analysis. Without considering product inhibition, the cellulase added initially to the SBP hydrolysis lost only 6 % filter paper activity and negligible carboxymethyl cellulose activity upon multiple cycles of SBP hydrolysis. It was found that enzyme dosage can be reduced by 50 % while maintaining similar, and in some cases higher fermentable sugar yield. The removal of hydrolysis products will further improve enzymatic hydrolysis of SBP for biofuel production. PMID:22580744

  8. Alpha radiolysis and other factors affecting hydrolysis of tributyl phosphate

    SciTech Connect

    Lloyd, M.H.; Fellows, R.L.

    1985-06-01

    The primary purpose of this study was to identify the principal degradation products produced by Pu(IV) loading in 30% tributyl phosphate/dodecane (TBP-DD) solutions and to determine the formation rates of these species as a function of temperature. Experiments were also conducted to evaluate HNO/sub 3/ hydrolysis of TBP as a function of temperature and to compare the effects resulting from plutonium solvent loading with effects due to loading with uranium and zirconium. The results indicate that four factors are of particular significance: (1) dibutyl phosphate (DBP) is the principal plutonium-complexing species formed at temperatures of 50/sup 0/C or lower, while significant concentrations of monobutyl phosphate (MBP) are also formed at higher temperatures; (2) the TBP degradation rate due to alpha radiolysis or chemical hydrolysis is strongly dependent on temperature; (3) plutonium promotes TBP hydrolysis by two mechanisms, alpha radiolysis and metal-ion-induced hydrolysis, and, of these, metal-ion-induced hydrolysis can be the major effect; and (4) small amounts of an unidentified plutonium-complexing species are formed in experiments using plutonium of high specific activity (about 4 x 10/sup 8/ counts per minute per milligram (c/min dot mg)). This species cannot be removed from 30% TBP-DD by Na/sub 2/CO/sub 3/ washing or other solvent cleanup procedures. The TBP degradation rates (determined as grams of plutonium complexed by degradation products) increased from 0.125 mg Pu/L dot h at 25/sup 0/C to 47.9 mg Pu/L dot h at 80/sup 0/C in 30% TBP-DD solutions that contained only 0.68 M HNO/sub 3/. In solutions that additionally contained approx.20 g/L of plutonium (specific activity = 9 x 10/sup 7/ c/min dot mg) TBP degradation rates increased from 2.46 mg Pu/L dot h at 25/sup 0/C to 127.1 mg Pu/L dot h at 80/sup 0/C. 10 refs., 8 figs., 4 tabs.

  9. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis

    SciTech Connect

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs)were found capable of dissolving more than 10 wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904 910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432 2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137 140, 407 421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and nonvolatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. 70 C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58 75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel cellulose, filter paper and cottonwere hydrolyzed 2 10 times faster than the respective untreated celluloses. A complete hydrolysis of Avicel cellulose could be achieved in 6 h given the Trichoderma reesei cellulase/substrate ratio (w/w) of 3:20 at 50 C. In addition,we observed that cellulase is more thermally stable (up to 60 C) in the presence of regenerated cellulose. Furthermore, our systematic studies suggest that the presence of various ILs during the hydrolysis induced different degrees of cellulase inactivation. Therefore, a thorough removal of IL residues after cellulose regeneration is highly recommended, and a systematic investigation on this subject is much needed.

  10. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis.

    PubMed

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia N

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs) were found capable of dissolving more than 10wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904-910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432-2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137-140, 407-421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and non-volatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. approximately 70 degrees C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58-75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel((R)) cellulose, filter paper and cotton were hydrolyzed 2-10 times faster than the respective untreated celluloses. A complete hydrolysis of Avicel((R)) cellulose could be achieved in 6h given the Trichoderma reesei cellulase/substrate ratio (w/w) of 3:20 at 50 degrees C. In addition, we observed that cellulase is more thermally stable (up to 60 degrees C) in the presence of regenerated cellulose. Furthermore, our systematic studies suggest that the presence of various ILs during the hydrolysis induced different degrees of cellulase inactivation. Therefore, a thorough removal of IL residues after cellulose regeneration is highly recommended, and a systematic investigation on this subject is much needed. PMID:18822323

  11. A dynamic model for cellulosic biomass hydrolysis: a comprehensive analysis and validation of hydrolysis and product inhibition mechanisms.

    PubMed

    Tsai, Chien-Tai; Morales-Rodriguez, Ricardo; Sin, Gürkan; Meyer, Anne S

    2014-03-01

    The objective of this study is to perform a comprehensive enzyme kinetics analysis in view of validating and consolidating a semimechanistic kinetic model consisting of homogeneous and heterogeneous reactions for enzymatic hydrolysis of lignocellulosic biomass proposed by the U.S. National Renewable Energy Laboratory (Kadam et al., Biotechnol Prog 20(3):698-705, 2004) and its variations proposed in this work. A number of dedicated experiments were carried out under a range of initial conditions (Avicel® versus pretreated barley straw as substrate, different enzyme loadings and different product inhibitors such as glucose, cellobiose and xylose) to test the hydrolysis and product inhibition mechanisms of the model. A nonlinear least squares method was used to identify the model and estimate kinetic parameters based on the experimental data. The suitable mathematical model for industrial application was selected among the proposed models based on statistical information (weighted sum of square errors). The analysis showed that transglycosylation plays a key role at high glucose levels. It also showed that the values of parameters depend on the selected experimental data used for parameter estimation. Therefore, the parameter values are not universal and should be used with caution. The model proposed by Kadam et al. (Biotechnol Prog 20(3):698-705, 2004) failed to predict the hydrolysis phenomena at high glucose levels, but when combined with transglycosylation reaction(s), the prediction of cellulose hydrolysis behaviour over a broad range of substrate concentrations (50-150 g/L) and enzyme loadings (15.8-31.6 and 1-5.9 mg protein/g cellulose for Celluclast and Novozyme 188, respectively) was possible. This is the first study introducing transglycosylation into the semimechanistic model. As long as these type of models are used within the boundary of their validity (substrate type, enzyme source and substrate concentration), they can support process design and technology improvement efforts at pilot and full-scale studies. PMID:24446172

  12. Hydrolysis of the nickel-carbon bond of organonickel tetramethylcyclam complexes

    SciTech Connect

    Ram, M.S.; Espenson, J.H.; Bakac, A.

    1986-11-05

    The cationic organometallic complexes (1R,4S,8R,11S)-RNi(tmc)/sup +/ (where tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) hydrolyze in alkaline, aqueous solutions to yield the alkane RH and HONi(tmc)/sup +/, the hydroxonickel(II) macrocycle. The rates of reaction are independent of pH (for 9 < pH < 13). Aside from a few special cases, the hydrolysis rate constants are rather insensitive to the variation of R in a series of 20 compounds that includes alkyls (R = CH/sub 3/, C/sub 2/H/sub 5/, n-C/sub 3/H/sub 7/, i-C/sub 3/H/sub 7/, sec-C/sub 4/H/sub 9/, CH/sub 2/C/sub 6/H/sub 5/), cyclopropyl, and substituted alkyls (e.g., (CH/sub 2/)/sub n/X, with X = Br, Cl, OH, and OTs; n = 3-6). These complexes, and also such bimetallic analogues as (Ni(tmc)(CH/sub 2/)/sub 5/Cr((15)aneN/sub 4/)/sup 3 +/), have k/sub hyd/ in the range (0.8-2.7) x 10/sup -2/ s/sup -1/ at 25.0/sup 0/C. The activation parameters also span a narrow range, with ..delta..H double dagger approx. 16 kcal mol/sup -1/ and ..delta..S double dagger approx. -14 cal mol/sup -1/ K/sup -1/. The solvent deuterium kinetic isotope effect determined for several of these complexes is appreciable, k/sub H//k/sub D/ = 2.2-3.5, suggesting appreciable proton transfer from water to the incipient hydrocarbon in the transition state. Nucleophilic assistance by OH/sup -/, OAc/sup -/, and NH/sub 3/ was not observed. Exceptions to the general pattern were noted. The most striking cases are R = (CH/sub 2/)/sub 3/OH, where the enhanced rate of hydrolysis (k/sub hyd/ = 0.23 s/sup -1/) suggests assistance from the pendant OH group in a cyclic transition state and cycloalkyls (other than cyclopropyl), where the enhanced rates (e.g., cyclobutyl approx. 0.2 s/sup -1/ and cyclopentyl > 2 s/sup -1/) suggest an acceleration by the strain of the nickel-carbon bond. In acidic solutions, the hydrolysis rate is enhanced because of direct protonolysis. The bimolecular reaction between C/sub 2/H/sub 5/Ni(tmc)/sup +/ and H/sub 3/O/sup +/ has k = 5 x 10/sup 5/ M/sup -1/ s/sup -1/. 26 references, 3 figures, 3 tables.

