Science.gov

Sample records for alkaline nuclear waste

  1. Raman study of aluminum speciation in simulated alkaline nuclear waste.

    PubMed

    Johnston, Cliff T; Agnew, Stephen F; Schoonover, Jon R; Kenney, John W; Page, Bobbi; Osborn, Jill; Corbin, Rob

    2002-06-01

    The chemistry of concentrated sodium aluminate solutions stored in many of the large, underground storage tanks containing high-level waste (HLW) at the Hanford and Savannah River Nuclear Reservations is an area of recent research interest. Not only is the presence of aluminate in solution important for continued safe storage of these wastes, the nature of both solid and solution aluminum oxyhydroxides is important for waste pretreatment. Moreover, for many tanks that have leaked high aluminum waste in the past, little is known about the speciation of Al in the soil. In this study, Raman spectroscopy has been used to investigate the speciation of the aqueous species in the Al2O3-Na2O-H2O system over a wide range of solution compositions and hydration. A ternary phase diagram has been used to correlate the observed changes in the spectra with the composition of the solution and with dimerization of aluminate that occurs at elevated aluminate concentrations (>1.5 M). Dimerization is evidenced by growth of new Al-O stretching bands at 535 and 695 cm(-1) at the expense of the aluminate monomer band at 620 cm(-1). The spectrum of water was strongly influenced by the high concentrations of Na+ and OH- (>17 M). Upon increasing the concentration of NaOH in solution, the delta-(H-O-H) bending band of water (v2 mode) increased in frequency to 1663 cm(-1), indicating that the water contained in the concentrated caustic solution was more strongly hydrogen bonded at the higher base content. In addition, the sharp, well-resolved band at 3610 cm(-1), assigned to the v(O-H) of free OH-, increased in intensity with increasing NaOH. Analysis of the v(O-H) bands in the 3800-2600 cm(-1) region supported the overall increase in hydrogen bonding as evidenced by the increase in relative intensity of a strongly hydrated water band at 3118 cm(-1). Taking into consideration the activity of water, the molar concentrations of the monomeric and dimeric aluminate species were estimated using

  2. Electrochemical Treatment of Alkaline Nuclear Wastes. Innovative Technology Summary Report

    SciTech Connect

    2001-01-01

    Nitrate and nitrite are two of the major hazardous non-radioactive species present in Hanford and Savannah River (SR) high-level waste (HLW). Electrochemical treatment processes have been developed to remove these species by converting aqueous sodium nitrate/nitrite into sodium hydroxide and chemically reducing the nitrogen species to gaseous ammonia, nitrous oxide and nitrogen. Organic complexants and other organic compounds found in waste can be simultaneously oxidized to gaseous carbon dioxide and water, thereby reducing flammability and leaching risks as well as process interferences in subsequent radionuclide separation processes. Competing technologies include thermal, hydrothermal and chemical destruction. Unlike thermal and hydrothermal processes that typically operate at very high temperatures and pressures, electrochemical processes typically operate at low temperatures (<100 C) and atmospheric pressure. Electrochemical processes effect chemical transformations by the addition or removal of electrons and, thus, do not add additional chemicals, as is the case with chemical destruction processes. Hanford and SR have different plans for disposal of the low-activity waste (LAW) that results when radioactive Cs{sup 137} has been removed from the HLW. At SR, the decontaminated salt solution will be disposed in a cement waste form referred to as Saltstone, whereas at Hanford the waste will be vitrified as a borosilicate glass. Destruction of the nitrate and nitrite before disposing the decontaminated salt solution in Saltstone would eliminate possible groundwater contamination that could occur from the leaching of nitrate and nitrite from the cement waste form. Destruction of nitrate and nitrite before vitrification at Hanford would significantly reduce the size of the off-gas system by eliminating the formation of NO{sub x} gases in the melter. Throughout the 1990's, the electrochemical conversion process has been extensively studied at SR, the University of

  3. Oxidative Alkaline leaching of Americium from simulated high-level nuclear waste sludges

    SciTech Connect

    Reed, Wendy A.; Garnov, Alexander Yu.; Rao, Linfeng; Nash, Kenneth L.; Bond, Andrew H.

    2004-01-23

    Oxidative alkaline leaching has been proposed to pre-treat the high-level nuclear waste sludges to remove some of the problematic (e.g., Cr) and/or non-radioactive (e.g., Na, Al) constituents before vitrification. It is critical to understand the behavior of actinides, americium and plutonium in particular, in oxidative alkaline leaching. We have studied the leaching behavior of americium from four different sludge simulants (BiPO{sub 4}, BiPO{sub 4 modified}, Redox, PUREX) using potassium permanganate and potassium persulfate in alkaline solutions. Up to 60% of americium sorbed onto the simulants is leached from the sludges by alkaline persulfate and permanganate. The percentage of americium leached increases with [NaOH] (between 1.0 and 5.0 M). The initial rate of americium leaching by potassium persulfate increases in the order BiPO{sub 4} sludge < Redox sludge < PUREX sludge. The data are most consistent with oxidation of Am{sup 3+} in the sludge to either AmO{sub 2}{sup +} or AmO{sub 2}{sup 2+} in solution. Though neither of these species is expected to exhibit long-term stability in solution, the potential for mobilization of americium from sludge samples would have to be accommodated in the design of any oxidative leaching process for real sludge samples.

  4. Selective separation of hydroxide from alkaline nuclear tank waste by liquid-liquid extraction with weak hydroxy acids.

    PubMed

    Chambliss, C Kevin; Haverlock, Tamara I; Bonnesen, Peter V; Engle, Nancy L; Moyer, Bruce A

    2002-04-15

    Recovery and recycle of caustic reagents in industrial processes offer potential means of pollution prevention, as investigated herein for particular needs related to the cleanup of alkaline nuclear waste. Specifically, the recovery of hydroxide from alkaline media by liquid-liquid extraction can be effected utilizing weak hydroxy acids, as demonstrated for NaOH utilizing a series of lipophilic fluorinated alcohols and alkylated phenols dissolved in 1-octanol. Extraction efficiency follows the expected order of acidity of the hydroxy acids, the phenols being the most efficient extractants among the compounds tested. After extraction, NaOH is effectively recoverable from the organic phase upon contact with water. The weakest hydroxy acids are the most efficiently stripped, NaOH recovery being nearly quantitative in a single contact. In competitive extraction experiments, good selectivity for hydroxide recovery over other anions such as nitrate and chloride was demonstrated. Since the order of extraction favors larger anions, the exceptional preference for hydroxide implies that the extraction occurs by deprotonation of the hydroxy acids in a cation-exchange process. Stripping therefore occurs by hydrolysis to regenerate the neutral hydroxy acid, liberating NaOH to the aqueous phase. Since hydroxide equivalents rather than actual hydroxide ions are transferred to the solvent, the process is termed "pseudohydroxide extraction." Hydroxide recovery from a simulant of alkaline nuclear tank waste (Hanford DSSF simulant) was also demonstrated in repeated extraction and stripping cycles. PMID:11993889

  5. Summary technical report on the electrochemical treatment of alkaline nuclear wastes

    SciTech Connect

    Hobbs, D.T.

    1994-07-30

    This report summarizes the laboratory studies investigating the electrolytic treatment of alkaline solutions carried out under the direction of the Savannah River Technology Center from 1985-1992. Electrolytic treatment has been demonstrated at the laboratory scale to be feasible for the destruction of nitrate and nitrite and the removal of radioactive species such as {sup 99}Tc and {sup 106}Ru from Savannah River Site (SRS) decontaminated salt solution and other alkaline wastes. The reaction rate and current efficiency for the removal of these species are dependent on cell configuration, electrode material, nature of electrode surface, waste composition, current density, and temperature. Nitrogen, ammonia, and nitrous oxide have been identified as the nitrogen-containing reaction products from the electrochemical reduction of nitrate and nitrite under alkaline conditions. The reaction mechanism for the reduction is very complex. Voltammetric studies indicated that the electrode reactions involve surface phenomena and are not necessarily mass transfer controlled. In an undivided cell, results suggest an electrocatalytic role for oxygen via the generation of the superoxide anion. In general, more efficient reduction of nitrite and nitrate occurs at cathode materials with higher overpotentials for hydrogen evolution. Nitrate and nitrite destruction has also been demonstrated in engineering-scale flow reactors. In flow reactors, the nitrate/nitrite destruction efficiency is improved with an increase in the current density, temperature, and when the cell is operated in a divided cell configuration. Nafion{reg_sign} cation exchange membranes have exhibited good stability and consistent performance as separators in the divided-cell tests. The membranes were also shown to be unaffected by radiation at doses approximating four years of cell operation in treating decontaminated salt solution.

  6. Nuclear waste

    SciTech Connect

    Not Available

    1991-09-01

    Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review the alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.

  7. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am - the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting ...

  8. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  9. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  10. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  11. Removal of plutonium and americium from alkaline waste solutions

    DOEpatents

    Schulz, Wallace W.

    1979-01-01

    High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.

  12. ANNUAL REPORT. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am-the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting the...

  13. Nuclear Waste Disposal

    SciTech Connect

    Gee, Glendon W.; Meyer, Philip D.; Ward, Andy L.

    2005-01-12

    Nuclear wastes are by-products of nuclear weapons production and nuclear power generation, plus residuals of radioactive materials used by industry, medicine, agriculture, and academia. Their distinctive nature and potential hazard make nuclear wastes not only the most dangerous waste ever created by mankind, but also one of the most controversial and regulated with respect to disposal. Nuclear waste issues, related to uncertainties in geologic disposal and long-term protection, combined with potential misuse by terrorist groups, have created uneasiness and fear in the general public and remain stumbling blocks for further development of a nuclear industry in a world that may soon be facing a global energy crisis.

  14. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    SciTech Connect

    Delegard, C.H.; Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K.

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  15. Nuclear waste packaging facility

    SciTech Connect

    Mallory, C.W.; Watts, R.E.; Paladino, J.B.; Razor, J.E.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.

    1987-07-21

    A nuclear waste packaging facility comprising: (a) a first section substantially surrounded by radiation shielding, including means for remotely handling waste delivered to the first section and for placing the waste into a disposal module; (b) a second section substantially surrounded by radiation shielding, including means for handling a deformable container bearing waste delivered to the second section, the handling means including a compactor and means for placing the waste bearing deformable container into the compactor, the compactor capable of applying a compacting force to the waste bearing containers sufficient to inelastically deform the waste and container, and means for delivering the deformed waste bearing containers to a disposal module; (c) a module transportation and loading section disposed between the first and second sections including a means for handling empty modules delivered to the facility and for loading the empty modules on the transport means; the transport means moving empty disposal modules to the first section and empty disposal modules to the second section for locating empty modules in a position for loading with nuclear waste, and (d) a grouting station comprising means for pouring grout into the waste bearing disposal module, and a capping station comprising means for placing a lid onto the waste bearing grout-filled disposal module to completely encapsulate the waste.

  16. Politics of nuclear waste

    SciTech Connect

    Colglazier, E.W. Jr.

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments. (DP)

  17. High level nuclear waste

    SciTech Connect

    Crandall, J L

    1980-01-01

    The DOE Division of Waste Products through a lead office at Savannah River is developing a program to immobilize all US high-level nuclear waste for terminal disposal. DOE high-level wastes include those at the Hanford Plant, the Idaho Chemical Processing Plant, and the Savannah River Plant. Commercial high-level wastes, for which DOE is also developing immobilization technology, include those at the Nuclear Fuel Services Plant and any future commercial fuels reprocessing plants. The first immobilization plant is to be the Defense Waste Processing Facility at Savannah River, scheduled for 1983 project submission to Congress and 1989 operation. Waste forms are still being selected for this plant. Borosilicate glass is currently the reference form, but alternate candidates include concretes, calcines, other glasses, ceramics, and matrix forms.

  18. Anaerobic digestion of tomato processing waste: Effect of alkaline pretreatment.

    PubMed

    Calabrò, Paolo S; Greco, Rosa; Evangelou, Alexandros; Komilis, Dimitrios

    2015-11-01

    The objective of the work was to assess the effect of mild alkaline pretreatment on the anaerobic biodegradability of tomato processing waste (TPW). Experiments were carried out in duplicate BMP bottles using a pretreatment contact time of 4 and 24 h and a 1% and 5% NaOH dosage. The cumulative methane production during a 30 d period was recorded and modelled. The alkaline pretreatment did not significantly affect methane production in any of the treatments in comparison to the control. The average methane production for all runs was 320 NmL/gVS. Based on first order kinetic modelling, the alkaline pretreatment was found to slow down the rate of methanogenesis, mainly in the two reactors with the highest NaOH dosage. The biodegradability of the substrates ranged from 0.75 to 0.82 and from 0.66 to 0.72 based on two different approaches. PMID:26292773

  19. Nuclear waste solutions

    DOEpatents

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  20. Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste

    SciTech Connect

    James Harvey; Michael Gula

    1998-12-07

    Development of remediation technologies for the characterization, retrieval, treatment, concentration, and final disposal of radioactive and chemical tank waste stored within the Department of Energy (DOE) complex represents an enormous scientific and technological challenge. A combined total of over 90 million gallons of high-level waste (HLW) and low-level waste (LLW) are stored in 335 underground storage tanks at four different DOE sites. Roughly 98% of this waste is highly alkaline in nature and contains high concentrations of nitrate and nitrite salts along with lesser concentrations of other salts. The primary waste forms are sludge, saltcake, and liquid supernatant with the bulk of the radioactivity contained in the sludge, making it the largest source of HLW. The saltcake (liquid waste with most of the water removed) and liquid supernatant consist mainly of sodium nitrate and sodium hydroxide salts. The main radioactive constituent in the alkaline supernatant is cesium-137, but strontium-90, technetium-99, and transuranic nuclides are also present in varying concentrations. Reduction of the radioactivity below Nuclear Regulatory Commission (NRC) limits would allow the bulk of the waste to be disposed of as LLW. Because of the long half-life of technetium-99 (2.1 x 10 5 y) and the mobility of the pertechnetate ion (TcO 4 - ) in the environment, it is expected that technetium will have to be removed from the Hanford wastes prior to disposal as LLW. Also, for some of the wastes, some level of technetium removal will be required to meet LLW criteria for radioactive content. Therefore, DOE has identified a need to develop technologies for the separation and concentration of technetium-99 from LLW streams. Eichrom has responded to this DOE-identified need by demonstrating a complete flowsheet for the separation, concentration, and immobilization of technetium (and iodine) from alkaline supernatant waste.

  1. Processing of nuclear waste

    SciTech Connect

    Hennelly, E.J.

    1981-01-01

    The processing of nuclear waste to transform the liquid waste from fuel reprocessing activities is well defined. Most solid waste forms, if they are cooled and contain diluted waste, are compatible with many permanent storage environments. The public acceptance of methods for disposal is being delayed in the US because of the alternatives studies of waste forms and repositories now under way that give the impression of indecision and difficulty for the disposal of HLW. Conservative programs that dilute and cool solid waste are under way in France and Sweden and demonstrate that a solution to the problem is available now. Research and development should be directed toward improving selected methods rather than seeking a best method, which at best, may always be illusory.

  2. Environmental Hazards of Nuclear Wastes

    ERIC Educational Resources Information Center

    Micklin, Philip P.

    1974-01-01

    Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)

  3. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.; Presley, Derek J.

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  4. Swedish nuclear waste efforts

    SciTech Connect

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981.

  5. Nuclear Magnetic Resonance Studies of Aluminosilicate Gels Prepared in High-Alkaline and Salt-Concentrated Solutions

    SciTech Connect

    Wang, Li Q.; Mattigod, Shas V.; Parker, Kent E.; Hobbs, David T.; McCready, David E.

    2005-01-11

    We have examined the formation of aluminosilicate in high alkaline and salt concentrated solutions characteristic of nuclear tank wastes. Information on the mechanism and kinetics of the phase formation under hydrothermal conditions was obtained by characterization the structures of gel phases as a function of time and composition using multinuclear NMR techniques in combination with x-ray diffraction. This work offers a new insight into the aluminum and aluminosilicate chemistry in simulated nuclear tank wastes.

  6. Materials in Nuclear Waste Disposition

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2014-03-01

    Commercial nuclear energy has been used for over 6 decades; however, to date, none of the 30+ countries with nuclear power has opened a repository for high-level waste (HLW). All countries with nuclear waste plan to dispose of it in metallic containers located in underground geologically stable repositories. Some countries also have liquid nuclear waste that needs to be reduced and vitrified before disposition. The five articles included in this topic offer a cross section of the importance of alloy selection to handle nuclear waste at the different stages of waste processing and disposal.

  7. A perspective on nuclear waste.

    PubMed

    North, D W

    1999-08-01

    The management of spent nuclear fuel and high-level nuclear waste has the deserved reputation as one of the most intractable policy issues facing the United States and other nations using nuclear reactors for electric power generation. This paper presents the author's perspective on this complex issue, based on a decade of service with the Nuclear Waste Technical Review Board and Board on Radioactive Waste Management of the National Research Council. PMID:10765433

  8. Turning nuclear waste into glass

    SciTech Connect

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  9. Waste canister for storage of nuclear wastes

    DOEpatents

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  10. Enhancement of accelerated carbonation of alkaline waste residues by ultrasound.

    PubMed

    Araizi, Paris K; Hills, Colin D; Maries, Alan; Gunning, Peter J; Wray, David S

    2016-04-01

    The continuous growth of anthropogenic CO2 emissions into the atmosphere and the disposal of hazardous wastes into landfills present serious economic and environmental issues. Reaction of CO2 with alkaline residues or cementitius materials, known as accelerated carbonation, occurs rapidly under ambient temperature and pressure and is a proven and effective process of sequestering the gas. Moreover, further improvement of the reaction efficiency would increase the amount of CO2 that could be permanently sequestered into solid products. This paper examines the potential of enhancing the accelerated carbonation of air pollution control residues, cement bypass dust and ladle slag by applying ultrasound at various water-to-solid (w/s) ratios. Experimental results showed that application of ultrasound increased the CO2 uptake by up to four times at high w/s ratios, whereas the reactivity at low water content showed little change compared with controls. Upon sonication, the particle size of the waste residues decreased and the amount of calcite precipitates increased. Finally, the sonicated particles exhibited a rounded morphology when observed by scanning electron microscopy. PMID:26905698

  11. Separation and determination of americium in low-level alkaline waste of NPP origin

    NASA Astrophysics Data System (ADS)

    Todorov, B.; Djingova, R.; Nikiforova, A.

    2006-01-01

    The aim of this work is to develop a short and cost-saving procedure for the determination of 241Am in sludge sample of the alkaline low-level radioactive waste (LL LRAW) collected from Nuclear Power Plant “Kozloduy”. The determination of americium was a part of a complex analytical approach, where group actinide separation was achieved. An anion exchange was used for separation of americium from uranium, plutonium and iron. For the separation of americium extraction with diethylhexyl phosphoric acid (DEHPA) was studied. The final radioactive samples were prepared by micro co-precipitation with NdF3, counted by alpha and gamma spectrometry. The procedure takes 2 hours. The recovery yield of the procedure amounts to (95 ± 1.5)% and the detection limit is 53 mBq/kg 241Am (t=150 000 s). The analytical procedure was applied for actual liquid wastes and results were compared to standard procedure.

  12. FINAL REPORT. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Investigation of behavior of actinides in alkaline media containing Al(III) showed that no aluminate complexes of actinides in oxidation states (III-VII) were formed in alkaline solutions. At alkaline precipitation (pH 10-14) of actinides in presence of Al(III) formation of alumi...

  13. Recycling of chemicals from alkaline waste generated during preparation of UO 3 microspheres by sol-gel process

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Vittal Rao, T. V.; Mukerjee, S. K.; Vaidya, V. N.

    2006-05-01

    Internal gelation process, one of the sol-gel processes for nuclear fuel fabrication, offers many advantages over conventional powder pellet route. However, one of the limitation of the process is generation of large volume of alkaline liquid waste containing hexamethylenetetramine, urea, ammonium nitrate, ammonium hydroxide etc. Presence of ammonium nitrate with hexamethylenetetramine and urea presents a fire hazard which prevents direct disposal of the waste as well as its recycle by evaporation. The paper describes the studies carried out to suitably process the waste. Nitrate was removed from the waste by passing through Dowex 1 × 4 anion exchange resin in OH - form. 1.0 M NaOH was used to regenerate the resin. The nitrate-free waste was further treated to recover and recycle hexamethylenetetramine, urea and ammonium hydroxide for preparation of UO 3 microspheres. The quality of the microspheres obtained was satisfactory. An optimized flow sheet for processing of the waste solution has been suggested.

  14. Nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  15. Neutralisation of an acidic pit lake by alkaline waste products.

    PubMed

    Allard, Bert; Bäckström, Mattias; Karlsson, Stefan; Grawunder, Anja

    2014-01-01

    A former open pit where black shale (alum shale) was excavated during 1942-1965 has been water filled since 1966. The water chemistry was dominated by calcium and sulphate and had a pH of 3.2-3.4 until 1997-1998, when pH was gradually increasing. This was due to the intrusion of leachates from alkaline cement waste deposited close to the lake. A stable pH of around 7.5 was obtained after 6-7 years. The chemistry of the pit lake has changed due to the neutralisation. Concentrations of some dissolved metals, notably zinc and nickel, have gone down, as a result of adsorption/co-precipitation on solid phases (most likely iron and aluminium hydroxides), while other metals, notably uranium and molybdenum, are present at elevated levels. Uranium concentration is reaching a minimum of around pH 6.5 and is increasing at higher pH, which may indicate a formation of neutral and anionic uranyl carbonate species at high pH (and total carbonate levels around 1 mM). Weathering of the water-exposed shale is still in progress. PMID:23913161

  16. Space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  17. Nuclear waste solidification

    DOEpatents

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  18. Nuclear waste: A crisis of when

    SciTech Connect

    Greenberger, L.S.

    1991-07-15

    This article reviews public perception of nuclear power generation and the resulting waste in the context of waste processing and storage. The topics include public fears about nuclear waste and waste storage, no one wants waste storage in their region, low level waste storage question, the need to find a solution now, and indecision is not an option.

  19. Vitrification chemistry and nuclear waste

    SciTech Connect

    Plodinec, M.J.

    1985-01-01

    The vitrification of nuclear waste offers unique challenges to the glass technologist. The waste contains 50 or 60 elements, and often varies widely in composition. Most of these elements are seldom encountered in processing commercial glasses. The melter to vitrify the waste must be able to tolerate these variations in composition, while producing a durable glass. This glass must be produced without releasing hazardous radionuclides to the environment during any step of the vitrification process. Construction of a facility to convert the nearly 30 million gallons of high-level nuclear waste at the Savannah River Plant into borosilicate glass began in late 1983. In developing the vitrification process, the Savannah River Laboratory has had to overcome all of these challenges to the glass technologist. Advances in understanding in three areas have been crucial to our success: oxidation-reduction phenomena during glass melting; the reaction between glass and natural wastes; and the causes of foaming during glass melting.

  20. Public attitudes about nuclear waste

    SciTech Connect

    Bisconti, A.S.

    1991-12-01

    There is general agreement that nuclear waste is an important national issue. It certainly is important to the industry. congress, too, gives high priority to nuclear waste disposal. In a recent pool by Reichman, Karten, Sword, 300 congressional staffers named nuclear waste disposal as the top nuclear energy-related legislative issue for Congress to address. In this paper most of the data the author discusses are from national polls that statistically represent the opinions of all American adults all across the country, as well as polls conducted in Nevada that statistically represent the opinions of all adults in that state. All the polls were by Cambridge Reports and have a margin of error of {plus_minus} 3%.

  1. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    SciTech Connect

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  2. Nuclear waste packing module

    SciTech Connect

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Disibio, R.R.; Liley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1989-07-04

    This patent describes a module for encapsulating radioactive waste contained within inner containers in a structurally stable form capable of bearing a compressive load. The module comprising a rigid outer container which completely surrounds the waste for providing a first radiation and water barrier for the waste and the exterior of the rigid outer container having the shape of a right angle hexagonal prism with substantially planar, non-interlocking face and the surfaces that allow relative planar motion with adjacent similar outer containers, a plurality of inner containers for providing a second radiation barrier for the waste. The inner containers compacted by a force which inelastically deforms both the inner containers and their contents to increase the overall compressive strength of the module by increasing the compressive strength of the inner containers. The plurality of inner containers stacked in a plurality of stacks within the interior of the rigid outer container, and a central layer of a fluent, hardenable substance which fills the space between the outer and inner containers.

  3. Actinide solubility and spectroscopic speciation in alkaline Hanford waste solutions

    SciTech Connect

    Rao, L.; Felmy, A.R.; Rai, D.

    1996-10-01

    Information on the solubility and the speciation of actinide elements, especially plutonium and neptunium, in alkaline solutions is of importance in the development of separation techniques for the Hanford tank HLW supernatant. In the present study, experimental data on the solubilities of plutonium in simulated Hanford tank solutions were analyzed with Pitzer`s specific ion-interaction approach, which is applicable in dilute to highly concentrated electrolyte solutions. In order to investigate the formation of actinide species in alkaline solutions with ligands (e.g., hydroxide, aluminate and carbonate), spectroscopic measurements of neptunium (V), as a chemical analog of plutonium (V), were conducted. Based on the solubility data and available information on both solid and aqueous species, a thermodynamic model was proposed. The applicability and limitations of this model are discussed.

  4. The Public and Nuclear Waste Management.

    ERIC Educational Resources Information Center

    Zinberg, Dorothy

    1979-01-01

    Discusses the public's negative attitude towards nuclear energy development. Explains the perceptions for the nuclear waste disposal problem, and the concern for the protection of the environment. (GA)

  5. The Geopolitics of Nuclear Waste.

    ERIC Educational Resources Information Center

    Marshall, Eliot

    1991-01-01

    The controversy surrounding the potential storage of nuclear waste at Yucca Mountain, Nevada, is discussed. Arguments about the stability of the site and the groundwater situation are summarized. The role of the U.S. Department of Energy and other political considerations are described. (CW)

  6. Column leaching test to evaluate the use of alkaline industrial wastes to neutralize acid mine tailings

    SciTech Connect

    Doye, I.; Duchesne, J.

    2005-08-01

    Acid mine drainage is a serious environmental problem caused by the oxidation of sulfide minerals that releases highly acidic, sulfate, and metals-rich drainage. In this study, alkaline industrial wastes were mixed with acid mine tailings in order to obtain neutral conditions. A series of column leaching tests were performed to evaluate the behavior of reactive mine tailings amended with alkaline-additions under dynamic conditions. Column tests were conducted of oxidized mine tailings combined with cement kiln dust, red mud bauxite, and mixtures of cement kiln dust with red mud bauxite. The pH results show the addition of 10% of alkaline materials permits the maintenance of near neutral conditions. In the presence of 10% alkaline material, the concentration of toxic metals such as Al, Cu, Fe, Zn are significantly reduced as well as the number of viable cells (Thiobacillus ferrooxidans) compared to control samples.

  7. Geopolitics of nuclear waste

    SciTech Connect

    Marshall, E.

    1991-02-22

    More debate has begun over questions related to the safety of high-level waste disposal at the Yucca Mountain site in the Nevada desert. An engineering geologists, Jerry Szymanski, one of the Department of Energy`s (DOE) own staffers in Las Vegas, has proposed that the $15-billion repository would sit on top of an intensely active structure that, if altered by an earthquake, would send a slug of ground water up from deep within the mountain into the waste storage area. This theory has already been slammed in two formal reviews and has virtually no support among geologists. However, enough doubt has been raised that much more geological testing will be necessary to prove or disprove Szymanski`s theory. Nevada state officials are also using all methods to thwart or block the project. The question of the origin of a series of calcium carbonate and opal veins exposed in an exploratory pit, trench 14, near the top of the mountain is also far from answered. The DOE and US Geological Survey may have to collect much more information on the quantity, size, and location of carbonate sites in the area at a high financial outlay to the US government before a complete case on the origin of the material in trench 14 can be made.

  8. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACH SOLUTIONS

    EPA Science Inventory

    The expectation that solubility of actinide ions will be low during alkaline sludge washing to remediate DOE's underground waste tanks is based on minimal experimental evidence, and the application of thermodynamic models of dubious validity to systems that may well be under kine...

  9. Nuclear waste disposal site

    SciTech Connect

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-11-15

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain.

  10. Nuclear waste policy and politics

    SciTech Connect

    Carter, L.J.

    1989-12-31

    The nation`s nuclear waste problem began in 1955 but did not draw widespread public attention until the early 1970s. It was then that the old Atomic Energy commission got in trouble by prematurely designating a site in Lyons, Kansas, as its first nuclear waste repository. This and several other false starts, coupled with the growing environmental and anti-nuclear movements, thrust the issue to the forefront of national consciousness. in the meantime, growing quantities of waste were accumulating at nuclear power plants across the country, creating mounting pressure for action. Congress acted in 1982 and again in 1987. Its 1987 decision was decisive: stop the nationwide search for a disposal site, and focus all efforts on Yucca Mountain in Nevada. Despite the clear Congressional mandate, the program is again bogged down in controversy, internal conflicts, and bureaucracy. Its future depends on a solution to these problems. And the solution involves charting some new and innovative paths around political and technical mine fields.

  11. Development of alkaline solution separations for potential partitioning of used nuclear fuels

    SciTech Connect

    Jarvinen, Gordon D; Runde, Wolfgang H; Goff, George S

    2009-01-01

    The processing of used nuclear fuel in alkaline solution provides potentially useful new selectivity for separating the actinides from each other and f rom the fission products. Over the ast decade, several research teams around the world have considered dissolution of used fuel in alkaline solution and further partitioning in this medium as an alternative to acid dissolution. The chemistry of the actinides and fission products in alkaline soilltion requires extensive investigation to more carefully evaluate its potential for developing useful separation methods for used nuclear fueI.

  12. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    SciTech Connect

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  13. Effects of alkalinity sources on the stability of anaerobic digestion from food waste.

    PubMed

    Chen, Shujun; Zhang, Jishi; Wang, Xikui

    2015-11-01

    This study investigated the effects of some alkalinity sources on the stability of anaerobic digestion (AD) from food waste (FW). Four alkalinity sources, namely lime mud from papermaking (LMP), waste eggshell (WES), CaCO3 and NaHCO3, were applied as buffer materials and their stability effects were evaluated in batch AD. The results showed that LMP and CaCO3 had more remarkable effects than NaHCO3 and WES on FW stabilization. The methane yields were 120.2, 197.0, 156.2, 251.0 and 194.8 ml g(-1) VS for the control and synergistic digestions of CaCO3, NaHCO3, LMP and WES added into FW, respectively. The corresponding final alkalinity reached 5906, 7307, 9504, 7820 and 6782 mg l(-1), while the final acidities were determined to be 501, 200, 50, 350 and 250 mg l(-1), respectively. This indicated that the synergism between alkalinity and inorganic micronutrients from different alkalinity sources played an important role in the process stability of AD from FW. PMID:26391806

  14. Nuclear waste forms for actinides

    PubMed Central

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  15. Nuclear waste: A cancer cure?

    SciTech Connect

    1995-07-01

    In a marriage of strange bedfellows, scientists at one of the country`s most contaminated nuclear waste sites are collaborating with medical researchers to turn nuclear waste into an experimental therapy for cancer. Patients with Hodgkin`s disease and brain, ovarian, and breast cancers may be able to receive the new radiatio-based treatments in the next five to ten years. Recently, scientists at the Hanford site found a way to chemically extract a pure form of the radioisotope yttrium-90 from strontium-90, a by-product of plutonium production. Yttrium-90 is being tested in clinical trials at medical centers around the country as a treatment for various types of cancers, and the initial results are encouraging. The advantage of yttrium-90 over other radioisotopes is its short half-life.

  16. Intergenerational issues regarding nuclear power, nuclear waste, and nuclear weapons.

    PubMed

    Ahearne, J F

    2000-12-01

    Nuclear power, nuclear waste, and nuclear weapons raise substantial public concern in many countries. While new support for nuclear power can be found in arguments concerning greenhouse gases and global warming, the long-term existence of radioactive waste has led to requirements for 10,000-year isolation. Some of the support for such requirements is based on intergenerational equity arguments. This, however, places a very high value on lives far in the future. An alternative is to use discounting, as is applied to other resource applications. Nuclear weapons, even though being dismantled by the major nations, are growing in number due to the increase in the number of countries possessing these weapons of mass destruction. This is an unfortunate legacy for future generations. PMID:11314726

  17. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  18. Nitrogenous Waste Handling by Larval Zebrafish Danio rerio in Alkaline Water.

    PubMed

    Kumai, Yusuke; Harris, Jessica; Al-Rewashdy, Hasanen; Kwong, Raymond W M; Perry, Steve F

    2015-01-01

    Although adult fish excrete their nitrogenous waste primarily as ammonia, larval fish may excrete a higher proportion as urea, an evolutionary strategy that lessens nitrogenous waste toxicity during early development. Previous studies firmly established that ammonia excretion is inhibited in adult fish acutely exposed to alkaline water. This study was designed to test the hypothesis that total nitrogen excretion is maintained in larval zebrafish raised in alkaline water (pH ∼ 10.0) as a result of compensatory adjustments to urea and/or ammonia transport pathways. Raising zebrafish in alkaline water from 0 to 4 d postfertilization (dpf) reduced ammonia excretion at 4 dpf, whereas urea excretion was elevated by 141%. The increase in urea excretion at 4 dpf served to maintain total nitrogen excretion constant, despite the persistent inhibition of ammonia excretion. Whole body ammonia and urea contents were not significantly altered by exposure to alkaline water. Protein and mRNA expression of Rhcg1, an apically expressed ammonia-conducting channel, were significantly elevated after 4-d exposure to alkaline water, whereas the mRNA expression of Rhag, Rhbg, and urea transporter were unaffected. The acute exposure to alkaline water of 4-dpf larvae reared in control water caused a rapid inhibition of ammonia excretion that had partially recovered within 6 h of continued exposure. The partial recovery of ammonia excretion despite continued exposure to alkaline water suggested an increased ammonia excretion capacity. In agreement with an increased capacity to excrete ammonia, the transfer of larvae back to the control (normal pH) water was accompanied by increased rates of ammonia excretion. Urea excretion was not stimulated during 6-h exposure to alkaline water. Following both chronic and acute exposure to alkaline water, the rate of uptake of methylamine (an ammonia analog) was significantly elevated, consistent with increased protein expression of the apical ammonia

  19. Effect of alkaline pretreatment on anaerobic digestion of solid wastes.

    PubMed

    López Torres, M; Espinosa Lloréns, Ma del C

    2008-11-01

    The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH)2), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH)2/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m3CH4/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW. PMID:18068345

  20. Effect of alkaline pretreatment on anaerobic digestion of solid wastes

    SciTech Connect

    Lopez Torres, M. Espinosa Llorens, Ma. del C.

    2008-11-15

    The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH){sub 2}), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH){sub 2}/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m{sup 3} CH{sub 4}/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW.

  1. Plasma filtering techniques for nuclear waste remediation.

    PubMed

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. PMID:25956646

  2. Plasma filtering techniques for nuclear waste remediation

    DOE PAGESBeta

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. As a result, this advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  3. Nuclear waste management. Semiannual progress report, October 1983-March 1984

    SciTech Connect

    McElroy, J.L.; Powell, J.A.

    1984-06-01

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

  4. Organic diagenesis in commercial nuclear wastes

    SciTech Connect

    Toste, A.P.; Lechner-Fish, T.J.

    1988-01-01

    The nuclear industry currently faces numerous challenges. Large volumes of already existing wastes must be permanently disposed using environmentally acceptable technologies. Numerous criteria must be addressed before wastes can be permanently disposed. Waste characterization is certainly one of the key criteria for proper waste management. some wastes are complex melting pots of inorganics, radiochemicals, and, occasionally, organics. It is clear, for example, that organics have been used extensively in nuclear operations, such as waste reprocessing, and continue to be used widely as solvents, decontamination agents, etc. The authors have analyzed the organic content of many kinds of nuclear wastes, ranging from commercial to defense wastes. In this paper, the finale analyses are described of three commercial wastes: one waste from a pressurized water reactor (PWR) and two wastes from a boiling water reactor (BWR). The PWR waste is a boric acid concentrate waste. The two BWR wastes, BWR wastes Nos. 1 and 2, are evaporator concentrates of liquid wastes produced during the regeneration of ion-exchange resins used to purify reactor process water. In preliminary analyses, which were reported previously, a few know organics and myriad unknowns were detected. Recent reexamination of mass-spectral data, coupled with reanalysis of the wastes, has resulted in the firm identification of the unknowns. Most of the compounds, over thirty distinct organics, are derived from the degradation, or diagenesis, of source-term organics, revealing, for the first time, that organic diagenesis in commercial wastes is both vigorous and varied.

  5. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect

    Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.; Bonnesen, Peter V.

    2006-06-01

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of low-activity waste immobilization. Principles of ion recognition are being researched toward discovery of liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudohydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Studies at PNNL are directed toward new solvent formulation for the practical sodium pseudohydroxide extraction systems.

  6. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema

    None

    2014-08-06

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  7. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    SciTech Connect

    Amoroso, J.; Marra, J.

    2014-10-02

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  8. Uranium immobilization and nuclear waste

    SciTech Connect

    Duffy, C.J.; Ogard, A.E.