  13. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production

    PubMed Central

    2013-01-01

    Background During cellulosic ethanol production, cellulose hydrolysis is achieved by synergistic action of cellulase enzyme complex consisting of multiple enzymes with different mode of actions. Enzymatic hydrolysis of cellulose is one of the bottlenecks in the commercialization of the process due to low hydrolysis rates and high cost of enzymes. A robust hydrolysis model that can predict hydrolysis profile under various scenarios can act as an important forecasting tool to improve the hydrolysis process. However, multiple factors affecting hydrolysis: cellulose structure and complex enzyme-substrate interactions during hydrolysis make it diffucult to develop mathematical kinetic models that can simulate hydrolysis in presence of multiple enzymes with high fidelity. In this study, a comprehensive hydrolysis model based on stochastic molecular modeling approch in which each hydrolysis event is translated into a discrete event is presented. The model captures the structural features of cellulose, enzyme properties (mode of actions, synergism, inhibition), and most importantly dynamic morphological changes in the substrate that directly affect the enzyme-substrate interactions during hydrolysis. Results Cellulose was modeled as a group of microfibrils consisting of elementary fibrils bundles, where each elementary fibril was represented as a three dimensional matrix of glucose molecules. Hydrolysis of cellulose was simulated based on Monte Carlo simulation technique. Cellulose hydrolysis results predicted by model simulations agree well with the experimental data from literature. Coefficients of determination for model predictions and experimental values were in the range of 0.75 to 0.96 for Avicel hydrolysis by CBH I action. Model was able to simulate the synergistic action of multiple enzymes during hydrolysis. The model simulations captured the important experimental observations: effect of structural properties, enzyme inhibition and enzyme loadings on the hydrolysis and degree of synergism among enzymes. Conclusions The model was effective in capturing the dynamic behavior of cellulose hydrolysis during action of individual as well as multiple cellulases. Simulations were in qualitative and quantitative agreement with experimental data. Several experimentally observed phenomena were simulated without the need for any additional assumptions or parameter changes and confirmed the validity of using the stochastic molecular modeling approach to quantitatively and qualitatively describe the cellulose hydrolysis. PMID:23638989

  14. Batteries: from alkaline to zinc-air.

    PubMed

    Dondelinger, Robert M

    2004-01-01

    There is no perfect disposable battery--one that will sit on the shelf for 20 years, then continually provide unlimited current, at a completely constant voltage until exhausted, without producing heat. There is no perfect rechargeable battery--one with all of the above characteristics and will also withstand an infinite overcharge while providing an equally infinite cycle life. There are only compromises. Every battery selection is a compromise between the ideally required characteristics, the advantages, and the limitations of each battery type. General selection of a battery type to power a medical device is largely outside the purview of the biomed. Initially, these are engineering decisions made at the time of medical equipment design and are intended to be followed in perpetuity. However, since newer cell types evolve and the manufacturer's literature is fixed at the time of printing, some intelligent substitutions may be made as long as the biomed understands the characteristics of both the recommended cell and the replacement cell. For example, when the manufacturer recommends alkaline, it is usually because of the almost constant voltage it produces under the devices' design load. Over time, other battery types may be developed that will meet the intent of the manufacturer, at a lower cost, providing longer operational life, at a lower environmental cost, or with a combination of these advantages. In the Obstetrical Doppler cited at the beginning of this article, the user had put in carbon-zinc cells, and the biomed had unknowingly replaced them with carbonzinc cells. If the alkaline cells recommended by the manufacturer had been used, there would have been the proper output voltage at the battery terminals when the [table: see text] cells were at their half-life. Instead, the device refused to operate since the battery voltage was below presumed design voltage. While battery-type substitutions may be easily and relatively successfully made in disposable applications (for example, zinc-air for alkaline--if it is cost-effective), this is absolutely forbidden for secondary cells. Because of the differing cell voltages, charge characteristics and overcharge tolerance between different types of secondary cells, substituting a nickel-cadmium battery pack for the more expensive lithium-ion pack (if it is physically able to fit into the battery compartment), might appear to save money (e.g. $50 vs. $100) but it would be very ill advised. Since the cell characteristics are very different, it would be downright fatal to anyone within the 'kill radius' when the pack explodes. Those outside the kill radius would receive chemical burns from the electrolyte. Substitutions of secondary cell battery packs are generally not a good idea for biomeds to engage in. These are engineering decisions best left to either aftermarket battery pack manufacturers or the medical device manufacturer as a design engineering change. PMID:15106428

  15. Chemical structures of corn stover and its residue after dilute acid prehydrolysis and enzymatic hydrolysis: Insight into factors limiting enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced solid-state NMR techniques and wet chemical analyses were applied to investigate untreated corn stover (UCS) and its residues after dilute acid prehydrolysis (DAP) and enzymatic hydrolysis (RES) to provide evidence for the limitations to the effectiveness of enzyme hydrolysis. Advanced soli...

  16. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A., III

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity calculated from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was equivalent to that calculated based on complete aqueous speciation of FeII/FeIII. Despite changes in the pH, alkalinity, and metals concentrations, the Hot Acidities were comparable for fresh and most aged samples. A meaningful "net" acidity can be determined from a measured Hot Acidity or by calculation from the pH, alkalinity, and dissolved metals concentrations. The use of net alkalinity = (Alkalinitymeasured - Hot Aciditymeasured) to design mine drainage treatment can lead to systems with insufficient Alkalinity to neutralize metal and H+ acidity and is not recommended. The use of net alkalinity = -Hot Acidity titration is recommended for the planning of mine drainage treatment. The use of net alkalinity = (Alkalinitymeasured - Aciditycalculated) is recommended with some cautions. ?? 2005 Elsevier Ltd. All rights reserved.

  17. Alkaline phosphatase activity in whitefly salivary glands and saliva.

    PubMed

    Funk, C J

    2001-04-01

    Alkaline phosphatase activity was histochemically localized in adult whiteflies (Bemisia tabaci B biotype, syn. B. argentifolii) with a chromogenic substrate (5-bromo-4-chloro-3-indolylphosphate) and a fluorogenic substrate (ELF-97). The greatest amount of staining was in the basal regions of adult salivary glands with additional activity traced into the connecting salivary ducts. Other tissues that had alkaline phosphatase activity were the accessory salivary glands, the midgut, the portion of the ovariole surrounding the terminal oocyte, and the colleterial gland. Whitefly nymphs had activity in salivary ducts, whereas activity was not detected in two aphid species (Rhodobium porosum and Aphis gossypii). Whitefly diet (15% sucrose) was collected from whitefly feeding chambers and found to have alkaline phosphatase activity, indicating the enzyme was secreted in saliva. Further studies with salivary alkaline phosphatase collected from diet indicated that the enzyme had a pH optimum of 10.4 and was inhibited by 1 mM cysteine and to a lesser extent 1 mM histidine. Dithiothreitol, inorganic phosphate, and ethylenediaminetetraacetic acid (EDTA) also inhibited activity, whereas levamisole only partially inhibited salivary alkaline phosphatase. The enzyme was heat tolerant and retained approximately 50% activity after a 1-h treatment at 65 degrees C. The amount of alkaline phosphatase activity secreted by whiteflies increased under conditions that stimulate increased feeding. These observations indicate alkaline phosphatase may play a role during whitefly feeding. PMID:11304750

  18. Cooperativity and substrate specificity of an alkaline amylase and neopullulanase complex of Micrococcus halobius OR-1.

    PubMed

    Rajdevi, K P; Yogeeswaran, G

    2001-03-01

    The saccharifying alkaline amylase and neopullulanase complex of Micrococcus halobius OR-1 hydrolyzes both alpha-(1,4)- and alpha-(1,6)-glycosidic linkages of different linear and branched polysaccharides. The following observations were made concerning the analysis of the coexpressed amylase and neopullulanase enzymes. Even though the enzymes were subjected to a rigorous purification protocol, the activities could not be separated, because both the enzymes were found to migrate in a single peak. By contrast, two independent bands of amylolytic activity at 70 kDa and pullulanolytic activity at 53 kDa were evident by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), reducing and nonreducing PAGE, and zymographic analysis on different polysaccharides. Preferential chemical modification of the enzyme and concomitant high-performance thin-layer chromatographic analyses of the saccharides liberated showed that amylase is sensitive to 1-(dimethylamino-propyl)-3-ethyl carbodiimide-HCl and cleaved alpha-(1,4) linkages of starch, amylose, and amylopectin producing predominantly maltotriose. On the other hand, formalin-sensitive neopullulanase acts on both alpha-(1,4) and alpha-(1,6) linkages of pullulan and starch with maltotriose and panose as major products. It is understood that neopullulanase exhibits dual activity and acts in synergy with amylase toward the hydrolysis of alpha-(1,4) linkages, thereby increasing the overall reaction rate; however, such a synergism is not seen in zymograms, in which the enzymes are physically separated during electrophoresis. It is presumed that SDS-protein intercalation dissociated the enzyme complex, without altering the individual active site architecture, with only the synergism lost. The optimum temperature and pH of amylase and neopullulanase were 60 degreesC and 8.0, respectively. The enzymes were found stable in high alkaline pH for 24 h. Therefore, the saccharifying alkaline amylase and neopullulanase of M. halobius OR-1 evolved from tapioca cultivar shows a highly active and unique enzyme complex with several valuable biochemical features. PMID:11318036

  19. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  20. Response of Desulfovibrio vulgaris to Alkaline Stress

    SciTech Connect

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  1. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  2. Engineering challenges of ocean alkalinity enhancement

    NASA Astrophysics Data System (ADS)

    Kruger, T.; Renforth, P.