    1982-02-01

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  9. Effect of alkaline treatment on the characterization of zalacca midrib wastes fibers

    NASA Astrophysics Data System (ADS)

    Raharjo, Wahyu Purwo; Soenoko, Rudy; Purnowidodo, Anindito; Choiron, Mochammad Agus; Triyono

    2016-03-01

    Nowadays, the need for new materials is urgent due to the scarcity of conventional materials and energy resources. The environmental issue requires materials which are biodegradable. There are many composites, arranged from synthetic fibers and matrix, which cannot be recyclable after their lifetime. In this research, the utilization potency of zalacca midrib wastes for their fibers as composite reinforcement were investigated, especially after the alkaline treatment to improve their characteristics. The influence of alkaline treatment on the density, functional groups of the fiber surface, thermal stability and crystallinity were measured and/or analyzed by linear-density-and-diameter-calculation, FTIR, TGA-DTA and XRD, respectively. The result showed that the zalacca midrib fibers had lower density than synthetic fibers and several natural fibers. Analysis of FTIR spectra indicated that the alkaline treatment of NaOH slightly raised their density because it removed several functional groups which attributed to the hemicellulose and lignin. TGA-DTA analysis indicated that zalacca fibers had good thermal stability until temperature of 220°C and it was improved by alkaline treatment. XRD analysis showed that the crystallinity of zalacca fibers was higher than several natural fibers like rice straw, sorghum stem and wheat straw fibers. Their crystallinity index was higher than wheat straw fiber. The alkaline treatment increases the crystallinity and crystallinity index rather than untreated fibers.

  10. Nuclear waste`s human dimension

    SciTech Connect

    Erikson, K.; Colglazier, E.W.; White, G.F.

    1994-12-31

    The United States has pinned its hopes for a permanent underground repository for its high-level nuclear wastes on Yucca Mountain, Nevada. Nevertheless, the Department of Energy`s (DOE) site research efforts have failed {open_quotes}to adequately consider human behavior and emotions,{close_quotes} write Kai Erikson of Yale University, E. William Colglazier of the National Academy of Sciences, and Gilbert F. White of the University of Colorado. The authors maintain that it is impossible to predict changes in geology, seismology, and hydrology that may affect the Yucca Mountain area over the next 1,000 years. Predicting human behavior in that time frame remains even more daunting, they insist. They admit that {open_quotes}DOE...has been given the impossible assignment to take tens of thousands of metric tons of the most hazardous materials ever created and, in the face of growing opposition, entomb them so that they will do little harm for thousands of years.{close_quotes} The researchers suggest that the government seek a secure, retrievable storage arrangement while it continues its search for safer long-term options.

  11. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  12. Nuclear waste storage: A legislative issue

    SciTech Connect

    Novak, S.G.

    1995-12-01

    Following an intense legislative battle, the Minnesota Legislature reaches consensus on a plan to authorize limited dry cask storage of nuclear waste at Northern States Power`s Prairie Island nuclear plant.

  13. Inactivation of Geobacillus stearothermophilus spores by alkaline hydrolysis applied to medical waste treatment.

    PubMed

    Pinho, Sílvia C; Nunes, Olga C; Lobo-da-Cunha, Alexandre; Almeida, Manuel F

    2015-09-15

    Although alkaline hydrolysis treatment emerges as an alternative disinfection/sterilization method for medical waste, information on its effects on the inactivation of biological indicators is scarce. The effects of alkaline treatment on the resistance of Geobacillus stearothermophilus spores were investigated and the influence of temperature (80 °C, 100 °C and 110 °C) and NaOH concentration was evaluated. In addition, spore inactivation in the presence of animal tissues and discarded medical components, used as surrogate of medical waste, was also assessed. The effectiveness of the alkaline treatment was carried out by determination of survival curves and D-values. No significant differences were seen in D-values obtained at 80 °C and 100 °C for NaOH concentrations of 0.5 M and 0.75 M. The D-values obtained at 110 °C (2.3-0.5 min) were approximately 3 times lower than those at 100 °C (8.8-1.6 min). Independent of the presence of animal tissues and discarded medical components, 6 log10 reduction times varied between 66 and 5 min at 100 °C-0.1 M NaOH and 110 °C-1 M NaOH, respectively. The alkaline treatment may be used in future as a disinfection or sterilization alternative method for contaminated waste. PMID:26150372

  14. Characterization of Actinides in Simulated Alkaline Tank Waste Sludges and Leachates

    SciTech Connect

    Nash, Kenneth L.

    2005-06-01

    Removal of waste-limiting components of sludge (Al, Cr, S, P) in underground tanks at Hanford by treatment with concentrated alkali has proven less efficacious for Al and Cr removal than had been hoped. More aggressive treatments of sludges, for example, contact with oxidants targeting Cr(III), have been tested in a limited number of samples and found to improve leaching efficiency for Cr. Oxidative alkaline leaching can be expected to have at best a secondary influence on the mobilization of Al. Our earlier explorations of Al leaching from sludge simulants indicated acidic and complexometric leaching can improve Al dissolution. Unfortunately, treatments of sludge samples with oxidative alkaline, acidic or complexing leachates produce conditions under which normally insoluble actinide ions (e.g., Am3+, Pu4+, Np4+) can be mobilized to the solution phase. Few experimental or meaningful theoretical studies of actinide chemistry in strongly alkaline, strongly oxidizing solutions have been completed. Unfortunately, extrapolation of the more abundant acid phase thermodynamic data to these radically different conditions provides limited reliable guidance for predicting actinide speciation in highly salted alkaline solutions. In this project, we are investigating the fundamental chemistry of actinides and important sludge components in sludge simulants and supernatants under representative oxidative leaching conditions. We are examining the potential impact of acidic or complexometric leaching with concurrent secondary separations on Al removal from sludges. Finally, a portion of our research is directed at the control of polyvalent anions (SO4=, CrO4=, PO43-) in waste streams destined for vitrification. Our primary objective is to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop. We expect to identify those components of sludges that are likely to be problematic in the

  15. Plasma filtering techniques for nuclear waste remediation

    DOE PAGESBeta

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    The economical viability of nuclear waste cleanup e orts could, in some cases, be put at risk due to the difficulties faced in handling unknown and complex feedstocks. Plasma filtering, which operates on dissociated elements, offers advantages over chemical techniques for the processing of such wastes. In this context, the economic feasibility of plasma mass filtering for nuclear waste pretreatment before ultimate disposal is analyzed. Results indicate similar costs for chemical and plasma solid-waste pretreatment per unit mass of waste, but suggest significant savings potential as a result of a superior waste mass minimization. This performance improvement is observed overmore » a large range of waste chemical compositions, representative of legacy waste's heterogeneity. Although smaller, additional savings arise from the absence of a secondary liquid waste stream, as typically produced by chemical techniques.« less

  16. Plasma filtering techniques for nuclear waste remediation

    SciTech Connect

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    The economical viability of nuclear waste cleanup e orts could, in some cases, be put at risk due to the difficulties faced in handling unknown and complex feedstocks. Plasma filtering, which operates on dissociated elements, offers advantages over chemical techniques for the processing of such wastes. In this context, the economic feasibility of plasma mass filtering for nuclear waste pretreatment before ultimate disposal is analyzed. Results indicate similar costs for chemical and plasma solid-waste pretreatment per unit mass of waste, but suggest significant savings potential as a result of a superior waste mass minimization. This performance improvement is observed over a large range of waste chemical compositions, representative of legacy waste's heterogeneity. Although smaller, additional savings arise from the absence of a secondary liquid waste stream, as typically produced by chemical techniques.

  17. Alkaline bioleaching of municipal solid waste incineration fly ash by autochthonous extremophiles.

    PubMed

    Ramanathan, Thulasya; Ting, Yen-Peng

    2016-10-01

    The increasing demand for energy and the generation of solid waste have caused an alarming rise in fly ash production globally. Since heavy metals continue to be in demand for the production of materials, resource recovery from the recycling of these wastes has the potential to delay the depletion of natural ores. The use of microorganisms for the leaching of metals, in a process called bioleaching, is an eco-friendly and economical way to treat the metal-laden wastes. Bioleaching of fly ash is challenging due largely to the alkaline nature and toxic levels of heavy metals which are detrimental to microbial growth and bioleaching activity. The present work reports the isolation of indigenous bacteria from a local fly ash landfill site and their bioleaching performance. 38 autochthonous strains of bacteria were isolated from eight samples collected and plated on five different media. 18 of the isolates showed bioleaching potential, with significant alkaline pH or fly ash tolerance. Genetic characterization of the strains revealed a dominance of Firmicutes, with Alkalibacterium sp. TRTYP6 showing highest fly ash tolerance of up to 20% w/v fly ash, and growth over a pH range 8-12.5. The organism selectively recovered about 52% Cu from the waste. To the best of our knowledge, this is the first time a study on bioleaching with extreme alkaliphiles is reported. PMID:27362528

  18. Concept for Underground Disposal of Nuclear Waste

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  19. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    SciTech Connect

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  20. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications.

    PubMed

    Pan, Shu-Yuan; Chang, E-E; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi

    2016-04-15

    Accelerated carbonation of alkaline solid wastes is an attractive method for CO2 capture and utilization. However, the evaluation criteria of CaCO3 content in solid wastes and the way to interpret thermal analysis profiles were found to be quite different among the literature. In this investigation, an integrated thermal analyses for determining carbonation parameters in basic oxygen furnace slag (BOFS) were proposed based on thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) analyses. A modified method of TG-DTG interpretation was proposed by considering the consecutive weight loss of sample with 200-900°C because the decomposition of various hydrated compounds caused variances in estimates by using conventional methods of TG interpretation. Different quantities of reference CaCO3 standards, carbonated BOFS samples and synthetic CaCO3/BOFS mixtures were prepared for evaluating the data quality of the modified TG-DTG interpretation, in terms of precision and accuracy. The quantitative results of the modified TG-DTG method were also validated by DSC analysis. In addition, to confirm the TG-DTG results, the evolved gas analysis was performed by mass spectrometer and Fourier transform infrared spectroscopy for detection of the gaseous compounds released during heating. Furthermore, the decomposition kinetics and thermodynamics of CaCO3 in BOFS was evaluated using Arrhenius equation and Kissinger equation. The proposed integrated thermal analyses for determining CaCO3 content in alkaline wastes was precise and accurate, thereby enabling to effectively assess the CO2 capture capacity of alkaline wastes for mineral carbonation. PMID:26785217

  1. OCRWM International Cooperation in Nuclear Waste Management

    SciTech Connect

    Jackson, R.; Levich, R.; Strahl, J.

    2002-02-27

    With the implementation of nuclear power as a major energy source, the United States is increasingly faced with the challenges of safely managing its inventory of spent nuclear materials. In 2002, with 438 nuclear power facilities generating electrical energy in 31 nations around the world, the management of radioactive material including spent nuclear fuel and high-level radioactive waste, is an international concern. Most of the world's nuclear nations maintain radioactive waste management programs and have generally accepted deep geologic repositories as the long-term solution for disposal of spent nuclear fuel and high-level radioactive waste. Similarly, the United States is evaluating the feasibility of deep geologic disposal at Yucca Mountain, Nevada. This project is directed by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM), which has responsibility for managing the disposition of spent nuclear fuel produced by commercial nuclear power facilities along with U.S. government-owned spent nuclear fuel and high-level radioactive waste. Much of the world class science conducted through the OCRWM program was enhanced through collaboration with other nations and international organizations focused on resolving issues associated with the disposition of spent nuclear fuel and high-level radioactive waste.

  2. Managing Nuclear Waste: Options Considered

    SciTech Connect

    DOE

    2002-05-02

    Starting in the 1950s, U.S. scientists began to research ways to manage highly radioactive materials accumulating at power plants and other sites nationwide. Long-term surface storage of these materials poses significant potential health, safety, and environmental risks. Scientists studied a broad range of options for managing spent nuclear fuel and high-level radioactive waste. The options included leaving it where it is, disposing of it in various ways, and making it safer through advanced technologies. International scientific consensus holds that these materials should eventually be disposed of deep underground in what is called a geologic repository. In a recent special report, the National Academy of Sciences summarized the various studies and emphasized that geologic disposal is ultimately necessary.

  3. Nuclear waste disposal educational forum

    SciTech Connect

    Not Available

    1982-10-18

    In keeping with a mandate from the US Congress to provide opportunities for consumer education and information and to seek consumer input on national issues, the Department of Energy's Office of Consumer Affairs held a three-hour educational forum on the proposed nuclear waste disposal legislation. Nearly one hundred representatives of consumer, public interest, civic and environmental organizations were invited to attend. Consumer affairs professionals of utility companies across the country were also invited to attend the forum. The following six papers were presented: historical perspectives; status of legislation (Senate); status of legislation (House of Representatives); impact on the legislation on electric utilities; impact of the legislation on consumers; implementing the legislation. All six papers have been abstracted and indexed for the Energy Data Base.

  4. Strontium and Actinide Separations from High Level Nuclear Waste Solutions using Monosodium Titanate - Actual Waste Testing

    SciTech Connect

    Peters, T.B.; Barnes, M.J.; Hobbs,D.T.; Walker, D.D.; Fondeur, F.F.; Norato, M.A.; Pulmano, R.L.; Fink, S.D.

    2005-11-01

    Pretreatment processes at the Savannah River Site will separate {sup 90}Sr, alpha-emitting and radionuclides (i.e., actinides) and {sup 137}Cs prior to disposal of the high-level nuclear waste. Separation of {sup 90}Sr and alpha-emitting radionuclides occurs by ion exchange/adsorption using an inorganic material, monosodium titanate (MST). Previously reported testing with simulants indicates that the MST exhibits high selectivity for strontium and actinides in high ionic strength and strongly alkaline salt solutions. This paper provides a summary of data acquired to measure the performance of MST to remove strontium and actinides from actual waste solutions. These tests evaluated the effects of ionic strength, mixing, elevated alpha activities, and multiple contacts of the waste with MST. Tests also provided confirmation that MST performs well at much larger laboratory scales (300-700 times larger) and exhibits little affinity for desorption of strontium and plutonium during washing.

  5. Mechanical properties of untreated and alkaline treated fibers from zalacca midrib wastes

    NASA Astrophysics Data System (ADS)

    Raharjo, Wahyu Purwo; Soenoko, Rudy; Purnowidodo, Anindito; Choiron, Mochammad Agus; Triyono

    2016-03-01

    The environmental concern has been raised due to the abundance of waste from synthetic materials which cannot be biodegraded after their life-time. It provides opportunity to exploit natural resources which are neglected. For example, midrib wastes from zalacca plants after cutting are able to utilize as composite reinforcement. The aim of this research was to characterize the mechanical properties of zalacca midrib fibers. As other ones, zalacca midrib fibers consisted of cellulose, hemicellulose and lignin, which their compositions were 42.54, 34.35 and 28.01 % respectively. To raise their cellulose content, the zalacca fibers were alkaline treated by immersion in the sodium hydroxide for 2 hours and rinsing in the distilled water. The concentration of sodium hydroxide was varied 1 and 5%. To investigate the influence of alkaline treatment, the mechanical testing and morphological analysis was performed. The tensile testing was done to obtain ultimate strength, elastic modulus and strain to fracture. The surface morphology of fibers was observed by SEM. The average ultimate tensile strength of zalacca fibers ranged from 182.12 MPa (untreated) to 417.94 MPa (5%NaOH treated). The diameter measurement showed that the alkaline treatment reduce the average fiber diameters due to the decline of the hemicellulose and lignin content as fiber matrix. This caused the increase of the tensile strength and elastic modulus due to the reduction of diameters as divider meanwhile the cellulose content as structural supporter of the fibers was relatively constant. From the SEM analysis, it was shown that the alkaline treatment reduced the fiber matrix so that its surface morphology became rougher due to the microfibrils appearance.

  6. Nuclear Waste Management. Semiannual progress report, April 1984-September 1984

    SciTech Connect

    McElroy, J.L.; Powell, J.A.

    1984-12-01

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; and supporting studies. 33 figures, 13 tables.

  7. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    SciTech Connect

    McElroy, J.L.; Powell, J.A.

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

  8. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect

    Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.; Bonnesen, Peter V.

    2005-06-01

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of low-activity waste immobilization. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudohydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties.

  9. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  10. Plasma Mass Filters For Nuclear Waste Reprocessing

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-25

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  11. Plasma Mass Filters For Nuclear Waste Reprocessing

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-26

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  12. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    SciTech Connect

    Nash, Kenneth L; Rao, Linfeng

    2005-06-01

    Removal of waste-limiting components of sludge (Al, Cr, S, P) in underground tanks at Hanford by treatment with concentrated alkali has proven less efficacious for Al and Cr removal than had been hoped. More aggressive treatments of sludges, for example, contact with oxidants targeting Cr(III), have been tested in a limited number of samples and found to improve leaching efficiency for Cr. Oxidative alkaline leaching can be expected to have at best a secondary influence on the mobilization of Al. Our earlier explorations of Al leaching from sludge simulants indicated acidic and complexometric leaching can improve Al dissolution.

  13. Heavy metals stabilization in medical waste incinerator fly ash using alkaline assisted supercritical water technology.

    PubMed

    Jin, Jian; Li, Xiaodong; Chi, Yong; Yan, Jianhua

    2010-12-01

    This study investigated the process of aluminosilicate formation in medical waste incinerator fly ash containing large amounts of heavy metals and treated with alkaline compounds at 375 degrees C and examined how this process affected the mobility and availability of the metals. As a consequence of the treatments, the amount of dissolved heavy metals, and thus their mobility, was greatly reduced, and the metal leaching concentration was below the legislative regulations for metal leachability. Moreover, this process did not produce a high concentration of heavy metals in the effluent. The addition of alkaline compounds such as sodium hydroxide and sodium carbonate can prevent certain heavy metal ions dissolving in water. In comparison with the alkaline-free condition, the extracted concentrations of As, Mn, Pb, Sr and Zn were decreased by about 51.08, 97.22, 58.33, 96.77 and 86.89% by the addition of sodium hydroxide and 66.18, 86.11, 58.33, 83.87 and 81.91% by the addition of sodium carbonate. A mechanism for how the formation of aluminosilicate occurred in supercritical water and affected the mobility and availability of the heavy metals is discussed. The reported results could be useful as basic knowledge for planning new technologies for the hydrothermal stabilization of heavy metals in fly ash. PMID:20430801

  14. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect

    Moyer, Bruce A.; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Engle, Nancy L.; Kang, Hyun-Ah; Keever, Tamara J.; Marchand, Alan P.; Gadthula, Srinivas; Gore, Vinayak K.; Huang, Zilin; Sivappa, Rasapalli; Tirunahari, Pavan K.; Levitskaia, Tatiana G.; Lumetta, Gregg J.

    2005-09-26

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of vitrification. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudo hydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties.

  15. Effect of pH on the destruction of complexants with ozone in Hanford nuclear waste

    SciTech Connect

    Winters, W.I.

    1981-06-01

    Chemical processing of nuclear waste at Hanford has generated some waste solutions with high concentration (0.1 to 0.5M) of N-(hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA), ethylenediaminetetraacetic acid (EDTA), and other organic complexing agents. These complexants must be destroyed bacause they affect radionuclide migration in soils, waste concentration, radionuclide removal, and other waste storage and processing considerations. Previous studies on actual waste solutions demonstrated that preozonation of the alkaline waste significantly improved radionuclide removal. A series of bench-scale experiments using synthetic waste has been performed to determine the optimum pH for most efficient ozone destruction of EDTA. Ozonation of EDTA in synthetic waste was carried out over the pH range of 1 to 14. Potential catalytic materials were examined at different pH levels. The EDTA-ozone reaction rates and stoichiometric requirements were compared and evaluated for the varying conditions.

  16. Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study.

    PubMed

    Noack, Clinton W; Dzombak, David A; Nakles, David V; Hawthorne, Steven B; Heebink, Loreal V; Dando, Neal; Gershenzon, Michael; Ghosh, Rajat S

    2014-10-01

    Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials - cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash - are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques. PMID:24735991

  17. Storage of mixed waste at nuclear plants

    SciTech Connect

    Bodine, D.

    1995-05-01

    The problems posed by waste that is both radioactive and classified as hazardous by 40CFR261 include storage, proper treatment and disposal. An Enforcement Action issued by the State of Tennessee required that Sequoyah Nuclear Plant (SQN) either find a means to remove its mixed waste from onsite storage or obtain Part B Hazardous Waste Treatment, Storage and Disposal Facility by March 1, 1994. Generators of hazardous waste cannot store the material for longer than 90 days without obtaining a Hazardous Waste Treatment, Storage, and Disposal Facility (TSDF) permit. To complicate this regulation, there are very few permitted TSDFs that can receive radioactive waste. Those facilities that can receive the waste have only one year to store it before treatment. Limited treatment is available for mixed waste that will meet the Land Ban requirements.

  18. Sporosarcina pasteurii use in extreme alkaline conditions for recycling solid industrial wastes.

    PubMed

    Cuzman, Oana A; Rescic, Silvia; Richter, Katharina; Wittig, Linda; Tiano, Piero

    2015-11-20

    The ureolytic bacteria are one of the most efficient organisms able to produce high amounts of carbonate that easily react with the free calcium ions from the environment. Sporosarcina pasteurii, a robust microbe in alkaline environments, was tested in this work for its potential use in an eco-cementation process that involves the biomediated calcite precipitation (BCP). Bacterial behavior in extreme alkaline environment (pH values of 9-13) was tested in controlled laboratory conditions and in the presence of solid industry wastes, such as Cement Kiln Dust (CKD) and Lime Kiln Dust (LKD), by evaluating the enzymatic activity and the calcite precipitation capacity. Grain consolidation potential of S. pasteurii was tested for one type of CKD mixed with ground granulated blast-furnace slag (GGBS), with possible bioclogging and biocementation applications. The results revealed the formation of stable biocalcite in the presence of CKD, with a performance depending on the pH-value and free calcium ion content. The BCP induced by S. pasteurii and the recycling of solid wastes, such as CKD with high lime content, is a promising way for different bioclogging and biocementation applications, with benefits in construction costs and reduction of environmental pollution. PMID:26376469

  19. Actinides in Hanford Tank Waste Simulants: Chemistry of Selected Species in Oxidizing Alkaline Solutions

    SciTech Connect

    Nash, Kenneth L.; Laszak, Ivan; Borkowski, Marian; Hancock, Melissa; Rao, Linfeng; Reed, Wendy

    2004-03-30

    To enhance removal of selected troublesome nonradioactive matrix elements (P, Cr, Al, S) from the sludges in radioactive waste tanks at the Hanford site, various chemical washing procedures have been evaluated. It is intended that leaching should leave the actinides in the residual sludge phase for direct vitrification. Oxidative treatment with strongly alkaline solutions has emerged as the best approach to accomplishing this feat. However, because the most important actinide ions in the sludge can exist in multiple oxidation states, it is conceivable that changes in actinide oxidation state speciation could interfere with hopes and plans for actinide insolubility. In this presentation, we discuss both the impact of oxidative alkaline leachants on actinide oxidation state speciation and the chemistry of oxidized actinide species in the solution phase. Actinide oxidation does occur during leaching, but the solubility behavior is complex. Mixed ligand complexes may dominate solution phase speciation of actinides under some circumstances. This work was supported by the U.S. Department of Energy, Offices of Science and Waste Management, Environmental Management Science Program under Contract DEAC03- 76SF0098 at Lawrence Berkeley National Laboratory and Contract W-31-109- ENG-38 at Argonne National Laboratory.

  20. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.

    PubMed

    Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. PMID:23851265

  1. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Szecsody, Jim E.; Truex, Mike J.; Qafoku, Nikolla P.; Wellman, Dawn M.; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2 +, Mg2 +) and phosphate and a slow (100 s of hours) increase in silica, Al3 +, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  2. Influence of Acidic and Alkaline Waste Solution Properties on Uranium Migration in Subsurface Sediments

    SciTech Connect

    Szecsody, James E.; Truex, Michael J.; Qafoku, Nikolla; Wellman, Dawn M.; Resch, Charles T.; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments has significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2+, Mg2+) and phosphate and a slow (100s of hours) increase in silica, Al3+, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10s to 100s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  3. SORPTION OF URANIUM, PLUTONIUM AND NEPTUNIUM ONTO SOLIDS PRESENT IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS

    SciTech Connect

    Oji, L; Bill Wilmarth, B; David Hobbs, D

    2008-05-30

    Solids such as granular activated carbon, hematite and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium and uranium from nuclear waste storage tank supernatant liqueur. Thus, the potential may exists for the accumulation of fissile materials in such nuclear waste storage tanks during lengthy nuclear waste storage and processing. To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular activated carbon, hematite and anhydrous sodium phosphate to sorb plutonium, neptunium and uranium from alkaline salt solutions. Tests with simulated and actual nuclear waste solutions established the affinity of the solids for plutonium, neptunium and uranium upon contact of the solutions with each of the solids. The removal of plutonium and neptunium from the synthetic salt solution by nuclear waste storage tank solids may be due largely to the presence of the granular activated carbon and transition metal oxides in these storage tank solids or sludge. Granular activated carbon and hematite also showed measurable affinity for both plutonium and neptunium. Sodium phosphate, used here as a reference sorbent for uranium, as expected, exhibited high affinity for uranium and neptunium, but did not show any measurable affinity for plutonium.

  4. Alkaline-side extraction of technetium from tank waste using crown ethers and other extractants

    SciTech Connect

    Bonnesen, P.V.; Moyer, B.A.; Presley, D.J.; Armstrong, V.S.; Haverlock, T.J.; Counce, R.M.; Sachleben, R.A.

    1996-06-01

    The chemical development of a new crown-ether-based solvent-extraction process for the separation of (Tc) from alkaline tank-waste supernate is ready for counter-current testing. The process addresses a priority need in the proposed cleanup of Hanford and other tank wastes. This need has arisen from concerns due to the volatility of Tc during vitrification, as well as {sup 99}Tc`s long half-life and environmental mobility. The new process offers several key advantages that direct treatability--no adjustment of the waste composition is needed; economical stripping with water; high efficiency--few stages needed; non-RCRA chemicals--no generation of hazardous or mixed wastes; co-extraction of {sup 90}Sr; and optional concentration on a resin. A key concept advanced in this work entails the use of tandem techniques: solvent extraction offers high selectivity, while a subsequent column sorption process on the aqueous stripping solution serves to greatly concentrate the Tc. Optionally, the stripping solution can be evaporated to a small volume. Batch tests of the solvent-extraction and stripping components of the process have been conducted on actual melton Valley Storage Tank (MVST) waste as well as simulants of MVST and Hanford waste. The tandem process was demonstrated on MVST waste simulants using the three solvents that were selected the final candidates for the process. The solvents are 0.04 M bis-4,4{prime}(5{prime})[(tert-butyl)cyclohexano]-18-crown-6 (abbreviated di-t-BuCH18C6) in a 1:1 vol/vol blend of tributyl phosphate and Isopar{reg_sign} M (an isoparaffinic kerosene); 0.02 M di-t-BuCH18C6 in 2:1 vol/vol TBP/Isopar M and pure TBP. The process is now ready for counter-current testing on actual Hanford tank supernates.

  5. Solid wastes from nuclear power production.

    PubMed Central

    Soule, H F

    1978-01-01

    Radioactivity in nuclear power effluents is negligible compared to that in retained wastes to be disposed of as solids. Two basic waste categories are those for which shallow disposal is accepted and those for which more extreme isolation is desired. The latter includes "high level" wastes and others contaminated with radionuclides with the unusual combined properties of long radioactive half-life and high specific radiotoxicity. The favored method for extreme isolation is emplacement in a deep stable geologic formation. Necessary technologies for waste treatment and disposal are considered available. The present program to implement these technologies is discussed, including the waste management significance of current policy on spent nuclear fuel reprocessing. Recent difficulties with shallow disposal of waste are summarized. PMID:738244

  6. A federalist strategy for nuclear waste management.

    PubMed

    Lee, K N

    1980-05-16

    The federal government plans to rely on a policy of "consultation and concurrence" with state governments in developing nuclear waste repositories. The weaknesses of the concurrence approach are analyzed, and an alternative institutional framework for locating a waste repository is proposed: a siting jury that provides representation for state and local interests, while maintaining a high level of technical review. The proposal could be tested in the siting of away-from-reactor storage facilities for spent nuclear fuel. PMID:17771087

  7. Inorganic ion exchangers for nuclear waste remediation

    SciTech Connect

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E.

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  8. Overview assessment of nuclear-waste management

    NASA Astrophysics Data System (ADS)

    Burton, B. W.; Gutschick, V. P.; Perkins, B. A.; Reynolds, C. L.; Rodgers, J. C.; Steger, J. G.; Thompson, T. K.; Trocki, L. K.; Wewerka, E. M.; Wheeler, M. L.

    1982-08-01

    The environmental control technologies associated with Department of Energy nuclear waste management programs were reviewed and the most urgent problems requiring further action or follow up were identified. In order of decreasing importance they are: (1) shallow land disposal technology development; (2) active uranium mill tailings piles; (3) uranium mine dewatering; (4) site decommissioning; (5) exhumation/treatment of transuranic waste at Idaho National Engineering Laboratory; (6) uranium mine spoils; and (7) medical/institutional wastes.

  9. NUCLEAR POWER PLANT WASTE HEAT HORTICULTURE

    EPA Science Inventory

    The report gives results of a study of the feasibility of using low grade (70 degrees F) waste heat from the condenser cooling water of the Vermont Yaknee nuclear plant for commercial food enhancement. The study addressed the possible impact of laws on the use of waste heat from ...

  10. Nuclear waste: distant and expensive mirage

    SciTech Connect

    2008-08-15

    The situation in the U.S. regarding the disposal of nuclear waste is briefly summarized. Current estimates are that the site will not begin operation before 2020, and that the cost will be $96 billion, which includes construction, waste transport, operation through 2133, and closure of the facility. The Department of Energy is also considering whether more disposal sites might be needed.

  11. Nuclear Waste Primer: A Handbook for Citizens.

    ERIC Educational Resources Information Center

    Weber, Isabelle P.; Wiltshire, Susan D.

    This publication was developed with the intention of offering the nonexpert a concise, balanced introduction to nuclear waste. It outlines the dimensions of the problem, discussing the types and quantities of waste. Included are the sources, types, and hazards of radiation, and some of the history, major legislation, and current status of both…

  12. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    PubMed

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility. PMID:25268118

  13. Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal

    PubMed Central

    Rout, Simon P.; Radford, Jessica; Laws, Andrew P.; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J.; Humphreys, Paul N.

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7×10−2 hr−1 (SE±2.9×10−3). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility. PMID:25268118

  14. Natural analogues of nuclear waste glass corrosion.

    SciTech Connect

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  15. Doing the impossible: Recycling nuclear waste

    ScienceCinema

    None

    2013-04-19

    A Science Channel feature explores how Argonne techniques could be used to safely reduce the amount of radioactive waste generated by nuclear power?the most plentiful carbon-neutral energy source. Read more at http://www.anl.gov/Media_Center/ArgonneNow/Fall_2009/nuclear.html

  16. Radiation Effects in Nuclear Waste Materials

    SciTech Connect

    William j. Weber; Lumin Wang; Jonathan Icenhower

    2004-07-09

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials.

  17. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  18. Nuclear waste incineration technology status

    SciTech Connect

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  19. The disposal of nuclear waste in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1978-01-01

    The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.

  20. Are there options for nuclear waste?

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The problems of storage of nuclear wastes are reaching crisis proportions. Although conceding that a measure of the crises has been caused by the ‘enormous emotion’ of ‘protesting green ecologists,’ (ISR, Interdisciplinary Science Reviews, 5(4), 1980), the bottom line is that nuclear wastes have been and continue to be dumped into the oceans and scattered in leaking and leakable containers on the surface. There is a fear among members of the nuclear engineering community that the U.S., under recent government restrictions, has placed itself in a compromising position on the development of nuclear power facilities. One area of concern is that of nuclear waste disposal. Other countries are subject to the same problems and fears. For example, in the Federal Republic of Germany the term ‘Enstorgungszentrum’ has been coined to describe the total process of reprocessing and disposal of spent nuclear fuel elements. The concern is that spent fuel continues to accumulate because restrictions and laws have affected efforts to resolve the problems of reprocessing and disposal. Right now the environment is subject to damage from the inadequate storage practices of the past. Geoscientists working on the problem of waste disposal await the answers to questions about the projected quantity of waste to be disposed. The options to be explored depend on the volumes to be handled.

  1. Scientific Basis for Nuclear Waste Management

    NASA Astrophysics Data System (ADS)

    Trask, Newell J.

    As a result of the Reagan administration's commitment to nuclear energy as a significant future energy source and of attempts by the 97th Congress to grapple with legislative aspects of the problem, increased attention has focused recently on the problem of safely disposing of nuclear waste. These proceedings of the Third Symposium on Nuclear Waste Management of the Materials Research Society provide insight into the status of investigations on the subject as of late 1980. As with volumes 1 and 2 of this series, the 77 contributions are all short progress reports of ongoing research with the emphasis fittingly on materials science. Readers who wish extensive background material on the problems of nuclear-waste management and disposal, details of specific sites, or overviews of the programs of research in this country and abroad will have to look elsewhere.

  2. Nuclear Waste--Physics and Policy

    NASA Astrophysics Data System (ADS)

    Ahearne, John H.

    1996-03-01

    Managing and disposing of radioactive waste are major policy and financial issues in the United States and many other countries. Low-level waste sites, once thought to be possible in many states, remain fixed at the few sites that have been operating for decades. High-level waste remains at former nuclear weapons facilities and at nuclear power plants, and the DOE estimates a repository is unlikely before 2010, at the earliest. Physics and chemistry issues relate to criticality, plutonium loading in glass, leach rates, and diffusion. The public policy issues concern non-proliferation, states' rights, stakeholder participation, and nuclear power. Cleaning up the legacy of cold war driven nuclear weapons production is estimated to cost at least $250 billion and take three-quarters of a century. Some possible steps towards resolution of these issues will be described.

  3. Ethanol production from glycerol-containing biodiesel waste by Klebsiella variicola shows maximum productivity under alkaline conditions.

    PubMed

    Suzuki, Toshihiro; Nishikawa, Chiaki; Seta, Kohei; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki

    2014-05-25

    Biodiesel fuel (BDF) waste contains large amounts of crude glycerol as a by-product, and has a high alkaline pH. With regard to microbial conversion of ethanol from BDF-derived glycerol, bacteria that can produce ethanol at alkaline pH have not been reported to date. Isolation of bacteria that shows maximum productivity under alkaline conditions is essential to effective production of ethanol from BDF-derived glycerol. In this study, we isolated the Klebsiella variicola TB-83 strain, which demonstrated maximum ethanol productivity at alkaline pH. Strain TB-83 showed effective usage of crude glycerol with maximum ethanol production at pH 8.0-9.0, and the culture pH was finally neutralized by formate, a by-product. In addition, the ethanol productivity of strain TB-83 under various culture conditions was investigated. Ethanol production was more efficient with the addition of yeast extract. Strain TB-83 produced 9.8 g/L ethanol (0.86 mol/mol glycerol) from cooking oil-derived BDF waste. Ethanol production from cooking oil-derived BDF waste was higher than that of new frying oil-derived BDF and pure-glycerol. This is the first report to demonstrate that the K. variicola strain TB-83 has the ability to produce ethanol from glycerol at alkaline pH. PMID:24681408

  4. Technetium removal column flow testing with alkaline, high salt, radioactive tank waste

    SciTech Connect

    Blanchard, D.L. Jr.; Kurath, D.E.; Golcar, G.R.; Conradson, S.D.

    1996-09-30

    This report describes two bench-scale column tests conducted to demonstrate the removal of Tc-99 from actual alkaline high salt radioactive waste. The waste used as feed for these tests was obtained from the Hanford double shell tank AW-101, which contains double shell slurry feed (DSSF). The tank sample was diluted to approximately 5 M Na with water, and most of the Cs-137 was removed using crystalline silicotitanates. The tests were conducted with two small columns connected in series, containing, 10 mL of either a sorbent, ABEC 5000 (Eichrom Industries, Inc.), or an anion exchanger Reillex{trademark}-HPQ (Reilly Industries, Inc.). Both materials are selective for pertechnetate anion (TcO{sub 4}{sup -}). The process steps generally followed those expected in a full-scale process and included (1) resin conditioning, (2) loading, (3) caustic wash to remove residual feed and prevent the precipitation of Al(OH){sub 3}, and (4) elution. A small amount of Tc-99m tracer was added as ammonium pertechnetate to the feed and a portable GEA counter was used to closely monitor the process. Analyses of the Tc-99 in the waste was performed using ICP-MS with spot checks using radiochemical analysis. Technetium x-ray absorption spectroscopy (XAS) spectra of 6 samples were also collected to determine the prevalence of non-pertechnetate species [e.g. Tc(IV)].

  5. Reactive transport modeling of column experiments on the evolution of saline alkaline waste solutions

    NASA Astrophysics Data System (ADS)

    Zheng, Zuoping; Zhang, Guoxiang; Wan, Jiamin

    2008-04-01

    Leakage of saline-alkaline tank waste solutions often creates a serious environmental contamination problem. To better understand the mechanisms controlling the fate of such waste solutions in the Hanford vadose zone, we simulated reactive transport in columns designed to represent local site conditions. The Pitzer ion interaction module was used, with principal geochemical processes considered in the simulation including quartz dissolution, precipitation of brucite, calcite, and portlandite, multi-component cation exchange, and aqueous complexation reactions. Good matches were observed between the simulated and measured column data at ambient temperature (˜ 21 °C). Relatively good agreement was also obtained at high temperature (˜ 70 °C). The decrease of pH at the plume front is examined through formation of secondary mineral phases and/or quartz dissolution. Substantial formation of secondary mineral phases resulting from multi-component cation exchange suggests that these phases are responsible for a decrease in pH within the plume front. In addition, a sensitivity analysis was conducted with respect to cation exchange capacity, selectivity coefficient, mineral assemblage, temperature, and ionic strength. This study could serve as a useful guide to subsequent experimental work, to thermodynamic models developed for the concentrated solutions at high ionic strength and to other types of waste plume studies.