    2012-04-01

    The addition of calcium oxide (CaO) to the ocean as a means of enhancing the capacity of the ocean as a carbon sink was first proposed by Haroon Kheshgi in 1995. Calcium oxide is created by heating high purity limestone in a kiln to temperatures of approximately 1000°C. Addition of this material to the ocean draws carbon dioxide out of the atmosphere (approximately 1 tonne of CaO could sequester 1.3 tonnes of CO2). Abiotic carbonate precipitation is inhibited in the surface ocean. This is a carbon and energy expensive process, where approximately 0.8 tonnes of CO2 are produced at a point source for every tonne sequestered. The feasibility of ocean alkalinity enhancement requires capture and storage of the point source of CO2. We present details of a feasibility study of the engineering challenges of Kheshgi's method focusing on the potential scalability and costs of the proposed process. To draw down a PgC per year would require the extraction and processing of ~6Pg of limestone per year, which is similar in scale to the current coal industry. Costs are estimated at ~USD30-40 per tonne of CO2 sequestered through the process, which is favourable to comparative processes. Kheshgi, H. (1995) Energy 20 (9) 915-922

  3. Low pH alkaline chemical formulations

    SciTech Connect

    French, T.R.; Peru, D.A.; Thornton, S.D.

    1989-01-01

    This report describes the development of a surfactant-enhanced alkaline flooding system that is applicable to specific reservoir conditions in Wilmington (California) field. The cost of the chemicals for an ASP (alkali/surfactant/polymer) flood is calculated to be $3.90/bbl of oil produced, with 78% of that cost attributable to polymer. This research included phase behavior tests, oil displacement tests, mineral dissolution tests, and adsorption measurements. It was discovered that consumption of low pH alkalis is low enough in the Wilmington field to be acceptable. In addition, alkali dramatically reduced surfactant adsorption and precipitation. A mixture of NaHCO3 and Na2CO3 was recommended for use as a preflush and in the ASP formulation. Research was also conducted on the synergistic effect that occurs when a mixture of alkali and synthetic surfactant contacts crude oil. It appears that very low IFT is predominantly a result of the activation of the natural surfactants present in the Wilmington oil, and the sustained low IFT is primarily the result of the synthetic surfactant. It also appears that removal of acids from the crude oil by the alkali renders the oil more interfacially reactive to synthetic surfactant. These phenomena help to explain the synergism that results from combining alkali and synthetic surfactant into a single oil recovery formulation. 19 refs., 24 figs., 10 tabs.

  4. Alkaline decomposition of synthetic jarosite with arsenic.

    PubMed

    Patio, Francisco; Flores, Mizraim U; Reyes, Ivn A; Reyes, Martn; Hernndez, Juan; Rivera, Isauro; Jurez, Julio C

    2013-01-01

    The widespread use of jarosite-type compounds to eliminate impurities in the hydrometallurgical industry is due to their capability to incorporate several elements into their structures. Some of these elements are of environmental importance (Pb(2+), Cr(6+), As(5+), Cd(2+), Hg(2+)). For the present paper, AsO4 (3-) was incorporated into the lattice of synthetic jarosite in order to carry out a reactivity study. Alkaline decomposition is characterized by removal of sulfate and potassium ions from the lattice and formation of a gel consisting of iron hydroxides with absorbed arsenate. Decomposition curves show an induction period followed by a conversion period. The induction period is independent of particle size and exponentially decreases with temperature. The conversion period is characterized by formation of a hydroxide halo that surrounds an unreacted jarosite core. During the conversion period in NaOH media for [OH(-)]?>?8??10(-3)molL(-1), the process showed a reaction order of 1.86, and an apparent activation energy of 60.3kJmol(-1) was obtained. On the other hand, during the conversion period in Ca(OH)2 media for [OH(-)]?>?1.90??10(-2)molL(-1), the reaction order was 1.15, and an apparent activation energy of 74.4kJmol(-1) was obtained. The results are consistent with the spherical particle model with decreasing core and chemical control. PMID:23566061

  5. Solubility of pllutonium in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.

    1993-02-26

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model.

  6. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  7. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  8. Reduction of Proteinuria through Podocyte Alkalinization*

    PubMed Central

    Altintas, Mehmet M.; Moriwaki, Kumiko; Wei, Changli; Möller, Clemens C.; Flesche, Jan; Li, Jing; Yaddanapudi, Suma; Faridi, Mohd Hafeez; Gödel, Markus; Huber, Tobias B.; Preston, Richard A.; Jiang, Jean X.; Kerjaschki, Dontscho; Sever, Sanja; Reiser, Jochen

    2014-01-01

    Podocytes are highly differentiated cells and critical elements for the filtration barrier of the kidney. Loss of their foot process (FP) architecture (FP effacement) results in urinary protein loss. Here we show a novel role for the neutral amino acid glutamine in structural and functional regulation of the kidney filtration barrier. Metabolic flux analysis of cultured podocytes using genetic, toxic, and immunologic injury models identified increased glutamine utilization pathways. We show that glutamine uptake is increased in diseased podocytes to couple nutrient support to increased demand during the disease state of FP effacement. This feature can be utilized to transport increased amounts of glutamine into damaged podocytes. The availability of glutamine determines the regulation of podocyte intracellular pH (pHi). Podocyte alkalinization reduces cytosolic cathepsin L protease activity and protects the podocyte cytoskeleton. Podocyte glutamine supplementation reduces proteinuria in LPS-treated mice, whereas acidification increases glomerular injury. In summary, our data provide a metabolic opportunity to combat urinary protein loss through modulation of podocyte amino acid utilization and pHi. PMID:24817115

  9. Expression of alkaline phosphatase loci in mammalian tissues

    PubMed Central

    Goldstein, David J.; Rogers, Caprice E.; Harris, Harry

    1980-01-01

    Alkaline phosphatases [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] have been examined in liver, bone, kidney, intestine, and placenta from nine mammalian species by quantitative inhibition and thermostability studies and compared with alkaline phosphatases in the corresponding human tissues. In humans, three kinds of alkaline phosphatase can be sharply differentiated by these methods, one occurring in liver, bone, and kidney, one in intestine, and one in placenta. They are evidently determined by separate gene loci. In the mammals only two sorts of alkaline phosphatase were found: one, which occurs in liver, bone, kidney, and also placenta, corresponds to the human liver/bone/kidney enzyme and the other corresponds to the human intestinal enzyme. The findings support our earlier proposal that the expression of a distinctive type of alkaline phosphatase in human placenta is the consequence of a late evolutionary event which occurred subsequent to the divergence of the evolutionary lineage leading to humans from the various lineages leading to other mammalian species. The concentrations of the inhibitors, phenylalanine, homoarginine, phenylalanylglycylglycine, and levamisole, required to give 50% inhibition, [I50], of the liver/bone/kidney/placental (nonhuman) alkaline phosphatases showed no significant variation among the species. However, the [I50] values for the intestinal enzyme varied among species to a much greater extent. This implies that in the liver/bone/kidney/placental (nonhuman) alkaline phosphatase the structures of the binding sites for these inhibitors have been highly conserved during mammalian evolution, but there has been much greater divergence of these structures in the evolution of intestinal alkaline phosphatases. PMID:6930672

  10. Efficient utilization of licorice root by alkaline extraction.

    PubMed

    Ohno, Hirokazu; Miyoshi, Shozo; Araho, Daisuke; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Tsuda, Tadashi; Sunaga, Katsuyoshi; Amano, Shigeru; Ohkoshi, Emika; Sakagami, Hiroshi; Satoh, Kazue; Yamamoto, Masaji

    2014-01-01

    Compared to studies of water extracts of plants, those utilising alkaline extracts are limited. Both water and alkaline extracts from licorice root were compared regarding their biological activities. Licorice root was successively extracted first with water or alkaline solution (pH 9 or 12), and the alkaline (pH 12.0) extract was further separated into 50% ethanol-soluble and -insoluble fractions. Viable cell number was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Antibacterial activity against Porphyromonas gingivalis 381 was determined by turbidity assay. Cytochrome P-450 (CYP)3A4 activity was measured by β-hydroxylation of testosterone using human recombinant CYP3A4. Radical intensity of superoxide and hydroxyl radicals was determined by electron spin resonance spectroscopy. Alkaline extraction yielded slightly higher amounts of dried materials compared to water extraction. Alkaline extract showed higher anti-HIV and antibacterial activities, and similar magnitudes of CYP3A4 inhibitory and superoxide and hydroxyl radical-scavenging activities, compared to water extract. When alkaline extract was fractionated by 50% ethanol, anti-HIV activity was recovered from the insoluble fraction representing approximately 3% of the alkaline extract, whereas antibacterial activity was concentrated in the soluble fraction rich in glycyrrhizid acid, flavanones and chalcones. All extracts and sub-fractions led to bimodal hormetic dose-response (maximum hormetic response=238%) on the bacterial growth. The present study demonstrated the superiority of alkaline extraction over water extraction for preparing anti-HIV and antibacterial agents at higher yield from licorice root. PMID:25189890

  11. Combined treatment of alkaline and disperser for improving solubilization and anaerobic biodegradability of dairy waste activated sludge.

    PubMed

    Uma Rani, R; Kaliappan, S; Adish Kumar, S; Rajesh Banu, J

    2012-12-01

    An investigation into the influence of combined alkaline and disperser pretreatment on sludge disintegration was studied. The effects of four variables, alkalines (NaOH, KOH, Ca(OH)(2)), treatment time (15-180 min), pH (8-11) and rpm (4000-24,000) were investigated. The effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. The best performances, in terms of COD solubilization, SS reduction and biogas production, were the ones that occurred for specific energy input of 4544 kJ kg(-1) TS for NaOH at pH10, were found to be 24%, 23.3% and 76%, higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein hydrolysis was also performed successfully by this combined pretreatment even at low specific energy input. Thus, this chemo-mechanical is an effective method for enhancement of biodegradability and it laid the basis to produce higher biogas quantities, to improve clean energy generation from WAS. PMID:23073096

  12. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications

    NASA Astrophysics Data System (ADS)

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-06-01

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications.