  6. Reactive transport modeling of column experiments on the evolution of saline-alkaline waste solutions.

    PubMed

    Zheng, Zuoping; Zhang, Guoxiang; Wan, Jiamin

    2008-04-01

    Leakage of saline-alkaline tank waste solutions often creates a serious environmental contamination problem. To better understand the mechanisms controlling the fate of such waste solutions in the Hanford vadose zone, we simulated reactive transport in columns designed to represent local site conditions. The Pitzer ion interaction module was used, with principal geochemical processes considered in the simulation including quartz dissolution, precipitation of brucite, calcite, and portlandite, multi-component cation exchange, and aqueous complexation reactions. Good matches were observed between the simulated and measured column data at ambient temperature ( approximately 21 degrees C). Relatively good agreement was also obtained at high temperature ( approximately 70 degrees C). The decrease of pH at the plume front is examined through formation of secondary mineral phases and/or quartz dissolution. Substantial formation of secondary mineral phases resulting from multi-component cation exchange suggests that these phases are responsible for a decrease in pH within the plume front. In addition, a sensitivity analysis was conducted with respect to cation exchange capacity, selectivity coefficient, mineral assemblage, temperature, and ionic strength. This study could serve as a useful guide to subsequent experimental work, to thermodynamic models developed for the concentrated solutions at high ionic strength and to other types of waste plume studies. PMID:18313795

  7. Microbial reduction of U(VI) under alkaline conditions: implications for radioactive waste geodisposal.

    PubMed

    Williamson, Adam J; Morris, Katherine; Law, Gareth T W; Rizoulis, Athanasios; Charnock, John M; Lloyd, Jonathan R

    2014-11-18

    Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10-10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere. PMID:25231875

  8. 10 CFR 1.18 - Advisory Committee on Nuclear Waste.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee on Nuclear Waste (ACNW) provides advice to...

  9. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  10. Microstructural characterization of nuclear-waste ceramics

    SciTech Connect

    Ryerson, F.J.; Clarke, D.R.

    1982-09-22

    Characterization of nuclear waste ceramics requires techniques possessing high spatial and x-ray resolution. XRD, SEM, electron microprobe, TEM and analytical EM techniques are applied to ceramic formulations designed to immobilize both commercial and defense-related reactor wastes. These materials are used to address the strengths and limitations of the techniques above. An iterative approach combining all these techniques is suggested. 16 figures, 2 tables.

  11. Radiation Effects in Nuclear Waste Materials

    SciTech Connect

    Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.

    2000-10-02

    Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  12. Electrolytic recycling of a carbonate salt in a process with a dissolution of spent nuclear fuel in a strong alkaline carbonate media

    SciTech Connect

    Kwang-Wook Kim; In-Tae Kim; Seong-Min Kim; Yeon-Hwa Kim; Eil-Hee Lee; Kwang-Yong Jee

    2007-07-01

    A removal of only uranium from spent nuclear fuel with the concepts of a high proliferation-resistance and a minimal generation of waste is helpful for a spent fuel management in view of a volume reduction of the high level radioactive waste generated from the spent fuel treatment. That can be accomplished by a process using a selective oxidative dissolution of the spent fuel in a carbonate solution of high alkalinity. In this work, an electrolytic method for a de-carbonation and a recovery of CO{sub 2} for recycling the used carbonate solution contaminated with some impurity metal ions generated in such a process with a concept of zero-release of waste solution was studied. A carbonate solution generated from such a system was confirmed to be completely recycled within the system, while the impurity ions being separated from the carbonate solution. (authors)

  13. Chemical aspects of nuclear waste treatment

    SciTech Connect

    Bond, W. D.

    1980-01-01

    The chemical aspects of the treatment of gaseous, liquid, and solid wastes are discussed in overview. The role of chemistry and the chemical reactions in waste treatment are emphasized. Waste treatment methods encompass the chemistry of radioactive elements from every group of the periodic table. In most streams, the radioactive elements are present in relatively low concentrations and are often associated with moderately large amounts of process reagents, or materials. In general, it is desirable that waste treatment methods are based on chemistry that is selective for the concentration of radionuclides and does not require the addition of reagents that contribute significantly to the volume of the treated waste. Solvent extraction, ion exchange, and sorbent chemistry play a major role in waste treatment because of the high selectivity provided for many radionuclides. This paper deals with the chemistry of the onsite treatment methods that is typically used at nuclear installations and is not concerned with the chemistry of the various alternative materials proposed for long-term storage of nuclear wastes. The chemical aspects are discussed from a generic point of view in which the chemistry of important radionuclides is emphasized.

  14. Use of natural mordenite to remove chromium (III) and to neutralize pH of alkaline waste waters.

    PubMed

    Córdova-Rodríguez, Valduvina; Rodríguez-Iznaga, Inocente; Acosta-Chávez, Raquel María; Chávez-Rivas, Fernando; Petranovskii, Vitalii; Pestryakov, Alexey

    2016-01-01

    The natural mordenite from Palmarito de Cauto deposit (PZ), Cuba, was studied in this work as an ion exchanger to remove Cr(3+) cations from alkaline aqueous solutions at different pH and chromium concentrations. The mordenite stability under cyclic treatment processes with alkaline solutions and its capacity to decrease the pH of the solutions was also analyzed. It was shown that PZ removes Cr(3+) ions from alkaline solutions, and it happens independently of the starting chromium concentration and the pH of the exchange solution used. This material has an important neutralizing effect on alkaline solutions, expressed in a significant pH decrease from the early stages of the treatments. For solutions with initial pH equal to 11, it decreases to a value of around seven. The stability of this material is not affected significantly after continuous cyclic treatment with NaOH solution, which shows that mordenite, in particular from Palmarito de Cauto deposit, has high stability in alkaline solutions. The results are important as they suggest that natural zeolites may be of interest in treatments of alkaline industrial waste effluents. PMID:26818904

  15. Salvaging of nuclear waste by nuclear-optical converters

    NASA Astrophysics Data System (ADS)

    Karelin, A. V.; Shirokov, R. V.

    2007-06-01

    In modern conditions of power consumption growing in Russia, apparently, it is difficult to find alternative to further development of nuclear power engineering. The negative party of nuclear power engineering is the spent fuel of nuclear reactors (radioactive waste). The gaseous and fluid radioactive waste furbished of highly active impurity, dumps in atmosphere or pools. The highly active fluid radioactive waste stores by the way of saline concentrates in special tanks in surface layers of ground, above the level of groundwaters. A firm radioactive waste bury in pods from a stainless steel in underground workings, salt deposits, at the bottom of oceans. However this problem can be esteemed in a positive direction, as irradiation is a hard radiation, which one can be used as a power source in nuclear - optical converters with further conversion of optical radiation into the electric power with the help of photoelectric converters. Thus waste at all do not demand special processing and exposure in temporary storehouses. And the electricity can be worked out in a constant mode within many years practically without gang of a stimulus source, if a level of a residual radioactivity and the half-lives of component are high enough.

  16. Recent Developments in Nuclear Waste Management in Canada

    SciTech Connect

    King, F.

    2002-02-27

    This paper describes recent developments in the field of nuclear waste management in Canada with a focus on management of nuclear fuel waste. Of particular significance is the April 2001 tabling in the Canadian House of Commons of Bill C-27, An Act respecting the long-term management of nuclear fuel waste. At the time of finalizing this paper (January 15, 2002), Bill C-27 is in Third Reading in the House of Commons and is expected to move to the Senate in February. The Nuclear Fuel Waste Act is expected to come into force later in 2002. This Act requires the three nuclear utilities in Canada owning nuclear fuel waste to form a waste management organization and deposit funds into a segregated fund for nuclear fuel waste long-term management. The waste management organization is then required to perform a study of long-term management approaches for nuclear fuel waste and submit the study to the federal government within three years. The federal government will select an approach for implementation by the waste management organization. The paper discusses the activities that the nuclear fuel waste owners currently have underway to prepare for the formation of the waste management organization. As background, the paper reviews the status of interim storage of nuclear fuel waste in Canada, and describes previous initiatives related to the development of a national strategy for nuclear fuel waste long-term management.

  17. Cesium and Strontium Specific Exchangers for Nuclear Waste Effluent Remediation

    SciTech Connect

    A. Clearfield; A. I. Bortun; L. A. Bortun; E. A. Bhlume; P. Sylvester; G. M. Graziano

    2000-09-01

    During the past 50 years, nuclear defense activities have produced large quantities of nuclear waste that now require safe and permanent disposal. The general procedure to be implemented involves the removal of cesium and strontium from the waste solutions for disposal in permanently vitrified media. This requires highly selective sorbents or ion exchangers. Further, at the high radiation doses present in the solution, organic exchangers or sequestrants are likely to decompose over time. Inorganic ion exchangers are resistant to radiation damage and can exhibit remarkably high selectivities. We have synthesized three families of tunnel-type ion exchangers. The crystal structures of these compounds as well as their protonated phases, coupled with ion exchange titrations, were determined and this information was used to develop an understanding of their ion exchange behavior. The ion exchange selectivities of these phases could be regulated by isomorphous replacement of the framework metals by larger or smaller radius metals. In the realm of layered compounds, we prepared alumina, silica, and zirconia pillared clays and sodium micas. The pillared clays yielded very high Kd values for Cs+ and were very effective in removing Cs+ from groundwaters. The sodium micas also had a high affinity for Cs+ but an even greater attraction for S42+. They also possess the property of trapping these ions permanently as the layers slowly decrease their interlayer distance as loading occurs. Sodium nonatitanate exhibited extremely high Kd values for Sr2+ in alkaline tank wastes and should be considered for removal of Sr2+ in such cases. For tank wastes containing complexing agents, we have found that adding Ca2+ to the solution releases the complexed Sr2+ which may then be removed with the CST exchanger.

  18. Nuclear waste management. Quarterly progress report, January-March 1980

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-06-01

    Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

  19. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  20. Recovery of fissile materials from nuclear wastes

    SciTech Connect

    Forsberg, Charles W.

    1997-12-01

    A process is described for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium, and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  1. Systems approach to nuclear waste glass development

    SciTech Connect

    Jantzen, C M

    1986-01-01

    Development of a host solid for the immobilization of nuclear waste has focused on various vitreous wasteforms. The systems approach requires that parameters affecting product performance and processing be considered simultaneously. Application of the systems approach indicates that borosilicate glasses are, overall, the most suitable glasses for the immobilization of nuclear waste. Phosphate glasses are highly durable; but the glass melts are highly corrosive and the glasses have poor thermal stability and low solubility for many waste components. High-silica glasses have good chemical durability, thermal stability, and mechanical stability, but the associated high melting temperatures increase volatilization of hazardous species in the waste. Borosilicate glasses are chemically durable and are stable both thermally and mechanically. The borosilicate melts are generally less corrosive than commercial glasses, and the melt temperature miimizes excessive volatility of hazardous species. Optimization of borosilicate waste glass formulations has led to their acceptance as the reference nuclear wasteform in the United States, United Kingdom, Belgium, Germany, France, Sweden, Switzerland, and Japan.

  2. Transmutation of Long-Lived Nuclear Wastes

    NASA Astrophysics Data System (ADS)

    Oigawa, Hiroyuki

    JAEA is conducting research and development on an Accelerator Driven System (ADS), aiming at reduction of burden for high-level radioactive wastes. To tackle technical challenges on ADS, JAEA is planning to build the Transmutation Experimental Facility as the Phase-2 program of J-PARC. Moreover, JAEA is considering the collaboration with the MYRRHA project proposed by Belgian Nuclear Research Center.

  3. THERMOCHEMICAL MODELING OF NUCLEAR WASTE GLASS

    EPA Science Inventory

    The development of assessed and consistent phase equilibria and thermodynamic data for major glass constituents used to incorporate high-level nuclear waste is discussed in this paper. The initial research has included the binary Na{sub 2}O-SiO{sub 2}, Na{sub 2}O-Al{sub 2}O{sub ...

  4. Coupled processes associated with nuclear waste repositories

    SciTech Connect

    Tsang, C.F.

    1987-01-01

    This book deals with coupled processes which affect a nuclear waste repository. While there are many descriptive accounts of environmental degradation resulting from various land uses, the author emphasizes the geomorphic processes responsible for such changes and the reasons why various reclamation practices are valuable in environmental management.

  5. Safety management of nuclear waste in Spain

    SciTech Connect

    Echavarri, L.E. )

    1991-01-01

    For the past two decades, Spain has been consolidating a nuclear program that in the last 3 years has provided between 35 and 40% of the electricity consumed in that country. This program includes nine operating reactor units, eight of them based on US technology and one from Germany, a total of 7,356 MW(electric). There is also a 480-MW(electric) French gas-cooled reactor whose operation recently ceased and which will be decommissioned in the coming years. Spanish industry has participated significantly in this program, and material produced locally has reached 85% of the total. Once the construction program has been completed and operation is proceeding normally, the capacity factor will be {approximately} 80%. It will be very important to complete the nuclear program with the establishment of conditions for safe management and disposal of the nuclear waste generated during the years in which these reactors are in operation and for subsequent decommissioning. To establish the guidelines for the disposal of nuclear waste, the Spanish government approved in october 1987, with a revision in January 1989, the General Plan of Radioactive Wastes proposed by the Ministry of Industry and Energy and prepared by the national company for radioactive waste management, ENRESA.

  6. Nuclear waste issues: a perspectives document

    SciTech Connect

    Cohen, J.J.; Smith, C.F.; Ciminese, F.J.

    1983-02-01

    This report contains the results of systematic survey of perspectives on the question of radioactive waste management. Sources of information for this review include the scientific literature, regulatory and government documents, pro-nuclear and anti-nuclear publications, and news media articles. In examining the sources of information, it has become evident that a major distinction can be made between the optimistic or positive viewpoints, and the pessimistic or negative ones. Consequently, these form the principal categories for presentation of the perspectives on the radioactive waste management problem have been further classified as relating to the following issue areas: the physical aspects of radiation, longevity, radiotoxicity, the quantity of radioactive wastes, and perceptual factors.

  7. Scientific Solutions to Nuclear Waste Environmental Challenges

    SciTech Connect

    Johnson, Bradley R.

    2014-01-30

    The Hidden Cost of Nuclear Weapons The Cold War arms race drove an intense plutonium production program in the U.S. This campaign produced approximately 100 tons of plutonium over 40 years. The epicenter of plutonium production in the United States was the Hanford site, a 586 square mile reservation owned by the Department of Energy and located on the Colombia River in Southeastern Washington. Plutonium synthesis relied on nuclear reactors to convert uranium to plutonium within the reactor fuel rods. After a sufficient amount of conversion occurred, the rods were removed from the reactor and allowed to cool. They were then dissolved in an acid bath and chemically processed to separate and purify plutonium from the rest of the constituents in the used reactor fuel. The acidic waste was then neutralized using sodium hydroxide and the resulting mixture of liquids and precipitates (small insoluble particles) was stored in huge underground waste tanks. The byproducts of the U.S. plutonium production campaign include over 53 million gallons of high-level radioactive waste stored in 177 large underground tanks at Hanford and another 34 million gallons stored at the Savannah River Site in South Carolina. This legacy nuclear waste represents one of the largest environmental clean-up challenges facing the world today. The nuclear waste in the Hanford tanks is a mixture of liquids and precipitates that have settled into sludge. Some of these tanks are now over 60 years old and a small number of them are leaking radioactive waste into the ground and contaminating the environment. The solution to this nuclear waste challenge is to convert the mixture of solids and liquids into a durable material that won't disperse into the environment and create hazards to the biosphere. What makes this difficult is the fact that the radioactive half-lives of some of the radionuclides in the waste are thousands to millions of years long. (The half-life of a radioactive substance is the amount

  8. Improved Performance of the Alkaline-Side CSEX Process for Cesium Extraction from Alkaline High-Level Waste Obtained by Characterization of the Effect of Surfactant Impurities

    SciTech Connect

    Delmau, L.H.

    1999-11-04

    Improved understanding and performance of the alkaline-side CSEX process has been obtained through the characterization of impurity effects that hinder complete stripping of cesium from the solvent. It is shown in this report that tests of the alkaline-side CSEX process conducted in the summer and fall of 1998 were complicated by the presence of common surfactant anions, undecyl- and dodecylsulfonate, as trace impurities in the two simulants tested. This conclusion was drawn from the results of a series of systematic extraction tests followed by a definitive identification by electrospray mass spectrometry (ES-MS). Based on this understanding, a straightforward preventative measure involving the addition of a lipophilic tertiary amine extractant at a small concentration to the solvent is proposed and demonstrated. As part of the task ''Fission Product Solvent Extraction'' supported by the Efficient Separations and Processing Crosscutting Program within the USDOE Office of Environmental Management, the alkaline-side CSEX process has been developed for removal of radio-cesium ({sup 137}Cs) from alkaline high-level wastes stored in underground tanks at the Hanford Site and Savannah River Site (SRS). As described in a previous report, tests conducted in Fiscal Year 1998 generally demonstrated performance meeting the requirements for cesium removal from the waste to be treated at the SRS. However, discrepancies in stripping behavior were shown to arise from unidentified differences ''in the batches of waste simulant employed for testing. Various effects such as solvent impurities, kinetics, contacting method, and counting method were eliminated as possible causes of the observed discrepancies. Tests in Fiscal Year 1999 reported herein confirmed the earlier suspicion that the simulants contained lipophilic anionic impurities. Extraction tests demonstrated that the impurities could be concentrated in the solvent, and by ES-MS in the negative-ion mode it was possible to

  9. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    SciTech Connect

    BOOMER, K.D.

    2007-08-21

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

  10. Can shale safely host US nuclear waste?

    USGS Publications Warehouse

    Neuzil, C.E.

    2013-01-01

    "Even as cleanup efforts after Japan’s Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America’s Nuclear Future, 2012].However, abandoning Yucca Mountain could also result in broadening geologic options for hosting America’s nuclear waste. Shales and other argillaceous formations (mudrocks, clays, and similar clay-rich media) have been absent from the U.S. repository program. In contrast, France, Switzerland, and Belgium are now planning repositories in argillaceous formations after extensive research in underground laboratories on the safety and feasibility of such an approach [Blue Ribbon Commission on America’s Nuclear Future, 2012; Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (NAGRA), 2010; Organisme national des déchets radioactifs et des matières fissiles enrichies, 2011]. Other nations, notably Japan, Canada, and the United Kingdom, are studying argillaceous formations or may consider them in their siting programs [Japan Atomic Energy Agency, 2012; Nuclear Waste Management Organization (NWMO), (2011a); Powell et al., 2010]."

  11. Process for extracting technetium from alkaline solutions

    SciTech Connect

    Moyer, B.A.; Sachleben, R.A.; Bonnesen, P.V.

    1994-12-31

    This invention relates generally to a process for extracting technetium from nuclear wastes and more particularly to a process for extracting technetium from alkaline waste solutions containing technetium and high concentrations of alkali metal nitrates. A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate comprises the steps of: contacting the aqueous alkaline solution with a solvent consisting of a crown ether in a diluent, the diluent being a water-immiscible organic liquid in which the crown ether is soluble, for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution into the solvent; separating the solvent containing the technetium values from the aqueous alkaline solution; and stripping the technetium values from the solvent by contacting the solvent with water.

  12. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report

    SciTech Connect

    Herbst, Alan Keith; Mc Cray, John Alan; Rogers, Adam Zachary; Simmons, R. F.; Palethorpe, S. J.

    1999-03-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  13. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

    SciTech Connect

    Herbst, A.K.; Rogers, A.Z.; McCray, J.A.; Simmons, R.F.; Palethorpe, S.J.

    1999-03-01

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  14. Strategies for characterizing mixed nuclear wastes: The challenges

    SciTech Connect

    Toste, A.P.

    1993-12-31

    The chemical analysis of nuclear wastes, especially mixed wastes, pose various problems to the analytical chemist. The chemical content may be very complex, particularly when organics are present. This report describes the analysis of two highly radioactive wastes: a neutralized cladding removal waste, and a volume reduction, double-shell slurry waste. The organic content analysis is described.

  15. Melt processed multiphase ceramic waste forms for nuclear waste immobilization

    NASA Astrophysics Data System (ADS)

    Amoroso, Jake; Marra, James C.; Tang, Ming; Lin, Ye; Chen, Fanglin; Su, Dong; Brinkman, Kyle S.

    2014-11-01

    Ceramic waste forms are promising hosts for nuclear waste immobilization as they have the potential for increased durability and waste loading compared with conventional borosilicate glass waste forms. Ceramics are generally processed using hot pressing, spark plasma sintering, and conventional solid-state reaction, however such methods can be prohibitively expensive or impractical at production scales. Recently, melt processing has been investigated as an alternative to solid-state sintering methods. Given that melter technology is currently in use for High Level Waste (HLW) vitrification in several countries, the technology readiness of melt processing appears to be advantageous over sintering methods. This work reports the development of candidate multi-phase ceramic compositions processed from a melt. Cr additions, developed to promote the formation and stability of a Cs containing hollandite phase were successfully incorporated into melt processed multi-phase ceramics. Control of the reduction-oxidation (Redox) conditions suppressed undesirable Cs-Mo containing phases, and additions of Al and Fe reduced the melting temperature.

  16. Nuclear waste management. Quarterly progress report, October-December 1979

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-04-01

    Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

  17. Plasma techniques for reprocessing nuclear wastes

    SciTech Connect

    Siciliano, E.R.; Lucoff, D.M.; Omberg, R.P.; Walter, A.E.

    1993-06-01

    A newly emerging plasma-based system, currently under development for material dissociation and mass separation applications in the area of high-level radioactive waste treatment, may have possible applications as a central processing unit for spent nuclear fuel reprocessing. Because this system has no moving parts and obtains separations by electromagnetic techniques, it offers a distinct advantage over chemically based separation techniques, in that the total waste volume does not increase. The basic concepts underlying the operation of this plasma-based system are discussed, along with the demonstrated and expected capabilities of this system. Possible fuel reprocessing configurations using this plasma-based technology are also mentioned.

  18. Review of radiation effects in solid-nuclear-waste forms

    SciTech Connect

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10/sup 3/ to 10/sup 6/ years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references.

  19. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    SciTech Connect

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla; Serne, R. Jeffrey

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  20. Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna

    2012-04-01

    In this study, multi-phase silicate-based glass-ceramics were investigated as an alternate waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO{sub 3} in borosilicate glass translates into a maximum waste loading in the range of 15-20 mass%. Glass-ceramics provide the opportunity to target durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite, that will incorporate MoO{sub 3} as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels 2X the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Glass-ceramics were successfully synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, CaO and SiO{sub 2} by slow cooling form from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. The targeted phases: powellite and oxyapatite were observed in all of the compositions along with a lanthanide borosilicate, and cerianite. Results of this initial investigation of glass-ceramics show promise as a potential waste form to replace single-phase borosilicate glass.

  1. International nuclear waste management fact book

    SciTech Connect

    Abrahms, C W; Patridge, M D; Widrig, J E

    1995-11-01

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

  2. Nuclear Materials: Reconsidering Wastes and Assets - 13193

    SciTech Connect

    Michalske, T.A.

    2013-07-01

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest. (authors)

  3. Advanced pyrochemical technologies for minimizing nuclear waste

    SciTech Connect

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-06-01

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts.

  4. Seal welded cast iron nuclear waste container

    DOEpatents

    Filippi, Arthur M.; Sprecace, Richard P.

    1987-01-01

    This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

  5. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    SciTech Connect

    Kruger, A.A.; Olson, R.A.; Tennis, P.D.

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

  6. Nuclear waste; Can we contain it

    SciTech Connect

    King, F.; Ikeda, B.M.; Shoesmith, D.W.

    1992-04-01

    This paper reports that the safe disposal of nuclear waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels. The disposal of such wastes deep in stable geological formations has been extensively researched since the late 1970s and is now the preferred option internationally. In all of the proposed disposal concepts, the natural barrier of the geological formation is supplemented by a series of engineered barriers each of which retards the transport of radionuclides to the environment. The geological formations being considered usually fall into one of three general categories: crystalline rock (Canada, Sweden, Switzerland, United Kingdom, United States); salt deposits (United States, Germany); and sedimentary deposits, such as clay or seabed sediments (Belgium, United Kingdom, United States), illustrates the Canadian disposal concept based on disposal in igneous rock in the Canadian Shield. The waste will consist of either used fuel bundles or immobilized reprocessed material. In the multibarrier approach the principal engineered component, and the only absolute barrier, is a metallic container enclosing the waste. The required period of containment will influence the choice of material and the thickness of the container.

  7. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    SciTech Connect

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  8. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    SciTech Connect

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  9. Carbon-14 analysis in solidified product of non-metallic solid waste by a combination of alkaline fusion and gaseous CO2 trapping.

    PubMed

    Ishimori, Ken-ichiro; Kameo, Yutaka; Matsue, Hideaki; Ohki, Yoshiyuki; Nakashima, Mikio; Takahashi, Kuniaki

    2011-02-01

    In order to establish a simple and rapid analytical method for (14)C in solidified products made from non-metallic low-level radioactive solid wastes such as concrete, mortar and glass by melting treatment, a radiochemical analysis in combination with alkaline fusion as a sample decomposition method was examined. A simulated solidified product containing (14)C, which was prepared by using nuclear reaction (14)N(n, p)(14)C with thermal neutron irradiation, was analyzed by the present method to compare with a conventional radiochemical analysis using oxidizing combustion. The reproducible and quantitative recovery of (14)C from the simulated solidified product indicates that the present method is more efficient for (14)C analysis in solidified products than the conventional method using oxidizing combustion. PMID:21074999

  10. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    SciTech Connect

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases

  11. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash.

    PubMed

    Diaz-Loya, E Ivan; Allouche, Erez N; Eklund, Sven; Joshi, Anupam R; Kupwade-Patil, Kunal

    2012-08-01

    Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5

  12. Nuclear Waste Programs semiannual progress report, April--September 1992

    SciTech Connect

    Bates, J.K.; Bradley, C.R.; Buck, E.C.

    1994-05-01

    This document reports on the work done by the Nuclear Waste Programs of the Chemical Technology Division (CMT), Argonne National Laboratory, in the period April--September 1992. In these programs, studies are underway on the performance of waste glass and spent fuel in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  13. Nuclear waste programs; Semiannual progress report, October 1991--March 1992

    SciTech Connect

    Bates, J.K.; Bradley, C.R.; Buck, E.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Finn, P.A.; Gerding, T.J.; Hoh, J.C.

    1993-11-01

    This document reports on the work done by the Nuclear Waste Programs of the Chemical Technology Division (CMT), Argonne National Laboratory, in the period October 1991-March 1992. In these programs, studies are underway on the performance of waste glass and spent fuel in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories

  14. Neutralization/prevention of acid rock drainage using mixtures of alkaline by-products and sulfidic mine wastes.

    PubMed

    Alakangas, Lena; Andersson, Elin; Mueller, Seth

    2013-11-01

    Backfilling of open pit with sulfidic waste rock followed by inundation is a common method for reducing sulfide oxidation after mine closure. This approach can be complemented by mixing the waste rock with alkaline materials from pulp and steel mills to increase the system's neutralization potential. Leachates from 1 m3 tanks containing sulfide-rich (ca.30 wt %) waste rock formed under dry and water saturated conditions under laboratory conditions were characterized and compared to those formed from mixtures. The waste rock leachate produced an acidic leachate (pH<2) with high concentrations of As (65 mg/L), Cu (6 mg/L), and Zn (150 mg/L) after 258 days. The leachate from water-saturated waste rock had lower concentrations of As and Cu (<2 μg/L), Pb and Zn (20 μg/L and 5 mg/L), respectively, and its pH was around 6. Crushed (<6 mm) waste rock mixed with different fractions (1-5 wt %) of green liquid dregs, fly ash, mesa lime, and argon oxygen decarburization (AOD) slag was leached on a small scale for 65 day, and showed near-neutral pH values, except for mixtures of waste rock with AOD slag and fly ash (5% w/w) which were more basic (pH>9). The decrease of elemental concentration in the leachate was most pronounced for Pb and Zn, while Al and S were relatively high. Overall, the results obtained were promising and suggest that alkaline by-products could be useful additives for minimizing ARD formation. PMID:23740301

  15. Combined Utilization of Cation Exchanger and Neutral Receptor to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect

    Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.

    2004-03-29

    In this report, novel approaches to the selective liquid-liquid extraction separation of sodium hydroxide and sodium nitrate from high-level alkaline tank waste will be discussed. Sodium hydroxide can be successfully separated from alkaline tank-waste supernatants by weakly acidic lipophilic hydroxy compounds via a cation-exchange mechanism referred to as pseudo hydroxide extraction. In a multi-cycle process, as sodium hydroxide in the aqueous phase becomes depleted, it is helpful to have a neutral sodium receptor in the extraction system to exploit the high nitrate concentration in the waste solution to promote sodium removal by an ion-pair extraction process. Simultaneous utilization of an ionizable organic hydroxy compound and a neutral extractant (crown ether) in an organic phase results in the synergistic enhancement of ion exchange and improved separation selectivity due to the receptor's strong and selective sodium binding. Moreover, combination of the hydroxy compound and the crown ether provides for mutually increased solubility, even in a non-polar organic solvent. Accordingly, application of Isopar{reg_sign} L, a kerosene-like alkane solvent, becomes feasible. This investigation involves examination of such dual-mechanism extraction phases for sodium extraction from simulated and actual salt cake waste solutions. Sodium salts can be regenerated upon the contact of the loaded extraction phases with water. Finally, conditions of potential extraction/strip cycling will be discussed.

  16. Contributions of basic nuclear physics to the nuclear waste management

    NASA Astrophysics Data System (ADS)

    Flocard, Hubert

    2002-04-01

    Nuclear fission is presently a contested method of electricity production. The issue of nuclear waste management stands out among the reasons why. On the other hand, the nuclear industry has demonstrated its capacity to reliably generate cheap electricity while producing negligible amounts of greenhouse gases. These assets explain why this form of energy is still considered among the options for the long term production of electricity at least in developed countries. However, in order to tackle the still not adequately answered question of the waste, new schemes may have to be considered. Among those which have been advanced recently, the less polluting cycles such as those based on Thorium rather than Uranium and/or the transmutation of the minor actinides and some long lived fission products of the present cycle have been actively investigated. In both cases, it turns that the basic knowledge underlying these methods is either missing or incomplete. This situation opens a window of opportunity for useful contributions from basic nuclear physicists. This article describes some of them and presents the ongoing activities as well as some of the projects put forth for the short or medium term. .

  17. 10 CFR 1.18 - Advisory Committee on Nuclear Waste.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee...

  18. 10 CFR 1.18 - Advisory Committee on Nuclear Waste.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee...

  19. 10 CFR 1.18 - Advisory Committee on Nuclear Waste.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee...

  20. 10 CFR 1.18 - Advisory Committee on Nuclear Waste.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee...

  1. Waste Stream Analyses for Nuclear Fuel Cycles

    SciTech Connect

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  2. Public reactions to nuclear waste: Citizens' views of repository siting

    SciTech Connect

    Rosa, E.A.

    1993-01-01

    This book presents revised and updated papers from a panel of social scientists, at the 1989 AAAS meetings, that examined the public's reactions to nuclear waste disposal and the repository siting process. The papers report the results of original empirical research on citizens' views of nuclear waste repository siting. Topics covered include the following: content analysis of public testimony; sources of public concern about nuclear waste disposal in Texas agricultural communities; local attitudes toward high-level waste repository at Hanford; perceived risk and attitudes toward nuclear wastes; attitudes of Nevada urban residents toward a nuclear waste repository; attitudes of rural community residents toward a nuclear waste respository. An introductory chapter provides background and context, and a concluding chapter summarizes the implications of the reports. Two additional chapters cover important features of high-level waste disposal: long term trends in public attitudes toward nuclear energy and nuclear waste policy and assessment of the effects on the Los Vegas convention business if a high-level nuclear waste depository were sited in Nevada.

  3. Alternative Approaches to Recycling Nuclear Wastes

    NASA Astrophysics Data System (ADS)

    Hannum, William H.

    2007-04-01

    Nuclear power exists, and as the demand for non-fossil electricity generation increases, many more nuclear plants are being planned and built. The result is growing inventories of spent nuclear fuel containing plutonium that -- in principle, at least -- can be used to make nuclear explosives. There are countries and organizations that are believed to want nuclear weapons, posing a knotty proliferation problem that calls for realistic control of nuclear materials. Phasing out nuclear power and sequestering all dangerous materials in guarded storage or in geological formations would not be a realistic approach. Plutonium from commercial spent fuel is very hard to make into a weapon. However, a rogue nation could operate a power plant so as to produce plutonium with weapons-quality isotopics, and then chemically purify it. IAEA safeguards are designed to discourage this, but the only enforcement is referral to the United Nations General Assembly. The traditional reprocessing method, PUREX, produces plutonium that has the chemical purity needed for weapons. However, there are alternative approaches that produce only highly radioactive blends of fissionable materials and fission products. Recycle offers a market for spent nuclear fuel, promoting more rigorous accounting of these materials. Unlike PUREX, the new technologies permit the recycle and consumption of essentially all of the high-hazard transuranics, and will reduce the required isolation time for the waste to less than 500 years. Facilities for recovering recyclable materials from LWR spent fuel will be large and expensive. Only a very few such plants will be needed, leading to appropriate concentration of safeguards measures. Plants for recycling the spent fuel from fast burner reactors can be collocated with the power plants and share the safeguards.

  4. Scientific basis for nuclear waste management XVI

    SciTech Connect

    Interrante, C.G.; Pabalan, R.T.

    1993-12-31

    One most significant aspect of this particular symposium is the focus on the scientific basis for management of nuclear waste. Engineering principles and practices are important, but this symposium focuses on the science. The extension and application of engineering ``know how`` to waste management problems sometimes requires a degree of understanding not normally needed to solve other engineering problems. In materials science, for example, scientific understandings important to long-term behavior may be obtained from (1) characterizations and analyses of the structure and properties of materials, (2) the recognition of advancements needed to ensure performance, and (3) improvements in methods of fabrication and processing. In addition to the materials science topics addressed here (on waste forms, engineered barrier systems, and the near-field environment), the symposium addressed various far-field topics. The proceedings are divided into the following sections: spent fuel; glass and crystalline waste forms; glass performance--mechanisms and models; cementitious materials; container alteration; microbiologically influenced corrosion; near-field interactions; natural analogues; long-term prediction for engineered barriers; performance assessment of engineered barrier systems; radionuclide chemistry and transport; and performance assessment of geological systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Congress Examines Nuclear Waste Disposal Recommendations

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-02-01

    During an 8 February U.S. congressional hearing to examine how to move forward on dealing with spent nuclear fuel and to review other recommendations of the recently released final report of the White House-appointed Blue Ribbon Commission on America's Nuclear Future (BRC), Yucca Mountain was the 65,000-ton gorilla in the room. BRC's charge was to conduct a comprehensive review of policies to manage the back end of the nuclear fuel cycle and recommend a new strategy for dealing with the 65,000 tons of spent nuclear fuel currently stored at 75 sites around the country and the 2000 tons of new spent fuel being produced each year. However, BRC specifically did not evaluate Yucca Mountain. A 26 January letter from BRC to U.S. secretary of energy Steven Chu states, "You directed that the Commission was not to serve as a siting body. Accordingly, we have not evaluated Yucca Mountain or any other location as a potential site for the storage of spent nuclear fuel or disposal of high-level waste nor have we taken a position on the administration's request to withdraw the Yucca Mountain license application."

  6. Predicting the Lifetimes of Nuclear Waste Containers

    NASA Astrophysics Data System (ADS)

    King, Fraser

    2014-03-01

    As for many aspects of the disposal of nuclear waste, the greatest challenge we have in the study of container materials is the prediction of the long-term performance over periods of tens to hundreds of thousands of years. Various methods have been used for predicting the lifetime of containers for the disposal of high-level waste or spent fuel in deep geological repositories. Both mechanical and corrosion-related failure mechanisms need to be considered, although until recently the interactions of mechanical and corrosion degradation modes have not been considered in detail. Failure from mechanical degradation modes has tended to be treated through suitable container design. In comparison, the inevitable loss of container integrity due to corrosion has been treated by developing specific corrosion models. The most important aspect, however, is to be able to justify the long-term predictions by demonstrating a mechanistic understanding of the various degradation modes.

  7. Extraction of cesium and strontium from nuclear waste

    DOEpatents

    Davis, M.W. Jr.; Bowers, C.B. Jr.

    1988-06-07

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5[prime]) [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution. 3 figs.

  8. Extraction of cesium and strontium from nuclear waste

    DOEpatents

    Davis, Jr., Milton W.; Bowers, Jr., Charles B.

    1988-01-01

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.

  9. Nuclear Waste Treatment Program: Annual report for FY 1986

    SciTech Connect

    Burkholder, H.C.; Brouns, R.A.; Powell, J.A.

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs.

  10. Alkaline nuclear dispersion assays for the determination of DNA damage at the single cell level.

    PubMed

    Sestili, Piero; Fimognari, Carmela

    2014-01-01

    Over the past three decades the development of methods for visualizing at the cell level the extent of DNA breakage significantly contributed to genotoxicity testing: their availability greatly improved the knowledge in the field of genetic toxicology. These procedures are based on the separation and visualization of DNA fragments resulting from cleavage of nuclear DNA. The separation process can be obtained either electrically (comet assay, linear migration of DNA fragments) or chemically (alkaline dispersion assays, radial diffusion of DNA fragments). Once separated and stained, intact and fragmented DNA can be observed with fluorescence or light microscope. Appropriate computer-assisted image analysis allows quantitative determination of the extent of DNA breakage. These procedures have been proven to be sensitive, flexible, and reliable, and, as compared to former methods, they are simpler, are less time and money consuming, and have the unique capability of detecting DNA damage at the single cell level. This last feature has the additional advantage of allowing the identification of cellular subpopulations characterized by different sensitivity to the damaging agent. The fast halo assay (FHA) is currently the simplest and quickest nuclear dispersion assay; recent modifications of FHA have further improved the assay and pave the way to a full exploitation of its analytical potential. In this chapter the development, procedures, applications, and limits of these dispersion assays, with a particular focus on FHA, will be illustrated. PMID:24162979

  11. Factors influencing chemical durability of nuclear waste glasses

    SciTech Connect

    Feng, Xiangdong; Bates, J.K.