  13. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications

    PubMed Central

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-01-01

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications. PMID:26113394

  14. Short-chain fatty acids production and microbial community in sludge alkaline fermentation: Long-term effect of temperature.

    PubMed

    Yuan, Yue; Liu, Ye; Li, Baikun; Wang, Bo; Wang, Shuying; Peng, Yongzhen

    2016-07-01

    Sludge alkaline fermentation has been reported to achieve efficient short-chain fatty acids (SCFAs) production. Temperature played important role in further improved SCFAs production. Long-term SCFAs production from sludge alkaline fermentation was compared between mesotherm (30±2°C) and microtherm (15±2°C). The study of 90days showed that mesotherm led to 2.2-folds production of SCFAs as microtherm and enhanced the production of acetic acid as major component of SCFAs. Soluble protein and carbohydrate at mesotherm was 2.63-folds as that at microtherm due to higher activities of protease and α-glucosidase, guaranteeing efficient substrates to produce SCFAs. Illumina MiSeq sequencing revealed that microtherm increased the abundance of Corynebacterium, Alkaliflexus, Pseudomonas and Guggenheimella, capable of enhancing hydrolysis. Hydrolytic bacteria, i.e. Alcaligenes, Anaerolinea and Ottowia, were enriched at mesotherm. Meanwhile, acidogenic bacteria showed higher abundance at mesotherm than microtherm. Therefore, enrichment of functional bacteria and higher microbial activities resulted in the improved SCFAs at mesotherm. PMID:27060243

  15. Fluorescent assay for alkaline phosphatase activity based on graphene oxide integrating with λ exonuclease.

    PubMed

    Liu, Xue-Guo; Xing, Xiao-Jing; Li, Bo; Guo, Yong-Ming; Zhang, Ye-Zhen; Yang, Yan; Zhang, Lian-Feng

    2016-07-15

    A novel fluorescence turn-on strategy for the alkaline phosphatase (ALP) assay is developed based on the preferential binding of graphene oxide (GO) to single-stranded DNA (ssDNA) over double-stranded DNA (dsDNA) coupled with λ exonuclease (λ exo) cleavage. Specifically, in the absence of ALP, the substrate-dsDNA constructed by one oligonucleotide with a fluorophore at the 3'-end (F-DNA) and its complementary sequence modified with a 5'-phosphoryl termini (p-DNA), is promptly cleaved by λ exo, and the resulting F-DNA is adsorbed on GO surface, allowing fluorescence quenching. Whereas the introduction of ALP leads to the hydrolysis of the P-DNA, and the yielding 5'-hydroxyl end product hampers the λ exo cleavage, inducing significant fluorescence enhancement due to the weak binding of dsDNA with GO. Under the optimized conditions, the approach exhibits high sensitivity and specificity to ALP with a detection limit of 0.19 U/L, and the determination of ALP in spiked human serum samples has also been realized. Notably, this new approach not only provides a novel and sensitive platform for the ALP activity detection but also promotes the exploitation of the GO-based biosensing for the detection of the protein with no specific binding element, and thus extending the GO-based sensing applications into a new field. PMID:27015149

  16. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis.

    PubMed

    Jin, Baodan; Wang, Shuying; Xing, Liqun; Li, Baikun; Peng, Yongzhen

    2016-05-01

    The effect of salinity on sludge alkaline fermentation at low temperature (20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride (NaCl, 0-25g/L) were added into the fermentation system. The batch-mode results showed that the soluble chemical oxygen demand (SCOD) increased with salinity. The hydrolysate (soluble protein, polysaccharide) and the acidification products (short chain fatty acids (SCFAs), NH4(+)-N, and PO4(3-)-P) increased with salinity initially, but slightly declined respectively at higher level salinity (20g/L or 20-25g/L). However, the hydrolytic acidification performance increased in the presence of salt compared to that without salt. Furthermore, the results of Haldane inhibition kinetics analysis showed that the salt enhanced the hydrolysis rate of particulate organic matter from sludge particulate and the specific utilization of hydrolysate, and decreased the specific utilization of SCFAs. Pearson correlation coefficient analysis indicated that the importance of polysaccharide on the accumulation of SCFAs was reduced with salt addition, but the importance of protein and NH4(+)-N on SCFA accumulation was increased. PMID:27155412

  17. Digestive alkaline proteases from thornback ray (Raja clavata): Characteristics and applications.

    PubMed

    Lassoued, Imen; Hajji, Sawssen; Mhamdi, Samiha; Jridi, Mourad; Bayoudh, Ahmed; Barkia, Ahmed; Nasri, Moncef

    2015-09-01

    This study describes the characterization of a crude protease extract from thornback ray (Raja clavata) and its evaluation in liquid detergent and in deproteinizattion of shrimp waste. At least five clear caseinolytic proteases bands were observed in a zymogram. The crude protease showed optimum activity at pH 8.0 and 50 °C, and it was highly stable over pH range from 8.0 to 11.0. Proteolytic enzymes were very stable in non-ionic surfactants and in the presence of oxidizing agents, maintaining 70% of their activity after incubation for 1 h at 30 °C in the presence of 1% sodium perborate. In addition, they showed high stability and compatibility with various liquid laundry-detergents available in the Tunisian market. The crude extract retained 100% of its activity after preincubation for 60 min at 30 °C in the presence of Nadhif Perfect, Textil and Carrefour laundry detergents. Further, proteases from R. clavata viscera were used for shrimp waste deproteinization in the process of chitin preparation. The percent of protein removal after 3 h hydrolysis at 45 °C with an enzyme/substrate ratio of 30 U/mg of proteins was 74%. These results suggest that enzymatic deproteinization of shrimp wastes by fish endogenous alkaline proteases could be applicable to the chitin production process. PMID:26208858

  18. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    PubMed

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility. PMID:25268118

  19. Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal

    PubMed Central

    Rout, Simon P.; Radford, Jessica; Laws, Andrew P.; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J.; Humphreys, Paul N.

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7×10−2 hr−1 (SE±2.9×10−3). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility. PMID:25268118

  20. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  1. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  2. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  3. Hydrolysis of an acetylthiocholine by pralidoxime iodide (2-PAM).

    PubMed

    Sakurada, Koichi; Ikegaya, Hiroshi; Ohta, Hikoto; Akutsu, Tomoko; Takatori, Takehiko

    2006-10-25

    Pralidoxime iodide (2-PAM), an antidote approved for the reactivation of inhibited acetylcholinesterase (AChE) in organophosphate poisoning, dose-dependently hydrolyzed an acetylthiocholine iodide (ASCh). The AChE (0.3 U) activity inhibited by VX analog (ENMP, 0.1 microM) increased to approximately 200% of normal levels after a dosage of 5 mM 2-PAM (control 0.132+/-0.012 U/ml, 5 mM 0.253+/-0.026 U/ml). This result indicates that 2-PAM produced a thiocholine from the ASCh by hydrolysis. High-performance liquid chromatography (HPLC) analysis was then performed to further clarify the hydrolysis of ASCh with 2-PAM. It was clear that 2-PAM was converted to acetylated 2-PAM with acetic acid produced from ASCh by hydrolysis. Next, we tried to compare this esterase-like activity of 2-PAM with that of obidoxime, which is known as a strong reactivator of inhibited AChE, and with diacetylmonoxime, known as a weak reactivator. All of these oximes showed esterase-like activity, and their strengths were consistent with those of known reactivators of inhibited AChE. These results indicate that a great deal of the data obtained previously with ASCh relating to the effects of oximes must be rechecked. It is clear that oximes easily hydrolyze ASCh. We therefore strongly caution that the method of determining AChE activity with ASCh is not suitable for examining the effects of oximes. PMID:16971069

  4. Kinetics of catalyzed sodium borohydride hydrolysis and fuel cell applicability

    NASA Astrophysics Data System (ADS)

    Walter, Joshua C.

    Metal boride catalysts have been developed through reduction of (Ni, Co, and Ru) metal salts with sodium borohydride solutions. The resulting metal borides were determined to be Ni3B, Co3B, and elemental Ru by use of XRD analysis. SEM images give the particle size of the catalyst to be in the range or 65-150nm. Optimum heat treatment for the samples was determined to be 150°C for Ni3B, 200°C for Co3B, and 400°C for Ru. Ruthenium catalysts were found to have the greatest catalytic activity followed by cobalt boride and nickel boride. Hydrolysis testing with nickel boride catalysts has shown that the maximum hydrolysis rate as a function of sodium borohydride occurs at 5-10 wt% NaBH 4 when considered in solution with 5 wt% NaOH. The hydrolysis rate increases for the nickel boride catalyst with increasing NaOH concentration. Tests were performed at elevated pressures and showed that reaction rate could be controlled and even stopped with sufficient hydrogen pressures on the order of 10 MPa. Decreases in system pressure cause the reaction rate to increase, which tends to maintain the system at the equilibrium pressure. Thus, a high pressure hydrogen generator is considered. 210mg of Co3B catalyst in a 30 wt% solution of sodium borohydride can produce 30kW of hydrogen electrical power equivalent if utilized within a fuel cell operating at 40% efficiency. A semi-empirical isotherm model has been developed to accurately calculate the reaction rate for a Co3B catalyzed reaction as a function of temperature (35-80°C) and pressure (0.1-10MPa).

  5. Paraoxonase 1 (PON1) status and substrate hydrolysis

    SciTech Connect

    Richter, Rebecca J.; Jarvik, Gail P.; Furlong, Clement E.

    2009-02-15

    Paraoxonase 1 (PON1) hydrolyzes a number of organophosphorus (OP) compounds including insecticides and nerve agents. The in vivo efficacy of PON1 to protect against a specific OP exposure depends on the catalytic efficiency of hydrolysis. The Q192R polymorphism affects the catalytic efficiency of hydrolysis of some substrates and not others. While PON1{sub R192} hydrolyzes paraoxon approximately 9-times as efficiently as PON1{sub Q192}, the efficiency is insufficient to provide in vivo protection against paraoxon/parathion exposure. The two PON1{sub 192} alloforms have nearly equivalent but higher catalytic efficiencies for hydrolyzing diazoxon (DZO) and provide equivalent in vivo protection against DZO exposures. On the other hand, PON1{sub R192} is significantly more efficient in hydrolyzing chlorpyrifos oxon (CPO) than PON1{sub Q192} and provides better protection against CPO exposure. Thus, for some exposures it is only the level of plasma PON1 that is important, whereas for others it is both plasma level and the PON1{sub 192} alloform(s) present in plasma that are important. In no case is the plasma level of PON1 unimportant, provided that the catalytic efficiency is sufficient to protect against the exposure. Two-substrate enzyme assay/analysis protocols that reveal both PON1 plasma levels and PON1{sub 192} phenotype (QQ; QR; RR) are designed to optimize the separation of PON1{sub 192} phenotypes; however, they have not been optimized for evaluating in vivo rates of OP detoxication. This study describes the adaptation of a non-OP, two-substrate determination of PON1 status to the conversion of the PON1 status data to physiologically relevant rates of DZO and CPO detoxication. Conversion factors were generated for rates of hydrolysis of different substrates.

  6. Abiotic degradation (photodegradation and hydrolysis) of imidazolinone herbicides.

    PubMed

    Ramezani, Mohammadkazem; Oliver, Danielle P; Kookana, Rai S; Gill, Gurjeet; Preston, Christopher

    2008-02-01

    The abiotic degradation of the imidazolinone herbicides imazapyr, imazethapyr and imazaquin was investigated under controlled conditions. Hydrolysis, where it occurred, and photodegradation both followed first-order kinetics for all herbicides. There was no hydrolysis of any of the herbicides in buffer solutions at pH 3 or pH 7; however, slow hydrolysis occurred at pH 9. Estimated half-lives for the three herbicides in solution in the dark were 6.5, 9.2 and 9.6 months for imazaquin, imazethapyr and imazapyr, respectively. Degradation of the herbicides in the light was considerably more rapid than in the dark with half lives for the three herbicides of 1.8, 9.8 and 9.1 days for imazaquin, imazethapyr and imazapyr, respectively. The presence of humic acids in the solution reduced the rate of photodegradation for all three herbicides, with higher concentrations of humic acids generally having greater effect. Photodegradation of imazethapyr was the least sensitive to humic acids. The enantioselectivity of photodegradation was investigated using imazaquin, with photodegradation occurring at the same rate for both enantiomers. Abiotic degradation of imidazolinone herbicides on the soil surface only occurred in the presence of light. The rate of degradation for all herbicides was slower than in solution, with half-lives of 15.3, 24.6 and 30.9 days for imazaquin, imazethapyr and imazapyr, respectively. Abiotic degradation of these herbicides is likely to be slow in the environment and is only likely to occur in clear water or on the soil surface. PMID:18246501

  7. Maltodextrin hydrolysis in a fluidized-bed immobilized enzyme reactor

    SciTech Connect

    Vallat, I.; Monsan, P.; Riba, J.P.

    1986-02-01

    The present work deals with maltodextrin hydrolysis by glucoamylase immobilized onto corn stover in a fluidized bed reactor. An industrial enzyme preparation was convalently grafted onto corn stover, yielding an activity of up to 372 U/g and 1700 U/g for support particle sizes of 0.8 and 0.2 mm, respectively. A detailed kinetic study, using a differntial reactor, allowed the characterization of the influence of mass transfer resistance on the reaction catalyzed by immobilized glucoamylase. A simple and general mathematical model was then developed to describe the experimental conversion data and found to be vaild.

  8. The Hydrolysis of Di-Isopropyl Methylphosphonate in Ground Water

    SciTech Connect

    Sega, G.A., Tomkins, B.A., Griest, W.H., Bayne, C.K.

    1997-12-31

    Di-isopropyl methylphosphonate (DIMP) is a byproduct from the manufacture of the nerve agent Sarin. The persistence of DIMP in the ground water is an important question in evaluating the potential environmental impacts of DIMP contamination. The half-life of DIMP in ground water at 10 deg C was estimated to be 500 years with a 95% confidence interval of 447 to 559 years from measurements of the hydrolysis rates at temperatures between 70 to 98 deg C.Extrapolation of the kinetics to 10 deg C used the Arrhenius equation, and calculation of the half-life assumed first-order kinetics. Inorganic phosphate was not detected.

  9. Stability of commercial glucanase and ?-glucosidase preparations under hydrolysis conditions

    PubMed Central

    Rosales-Calderon, Oscar; Duff, Sheldon J.B.

    2014-01-01

    The cost of enzymes makes enzymatic hydrolysis one of the most expensive steps in the production of lignocellulosic ethanol. Diverse studies have used commercial enzyme cocktails assuming that change in total protein concentration during hydrolysis was solely due to adsorption of endo- and exoglucanases onto the substrate. Given the sensitivity of enzymes and proteins to media conditions this assumption was tested by evaluating and modeling the protein concentration of commercial cocktails at hydrolysis conditions. In the absence of solid substrate, the total protein concentration of a mixture of Celluclast 1.5 L and Novozyme 188 decreased by as much as 45% at 50 C after 4 days. The individual cocktails as well as a mixture of both were stable at 20 C. At 50 C, the protein concentration of Celluclast 1.5 was relatively constant but Novozyme 188 decreased by as much as 77%. It was hypothesized that Novozyme 188 proteins suffer a structural change at 50 C which leads to protein aggregation and precipitation. Lyophilized ?-glucosidase (P-?-glucosidase) at 50 C exhibited an aggregation rate which was successfully modeled using first order kinetics (R2 = 0.97). By incorporating the possible presence of chaperone proteins in Novozyme 188, the protein aggregation observed for this cocktail was successfully modeled (R2 = 0.96). To accurately model the increasing protein stability observed at high cocktail loadings, the model was modified to include the presence of additives in the cocktail (R2 = 0.98). By combining the measurement of total protein concentration with the proposed Novozyme 188 protein aggregation model, the endo- and exoglucanases concentration in the solid and liquid phases during hydrolysis can be more accurately determined. This methodology can be applied to various systems leading to optimization of enzyme loading by minimizing the excess of endo- and exoglucanases. In addition, the monitoring of endo- and exoglucanases concentrations can be used to build mass balances of enzyme recycling processes and to techno-economically evaluate the viability of enzyme recycling. PMID:24949230

  10. Ester Prodrugs of Ketoprofen: Synthesis, Hydrolysis Kinetics and Pharmacological Evaluation.

    PubMed

    Dhokchawle, B V; Tauro, S J; Bhandari, A B

    2016-01-01

    The ester prodrugs of ketoprofen with various naturally available antioxidants; menthol, thymol, eugenol, guiacol, vanillin and sesamol have been synthesized by the dicyclohexyl carbodiimide (DCC) coupling method, purified and characterized by spectral data. Further, their, partition coefficients have been determined as well as, hydrolytic studies performed. The synthesized compounds are more lipophilic compared to the parent moieties and are stable in acidic environment, which is a prerequisite for their oral absorption. Under gastric as well as intestinal pH conditions these prodrugs showed variable susceptibility towards hydrolysis. The title compounds when evaluated for anti-inflammatory, analgesic activities and ulcerogenicity, showed improvement over the parent drug. PMID:25894087

  11. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOEpatents

    Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1996-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  12. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOEpatents

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1996-04-16

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  13. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOEpatents

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1997-06-10

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  14. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOEpatents

    Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1997-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  15. The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis

    PubMed Central

    Monavari, Sanam; Galbe, Mats; Zacchi, Guido

    2009-01-01

    Background Two-step dilute acid hydrolysis of softwood, either as a stand-alone process or as pretreatment before enzymatic hydrolysis, is considered to result in higher sugar yields than one-step acid hydrolysis. However, this requires removal of the liquid between the two steps. In an industrial process, filtration and washing of the material between the two steps is difficult, as it should be performed at high pressure to reduce energy demand. Moreover, the application of pressure leads to more compact solids, which may affect subsequent processing steps. This study was carried out to investigate the influence of pressing the biomass, in combination with the effects of not washing the material, on the sugar yield obtained from two-step dilute acid hydrolysis, with and without subsequent enzymatic digestion of the solids. Results Washing the material between the two acid hydrolysis steps, followed by enzymatic digestion, resulted in recovery of 96% of the mannose and 81% of the glucose (% of the theoretical) in the liquid fraction, regardless of the choice of dewatering method (pressing or vacuum filtration). Not washing the solids between the two acid hydrolysis steps led to elevated acidity of the remaining solids during the second hydrolysis step, which resulted in lower yields of mannose, 85% and 74% of the theoretical, for the pressed and vacuum-filtered slurry, respectively, due to sugar degradation. However, this increase in acidity resulted in a higher glucose yield (94.2%) from pressed slurry than from filtered slurry (77.6%). Conclusion Pressing the washed material between the two acid hydrolysis steps had no significant negative effect on the sugar yields of the second acid hydrolysis step or on enzymatic hydrolysis. Not washing the material resulted in a harsher second acid hydrolysis step, which caused greater degradation of the sugars during subsequent acid hydrolysis of the solids, particularly in case of the vacuum-filtered solids. However, pressing in combination with not washing the material between the two steps enhanced the sugar yield of the enzymatic digestion step. Hence, it is suggested that the unwashed slurry be pressed to as high a dry matter content as possible between the two acid hydrolysis stages in order to achieve high final sugar yields. PMID:19291286

  16. The effect of extracellular polysaccharides on the goethite-surface promoted hydrolysis of organophosphates.

    NASA Astrophysics Data System (ADS)

    Kenney, J. P. L.; Olsson, R.; Giesler, R.; Persson, P.

    2012-04-01

    Organophosphate monoesters comprise a significant fraction of phosphate in soils. In order to access phosphorus needed for growth, plants and microorganisms often require the hydrolysis of large organophosphate molecules. This hydrolysis can be enzymatic or a reaction promoted by contact with an environmental surface. Because phosphorus strongly adsorbs to environmental particles, the fate and transport of phosphorus in the biosphere can be significantly impacted by reactions at the surfaces of these particles. Soil minerals, including the common Fe(III) mineral goethite, have been shown to increase the rate of hydrolysis of organophosphates by acting as catalysts. Many enzyme-secreting microbes and plants can also release extracellular polysaccharides (EPS) into their local environments. EPS is known to adsorb to environmental particles, including goethite. The adsorption of EPS may alter the physico-chemistry of the mineral-phosphate-enzyme system by impacting either the adsorption or enzymatic hydrolysis of organophosphate. Currently, there is little information available regarding the ability of EPS to enhance or inhibit the availability of essential nutrients, such as phosphate, in the environment. In this study we have investigated the hydrolysis of the phosphate monoesters, glucose phosphate (GP) and p-nitrophenyl phosphate (pNPP). To investigate the hydrolysis mechanisms and extent of hydrolysis of phosphate monoesters we studied three systems: 1) abiotic hydrolysis, where monoesters are adsorbed on goethite surfaces; 2) enzymatic hydrolysis where the monoesters are adsorbed to goethite then exposed to an enzyme; and 3) testing whether the presence of alginate, which is used as a model for EPS, can inhibit or enhance the abiotic or enzymatic hydrolysis. To investigate this we used infrared spectroscopy and the ATR sampling technique. Abiotic hydrolysis was examined using goethite as the environmental surface. Adsorption of each monoester to the goethite was found to be rapid, and the subsequent hydrolysis was found to be dependent upon pH and the properties of the mineral-water interface. When enzyme was added to the goethite-monoester system, at the optimum conditions for the acid phosphatase enzyme, the rate of hydrolysis reached nearly the same rate as the enzymatic hydrolysis of the monoester in a goethite-free system. Thus, the enzyme can change the system from one with no hydrolysis to one with significant hydrolysis. The presence of alginate in the goethite-monoester-enzyme system changes the properties of the interface, thereby changing the hydrolysis of these phosphate monoesters.

  17. Migration and transformation rule of heavy metals in sludge during hydrolysis for protein extraction.

    PubMed

    Li, Yulong; Xue, Fei; Li, Jiebing; Xu, Shi Hong; Li, Dengxin

    2016-03-01

    The content and speciation of heavy metals can fundamentally affect the hydrolysis of sludge. This research study investigates the migration and transformation rule of heavy metals during the hydrolysis process by measuring the content of exchangeables (F1), bound to carbonates (F2), bound to Fe-Mn oxides (F3), bound to organic matter (F4), and residuals (F5) under different periods of time undergoing hydrolysis. The results show that the hydrolysis process generally stabilized Cu, Zn, Mn, Ni, Pb, Cr, and As by transforming the unstable states into structurally stable states. Such transformations and stabilization were primarily caused by the changes in local metal ion environment and bonding structure, oxidation of sulfides, pyrolyzation of organic matter, and evaporation of resulting volatile materials. An X-ray diffractometry (XRD) of the residuals conducted after hydrolysis indicated that hydrolysis did have a significant influence on the transportation and transformation of heavy metals. PMID:26564189

  18. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis. PMID:26915095

  19. Xylan hydrolysis in Populus trichocarpa P. deltoides and model substrates during hydrothermal pretreatment.

    PubMed

    Trajano, Heather L; Pattathil, Sivakumar; Tomkins, Bruce A; Tschaplinski, Timothy J; Hahn, Michael G; Van Berkel, Gary J; Wyman, Charles E

    2015-03-01

    Previous studies defined easy and difficult to hydrolyze fractions of hemicellulose that may result from bonds among cellulose, hemicellulose, and lignin. To understand how such bonds affect hydrolysis, Populus trichocarpa Populus deltoides, holocellulose isolated from P. trichocarpa P. deltoides and birchwood xylan were subjected to hydrothermal flow-through pretreatment. Samples were characterized by glycome profiling, HPLC, and UPLC-MS. Glycome profiling revealed steady fragmentation and removal of glycans from solids during hydrolysis. The extent of polysaccharide fragmentation, hydrolysis rate, and total xylose yield were lowest for P. trichocarpa P. deltoides and greatest for birchwood xylan. Comparison of results from P. trichocarpa P. deltoides and holocellulose suggested that lignin-carbohydrate complexes reduce hydrolysis rates and limit release of large xylooligomers. Smaller differences between results with holocellulose and birchwood xylan suggest xylan-cellulose hydrogen bonds limited hydrolysis, but to a lesser extent. These findings imply cell wall structure strongly influences hydrolysis. PMID:25545089

  20. Periodic peristalsis releasing constrained water in high solids enzymatic hydrolysis of steam exploded corn stover.

    PubMed

    Liu, Zhi-Hua; Chen, Hong-Zhang

    2016-04-01

    Periodic peristalsis was used to release water constraint and increase high solids enzymatic hydrolysis efficiency. Glucan and xylan conversion in periodic peristalsis enzymatic hydrolysis (PPEH) at 21% solid loading increased by 5.2-6.4% and 6.8-8.8% compared with that in incubator shaker enzymatic hydrolysis (ISEH), respectively. Hydrolysis kinetics suggested that sugars conversion significantly increased within 24h in PPEH compared with ISEH. The peak height of main water pool increased by 7.7-43.1% within 24h in PPEH compared with ISEH. The increases in peak height of main water pool were consistent with the increases in glucan conversion. Submicroscopic particulates and macro granule residues contributed greatly to water constraint compared with glucose, xylose, ethanol, and Tween 80. Smaller particle size and longer residence time resulted in lower water constraint and facilitated the enzymatic hydrolysis performance. Periodic peristalsis was an effective method to reduce water constraint and increase high solids enzymatic hydrolysis efficiency. PMID:26826953

  1. Study of Enzymatic Hydrolysis of Fructans from Agave salmiana Characterization and Kinetic Assessment

    PubMed Central

    Michel-Cuello, Christian; Ortiz-Cerda, Imelda; Moreno-Vilet, Lorena; Grajales-Lagunes, Alicia; Moscosa-Santillán, Mario; Bonnin, Johanne; González-Chávez, Marco Martín; Ruiz-Cabrera, Miguel

    2012-01-01

    Fructans were extracted from Agave salmiana juice, characterized and subjected to hydrolysis process using a commercial inulinase preparation acting freely. To compare the performance of the enzymatic preparation, a batch of experiments were also conducted with chicory inulin (reference). Hydrolysis was performed for 6 h at two temperatures (50, 60°C) and two substrate concentrations (40, 60 mg/ml). Hydrolysis process was monitored by measuring the sugars released and residual substrate by HPLC. A mathematical model which describes the kinetics of substrate degradation as well as fructose production was proposed to analyze the hydrolysis assessment. It was found that kinetics were significantly influenced by temperature, substrate concentration, and type of substrate (P < 0.01). The extent of substrate hydrolysis varied from 82 to 99%. Hydrolysis product was mainly constituted of fructose, obtaining from 77 to 96.4% of total reducing sugars. PMID:22629216

  2. Alkaline decomposition of synthetic jarosite with arsenic

    PubMed Central

    2013-01-01

    The widespread use of jarosite-type compounds to eliminate impurities in the hydrometallurgical industry is due to their capability to incorporate several elements into their structures. Some of these elements are of environmental importance (Pb2+, Cr6+, As5+, Cd2+, Hg2+). For the present paper, AsO43- was incorporated into the lattice of synthetic jarosite in order to carry out a reactivity study. Alkaline decomposition is characterized by removal of sulfate and potassium ions from the lattice and formation of a gel consisting of iron hydroxides with absorbed arsenate. Decomposition curves show an induction period followed by a conversion period. The induction period is independent of particle size and exponentially decreases with temperature. The conversion period is characterized by formation of a hydroxide halo that surrounds an unreacted jarosite core. During the conversion period in NaOH media for [OH-] > 8 × 10-3 mol L-1, the process showed a reaction order of 1.86, and an apparent activation energy of 60.3 kJ mol-1 was obtained. On the other hand, during the conversion period in Ca(OH)2 media for [OH-] > 1.90 × 10-2 mol L-1, the reaction order was 1.15, and an apparent activation energy of 74.4 kJ mol-1 was obtained. The results are consistent with the spherical particle model with decreasing core and chemical control. PMID:23566061

  3. The Martian ocean: First acid, then alkaline

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1992-01-01

    In Mars' distant past, carbon dioxide and water may have been plentiful. Values of total outgassed CO2 from several to about 10 bar are consistent with present knowledge, and this amount of CO2 implies an amount of water outgassed equal to an equivalent depth of 500 to 1000 m. It is quite reasonable, therefore, to envision an early Mars in which there was a body or bodies of liquid water, perhaps in the northern plains, and a dense carbon dioxide atmosphere. Under such conditions, the pH of the water will be low, due to the dissolution of carbon dioxide in the water to form carbonic acid. This acidic water is capable of weathering the available rock quite intensely, particularly because this rock is likely to be heavily fractured (from meteorite bombardment) or even consist of fine particles (such as pyroclastic deposits). As time goes on, however, the carbon dioxide atmosphere will rapidly pass through the ocean to form carbonate deposits. As the density of the atmosphere decreases, so will the flux of carbonic acid into the ocean. Without this input of carbonic acid, the effect of the dissolved weathering products will be to increase the pH of the water. The ocean will then become alkaline. To study this process, I have developed a geochemical cycle model for the atmosphere-hydrosphere-regolith system of Mars. The treatment of geochemical cycles as complex kinetic chemical reactions has been undertaken for terrestrial systems in recent years with much success. This method is capable of elegantly handling the interactions between the simultaneous chemical reactions needed to understand such a system.

  4. Design considerations and construction techniques for successive alkalinity producing systems

    SciTech Connect

    Skovran, G.A.; Clouser, C.R.

    1998-12-31

    Successive Alkalinity Producing Systems (SAPS) have been utilized for several years for the passive treatment of acid mine drainage. The SAPS technology is an effective method for inducing alkalinity to neutralize acid mine water and promote the precipitation of contaminating metals. Several design considerations and construction techniques are important for proper system function and longevity. This paper discusses SAPS design, water collection and introduction to the SAPS, hydraulics of SAPS, construction, operation and maintenance, and safety, and found that these factors were critical to obtaining maximum alkalinity at several SAPS treatment sites in Southwestern Pennsylvania. Taking care to incorporate these factors into future SAPS will aid effective treatment, reduce maintenance costs, and maximize long term effectiveness of successive alkalinity producing systems.

  5. Kinetics of the Fading of Phenolphthalein in Alkaline Solution.

    ERIC Educational Resources Information Center

    Nicholson, Lois

    1989-01-01

    Described is an experiment which illustrates pseudo-first-order kinetics in the fading of a common indicator in an alkaline solution. Included are background information, details of materials used, laboratory procedures, and sample results. (CW)

  6. Processes affecting the oceanic distributions of dissolved calcium and alkalinity

    SciTech Connect

    Shiller, A.M.; Gieskes, J.M.

    1980-05-20

    Recent studies of the CO/sub 2/ system have suggested that chemical processes in addition to the dissolution and precipitation of calcium carbonate affect the oceanic calcium and alkalinity distributions. Calcium and alkalinity data from the North Pacific have been examined both by using the simple physical-chemical model of previous workers and by a study involving the broader oceanographic context of these data. The simple model is shown to be an inadequate basis for these studies. Although a proton flux associated with organic decomposition may affect the alkalinity, previously reported deviations of calcium-alkalinity correlations from expected trends appear to be related to boundary processes that have been neglected rather than to this proton flux. The distribution of calcium in the surface waters of the Pacific Ocean is examined.

  7. Solvent processible, high-performance partially fluorinated copoly(arylene ether) alkaline ionomers for alkaline electrodes

    NASA Astrophysics Data System (ADS)

    Zhou, Junfeng; Ünlü, Murat; Anestis-Richard, Irene; Kim, Hyea; Kohl, Paul A.

    2011-10-01

    A solvent processable, low water uptake, partially fluorinated copoly(arylene ether) functionalized with pendant quaternary ammonium groups (QAPAE) was synthesized and uses as the ionomer in alkaline electrodes on fuel cells. The quaternized polymers containing fluorinated biphenyl groups were synthesized via chloromethylation of copoly(arylene ether) followed by amination with trimethylamine. The resulting ionomers were very soluble in polar, aprotic solvents. Highly aminated ionomers had conductivities approaching 10 mS cm-1 at room temperature. Compared to previous ionomers based on quaternized poly(arylene ether sulfone) (QAPSF) with similar ion exchange capacity (IEC), the water uptake of QAPAE was significantly less due to the hydrophobic octafluoro-biphenyl groups in the backbone. The performance of the fuel cell electrodes made with the QAPAE ionomers was evaluated as the cathode on a hybrid AEM/PEM fuel cell. The QAPAE alkaline ionomer electrode with IEC = 1.22 meq g-1 had superior performance to the electrodes prepared with QAPSF, IEC = 1.21 meq g-1 at 25 and 60 °C in a H2/O2 fuel cell. The peak power densities at 60 °C were 315 mW cm-2 for QAPAE electrodes and 215 mW cm-2 for QAPSF electrodes.

  8. Enzymatic hydrolysis of rice straw for ethanol production

    SciTech Connect

    Wald, S.A.; Wilke, C.R.; Blanch, H.W.

    1981-07-01

    This study is concerned with an agricultural residue, rice straw, and its potential as a feedstock for ethanol production. Disposal of the rice straw is required to control the fungal infection called stem rot. The objective of this research was aimed at demonstrating the technical feasibility of ethanol production from rice straw and providing an economic evaluation of a proposed processing scheme. Enzymatic hydrolysis experiments indicated that up to 60% of the available cellulose can be converted to a fermentable sugar solution. A kinetic model was developed to aid in understanding the hydrolysis process and for use in process optimization studies. The model incorporates an enzyme adsorption mechanism, product inhibition, and considers a multiple enzyme and substrate system. Economic evaluation of the proposed processing scheme shows that ethanol can be produced for $2.56 per gallon with an additional raw material cost of $1.43 per gallon. This was based on nominal capacity of 10 million gallons of 95% ethanol annually and a rice straw cost of $30 per dry ton. It is recommended that future research should focus on improving pretreatment and enzyme production techniques. In addition, more emphasis should be placed on effective utilization of all the components of the lignocellulosic material.

  9. Parameter and Process Significance in Mechanistic Modeling of Cellulose Hydrolysis

    NASA Astrophysics Data System (ADS)

    Rotter, B.; Barry, A.; Gerhard, J.; Small, J.; Tahar, B.

    2005-12-01

    The rate of cellulose hydrolysis, and of associated microbial processes, is important in determining the stability of landfills and their potential impact on the environment, as well as associated time scales. To permit further exploration in this field, a process-based model of cellulose hydrolysis was developed. The model, which is relevant to both landfill and anaerobic digesters, includes a novel approach to biomass transfer between a cellulose-bound biofilm and biomass in the surrounding liquid. Model results highlight the significance of the bacterial colonization of cellulose particles by attachment through contact in solution. Simulations revealed that enhanced colonization, and therefore cellulose degradation, was associated with reduced cellulose particle size, higher biomass populations in solution, and increased cellulose-binding ability of the biomass. A sensitivity analysis of the system parameters revealed different sensitivities to model parameters for a typical landfill scenario versus that for an anaerobic digester. The results indicate that relative surface area of cellulose and proximity of hydrolyzing bacteria are key factors determining the cellulose degradation rate.

  10. Development of effective modified cellulase for cellulose hydrolysis process

    SciTech Connect

    Park, J.W.; Kajiuchi, Toshio . Dept. of Chemical Engineering)

    1995-02-20

    Cellulase was modified with amphilic copolymers made of [alpha]-allyl-[omega]-methoxy polyoxyalkylene (POA) and maleic acid anhydride (MAA) to improve the cellulose hydrolytic reactivity and cellulase separation. Amino groups of the cellulase molecule are covalently coupled with the MAA functional groups of the copolymer. At the maximum degree of modification (DM) of 55%, the modified cellulase activity retained more than 80% of the unmodified native cellulase activity. The modified cellulase shows greater stability against temperature, pH, and organic solvents, and demonstrated greater conversion of substrate than native cellulase does. Cellulase modification is also useful for controlling strong adsorption of cellulase onto substrate. Moreover, cellulase modified with the amphiphilic copolymer displays different separation characteristics which are new. One is a reactive two-phase partition and another is solubility in organic solvents. It appears that these characteristics of modified cellulase work very effectively in the hydrolysis of cellulose as a total system, which constitutes the purification of cellulase from culture broth, hydrolysis of cellulose, and recovery of cellulase from the reaction mixture.

  11. Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production.

    PubMed

    Tan, Inn Shi; Lam, Man Kee; Lee, Keat Teong

    2013-04-15

    Utilization of macroalgae biomass for bioethanol production appears as an alternative source to lignocellulosic materials. In this study, for the first time, Amberlyst (TM)-15 was explored as a potential catalyst to hydrolyze carbohydrates from Eucheuma cottonii extract to simple reducing sugar prior to fermentation process. Several important hydrolysis parameters were studied for process optimization including catalyst loading (2-5%, w/v), reaction temperature (110-130°C), reaction time (0-2.5 h) and biomass loading (5.5-15.5%, w/v). Optimum sugar yield of 39.7% was attained based on the following optimum conditions: reaction temperature at 120°C, catalyst loading of 4% (w/v), 12.5% (w/v) of biomass concentration and reaction time of 1.5h. Fermentation of the hydrolysate using Saccharomyces cerevisiae produced 0.33 g/g of bioethanol yield with an efficiency of 65%. The strategy of combining heterogeneous-catalyzed hydrolysis and fermentation with S. cerevisiae could be a feasible strategy to produce bioethanol from macroalgae biomass. PMID:23544575

  12. Carbon-based strong solid acid for cornstarch hydrolysis

    SciTech Connect

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  13. Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.

    PubMed

    Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook

    2016-06-01

    Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars. PMID:26899601

  14. Aqueous fractionation of biomass based on novel carbohydrate hydrolysis kinetics

    DOEpatents

    Torget, Robert W.

    2001-01-01

    A multi-function process for hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components comprising extractives and proteins; a portion of a solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising: a) introducing either solid fresh biomass or partially fractioned lignocellulosic biomass material with entrained acid or water into a reactor and heating to a temperature of up to about 185.degree. C.-205.degree. C. b) allowing the reaction to proceed to a point where about 60% of the hemicellulose has been hydrolyzed in the case of water or complete dissolution in case of acid; c) adding a dilute acid liquid at a pH below about 5 at a temperature of up to about 205.degree. C. for a period ranging from about 5 to about 10 minutes; to hydrolyze the remaining 40% of hemicellulose if water is used. d) quenching the reaction at a temperature of up to about 140.degree. C. to quench all degradation and hydrolysis reactions; and e) introducing into said reaction chamber and simultaneously removing from said reaction chamber, a volumetric flow rate of dilute acid at a temperature of up to about 140.degree. C. to wash out the majority of the solubilized biomass components, to obtain improved hemicellosic sugar yields.

  15. How does association process affect fibrinogen hydrolysis by thrombin?

    PubMed

    Zavyalova, Elena; Kopylov, Alexey

    2014-12-01

    Thrombin, a key enzyme in the blood coagulation cascade, hydrolyzes fibrinogen into fibrin, which specifically associates into the fibers that build up a thrombus scaffold. The assembly of fibrin involves a set of stepwise reactions, for which a complete and detailed kinetic portrait is needed. Existing kinetic models focus on particular parts of the process, for example the mechanism of enzyme action itself or the kinetics of formation of fibrin assemblies. The current study considers a thorough model of the process from fibrinogen hydrolysis to the assembly of fibrin. Composing the model requires taking into account several reaction intermediates, stepwise removal of fibrinopeptides, and association of partially hydrolyzed fibrin, in particular desAA fibrin. The model is versatile enough to adopt new data both on fibrinogen hydrolysis and fibrin association. In addition, the model could be considered as an example of a kinetic description of other complex enzyme systems having several intermediates and feedbacks, such as the blood coagulation cascade and signal transduction. PMID:25239831

  16. Enzymatic hydrolysis of lignocellulosic biomass from Onopordum nervosum.

    PubMed

    Martín, C; Negro, M J; Alfonsel, M; Sáez, R

    1988-07-20

    Some properties of the cellulolytic complex obtained from Trichoderma reesei QM 9414 grown on Solka floc as carbon source and its ability to hydrolyze the lignocellulosic biomass of Onopordum nervosum Boiss were studied. The optimum enzyme activity was found at temperatures between 50 and 55 degrees C and pH ranging from 4.3 to 4.8. Hydrolysis of 4-nitropnenyl-beta-D-glucopyranoside (4-NPG) and cellobiose by the beta-glucosidase of the complex, showed competitive inhibition by glucose with a K(i) value of 0.8 mM for 4-NPG and 2. 56 mM for cellobiose. Enzymatic hydrolysis yield of Onopordum nervosum, evaluated as glucose production after 48 h, showed a threefold increase by pretreating the lignocellulosic substrate with alkali. When the loss of glucose incurred by de pretreatment was taken into account, a 160% increase in the final cellulose to glucose conversion was found to be due to the pretreatment. PMID:18584755

  17. Efficient phagocytosis requires triacylglycerol hydrolysis by adipose triglyceride lipase.

    PubMed

    Chandak, Prakash G; Radovic, Branislav; Aflaki, Elma; Kolb, Dagmar; Buchebner, Marlene; Fröhlich, Eleonore; Magnes, Christoph; Sinner, Frank; Haemmerle, Guenter; Zechner, Rudolf; Tabas, Ira; Levak-Frank, Sanja; Kratky, Dagmar

    2010-06-25

    Macrophage phagocytosis is an essential biological process in host defense and requires large amounts of energy. To date, glucose is believed to represent the prime substrate for ATP production in macrophages. To investigate the relative contribution of free fatty acids (FFAs) in this process, we determined the phagocytosis rates in normal mouse macrophages and macrophages of adipose triglyceride lipase (ATGL)-deficient mice. ATGL was shown to be the rate-limiting enzyme for the hydrolysis of lipid droplet-associated triacylglycerol (TG) in many tissues. Here, we demonstrate that Atgl(-/-) macrophages fail to efficiently hydrolyze cellular TG stores leading to decreased cellular FFA concentrations and concomitant accumulation of lipid droplets, even in the absence of exogenous lipid loading. The reduced availability of FFAs results in decreased cellular ATP concentrations and impaired phagocytosis suggesting that fatty acids must first go through a cycle of esterification and re-hydrolysis before they are available as energy substrate. Exogenously added glucose cannot fully compensate for the phagocytotic defect in Atgl(-/-) macrophages. Hence, phagocytosis was also decreased in vivo when Atgl(-/-) mice were challenged with bacterial particles. These findings imply that phagocytosis in macrophages depends on the availability of FFAs and that ATGL is required for their hydrolytic release from cellular TG stores. This novel mechanism links ATGL-mediated lipolysis to macrophage function in host defense and opens the way to explore possible roles of ATGL in immune response, inflammation, and atherosclerosis. PMID:20424161

  18. Enzymatic Hydrolysis of Organic Phosphorus in River Bed Sediments

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pant, H. K.

    2009-12-01

    Enzymatic hydrolysis of phosphorus (P) in bed sediments is an important process that maintains bioavailable P in the river systems. The P bioavailability is the criteria for assessing the eutrophication potential in rivers and streams. The objective of this research was to determine potential bioavailability of organic P (OP) in the Bronx River bed sediments using native phosphatases (NP) and phosphodiesterase (PDEase) hydrolysis. The bed sediments collected in summer 2006 and 2007 were incubated at 37C for 6 h at pH 7.5 with NP. The results showed that NP hydrolyzed substantial amount of OP (up to 76%) under favorable temperature and pH, indicating OP could be hydrolyzed under increased temperature, in turn, increase in P availability in the river. Similarly, the sediments incubated with PDEase under 37C at pH 8.8, the results showed that up to 82% of OP could be hydrolyzed. Strong correlations between percentage of OP hydrolyzed by PDEase and organic matter (OM) were observed for sediments collected in 2006 (r = 0.745; p≤0.01) and 2007 (r = 0.724; p≤0.01), indicating PDEase hydrolysable P is mainly with organic matter. The local hydro-climatic changes such as temperature increase and pH could hydrolyze substantial amount of OP and increase bioavailable P in water column, resulting in potential threat to the river ecosystems.

  19. Hydrolysis of different chain length xylooliogmers by cellulase and hemicellulase.

    PubMed

    Qing, Qing; Wyman, Charles E

    2011-01-01

    Commercial cellulase complexes produced by cellulolytic fungi contain enzyme activities that are capable of hydrolyzing non-cellulosic polysaccharides in biomass, primarily hemicellulose and pectins, in addition to cellulose. However, xylanase activities detected in most commercial enzyme preparations have been shown to be insufficient to completely hydrolyze xylan, resulting in high xylooligomer concentrations remaining in the hydrolysis broth. Our recent research showed that these xylooligomers are stronger inhibitors of cellulase activity than others have previously established for glucose and cellobiose, making their removal of great importance. In this study, a HPLC system that can measure xylooligomers with degrees of polymerization (DP) up to 30 was applied to assess how Spezyme CP cellulase, Novozyme 188 β-glucosidase, Multifect xylanase, and non-commercial β-xylosidase enzymes hydrolyze different chain length xylooligomers derived from birchwood xylan. Spezyme CP cellulase and Multifect xylanase partially hydrolyzed high DP xylooligomers to lower DP species and monomeric xylose, while β-xylosidase showed the strongest ability to degrade both high and low DP xylooligomers. However, about 10-30% of the higher DP xylooligomers were difficult to be breakdown by cellulase or xylanase and about 5% of low DP xylooligomers (mainly xylobiose) proved resistant to hydrolysis by cellulase or β-glucosidase, possibly due to low β-xylosidase activity in these enzymes and/or the precipitation of high DP xylooligomers. PMID:20943381

  20. Investigation of a Submerged Membrane Reactor for Continuous Biomass Hydrolysis

    SciTech Connect

    Malmali, Mohammadmahdi; Stickel, Jonathan; Wickramasinghe, S. Ranil

    2015-07-10

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.