    1993-03-01

    A short summary is given of our studies on the major factors that affect the chemical durability of nuclear waste glasses. These factors include glass composition, solution composition, SA/V (ratio of glass surface area to the volume of solution), radiation, and colloidal formation. These investigations have enabled us to gain a better understanding of the chemical durability of nuclear waste glasses and to accumulate.a data base for modeling the long-term durability of waste glass, which will be used in the risk assessment of nuclear waste disposal. This knowledge gained also enhances our ability to formulate optimal waste glass compositions.

  12. Factors influencing chemical durability of nuclear waste glasses

    SciTech Connect

    Feng, Xiangdong; Bates, J.K.

    1993-01-01

    A short summary is given of our studies on the major factors that affect the chemical durability of nuclear waste glasses. These factors include glass composition, solution composition, SA/V (ratio of glass surface area to the volume of solution), radiation, and colloidal formation. These investigations have enabled us to gain a better understanding of the chemical durability of nuclear waste glasses and to accumulate.a data base for modeling the long-term durability of waste glass, which will be used in the risk assessment of nuclear waste disposal. This knowledge gained also enhances our ability to formulate optimal waste glass compositions.

  13. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis.

    PubMed

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng; Angelidaki, Irini; Luo, Gang

    2016-10-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased from 19.2 mL H2/gVSS at 37 °C and pH 10-80.1 mL H2/gVSS at 55 °C and pH 10. However, the production of volatile fatty acids (mainly acetate) was higher at 37 °C and pH 10 by comparison with 55 °C and pH 10. Hydrogen consumption due to homoacetogenesis was observed at 37 °C and pH 10 but not 55 °C and pH 10. Higher expression levels of genes relating with homoacetogenesis and lower expression levels of genes relating with hydrogen production were found at 37 °C and pH 10 compared to 55 °C and pH 10. The continuous experiment demonstrated the steady-state hydrogen yield of WAS was comparable to that obtained from batch experiments at 55 °C and pH 10, and homoacetogenesis was still inhibited. However, the steady-state hydrogen yield of WAS (6.5 mL H2/gVSS) was much lower than that (19.2 mL H2/gVSS) obtained from batch experiments at 37 °C and pH 10 due to the gradual enrichment of homoacetogens as demonstrated by qPCR analysis. The high-throughput sequencing analysis of 16S rRNA genes showed that the abundance of genus Clostridium, containing several homoacetogens, was 5 times higher at 37 °C and pH 10 than 55 °C and pH 10. PMID:27420808

  14. Remediation of Groundwater Contaminated by Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Parker, Jack; Palumbo, Anthony

    2008-07-01

    A Workshop on Accelerating Development of Practical Field-Scale Bioremediation Models; An Online Meeting, 23 January to 20 February 2008; A Web-based workshop sponsored by the U.S. Department of Energy Environmental Remediation Sciences Program (DOE/ERSP) was organized in early 2008 to assess the state of the science and knowledge gaps associated with the use of computer models to facilitate remediation of groundwater contaminated by wastes from Cold War era nuclear weapons development and production. Microbially mediated biological reactions offer a potentially efficient means to treat these sites, but considerable uncertainty exists in the coupled biological, chemical, and physical processes and their mathematical representation.

  15. Nevada may lose nuclear waste funds

    SciTech Connect

    Marshall, E.

    1988-06-24

    The people of Nevada are concerned that a cut in DOE funding for a nuclear waste repository at Yucca Mountain, Nevada will result in cuts in the state monitoring program, e.g. dropping a seismic monitoring network and a sophisticated drilling program. Economic and social impact studies will be curtailed. Even though a provision to curtail local research forbids duplication of DOE`s work and would limit the ability of Nevada to go out and collect its own data, Nevada State University at Las Vegas would receive a nice plum, a top-of-the-line supercomputer known as the ETA-10 costing almost $30 million financed by DOE.

  16. Geochemical evolution of highly alkaline and saline tank waste plumes during seepage through vadose zone sediments 1

    NASA Astrophysics Data System (ADS)

    Wan, Jiamin; Tokunaga, Tetsu K.; Larsen, Joern T.; Serne, R. Jeff

    2004-02-01

    Leakage of highly saline and alkaline radioactive waste from storage tanks into underlying sediments is a serious environmental problem at the Hanford Site in Washington State. This study focuses on geochemical evolution of tank waste plumes resulting from interactions between the waste solution and sediment. A synthetic tank waste solution was infused into unsaturated Hanford sediment columns (0.2, 0.6, and 2 m) maintained at 70°C to simulate the field contamination process. Spatially and temporally resolved geochemical profiles of the waste plume were obtained. Thorough OH - neutralization (from an initial pH 14 down to 6.3) was observed. Three broad zones of pore solutions were identified to categorize the dominant geochemical reactions: the silicate dissolution zone (pH > 10), pH-neutralized zone (pH 10 to 6.5), and displaced native sediment pore water (pH 6.5 to 8). Elevated concentrations of Si, Fe, and K in plume fluids and their depleted concentrations in plume sediments reflected dissolution of primary minerals within the silicate dissolution zone. The very high Na concentrations in the waste solution resulted in rapid and complete cation exchange, reflected in high concentrations of Ca and Mg at the plume front. The plume-sediment profiles also showed deposition of hydrated solids and carbonates. Fair correspondence was obtained between these results and analyses of field borehole samples from a waste plume at the Hanford Site. Results of this study provide a well-defined framework for understanding waste plumes in the more complex field setting and for understanding geochemical factors controlling transport of contaminant species carried in waste solutions that leaked from single-shell storage tanks in the past.

  17. Ancient metallurgy and nuclear waste containment

    SciTech Connect

    Goodway, M.

    1993-12-31

    Archaeological artifacts of glass, ceramic, and metal provide examples of long term durability and as such have been surveyed by the nuclear agencies of several countries as a possible guide to choices of materials for the containment of nuclear waste. In the case of metals evaluation is difficult because of the loss of many artifacts to recycling and corrosion processes, as well as by uncertainty as to the environmental history under which the remainder survived. More recently the study of ancient metallurgy has expanded to included other materials associated with metals processing. It is suggested that an impermeable ceramic composite used in ancient metals processing installations should be reproduced and tested for its resistance to radiation damage. This material was synthesized more than two millennia ago and has a proven record of durability. These installations have had no maintenance but are intact, some still holding water.

  18. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  19. Towards optimization of nuclear waste glass: Constraints, property models, and waste loading

    SciTech Connect

    Hrma, P.

    1994-04-01

    Vitrification of both low- and high-level wastes from 177 tanks at Hanford poses a great challenge to glass makers, whose task is to formulate a system of glasses that are acceptable to the federal repository for disposal. The enormous quantity of the waste requires a glass product of the lowest possible volume. The incomplete knowledge of waste composition, its variability, and lack of an appropriate vitrification technology further complicates this difficult task. A simple relationship between the waste loading and the waste glass volume is presented and applied to the predominantly refractory (usually high-activity) and predominantly alkaline (usually low-activity) waste types. Three factors that limit waste loading are discussed, namely product acceptability, melter processing, and model validity. Glass formulation and optimization problems are identified and a broader approach to uncertainties is suggested.

  20. Nuclear waste disposal utilizing a gaseous core reactor

    NASA Technical Reports Server (NTRS)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  1. For Sale: Nuclear Waste Sites--Anyone Buying?

    ERIC Educational Resources Information Center

    Hancock, Don

    1992-01-01

    Explores why the United States Nuclear Waste Program has been unable to find a volunteer state to host either a nuclear waste repository or monitored retrieval storage facility. Discusses the Department of Energy's plans for Nevada's Yucca Mountain as a repository and state and tribal responses to the plan. (21 references) (MCO)

  2. Principles of technological design of wasteless chemical processes based on the use of wastes for production of alkaline slag cements and concretes

    SciTech Connect

    Glukhovskii, V.D.; Chernobaev, I.P.; Emel'yanov, B.M.; Semenyuk, A.P.

    1985-05-20

    The strength characteristics of alkaline slag-cement made with the use of waste from alkaline sealing of metals are presented. The cement was prepared from granulated blast-furnance slag with average component contents in the following ranges (mass %): SiO/sub 2/ 36.0-40.2, Al/sub 2/O/sub 3/ 4-18.2, FeO 0.1-3.7, MnO 0.4-5.2, CaO 33.1-48.8, MgO 2.2-9.8. With the use of wastes from the descaling process in alkali melts for production of alkaline slag cements it is possible to obtain highly effective cements of type 700-900, which is 2 to 3 times the value for portland cements. Therefore, the use of wastes from alkaline descaling for production of alkaline slag cements is of great economic and conservational significance. It is possible to devise a wasteless process of scale removal from metals; this is an important advantage of the alkaline scaling method over acid pickling.

  3. Americium and plutonium association with magnesium hydroxide colloids in alkaline nuclear industry process environments

    NASA Astrophysics Data System (ADS)

    Maher, Zoe; Ivanov, Peter; O'Brien, Luke; Sims, Howard; Taylor, Robin J.; Heath, Sarah L.; Livens, Francis R.; Goddard, David; Kellet, Simon; Rand, Peter; Bryan, Nick D.

    2016-01-01

    The behaviours of Pu, Am and colloids in feed solutions to the Site Ion-exchange Effluent Plant (SIXEP) at the Sellafield nuclear reprocessing site in the U.K. have been studied. For both Pu and Am, fractions were found to be associated with material in the colloidal size range, with ˜50% of the Pu in the range 1-200 nm. The concentration of soluble Pu (<1 nm) was ˜1 nM, which is very similar to the solubility limit for Pu(V). The soluble Am concentration was of the order of 10-11 M, which was below the solubility limit of americium hydroxide. The size, morphology and elemental composition of the particulates and colloids in the feed solutions were investigated. Magnesium is homogeneously distributed throughout the particles, whereas U, Si, Fe, and Ca were present in localised areas only. Amongst some heterogeneous material, particles were identified that were consistent with hydrotalcite. The distribution of 241Am(III) on brucite (magnesium hydroxide) colloids of different sizes was studied under alkaline conditions representative of nuclear fuel storage pond and effluent feed solution conditions. The morphology of the brucite particles in the bulk material observed by ESEM was predominantly hexagonal, while that of the carbonated brucite consisted of hexagonal species mixed with platelets. The association of 241Am(III) with the brucite colloids was studied by ultrafiltration coupled with gamma ray-spectrometry. For carbonate concentrations up to 10-3 M, the 241Am(III) was mainly associated with larger colloids (>300 kDa), and there was a shift from the smaller size fractions to the larger over a period of 6 months. At higher carbonate concentrations (10-2 M), the Am was predominantly detected in the true solution fraction (<3 kDa) and in smaller size colloidal fractions, in the range 3-100 kDa.

  4. Analysis of evaporation in nuclear waste boreholes in unsaturated tuff

    SciTech Connect

    Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1993-12-31

    We present an analysis of evaporation in a nuclear waste borehole in unsaturated tuff. In unsaturated tuff, water in contact with a waste container will evaporate due to the difference in vapor pressure between water in a flat film and water held in rock pores with curved interfaces. Decay heat will also enhance evaporation. It is important to study evaporation in a potential geologic repository of nuclear waste in unsaturated rock because the corrosion of waste containers is increased with liquid water. For radionuclides other than gaseous ones, their release from waste solids requires liquid water.

  5. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.

    PubMed

    Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A

    2014-08-15

    The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste. PMID:24976128

  6. Nuclear waste vitrification efficiency: cold cap reactions

    SciTech Connect

    Hrma, Pavel R.; Kruger, Albert A.; Pokorny, Richard

    2012-12-15

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe2O3 and Al2O3), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter conditions

  7. NUCLEAR WASTE VITRIFICATION EFFICIENCY COLD CAP REACTIONS

    SciTech Connect

    KRUGER AA; HRMA PR; POKORNY R

    2011-07-29

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup

  8. Nuclear waste management. Quarterly progress report, April-June 1981

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  9. Hydrologic issues associated with nuclear waste repositories

    NASA Astrophysics Data System (ADS)

    Tsang, Chin-Fu; Neretnieks, Ivars; Tsang, Yvonne

    2015-09-01

    Significant progress in hydrology, especially in subsurface flow and solute transport, has been made over the last 35 years because of sustained interest in underground nuclear waste repositories. The present paper provides an overview of the key hydrologic issues involved, and to highlight advances in their understanding and treatment because of these efforts. The focus is not on the development of radioactive waste repositories and their safety assessment, but instead on the advances in hydrologic science that have emerged from such studies. Work and results associated with three rock types, which are being considered to host the repositories, are reviewed, with a different emphasis for each rock type. The first rock type is fractured crystalline rock, for which the discussion will be mainly on flow and transport in saturated fractured rock. The second rock type is unsaturated tuff, for which the emphasis will be on flow from the shallow subsurface through the unsaturated zone to the repository. The third rock type is clay-rich formations, whose permeability is very low in an undisturbed state. In this case, the emphasis will be on hydrologic issues that arise from mechanical and thermal disturbances; i.e., on the relevant coupled thermo-hydro-mechanical processes. The extensive research results, especially those from multiyear large-scale underground research laboratory investigations, represent a rich body of information and data that can form the basis for further development in the related areas of hydrologic research.

  10. A QUARTER CENTURY OF NUCLEAR WASTE MANAGEMENT IN JAPAN

    SciTech Connect

    Masuda, S.

    2002-02-25

    This paper is entitled ''A QUARTER CENTURY OF NUCLEAR WASTE MANAGEMENT IN JAPAN''. Since the first statement on the strategy for radioactive waste management in Japan was made by the Atomic Energy Commission (AEC) in 1976, a quarter century has passed, in which much experience has been accumulated both in technical and social domains. This paper looks back in this 25-year history of radioactive waste management in Japan by highlighting activities related to high-level radioactive waste (HLW) disposal.

  11. Method of preparing nuclear wastes for tansportation and interim storage

    DOEpatents

    Bandyopadhyay, Gautam; Galvin, Thomas M.

    1984-01-01

    Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

  12. Nuclear waste storage container with metal matrix

    DOEpatents

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  13. [Effects and mechanism of alkaline wastes application and zinc fertilizer addition on Cd bioavailability in contaminated soil].

    PubMed

    Liu, Zhao-Bing; Ji, Xiong-Hui; Tian, Fa-Xiang; Peng, Hua; Wu, Jia-Mei; Shi, Li-Hong

    2011-04-01

    quality was guaranteed by determination of rational amount of alkaline wastes and a proportion of zinc fertilizer which was in accord with soil Cd contamination level and chemical properties, etc. PMID:21717764

  14. Nevada Nuclear Waste Storage Investigations Project interim acceptance specifications for Defense Waste Processing Facility and West Valley Demonstration Project waste forms and canisterized waste

    SciTech Connect

    Oversby, V.M.

    1984-08-01

    The waste acceptance specifications presented in this document represent the first stage of the Nevada Nuclear Waste Storage Investigations Project effort to establish specifications for the acceptance of waste forms for disposal at a nuclear waste repository in Yucca Mountain tuff. The only waste forms that will be dealt with in this document are the reprocessed waste forms resulting from solidification of the Savannah River Plant defense high level waste and the West Valley high level wastes. Specifications for acceptance of spent fuel will be covered in a separate document.

  15. Reference waste forms and packing material for the Nevada Nuclear Waste Storage Investigations Project

    SciTech Connect

    Oversby, V.M.

    1984-03-30

    The Lawrence Livermore National Laboratory (LLNL), Livermore, Calif., has been given the task of designing and verifying the performance of waste packages for the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. NNWSI is studying the suitability of the tuffaceous rocks at Yucca Mountain, Nevada Test Site, for the potential construction of a high-level nuclear waste repository. This report gives a summary description of the three waste forms for which LLNL is designing waste packages: spent fuel, either as intact assemblies or as consolidated fuel pins, reprocessed commercial high-level waste in the form of borosilicate glass, and reprocessed defense high-level waste from the Defense Waste Processing Facility in Aiken, S.C. Reference packing material for use with the alternative waste package design for spent fuel is also described. 14 references, 8 figures, 20 tables.

  16. Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination

    SciTech Connect

    Jacobson, Victor Levon

    2002-08-01

    U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodiumbearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements.

  17. Materials Science of High-Level Nuclear Waste Immobilization

    SciTech Connect

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-09

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

  18. Depleted uranium as a backfill for nuclear fuel waste package

    DOEpatents

    Forsberg, Charles W.

    1998-01-01

    A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

  19. Depleted uranium as a backfill for nuclear fuel waste package

    DOEpatents

    Forsberg, C.W.

    1998-11-03

    A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

  20. Americium/Lanthanide Separations in Alkaline Solutions for Advanced Nuclear Fuel Cycles

    SciTech Connect

    Goff, George S.; Long, Kristy Marie; Reilly, Sean D.; Jarvinen, Gordon D.; Runde, Wolfgang H.

    2012-06-11

    Project goals: Can used nuclear fuel be partitioned by dissolution in alkaline aqueous solution to give a solution of uranium, neptunium, plutonium, americium and curium and a filterable solid containing nearly all of the lanthanide fission products and certain other fission products? What is the chemistry of Am/Cm/Ln in oxidative carbonate solutions? Can higher oxidation states of Am be stabilized and exploited? Conclusions: Am(VI) is kinetically stable in 0.5-2.0 M carbonate solutions for hours. Aliquat 336 in toluene has been successfully shown to extract U(VI) and Pu(VI) from carbonate solutions. (Stepanov et al 2011). Higher carbonate concentration gives lower D, SF{sub U/Eu} for = 4 in 1 M K{sub 2}CO{sub 3}. Experiments with Am(VI) were unsuccessful due to reduction by the organics. Multiple sources of reducing organics...more optimization. Reduction experiments of Am(VI) in dodecane/octanol/Aliquat 336 show that after 5 minutes of contact, only 30-40% of the Am(VI) has been reduced. Long enough to perform an extraction. Shorter contact times, lower T, and lower Aliquat 336 concentration still did not result in any significant extraction of Am. Anion exchange experiments using a strong base anion exchanger show uptake of U(VI) with minimal uptake of Nd(III). Experiments with Am(VI) indicate Am sorption with a Kd of 9 (10 minute contact) but sorption mechanism is not yet understood. SF{sub U/Nd} for = 7 and SF{sub U/Eu} for = 19 after 24 hours in 1 M K{sub 2}CO{sub 3}.

  1. Nuclear waste treatment program. Annual report for FY 1985

    SciTech Connect

    Powell, J.A.

    1986-04-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are: (1) to ensure that waste management is not an obstacle to the further deployment of light-water reactors (LWR) and the closure of the nuclear fuel cycle and (2) to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Terminal Waste Disposal and Remedial Action of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory (PNL) during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide (1) documented technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and (2) problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required, to treat existing wastes. This annual report describes progress during FY 1985 toward meeting these two objectives. The detailed presentation is organized according to the task structure of the program.

  2. Nuclear waste treatment program: Annual report for FY 1987

    SciTech Connect

    Brouns, R.A.; Powell, J.A.

    1988-09-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

  3. Nuclear Waste Management Program summary document, FY 1981

    SciTech Connect

    Meyers, Sheldon

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel.

  4. Nuclear hazardous waste cost control management

    SciTech Connect

    Selg, R.A.

    1991-05-09

    The effects of the waste content of glass waste forms on Savannah River high-level waste disposal costs are currently under study to adjust the glass frit content to optimize the glass waste loadings and therefore significantly reduce the overall waste disposal cost. Changes in waste content affect onsite Defense Waste Changes in waste contents affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt% waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Optimization of the glass waste forms to be produced in the SWPF is being supported by economic evaluations of the impact of the forms on waste disposal costs. Glass compositions are specified for acceptable melt processing and durability characteristics, with economic effects tracked by the number of waste canisters produced. This paper presents an evaluation of the effects of variations in waste content of the glass waste forms on the overall cost of the disposal, including offsite shipment and repository emplacement, of the Savannah River high-level wastes.

  5. Vitrification of Polyvinyl Chloride Waste from Korean Nuclear Power Plants

    SciTech Connect

    Sheng, Jiawei; Choi, Kwansik; Yang, Kyung-Hwa; Lee, Myung-Chan; Song, Myung-Jae

    2000-02-15

    Vitrification is considered as an economical and safe treatment technology for low-level radioactive waste (LLW) generated from nuclear power plants (NPPs). Korea is in the process of preparing for its first ever vitrification plant to handle LLW from its NPPs. Polyvinyl chloride (PVC) has the largest volume of dry active wastes and is the main waste stream to treat. Glass formulation development for PVC waste is the focus of study. The minimum additive waste stabilization approach has been utilized in vitrification. It was found that glasses can incorporate a high content of PVC ash (up to 50 wt%), which results in a large volume reduction. A glass frit, KEP-A, was developed to vitrify PVC waste after the optimization of waste loading, melt viscosity, melting temperature, and chemical durability. The KEP-A could satisfactorily vitrify PVC with a waste loading of 30 to 50 wt%. The PVC-frit was tolerant of variations in waste composition.

  6. Nuclear waste management. Quarterly progress report, April-June 1980

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-09-01

    The status of the following programs is reported: high-level waste immobilization; alternative waste forms; Nuclear Waste Materials Characterization Center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of fission products in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; systems study on engineered barriers; criteria for defining waste isolation; spent fuel and fuel pool component integrity program; analysis of spent fuel policy implementation; asphalt emulsion sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and development of backfill material.

  7. Nuclear waste management. Quarterly progress report, October through December 1980

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-03-01

    Progress reports and summaries are presented under the following headings: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of radionuclides in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; high level waste form preparation; development of backfill material; development of structural engineered barriers; ONWI disposal charge analysis; spent fuel and fuel component integrity program; analysis of spent fuel policy implementation; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; revegetation of inactive uranium tailing sites; verification instrument development.

  8. An application of the RFQ Linac: Nuclear waste assay characterization

    NASA Astrophysics Data System (ADS)

    Lamkin, K.; Schultz, F.; Womble, P.; Humphrey, D.; Vourvopoulos, G.

    1997-02-01

    A collaboration between Oak Ridge National Laboratory and Western Kentucky University examines the problem of characterization and assay of nuclear waste with high intrinsic neutron and gamma-ray fields. This waste is defined as Remote Handled-Transuranic waste (RH-TRU). A Radiofrequency Quadrupole Linac is used to produce pulses of neutrons, which impinge on the drum that contains the nuclear waste. The neutrons, after being thermalized in the matrix of the drum, are captured by the fissile material (239Pu or 235U), which releases fast neutrons upon fission. Experimental results will be presented to show the versatility of employing the RFQ with the Differential Die-away Technique.

  9. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    PubMed

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature. PMID:26547409

  10. RECENT STUDIES OF URANIUM AND PLUTONIUM CHEMISTRY IN ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    King, W; Bill Wilmarth, B; David Hobbs, D; Tommy Edwards, T

    2006-06-13

    Solubility studies of uranium and plutonium in a caustic, radioactive Savannah River Site tank waste solution revealed the existence of uranium supersaturation in the as-received sample. Comparison of the results to predictions generated from previously published models for solubility in these waste types revealed that the U model poorly predicts solubility while Pu model predictions are quite consistent with experimental observations. Separate studies using simulated Savannah River Site evaporator feed solution revealed that the known formation of sodium aluminosilicate solids in waste evaporators can promote rapid precipitation of uranium from supersaturated solutions.

  11. Investigation on application of homogeneous and heterogeneous catalysis for alkaline waste treatment

    SciTech Connect

    Shilov, V.P.; Bessonov, A.A.; Garnov, A.Y.; Gelis, A.V.

    1997-09-01

    The stabilization of neptunium(IV) in alkaline solution by chemical reductants under various conditions was studied. Testing showed that neptunium(V) is slowly reduced to Np(IV) by V(IV) at room temperature in alkaline solutions. Increasing temperature accelerates reduction. Complete reduction of 2 x 10{sup -4} M Np(V) occurs in three hours at 80{degrees}C in 1 M NaOH with 0.02 M VOSO{sub 4-}. Under similar conditions, but in 5 M NaOH, only 15 to 20% of the Np(V) was reduced in 5 hours. In all cases, about 98 % of the initial neptunium was found in the precipitate. Thus V(IV) acts both as a reductant and as a precipitation carrier. Tests showed Np(V) reduction by hydrazine hydrate could be catalyzed by Pd(II). Reduction increased with temperature and catalyst concentration and decreased with hydroxide concentration. Reduction of Np(V) also takes place in 1 M NaOH solutions containing 1 M sodium formate and palladium. Increasing temperature accelerates reduction; with three hours` treatment in 5 M NaOH solution at 90{degrees}C, about 95 % of the initial 2 x 10{sup -4} M neptunium(V) is transformed to Np(IV). Organic complexants and organic acid anions hinder the decontamination of alkaline solutions from neptunium and plutonium by coprecipitation with d-element hydroxides (the Method of Appearing Reagents). It was found that ethylenediaminetetraacetate (EDTA) and N-(2-hydroxyethyl) ethylenediaminetriacetate (HEDTA) are decomposed by H{sub 2}O{sub 2} in alkaline solution in the presence of cobalt compounds with heating and by Na2S208 at moderate temperatures. Citrate, glycolate, and oxalate are decomposed by Na{sub 2}S{sub 2}O{sub 8} with heating. Oxidant amounts must be increased when NaNO{sub 2} also is present in solution. 8 refs., 25 figs., 16 tabs.

  12. Technetium in alkaline, high-salt, radioactive tank waste supernate: Preliminary characterization and removal

    SciTech Connect

    Blanchard, D.L. Jr.; Brown, G.N.; Conradson, S.D.

    1997-01-01

    This report describes the initial work conducted at Pacific Northwest National Laboratory to study technetium (Tc) removal from Hanford tank waste supernates and Tc oxidation state in the supernates. Filtered supernate samples from four tanks were studied: a composite double shell slurry feed (DSSF) consisting of 70% from Tank AW-101, 20% from AP-106, and 10% from AP-102; and three complexant concentrate (CC) wastes (Tanks AN-107, SY-101, ANS SY-103) that are distinguished by having a high concentration of organic complexants. The work included batch contacts of these waste samples with Reillex{trademark}-HPQ (anion exchanger from Reilly Industries) and ABEC 5000 (a sorbent from Eichrom Industries), materials designed to effectively remove Tc as pertechnetate from tank wastes. A short study of Tc analysis methods was completed. A preliminary identification of the oxidation state of non-pertechnetate species in the supernates was made by analyzing the technetium x-ray absorption spectra of four CC waste samples. Molybdenum (Mo) and rhenium (Re) spiked test solutions and simulants were tested with electrospray ionization-mass spectrometry to evaluate the feasibility of the technique for identifying Tc species in waste samples.

  13. Can clays ensure nuclear waste repositories?

    PubMed

    Zaoui, A; Sekkal, W

    2015-01-01

    Research on argillite as a possible host rock for nuclear waste disposal is still an open subject since many issues need to be clarified. In the Underground Research Laboratories constructed for this purpose, a damaged zone around the excavation has been systematically observed and characterized by the appearance of micro-fissures. We analyse here -at nanoscale level- the calcite/clay assembly, the main constituents of argillite, under storage conditions and show the fragility of the montmorillonite with respect to calcite. Under anisotropic stress, we have observed a shear deformation of the assembly with the presence of broken bonds in the clay mineral, localised in the octahedral rather than the tetrahedral layers. The stress/strain curve leads to a failure strength point at 18.5 MPa. The obtained in-plane response of the assembly to perpendicular deformation is characterized by smaller perpendicular moduli Ez = 48.28 GPa compared to larger in-plane moduli Ex = 141.39 GPa and Ey = 134.02 GPa. Our calculations indicate the instability of the assembly without water molecules at the interface in addition to an important shear deformation. PMID:25742950

  14. Can clays ensure nuclear waste repositories?

    NASA Astrophysics Data System (ADS)

    Zaoui, A.; Sekkal, W.

    2015-03-01

    Research on argillite as a possible host rock for nuclear waste disposal is still an open subject since many issues need to be clarified. In the Underground Research Laboratories constructed for this purpose, a damaged zone around the excavation has been systematically observed and characterized by the appearance of micro-fissures. We analyse here -at nanoscale level- the calcite/clay assembly, the main constituents of argillite, under storage conditions and show the fragility of the montmorillonite with respect to calcite. Under anisotropic stress, we have observed a shear deformation of the assembly with the presence of broken bonds in the clay mineral, localised in the octahedral rather than the tetrahedral layers. The stress/strain curve leads to a failure strength point at 18.5 MPa. The obtained in-plane response of the assembly to perpendicular deformation is characterized by smaller perpendicular moduli Ez = 48.28 GPa compared to larger in-plane moduli Ex = 141.39 GPa and Ey = 134.02 GPa. Our calculations indicate the instability of the assembly without water molecules at the interface in addition to an important shear deformation.

  15. Irradiated Nuclear Fuel Management: Resource Versus Waste

    SciTech Connect

    Nash, Kenneth L.; Lumetta, Gregg J.; Vienna, John D.

    2013-01-01

    Management of irradiated fuel is an important component of commercial nuclear power production. Although it is broadly agreed that the disposition of some fraction of the fuel in geological repositories will be necessary, there is a range of options that can be considered that affect exactly what fraction of material will be disposed in that manner. Furthermore, until geological repositories are available to accept commercial irradiated fuel, these materials must be safely stored. Temporary storage of irradiated fuel has traditionally been conducted in storage pools, and this is still true for freshly discharged fuel. Criticality control technologies have led to greater efficiencies in packing of irradiated fuel into storage pools. With continued delays in establishing permanent repositories, utilities have begun to move some of the irradiated fuel inventory into dry storage. Fuel cycle options being considered worldwide include the once-through fuel cycle, limited recycle in which U and Pu are recycled back to power reactors as mixed oxide fuel, and advance partitioning and transmutation schemes designed to reduce the long term hazards associated with geological disposal from millions of years to a few hundred years. Each of these options introduces specific challenges in terms of the waste forms required to safely immobilize the hazardous components of irradiated fuel.

  16. Can clays ensure nuclear waste repositories?

    PubMed Central

    Zaoui, A.; Sekkal, W.

    2015-01-01

    Research on argillite as a possible host rock for nuclear waste disposal is still an open subject since many issues need to be clarified. In the Underground Research Laboratories constructed for this purpose, a damaged zone around the excavation has been systematically observed and characterized by the appearance of micro-fissures. We analyse here -at nanoscale level- the calcite/clay assembly, the main constituents of argillite, under storage conditions and show the fragility of the montmorillonite with respect to calcite. Under anisotropic stress, we have observed a shear deformation of the assembly with the presence of broken bonds in the clay mineral, localised in the octahedral rather than the tetrahedral layers. The stress/strain curve leads to a failure strength point at 18.5 MPa. The obtained in-plane response of the assembly to perpendicular deformation is characterized by smaller perpendicular moduli Ez = 48.28 GPa compared to larger in-plane moduli Ex = 141.39 GPa and Ey = 134.02 GPa. Our calculations indicate the instability of the assembly without water molecules at the interface in addition to an important shear deformation. PMID:25742950

  17. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    SciTech Connect

    Delbert E. Day; Chandra S. Ray; Cheol-Woon Kim

    2004-12-28

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost.

  18. Process to separate transuranic elements from nuclear waste

    DOEpatents

    Johnson, Terry R.; Ackerman, John P.; Tomczuk, Zygmunt; Fischer, Donald F.

    1989-01-01

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).

  19. Nuclear Waste Cross Site Transfer Pump Operational Resonance Resolution

    SciTech Connect

    HAUCK, F.M.

    1999-12-01

    Two single-volute, multi-stage centrifugal pumps are installed at a nuclear waste transfer station operated by the Department of Energy in Hanford, WA. The two parallel 100% pumps are Variable Frequency Drive operated and designed to transport waste etc.

  20. Method for forming microspheres for encapsulation of nuclear waste

    DOEpatents

    Angelini, Peter; Caputo, Anthony J.; Hutchens, Richard E.; Lackey, Walter J.; Stinton, David P.

    1984-01-01

    Microspheres for nuclear waste storage are formed by gelling droplets containing the waste in a gelation fluid, transferring the gelled droplets to a furnace without the washing step previously used, and heating the unwashed gelled droplets in the furnace under temperature or humidity conditions that result in a substantially linear rate of removal of volatile components therefrom.

  1. THE NOX SYSTEM IN HOMOGENEOUS AND HETEROGENEOUS NUCLEAR WASTE

    EPA Science Inventory

    This report summarizes advances of the above-mentioned EMSP project during the period July 1, 2001 - June 30, 2002. The project focuses on the effects of organic chemicals in stored nuclear waste and their impact on pretreatment and tank closure issues. Managing the tank wastes a...

  2. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  3. Modeling transient heat transfer in nuclear waste repositories.

    PubMed

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository. PMID:19376651

  4. Development of Ceramic Waste Forms for High-Level Nuclear Waste Over the Last 30 Years

    SciTech Connect

    Vance, Eric

    2007-07-01

    Many types of ceramics have been put forward for immobilisation of high-level waste (HLW) from reprocessing of nuclear power plant fuel or weapons production. After describing some historical aspects of waste form research, the essential features of the chemical design and processing of these different ceramic types will be discussed briefly. Given acceptable laboratory and long-term predicted performance based on appropriately rigorous chemical design, the important processing parameters are mostly waste loading, waste throughput, footprint, offgas control/minimization, and the need for secondary waste treatment. It is concluded that the 'problem of high-level nuclear waste' is largely solved from a technical point of view, within the current regulatory framework, and that the main remaining question is which technical disposition method is optimum for a given waste. (author)

  5. Transesterification of waste cooking oil by an organic solvent-tolerant alkaline lipase from Streptomyces sp. CS273.

    PubMed

    Mander, Poonam; Yoo, Hah-Young; Kim, Seung Wook; Choi, Yun Hee; Cho, Seung Sik; Yoo, Jin Cheol

    2014-02-01

    The aim of this present study was to produce a microbial enzyme that can potentially be utilized for the enzymatic transesterification of waste cooking oil. To that end, an extracellular lipase was isolated and purified from the culture broth of Streptomyces sp. CS273. The molecular mass of purified lipase was estimated to be 36.55 kDa by SDS PAGE. The optimum lipolytic activity was obtained at alkaline pH 8.0 to 8.5 and temperature 40 °C, while the enzyme was stable in the pH range 7.0 ∼ 9.0 and at temperature ≤40 °C. The lipase showed highest hydrolytic activity towards p-nitrophenyl myristate (C14). The lipase activity was enhanced by several salts and detergents including NaCl, MnSo₄, and deoxy cholic acid, while phenylmethylsulfonyl fluoride at concentration 10 mM inhibited the activity. The lipase showed tolerance towards different organic solvents including ethanol and methanol which are commonly used in transesterification reactions to displace alcohol from triglycerides (ester) contained in renewable resources to yield fatty acid alkyl esters known as biodiesel. Applicability of the lipase in transesterification of waste cooking oil was confirmed by gas chromatography mass spectrometry analysis. PMID:24197522

  6. Microbial Effects on Nuclear Waste Packaging Materials

    SciTech Connect

    Horn, J; Martin, S; Carrillo, C; Lian, T

    2005-07-22

    Microorganisms may enhance corrosion of components of planned engineered barriers within the proposed nuclear waste repository at Yucca Mountain (YM). Corrosion could occur either directly, through processes collectively known as Microbiologically Influenced Corrosion (MIC), or indirectly, by adversely affecting the composition of water or brines that come into direct contact with engineered barrier surfaces. Microorganisms of potential concern (bacteria, archea, and fungi) include both those indigenous to Yucca Mountain and those that infiltrate during repository construction and after waste emplacement. Specific aims of the experimental program to evaluate the potential of microorganisms to affect damage to engineered barrier materials include the following: Indirect Effects--(1) Determine the limiting factors to microbial growth and activity presently in the YM environment. (2) Assess these limiting factors to aid in determining the conditions and time during repository evolution when MIC might become operant. (3) Evaluate present bacterial densities, the composition of the YM microbial community, and determining bacterial densities if limiting factors are overcome. During a major portion of the regulatory period, environmental conditions that are presently extant become reestablished. Therefore, these studies ascertain whether biomass is sufficient to cause MIC during this period and provide a baseline for determining the types of bacterial activities that may be expected. (4) Assess biogenic environmental effects, including pH, alterations to nitrate concentration in groundwater, the generation of organic acids, and metal dissolution. These factors have been shown to be those most relevant to corrosion of engineered barriers. Direct Effects--(1) Characterize and quantify microbiological effects on candidate containment materials. These studies were carried out in a number of different approaches, using whole YM microbiological communities, a subset of YM

  7. National conference on alkaline treatment and utilization of municipal waste water sludge

    SciTech Connect

    Not Available

    1987-01-01

    This meeting was sponsored by: the National Kiln Dust Management Association, the Ohio Environmental Protection Agency, the State of Ohio Development Department, and the Medical College of Ohio in Toledo. The purpose of the meeting was to provide a forum for the exchange of information on the treatment of municipal wastes. Separate abstracts have been prepared for selected papers for appropriate data bases.

  8. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    EPA Science Inventory

    During sludge washing procedures associated with tank waste remediation, actinide ions are expected to remain with the insoluble metal oxide/hydroxide residue as the sludges are scrubbed to remove Cr, P, Al, S, and thus to be transmitted conveniently to the vitrification plant. ...

  9. Nuclear waste/nuclear power: their futures are linked

    SciTech Connect

    Skoblar, L.T.

    1981-01-01

    This paper briefly reviews current aspects of radioactive waste disposal techniques and transportation. Addressed are high-level and low-level radioactive wastes, interim spent fuel storage and transportation. The waste options being explored by DOE are listed. Problems of public acceptance will be more difficult to overcome than technical problems. (DMC)

  10. State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1992

    SciTech Connect

    1992-12-31

    The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada`s responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency`s oversight responsibilities: (1) Assure that the health and safety of Nevada`s citizens are adequately protected with regard to any federal high-level radioactive waste program within the State; (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987; (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State; (4) Work closely and consult with affected local governments and State agencies; (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository.