Sample records for alkaline spray generator

  1. Generation of 1:1 Carbamazepine:Nicotinamide cocrystals by spray drying.

    PubMed

    Patil, Shashank P; Modi, Sameer R; Bansal, Arvind K

    2014-10-01

    The present study investigates the potential of spray drying as a technique for generation of pharmaceutical cocrystals. Carbamazepine-Nicotinamide cocrystal (CNC) was chosen as model cocrystal system for this study. Firstly, CNC was generated using liquid assisted grinding and used for generation of phase solubility diagram (PSD) and ternary phase diagram (TPD). Both PSD and TPD were carefully evaluated for phase behavior of CNC when equilibrated with solvent. The undersaturated region with respect to CNC, as depicted by TPD, was selected as target region to initiate cocrystallization experiments. Various points in this region, representative of different compositions of Carbamazepine, Nicotinamide and CNC, were selected and spray drying was carried out. The spray dried product was characterized for solid state properties and was compared with CNC generated by liquid assisted grinding. Spray drying successfully generated CNC of similar quality as those generated by liquid assisted grinding. Moreover, there was no significant impact of process variables on formation of CNC. Spray drying, owing to its simplicity and industrial scalability, can be a promising method for large scale cocrystal generation. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Spray generators for absorption refrigeration systems

    DOEpatents

    Sibley, Howard W.

    1979-06-19

    A spray generator for an absorption refrigeration system that includes a heat exchanger comprised of a multiplicity of variably spaced heat exchange tubes. The tubes are spaced close together near the top of the heat exchanger and spaced more widely apart near the bottom of the heat exchanger. Dilute absorbent solution is sprayed down through the heat exchanger. The close nesting of the tubes in the top portion of the heat exchanger retards liquid flow and aids heating of the solution. The wide spacing of the tubes in the lower section of the heat exchanger facilitate vapor flow out of the heat exchanger and eliminates liquid "blow-off". The top tubes are covered by a baffle to prevent the liquid solution from splashing out of the heat exchanger off of these top tubes.

  3. 30 CFR 75.1101 - Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Deluge-type water sprays, foam generators; main... Fire Protection § 75.1101 Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives. [Statutory Provisions] Deluge-type water sprays or foam generators automatically actuated by rise...

  4. 30 CFR 75.1101 - Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deluge-type water sprays, foam generators; main... Fire Protection § 75.1101 Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives. [Statutory Provisions] Deluge-type water sprays or foam generators automatically actuated by rise...

  5. Measurement Of Water Sprays Generated By Airplane Tires

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1990-01-01

    Experimental investigation conducted at NASA Langley Research Center to measure rate of flow and trajectory of water spray generated by tire operating on flooded runway. Potential application to both aircraft and automotive industries, with particular application to manufacturers of tires.

  6. Experimental and Numerical Study of the Effect of Gas-Shrouded Plasma Spraying on Cathode Coating of Alkaline Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Liu, T.; Reißner, R.; Schiller, G.; Ansar, A.

    2018-01-01

    The aim of this work is to improve the performance of electrodes prepared via atmospheric plasma spray by means of gas shrouding which is expected to apparently reduce the oxygen content of the plasma plume and subsequently improve the coating quality. Electrodes with dual-layer coating for alkaline water electrolysis were deposited on Ni-coated perforated substrates. Microstructure and morphology were studied by SEM. Element content was measured by EDS. Enthalpy probe was employed for measuring plasma temperature and velocity as well as the gas composition. For verifying and better understanding the shrouding effect numerical calculation was carried out according to the experimental settings. Electrochemical test was carried out to validate the shrouding effect. The results showed slight protecting effect of gas shrouding on plasma plume and the final coating. Over the dual-layer section, the measured oxygen fraction was 3.46 and 3.15% for the case without gas shrouding and with gas shrouding, respectively. With gas shrouding the coating exhibited similar element contents as the coating sprayed by VPS, while no obvious improvement was observed in the microstructure or the morphology. Evident electrochemical improvement was nevertheless achieved that with gas shrouding the electrode exhibited similar performance as that of the VPS-sprayed electrode.

  7. Singlet-Oxygen Generation in Alkaline Periodate Solution.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2015-12-15

    A nonphotochemical generation of singlet oxygen ((1)O2) using potassium periodate (KIO4) in alkaline condition (pH > 8) was investigated for selective oxidation of aqueous organic pollutants. The generation of (1)O2 was initiated by the spontaneous reaction between IO4(-) and hydroxyl ions, along with a stoichiometric conversion of IO4(-) to iodate (IO3(-)). The reactivity of in-situ-generated (1)O2 was monitored by using furfuryl alcohol (FFA) as a model substrate. The formation of (1)O2 in the KIO4/KOH system was experimentally confirmed using electron spin resonance (ESR) measurements in corroboration with quenching studies using azide as a selective (1)O2 scavenger. The reaction in the KIO4/KOH solution in both oxic and anoxic conditions initiated the generation of superoxide ion as a precursor of the singlet oxygen (confirmed by using superoxide scavengers), and the presence of molecular oxygen was not required as a precursor of (1)O2. Although hydrogen peroxide had no direct influence on the FFA oxidation process, the presence of natural organic matter, such as humic and fulvic acids, enhanced the oxidation efficiency. Using the oxidation of simple organic diols as model compounds, the enhanced (1)O2 formation is attributed to periodate-mediated oxidation of vicinal hydroxyl groups present in humic and fulvic constituent moieties. The efficient and simple generation of (1)O2 using the KIO4/KOH system without any light irradiation can be employed for the selective oxidation of aqueous organic compounds under neutral and near-alkaline conditions.

  8. Alkaline static feed electrolyzer based oxygen generation system

    NASA Technical Reports Server (NTRS)

    Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.

    1988-01-01

    In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.

  9. Modeling the influence of nozzle-generated turbulence on diesel sprays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnotti, G M; Matusik, K E; Duke, D J

    The physical mechanisms governing spray breakup in direct injection engines, such as aerodynamic induced instabilities and nozzle-generated cavitation and turbulence, are not well understood due to the experimental and computational limitations in resolving these processes. Recent x-ray and visible extinction measurements have been con-ducted with a targeted interest in the spray formation region in order to characterize the distribution of droplet sizes throughout the spray. Detailed analysis of these measurements shows promise of yielding insight into likely mechanisms governing atomization, which can inform the improvement of spray models for engine computational fluid dynamic (CFD) codes. In order to investigate potentialmore » atomization mechanisms, we employ a joint experimental and computational approach to characterize the structure of the spray formation region using the Engine Combustion Network Spray D injector. X-ray tomography, radiography and ultra-small angle x-ray scattering measurements conducted at the Advanced Photon Source at Argonne National Laboratory quantify the injector geometry, liquid fuel mass and Sauter mean diameter (SMD) distributions under non-vaporizing conditions. Diffused back-illumination imaging measurements, conducted at the Georgia Institute of Technology, characterize the asymmetry of the spray structure. The selected range of injection pressures (50 – 150 MPa) and ambient densities (1.2 – 22.8 kg/m3) allow for the influence of aerodynamic forces on the spray to be studied in a controlled and systematic manner, while isolating the atomization process from the effects of vaporization. In comparison to high ambient density conditions, the spray is observed to be more asymmetric at low ambient density conditions. Although several mechanisms may cause asymmetries in the nozzle exit flow conditions and ultimately the spray distribution, irregularities in the internal nozzle geometry were identified, suggesting an increased

  10. Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry.

    PubMed

    Worth Longest, P; Hindle, Michael; Das Choudhuri, Suparna

    2009-06-01

    For most newly developed spray aerosol inhalers, the generation time is a potentially important variable that can be fully controlled. The objective of this study was to determine the effects of spray aerosol generation time on transport and deposition in a standard induction port (IP) and more realistic mouth-throat (MT) geometry. Capillary aerosol generation (CAG) was selected as a representative system in which spray momentum was expected to significantly impact deposition. Sectional and total depositions in the IP and MT geometries were assessed at a constant CAG flow rate of 25 mg/sec for aerosol generation times of 1, 2, and 4 sec using both in vitro experiments and a previously developed computational fluid dynamics (CFD) model. Both the in vitro and numerical results indicated that extending the generation time of the spray aerosol, delivered at a constant mass flow rate, significantly reduced deposition in the IP and more realistic MT geometry. Specifically, increasing the generation time of the CAG system from 1 to 4 sec reduced the deposition fraction in the IP and MT geometries by approximately 60 and 33%, respectively. Furthermore, the CFD predictions of deposition fraction were found to be in good agreement with the in vitro results for all times considered in both the IP and MT geometries. The numerical results indicated that the reduction in deposition fraction over time was associated with temporal dissipation of what was termed the spray aerosol "burst effect." Based on these results, increasing the spray aerosol generation time, at a constant mass flow rate, may be an effective strategy for reducing deposition in the standard IP and in more realistic MT geometries.

  11. Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review

    NASA Astrophysics Data System (ADS)

    Hardwicke, Canan U.; Lau, Yuk-Chiu

    2013-06-01

    Functional coatings are widely used in energy generation equipment in industries such as renewables, oil and gas, propulsion engines, and gas turbines. Intelligent thermal spray processing is vital in many of these areas for efficient manufacturing. Advanced thermal spray coating applications include thermal management, wear, oxidation, corrosion resistance, sealing systems, vibration and sound absorbance, and component repair. This paper reviews the current status of materials, equipment, processing, and properties' aspects for key coatings in the energy industry, especially the developments in large-scale gas turbines. In addition to the most recent industrial advances in thermal spray technologies, future technical needs are also highlighted.

  12. Alkaline precipitation in Bahia Blanca, Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piccolo, M.C.; Perillo, G.M.E.; Varela, P.

    1988-02-01

    The spatial, meteorological, and seasonal factors associated with precipitation pH in Bahia Blanca and its surroundings are presented. From April 1984 to April 1985, 85 rain events were studied from 12 sites that represent significant land-use sectors of the city. Mean pH for all sites ranged from 6.5 to 7.2. The area is characterized by alkaline precipitation since most stations reported maximum values in excess of 7.6. The highest values of pH were observed under the influence of continental air masses, which have traveled over the pampas soil, thus introducing large amounts of alkaline cations. The lowest pH values weremore » obtained during the winter season when marine advection introduces high concentrations of spray. Stations located close to the estuary and the industrial park present the larger effect of sea spray but also of the incidence of an incipient atmospheric contamination.« less

  13. Measurements of Flow Rate and Trajectory of Aircraft Tire-Generated Water Spray

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1987-01-01

    An experimental investigation was conducted at the NASA Langley Research Center to measure the flow rate and trajectory of water spray generated by an aircraft tire operating on a flooded runway. Tests were conducted in the Hydrodynamics Research Facility and made use of a partial airframe and a nose tire from a general aviation aircraft. Nose tires from a commercial transport aircraft were also used. The effects of forward speed, tire load, and water depth on water spray patterns were evaluated by measuring the amount and location of water captured by an array of tubes mounted behind the test tire. Water ejected from the side of the tire footprint had the most significant potential for ingestion into engine inlets. A lateral wake created on the water surface by the rolling tire can dominate the shape of the spray pattern as the distance aft of the tire is increased. Forward speed increased flow rates and moved the spray pattern inboard. Increased tire load caused the spray to become less dense. Near the tire, increased water depths caused flow rates to increase. Tests using a fuselage and partial wing along with the nose gear showed that for certain configurations, wing aerodynamics can cause a concentration of spray above the wing.

  14. Sea Spray Generation at a Rocky Shoreline

    DTIC Science & Technology

    2015-07-01

    exploration, and 47 production platforms—will face increased hazards from freezing sea spray. 48 Based on sea spray observations made with a cloud...produce higher waves (e.g., Perrie et al. 2012; Asplin et 65 al. 2012). Such evolving conditions will present new hazards for artificial structures like...wind and waves themselves will create hazards for 68 these structures, my interest here is the attendant sea spray produced. 69 Jones and Andreas

  15. Simultaneous generation of acidic and alkaline water using atmospheric air plasma formed in water

    NASA Astrophysics Data System (ADS)

    Imai, Shin-ichi; Sakaguchi, Yoshihiro; Shirafuji, Tatsuru

    2018-01-01

    Plasmas on water surfaces and in water can be generated at atmosphere pressure using several kinds of gases, including helium, argon, oxygen, and air. Nitrates are generated in water through the interaction between water and atmospheric plasma that uses ambient air. Water that has been made acidic by the generation of nitric acid and the acidic water can be used for the sterilization of medical instruments, toilet bowls, and washing machines. Dishwashers are another potential application, as alkaline water is needed to remove grease from tableware. To investigate the production of alkaline water and its mechanism, gas component analysis was performed using an atmospheric quadrupole mass spectrometer. It was found that hydrogen gas evolves from the water surrounding both the positive and negative electrodes. The gas and water analyses carried out in this study revealed that acidic water of pH 2.5 and alkaline water of pH 10 can be simultaneously generated by our ambient air plasma device, which has been altered from our original model. The alterative plasma device has a partition wall, which is made of conductive resin, between the positive and negative electrodes.

  16. Reactive uptake of HOCl to laboratory generated sea salt particles and nascent sea-spray aerosol

    NASA Astrophysics Data System (ADS)

    Campbell, N. R.; Ryder, O. S.; Bertram, T. H.

    2013-12-01

    Field observations suggest that the reactive uptake of HOCl on marine aerosol particles is an important source of chlorine radicals, particularly under low NOx conditions. However to date, laboratory measurements disagree on the magnitude of the reactive uptake coefficient for HOCl by a factor of 5 (γ(HOCl) ranges between 0.0004 and 0.0018), and there are no measurements of γ(HOCl) on nascent sea-spray aerosol. Here, we present measurements of the reactive uptake of HOCl to laboratory generated sodium chloride and sea-spray aerosol particles generated in a novel Marine Aerosol Reference Tank (MART), coupled to an entrained aerosol flow reactor and Chemical Ionization Mass Spectrometer (CIMS). Measurements of γ(HOCl) retrieved here are compared against those in the literature, and the role of organic coatings on nascent sea-spray aerosol is explored.

  17. Laboratory investigation of spray generation mechanism in wind-wave interaction under strong wind conditions

    NASA Astrophysics Data System (ADS)

    Kandaurov, Alexander; Troitskaya, Yuliya; Sergeev, Daniil; Ermakova, Olga; Kazakov, Vassily

    2015-04-01

    The sea spray is considered as a possible mechanism of the reduction of sea surface aerodynamic drag coefficient at hurricane conditions [1]. In this paper the mechanism of generation of spray in the near-surface layer of the atmosphere in a strong wind through the mechanism of «bag-breakup instability» was investigated in laboratory conditions with the help of high-speed video shooting. The laboratory experiments were performed on the Thermostratified Wind-Wave Channel of the IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) [2]. Experiments were carried out for the wind speeds from 14 to 22 m/s. In this range spray generation characteristics change dramatically from almost no spray generation to so called catastrophic regime with multiple cascade breakups on each crest. Shooting was performed with High-speed digital camera NAC Memrecam HX-3 in two different setups to obtain both statistical data and detailed spray generation mechanism overview. In first setup bright LED spotlight with mate screen the side of a channel was used for horizontal shadow-method shooting. Camera was placed in semi-submerged box on the opposite side of the channel. Shooting was performed at the distance of 7.5 m from the beginning of the working section. Series of short records of the surface evolution were made at 10 000 fps with 55 to 119 µm/px scale revealed the dominant mechanism of spray generation - bag-breakup instability. Sequences of high resolution images allowed investigating the details of this "bags" evolution. Shadow method provided better image quality for such conditions than side illumination and fluorescence methods. To obtain statistical data on "bags" sizes and densities vertical shadow method was used. Submerged light box was created with two 300 W underwater lamps and mate screen places at the fetch of 6.5 m. Long records (up to 8 seconds) were made with 4500 fps at 124-256 µm/px scales. Specially developed software

  18. Electricity generation from macroalgae Enteromorpha prolifera hydrolysates using an alkaline fuel cell.

    PubMed

    Liu, Susu; Liu, Xianhua; Wang, Ying; Zhang, Pingping

    2016-12-01

    The goal of this work was to develop a method for the direct power generation using macroalgae Enteromorpha prolifera. The process conditions for the saccharification of macroalgae were optimized and a type of alkaline fuel cell contained no precious metal catalysts was developed. Under optimum conditions (170°C and 2% hydrochloric acid for 45min), dilute acid hydrolysis of the homogenized plants yielded 272.25g reducing sugar/kg dry algal biomass. The maximum power density reached 3.81W/m 2 under the condition of 3M KOH and 18.15g/L reducing sugar in hydrolysate, higher than any other reported algae-fed fuel cells. This study represents the first report on direct electricity generation from macroalgae using alkaline fuel cells, suggesting that there is great potential for the production of renewable energy using marine biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characterization of sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.; Mao, C.-P.

    1984-01-01

    It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.

  20. Analysis of several Boolean operation based trajectory generation strategies for automotive spray applications

    NASA Astrophysics Data System (ADS)

    Gao, Guoyou; Jiang, Chunsheng; Chen, Tao; Hui, Chun

    2018-05-01

    Industrial robots are widely used in various processes of surface manufacturing, such as thermal spraying. The established robot programming methods are highly time-consuming and not accurate enough to fulfil the demands of the actual market. There are many off-line programming methods developed to reduce the robot programming effort. This work introduces the principle of several based robot trajectory generation strategy on planar surface and curved surface. Since the off-line programming software is widely used and thus facilitates the robot programming efforts and improves the accuracy of robot trajectory, the analysis of this work is based on the second development of off-line programming software Robot studio™. To meet the requirements of automotive paint industry, this kind of software extension helps provide special functions according to the users defined operation parameters. The presented planning strategy generates the robot trajectory by moving an orthogonal surface according to the information of coating surface, a series of intersection curves are then employed to generate the trajectory points. The simulation results show that the path curve created with this method is successive and smooth, which corresponds to the requirements of automotive spray industrial applications.

  1. Experimental testing of spray dryer for control of incineration emissions.

    PubMed

    Wey, M Y; Wu, H Y; Tseng, H H; Chen, J C

    2003-05-01

    The research investigated the absorption/adsorption efficiency of sulfur dioxide (SO2), heavy metals, and polycyclic aromatic hydrocarbons (PAHs) with different Ca-based sorbents in a spray dryer during incineration process. For further improving the adsorption capacity of Ca-based sorbents, different spraying pressure and additives were carried out in this study. Experimental results showed that CaO could be used as an alternative sorbent in the spray dryer at an optimal initial particle size distribution of spraying droplet. In the spray dryer, Ca-based sorbents provided a lot of sites for heavy metals and PAHs condensing and calcium and alkalinity to react with metals to form merged species. As a result, heavy metals and PAHs could be removed from the flue gas simultaneously by condensation and adsorption. The additions of additives NaHCO3, SiO2, and KMnO4 were also found to be effective in improving the removal efficiency of these air pollutants.

  2. High mass throughput particle generation using multiple nozzle spraying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pui, David Y. H.; Chen, Da-Ren

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  3. High mass throughput particle generation using multiple nozzle spraying

    DOEpatents

    Pui, David Y.H.; Chen, Da-Ren

    2004-07-20

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  4. High mass throughput particle generation using multiple nozzle spraying

    DOEpatents

    Pui, David Y. H. [Plymouth, MN; Chen, Da-Ren [Creve Coeur, MO

    2009-03-03

    Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.

  5. HVOF-Sprayed Nano TiO2-HA Coatings Exhibiting Enhanced Biocompatibility

    NASA Astrophysics Data System (ADS)

    Lima, R. S.; Dimitrievska, S.; Bureau, M. N.; Marple, B. R.; Petit, A.; Mwale, F.; Antoniou, J.

    2010-01-01

    Biomedical thermal spray coatings produced via high-velocity oxy-fuel (HVOF) from nanostructured titania (n-TiO2) and 10 wt.% hydroxyapatite (HA) (n-TiO2-10wt.%HA) powders have been engineered as possible future alternatives to HA coatings deposited via air plasma spray (APS). This approach was chosen due to (i) the stability of TiO2 in the human body (i.e., no dissolution) and (ii) bond strength values on Ti-6Al-4V substrates more than two times higher than those of APS HA coatings. To explore the bioperformance of these novel materials and coatings, human mesenchymal stem cells (hMSCs) were cultured from 1 to 21 days on the surface of HVOF-sprayed n-TiO2 and n-TiO2-10 wt.%HA coatings. APS HA coatings and uncoated Ti-6Al-4V substrates were employed as controls. The profiles of the hMSCs were evaluated for (i) cellular proliferation, (ii) biochemical analysis of alkaline phosphatase (ALP) activity, (iii) cytoskeleton organization (fluorescent/confocal microscopy), and (iv) cell/substrate interaction via scanning electron microscopy (SEM). The biochemical analysis indicated that the hMSCs cultured on n-TiO2-10 wt.%HA coatings exhibited superior levels of bioactivity than hMSCs cultured on APS HA and pure n-TiO2 coatings. The cytoskeleton organization demonstrated a higher degree of cellular proliferation on the HVOF-sprayed n-TiO2-10wt.%HA coatings when compared to the control coatings. These results are considered promising for engineering improved performance in the next generation of thermally sprayed biomedical coatings.

  6. Spray nozzle designs for agricultural aviation applications. [relation of drop size to spray characteristics and nozzle efficiency

    NASA Technical Reports Server (NTRS)

    Lee, K. W.; Putnam, A. A.; Gieseke, J. A.; Golovin, M. N.; Hale, J. A.

    1979-01-01

    Techniques of generating monodisperse sprays and information concerning chemical liquids used in agricultural aviation are surveyed. The periodic dispersion of liquid jet, the spinning disk method, and ultrasonic atomization are the techniques discussed. Conceptually designed spray nozzles for generating monodisperse sprays are assessed. These are based on the classification of the drops using centrifugal force, on using two opposing liquid laden air jets, and on operating a spinning disk at an overloaded flow. Performance requirements for the designs are described and estimates of the operational characteristics are presented.

  7. New generation of plasma-sprayed mullite coatings on silicon carbide

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Miller, Robert A.; Jacobson, Nathan S.

    1995-01-01

    Mullite is promising as a protective coating for silicon-based ceramics in aggressive high-temperature environments. Conventionally plasma-sprayed mullite on SiC tends to crack and debond on thermal cycling. It is shown that this behavior is due to the presence of amorphous mullite in the conventionally sprayed mullite. Heating the SiC substrate during the plasma spraying eliminated the amorphous phase and produced coatings with dramatically improved properties. The new coating exhibits excellent adherence and crack resistance under thermal cycling between room temperature and 1000 to 1400 C. Preliminary tests showed good resistance to Na2CO3-induced hot corrosion.

  8. Plasma sprayed ceria-containing interlayer

    DOEpatents

    Schmidt, Douglas S.; Folser, George R.

    2006-01-10

    A plasma sprayed ceria-containing interlayer is provided. The interlayer has particular application in connection with a solid oxide fuel cell used within a power generation system. The fuel cell advantageously comprises an air electrode, a plasma sprayed interlayer disposed on at least a portion of the air electrode, a plasma sprayed electrolyte disposed on at least a portion of the interlayer, and a fuel electrode applied on at least a portion of the electrolyte.

  9. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  10. Superhydrophobic surfaces generated by one-pot spray-coating of chitosan-based nanoparticles.

    PubMed

    Wang, Shuangfei; Sha, Jiulong; Wang, Wei; Qin, Chengrong; Li, Wei; Qin, Caiqin

    2018-09-01

    Superhydrophobic surfaces have attracted great attention due to their attractive properties. Biopolymer-based low-cost and environmentally-friendly superhydrophobic coatings with easy-to-perform fabrication methods are always desirable. Herein, we report superhydrophobic surfaces using a one-step spray-coating of chitosan-based nanoparticles. The particles were easily prepared by a nanoprecipitation strategy using synthesized organosoluble chitosan stearoyl ester (CSSE). The resulting particles had an average size of 165 ∼ 235 nm depending on the applied concentration. Subsequently, spray-coating of such particles onto silicon wafer generated a surface with a water contact angle of 155 ± 1°. SEM and AFM images exhibited a nano/microscaled roughness appeared on the coated surface. The superhydrophobic surfaces showed a stable superhydrophobic performance even after storage for 15 days, pH stability between pH 1 to pH 11 and thermal stability until a temperature no more than 50 °C. These properties would broaden the application fields of superhydrophobic surfaces as well as the chitosan itself. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release.

    PubMed

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A Soliman; Seinen, Willem; Scharnhorst, Volkher; Wulkan, Raymond W; Schönberger, Jacques P; Oeveren, Wim van

    2012-02-01

    Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels in patients undergoing coronary artery bypass grafting. A total of 63 patients undergoing coronary artery bypass grafting were enrolled and prospectively randomized. Bovine intestinal alkaline phosphatase (n=32) or placebo (n=31) was administered as an intravenous bolus followed by continuous infusion for 36 hours. The primary endpoint was to evaluate alkaline phosphatase levels in both groups and to find out if administration of bIAP to patients undergoing CABG would lead to endogenous alkaline phosphatase release. No significant adverse effects were identified in either group. In all the 32 patients of the bIAP-treated group, we found an initial rise of plasma alkaline phosphatase levels due to bolus administration (464.27±176.17 IU/L). A significant increase of plasma alkaline phosphatase at 4-6 hours postoperatively was observed (354.97±95.00 IU/L) as well. Using LHA inhibition, it was shown that this second peak was caused by the generation of tissue non specific alkaline phosphatase (TNSALP-type alkaline phosphatase). Intravenous bolus administration plus 8 hours continuous infusion of alkaline phosphatase in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass results in endogenous alkaline phosphatase release. This endogenous alkaline phosphatase may play a role in the immune defense system.

  12. Spray washing carcasses with alkaline solutions of lauric acid to reduce bacterial contamination.

    USDA-ARS?s Scientific Manuscript database

    The effect of spray washing carcasses with lauric acid (LA)-potassium hydroxide (KOH) on bacteria recovered from whole-carcass-rinsates (WCR) was examined. Skin of carcasses was inoculated with a cecal paste containing antibiotic resistant strains of Escherichia coli, Salmonella Typhimirum, and Camp...

  13. Spatial distribution visualization of PWM continuous variable-rate spray

    USDA-ARS?s Scientific Manuscript database

    Chemical application is a dynamic spatial distribution process, during which spray liquid covers the targets with certain thickness and uniformity. Therefore, it is important to study the 2-D and 3-D (dimensional) spray distribution to evaluate spraying quality. The curve-surface generation methods ...

  14. A laser tomographic investigation of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Ahseng, C.; Felton, P.; Ungut, A.; Chigier, N. A.

    1980-01-01

    A light scattering technique is combined with a tomographic transformation to convert line of sight integrated data, measured in sprays, to measurements of droplet size and concentration in volume elements within the spray. The technique is developed and assessed by systematic experiments in axisymmetric sprays generated by twin-fluid atomisers. The good agreement found shows that, provided certain conditions are satisfied by the local spray structure, the technique provides information on spray structure, similar in detail and extent to that derived by photography, but with reduced experimental time. The technique is applied to an investigation of a kerosene spray vaporizing in a hot gas stream.

  15. Vapor generator steam drum spray head

    DOEpatents

    Fasnacht, Jr., Floyd A.

    1978-07-18

    A typical embodiment of the invention provides a combination feedwater and "cooldown" water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure.

  16. Generation of alkaline magmas in subduction zones by melting of mélange diapirs

    NASA Astrophysics Data System (ADS)

    Cruz-Uribe, A. M.; Marschall, H.; Gaetani, G. A.; Le Roux, V.

    2016-12-01

    Alkaline lavas occur globally in subduction-related volcanic arcs. Existing explanations for the occurrence of alkaline lavas in volcanic arcs invoke at least one - and in some cases multiple - `metasomatic' events in addition to the traditional three-component mixing of altered oceanic crust (AOC), sediment melt, and depleted mantle, in order to explain the range of rock types found in a given region. These multi-stage models posit the existence of metasomatized mantle wedge peridotite containing phlogopite or amphibole-enriched veins, which partially melt when fluxed by the addition of materials from the subducted slab. The mélange diapir model is informed by observations and modeling of the subduction side of the arc system, and predicts the generation of alkaline arc magmas by advection of buoyant material from the slab-wedge interface into the mantle wedge below arcs. Here we report results from experiments in which natural mélange materials partially melted at upper mantle conditions were found to produce alkaline magmas compositionally similar to those found in arcs worldwide. The starting material for our experiments is a chlorite-omphacite fels (SY400) from the island of Syros, Greece, that is representative of a hybrid rock containing AOC, sediment, and mantle components. Melting experiments were performed using a piston cylinder apparatus at conditions relevant to the heating-decompression path of mélange diapirs (1000-1300 °C, 1.5-2.5 GPa). The compositions of experimentally produced melts range from 51-61 wt% SiO2, and fall within the trachyte and tephrite-phonolite series (7.5-12.9 wt% Na2O+K2O). Restitic phases in equilibrium with melt include clinopyroxene, garnet (at high P), phlogopite (at high P), amphibole, olivine, rutile, and ilmenite. Partial melts produced in our experiments have trace-element abundance patterns that are typical of alkaline arc lavas, such as enrichment in large ion lithophile elements (Cs, Rb, Ba, Pb, Sr) and alkalis (K

  17. Thermal sprayed composite melt containment tubular component and method of making same

    DOEpatents

    Besser, Matthew F.; Terpstra, Robert L.; Sordelet, Daniel J.; Anderson, Iver E.

    2002-03-19

    A tubular thermal sprayed melt containment component for transient containment of molten metal or alloy wherein the tubular member includes a thermal sprayed inner melt-contacting layer for contacting molten metal or alloy to be processed, a thermal sprayed heat-generating layer deposited on the inner layer, and an optional thermal sprayed outer thermal insulating layer. The thermal sprayed heat-generating layer is inductively heated as a susceptor of an induction field or electrical resistively heated by passing electrical current therethrough. The tubular thermal sprayed melt containment component can comprise an elongated melt pour tube of a gas atomization apparatus where the melt pour tube supplies molten material from a crucible to an underlying melt atomization nozzle.

  18. Spray bottle apparatus with pressure multiplying pistons

    DOEpatents

    Moss, Owen R.; Gordon, Norman R.; DeFord, Henry S.

    1990-01-01

    The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber and a corresponding piston which is acted upon the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area thereby generating greater hydraulic pressure for use in forming the spray.

  19. Spray bottle apparatus with force multiply pistons

    DOEpatents

    Eschbach, Eugene A.

    1992-01-01

    The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber and corresponding piston which is acted upon by the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area thereby generating greater hydraulic pressure for use in forming the spray.

  20. Mineralogical, petrological and geochemical aspects of alkaline and alkaline-carbonatite associations from Brazil

    NASA Astrophysics Data System (ADS)

    Morbidelli, L.; Gomes, C. B.; Beccaluva, L.; Brotzu, P.; Conte, A. M.; Ruberti, E.; Traversa, G.

    1995-12-01

    A general description of Mesozoic and Tertiary (Fortaleza) Brazilian alkaline and alkaline-carbonatite districts is presented with reference to mineralogy, petrology, geochemistry and geochronology. It mainly refers to scientific results obtained during the last decade by an Italo-Brazilian research team. Alkaline occurrences are distributed across Brazilian territory from the southern (Piratini, Rio Grande do Sul State) to the northeastern (Fortaleza, Ceará State) regions and are mainly concentrated along the borders of the Paraná Basin generally coinciding with important tectonic lineaments. The most noteworthy characteristics of these alkaline and alkaline-carbonatite suites are: (i) prevalence of intrusive forms; (ii) abundance of cumulate assemblages (minor dunites, frequent clinopyroxenites and members of the ijolite series) and (iii) abundance of evolved rock-types. Many data demonstrate that crystal fractionation was the main process responsible for magma evolution of all Brazilian alkaline rocks. A hypothesis is proposed for the genesis of carbonatite liquids by immiscibility processes. The incidence of REE and trace elements for different major groups of lithotypes, belonging both to carbonatite-bearing and carbonatite-free districts, are documented. Sr and preliminary Nd isotopic data are indicative of a mantle origin for the least evolved magmas of all the studied occurrences. Mantle source material and melting models for the generation of the Brazilian alkaline magma types are also discussed.

  1. Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application

    NASA Astrophysics Data System (ADS)

    Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain

    2014-12-01

    Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.

  2. Spray combustion experiments and numerical predictions

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Bulzan, Daniel L.; Chen, Kuo-Huey

    1993-01-01

    The next generation of commercial aircraft will include turbofan engines with performance significantly better than those in the current fleet. Control of particulate and gaseous emissions will also be an integral part of the engine design criteria. These performance and emission requirements present a technical challenge for the combustor: control of the fuel and air mixing and control of the local stoichiometry will have to be maintained much more rigorously than with combustors in current production. A better understanding of the flow physics of liquid fuel spray combustion is necessary. This paper describes recent experiments on spray combustion where detailed measurements of the spray characteristics were made, including local drop-size distributions and velocities. Also, an advanced combustor CFD code has been under development and predictions from this code are compared with experimental results. Studies such as these will provide information to the advanced combustor designer on fuel spray quality and mixing effectiveness. Validation of new fast, robust, and efficient CFD codes will also enable the combustor designer to use them as additional design tools for optimization of combustor concepts for the next generation of aircraft engines.

  3. FAST TRACK COMMUNICATION Generation of stable multi-jets by flow-limited field-injection electrostatic spraying and their control via I-V characteristics

    NASA Astrophysics Data System (ADS)

    Gu, W.; Heil, P. E.; Choi, H.; Kim, K.

    2010-12-01

    The I-V characteristics of flow-limited field-injection electrostatic spraying (FFESS) were investigated, exposing a new way to predict and control the specific spraying modes from single-jet to multi-jet. Monitoring the I-V characteristics revealed characteristic drops in the current upon formation of an additional jet in the multi-jet spraying mode. For fixed jet numbers, space-charge-limited current behaviour was measured which was attributed to space charge in the dielectric liquids between the needle electrode and the nozzle opening. The present work establishes that FFESS can, in particular, generate stable multiple jets and that their control is possible through monitoring the I-V characteristics. This can allow for automatic control of the FFESS process and expedite its future scientific and industrial applications.

  4. Dynamic characteristics of pulsed supersonic fuel sprays

    NASA Astrophysics Data System (ADS)

    Pianthong, K.; Matthujak, A.; Takayama, K.; Milton, B. E.; Behnia, M.

    2008-06-01

    This paper describes the dynamic characteristics of pulsed, supersonic liquid fuel sprays or jets injected into ambient air. Simple, single hole nozzles were employed with the nozzle sac geometries being varied. Different fuel types, diesel fuel, bio-diesel, kerosene, and gasoline were used to determine the effects of fuel properties on the spray characteristics. A vertical two-stage light gas gun was employed as a projectile launcher to provide a high velocity impact to produce the liquid jet. The injection pressure was around 0.88-1.24 GPa in all cases. The pulsed, supersonic fuel sprays were visualized by using a high-speed video camera and shadowgraph method. The spray tip penetration and velocity attenuation and other characteristics were examined and are described here. An instantaneous spray tip velocity of 1,542 m/s (Mach number 4.52) was obtained. However, this spray tip velocity can be sustained for only a very short period (a few microseconds). It then attenuates very quickly. The phenomenon of multiple high frequency spray pulses generated by a single shot impact and the changed in the angle of the shock structure during the spray flight, which had already been observed in previous studies, is again noted. Multiple shock waves from the conical nozzle spray were also clearly captured.

  5. Potential role of sea spray generation in the atmospheric transport of perfluorocarboxylic acids.

    PubMed

    Webster, Eva; Ellis, David A

    2010-08-01

    The observed environmental concentrations of perfluorooctanoic acid (PFOA) and its conjugate base (PFO) in remote regions such as the Arctic have been primarily ascribed to the atmospheric transport and degradation of fluorotelomer alcohols (FTOHs) and to direct PFO transport in ocean currents. These mechanisms are each capable of only partially explaining observations. Transport within marine aerosols has been proposed and may explain transport over short distances but will contribute little over longer distances. However, PFO(A) has been shown to have a very short half-life in aqueous aerosols and thus sea spray was proposed as a mechanism for the generation of PFOA in the gas phase from PFO in a water body. Using the observed PFO concentrations in oceans of the Northern Hemisphere and estimated spray generation rates, this mechanism is shown to have the potential for contributing large amounts of PFOA to the atmosphere and may therefore contribute significantly to the concentrations observed in remote locations. Specifically, the rate of PFOA release into the gas phase from oceans in the Northern Hemisphere is calculated to be potentially comparable to global stack emissions to the atmosphere. The subsequent potential for atmospheric degradation of PFOA and its global warming potential are considered. Observed isomeric ratios and predicted atmospheric concentrations due to FTOH degradation are used to elucidate the likely relative importance of transport pathways. It is concluded that gas phase PFOA released from oceans may help to explain observed concentrations in remote regions. The model calculations performed in the present study strongly suggest that oceanic aerosol and gas phase field monitoring is of vital importance to obtain a complete understanding of the global dissemination of PFCAs. Copyright 2010 SETAC

  6. Summary of the Blackmo 88 spray experiment

    Treesearch

    D. R. Miller; W. E. Yendol; M. L. McManus; D. E. Anderson; K. Mierzejewski

    1991-01-01

    The Blackmo 88 spray trial experiment was conducted for two primary purposes: To quantify the effects of local micrometeorological processes, in and near the canopy, on the deposition patterns of aerially applied BT in a mature oak forest; To generate a data set containing simultaneous measurements of spray deposition and detailed micrometeorology, in a canopy of known...

  7. Assessing Pavement Surface Splash and Spray Impact on Road Users

    DOT National Transportation Integrated Search

    2015-10-01

    This TechBrief describes the development of an assessment tool to characterize the propensity of highway sections to generate splash and spray during rainfall and the impact of splash and spray on road users.

  8. Two intelligent spraying systems developed for tree crop production

    USDA-ARS?s Scientific Manuscript database

    Precision pesticide application technologies are needed to achieve efficient and effective spray deposition on target areas and minimize off-target losses. Two variable-rate intelligent sprayers were developed as an introduction of new generation sprayers for tree crop applications. The first spraye...

  9. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    PubMed

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  10. Measuring droplet size of agriuclutral spray nozzles - Measurement distance and airspeed effects

    USDA-ARS?s Scientific Manuscript database

    With a number of new spray testing laboratories going into operation within the U.S. and each gearing up to measure spray atomization from agricultural spray nozzles using laser diffraction, establishing and following a set of scientific standard procedures is crucial to long term data generation an...

  11. Modeling metal droplet sprays in spray forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muoio, N.G.; Crowe, C.T.; Fritsching, U.

    1995-12-31

    Spray casting is a process whereby a molten metal stream is atomized and deposited on a substrate. The rapid solidification of the metal droplets gives rise to a fine grain structure and improved material properties. This paper presents a simulation for the fluid and thermal interaction of the fluid and droplets in the spray and the effect on the droplet spray pattern. Good agreement is obtained between the measured and predicted droplet mass flux distribution in the spray.

  12. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Kincaid, Russell W. (Inventor); Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  13. Pediatric reference intervals for alkaline phosphatase.

    PubMed

    Zierk, Jakob; Arzideh, Farhad; Haeckel, Rainer; Cario, Holger; Frühwald, Michael C; Groß, Hans-Jürgen; Gscheidmeier, Thomas; Hoffmann, Reinhard; Krebs, Alexander; Lichtinghagen, Ralf; Neumann, Michael; Ruf, Hans-Georg; Steigerwald, Udo; Streichert, Thomas; Rascher, Wolfgang; Metzler, Markus; Rauh, Manfred

    2017-01-01

    Interpretation of alkaline phosphatase activity in children is challenging due to extensive changes with growth and puberty leading to distinct sex- and age-specific dynamics. Continuous percentile charts from birth to adulthood allow accurate consideration of these dynamics and seem reasonable for an analyte as closely linked to growth as alkaline phosphatase. However, the ethical and practical challenges unique to pediatric reference intervals have restricted the creation of such percentile charts, resulting in limitations when clinical decisions are based on alkaline phosphatase activity. We applied an indirect method to generate percentile charts for alkaline phosphatase activity using clinical laboratory data collected during the clinical care of patients. A total of 361,405 samples from 124,440 patients from six German tertiary care centers and one German laboratory service provider measured between January 2004 and June 2015 were analyzed. Measurement of alkaline phosphatase activity was performed on Roche Cobas analyzers using the IFCC's photometric method. We created percentile charts for alkaline phosphatase activity in girls and boys from birth to 18 years which can be used as reference intervals. Additionally, data tables of age- and sex-specific percentile values allow the incorporation of these results into laboratory information systems. The percentile charts provided enable the appropriate differential diagnosis of changes in alkaline phosphatase activity due to disease and changes due to physiological development. After local validation, integration of the provided percentile charts into result reporting facilitates precise assessment of alkaline phosphatase dynamics in pediatrics.

  14. Sea Spray and Icing in the Emerging Open Water of the Arctic Ocean

    DTIC Science & Technology

    2015-06-12

    concentrations of wind-generated sea spray and the resulting spray icing on offshore structures, such as wind turbines and exploration, drilling , and...We anticipate that structures placed in shallow water—wind turbines, drilling rigs, or man-made production islands, for instance—will, therefore...and the severity of sea spray icing on fixed offshore structures. We will use existing information on the relationship of the spray concentration

  15. An overview of spray drift reduction testing of spray nozzles

    USDA-ARS?s Scientific Manuscript database

    The importance of the development and testing of drift reduction technologies (DRTs) is increasing. Common spray drift reduction technologies include spray nozzles and spray adjuvants. Following draft procedures developed for a DRT program, three spray nozzles were tested under high air speed cond...

  16. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    NASA Astrophysics Data System (ADS)

    Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik

    2015-06-01

    Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.

  17. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-07-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.

  18. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    PubMed Central

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-01-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system. PMID:25004118

  19. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.; Mao, C. P.

    1985-01-01

    A ground test facility is being established at NASA Lewis Research Center to simulate the environmental and flight conditions needed to study adverse weather effects. One of the most important components is the water spray system which consists of many nozzles fitted on spray bars. Water is injected through air-assisted atomizers to generate uniform size drops to simulate icing in clouds. The primary objective is to provide experimental data on drop size distribution over a wide range of operating conditions. Correlation equations for mean drop size and initial injection parameters are being determined to assist in the design and modification of the Altitude Wind Tunnel. Special emphasis is being placed on the study of the aerodynamic structure of the air-assisted atomizer sprays. Detailed measurements of the variation of drop size distribution and velocity as a function of time and space are being made. Accurate initial and boundary conditions are being provided for computer model evaluation.

  20. Spray pattern analysis in TWAS using photogrammetry and digital image correlation

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Rademacher, H. G.; Hagen, L.; Abdulgader, M.; El Barad’ei, M.

    2018-06-01

    In terms of arc spraying processes, the spray plume characteristic is mainly affected by the flow characteristic of the atomization gas at the nozzle inlet and intersection point of the wire tips, which in turn affect the particle distribution at the moment of impact when molten spray particles splash onto the substrate. With respect to the route of manufacturing of near net-shaped coatings on complex geometries, the acquisition of the spray patterns is pressingly necessary to determine the produced coating thickness. Within the scope of this study, computer fluid dynamics (CFD) simulations were carried out to determine the distribution of spray particles for different spray parameter settings. The results were evaluated by three-dimensional spray spot analyses using an optical measurement based on photogrammetry and digital image correlation. The optical measurement represents a promising and much faster candidate to measure spray patterns compared to the tactile measurement system but with an equal accuracy. For given nozzle configurations and spray parameter settings, numerous spray patterns were examined to their shape factors, demonstrating the potential of an online analysis, which encompasses a “fast sample loop” and a data processing system to generate a three-dimensional surface of the spray spot profile.

  1. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  2. Ventilation Guidance for Spray Polyurethane Foam Application

    EPA Pesticide Factsheets

    Properly designed ventilation can reduce airborne levels of aerosols, mists, and vapors generated during spray application and can help protect SPF applicators, helpers, and others who may be working in adjacent areas.

  3. Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants.

    PubMed

    Foqué, Dieter; Pieters, Jan G; Nuyttens, David

    2014-03-01

    Spray boom systems, an alternative to the predominantly-used spray guns, have the potential to considerably improve crop protection management in glasshouses. Based on earlier experiments, the further optimization of the deposits of a medium spray quality extended range flat fan nozzle type using easy adjustable spray boom settings was examined. Using mineral chelate tracers and water sensitive papers, the spray results were monitored at three plant levels, on the upper side and the underside of the leaves, and on some off-target collectors. In addition, the deposition datasets of all tree experiments were compared. The data showed that the most efficient spray distribution with the medium spray quality flat fan nozzles was found with a 30° forward angled spray combined with air support and an application rate of 1000 L ha(-1) . This technique resulted in a more uniform deposition in the dense canopy and increased spray deposition on the lower side of the leaves compared with the a standard spray boom application. Applying 1000 L ha(-1) in two subsequent runs instead of one did not seem to show any added value. Spray deposition can be improved hugely simply by changing some spray boom settings like nozzle type, angling the spray, using air support and adjusting the spray volume to the crop. © 2013 Society of Chemical Industry.

  4. On the spray pulsations of the effervescent atomizers

    NASA Astrophysics Data System (ADS)

    Mlkvik, Marek; Knizat, Branislav

    2018-06-01

    The presented paper focuses on the comparison of the two effervescent atomizer configurations—the outside-in-gas (OIG) and the outside-in-liquid (OIL). The comparison was based on the spray pulsation assessment by different methods. The atomizers were tested under the same operating conditions given by the constant injection pressure (0.14 MPa) and the gas to the liquid mass ratio (GLR) varying from 2.5 to 5%. The aqueous maltodextrin solution was used as the working liquid (μ = 60 and 146 mPa·s). We found that the time-averaging method does not provide sufficient spray quality description. Based on the cumulative distribution function (CDF) we found that the OIG atomizer generated the spray with non-uniform droplet size distribution at all investigated GLRs. Exceptionally large droplets were present even in the spray which appeared stable when was analyzed by the time-averaging method.

  5. Mechanical, In Vitro Antimicrobial and Biological Properties of Plasma Sprayed Silver-Doped Hydroxyapatite Coating

    PubMed Central

    Roy, Mangal; Fielding, Gary A.; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-01-01

    Implant related infection is one of the key concerns in total joint hip arthroplasties. In order to reduce bacterial adhesion, silver (Ag) / silver oxide (Ag2O) doping was used in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0 and 6.0 wt% Ag, heat treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas Aeruginosa (PAO1). Live/Dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Present results suggest that the plasma sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag doped HA coatings. PMID:22313742

  6. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating.

    PubMed

    Roy, Mangal; Fielding, Gary A; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-03-01

    Implant-related infection is one of the key concerns in total joint hip arthroplasties. To reduce bacterial adhesion, we used silver (Ag)/silver oxide (Ag(2)O) doping in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0, and 6.0 wt % Ag, heat-treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas aeruginosa (PAO1). Live/dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Our results suggest that the plasma-sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag-doped HA coatings. © 2012 American Chemical Society

  7. Layered growth with bottom-spray granulation for spray deposition of drug.

    PubMed

    Er, Dawn Z L; Liew, Celine V; Heng, Paul W S

    2009-07-30

    The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.

  8. Microalgal cell disruption via ultrasonic nozzle spraying.

    PubMed

    Wang, M; Yuan, W

    2015-01-01

    The objective of this study was to understand the effect of operating parameters, including ultrasound amplitude, spraying pressure, nozzle orifice diameter, and initial cell concentration on microalgal cell disruption and lipid extraction in an ultrasonic nozzle spraying system (UNSS). Two algal species including Scenedesmus dimorphus and Nannochloropsis oculata were evaluated. Experimental results demonstrated that the UNSS was effective in the disruption of microalgal cells indicated by significant changes in cell concentration and Nile red-stained lipid fluorescence density between all treatments and the control. It was found that increasing ultrasound amplitude generally enhanced cell disruption and lipid recovery although excessive input energy was not necessary for best results. The effect of spraying pressure and nozzle orifice diameter on cell disruption and lipid recovery was believed to be dependent on the competition between ultrasound-induced cavitation and spraying-generated shear forces. Optimal cell disruption was not always achieved at the highest spraying pressure or biggest nozzle orifice diameter; instead, they appeared at moderate levels depending on the algal strain and specific settings. Increasing initial algal cell concentration significantly reduced cell disruption efficiency. In all UNSS treatments, the effectiveness of cell disruption and lipid recovery was found to be dependent on the algal species treated.

  9. Method of producing thermally sprayed metallic coating

    DOEpatents

    Byrnes, Larry Edward [Rochester Hills, MI; Kramer, Martin Stephen [Clarkston, MI; Neiser, Richard A [Albuquerque, NM

    2003-08-26

    The cylinder walls of light metal engine blocks are thermally spray coated with a ferrous-based coating using an HVOF device. A ferrous-based wire is fed to the HVOF device to locate a tip end of the wire in a high temperature zone of the device. Jet flows of oxygen and gaseous fuel are fed to the high temperature zone and are combusted to generate heat to melt the tip end. The oxygen is oversupplied in relation to the gaseous fuel. The excess oxygen reacts with and burns a fraction of the ferrous-based feed wire in an exothermic reaction to generate substantial supplemental heat to the HVOF device. The molten/combusted metal is sprayed by the device onto the walls of the cylinder by the jet flow of gases.

  10. Sea Spray and Icing in the Emerging Open Water of the Arctic Ocean

    DTIC Science & Technology

    2013-06-17

    can create copious amounts of sea spray. We anticipate that structures placed in shallow water— wind turbines or drilling rigs, for instance— will...anticipate that structures placed in shallow water— wind turbines or drilling rigs, for instance—will, therefore, experience more episodes of freezing...concentrations of wind -generated sea spray and the resulting spray icing on offshore structures, such as wind turbines and exploration, drilling, and production

  11. Investigation of Spray Cooling Schemes for Dynamic Thermal Management

    NASA Astrophysics Data System (ADS)

    Yata, Vishnu Vardhan Reddy

    This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 ?m thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and 10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2-5 ml/cm2.s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.

  12. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    PubMed

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  13. Heat Flux Analysis of a Reacting Thermite Spray Impingent on a Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric S. Collins; Michelle L. Pantoya; Michael A. Daniels

    2012-03-01

    Spray combustion from a thermite reaction is a new area of research relevant to localized energy generation applications, such as welding or cutting. In this study, we characterized the heat flux of combustion spray impinging on a target from a nozzle for three thermite mixtures. The reactions studied include aluminum (Al) with iron oxide (Fe2O3), Al with copper oxide (CuO), and Al with molybdenum oxide (MoO3). Several standoff distances (i.e., distance from the nozzle exit to the target) were analyzed. A fast response heat flux sensor was engineered for this purpose and is discussed in detail. Results correlated substrate damagemore » to a threshold heat flux of 4550 W/cm2 for a fixed-nozzle configuration. Also, higher gas-generating thermites were shown to produce a widely dispersed spray and be less effective at imparting kinetic energy damage to a target. These results provide an understanding of the role of thermal and physical properties (i.e., such as heat of combustion, gas generation, and particle size) on thermite spray combustion performance measured by damaging a target substrate.« less

  14. Comparison of the performance between a spray gun and a spray boom in ornamentals.

    PubMed

    Foqué, D; Nuyttens, D

    2011-01-01

    Flemish greenhouse growers predominantly use handheld spray guns and spray lances for their crop protection purposes although these techniques are known for their heavy workload and their high operator exposure risks. Moreover, when these techniques are compared with spray boom equipment, they are often found to be less effective. On the other hand, handheld spraying techniques are less expensive and more flexible to use. Additionally, many Flemish growers are convinced that a high spray volume and spray pressure is needed to assure a good plant protection. The aim of this work was to evaluate and compare the spray deposition, penetration and uniformity between a manually pulled horizontal spray boom and a spray gun under controlled laboratory conditions. In total, six different spray application techniques were evaluated. In general, the total deposition results were comparable between the spray boom and the spray gun applications but the boom applications resulted in a more uniform spray distribution over the crop. On a plant level, the spray distribution was not uniform for the different techniques with highest deposits on the upper side of the top leaves. Using spray guns at a higher spray pressure did not improve spray penetration and deposition on the bottom side of the leaves. From the different nozzle types, the XR 80 03 gave the best results. Plant density clearly affected crop penetration and deposition on the bottom side of the leaves.

  15. Spray drying of lipid-based systems loaded with Camellia sinensis polyphenols.

    PubMed

    Secolin, Vanessa A; Souza, Claudia R F; Oliveira, Wanderley P

    2017-03-01

    In this work, spray-dried lipid systems based on soy phosphatidylcholine, cholesterol and lauroyl polyoxylglycerides for entrapping Green tea polyphenols were produced. The aim was to study the effects of the encapsulating composition and spray drying conditions on the system performance and physicochemical product properties. The spray dryer powder production yield falls around 50.7 ± 2.8%, which is typical for lab scale spray dryers. Wrinkled and rounded particles, with low surface porosities were generated, independent of the drying carriers (trehalose or lactose) used. The product showed high encapsulation efficiency of Green tea polyphenols, which was promptly redispersible in water. It presented low density, and good compressive and flow properties. The results herein reported confirm the feasibility of the entrapment of Green tea polyphenols in lipid-based compositions by spray drying in presence of the drying carriers evaluated. The spray-dried microparticles show high potential to be used as additive in food, nutraceutical and pharmaceutical products.

  16. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction

    PubMed Central

    Fritz, Bradley K.; Hoffmann, W. Clint

    2016-01-01

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected. PMID:27684589

  17. Foliar spray banding characteristics

    Treesearch

    A.R. Womac; C.W. Smith; Joseph E. Mulrooney

    2004-01-01

    Foliar spray banding was explored as a means of reducing peticide use compared to broadcast applications. Barious geometric spray patterns and delivery angles of foliar spray bands were investigated to increase spray deposits in a crop row at a constant spray rate of 94 L/ha. Wind-free laboratory results indicated that a banded application using three 65° hollow-cone...

  18. Towards fully spray coated organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Gilissen, Koen; Stryckers, Jeroen; Manca, Jean; Deferme, Wim

    2014-10-01

    Pi-conjugated polymer light emitting devices have the potential to be the next generation of solid state lighting. In order to achieve this goal, a low cost, efficient and large area production process is essential. Polymer based light emitting devices are generally deposited using techniques based on solution processing e.g.: spin coating, ink jet printing. These techniques are not well suited for cost-effective, high throughput, large area mass production of these organic devices. Ultrasonic spray deposition however, is a deposition technique that is fast, efficient and roll to roll compatible which can be easily scaled up for the production of large area polymer light emitting devices (PLEDs). This deposition technique has already successfully been employed to produce organic photovoltaic devices (OPV)1. Recently the electron blocking layer PEDOT:PSS2 and metal top contact3 have been successfully spray coated as part of the organic photovoltaic device stack. In this study, the effects of ultrasonic spray deposition of polymer light emitting devices are investigated. For the first time - to our knowledge -, spray coating of the active layer in PLED is demonstrated. Different solvents are tested to achieve the best possible spray-able dispersion. The active layer morphology is characterized and optimized to produce uniform films with optimal thickness. Furthermore these ultrasonic spray coated films are incorporated in the polymer light emitting device stack to investigate the device characteristics and efficiency. Our results show that after careful optimization of the active layer, ultrasonic spray coating is prime candidate as deposition technique for mass production of PLEDs.

  19. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment.

    PubMed

    Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella

    2018-01-01

    A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H 2 O 2 ) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H 2 O 2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Flow rate and trajectory of water spray produced by an aircraft tire

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1986-01-01

    One of the risks associated with wet runway aircraft operation is the ingestion of water spray produced by an aircraft's tires into its engines. This problem can be especially dangerous at or near rotation speed on the takeoff roll. An experimental investigation was conducted in the NASA Langley Research Center Hydrodynamics Research Facility to measure the flow rate and trajectory of water spray produced by an aircraft nose tire operating on a flooded runway. The effects of various parameters on the spray patterns including distance aft of nosewheel, speed, load, and water depth were evaluated. Variations in the spray pattern caused by the airflow about primary structure such as the fuselage and wing are discussed. A discussion of events in and near the tire footprint concerning spray generation is included.

  1. Spray Characteristics and Tribo-Mechanical Properties of High-Velocity Arc-Sprayed WC-W2C Iron-Based Coatings

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Hagen, L.; Kokalj, D.

    2017-10-01

    In terms of arc-sprayed coatings, the lamellar coating microstructure is mainly affected by the atomization behavior of the molten electrode tips. When using compressed air, oxide formations occur during atomization, across the particle-laden spray plume and when the molten droplets splash onto the substrate. Within the scope of this study, the potential of a high-velocity arc-spraying process due to elevated atomization gas pressures and its effect on the spray and coating characteristics was analyzed using a cast tungsten carbide (CTC)-reinforced FeCMnSi cored wire. Since the atomization behavior corresponds with the electrode phenomena, the power spectrum and the droplet formation were observed during spraying. The tribo-mechanical properties of CTC-FeCMnSi coatings were examined in dry sliding experiments and indentation tests. In addition, adhesion tests and metallographic investigations were carried out to analyze the bonding strength, cohesive behavior, and lamellar microstructure. The occurrence of oxide phases was evaluated by x-ray diffraction and electron microscopy. Moreover, the oxygen content was determined by using glow discharge optical emission spectroscopy as well as energy-dispersive x-ray spectroscopy. With respect to elevated atomization gas pressures, a dense microstructure with improved adhesion to the substrate and reduced surface roughness was observed. Dry sliding experiments revealed an advanced wear behavior of specimens, when using above average increased atomization gas pressures. Analytic methods verified the existence of oxide phases, which were generated during spraying. A significant change of the extent and type of oxides, when applying an increased flow rate of the atomization gas, cannot be observed. Besides an enhanced coating quality, the use of increased atomization gas pressure exhibited good process stability.

  2. Exposure of spray-men to dieldrin in residual spraying

    PubMed Central

    Fletcher, T. E.; Press, J. M.; Wilson, D. Bagster

    1959-01-01

    A study of the exposure of spray-men to dieldrin was made in a pilot scheme of residual spraying in the Taveta-Pare area of East Africa. A detailed work study was completed on the operators, and sources of contamination were enumerated. Filter paper pads were placed on the skin and outside clothing and the pick-up was estimated chemically. A spray-man, while using the daily average of 2.12 kg (4.7 pounds) of dieldrin and observing the protective measures laid down, received a dermal exposure of 1.8 mg of dieldrin per kg of body-weight per day. This was possibly reduced somewhat by washing with soap and water upon completion of each day's work. The sixteen spray-men and assistants were exposed for 180 days per year and there was an interim period of 2 months between spray cycles. No clinical symptoms of poisoning were observed. Comparison is made with certain programmes where dieldrin poisoning has occurred. Attention is drawn to the reduced time of exposure in the Taveta-Pare scheme, personal washing, the great value of protective clothing and of its daily washing in soap and water and the need to use a dilute suspension of wettable powder for spraying. Imagesp16-a PMID:13638786

  3. Self-extinguishing behavior of kerosene spray fire in a completely enclosed compartment

    NASA Astrophysics Data System (ADS)

    Wang, Changjian; Guo, Jin; Yan, Weigang; Lu, Shouxiang

    2013-10-01

    The self-extinguishing behavior of kerosene spray fire was investigated in a completely enclosed compartment with the size of 3 m × 3 m × 3.4 m. The spray was generated by locating one BETE nozzle at the center of the bottom wall. A series of spray fire videos were obtained by changing BETE nozzle type and injecting pressure. The results show that spray fire undergoes four stages: the growth stage, the quasi-steady stage, the stretch stage and the self-extinguishing stage. Consumption of large quantities of oxygen causes spray fire to first be stretched and then quench. In this process, fire base migrates away from spray region and leads to the emergence of ghosting fire. Ghosting fire promotes the instability of spray fire and large fluctuation of its height, which provides help to its self-extinguishing. With increasing the injecting pressure or the nozzle diameter, the self-extinguishing time decreases. It is found that the self-extinguishing time is approximately in inverse relation with injecting flow rate. Additionally, we also observed the occurrence of two-phase deflagration just after ignition, and it accelerates the spray fire growth and induces a larger fire height than the following quasi-steady spray fire. The deflagration turns stronger with increasing the injecting pressure.

  4. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    PubMed

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  5. Modeling the Spray Forming of H13 Steel Tooling

    NASA Astrophysics Data System (ADS)

    Lin, Yaojun; McHugh, Kevin M.; Zhou, Yizhang; Lavernia, Enrique J.

    2007-07-01

    On the basis of a numerical model, the temperature and liquid fraction of spray-formed H13 tool steel are calculated as a function of time. Results show that a preheated substrate at the appropriate temperature can lead to very low porosity by increasing the liquid fraction in the deposited steel. The calculated cooling rate can lead to a microstructure consisting of martensite, lower bainite, retained austenite, and proeutectoid carbides in as-spray-formed material. In the temperature range between the solidus and liquidus temperatures, the calculated temperature of the spray-formed material increases with increasing substrate preheat temperature, resulting in a very low porosity by increasing the liquid fraction of the deposited steel. In the temperature region where austenite decomposition occurs, the substrate preheat temperature has a negligible influence on the cooling rate of the spray-formed material. On the basis of the calculated results, it is possible to generate sufficient liquid fraction during spray forming by using a high growth rate of the deposit without preheating the substrate, and the growth rate of the deposit has almost no influence on the cooling rate in the temperature region of austenite decomposition.

  6. Inhalational and dermal exposures during spray application of biocides.

    PubMed

    Berger-Preiss, Edith; Boehncke, Andrea; Könnecker, Gustav; Mangelsdorf, Inge; Holthenrich, Dagmar; Koch, Wolfgang

    2005-01-01

    Data on inhalational and potential dermal exposures during spray application of liquid biocidal products were generated. On the one hand, model experiments with different spraying devices using fluorescent tracers were carried out to investigate the influence of parameters relevant to the exposure (e.g. spraying equipment, nozzle size, direction of application). On the other hand, measurements were performed at selected workplaces (during disinfection operations in food and feed areas; pest control operations for private, public and veterinary hygiene; wood protection and antifouling applications) after application of biocidal products such as Empire 20, Responsar SC, Omexan-forte, Actellic, Perma-forte; Fendona SC, Pyrethrum mist; CBM 8, Aldekol Des 03, TAD CID, Basileum, Basilit. The measurements taken in the model rooms demonstrated dependence of the inhalation exposure on the type of spraying device used, in the following order: "spraying with low pressure" < "airless spraying" < "fogging" indicating that the particle diameter of the released spray droplets is the most important parameter. In addition inhalation exposure was lowest when the spraying direction was downward. Also for the potential dermal exposure, the spraying direction was of particular importance: overhead spraying caused the highest contamination of body surfaces. The data of inhalational and potential dermal exposures gained through workplace measurements showed considerable variation. During spraying procedures with low-pressure equipments, dose rates of active substances inhaled by the operators ranged from 7 to 230 microg active substance (a.s.)/h. An increase in inhaled dose rates (6-33 mg a.s./h) was observed after use of high application volumes/time unit during wood protection applications indoors. Spraying in the veterinary sector using medium-pressure sprayers led to inhaled dose rates between 2 and 24mga.s./h. The highest inhaled dose rates were measured during fogging (114 mg a

  7. Spray printing of organic semiconducting single crystals

    NASA Astrophysics Data System (ADS)

    Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim

    2016-11-01

    Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.

  8. Spray nozzle investigation for the Improved Helicopter Icing Spray System (IHISS)

    NASA Technical Reports Server (NTRS)

    Peterson, Andrew A.; Oldenburg, John R.

    1990-01-01

    A contract has been awarded by the U.S. Army to design, fabricate and test a replacement for the existing Helicopter Icing Spray System. Data are shown for extensive bench and icing tunnel test programs used to select and modify an improved spray nozzle. The IHISS, capable of deployment from any CH-47 helicopter, will include new icing spray nozzles and pneumatic pressure source, and a significantly larger water tank and spray boom. The resulting system will provide a significantly larger icing cloud with droplet characteristics closely matching natural icing conditions.

  9. Computational Analysis of Spray Jet Flames

    NASA Astrophysics Data System (ADS)

    Jain, Utsav

    droplet parameters needed, a rigorous parametric study is conducted for five different parameters in both physical as well as mixing variable space. The parametric study is conducted for a counterflow setup with n-heptane and inert nitrogen on the fuel side and oxygen with inert nitrogen on the oxidizer side. The computational setup (the temperature and velocity field) is validated against the experimental data from the Yale heptane counterflow flame. The five parameters that are investigated are: aerodynamic strain rate, initial droplet diameter, number of fuel droplets, droplet velocity slip ratio and pre-vaporization ratio. It is not the first time such a study has been accomplished but not a lot of research has been done for heavier fuels such as n-heptane (a very crucial reference fuel for the octane ratings in various applications). Also parameters such as droplet slip ratio and pre-vaporization ratio have not been prudently studied in the past. It is observed that though the slip ratio is not very significant in spray flamelet characterization, the pre-vaporization ratio is important to study and has an interesting influence on spray flamelet structure. In future, based on the current parametric study, the laminar spray flamelet library can be generated which will eventually be integrated to predict turbulent spray flames.

  10. Cold spray NDE for porosity and other process anomalies

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.

    2018-04-01

    This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar

  11. Spongy Raney nickel hydrogen electrodes for alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Tomida, Tahei; Nakabayashi, Ichiro

    1989-11-01

    Spongy Raney nickel catalysts for use as hydrogen electrodes of fuel cells were prepared by a new method. In this method molten aluminum was sprayed on both sides of a spongy plate of nickel as substrate with an acetylene-oxygen flame gun. Then, the spongy nickel electrodes were activated by alloying at a given temperature of from 550 to 750 C, and leaching the aluminum from the alloy in alkaline solution. This type of catalyst showed good thermal and electrical conductivity and also mechanical strength by itself. Its polarization resistance was very low, and the characteristics of the electrodes improved with increase in the temperature of heat-treatment for alloying. The finding that activity depended on the alloying temperature was consistent with observations by scanning electron microscope on the surface textures of catalysts alloyed at different temperatures.

  12. A New Quantitative 3D Imaging Method for Characterizing Spray in the Near-field of Nozzle Exits

    DTIC Science & Technology

    2015-01-13

    measurements were performed on a flat-panel tabletop cone - beam CT system in the Radiology Department at Stanford University. The X-ray generator (CPI...quantitative measurement technique to examine the dense near-field region of sprays using X-ray computed tomography (CT). An optimized “spray CT system” was...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 X-ray CT, Spray, Hollow Cone Spray, Near Field REPORT DOCUMENTATION PAGE 11. SPONSOR

  13. Spray drift reduction evaluations of spray nozzles using a standardized testing protocol

    USDA-ARS?s Scientific Manuscript database

    The development and testing of drift reduction technologies has come to the forefront of application research in the past few years in the United States. Drift reduction technologies (DRTs) can be spray nozzles, sprayer modifications, spray delivery assistance, spray property modifiers (adjuvants),...

  14. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability.

    PubMed

    Liu, Tongjun; Williams, Daniel L; Pattathil, Sivakumar; Li, Muyang; Hahn, Michael G; Hodge, David B

    2014-04-03

    A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. This work demonstrates that this two-stage pretreatment process is well suited for

  15. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability

    PubMed Central

    2014-01-01

    Background A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Results Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. Conclusions This work demonstrates that this two

  16. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    NASA Astrophysics Data System (ADS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-03-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  17. Slurry spray distribution within a simulated laboratory scale spray dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertone, P.C.

    1979-12-20

    It was found that the distribution of liquid striking the sides of a simulated room temperature spray dryer was not significantly altered by the choice of nozles, nor by a variation in nozzle operating conditions. Instead, it was found to be a function of the spray dryer's configuration. A cocurrent flow of air down the drying cylinder, not possible with PNL's closed top, favorably altered the spray distribution by both decreasing the amount of liquid striking the interior of the cylinder from 72 to 26% of the feed supplied, and by shifting the zone of maximum impact from 1.0 tomore » 1.7 feet from the nozzle. These findings led to the redesign of the laboratory scale spray dryer to be tested at the Savannah River Plant. The diameter of the drying chamber was increased from 5 to 8 inches, and a cocurrent flow of air was established with a closed recycle. Finally, this investigation suggested a drying scheme which offers all the advantages of spray drying without many of its limitations.« less

  18. When can ocean acidification impacts be detected from decadal alkalinity measurements?

    NASA Astrophysics Data System (ADS)

    Carter, B. R.; Frölicher, T. L.; Dunne, J. P.; Rodgers, K. B.; Slater, R. D.; Sarmiento, J. L.

    2016-04-01

    We use a large initial condition suite of simulations (30 runs) with an Earth system model to assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity distribution from decadally repeated hydrographic measurements such as those produced by the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated by the model. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts are detectable later at depth despite lower variability due to smaller rates of change and consistent measurement uncertainty.

  19. Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion.

    PubMed

    Jin, Guang; Bierma, Tom; Walker, Paul M

    2014-01-01

    This study examines the effectiveness of alkaline pretreatment under mild heat conditions (100°C or 212°F) on the anaerobic co-digestion of switchgrass. The effects of alkaline concentration, types of alkaline, heating time and rinsing were evaluated. In addition to batch studies, continuous-feed studies were performed in triplicate to identify potential digester operational problems caused by switchgrass co-digestion while accounting for uncertainty due to digester variability. Few studies have examined anaerobic digestion of switchgrass or the effects of mild heating to enhance alkaline pretreatment prior to biomass digestion. Results indicate that pretreatment can significantly enhance digestion of coarse-ground (≤ 0.78 cm particle size) switchgrass. Energy conversion efficiency as high as 63% was observed, and was comparable or superior to fine-grinding as a pretreatment method. The optimal NaOH concentration was found to be 5.5% (wt/wt alkaline/biomass) with a 91.7% moisture level. No evidence of operational problems such as solids build-up, poor mixing, or floating materials were observed. These results suggest the use of waste heat from a generator could reduce the concentration of alkaline required to adequately pretreat lignocellulosic feedstock prior to anaerobic digestion.

  20. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung

    2018-01-01

    Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.

  1. Long-term evolution of highly alkaline steel slag drainage waters.

    PubMed

    Riley, Alex L; Mayes, William M

    2015-07-01

    The disposal of slag generated by the steel industry can have negative consequences upon the surrounding aquatic environment by the generation of high pH waters, leaching of potentially problematic trace metals, and rapid rates of calcite precipitation which smother benthic habitats. A 36-year dataset was collated from the long-term ambient monitoring of physicochemical parameters and elemental concentrations of samples from two steel slag leachate-affected watercourses in northern England. Waters were typified by elevated pH (>10), high alkalinity, and were rich in dissolved metals (e.g. calcium (Ca), aluminium (Al), and zinc (Zn)). Long-term trend analysis was performed upon pH, alkalinity, and Ca concentration which, in addition to Ca flux calculations, were used to highlight the longevity of pollution arising as a result of the dumping and subsequent leaching of steel slags. Declines in calcium and alkalinity have been modest over the monitoring period and not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50-80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible.

  2. Alkaline-Acid Zn-H2 O Fuel Cell for the Simultaneous Generation of Hydrogen and Electricity.

    PubMed

    Cai, Pingwei; Li, Yan; Wang, Genxiang; Wen, Zhenhai

    2018-04-03

    An alkaline-acid Zn-H 2 O fuel cell is proposed for the simultaneous generation of electricity with an open circuit voltage of about 1.25 V and production of H 2 with almost 100 % Faradic efficiency. We demonstrate that, as a result of harvesting energy from both electrochemical neutralization and electrochemical Zn oxidation, the as-developed hybrid cell can deliver a power density of up to 80 mW cm -2 and an energy density of 934 Wh kg -1 and maintain long-term stability for H 2 production with an output voltage of 1.16 V at a current density of 10 mA cm -2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Theophylline cocrystals prepared by spray drying: physicochemical properties and aerosolization performance.

    PubMed

    Alhalaweh, Amjad; Kaialy, Waseem; Buckton, Graham; Gill, Hardyal; Nokhodchi, Ali; Velaga, Sitaram P

    2013-03-01

    The purpose of this work was to characterize theophylline (THF) cocrystals prepared by spray drying in terms of the physicochemical properties and inhalation performance when aerosolized from a dry powder inhaler. Cocrystals of theophylline with urea (THF-URE), saccharin (THF-SAC) and nicotinamide (THF-NIC) were prepared by spray drying. Milled THF and THF-SAC cocrystals were also used for comparison. The physical purity, particle size, particle morphology and surface energy of the materials were determined. The in vitro aerosol performance of the spray-dried cocrystals, drug-alone and a drug-carrier aerosol, was assessed. The spray-dried particles had different size distributions, morphologies and surface energies. The milled samples had higher surface energy than those prepared by spray drying. Good agreement was observed between multi-stage liquid impinger and next-generation impactor in terms of assessing spray-dried THF particles. The fine particle fractions of both formulations were similar for THF, but drug-alone formulations outperformed drug-carrier formulations for the THF cocrystals. The aerosolization performance of different THF cocrystals was within the following rank order as obtained from both drug-alone and drug-carrier formulations: THF-NIC>THF-URE>THF-SAC. It was proposed that micromeritic properties dominate over particle surface energy in terms of determining the aerosol performance of THF cocrystals. Spray drying could be a potential technique for preparing cocrystals with modified physical properties.

  4. Development & characterization of alumina coating by atmospheric plasma spraying

    NASA Astrophysics Data System (ADS)

    Sebastian, Jobin; Scaria, Abyson; Kurian, Don George

    2018-03-01

    Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.

  5. Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products

    NASA Astrophysics Data System (ADS)

    Lorenz, Christiane; Hagendorfer, Harald; von Goetz, Natalie; Kaegi, Ralf; Gehrig, Robert; Ulrich, Andrea; Scheringer, Martin; Hungerbühler, Konrad

    2011-08-01

    Consumer spray products are already on the market in the cosmetics and household sector, which suggest by their label that they contain engineered nanoparticles (ENP). Sprays are considered critical for human health, because the lungs represent a major route for the uptake of ENP into the human body. To contribute to the exposure assessment of ENP in consumer spray products, we analyzed ENP in four commercially available sprays: one antiperspirant, two shoe impregnation sprays, and one plant-strengthening agent. The spray dispersions were analyzed by inductively coupled plasma mass spectrometry (ICPMS) and (scanning-) transmission electron microscopy ((S)TEM). Aerosols were generated by using the original vessels, and analyzed by scanning mobility particle sizer (SMPS) and (S)TEM. On the basis of SMPS results, the nanosized aerosol depositing in the respiratory tract was modeled for female and male consumers. The derived exposure levels reflect a single spray application. We identified ENP in the dispersions of two products (shoe impregnation and plant spray). Nanosized aerosols were observed in three products that contained propellant gas. The aerosol number concentration increased linearly with the sprayed amount, with the highest concentration resulting from the antiperspirant. Modeled aerosol exposure levels were in the range of 1010 nanosized aerosol components per person and application event for the antiperspirant and the impregnation sprays, with the largest fraction of nanosized aerosol depositing in the alveolar region. Negligible exposure from the application of the plant spray (pump spray) was observed.

  6. Improved Orifice Plate for Spray Gun

    NASA Technical Reports Server (NTRS)

    Cunningham, W.

    1986-01-01

    Erratic spray pattern of commercial spray gun changed to repeatable one by simple redesign of two parts. In modified spray gun orifice plate and polytetrafluoroethylene bushing redesigned to assure centering and alignment with nozzle. Such improvement useful in many industrial applications requiring repeatable spray patterns. Might include spraying of foam insulation, paint, other protective coatings, detergents, abrasives, adhesives, process chemicals, or fuels. Unmodified spray gun produces erratic spray because lateral misalignment between orifice plate and nozzle.

  7. Integrated computational study of ultra-high heat flux cooling using cryogenic micro-solid nitrogen spray

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Oh, U.; Tan, Daisuke

    2012-10-01

    A new type of ultra-high heat flux cooling system using the atomized spray of cryogenic micro-solid nitrogen (SN2) particles produced by a superadiabatic two-fluid nozzle was developed and numerically investigated for application to next generation super computer processor thermal management. The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed Computational Fluid Dynamics (CFD) analysis based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultra-high heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles. When micro-SN2 spraying cooling was used, an ultra-high cooling heat flux level was achieved during operation, a better cooling performance than that with liquid nitrogen (LN2) spray cooling. As micro-SN2 cooling has the advantage of direct latent heat transport which avoids the film boiling state, the ultra-short time scale heat transfer in a thin boundary layer is more possible than in LN2 spray. The present numerical prediction of the micro-SN2 spray cooling heat flux profile can reasonably reproduce the measurement results of cooling wall heat flux profiles. The application of micro-solid spray as a refrigerant for next generation computer processors is anticipated, and its ultra-high heat flux technology is expected

  8. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse.

    PubMed

    Bolado-Rodríguez, Silvia; Toquero, Cristina; Martín-Juárez, Judit; Travaini, Rodolfo; García-Encina, Pedro Antonio

    2016-02-01

    The effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the methane produced by the anaerobic digestion of wheat straw (WS) and sugarcane bagasse (SCB) was studied, using whole slurry and solid fraction. All the pretreatments released formic and acetic acids and phenolic compounds, while 5-hydroxymetilfurfural (HMF) and furfural were generated only by acid pretreatment. A remarkable inhibition was found in most of the whole slurry experiments, except in thermal pretreatment which improved methane production compared to the raw materials (29% for WS and 11% for SCB). The alkaline pretreatment increased biodegradability (around 30%) and methane production rate of the solid fraction of both pretreated substrates. Methane production results were fitted using first order or modified Gompertz equations, or a novel model combining both equations. The model parameters provided information about substrate availability, controlling step and inhibitory effect of compounds generated by each pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Particle design using a 4-fluid-nozzle spray-drying technique for sustained release of acetaminophen.

    PubMed

    Chen, Richer; Okamoto, Hirokazu; Danjo, Kazumi

    2006-07-01

    We prepared matrix particles of acetaminophen (Act) with chitosan (Cht) as a carrier using a newly developed 4-fluid-nozzle spray dryer. Cht dissolves in acid solutions and forms a gel, but it does not dissolve in alkaline solutions. Therefore, we tested the preparation of controlled release matrix particles using the characteristics of this carrier. Act and Cht mixtures in prescribed ratios were dissolved in an acid solution. We evaluated the matrix particles by preparing a solid dispersion using a 4-fluid-nozzle spray dryer. Observation of the particle morphology by scanning electron microscopy (SEM) revealed that the particles from the spray drying process had atomized to several microns, and that they had become spherical. We investigated the physicochemical properties of the matrix particles by powder X-ray diffraction, differential scanning calorimetry, and dissolution rate analyses with a view to clarifying the effects of crystallinity on the dissolution rate. The powder X-ray diffraction peaks and the heat of the Act fusion in the spray-dried samples decreased with the increase of the carrier content, indicating that the drug was amorphous. These results indicate that the system formed a solid dispersion. Furthermore, we investigated the interaction between the drug and carrier using FT-IR analysis. The FT-IR spectroscopy for the Act solid dispersions suggested that the Act carboxyl group and the Cht amino group formed a hydrogen bond. In addition, the measurement results of the 13C CP/MAS solid-state NMR, indicated that a hydrogen bond had been formed between the Act carbonyl group and the Cht amino group. In the Act-Cht system, the 4-fluid-nozzle spray-dried preparation with a mixing ratio of 1 : 5 obtained a sustained release preparation in all pH test solutions.

  10. Thermal Arc Spray Overview

    NASA Astrophysics Data System (ADS)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  11. INEL Spray-forming Research

    NASA Technical Reports Server (NTRS)

    Mchugh, Kevin M.; Key, James F.

    1993-01-01

    Spray forming is a near-net-shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or mold to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray-forming technology for producing near-net-shape solids and coatings of a variety of metals, polymers, and composite materials. Results from several spray forming programs are presented to illustrate the range of capabilities of the technique as well as the accompanying technical and economic benefits. Low-carbon steel strip greater than 0.75 mm thick and polymer membranes for gas/gas and liquid/liquid separations that were spray formed are discussed; recent advances in spray forming molds, dies, and other tooling using low-melting-point metals are described.

  12. Interannual sedimentary effluxes of alkalinity in the southern North Sea: model results compared with summer observations

    NASA Astrophysics Data System (ADS)

    Pätsch, Johannes; Kühn, Wilfried; Dorothea Six, Katharina

    2018-06-01

    For the sediments of the central and southern North Sea different sources of alkalinity generation are quantified by a regional modelling system for the period 2000-2014. For this purpose a formerly global ocean sediment model coupled with a pelagic ecosystem model is adapted to shelf sea dynamics, where much larger turnover rates than in the open and deep ocean occur. To track alkalinity changes due to different nitrogen-related processes, the open ocean sediment model was extended by the state variables particulate organic nitrogen (PON) and ammonium. Directly measured alkalinity fluxes and those derived from Ra isotope flux observation from the sediment into the pelagic are reproduced by the model system, but calcite building and calcite dissolution are underestimated. Both fluxes cancel out in terms of alkalinity generation and consumption. Other simulated processes altering alkalinity in the sediment, like net sulfate reduction, denitrification, nitrification, and aerobic degradation, are quantified and compare well with corresponding fluxes derived from observations. Most of these fluxes exhibit a strong positive gradient from the open North Sea to the coast, where large rivers drain nutrients and organic matter. Atmospheric nitrogen deposition also shows a positive gradient from the open sea towards land and supports alkalinity generation in the sediments. An additional source of spatial variability is introduced by the use of a 3-D heterogenous porosity field. Due to realistic porosity variations (0.3-0.5) the alkalinity fluxes vary by about 4 %. The strongest impact on interannual variations of alkalinity fluxes is exhibited by the temporal varying nitrogen inputs from large rivers directly governing the nitrate concentrations in the coastal bottom water, thus providing nitrate necessary for benthic denitrification. Over the time investigated the alkalinity effluxes decrease due to the decrease in the nitrogen supply by the rivers.

  13. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  14. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoming; Hung, David L. S.; Xu, Min

    2014-08-01

    Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information

  15. LN2 spray droplet size measurement via ensemble diffraction technique

    NASA Technical Reports Server (NTRS)

    Saiyed, N. H.; Jurns, J.; Chato, David J.

    1991-01-01

    The size of subcooled liquified nitrogen droplets are measured with a 5 mW He-Ne laser as a function of pressure difference (delta P) across flat spray and full cone pressure atomizing nozzles. For delta P's of 3 to 30 psid, the spray sauter mean diameter (SMD) ranged between 250 to 50 microns. The pressure range tested is representative of those expected during cryogenic fluid transfer operations in space. The droplet sizes from the flat spray nozzles were greater than those from the full cone nozzle. A power function of the form, SMD varies as delta P(exp a), describes the spray SMD as a function of the delta P very well. The values of a were -0.36 for the flat spray and -0.87 for the full cone. The reduced dependence of the flat spray SMD on the delta P was probably because of: (1) the absence of a swirler that generates turbulence within the nozzle to enhance atomization, and (2) a possible increase in shearing stress resulting from the delayed atomization due to the absence of turbulence. The nitrogen quality, up to 1.5 percent is based on isenthalpic expansion, did not have a distinct and measurable effect on the spray SMD. Both bimodal and monomodal droplet size population distributions were measured. In the bimodal distribution, the frequency of the first mode was much greater than the frequency of the second mode. Also, the frequency of the second mode was low enough such that a monomodal approximation probably would give reasonable results.

  16. Understanding Factors that Influence Protective Glove Use among Automotive Spray Painters

    PubMed Central

    Ceballos, Diana; Reeb-Whitaker, Carolyn; Glazer, Patricia; Murphy-Robinson, Helen; Yost, Michael

    2017-01-01

    Dermal contact with isocyanate-based coatings may lead to systemic respiratory sensitization. The most common isocyanates found in sprayed automotive coatings are monomeric and oligomeric 1,6-hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI). Most spray painters use thin (4–5 mil) latex gloves that are not effective at preventing dermal exposures when spraying isocyanate paints. Personal interviews with collision repair industry personnel and focus groups with spray painters were held to characterize risk awareness, to examine perceptions and challenges concerning protective glove use and selection, and to generate ideas for protective glove use interventions. The most popular gloves among spray painters were thin (4–5 mil) and thick (14 mil) latex. We found that medium to thick (6–8 mil) nitrile were not always perceived as comfortable and were expected to be more expensive than thin (4–5 mil) latex gloves. Of concern is the users’ difficulty to distinguish between nitrile and latex gloves; latex gloves are now sold in different colors including blue, which has traditionally been associated with nitrile gloves. Even though spray painters were familiar with the health hazards related to working with isocyanate paints; most were not always aware that dermal exposure to isocyanates could contribute to the development of occupational asthma. There is a need for more research to identify dermal materials that are protective against sprayed automotive coatings. Automotive spray painters and their employers need to be educated in the selection and use of protective gloves, specifically on attributes such as glove material, color, and thickness. PMID:24215135

  17. Hair spray poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  18. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    NASA Astrophysics Data System (ADS)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  19. A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine.

    PubMed

    Kanojia, Gaurav; Willems, Geert-Jan; Frijlink, Henderik W; Kersten, Gideon F A; Soema, Peter C; Amorij, Jean-Pierre

    2016-09-25

    Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV) vaccine. The approach included systematically screening and optimizing the spray drying process variables, determining the desired process parameters and predicting product quality parameters. The process parameters inlet air temperature, nozzle gas flow rate and feed flow rate and their effect on WIV vaccine powder characteristics such as particle size, residual moisture content (RMC) and powder yield were investigated. Vaccine powders with a broad range of physical characteristics (RMC 1.2-4.9%, particle size 2.4-8.5μm and powder yield 42-82%) were obtained. WIV showed no significant loss in antigenicity as revealed by hemagglutination test. Furthermore, descriptive models generated by DoE software could be used to determine and select (set) spray drying process parameter. This was used to generate a dried WIV powder with predefined (predicted) characteristics. Moreover, the spray dried vaccine powders retained their antigenic stability even after storage for 3 months at 60°C. The approach used here enabled the generation of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentially used for pulmonary administration. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Remotely controlled spray gun

    NASA Technical Reports Server (NTRS)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  1. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    NASA Astrophysics Data System (ADS)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  2. Measurement of Spray Drift with a Specifically Designed Lidar System.

    PubMed

    Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R

    2016-04-08

    Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R² > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift.

  3. Transparent electrodes made with ultrasonic spray coating technique for flexible heaters

    NASA Astrophysics Data System (ADS)

    Wroblewski, G.; Krzemiński, J.; Janczak, D.; Sowiński, J.; Jakubowska, M.

    2017-08-01

    Transparent electrodes are one of the basic elements of various electronic components. The paper presents the preliminary results related to novel method of ultrasonic spray coating used for fabrication of transparent flexible electrodes. Experiments were conducted by means of specially made laboratory setup composed of ultrasonic spray generator and XYZ plotter. In the first part of the paper diverse solvents were used to determine the crucial technological parameters such as atomization voltage and fluid flow velocity. Afterwards paint containing carbon nanotubes suspended in the two solvent system was prepared and deposited on the polyethylene terephthalate foil. Thickness, roughness and electrical measurements were performed to designate the relations of technological parameters of ultrasonic spray coating on thickness, roughness, sheet resistance and optical transmission of fabricated samples.

  4. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    NASA Astrophysics Data System (ADS)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.

  5. Thermal spray for commercial shipbuilding

    NASA Astrophysics Data System (ADS)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  6. Measuring water ingestion from spray exposures.

    PubMed

    Sinclair, Martha; Roddick, Felicity; Nguyen, Thang; O'Toole, Joanne; Leder, Karin

    2016-08-01

    Characterisation of exposure levels is an essential requirement of health risk assessment; however for water exposures other than drinking, few quantitative exposure data exist. Thus, regulatory agencies must use estimates to formulate policy on treatment requirements for non-potable recycled water. We adapted the use of the swimming pool chemical cyanuric acid as a tracer of recreational water ingestion to permit detection of small water volumes inadvertently ingested from spray exposures. By using solutions of 700-1000 mg/L cyanuric acid in an experimental spray exposure scenario, we were able to quantify inadvertent water ingestion in almost 70% of participants undertaking a 10 min car wash activity using a high pressure spray device. Skin absorption was demonstrated to be negligible under the experimental conditions, and the measured ingestion volumes ranged from 0.06 to 3.79 mL. This method could be applied to a range of non-potable water use activities to generate exposure data for risk assessment processes. The availability of such empirical measurements will provide greater assurance to regulatory agencies and industry that potential health risks from exposure to non-potable water supplies are well understood and adequately managed to protect public health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The effects of sea spray and atmosphere-wave coupling on air-sea exchange during a tropical cyclone

    NASA Astrophysics Data System (ADS)

    Garg, Nikhil; Kwee Ng, Eddie Yin; Narasimalu, Srikanth

    2018-04-01

    The study investigates the role of the air-sea interface using numerical simulations of Hurricane Arthur (2014) in the Atlantic. More specifically, the present study aims to discern the role ocean surface waves and sea spray play in modulating the intensity and structure of a tropical cyclone (TC). To investigate the effects of ocean surface waves and sea spray, numerical simulations were carried out using a coupled atmosphere-wave model, whereby a sea spray microphysical model was incorporated within the coupled model. Furthermore, this study also explores how sea spray generation can be modelled using wave energy dissipation due to whitecaps; whitecaps are considered as the primary mode of spray droplets generation at hurricane intensity wind speeds. Three different numerical simulations including the sea- state-dependent momentum flux, the sea-spray-mediated heat flux, and a combination of the former two processes with the sea-spray-mediated momentum flux were conducted. The foregoing numerical simulations were evaluated against the National Data Buoy Center (NDBC) buoy and satellite altimeter measurements as well as a control simulation using an uncoupled atmosphere model. The results indicate that the model simulations were able to capture the storm track and intensity: the surface wave coupling results in a stronger TC. Moreover, it is also noted that when only spray-mediated heat fluxes are applied in conjunction with the sea-state-dependent momentum flux, they result in a slightly weaker TC, albeit stronger compared to the control simulation. However, when a spray-mediated momentum flux is applied together with spray heat fluxes, it results in a comparably stronger TC. The results presented here allude to the role surface friction plays in the intensification of a TC.

  8. Particle size distribution of aerosols sprayed from household hand-pump sprays containing fluorine-based and silicone-based compounds.

    PubMed

    Kawakami, Tsuyoshi; Isama, Kazuo; Ikarashi, Yoshiaki

    2015-01-01

    Japan has published safety guideline on waterproof aerosol sprays. Furthermore, the Aerosol Industry Association of Japan has adopted voluntary regulations on waterproof aerosol sprays. Aerosol particles of diameter less than 10 µm are considered as "fine particles". In order to avoid acute lung injury, this size fraction should account for less than 0.6% of the sprayed aerosol particles. In contrast, the particle size distribution of aerosols released by hand-pump sprays containing fluorine-based or silicone-based compounds have not been investigated in Japan. Thus, the present study investigated the aerosol particle size distribution of 16 household hand-pump sprays. In 4 samples, the ratio of fine particles in aerosols exceeded 0.6%. This study confirmed that several hand-pump sprays available in the Japanese market can spray fine particles. Since the hand-pump sprays use water as a solvent and their ingredients may be more hydrophilic than those of aerosol sprays, the concepts related to the safety of aerosol-sprays do not apply to the hand pump sprays. Therefore, it may be required for the hand-pump spray to develop a suitable method for evaluating the toxicity and to establish the safety guideline.

  9. Orogenic potassic mafic magmatism, a product of alkaline-peraluminous mixing ? Variscan 'calc-alkaline' rocks from the Central Iberian and Ossa Morena Zones, Central Spain.

    NASA Astrophysics Data System (ADS)

    Scarrow, Jane H.; Cambeses, Aitor; Bea, Fernando; Montero, Pilar; Molina, José F.; Moreno, Juan Antonio

    2013-04-01

    Orogenic magmatic rocks provide information about mantle and crust melt-generation and -interaction processes. In this context, minor potassic mafic stocks which are formed of enriched mantle and crustal components and are common as late-orogenic intrusions in granitic plutons give insight into the timing of new crust formation and crustal recycling. Potassic mafic stocks are prevalent, albeit low volume, constituents of granite batholiths all through the European Variscan (350-280 Ma). In the Central Iberia Zone, Spanish Central System, crustal-melt, S-type, granitoid plutons are intruded by minor concomitant ultramafic-intermediate appinitic-vaugneritic stocks. Notwithstanding their whole-rock calc-alkaline composition, the stocks apparently did not have a subduction-related origin. Recent studies have attributed their genesis to mixing of alkaline mantle and peraluminous crustal melts. Their primary alkaline character, as indicated by amphibole and biotite mineral chemistry data, points, rather, towards an extension-related genesis. In the Ossa Morena Zone, south of the Central Iberian Zone, the igneous rocks also have a whole-rock calc-alkaline composition which has been considered to be the result of northward subduction of the South Portuguese Zone. Nevertheless, identification of a 'sill' of significant volume of mafic magma in the middle crust, the ´IBERSEIS reflective body', in a seismic profile across the Ossa Morena and South Portuguese Zones has cast doubt upon the calc-alkaline magmatism-subduction model; leading, instead, to the magmatism being attributed to intra-orogenic extension related to a mantle plume active from 340 Ma to 330 Ma. The aim here, then, is to reinvestigate the petrogenesis and age of the calc-alkaline rocks of the Ossa Morena Zone to determine their tectonomagmatic context be it subduction-, plume- or extension-related, and establish what they may reveal about mantle-crust interactions. Focussing, initially, on the Valencia del

  10. Experimental Studies of Spray Deposition on a Flat Surface in a Vacuum Environment

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Yao, S. C.

    2015-01-01

    Cooling of spacecraft components in the space environment is an on-going research effort. The electronics used in modern spacecraft are always changing and the heat flux is increasing. New, one-of-a-kind missions require new approaches to thermal control. In this research, under vacuum conditions, a pulsed water spray impinged on a small disc, while a high speed data acquisition system recorded the temperature histories of this copper disc. The water droplets froze quickly and accumulated on the disc as the spray continued. After the spray stopped, the frozen water that remained on the disc then sublimated into the vacuum environment and cooled the disc. This paper examines two important aspects of this process: 1) the difference in spray start up and shutdown in a vacuum environment versus in a standard atmospheric pressure environment, and 2) the water utilization efficiency in a vacuum environment due to the effects of drop trajectories and drop bouncing on the surface. Both phenomena play a role during spray cooling in a vacuum. This knowledge should help spacecraft designers plan for spray cooling as an option to cool spacecraft electronics, human metabolic generated heat, and heat from other sources.

  11. Anti-icing Behavior of Thermally Sprayed Polymer Coatings

    NASA Astrophysics Data System (ADS)

    Koivuluoto, Heli; Stenroos, Christian; Kylmälahti, Mikko; Apostol, Marian; Kiilakoski, Jarkko; Vuoristo, Petri

    2017-01-01

    Surface engineering shows an increasing potential to provide a sustainable approach to icing problems. Currently, several passive anti-ice properties adoptable to coatings are known, but further research is required to proceed for practical applications. This is due to the fact that icing reduces safety, operational tempo, productivity and reliability of logistics, industry and infrastructure. An icing wind tunnel and a centrifugal ice adhesion test equipment can be used to evaluate and develop anti-icing and icephobic coatings for a potential use in various arctic environments, e.g., in wind power generation, oil drilling, mining and logistic industries. The present study deals with evaluation of icing properties of flame-sprayed polyethylene (PE)-based polymer coatings. In the laboratory-scale icing tests, thermally sprayed polymer coatings showed low ice adhesion compared with metals such as aluminum and stainless steel. The ice adhesion strength of the flame-sprayed PE coating was found to have approximately seven times lower ice adhesion values compared with metallic aluminum, indicating a very promising anti-icing behavior.

  12. Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst

    NASA Astrophysics Data System (ADS)

    Tian, Hongjing; Guo, Qingjie; Xu, Dongyan

    An attapulgite clay-supported cobalt-boride (Co-B) catalyst used in portable fuel cell fields is prepared in this paper by impregnation-chemical reduction method. The cost of attapulgite clay is much lower compared with some other inert carriers, such as activated carbon and carbon nanotube. Its microstructure and catalytic activity are analyzed in this paper. The effects of NaOH concentration, NaBH 4 concentration, reacting temperature, catalyst loadings and recycle times on the performance of the catalysts in hydrogen production from alkaline NaBH 4 solutions are investigated. Furthermore, characteristics of these catalysts are carried out in SEM, XRD and TEM analysis. The high catalytic activity of the catalyst indicates that it is a promising and practical catalyst. Activation energy of hydrogen generation using such catalysts is estimated to be 56.32 kJ mol -1. In the cycle test, from the 1st cycle to the 9th cycle, the average hydrogen generation rate decreases gradually from 1.27 l min -1 g -1 Co-B to 0.87 l min -1 g -1 Co-B.

  13. Metabolic effect of alkaline additives and guanosine/gluconate in storage solutions for red blood cells.

    PubMed

    D'Alessandro, Angelo; Reisz, Julie A; Culp-Hill, Rachel; Korsten, Herbert; van Bruggen, Robin; de Korte, Dirk

    2018-04-06

    Over a century of advancements in the field of additive solutions for red blood cell (RBC) storage has made transfusion therapy a safe and effective practice for millions of recipients worldwide. Still, storage in the blood bank results in the progressive accumulation of metabolic alterations, a phenomenon that is mitigated by storage in novel storage additives, such as alkaline additive solutions. While novel alkaline additive formulations have been proposed, no metabolomics characterization has been performed to date. We performed UHPLC-MS metabolomics analyses of red blood cells stored in SAGM (standard additive in Europe), (PAGGSM), or alkaline additives SOLX, E-SOL 5 and PAG3M for either 1, 21, 35 (end of shelf-life in the Netherlands), or 56 days. Alkaline additives (especially PAG3M) better preserved 2,3-diphosphoglycerate and adenosine triphosphate (ATP). Deaminated purines such as hypoxanthine were predictive of hemolysis and morphological alterations. Guanosine supplementation in PAGGSM and PAG3M fueled ATP generation by feeding into the nonoxidative pentose phosphate pathway via phosphoribolysis. Decreased urate to hypoxanthine ratios were observed in alkaline additives, suggestive of decreased generation of urate and hydrogen peroxide. Despite the many benefits observed in purine and redox metabolism, alkaline additives did not prevent accumulation of free fatty acids and oxidized byproducts, opening a window for future alkaline formulations including (lipophilic) antioxidants. Alkalinization via different strategies (replacement of chloride anions with either high bicarbonate, high citrate/phosphate, or membrane impermeant gluconate) results in different metabolic outcomes, which are superior to current canonical additives in all cases. © 2018 AABB.

  14. EVALUATION OF CONVERGENT SPRAY TECHNOLOGYTM SPRAY PROCESS FOR ROOF COATING APPLICATION

    EPA Science Inventory

    The overall goal of this project was to demonstrate the feasibility of Convergent Spray TechnologyTM for the roofing industry. This was accomplished by producing an environmentally compliant coating utilizing recycled materials, a CSTTM spray process portable application cart, a...

  15. Spray System Trials in the Icing Research Tunnel

    NASA Image and Video Library

    1949-09-21

    The spray bar system introduces water droplets into the Icing Research Tunnel’s air stream at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The icing tunnel was designed in the early 1940s to study ice accretion on airfoils and models. The Carrier Corporation designed a refrigeration system that reduced temperatures to -45° F. The tunnel’s drive fan generated speeds up to 400 miles per hour. The uniform injection of water droplets to the air was a key element of the facility’s operation. The system had to generate small droplets, distribute them uniformly throughout the airstream, and resist freezing and blockage. The Icing Research Tunnel’s designers struggled to develop a realistic spray system because they did not have access to data on the size of naturally occurring water droplets. For five years a variety of different designs were painstakingly developed and tested before the system was perfected. This photograph shows one of the trials using eight air-atomizing nozzles placed 48 feet upstream from the test section. A multi-cylinder device measured the size, liquid content, and distribution of the water droplets. The final system that was put into operation in 1950 included six horizontal spray bars with 80 nozzles that produced a 4- by 4-foot cloud in the test section. The Icing Research Tunnel produced excellent data throughout the 1950s and provided the basis for a hot air anti-icing system used on many transport aircraft.

  16. A Review of Recent Developments in X-Ray Diagnostics for Turbulent and Optically Dense Rocket Sprays

    NASA Technical Reports Server (NTRS)

    Radke, Christopher; Halls, Benjamin; Kastengren, Alan; Meyer, Terrence

    2017-01-01

    Highly efficient mixing and atomization of fuel and oxidizers is an important factor in many propulsion and power generating applications. To better quantify breakup and mixing in atomizing sprays, several diagnostic techniques have been developed to collect droplet information and spray statistics. Several optical based techniques, such as Ballistic Imaging and SLIPI have previously demonstrated qualitative measurements in optically dense sprays, however these techniques have produced limited quantitative information in the near injector region. To complement to these advances, a recent wave of developments utilizing synchrotron based x-rays have been successful been implemented facilitating the collection of quantitative measurements in optically dense sprays.

  17. Evaporation And Ignition Of Dense Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1988-01-01

    Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.

  18. Evaluation of Convergent Spray Technology(TM) Spray Process for Roof Coating Application

    NASA Technical Reports Server (NTRS)

    Scarpa, J.; Creighton, B.; Hall, T.; Hamlin, K.; Howard, T.

    1998-01-01

    The overall goal of this project was to demonstrate the feasibility of(CST) Convergent Spray Technology (Trademark) for the roofing industry. This was accomplished by producing an environmentally compliant coating utilization recycled materials, a CST(Trademark) spray process portable application cart, and hand-held applicator with a CST(Trademark) spray process nozzle. The project culminated with application of this coating to a nine hundred sixty square foot metal for NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama.

  19. CFD Modeling of Superheated Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2008-01-01

    An understanding of fuel atomization and vaporization behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA aeronautics initiative, we have undertaken an assessment study to establish baseline accuracy of existing CFD models used in the evaluation of a ashing jet. In a first attempt towards attaining this goal, we have incorporated an existing superheat vaporization model into our spray solution procedure but made some improvements to combine the existing models valid at superheated conditions with the models valid at stable (non-superheat) evaporating conditions. Also, the paper reports some validation results based on the experimental data obtained from the literature for a superheated spray generated by the sudden release of pressurized R134A from a cylindrical nozzle. The predicted profiles for both gas and droplet velocities show a reasonable agreement with the measured data and exhibit a self-similar pattern similar to the correlation reported in the literature. Because of the uncertainty involved in the specification of the initial conditions, we have investigated the effect of initial droplet size distribution on the validation results. The predicted results were found to be sensitive to the initial conditions used for the droplet size specification. However, it was shown that decent droplet size comparisons could be achieved with properly selected initial conditions, For the case considered, it is reasonable to assume that the present vaporization models are capable of providing a reasonable qualitative description for the two-phase jet characteristics generated by a ashing jet. However, there remains some uncertainty with regard to the specification of certain initial spray conditions and there is a need for experimental data on separate gas and liquid temperatures in order to validate the vaporization models based on the Adachi correlation for a liquid involving R134A.

  20. CFD Simulation of Aerial Crop Spraying

    NASA Astrophysics Data System (ADS)

    Omar, Zamri; Qiang, Kua Yong; Mohd, Sofian; Rosly, Nurhayati

    2016-11-01

    Aerial crop spraying, also known as crop dusting, is made for aerial application of pesticides or fertilizer. An agricultural aircraft which is converted from an aircraft has been built to combine with the aerial crop spraying for the purpose. In recent years, many studies on the aerial crop spraying were conducted because aerial application is the most economical, large and rapid treatment for the crops. The main objective of this research is to study the airflow of aerial crop spraying system using Computational Fluid Dynamics. This paper is focus on the effect of aircraft speed and nozzle orientation on the distribution of spray droplet at a certain height. Successful and accurate of CFD simulation will improve the quality of spray during the real situation and reduce the spray drift. The spray characteristics and efficiency are determined from the calculated results of CFD. Turbulence Model (k-ɛ Model) is used for the airflow in the fluid domain to achieve a more accurate simulation. Furthermore, spray simulation is done by setting the Flat-fan Atomizer Model of Discrete Phase Model (DPM) at the nozzle exit. The interaction of spray from each flat-fan atomizer can also be observed from the simulation. The evaluation of this study is validation and grid dependency study using field data from industry.

  1. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses.

    PubMed

    Garcerá, Cruz; Moltó, Enrique; Chueca, Patricia

    2017-12-01

    Only a portion of the water volume sprayed is deposited on the target when applying plant protection products with air-assisted axial-fan airblast sprayers in high growing crops. A fraction of the off-target losses deposits on the ground, but droplets also drift away from the site. This work aimed at assessing the spray distribution to different compartments (tree canopy, ground and air) during pesticide applications in a Mediterranean citrus orchard. Standard cone nozzles (Teejet D3 DC35) and venturi drift reducing nozzles (Albuz TVI 80 03) were compared. Applications were performed with a conventional air-assisted sprayer, with a spray volume of around 3000lha -1 in a Navel orange orchard. Brilliant Sulfoflavine (BSF) was used as a tracer. Results showed that only around 46% of the applied spray was deposited on the target trees and around 4% of the spray was deposited on adjacent trees from adjoining rows independently of the nozzle type. Applications with standard nozzles produced more potential airborne spray drift (23%) than those with the drift reducing nozzles (17%) but fewer direct losses to the ground (22% vs. 27%). Indirect losses (sedimenting spray drift) to the ground of adjacent paths were around 7-9% in both cases. The important data set of spray distribution in the different compartments around sprayed orchard (air, ground, vegetation) generated in this work is highly useful as input source of exposure to take into account for the risk assessment in Mediterranean citrus scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Liquid spray experiments

    NASA Astrophysics Data System (ADS)

    Lapham, Gary; McHugh, John

    When waves on the ocean surface interact with a solid object, the result is often a complex pattern of spray. The solid object may be a coastal barrier such as a breakwater, or a ship or drilling rig. Another spray-related case is the presence of large industrial tanks of liquid, and often dangerous liquids, that exist around the world. Tens of thousands of such tanks are rapidly becoming obsolete. Recent experience has shown that when such tanks burst, the resulting spray may shoot several hundreds of meters from the tank. These tanks often have a wall or dam (barrier) surrounding them in an attempt to contain any leakage, catastrophic or otherwise. When the tank bursts it is akin to the dam-break problem. A wall of water rushes forth and impinges on the barrier creating spray. Previous experiments (McHugh and Watt, 1998) considered the related configuration of a solitary wave impinging on a vertical wall. The present experiments more closely model the bursting tank case, and treat the effect of the distance between the tank and barrier. Results show that there is a sweet spot where height and horizontal distance of spray droplets are maximized. This ideal distance between tank and barrier is constant when scaled by the initial tank depth.

  3. Modifications Of A Commercial Spray Gun

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1993-01-01

    Commercial spray gun modified to increase spray rate and make sprayed coats more nearly uniform. Consists of gun head and pneumatic actuator. Actuator opens valves for two chemical components, called "A" and "B," that react to produce foam. Components flow through orifices, into mixing chamber in head. Mixture then flows through control orifice to spray tip. New spray tip tapered to reduce area available for accumulation of foam and makes tip easier to clean.

  4. Modelling storm development and the impact when introducing waves, sea spray and heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2015-04-01

    In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal

  5. Contemporaneous eruption of calc-alkaline and alkaline lavas in a continental arc (Eastern Mexican Volcanic Belt): chemically heterogeneous but isotopically homogeneous source

    NASA Astrophysics Data System (ADS)

    Carrasco-Núñez, Gerardo; Righter, Kevin; Chesley, John; Siebert, Lee; Aranda-Gómez, José Jorge

    2005-11-01

    Nearly contemporaneous eruption of alkaline and calc-alkaline lavas occurred about 900 years BP from El Volcancillo paired vent, located behind the volcanic front in the Mexican Volcanic Belt (MVB). Emission of hawaiite (Toxtlacuaya) was immediately followed by calc-alkaline basalt (Río Naolinco). Hawaiites contain olivine microphenocrysts (Fo67-72), plagioclase (An56-60) phenocrysts, have 4-5 wt% MgO and 49.6-50.9 wt% SiO2. In contrast, calc-alkaline lavas contain plagioclase (An64-72) and olivine phenocrysts (Fo81-84) with spinel inclusions, and have 8-9 wt% MgO and 48.4-49.4 wt% SiO2. The most primitive lavas in the region (Río Naolinco and Cerro Colorado) are not as primitive as parental melts in other arcs, and could represent either (a) variable degrees of melting of a subduction modified, garnet-bearing depleted mantle source, followed by AFC process, or (b) melting of two distinct mantle sources followed by AFC processes. These two hypotheses are evaluated using REE, HFSE, and Sr, Os and Pb isotopic data. The Toxtlacuaya flow and the Y & I lavas can be generated by combined fractional crystallization and assimilation of gabbroic granulite, starting with a parental liquid similar to the Cerro Colorado basalt. Although calc-alkaline and alkaline magmas commonly occur together in other areas of the MVB, evidence for subduction component in El Volcancillo magmas is minimal and limited to <1%, which is a unique feature in this region further from the trench. El Volcancillo lavas were produced from two different magma batches: we surmise that the injection of calc-alkaline magma into an alkaline magma chamber triggered the eruption of hawaiites. Our results suggest that the subalkaline and hawaiitic lavas were formed by different degrees of partial melting of a similar, largely depleted mantle source, followed by later AFC processes. This model is unusual for arcs, where such diversity is usually explained by melting of heterogeneous (enriched and depleted) and

  6. Spray-dry desulfurization of flue gas from heavy oil combustion.

    PubMed

    Scala, Fabrizio; Lancia, Amedeo; Nigro, Roberto; Volpicelli, Gennaro

    2005-01-01

    An experimental investigation on sulfur dioxide removal in a pilot-scale spray dryer from the flue gas generated by combustion of low-sulfur (S) heavy oil is reported. A limewater slurry was sprayed through an ultrasonic two-fluid atomizer in the spray-dry chamber, and the spent sorbent was collected downstream in a pulse-jet baghouse together with fly ash. Flue gas was sampled at different points to measure the desulfurization efficiency after both the spray-dry chamber and the baghouse. Parametric tests were performed to study the effect of the following variables: gas inlet temperature, difference between gas outlet temperature and adiabatic saturation temperature, lime-to-S ratio, and average size of lime particles in the slurry. Results indicated that spray drying is an effective technology for the desulfurization of low-S fuel oil flue gas, provided operating conditions are chosen carefully. In particular, the lowest gas inlet and outlet temperatures compatible with baghouse operation should be selected, as should a sufficiently high lime-to-S ratio. The attainment of a small lime particle size in the slurry is critical for obtaining a high desulfurization efficiency. A previously presented spray-dry flue gas desulfurization model was used to simulate the pilot-scale desulfurization tests, to check the ability of the model to predict the S capture data and its usefulness as a design tool, minimizing the need for pilot-scale experimentation. Comparison between model and experimental results was fairly good for the whole range of calcium/S ratios considered.

  7. Wind tunnel and field evaluation of drift from aerial spray applications with multiple spray formulations

    USDA-ARS?s Scientific Manuscript database

    The impact of different spray tank modifiers into an active ingredient spray mixture on spray atomization and in-field behavior under aerial application conditions were examined. Wind tunnel tests demonstrated that active ingredient solutions potentially results in significantly different atomizati...

  8. The impact of marine surface organic enrichment on the measured hygroscopicity parameter of laboratory generated sea-spray aerosols

    NASA Astrophysics Data System (ADS)

    Schill, S.; Novak, G.; Zimmermann, K.; Bertram, T. H.

    2014-12-01

    The ocean serves as a major source for atmospheric aerosol particles, yet the chemicophysical properties of sea spray aerosol to date are not well characterized. Understanding the transfer of organic compounds, present in the sea surface microlayer (SSML), to sea-spray particles and their resulting impact on cloud formation is important for predicting aerosol impact on climate in remote marine environments. Here, we present a series of laboratory experiments designed to probe the fractionation of select organic molecules during wave breaking. We use a representative set of organic mimics (e.g. sterols, sugars, lipids, proteins, fatty acids) to test a recent physically based model of organic enrichment in sea-spray aerosol [Burrows et al., 2014] that is based on Langmuir absorption equilibria. Experiments were conducted in the UCSD Marine Aerosol Reference Tank (MART) permitting accurate representation of wave breaking processes in the laboratory. We report kappa values for the resulting sea-spray aerosols and compare them to a predictions made using Kappa-Köhler Theory driven by a linear combination of the pure component kappa values. Hygroscopicity determinations made using the model systems are discussed within the context of measurements of CCN activity made using natural, coastal water.

  9. Evidence of the Generation of Isosaccharinic Acids and Their Subsequent Degradation by Local Microbial Consortia within Hyper-Alkaline Contaminated Soils, with Relevance to Intermediate Level Radioactive Waste Disposal

    PubMed Central

    Rout, Simon P.; Charles, Christopher J.; Garratt, Eva J.; Laws, Andrew P.; Gunn, John; Humphreys, Paul N.

    2015-01-01

    The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration. PMID:25748643

  10. Evidence of the generation of isosaccharinic acids and their subsequent degradation by local microbial consortia within hyper-alkaline contaminated soils, with relevance to intermediate level radioactive waste disposal.

    PubMed

    Rout, Simon P; Charles, Christopher J; Garratt, Eva J; Laws, Andrew P; Gunn, John; Humphreys, Paul N

    2015-01-01

    The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration.

  11. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2000-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  12. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  13. Modification of the solid-state nature of sulfathiazole and sulfathiazole sodium by spray drying.

    PubMed

    Bianco, Stefano; Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Nolan, Lorraine; Hu, Yun; Healy, Anne Marie

    2012-06-01

    Solid-state characterisation of a drug following pharmaceutical processing and upon storage is fundamental to successful dosage form development. The aim of the study was to investigate the effects of using different solvents, feed concentrations and spray drier configuration on the solid-state nature of the highly polymorphic model drug, sulfathiazole (ST) and its sodium salt (STNa). The drugs were spray-dried from ethanol, acetone and mixtures of these organic solvents with water. Additionally, STNa was spray-dried from pure water. The physicochemical properties including the physical stability of the spray-dried powders were compared to the unprocessed materials. Spray drying of ST from either acetonic or ethanolic solutions with the spray drier operating in a closed cycle mode yielded crystalline powders. In contrast, the powders obtained from ethanolic solutions with the spray drier operating in an open cycle mode were amorphous. Amorphous ST crystallised to pure form I at ≤35 % relative humidity (RH) or to polymorphic mixtures at higher RH values. The usual crystal habit of form I is needle-like, but spherical particles of this polymorph were generated by spray drying. STNa solutions resulted in an amorphous material upon processing, regardless of the solvent and the spray drier configuration employed. Moisture induced crystallisation of amorphous STNa to a sesquihydrate, whilst crystallisation upon heating gave rise to a new anhydrous polymorph. This study indicated that control of processing and storage parameters can be exploited to produce drugs with a specific/desired solid-state nature.

  14. Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating

    NASA Astrophysics Data System (ADS)

    Sanpo, Noppakun; Tan, Meng Lu; Cheang, Philip; Khor, K. A.

    2009-03-01

    The antibacterial behavior of HA-Ag (silver-doped hydroxyapatite) nanopowder and their composite coatings were investigated against Escherichia coli (DH5α). HA-Ag nanopowder and PEEK (poly-ether-ether-ketone)-based HA-Ag composite powders were synthesized using in-house powder processing techniques. Bacteria culture assay of HA-Ag nanopowder and their composite powders displayed excellent bacteriostatic activity against E. coli. The antibacterial activity increased with increasing concentration of HA-Ag nanoparticle in these composite powders. These nanocomposite powders were subsequently used as feedstock to generate antibacterial coatings via cold spray technology. The ratios of HA-Ag to PEEK in their composite powders were 80:20, 60:40, 40:60, and 20:80 (wt.%). Microstructural characterization and phase analysis of feedstock powders and as-deposited coatings were carried out using FESEM/EDX and XRD. Antibacterial nanocomposite HA-Ag/PEEK coatings were successfully deposited using cold spraying parameters of 11-12 bars at preheated air temperature between 150 and 160 °C. These as-sprayed coatings of HA-Ag/PEEK composite powders comprising varying HA-Ag and PEEK ratios retained their inherent antibacterial property as verified from bacterial assay. The results indicated that the antibacterial activity increased with increasing HA-Ag nanopowder concentration in the composite powder feedstock and cold-sprayed coating.

  15. A spray flamelet/progress variable approach combined with a transported joint PDF model for turbulent spray flames

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Olguin, Hernan; Gutheil, Eva

    2017-05-01

    A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new

  16. Electrical Resistivity of Wire Arc Sprayed Zn and Cu Coatings for In-Mold-Metal-Spraying

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch; Ochotta, P.

    2018-06-01

    Electrical functionalities can be integrated into plastic parts by integrating thermally sprayed metal coatings into the non-conductive base material. Thermally sprayed conducting tracks for power and signal transmission are one example. In this case, the electrical resistance or resistivity of the coatings should be investigated. Therefore, the electrical resistivity of wire arc sprayed Zn and Cu coatings has been investigated. In case of Zn coatings, spray distance, gas pressure and wire diameter could be identified as significant influencing parameters on the electrical resistivity. In contrast, process gas, gas pressure and voltage do have a significant influence on the electrical resistivity of Cu coatings. Through the use of the In-Mold-Metal-Spraying method (IMMS), thermal degradation can be avoided by transferring thermally sprayed coating from a mold insert onto the plastic part. Therefore, the influence of the transfer process on the electrical resistance of the coatings has also been investigated.

  17. Processing of alkaline phosphatase precursor to the mature enzyme by an Escherichia coli inner membrane preparation.

    PubMed Central

    Chang, C N; Inouye, H; Model, P; Beckwith, J

    1980-01-01

    An inner membrane preparation co-translationally cleaved both the alkaline phosphatase and bacteriophage f1 coat protein precursors to the mature proteins. Post-translational outer membrane proteolysis of pre-alkaline phosphatase generated a protein smaller than the authentic monomer. Images PMID:6991486

  18. Modeling the Transport Phenomena in the Solution Precursor Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Shan, Yanguang

    2008-10-01

    Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This work describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. O'Rourke's droplet collision model is used to take into account of the influence of droplet collision. The influence of droplet breakup is also considered by implementing TAB droplet breakup models into the plasma jet model. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature and position distribution on the substrate are predicted.

  19. Current Status of Superheat Spray Modeling With NCC

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Bulzan, Dan L.

    2012-01-01

    An understanding of liquid fuel behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA's supersonics project office initiative on high altitude emissions, we have undertaken an effort to assess the accuracy of various existing CFD models used in the modeling of superheated sprays. As a part of this investigation, we have completed the implementation of a modeling approach into the national combustion code (NCC), and then applied it to investigate the following three cases: (1) the validation of a flashing jet generated by the sudden release of pressurized R134A from a cylindrical nozzle, (2) the differences between two superheat vaporization models were studied based on both hot and cold flow calculations of a Parker-Hannifin pressure swirl atomizer, (3) the spray characteristics generated by a single-element LDI (Lean Direct Injector) experiment were studied to investigate the differences between superheat and non-superheat conditions. Further details can be found in the paper.

  20. SPRAYTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Spray Droplet Dispersion Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allwine, K Jerry; Rutz, Frederick C.; Droppo, James G.

    SPRAY TRANsport (SPRAYTRAN) is a comprehensive dispersion modeling system that is used to simulate the offsite drift of pesticides from spray applications. SPRAYTRAN functions as a console application within Environmental System Research Institute’s ArcMap Geographic Information System (Version 9.x) and integrates the widely-used, U.S. Environmental Protection Agency (EPA)-approved CALifornia PUFF (CALPUFF) dispersion model and model components to simulate longer-range transport and diffusion in variable terrain and spatially/temporally varying meteorological (e.g., wind) fields. Area sources, which are used to define spray blocks in SPRAYTRAN, are initialized using output files generated from a separate aerial-spray-application model called AGDISP (AGricultural DISPersal). The AGDISPmore » model is used for estimating the amount of pesticide deposited to the spray block based on spraying characteristics (e.g., pesticide type, spray nozzles, and aircraft type) and then simulating the near-field (less than 300-m) drift from a single pesticide application. The fraction of pesticide remaining airborne from the AGDISP near-field simulation is then used by SPRAYTRAN for simulating longer-range (greater than 300 m) drift and deposition of the pesticide.« less

  1. Sodic alkaline stress mitigation by exogenous melatonin in tomato needs nitric oxide as a downstream signal.

    PubMed

    Liu, Na; Gong, Biao; Jin, Zhiyong; Wang, Xiufeng; Wei, Min; Yang, Fengjuan; Li, Yan; Shi, Qinghua

    2015-08-15

    The present study was designed to determine the interactive effect of exogenous melatonin and nitric oxide (NO) on sodic alkaline stress mitigation in tomato seedlings. It was observed that exogenous melatonin treatment elevated NO levels in alkaline-stressed tomato roots. However, exogenous NO had little effects on melatonin levels. Importantly, melatonin-induced NO generation was accompanied by increased tolerance to alkaline stress. Chemical scavenging of NO reduced melatonin-induced alkaline stress tolerance and defense genes' expression. However, inhibition of melatonin biosynthesis had a little effect on NO-induced alkaline stress tolerance. These results strongly suggest that NO, acting as a downstream signal, is involved in the melatonin-induced tomato tolerance to alkaline stress. This process creates a new signaling pathway for improving stress tolerance in plant. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Ocean alkalinity and the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Caldeira, K. G.; Rampino, Michael R.

    1988-01-01

    A biogeochemical cycle model resolving ocean carbon and alkalinity content is applied to the Maestrichtian and Danian. The model computes oceanic concentrations and distributions of Ca(2+), Mg(2+), and Sigma-CO2. From these values an atmospheric pCO2 value is calculated, which is used to estimate rates of terrestrial weathering of calcite, dolomite, and calcium and magnesium silicates. Metamorphism of carbonate rocks and the subsequent outgassing of CO2 to the atmosphere are parameterized in terms of carbonate rock reservoir sizes, total land area, and a measure of overall tectonic activity, the sea-floor generation rate. The ocean carbon reservoir computed by the model is used with Deep Sea Drilling Project (DSDP) C-13 data to estimate organic detrital fluxes under a variety of ocean mixing rate assumptions. Using Redfield ratios, the biogenic detrital flux estimate is used to partition the ocean carbon and alkalinity reservoirs between the mixed layer and deep ocean. The calcite flux estimate and carbonate ion concentrations are used to determine the rate of biologically mediated CaCO3 titration. Oceanic productivity was severely limited for approximately 500 kyr following the K/T boundary resulting in significant increases in total ocean alkalinity. As productivity returned to the ocean, excess carbon and alkalinity was removed from the ocean as CaCO3. Model runs indicate that this resulted in a transient imbalance in the other direction. Ocean chemistry returned to near-equilibrium by about 64 mybp.

  3. LIME SPRAY DRYER FLUE GAS DESULFURIZATION COMPUTER MODEL USERS MANUAL

    EPA Science Inventory

    The report describes a lime spray dryer/baghouse (FORTRAN) computer model that simulates SO2 removal and permits study of related impacts on design and economics as functions of design parameters and operating conditions for coal-fired electric generating units. The model allows ...

  4. Vacuum Plasma Spraying Replaces Electrodeposition

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.

    1992-01-01

    Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.

  5. Characteristic study of flat spray nozzle by using particle image velocimetry (PIV) and ANSYS simulation method

    NASA Astrophysics Data System (ADS)

    Pairan, M. Rasidi; Asmuin, Norzelawati; Isa, Nurasikin Mat; Sies, Farid

    2017-04-01

    Water mist sprays are used in wide range of application. However it is depend to the spray characteristic to suit the particular application. This project studies the water droplet velocity and penetration angle generated by new development mist spray with a flat spray pattern. This research conducted into two part which are experimental and simulation section. The experimental was conducted by using particle image velocimetry (PIV) method, ANSYS software was used as tools for simulation section meanwhile image J software was used to measure the penetration angle. Three different of combination pressure of air and water were tested which are 1 bar (case A), 2 bar (case B) and 3 bar (case C). The flat spray generated by the new development nozzle was examined at 9cm vertical line from 8cm of the nozzle orifice. The result provided in the detailed analysis shows that the trend of graph velocity versus distance gives the good agreement within simulation and experiment for all the pressure combination. As the water and air pressure increased from 1 bar to 2 bar, the velocity and angle penetration also increased, however for case 3 which run under 3 bar condition, the water droplet velocity generated increased but the angle penetration is decreased. All the data then validated by calculate the error between experiment and simulation. By comparing the simulation data to the experiment data for all the cases, the standard deviation for this case A, case B and case C relatively small which are 5.444, 0.8242 and 6.4023.

  6. Free Radical Scavenging Activity of Drops and Spray Containing Propolis-An EPR Examination.

    PubMed

    Olczyk, Pawel; Komosinska-Vassev, Katarzyna; Ramos, Pawel; Mencner, Lukasz; Olczyk, Krystyna; Pilawa, Barbara

    2017-01-13

    The influence of heating at a temperature of 50 °C and UV-irradiation of propolis drops and spray on their free radical scavenging activity was determined. The kinetics of interactions of the propolis samples with DPPH free radicals was analyzed. Interactions of propolis drops and propolis spray with free radicals were examined by electron paramagnetic resonance spectroscopy. A spectrometer generating microwaves of 9.3 GHz frequency was used. The EPR spectra of the model DPPH free radicals were compared with the EPR spectra of DPPH in contact with the tested propolis samples. The antioxidative activity of propolis drops and propolis spray decreased after heating at the temperature of 50 °C. A UV-irradiated sample of propolis drops more weakly scavenged free radicals than an untreated sample. The antioxidative activity of propolis spray increased after UV-irradiation. The sample of propolis drops heated at the temperature of 50 °C quenched free radicals faster than the unheated sample. UV-irradiation weakly changed the kinetics of propolis drops or spray interactions with free radicals. EPR analysis indicated that propolis drops and spray should not be stored at a temperature of 50 °C. Propolis drops should not be exposed to UV-irradiation.

  7. Degradation of insecticides used for indoor spraying in malaria control and possible solutions

    PubMed Central

    2011-01-01

    Background The insecticide dichloro-diphenyl-trichloroethane (DDT) is widely used in indoor residual spraying (IRS) for malaria control owing to its longer residual efficacy in the field compared to other World Health Organization (WHO) alternatives. Suitable stabilization to render these alternative insecticides longer lasting could provide a less controversial and more acceptable and effective alternative insecticide formulations than DDT. Methods This study sought to investigate the reasons behind the often reported longer lasting behaviour of DDT by exposing all the WHO approved insecticides to high temperature, high humidity and ultra-violet light. Interactions between the insecticides and some mineral powders in the presence of an aqueous medium were also tested. Simple insecticidal paints were made using slurries of these mineral powders whilst some insecticides were dispersed into a conventional acrylic paint binder. These formulations were then spray painted on neat and manure coated mud plaques, representative of the material typically used in rural mud houses, at twice the upper limit of the WHO recommended dosage range. DDT was applied directly onto mud plaques at four times the WHO recommended concentration and on manure plaques at twice WHO recommended concentration. All plaques were subjected to accelerated ageing conditions of 40°C and a relative humidity of 90%. Results The pyrethroids insecticides outperformed the carbamates and DDT in the accelerated ageing tests. Thus UV exposure, high temperature oxidation and high humidity per se were ruled out as the main causes of failure of the alternative insecticides. Gas chromatography (GC) spectrograms showed that phosphogypsum stabilised the insecticides the most against alkaline degradation (i.e., hydrolysis). Bioassay testing showed that the period of efficacy of some of these formulations was comparable to that of DDT when sprayed on mud surfaces or cattle manure coated surfaces. Conclusions

  8. A Method to Predict the Thickness of Poorly-Bonded Material Along Spray and Spray-Layer Boundaries in Cold Spray Deposition

    NASA Astrophysics Data System (ADS)

    Li, Yangfan; Hamada, Yukitaka; Otobe, Katsunori; Ando, Teiichi

    2017-02-01

    Multi-traverse CS provides a unique means for the production of thick coatings and bulk materials from powders. However, the material along spray and spray-layer boundaries is often poorly bonded as it is laid by the leading and trailing peripheries of the spray that carry powder particles with insufficient kinetic energy. For the same reason, the splats in the very first layer deposited on the substrate may not be bonded well either. A mathematical spray model was developed based on an axisymmetric Gaussian mass flow rate distribution and a stepped deposition yield to predict the thickness of such poorly-bonded layers in multi-traverse CS deposition. The predicted thickness of poorly-bonded layers in a multi-traverse Cu coating falls in the range of experimental values. The model also predicts that the material that contains poorly bonded splats could exceed 20% of the total volume of the coating.

  9. Generation of post-collisional normal calc-alkaline and adakitic granites in the Tongbai orogen, central China

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Xiang; Zhu, Liu-Qin; Wang, Hao; Wu, Yuan-Bao

    2018-01-01

    Post-collisional granites are generally generated by partial melting of continental crust during orogenic extension. The occurrence of normal calc-alkaline granites following adakitic granites in a collisional orogen is frequently supposed as a sign of tectonic regime transition from compression to extension, which has been debated yet. In this paper, we present a comprehensive study of zircon U-Pb ages, Hf-O isotopes, as well as whole-rock major and trace elements and Sr-Nd isotopes, for Tongbai and Jigongshan post-collisional granitic plutons in the Tongbai orogen. Zircon U-Pb dating yields intrusion ages of ca. 140 and 135 Ma for the Tongbai and Jigongshan plutons, respectively, suggesting they are post-collisional granites. These granites are high-K calc-alkaline series, metaluminous to weakly peraluminous with A/CNK ratios of 0.85-1.08. The Tongbai gneissic granites are normal calc-alkaline granite, having variable SiO2 (61.93-76.74 wt%) and Sr/Y (2.9-38.9) and (La/Yb)N (1.7-30.1) ratios with variably negative Eu anomalies (0.41-0.92). They have relatively high initial Sr isotope ratios of 0.707571 to 0.710317, and low εNd(t) (- 15.74 to - 11.09) and εHf(t) (- 17.6 to - 16.9) values. Their Nd and Hf model ages range from 2.2 to 1.8 Ga and 2.3 to 2.2 Ga. On the contrary, the Jigongshan granites show higher SiO2 (66.56-72.11 wt%) and Sr/Y (30.1-182.0) and (La/Yb)N (27.4-91.4) ratios with insignificant Eu anomalies (0.73-1.00), belonging to adakitic granite. They have Isr = 0.707843-0.708366, εNd(t) = - 19.83 to - 17.59, and εHf(t) = - 26.0 to - 23.5. Their Nd and Hf model ages vary from ca. 2.5 to 2.4 Ga and ca. 2.8 to 2.6 Ga. The Tongbai and Jigongshan granites are characterized by mantle-like zircon δ18O values (5.17-5.46‰). These geochemical features suggest that the Tongbai and Jigongshan granites were derived from partial melting of Paleoproterozoic and Archean continental crust, respectively. Fractional crystallization affected the geochemical

  10. Bear Spray Safety Program

    USGS Publications Warehouse

    Blome, C.D.; Kuzniar, R.L.

    2009-01-01

    A bear spray safety program for the U.S. Geological Survey (USGS) was officially initiated by the Firearms Safety Committee to address accident prevention and to promote personnel training in bear spray and its transportation, storage, and use for defense against wild animals. Used as part of a system including firearms, or used alone for those who choose not to carry a firearm, bear spray is recognized as an effective tool that can prevent injury in a wild animal attack.

  11. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  12. Spray combustion at normal and reduced gravity in counterflow and co-flow configurations

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro; Chen, Gung

    1995-01-01

    Liquid fuel dispersion in practical systems is typically achieved by spraying the fuel into a polydisperse distribution of droplets evaporating and burning in a turbulent gaseous environment In view of the nearly insurmountable difficulties of this two-phase flow, a systematic study of spray evaporation and burning in configurations of gradually increasing levels of complexity, starting from laminar sprays to fully turbulent ones, would be useful. A few years ago we proposed to use an electrostatic spray of charged droplets for this type of combustion experiments under well-defined conditions. In the simplest configuration, a liquid is fed into a small metal tube maintained at several kilovolts relative to a ground electrode few centimeters away. Under the action of the electric field, the liquid meniscus at the outlet of the capillary takes a conical shape, with a thin jet emerging from the cone tip (cone-jet mode). This jet breaks up farther downstream into a spray of charged droplets - the so-called ElectroSpray (ES). Several advantages distinguish the electrospray from alternative atomization techniques: (1) it can produce quasi-monodisperse droplets over a phenomenal size range; (2) the atomization, that is strictly electrostatic, is decoupled from gas flow processes, which provides some flexibility in the selection and control of the experimental conditions; (3) the Coulombic repulsion of homopolarly charged droplets induces spray self-dispersion and prevents droplet coalescence; (4) the ES provides the opportunity of studying regimes of slip between droplets and host gas without compromising the control of the spray properties; and (5) the compactness and potential controllability of this spray generation system makes it appealing for studies in reduced-gravity environments aimed at isolating the spray behavior from natural convection complications. With these premises, in March 1991 we initiated a series of experiments under NASA sponsorship (NAG3-1259 and

  13. Alkalinity generation in snowmelt and rain runoff during short distance flow over rock

    Treesearch

    James L. Clayton

    1998-01-01

    High-elevation ecosystems in the western United States typically have patchy, discontinuous areas of surficial soils surrounded by large areas of rock outcrop, talus, and scree. Snowmelt and precipitation that percolate through soil increase in alkalinity, principally by increasing base cation concentration through cation exchange, and by decreasing acid anion...

  14. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and…

  15. Spray Drift Reduction Evaluations of Spray Nozzles Using a Standardized Testing Protocol

    DTIC Science & Technology

    2010-07-01

    Drop Size Characteristics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards, Vol. 14-02, ASTM...Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Non- imaging Light-Scattering Instruments 22. AGDISP Model

  16. Spray algorithm without interface construction

    NASA Astrophysics Data System (ADS)

    Al-Kadhem Majhool, Ahmed Abed; Watkins, A. P.

    2012-05-01

    This research is aimed to create a new and robust family of convective schemes to capture the interface between the dispersed and the carrier phases in a spray without the need to build up the interface boundary. The selection of the Weighted Average Flux (WAF) scheme is due to this scheme being designed to deal with random flux scheme which is second-order accurate in space and time. The convective flux in each cell face utilizes the WAF scheme blended with Switching Technique for Advection and Capturing of Surfaces (STACS) scheme for high resolution flux limiters. In the next step, the high resolution scheme is blended with the WAF scheme to provide the sharpness and boundedness of the interface by using switching strategy. In this work, the Eulerian-Eulerian framework of non-reactive turbulent spray is set in terms of theoretical proposed methodology namely spray moments of drop size distribution, presented by Beck and Watkins [1]. The computational spray model avoids the need to segregate the local droplet number distribution into parcels of identical droplets. The proposed scheme is tested on capturing the spray edges in modelling hollow cone sprays without need to reconstruct two-phase interface. A test is made on simple comparison between TVD scheme and WAF scheme using the same flux limiter on convective flow hollow cone spray. Results show the WAF scheme gives a better prediction than TVD scheme. The only way to check the accuracy of the presented models is by evaluating the spray sheet thickness.

  17. Assessment of Some Atomization Models Used in Spray Calculations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Bulzin, Dan

    2011-01-01

    The paper presents the results from a validation study undertaken as a part of the NASA s fundamental aeronautics initiative on high altitude emissions in order to assess the accuracy of several atomization models used in both non-superheat and superheat spray calculations. As a part of this investigation we have undertaken the validation based on four different cases to investigate the spray characteristics of (1) a flashing jet generated by the sudden release of pressurized R134A from cylindrical nozzle, (2) a liquid jet atomizing in a subsonic cross flow, (3) a Parker-Hannifin pressure swirl atomizer, and (4) a single-element Lean Direct Injector (LDI) combustor experiment. These cases were chosen because of their importance in some aerospace applications. The validation is based on some 3D and axisymmetric calculations involving both reacting and non-reacting sprays. In general, the predicted results provide reasonable agreement for both mean droplet sizes (D32) and average droplet velocities but mostly underestimate the droplets sizes in the inner radial region of a cylindrical jet.

  18. Fixed automated spray technology.

    DOT National Transportation Integrated Search

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  19. Droplet Impact Sub-cavity Histories and PDPA Spray Experiments for Spray Cooling Modeling

    NASA Astrophysics Data System (ADS)

    Hillen, Nicholas Lee

    Spray cooling is a topic of current interest for its ability to uniformly remove high levels of waste heat from densely packed microelectronics. It has demonstrated the ability to achieve very high heat fluxes, up to 500 W/cm2 with water as the coolant, making it an attractive active thermal management tool. Full Computational Fluid Dynamic (CFD) simulations of spray cooling are infeasible due to the complexity of the spray (drops fluxes of 106 drops/cm2-sec) and heater surface physics requiring impractical resources. Thus a Monte-Carlo (MC) spray cooling simulation model based on empirical data is under development to serve as a cost effective design tool. The initial MC model shows promise, but it lacks additional physics necessary to predict accurate heat fluxes based on nozzle conditions and heated surface geometry. This work reports spray and single drop experiments with the goal of computing the volume beneath a droplet impact cavity (the sub-cavity volume) created by a single impinging droplet on an initial liquid layer. A Phase Doppler Particle Analyzer (PDPA) was utilized to characterize a spray of interest in terms of integrated global Weber, Reynolds, and Froude numbers for varying flow conditions. Results showed that the spray droplet diameters decreased and velocities increased with increasing nozzle gage pressure. A relevant test plan for the single drop experiments has been created from the measured PDPA spray profiles combined with residual spray film thickness measurements from literature resulting in: 140≤We≤1,000, 1,200≤ Re≤3,300, and 0.2≤h0*≤1.0. Froude numbers were not able to be matched for the current single drop experiments (spray: 32,800≤Fr≤275,000). Liquid film thicknesses under the cavity formed by a single droplet have been measured versus radius and time via a non-contact optical thickness sensor for the selected range of dimensionless numbers (We, Re, and h0*). Sub-cavity radius histories have also been analyzed

  20. Miniature spray-painting booth

    NASA Technical Reports Server (NTRS)

    Fee, K. W.

    1970-01-01

    Transparent spray booth provides method for quality painting and repair of surfaces in clean room or other specialized environments. Overspray and virtually all contaminating vapor and odor can be eliminated. Touch-up painting is achieved with spray gun.

  1. LSPRAY-IV: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2012-01-01

    LSPRAY-IV is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray. Some important research areas covered as a part of the code development are: (1) the extension of combined CFD/scalar-Monte- Carlo-PDF method to spray modeling, (2) the multi-component liquid spray modeling, and (3) the assessment of various atomization models used in spray calculations. The current version contains the extension to the modeling of superheated sprays. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers.

  2. Effect of W/O Emulsion Fuel Properties on Spray Combustion

    NASA Astrophysics Data System (ADS)

    Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco

    This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.

  3. Lithium Alkaline Halides—Next Generation of Dual Mode Scintillators

    NASA Astrophysics Data System (ADS)

    Soundara-Pandian, L.; Hawrami, R.; Glodo, J.; Ariesanti, E.; van Loef, E. V.; Shah, K.

    2016-04-01

    We report on a new family of scintillators - Lithium alkaline halides, developed based on the alkaline halides by introducing lithium for dual mode gamma-neutron detection. Many different compositions were grown, among which LiSr2I5 (LSI), LiCa2I5 (LCI), LiSr2Br5 (LSB) activated with divalent Europium show good gamma and neutron detection properties. LSI shows the main emission at 497 nm under X-ray excitation. It also shows good proportionality, which in combination with the light yield as high as 60000 photons/MeV, results in an energy resolution of 3.5% at 662 keV. The electron or gamma equivalent energy (GEE) of the thermal neutron peak due to the 6Li neutron capture is 4.1 MeV, which amounts to a very high neutron light yield of 245000 photons. The decay times for neutrons are faster compared to that for gamma-rays, hence we achieved good pulse shape discrimination (PSD) between gamma and neutron events. Our initial studies on the effects of Eu concentration on the properties of LSI show that 3%-4% Eu concentration is optimal for the best performance in terms of gamma and neutron light yields and pulse shape discrimination. LCI shows the main emission at 475 nm under X-ray excitation and a very high gamma light yield of 90000 photons/MeV. The measured energy resolution is 6% at 662 keV. The electron equivalent energy for neutron detection has been measured to be around 3 MeV, which gives a neutron light yield of 270 000 photons. The measured decay times for neutrons are faster compared to gamma decays and the PSD between the gamma-rays and neutrons is not as good as LSI. LSB shows two emissions at 410 and 475 nm under X-ray excitation. The measured light yield is 32000 ph/MeV gamma-ray with an energy resolution of 6% at 662 keV. The electron equivalent energy of the 6Li capture peak was measured to be 3.3 MeV.

  4. Visible light-induced water oxidation on mesoscopic alpha-Fe2O3 films made by ultrasonic spray pyrolysis.

    PubMed

    Duret, Alexis; Grätzel, Michael

    2005-09-15

    Alpha-Fe(2)O(3) films having a mesoscopic leaflet type structure were produced for the first time by ultrasonic spray pyrolysis (USP) to explore their potential as oxygen-evolving photoanodes. The target of these studies is to use translucent hematite films deposited on conducting fluorine doped tin oxide (FTO) glass as top electrodes in a tandem cell that accomplishes the cleavage of water into hydrogen and oxygen by sunlight. The properties of layers made by USP were compared to those deposited by conventional spray pyrolysis (SP). Although both types of films show similar XRD and UV-visible and Raman spectra, they differ greatly in their morphology. The mesoscopic alpha-Fe(2)O(3) layers produced by USP consist mainly of 100 nm-sized platelets with a thickness of 5-10 nm. These nanosheets are oriented mainly perpendicularly to the FTO support, their flat surface exposing (001) facets. The mesoscopic leaflet structure has the advantage that it allows for efficient harvesting of visible light, while offering at the same time the very short distance required for the photogenerated holes to reach the electrolyte interface before recombining with conduction band electrons. This allows for water oxidation by the valence band holes even though their diffusion length is only a few nanometers. Distances are longer in the particles produced by SP favoring recombination of photoinduced charge carriers. Open-circuit photovoltage measurements indicate a lower surface state density for the nanoplatelets as compared to the round particles. These factors explain the much higher photoactivity of the USP compared to the SP deposited alpha-Fe(2)O(3) layers. Addition of hydrogen peroxide to the alkaline electrolyte further improves the photocurrent-voltage characteristics of films generated by USP indicating the hole transfer from the valence band of the semiconductor oxide to the adsorbed water to be the rate-limiting kinetic step in the oxygen generation reaction.

  5. Characterization of Modified Tapioca Starch Solutions and Their Sprays for High Temperature Coating Applications

    PubMed Central

    Naz, M. Y.; Sulaiman, S. A.; Ariwahjoedi, B.; Shaari, Ku Zilati Ku

    2014-01-01

    The objective of the research was to understand and improve the unusual physical and atomization properties of the complexes/adhesives derived from the tapioca starch by addition of borate and urea. The characterization of physical properties of the synthesized adhesives was carried out by determining the effect of temperature, shear rate, and mass concentration of thickener/stabilizer on the complex viscosity, density, and surface tension. In later stage, phenomenological analyses of spray jet breakup of heated complexes were performed in still air. Using a high speed digital camera, the jet breakup dynamics were visualized as a function of the system input parameters. The further analysis of the grabbed images confirmed the strong influence of the input processing parameters on full cone spray patternation. It was also predicted that the heated starch adhesive solutions generate a dispersed spray pattern by utilizing the partial evaporation of the spraying medium. Below 40°C of heating temperature, the radial spray cone width and angle did not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity were significantly influenced by the load pressure but less affected by the temperature. PMID:24592165

  6. Proposal for management and alkalinity transformation of bauxite residue in China.

    PubMed

    Xue, Shengguo; Kong, Xiangfeng; Zhu, Feng; Hartley, William; Li, Xiaofei; Li, Yiwei

    2016-07-01

    Bauxite residue is a hazardous solid waste produced during the production of alumina. Its high alkalinity is a potential threat to the environment which may disrupt the surrounding ecological balance of its disposal areas. China is one of the major global producers of alumina and bauxite residue, but differences in alkalinity and associated chemistry exist between residues from China and those from other countries. A detailed understanding of the chemistry of bauxite residue remains the key to improving its management, both in terms of minimizing environmental impacts and reducing its alkaline properties. The nature of bauxite residue and the chemistry required for its transformation are still poorly understood. This review focuses on various transformation processes generated from the Bayer process, sintering process, and combined Bayer-sintering process in China. Problems associated with transformation mechanisms, technical methods, and relative merits of these technologies are reviewed, while current knowledge gaps and research priorities are recommended. Future research should focus on transformation chemistry and its associated mechanisms and for the development of a clear and economic process to reduce alkalinity and soda in bauxite residue.

  7. "Teaching" an Industrial Robot To Spray

    NASA Technical Reports Server (NTRS)

    Evans, A. R.; Sweet, G. K.

    1982-01-01

    Teaching device, consisting of spacer rod or tube with three-pointed tip and line level, is used during pattern "teach-in" to make sure that robot manipulator holds spray gun perpendicular to surface to be sprayed and at right distance from it. For slanted surfaces angle adapter is added between spacer rod and line-level indicator. Angle is determined by slope of surface to be sprayed, thus allowing a perpendicular spray pattern against even slanted surfaces.

  8. Multiple-Nozzle Spray Head Applies Foam Insulation

    NASA Technical Reports Server (NTRS)

    Walls, Joe T.

    1993-01-01

    Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.

  9. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.

    PubMed

    Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R

    2014-07-05

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O 2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO 3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  10. Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase

    NASA Astrophysics Data System (ADS)

    von Niessen, Konstantin; Gindrat, Malko

    2011-06-01

    Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion

  11. Hydration of Hybrid Alkaline Cement Containing a Very Large Proportion of Fly Ash: A Descriptive Model

    PubMed Central

    Garcia-Lodeiro, Inés; Donatello, Shane; Fernández-Jiménez, Ana; Palomo, Ángel

    2016-01-01

    In hybrid alkaline fly ash cements, a new generation of binders, hydration, is characterized by features found in both ordinary portland cement (OPC) hydration and the alkali activation of fly ash (AAFA). Hybrid alkaline fly ash cements typically have a high fly ash (70 wt % to 80 wt %) and low clinker (20 wt % to 30 wt %) content. The clinker component favors curing at ambient temperature. A hydration mechanism is proposed based on the authors’ research on these hybrid binders over the last five years. The mechanisms for OPC hydration and FA alkaline activation are summarized by way of reference. In hybrid systems, fly ash activity is visible at very early ages, when two types of gel are formed: C–S–H from the OPC and N–A–S–H from the fly ash. In their mutual presence, these gels tend to evolve, respectively, into C–A–S–H and (N,C)–A–S–H. The use of activators with different degrees of alkalinity has a direct impact on reaction kinetics but does not modify the main final products, a mixture of C–A–S–H and (N,C)–A–S–H gels. The proportion of each gel in the mix does, however, depend on the alkalinity generated in the medium. PMID:28773728

  12. Portable Spray Booth

    NASA Technical Reports Server (NTRS)

    Hansen, Timothy D.; Bardwell, Micheal J.

    1996-01-01

    Portable spray booth provides for controlled application of coating materials with high solvent contents. Includes contoured shroud and carbon filter bed limiting concentration of fumes in vicinity. Designed to substitute spraying for brush application of solvent-based adhesive prior to installing rubber waterproof seals over joints between segments of solid-fuel rocket motor. With minor adjustments and modifications, used to apply other solvent-based adhesives, paints, and like.

  13. Directed spray mast

    DOEpatents

    Nance, Thomas A.; Siddall, Alvin A.; Cheng, William Y.; Counts, Kevin T.

    2005-05-10

    Disclosed is an elongated, tubular, compact high pressure sprayer apparatus for insertion into an access port of vessels having contaminated interior areas that require cleaning by high pressure water spray. The invention includes a spray nozzle and a camera adjacent thereto with means for rotating and raising and lowering the nozzle so that areas identified through the camera may be cleaned with a minimum production of waste water to be removed.

  14. Preparation of cellulose based microspheres by combining spray coagulating with spray drying.

    PubMed

    Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua

    2014-10-13

    Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    NASA Astrophysics Data System (ADS)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  16. The feasibility study of hot cell decontamination by the PFC spray method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon

    2008-01-15

    The characteristics of per-fluorocarbon compounds (PFC) are colorless, non-toxic, easily vaporized and nonflammable. Also, some of them are liquids of a high density, low surface tension, low latent heat and low specific heat. These particular chemical and physical properties of fluoro-organic compounds permit their use in very different fields such as electronics, medicine, tribology, nuclear and material science. The Sonatol process was developed under a contract with the DOE. The Sonatol process uses an ultrasonic agitation in a PFC solution that contains a fluorinated surfactant to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to bemore » reused indefinitely. They applied the Sonatol process to the decontamination of a heterogeneous legacy Pu-238 waste that exhibited an excessive hydrogen gas generation, which prevents a transportation of such a waste to a Waste Isolation Pilot Plant. Korea Atomic Energy Research Institute (KAERI) is developing dry decontamination technologies applicable to a decontamination of a highly radioactive area loosely contaminated with radioactive particles. This contamination has occurred as a result of an examination of a post-irradiated material or the development of the DUPIC process. The dry decontamination technologies developed are the carbon dioxide pellet spray method and the PFC spray method. As a part of the project, PFC ultrasonic decontamination technology was developed in 2004. The PFC spray decontamination method which is based on the test results of the PFC ultrasonic method has been under development since 2005. The developed PFC spray decontamination equipment consists of four modules (spray, collection, filtration and distillation). Vacuum cup of the collection module gathers the contaminated PFC solution, then the solution is moved to the filtration module and it is recycled. After a multiple recycling of the spent PFC solution, it is purified in the

  17. Processing Conditions Affecting Grain Size and Mechanical Properties in Nanocomposites Produced via Cold Spray

    NASA Astrophysics Data System (ADS)

    Cavaliere, P.; Perrone, A.; Silvello, A.

    2014-10-01

    Cold spray is a coating technology based on aerodynamics and high-speed impact dynamics. In this process, spray particles (usually 1-50 μm in diameter) are accelerated to a high velocity (typically 300-1200 m/s) by a high-speed gas (pre-heated air, nitrogen, or helium) flow that is generated through a convergent-divergent de Laval-type nozzle. A coating is formed through the intensive plastic deformation of particles impacting on a substrate at a temperature below the melting point of the spray material. In the present paper the main processing parameters affecting the microstructural and mechanical behavior of metal-metal cold spray deposits are described. The effect of process parameters on grain refinement and mechanical properties were analyzed for composite particles of Al-Al2O3, Ni-BN, Cu-Al2O3, and Co-SiC. The properties of the formed nanocomposites were compared with those of the parent materials sprayed under the same conditions. The process conditions, leading to a strong grain refinement with an acceptable level of the deposit mechanical properties such as porosity and adhesion strength, are discussed.

  18. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  19. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  20. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  1. Physicochemical Characteristics of Dust Particles in HVOF Spraying and Occupational Hazards: Case Study in a Chinese Company

    NASA Astrophysics Data System (ADS)

    Huang, Haihong; Li, Haijun; Li, Xinyu

    2016-06-01

    Dust particles generated in thermal spray process can cause serious health problems to the workers. Dust particles generated in high velocity oxy-fuel (HVOF) spraying WC-Co coatings were characterized in terms of mass concentrations, particle size distribution, micro morphologies, and composition. Results show that the highest instantaneous exposure concentration of dust particles in the investigated thermal spray workshop is 140 mg/m3 and the time-weighted average concentration is 34.2 mg/m3, which are approximately 8 and 4 times higher than the occupational exposure limits in China, respectively. The large dust particles above 10 μm in size present a unique morphology of polygonal or irregular block of crushed powder, and smaller dust particles mainly exist in the form of irregular or flocculent agglomerates. Some heavy metals, such as chromium, cobalt, and nickel, are also found in the air of the workshop and their concentrations are higher than the limits. Potential occupational hazards of the dust particles in the thermal spray process are further analyzed based on their characteristics and the workers' exposure to the nanoparticles is assessed using a control banding tool.

  2. Hydrogen no-vent fill testing in a 5 cubic foot (142 liter) tank using spray nozzle and spray bar liquid injection

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Nyland, Ted W.

    1992-01-01

    A total of 38 hydrogen no-vent fill tests were performed in this test series using various size spray nozzles and a spray bar with different hole sizes in a 5 cubic foot receiver tank. Fill levels of 90 percent by volume or greater were achieved in 26 of the tests while maintaining a receiver tank pressure below 30 psia. Spray nozzles were mounted at the top of the tank, whereas, the spray bar was centered in the tank axially. The spray nozzle no-vent fills demonstrated tank pressure and temperature responses comparable to previous test series. Receiver tank pressure responses for the spray bar configuration were similar to the spray nozzle tests with the pressure initially rising rapidly, then leveling off as vapor condenses onto the discharging liquid streams, and finally ramping up near the end of the test due to ullage compression. Both liquid injection techniques tested were capable of filling the receiver tank to 90 percent under variable test conditions. Comparisons between the spray nozzle and spray bar configurations for well matched test conditions indicate the spray nozzle injection technique is more effective in minimizing the receiving tank pressure throughout a no-vent fill compared to the spray bar under normal gravity conditions.

  3. Air/fuel ratio visualization in a diesel spray

    NASA Astrophysics Data System (ADS)

    Carabell, Kevin David

    1993-01-01

    To investigate some features of high pressure diesel spray ignition, we have applied a newly developed planar imaging system to a spray in an engine-fed combustion bomb. The bomb is designed to give flow characteristics similar to those in a direct injection diesel engine yet provide nearly unlimited optical access. A high pressure electronic unit injector system with on-line manually adjustable main and pilot injection features was used. The primary scalar of interest was the local air/fuel ratio, particularly near the spray plumes. To make this measurement quantitative, we have developed a calibration LIF technique. The development of this technique is the key contribution of this dissertation. The air/fuel ratio measurement was made using biacetyl as a seed in the air inlet to the engine. When probed by a tripled Nd:YAG laser the biacetyl fluoresces, with a signal proportional to the local biacetyl concentration. This feature of biacetyl enables the fluorescent signal to be used as as indicator of local fuel vapor concentration. The biacetyl partial pressure was carefully controlled, enabling estimates of the local concentration of air and the approximate local stoichiometry in the fuel spray. The results indicate that the image quality generated with this method is sufficient for generating air/fuel ratio contours. The processes during the ignition delay have a marked effect on ignition and the subsequent burn. These processes, vaporization and pre-flame kinetics, very much depend on the mixing of the air and fuel. This study has shown that poor mixing and over-mixing of the air and fuel will directly affect the type of ignition. An optimal mixing arrangement exists and depends on the swirl ratio in the engine, the number of holes in the fuel injector and the distribution of fuel into a pilot and main injection. If a short delay and a diffusion burn is desired, the best mixing parameters among those surveyed would be a high swirl ratio, a 4-hole nozzle and a

  4. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  5. Evaluation of spray droplet spectrum of sprayers used for vector control

    USDA-ARS?s Scientific Manuscript database

    Droplet spectra data were collected from spray equipment intended for use in vector control by the US Department of Defense pest management programs to determine if they produce droplets in the ultra-low volume (ULV) spectrum. Droplets generated by 26 sprayers utilizing water + non-ionic surfactant...

  6. Sustained delivery of salbutamol and beclometasone from spray-dried double emulsions.

    PubMed

    Learoyd, Tristan P; Burrows, Jane L; French, Eddie; Seville, Peter C

    2010-01-01

    The sustained delivery of multiple agents to the lung offers potential benefits to patients. This study explores the preparation of highly respirable dual-loaded spray-dried double emulsions. Spray-dried powders were produced from water-in-oil-in-water (w/o/w) double emulsions, containing salbutamol sulphate and/or beclometasone dipropionate in varying phases. The double emulsions contained the drug release modifier polylactide co-glycolide (PLGA 50 : 50) in the intermediate organic phase of the original micro-emulsion and low molecular weight chitosan (Mw<190 kDa: emulsion stabilizer) and leucine (aerosolization enhancer) in the tertiary aqueous phase. Following spray-drying resultant powders were physically characterized: with in vitro aerosolization performance and drug release investigated using a Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. Powders generated were of a respirable size exhibiting emitted doses of over 95% and fine particle fractions of up to 60% of the total loaded dose. Sustained drug release profiles were observed during dissolution for powders containing agents in the primary aqueous and secondary organic phases of the original micro-emulsion; the burst release of agents was witnessed from the tertiary aqueous phase. The novel spray-dried emulsions from this study would be expected to deposit and display sustained release character in the lung.

  7. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    PubMed

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  8. DNA damage in B and T lymphocytes of farmers during one pesticide spraying season.

    PubMed

    Lebailly, Pierre; Mirey, Gladys; Herin, Fabrice; Lecluse, Yannick; Salles, Bernard; Boutet-Robinet, Elisa

    2015-10-01

    The effect of one pesticide spraying season on DNA damage was measured on B and T lymphocytes among open-field farmers and controls. At least two peripheral blood samples were collected from each individual: one in a period without any pesticide application, several weeks after the last use (January, at period P0), and another in the intensive pesticide spraying period (May or June, at period P4). DNA damage was studied by alkaline comet assay on isolated B or T lymphocytes. Longitudinal comparison of DNA damage observed at both P0 and P4 periods revealed a statistically significant genotoxic effect of the pesticide spraying season in both B (P = 0.02) and T lymphocytes (P = 0.02) in exposed farmers. In contrast, non-farmers did not show any significant modifications. DNA damage levels in B and T lymphocytes were significantly higher in farmers than in non-farmers during the P4 period (P = 0.003 and P = 0.001 for B and T lymphocytes, respectively) but not during the P0 period. The seasonal effect observed among farmers was not correlated with either total farm area, farm area devoted to crops or recent solar exposure. On average, farmers used pesticides for 21 days between P0 and P4. Between the two time points studied, there was a tendency for a potential effect of the number of days of fungicide treatments (r (2) = 0.43; P = 0.11) on T lymphocyte DNA damage. A genotoxic effect was found in lymphocytes of farmers exposed to pesticides, suggesting in particular the possible implication of fungicides.

  9. Variable Gravity Effects on the Cooling Performance of a Single Phase Confined Spray

    NASA Technical Reports Server (NTRS)

    Michalak, Travis; Yerkes, Kirk; Baysinger, Karri; McQuillen, John

    2005-01-01

    The objective of this paper is to discuss the testing of a spray cooling experiment designed to be flown on NASA's KC-135 Reduced Gravity Testing Platform. Spray cooling is an example of a thermal management technique that may be utilized in high flux heat acquisition and high thermal energy transport concepts. Many researchers have investigated the utility of spray cooling for the thermal management of devices generating high heat fluxes. However, there has been little research addressing the physics and ultimate performance of spray cooling in a variable gravity environment. An experimental package, consisting of a spray chamber coupled to a fluid delivery loop system, was fabricated for variable gravity flight tests. The spray chamber contains two opposing nozzles spraying on target Indium Tin Oxide (ITO) heaters. These heaters are mounted on glass pedestals, which are part of a sump system to remove unconstrained liquid from the test chamber. Liquid is collected in the sumps and returned to the fluid delivery loop. Thermocouples mounted in and around the pedestals are used to determine both the heat loss through the underside of the IT0 heater and the heat extracted by the spray. A series of flight tests were carried out aboard the KC-135, utilizing the ability of the aircraft to produce various gravity conditions. During the flight tests, for a fixed flow rate, heat input was varied at 20, 30, 50, and 80W with variable gravities of 0.01, 0.16, 0.36, and 1.8g. Flight test data was compared to terrestrial baseline data in addition to analytical and numerical solutions to evaluate the heat transfer in the heater and support structure . There were significant differences observed in the spray cooling performance as a result of variable gravity conditions and heat inputs. In general, the Nussult number at the heater surface was found to increase with decreasing gravity conditions for heat loads greater than 30W.

  10. Transient removal of alkaline zones after excitation of Chara cells is associated with inactivation of high conductance in the plasmalemma

    PubMed Central

    2009-01-01

    The action potential (AP) of excitable plant cells is a multifunctional physiological signal. Its generation in characean algae suppresses the pH banding for 15–30 min and enhances the heterogeneity of spatial distribution of photosynthetic activity. This suppression is largely due to the cessation of H+ influx (OH− efflux) in the alkaline cell regions. Measurements of local pH and membrane conductance in individual space-clamped alkaline zones (small cell areas bathed in an isolated pool of external medium) showed that the AP generation is followed by the transient disappearance of alkaline zone in parallel with a large decrease in membrane conductance. These changes, specific to alkaline zones, were only observed under continuous illumination following a relaxation period of at least 15 min after previous excitation. The excitation of dark-adapted cells produced no conductance changes in the post-excitation period. The results indicate that the origin of alkaline zones in characean cells is not due to operation of electroneutral H+/HCO3− symport or OH−/HCO3− antiport. It is concluded that the membrane excitation is associated with inactivation of plasmalemma high conductance in the alkaline cell regions. PMID:19820298

  11. Experimental characterization of gasoline sprays under highly evaporating conditions

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Mahabat; Sheikh, Nadeem Ahmed; Khalid, Azfar; Lughmani, Waqas Akbar

    2018-05-01

    An experimental investigation of multistream gasoline sprays under highly evaporating conditions is carried out in this paper. Temperature increase of fuel and low engine pressure could lead to flash boiling. The spray shape is normally modified significantly under flash boiling conditions. The spray plumes expansion along with reduction in the axial momentum causes the jets to merge and creates a low-pressure area below the injector's nozzle. These effects initiate the collapse of spray cone and lead to the formation of a single jet plume or a big cluster like structure. The collapsing sprays reduces exposed surface and therefore they last longer and subsequently penetrate more. Spray plume momentum increase, jet plume reduction and spray target widening could delay or prevent the closure condition and limit the penetration (delayed formation of the cluster promotes evaporation). These spray characteristics are investigated experimentally using shadowgraphy, for five and six hole injectors, under various boundary conditions. Six hole injectors produce more collapsing sprays in comparison to five hole injector due to enhanced jet to jet interactions. The spray collapse tendency reduces with increase in injection pressure due high axial momentum of spray plumes. The spray evaporation rates of five hole injector are observed to be higher than six hole injectors. Larger spray cone angles of the six hole injectors promote less penetrating and less collapsing sprays.

  12. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  13. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass.

    PubMed

    Davidson, Jesse A; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan; Wischmeyer, Paul E; Klawitter, Jelena

    2016-01-01

    Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to

  14. Effect of Spray Distance on Microstructure and Tribological Performance of Suspension Plasma-Sprayed Hydroxyapatite-Titania Composite Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Xu, Haifeng; Geng, Xin; Wang, Jingjing; Xiao, Jinkun; Zhu, Peizhi

    2016-10-01

    Hydroxyapatite (HA)-titania (TiO2) composite coatings prepared on Ti6Al4V alloy surface can combine the excellent mechanical property of the alloy substrate and the good biocompatibility of the coating material. In this paper, HA-TiO2 composite coatings were deposited on Ti6Al4V substrates using suspension plasma spray (SPS). X-ray diffraction, scanning electron microscopy, Fourier infrared absorption spectrometry and friction tests were used to analyze the microstructure and tribological properties of the obtained coatings. The results showed that the spray distance had an important influence on coating microstructure and tribological performance. The amount of decomposition phases decreased as the spray distance increased. The increase in spray distance from 80 to 110 mm improved the crystalline HA content and decreased the wear performance of the SPS coatings. In addition, the spray distance had a big effect on the coating morphology due to different substrate temperature resulting from different spray distance. Furthermore, a significant presence of OH- and CO3 2- was observed, which was favorable for the biomedical applications.

  15. Cold spray nozzle design

    DOEpatents

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  16. Dairy products and the French paradox: Could alkaline phosphatases play a role?

    PubMed

    Lallès, Jean-Paul

    2016-07-01

    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and

  17. Ozone-mist spray sterilization for pest control in agricultural management

    NASA Astrophysics Data System (ADS)

    Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun

    2013-02-01

    We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2‒) and ozonide radical ion (*O3‒) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  18. Simulation of preburner sprays, volumes 1 and 2

    NASA Technical Reports Server (NTRS)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    The present study considered characteristics of sprays under a variety of conditions. Control of these sprays is important as the spray details can control both rocket combustion stability and efficiency. Under the present study Imperial College considered the following: (1) Measurement of the size and rate of spread of the sprays produced by single coaxial airblast nozzles with axial gaseous stream. The local size, velocity, and flux characteristics for a wide range of gas and liquid flowrates were measured, and the results were correlated with the conditions of the spray at the nozzle exit. (2) Examination of the effect of the geometry of single coaxial airblast atomizers on spray characteristics. The gas and liquid tube diameters were varied over a range of values, the liquid tube recess was varied, and the shape of the exit of the gaseous jet was varied from straight to converging. (3) Quantification of the effect of swirl in the gaseous stream on the spray characteristics produced by single coaxial airblast nozzles. (4) Quantification of the effect of reatomization by impingement of the spray on a flat disc positioned around 200 mm from the nozzle exit. This models spray impingement on the turbopump dome during the startup process of the preburner of the SSME. (5) Study of the interaction between multiple sprays without and with swirl in their gaseous stream. The spray characteristics of single nozzles were compared with that of three identical nozzles with their axis at a small distance from each other. This study simulates the sprays in the preburner of the SSME, where there are around 260 elements on the faceplate of the combustion chamber. (6) Design an experimental facility to study the characteristics of sprays at high pressure conditions and at supercritical pressure and temperature for the gas but supercritical pressure and subcritical temperature for the liquid.

  19. Alkaline earth metallocenes coordinated with ester pendants: synthesis, structural characterization, and application in metathesis reactions.

    PubMed

    Li, Heng; Zhang, Wen-Xiong; Xi, Zhenfeng

    2013-09-16

    A variety of ester-substituted cyclopentadiene derivatives have been synthesized by one-pot reactions of 1,4-dilithio-1,3-butadienes, CO, and acid chlorides. Direct deprotonation of the ester-substituted cyclopentadienes with Ae[N(SiMe3 )2 ]2 (Ae=Ca, Sr, Ba) efficiently generated members of a new class of heavier alkaline earth (Ca, Sr, Ba) metallocenes in good to excellent yields. Single-crystal X-ray structural analysis demonstrated that these heavier alkaline earth metallocenes incorporated two intramolecularly coordinated ester pendants and multiply-substituted cyclopentadienyl ligands. The corresponding transition metal metallocenes, such as ferrocene derivatives and half-sandwich cyclopentadienyl tricarbonylrhenium complexes, could be generated highly efficiently by metathesis reactions. The multiply-substituted cyclopentadiene ligands bearing an ester pendant, and the corresponding heavier alkaline earth and transition-metal metallocenes, may have further applications in coordination chemistry, organometallic chemistry, and organic synthesis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Propeller wash effects on spray drift

    Treesearch

    Steven J. Thompson; Alvin R. Womac; Joseph Mulrooney; Sidney Deck

    2005-01-01

    for aerial spray application, there is some question if off-target drift (both near and far) is influenced by which boom is spraying and the direction of propeller wash rotation. This information may be useful when switching off one boom close to a field boundary. The effect of alternate boom switching and propeller wash direction on aerial spray drift from a turbine-...

  1. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev [Latham, NY

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  2. Characteristics of combustion flame sprayed nickel aluminum using a Coanda Assisted Spray Manipulation collar for off-normal deposits

    NASA Astrophysics Data System (ADS)

    Archibald, Reid S.

    A novel flame spray collar called the Coanda Assisted Spray Manipulation collar (CSM) has been tested for use on the Sulzer Metco 5P II combustion flame spray gun. A comparison study of the stock nozzle and the CSM has been performed by evaluating the porosity, surface roughness, microhardness, tensile strength and microscopy of normal and off-normal sprayed NiAl deposits. The use of the CSM collar resulted in the need to position the sprayed coupons closer to the gun, which in turn affected the particle impact energy and particle temperatures of the NiAl powder. For the CSM, porosities had a larger scatterband, surface roughness was comparably the same, microhardness was lower, and tensile strength was higher. The microscopy analysis revealed a greater presence of unmelted particles and steeper intersplat boundaries for the CSM. For both processes, the porosity and surface roughness increased and the microhardness decreased as the spray angle decreased.

  3. In Situ Monitoring of Particle Consolidation During Low Pressure Cold Spray by Ultrasonic Techniques

    NASA Astrophysics Data System (ADS)

    Maev, R. Gr.; Titov, S.; Leshchynsky, V.; Dzhurinskiy, D.; Lubrick, M.

    2011-06-01

    This study attempts to test the viability of the examination of the cold spray process using acoustic methods, specifically in situ testing during the actual spray process itself. Multiple composites studied by flat and multi-channel transducers as well as the results of actual online measurements are presented. It is shown that the final thickness as well as the dynamics of buildup can be evaluated (including plotting rates of buildup). Cross sections of the coating thickness are also easy to obtain and show true profiles of the coating. The data can also be used to generate real estimates for nozzle speed and spray diameter. Finally, comparisons of real thickness and acoustically estimated thickness show a close linear relationship. The data clearly show that online acoustic measurement is a viable method for estimating thickness buildup.

  4. Development of process data capturing, analysis and controlling for thermal spray techniques - SprayTracker

    NASA Astrophysics Data System (ADS)

    Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.

    2017-03-01

    Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.

  5. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    PubMed

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.

  6. Optimization of Fibrin Glue Spray Systems for Ophthalmic Surgery

    PubMed Central

    Chaurasia, Shyam S.; Champakalakshmi, Ravi; Angunawela, Romesh I.; Tan, Donald T.; Mehta, Jodhbir S.

    2012-01-01

    Purpose To optimize fibrin glue (FG) spray for ophthalmic surgery using two spray applicators, EasySpray and DuploSpray systems, by varying the distance from point of application and the pressure/flow rate, and to compare the adhesive strength of sutured and sutureless (FG sprayed) conjunctival graft surgery in a rabbit model. Methods FG was sprayed on a 0.2 mm-thick sheet of paper using EasySpray by variously combining application distances of 2.5, 5, 7.5, and 10 cm with pressures of 10, 15, and 20 psi. DuploSpray was used at the same distances but with varying flow rates of 1 and 2 L/min. Subsequently, FG was sprayed on porcine corneas and FG thickness was analyzed by histology. In addition, adhesive strength of the conjunctival graft (0.5 × 0.5 cm) attached to the rabbit cornea by sutured and sutureless surgery (FG spray) was compared using a tension meter. Results Histology measurements revealed that the FG thickness decreased with increases in distance and pressure of spray using the EasySpray applicator on paper and porcine corneal sections. The adhesive strength of the sutured conjunctival graft (41 ± 4.85 [kilopascal] KPa) was found to be higher than the graft attached by spraying (10 ± 2.3 KPa) and the sequential addition of FG (6 ± 0.714 KPa). Conclusions The EasySpray applicator formed a uniform spread of FG at a distance-pressure combination of 5 cm and 20 psi. The conjunctival graft attached with sutures had higher adhesive strength compared with grafts glued with a spray applicator. Although the adhesive strength of FG applied through the applicator was similar to the drop-wise sequential technique, the former was more cost effective because more samples could be sprayed compared with the sequential manual technique. Translational Relevance The standardization of the spray system for the application of FG in ophthalmology will provide an economical method for delivering consistent healing results after surgery. PMID:24049702

  7. Spray combustion model improvement study, 1

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.

    1993-01-01

    This study involves the development of numerical and physical modeling in spray combustion. These modeling efforts are mainly motivated to improve the physical submodels of turbulence, combustion, atomization, dense spray effects, and group vaporization. The present mathematical formulation can be easily implemented in any time-marching multiple pressure correction methodologies such as MAST code. A sequence of validation cases includes the nonevaporating, evaporating and_burnin dense_sprays.

  8. Surfactant-enhanced alkaline flooding: Buffering at intermediate alkaline pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudin, J.; Wasan, D.T.

    1993-11-01

    The alkaline flooding process involves injecting alkaline agents into the reservoir to produce more oil than is produced through conventional waterflooding. The interaction of the alkali in the flood water with the naturally occurring acids in the reservoir oil results in in-situ formation of soaps, which are partially responsible for lowering IFT and improving oil recovery. The extent to which IFT is lowered depends on the specific oil and injection water properties. Numerous investigators have attempted to clarify the relationship between system chemical composition and IFT. An experimental investigation of buffered alkaline flooding system chemistry was undertaken to determine themore » influence of various species present on interfacial tension (IFT) as a function of pH and ionic strength. IFT was found to go through an ultralow minimum in certain pH ranges. This synergism results from simultaneous adsorption of un-ionized and ionized acid species on the interface.« less

  9. Cationic Polymers Developed for Alkaline Fuel Cell Applications

    DTIC Science & Technology

    2015-01-20

    into five categories: proton exchange membrane fuel cell ( PEMFC ), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), solid oxide fuel...SOFC and PAFC belong to high temperature fuel cell, which can be applied in stationary power generation. PEMFC and AFC belong to low temperature fuel...function of the polymer electrolyte is to serve as electrolyte to transport ions between electrodes. PEMFC uses a polymer as electrolyte and works

  10. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1995-01-01

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  11. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, P.; Ruka, R.J.

    1995-02-14

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO{sub 3} particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr{sub 2}O{sub 3} on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO{sub 3} layer coated with CaO and Cr{sub 2}O{sub 3} surface deposit at from about 1,000 C to 1,200 C to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO{sub 3} layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power. 5 figs.

  12. Spray dried plasma as an alternative to antibiotics in piglet feeds, mode of action and biosafety.

    PubMed

    Pérez-Bosque, Anna; Polo, Javier; Torrallardona, David

    2016-01-01

    The use of growth promoting and therapeutic antibiotics in piglet feed has been a concerning subject over the last few decades because of the risk of generating antimicrobial resistance that could be transferred to humans. As a result, many products have been proposed as potential alternatives to the use of antibiotics, and among these, spray dried plasma is considered one of the most promising. However, there have been concerns about its biosafety, particularly during periods of emergence or re-emergence of swine diseases in different regions of the world, such as the recent porcine epidemic diarrhea virus outbreak in North America. The objectives of this paper are to review recent publications about the use of spray dried plasma as an alternative to antibiotics in weaned pig diets, the possible mechanisms of action of spray dried plasma, and the existing evidence related to the biosafety of spray dried animal plasma. Particular attention is given to studies in which spray dried plasma has been directly compared to antibiotics or other alternative antimicrobial products. Several studies on the possible modes of action for spray dried plasma, such as preservation of gut barrier function or modulation of the immune response, are also reviewed. Finally, the paper focuses on the review of the existing studies on the risks of disease transmission with the use of spray dried plasma from porcine origin. Overall, spray dried plasma is a promising alternative to in-feed antimicrobials for piglets, particularly during the early stages of the post-weaning phase. Additionally, there is enough evidence to support that commercial spray dried porcine plasma is a safe product for pigs.

  13. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  14. Electricity generation from banana peels in an alkaline fuel cell with a Cu2O-Cu modified activated carbon cathode.

    PubMed

    Liu, Peng; Liu, Xianhua; Dong, Feng; Lin, Qingxia; Tong, Yindong; Li, Yang; Zhang, Pingping

    2018-08-01

    Low-cost and highly active catalyst for oxygen reduction reaction is of great importance in the design of alkaline fuel cells. In this work, Cu 2 O-Cu composite catalyst has been fabricated by a facile laser-irradiation method. The addition of Cu 2 O-Cu composite in activated carbon air-cathode greatly improves the performance of the cathode. Our results indicate the enhanced performance is likely attributed to the synergistic effect of high conductivity of Cu and the catalytic activity of Cu 2 O towards the oxygen reduction reaction. Furthermore, an alkaline fuel cell equipped with the composite air-cathode has been built to turn banana peels into electricity. Peak power density of 16.12Wm -2 is obtained under the condition of 3M KOH and 22.04gL -1 reducing sugar, which is higher than other reported low-temperature direct biomass alkaline fuel cells. HPLC results indicate the main oxidation products in the alkaline fuel cell were small organic acids. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Ultrafast X-ray Imaging of Fuel Sprays

    NASA Astrophysics Data System (ADS)

    Wang, Jin

    2007-01-01

    Detailed analysis of fuel sprays has been well recognized as an important step for optimizing the operation of internal combustion engines to improve efficiency and reduce emissions. Ultrafast radiographic and tomographic techniques have been developed for probing the fuel distribution close to the nozzles of direct-injection diesel and gasoline injectors. The measurement was made using x-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution on the order of 1 μs. Furthermore, an accurate 3-dimensional fuel-density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date. With high-energy and high-brilliance x-ray beams available at the Advanced Photon Source, propagation-based phase-enhanced imaging was developed as a unique metrology technique to visualize the interior of an injection nozzle through a 3-mm-thick steel with a 10-μs temporal resolution, which is virtually impossible by any other means.

  16. Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches.

    PubMed

    Sporck, Daniele; Reinoso, Felipe A M; Rencoret, Jorge; Gutiérrez, Ana; Del Rio, José C; Ferraz, André; Milagres, Adriane M F

    2017-01-01

    New biorefinery concepts are necessary to drive industrial use of lignocellulose biomass components. Xylan recovery before enzymatic hydrolysis of the glucan component is a way to add value to the hemicellulose fraction, which can be used in papermaking, pharmaceutical, and food industries. Hemicellulose removal can also facilitate subsequent cellulolytic glucan hydrolysis. Sugarcane bagasse was pretreated with an alkaline-sulfite chemithermomechanical process to facilitate subsequent extraction of xylan by enzymatic or alkaline procedures. Alkaline extraction methods yielded 53% (w/w) xylan recovery. The enzymatic approach provided a limited yield of 22% (w/w) but produced the xylan with the lowest contamination with lignin and glucan components. All extracted xylans presented arabinosyl side groups and absence of acetylation. 2D-NMR data suggested the presence of O -methyl-glucuronic acid and p -coumarates only in enzymatically extracted xylan. Xylans isolated using the enzymatic approach resulted in products with molecular weights (Mw) lower than 6 kDa. Higher Mw values were detected in the alkali-isolated xylans. Alkaline extraction of xylan provided a glucan-enriched solid readily hydrolysable with low cellulase loads, generating hydrolysates with a high glucose/xylose ratio. Hemicellulose removal before enzymatic hydrolysis of the cellulosic fraction proved to be an efficient manner to add value to sugarcane bagasse biorefining. Xylans with varied yield, purity, and structure can be obtained according to the extraction method. Enzymatic extraction procedures produce high-purity xylans at low yield, whereas alkaline extraction methods provided higher xylan yields with more lignin and glucan contamination. When xylan extraction is performed with alkaline methods, the residual glucan-enriched solid seems suitable for glucose production employing low cellulase loadings.

  17. Seeking effective dyes for a mediated glucose-air alkaline battery/fuel cell

    NASA Astrophysics Data System (ADS)

    Eustis, Ross; Tsang, Tsz Ming; Yang, Brigham; Scott, Daniel; Liaw, Bor Yann

    2014-02-01

    A significant level of power generation from an abiotic, air breathing, mediated reducing sugar-air alkaline battery/fuel cell has been achieved in our laboratories at room temperature without complicated catalysis or membrane separation in the reaction chamber. Our prior studies suggested that mass transport limitation by the mediator is a limiting factor in power generation. New and effective mediators were sought here to improve charge transfer and power density. Forty-five redox dyes were studied to identify if any can facilitate mass transport in alkaline electrolyte solution; namely, by increasing the solubility and mobility of the dye, and the valence charge carried per molecule. Indigo dyes were studied more closely to understand the complexity involved in mass transport. The viability of water-miscible co-solvents was also explored to understand their effect on solubility and mass transport of the dyes. Using a 2.0 mL solution, 20% methanol by volume, with 100 mM indigo carmine, 1.0 M glucose and 2.5 M sodium hydroxide, the glucose-air alkaline battery/fuel cell attained 8 mA cm-2 at short-circuit and 800 μW cm-2 at the maximum power point. This work shall aid future optimization of mediated charge transfer mechanism in batteries or fuel cells.

  18. Thermoelectric Device Fabrication Using Thermal Spray and Laser Micromachining

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder; Fu, Gaosheng; Hwang, David J.; Zuo, Lei; Sampath, Sanjay; Longtin, Jon P.

    2016-02-01

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are used in many engineering applications such as vehicle and industrial waste-heat recovery systems to provide electrical power, improve operating efficiency and reduce costs. State-of-art TEG manufacturing is based on prefabricated materials and a labor-intensive process involving soldering, epoxy bonding, and mechanical clamping for assembly. This reduces their durability and raises costs. Additive manufacturing technologies, such as thermal spray, present opportunities to overcome these challenges. In this work, TEGs have been fabricated for the first time using thermal spray technology and laser micromachining. The TEGs are fabricated directly onto engineering component surfaces. First, current fabrication techniques of TEGs are presented. Next, the steps required to fabricate a thermal spray-based TEG module, including the formation of the metallic interconnect layers and the thermoelectric legs are presented. A technique for bridging the air gap between two adjacent thermoelectric elements for the top layer using a sacrificial filler material is also demonstrated. A flat 50.8 mm × 50.8 mm TEG module is fabricated using this method and its performance is experimentally characterized and found to be in agreement with expected values of open-circuit voltage based on the materials used.

  19. Setting an Upper Limit on Gas Exchange Through Sea-Spray

    NASA Astrophysics Data System (ADS)

    Vlahos, P.; Monahan, E. C.; Andreas, E. L.

    2016-02-01

    Air-sea gas exchange parameterization is critical to understanding both climate forcing and feedbacks and is key in biogeochemistry cycles. Models based on wind speed have provided empirical estimates of gas exchange that are useful though it is likely that at high wind speeds of over 10 m/s there are important gas exchange parameters including bubbles and sea spray that have not been well constrained. Here we address the sea-spray component of gas exchange at these high wind speeds to set sn upper boundary condition for the gas exchange of the six model gases including; nobel gases helium, neon and argon, diatomic gases nitrogen and oxygen and finally, the more complex gas carbon dioxide. Estimates are based on the spray generation function of Andreas and Monahan and the gases are tested under three scenarios including 100 percent saturation and complete droplet evaporation, 100 percent saturation and a more realistic scenario in which a fraction of droplets evaporate completely, a fraction evaporate to some degree and a fraction returns to the water side without significant evaporation. Finally the latter scenario is applied to representative under saturated concentrations of the gases.

  20. Manual fire suppression methods on typical machinery space spray fires

    NASA Astrophysics Data System (ADS)

    Carhart, H. W.; Leonard, J. T.; Budnick, E. K.; Ouellette, R. J.; Shanley, J. H., Jr.

    1990-07-01

    A series of tests was conducted to evaluate the effectiveness of Aqueous Film Forming Foam (AFFF), potassium bicarbonate powder (PKP) and Halon 1211, alone and in various combinations, in extinguishing spray fires. The sprays were generated by JP-5 jet fuel issuing from an open sounding tube, and open petcock, a leaking flange or a slit pipe, and contacting an ignition source. The results indicate that typical fuel spray fires, such as those simulated in this series, are very severe. Flame heights ranged from 6.1 m (20 ft) for the split pipe to 15.2 m (50 ft) for the sounding tube scenario. These large flame geometries were accompanied by heat release rates of 6 MW to greater than 50 MW, and hazardous thermal radiation levels in the near field environment, up to 9.1 m (30 ft) away. Successful suppression of these fires requires both a significant reduction in flame radiation and delivery of a suppression agent to shielded areas. Of the nine suppression methods tested, the 95 gpm AFFF hand line and the hand line in conjunction with PKP were particularly effective in reducing the radiant flux.

  1. Dynamics of flare sprays. [in sun

    NASA Technical Reports Server (NTRS)

    Tandberg-Hanssen, E.; Martin, S. F.; Hansen, R. T.

    1980-01-01

    During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable passband filters, multislit spectroscopy and extended angular field coronagraphs). From combined analysis of 13 well-observed sprays which occurred between 1969-1974 it is concluded that (1) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (2) the spray material is confined within a steadily expanding, loop-shaped (presumable magnetically controlled) envelope with part of the materials draining back down along one or both legs of the loop.

  2. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization.

    PubMed

    Fang, Wei; Zhang, Panyue; Zhang, Guangming; Jin, Shuguang; Li, Dongyi; Zhang, Meixia; Xu, Xiangzhe

    2014-09-01

    To improve anaerobic digestion efficiency, combination pretreatment of alkaline and high pressure homogenization was applied to pretreat sewage sludge. Effect of alkaline dosage on anaerobic sludge digestion was investigated in detail. SCOD of sludge supernatant significantly increased with the alkaline dosage increase after the combined pretreatment because of sludge disintegration. Organics were significantly degraded after the anaerobic digestion, and the maximal SCOD, TCOD and VS removal was 73.5%, 61.3% and 43.5%, respectively. Cumulative biogas production, methane content in biogas and biogas production rate obviously increased with the alkaline dosage increase. Considering both the biogas production and alkaline dosage, the optimal alkaline dosage was selected as 0.04 mol/L. Relationships between biogas production and sludge disintegration showed that the accumulative biogas was mainly enhanced by the sludge disintegration. The methane yield linearly increased with the DDCOD increase as Methane yield (ml/gVS)=4.66 DDCOD-9.69. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Metal atomization spray nozzle

    DOEpatents

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  4. Water spray ventilator system for continuous mining machines

    DOEpatents

    Page, Steven J.; Mal, Thomas

    1995-01-01

    The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

  5. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  6. Spray-on tanning.

    PubMed

    Rogers, Cindy J

    2005-01-01

    The modern formulation of dihydroxyacetone (DHA), the only sunless tanning solution approved by the Food and Drug Administration (FDA), is combined with bronzers and moisturizers to deliver a cosmetically acceptable skin color and a natural-looking tan without ultraviolet (UV) exposure. Spray-on tanning products, which deliver this formulation evenly to achieve a full body tan, may be applied in a tanning booth, airbrushed on by a technician, or sprayed on at home, and they appear to offer a generally safe alternative for patients who seek a suntanned appearance.

  7. Analysis of differentially expressed genes and adaptive mechanisms of Prunus triloba Lindl. under alkaline stress.

    PubMed

    Liu, Jia; Wang, Yongqing; Li, Qingtian

    2017-01-01

    Prunus triloba Lindl. is a naturally salt-alkaline-tolerant plant with several unique characteristics, and it can be used as the rootstock of Chinese plum ( Prunus salicina Lindl.) in saline-alkaline soils. To comprehensively investigate the alkaline acclimation mechanisms in P. triloba , a series of analyses were conducted under alkaline stress, including analyses of the kinetics of molecular and physiological changes, and leaf microstructure. To understand the kinetics of molecular changes under short-term alkaline stress, we used Illumina HiSeq 2500 platform to identify alkaline stress-related differentially expressed genes (DEGs) in P. triloba . Approximately 53.0 million high-quality clean reads were generated from 59.6 million raw reads, and a total of 124,786 unigenes were obtained after de novo assembly of P. triloba transcriptome data. After alkaline stress treatment, a total of 8948 unigenes were identified as DEGs. Based on these DEGs, a Gene Ontology (GO) enrichment analysis was conducted, suggesting that 28 genes may play an important role in the early alkaline stress response. In addition, analysis of DEGs with the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that pathways were significant at different treatment time points. A significant positive correlation was found between the quantitative real-time PCR (qRT-PCR) results and the RNA-Seq data for seven alkaline-related genes, confirming the reliability of the RNA-Seq results. Based on physiological analysis of P. triloba in response to long-term alkaline stress, we found that the internal microstructures of the leaves of P. triloba changed to adapt to long-term alkaline stress. Various physiological indexes indicated that the degree of membrane injury increased with increasing duration of alkaline stress, affecting photosynthesis in P. triloba seedlings. This represents the first investigation into the physiology and transcriptome of P. triloba in response to alkaline stress. The results

  8. A new method for spray deposit assessment

    Treesearch

    Chester M. Himel; Leland Vaughn; Raymond P. Miskus; Arthur D. Moore

    1965-01-01

    Solid fluorescent particles suspended in a spray liquid are distributed in direct proportion to the size of the spray droplets. Use of solid fluorescent particles is the basis of a new method for visual recognition of the size and number of droplets impinging on target and nontarget portions of sprayed areas.

  9. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2017-12-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  10. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.

    PubMed

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2017-12-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H 2 and CO 2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  11. A New Way to Spray

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A NASA SBIR contract provided the funding for a new nozzle shape to be used in plasma spray techniques. The new design, a bell shape, reduces overspray. The result is a significant decrease in the cost of plasma spraying and a higher quality, more pure coating.

  12. The study on the interdependence of spray characteristics and evaporation history of fuel spray in high temperature air crossflow

    NASA Astrophysics Data System (ADS)

    Zhu, J. Y.; Chin, J. S.

    1986-06-01

    A numerical calculation method is used to predict the variation of the characteristics of fuel spray moving in a high temperature air crossflow, mainly, Sauter mean diameter SMD, droplet size distribution index N of Rosin-Rammler distribution and evaporation percentage changing with downstream distance X from the nozzle. The effect of droplet heat-up period evaporation process and forced convection are taken into full account; thus, the calculation model is a very good approximation to the process of spray evaporation in a practical combustor, such as ramjet, aero-gas turbine, liquid propellant rocket, diesel and other liquid fuel-powered combustion devices. The changes of spray characteristics N, SMD and spray evaporation percentage with air velocity, pressure, temperature, fuel injection velocity, and the initial spray parameters are presented.

  13. Effect of spray volume on the deposition, viability and infectivity of entomopathogenic nematodes in a foliar spray on vegetables.

    PubMed

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-10-01

    Spray volume can influence the amount of free water on the leaf surface and subsequently the ability of entomopathogenic nematodes (EPNs) to move. In this study, an investigation was made of the effect of spray volume (548, 730 and 1095 L ha(-1) ) on the deposition, viability and infectivity of EPNs against Galleria mellonella on savoy cabbage, cauliflower and leek. Increasing spray volume decreased nematode deposition on 7.1 cm2 leek leaf discs at a 15° angle with the spray nozzle. Although the number of living nematodes observed on leek after 240 min of exposure was not significantly different between the low-volume application (548 L ha(-1) ) and the high-volume application (1095 L ha(-1) ), a greater infectivity was obtained in the latter application. The higher number of droplets deposited on the leek discs in the high-volume application may have stimulated nematode movement. No significant effect of spray volume was observed on the relative deposition of Steinernema carpocapsae on the bottom side of cauliflower and savoy cabbage leaf discs. In spite of the low S. carpocapsae deposition on the bottom side of the savoy cabbage discs, high infectivity was obtained against G. mellonella. Using the lowest spray volume on savoy cabbage, infectivity decreased with increasing exposure time, while infectivity was not affected by exposure time when a spray volume of 730 L ha(-1) or more was used. Spray volume is an important application parameter, as it affects nematode infectivity. Future research should investigate the effect of spray volume in the field and its influence on the effect of adjuvants. Copyright © 2012 Society of Chemical Industry.

  14. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology.

    PubMed

    Lee, Jae Hyup; Jang, Hae Lin; Lee, Kyung Mee; Baek, Hae-Ri; Jin, Kyoungsuk; Hong, Kug Sun; Noh, Jun Hong; Lee, Hyun-Kyung

    2013-04-01

    Polyetheretherketone (PEEK) is a material that is widely used in medicine because its mechanical properties show excellent similarity to those of human bone. However, because it is bioinert, PEEK shows limited ability to bind to natural bone tissue. Here, we applied a cold spray method to make a hydroxyapatite (HA)-coated PEEK hybrid material and evaluated its osteointegration in vitro and in vivo. With the cold spray method, the HA coating formed a homogeneous layer and adhered strongly to the PEEK disk implant. When the material was tested in vitro, early cell adhesion and viability improved. Alkaline phosphatase (ALP) activity and calcium concentration were also higher in cells cultured on HA-coated PEEK disks. In addition, the expression of osteoblast differentiation markers, such as ALP, bone sialoprotein and runt-related transcription factor 2, increased in these cells. For the in vivo test, we designed and implanted HA-coated PEEK cylinders into a rabbit ilium model by the press-fit method. The bone-implant contact ratio, trabecular number and trabecular thickness were determined using either three-dimensional microcomputed tomography or general two-dimensional histomorphometric analysis. This report demonstrates that the HA coating on the PEEK implant added with the cold spray method increased biocompatibility in vitro and promoted osteointegration in vivo, which suggests that the HA coating may improve the biofunctionality of various medical devices used in clinical applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Quality characteristic of spray-drying egg white powders.

    PubMed

    Ma, Shuang; Zhao, Songning; Zhang, Yan; Yu, Yiding; Liu, Jingbo; Xu, Menglei

    2013-10-01

    Spray drying is a useful method for developing egg process and utilization. The objective of this study was to evaluate effects on spray drying condition of egg white. The optimized conditions were spraying flow 22 mL/min, feeding temperature 39.8 °C and inlet-air temperature 178.2 °C. Results of sulfydryl (SH) groups measurement indicated conformation structure have changed resulting in protein molecule occur S-S crosslinking phenomenon when heating. It led to free SH content decreased during spray drying process. There was almost no change of differential scanning calorimetry between fresh egg white and spray-drying egg white powder (EWP). For a given protein, the apparent SH reactivity is in turn influenced by the physico-chemical characteristics of the reactant. The phenomenon illustrated the thermal denaturation of these proteins was unrelated to their free SH contents. Color measurement was used to study browning level. EWP in optimized conditions revealed insignificant brown stain. Swelling capacity and scanning electron micrograph both proved well quality characteristic of spray-drying EWP. Results suggested spray drying under the optimized conditions present suitable and alternative method for egg processing industrial implementation. Egg food industrialization needs new drying method to extend shelf-life. The purpose of the study was to provide optimal process of healthy and nutritional instant spray-drying EWP and study quality characteristic of spray-drying EWP.

  16. Characterization and quantification of biochar alkalinity.

    PubMed

    Fidel, Rivka B; Laird, David A; Thompson, Michael L; Lawrinenko, Michael

    2017-01-01

    Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pK a organic structural (0.03-0.34 meq g -1 ), other organic (0-0.92 meq g -1 ), carbonate (0.02-1.5 meq g -1 ), and other inorganic (0-0.26 meq g -1 ) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. LSPRAY-V: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2015-01-01

    LSPRAY-V is a Lagrangian spray solver developed for application with unstructured grids and massively parallel computers. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray encountered over a wide range of operating conditions in modern aircraft engine development. It could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-V, we have advanced the state-of-the-art in spray computations in several important ways.

  18. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  19. Metal atomization spray nozzle

    DOEpatents

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  20. Evaporating Spray in Supersonic Streams Including Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.

    2006-01-01

    Evaporating spray plays an important role in spray combustion processes. This paper describes the development of a new finite-conductivity evaporation model, based on the two-temperature film theory, for two-phase numerical simulation using Eulerian-Lagrangian method. The model is a natural extension of the T-blob/T-TAB atomization/spray model which supplies the turbulence characteristics for estimating effective thermal diffusivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating sprays. High speed cross flow spray results indicate the effectiveness of the T-blob/T-TAB model and point to the needed improvements in high speed evaporating spray modeling.

  1. An Overview of Spray Modeling With OpenNCC and its Application to Emissions Predictions of a LDI Combustor at High Pressure

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2016-01-01

    The open national combustion code (Open- NCC) is developed with the aim of advancing the current multi-dimensional computational tools used in the design of advanced technology combustors. In this paper we provide an overview of the spray module, LSPRAY-V, developed as a part of this effort. The spray solver is mainly designed to predict the flow, thermal, and transport properties of a rapidly evaporating multi-component liquid spray. The modeling approach is applicable over a wide-range of evaporating conditions (normal, superheat, and supercritical). The modeling approach is based on several well-established atomization, vaporization, and wall/droplet impingement models. It facilitates large-scale combustor computations through the use of massively parallel computers with the ability to perform the computations on either structured & unstructured grids. The spray module has a multi-liquid and multi-injector capability, and can be used in the calculation of both steady and unsteady computations. We conclude the paper by providing the results for a reacting spray generated by a single injector element with 600 axially swept swirler vanes. It is a configuration based on the next-generation lean-direct injection (LDI) combustor concept. The results include comparisons for both combustor exit temperature and EINOX at three different fuel/air ratios.

  2. Gas Dynamic Spray Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Burford, Pattie Lewis

    2011-01-01

    Zinc primer systems are currently used across NASA and AFSPC for corrosion protection of steel. AFSPC and NASA have approved the use of Thermal Spray Coatings (TSCs) as an environmentally preferable alternative. TSCs are approved in NASA-STD-5008 and AFSPC and KSC is currently looking for additional applications in which TSC can be used. Gas Dynamic Spray (GDS, also known as Cold Spray) is being evaluated as a means of repairing TSCs and for areas such as corners and edges where TSCs do not work as well. Other applications could include spot repair/maintenance of steel on structures, facilities, and ground support equipment.

  3. Alignment Fixtures For Vacuum-Plasma-Spray Gun

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.

    1993-01-01

    Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.

  4. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH 4-air battery

    NASA Astrophysics Data System (ADS)

    Liu, B. H.; Li, Z. P.; Chen, L. L.

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH 4 gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH 4 concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl 2 catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH 4 gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH 4 solution. The NaBH 4 gel also successfully powered a NaBH 4-air battery.

  5. Acoustic effects of sprays

    NASA Technical Reports Server (NTRS)

    Pindera, Maciej Z.; Przekwas, Andrzej J.

    1994-01-01

    Since the early 1960's, it has been known that realistic combustion models for liquid fuel rocket engines should contain at least a rudimentary treatment of atomization and spray physics. This is of particular importance in transient operations. It has long been recognized that spray characteristics and droplet vaporization physics play a fundamental role in determining the stability behavior of liquid fuel rocket motors. This paper gives an overview of work in progress on design of a numerical algorithm for practical studies of combustion instabilities in liquid rocket motors. For flexibility, the algorithm is composed of semi-independent solution modules, accounting for different physical processes. Current findings are report and future work is indicated. The main emphasis of this research is the development of an efficient treatment to interactions between acoustic fields and liquid fuel/oxidizer sprays.

  6. Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion

    PubMed Central

    Vulgarakis Minov, Sofija; Cointault, Frédéric; Vangeyte, Jürgen; Pieters, Jan G; Nuyttens, David

    2016-01-01

    Accurate spray characterization helps to better understand the pesticide spray application process. The goal of this research was to present the proof of principle of a droplet size and velocity measuring technique for different types of hydraulic spray nozzles using a high speed backlight image acquisition and analysis system. As only part of the drops of an agricultural spray can be in focus at any given moment, an in-focus criterion based on the gray level gradient was proposed to decide whether a given droplet is in focus or not. In a first experiment, differently sized droplets were generated with a piezoelectric generator and studied to establish the relationship between size and in-focus characteristics. In a second experiment, it was demonstrated that droplet sizes and velocities from a real sprayer could be measured reliably in a non-intrusive way using the newly developed image acquisition set-up and image processing. Measured droplet sizes ranged from 24 μm to 543 μm, depending on the nozzle type and size. Droplet velocities ranged from around 0.5 m/s to 12 m/s. The droplet size and velocity results were compared and related well with the results obtained with a Phase Doppler Particle Analyzer (PDPA). PMID:26861338

  7. Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion.

    PubMed

    Minov, Sofija Vulgarakis; Cointault, Frédéric; Vangeyte, Jürgen; Pieters, Jan G; Nuyttens, David

    2016-02-06

    Accurate spray characterization helps to better understand the pesticide spray application process. The goal of this research was to present the proof of principle of a droplet size and velocity measuring technique for different types of hydraulic spray nozzles using a high speed backlight image acquisition and analysis system. As only part of the drops of an agricultural spray can be in focus at any given moment, an in-focus criterion based on the gray level gradient was proposed to decide whether a given droplet is in focus or not. In a first experiment, differently sized droplets were generated with a piezoelectric generator and studied to establish the relationship between size and in-focus characteristics. In a second experiment, it was demonstrated that droplet sizes and velocities from a real sprayer could be measured reliably in a non-intrusive way using the newly developed image acquisition set-up and image processing. Measured droplet sizes ranged from 24 μm to 543 μm, depending on the nozzle type and size. Droplet velocities ranged from around 0.5 m/s to 12 m/s. The droplet size and velocity results were compared and related well with the results obtained with a Phase Doppler Particle Analyzer (PDPA).

  8. Electroconversion of glycerol in alkaline medium: From generation of energy to formation of value-added products

    NASA Astrophysics Data System (ADS)

    Da Silva, Rodrigo Garcia; Aquino Neto, Sidney; Kokoh, Kouakou Boniface; De Andrade, Adalgisa Rodrigues

    2017-05-01

    We have investigated the electroconversion of glycerol in alkaline medium using bimetallic M50@Pt50 nanocatalysts (where M = Ru, Sn or Ni) supported on multi-walled carbon nanotubes. The electrocatalysts have been synthesized via an electrostatically oriented co-reduction method in which self-assembly of the positively charged metal species (Sn, Ni and Ru) into the internal catalyst level and of the negatively charged platinum species towards the outer layer afford nanocatalysts with the desired morphology. The physicochemical characterizations have confirmed the atomic ratios, the metal loadings, and the spherical shape of the nanoparticles with average diameter lying between 2 and 3 nm. In terms of electrochemical performance, the Ni@Pt composition displays the highest electrochemically active surface area, the best relation between the peak current and the onset oxidation potential in the presence of glycerol (275 mA mg-1Pt and -492 mV vs. Hg/HgO/OH-), and the most remarkable electrochemical stability in chronoamperometric tests. Long-term experiments to evaluate the oxidation of glycerol and analysis of the products indicate that the different electrocatalysts synthesized herein efficiently perform the electroconversion of glycerol at high rates and generate of value-added products.

  9. Effects of hypobaric pressure on human skin: implications for cryogen spray cooling (part II).

    PubMed

    Aguilar, Guillermo; Franco, Walfre; Liu, Jie; Svaasand, Lars O; Nelson, J Stuart

    2005-02-01

    Clinical results have demonstrated that dark purple port wine stain (PWS) birthmarks respond favorably to laser induced photothermolysis after the first three to five treatments. Nevertheless, complete blanching is rarely achieved and the lesions stabilize at a red-pink color. In a feasibility study (Part I), we showed that local hypobaric pressure on PWS human skin prior to laser irradiation induced significant lesion blanching. The objective of the present study (Part II) is to investigate the effects of hypobaric pressures on the efficiency of cryogen spray cooling (CSC), a technique that assists laser therapy of PWS and other dermatoses. Experiments were carried out within a suction cup and vacuum chamber to study the effect of hypobaric pressure on the: (1) interaction of cryogen sprays with human skin; (2) spray atomization; and (3) thermal response of a model skin phantom. A high-speed camera was used to acquire digital images of spray impingement on in vivo human skin and spray cones generated at different hypobaric pressures. Subsequently, liquid cryogen was sprayed onto a skin phantom at atmospheric and 17, 34, 51, and 68 kPa (5, 10, 15, and 20 in Hg) hypobaric pressures. A fast-response temperature sensor measured sub-surface phantom temperature as a function of time. Measurements were used to solve an inverse heat conduction problem to calculate surface temperatures, heat flux, and overall heat extraction at the skin phantom surface. Under hypobaric pressures, cryogen spurts did not produce skin indentation and only minimal frost formation. Sprays also showed shorter jet lengths and better atomization. Lower minimum surface temperatures and higher overall heat extraction from skin phantoms were reached. The combined effects of hypobaric pressure result in more efficient cryogen evaporation that enhances heat extraction and, therefore, improves the epidermal protection provided by CSC. (c) 2005 Wiley-Liss, Inc.

  10. A numerical analysis of flat fan aerial crop spray

    NASA Astrophysics Data System (ADS)

    Malik Fesal, Siti Natasha; Fawzi, Mas; Omar, Zamri

    2017-09-01

    Spray drift mitigation, in the agriculture aerial spraying literature, and spray quality in the application of plant protection products, still continues as two critical components in evaluating shareholder value. A study on off-target drift and ground deposit onto a 250 m strip were simulated through series of Computational Fluid Dynamic (CFD) simulations. The drift patterns for evaporating droplets were released from a constant aircraft velocity at 30 m/s (60 mph) carrying 20 m swath width spray boom with 12 fan-type nozzles at released height from the ground ranging from 3.7 m to 4.7 m. Droplet trajectories are calculated from the given airspeed with a Lagrangian model for particle dispersion excluding any wind effect perturbation. The proposed CFD’s model predictions agreed well with cited literatures for a wide range of atmospheric stability values. The results revealed that there is considerable increased in spray drift and droplets trajectories with the increased in spray released height. It suggested that a combination of low aircraft spray released height with low airspeed is essential to improve spray quality and maximizing uniform deposition on the target area are significant in minimizing spray drift risks.

  11. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  12. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  13. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  14. Nitroglycerin Spray

    MedlinePlus

    Nitroglycerin spray is used to treat episodes of angina (chest pain) in people who have coronary artery ... in order to prevent the angina from occurring. Nitroglycerin is in a class of medications called vasodilators. ...

  15. Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production.

    PubMed

    Jiang, Danping; Ge, Xumeng; Zhang, Quanguo; Li, Yebo

    2016-09-01

    Liquid hot water (LHW) and alkaline pretreatments of giant reed biomass were compared in terms of digestibility, methane production, and cost-benefit efficiency for electricity generation via anaerobic digestion with a combined heat and power system. Compared to LHW pretreatment, alkaline pretreatment retained more of the dry matter in giant reed biomass solids due to less severe conditions. Under their optimal conditions, LHW pretreatment (190°C, 15min) and alkaline pretreatment (20g/L of NaOH, 24h) improved glucose yield from giant reed by more than 2-fold, while only the alkaline pretreatment significantly (p<0.05) increased cumulative methane yield (by 63%) over that of untreated biomass (217L/kgVS). LHW pretreatment obtained negative net electrical energy production due to high energy input. Alkaline pretreatment achieved 27% higher net electrical energy production than that of non-pretreatment (3859kJ/kg initial total solids), but alkaline liquor reuse is needed for improved net benefit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Plasma sprayed coatings on crankshaft used steels

    NASA Astrophysics Data System (ADS)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  17. To spray or not to spray? Understanding participation in an indoor residual spray campaign in Arequipa, Peru.

    PubMed

    Paz-Soldán, Valerie A; Bauer, Karin M; Hunter, Gabrielle C; Castillo-Neyra, Ricardo; Arriola, Vanessa D; Rivera-Lanas, Daniel; Rodriguez, Geoffrey H; Toledo Vizcarra, Amparo M; Mollesaca Riveros, Lina M; Levy, Michael Z; Buttenheim, Alison M

    2018-01-01

    Current low participation rates in vector control programmes in Arequipa, Peru complicate the control of Chagas disease. Using focus groups (n = 17 participants) and semi-structured interviews (n = 71) conducted in March and May 2013, respectively, we examined barriers to and motivators of household participation in an indoor residual spray (IRS) campaign that had taken place one year prior in Arequipa. The most common reported barriers to participation were inconvenient spray times due to work obligations, not considering the campaign to be necessary, concerns about secondary health impacts (e.g. allergic reactions to insecticides), and difficulties preparing the home for spraying (e.g. moving heavy furniture). There was also a low perception of risk for contracting Chagas disease that might affect participation. The main motivator to participate was to ensure personal health and well-being. Future IRS campaigns should incorporate more flexible hours, including weekends; provide appropriate educational messages to counter concerns about secondary health effects; incorporate peer educators to increase perceived risk to Chagas in community; obtain support from community members and leaders to build community trust and support for the campaign; and assist individuals in preparing their homes. Enhancing community trust in both the need for the campaign and its operations is key.

  18. To spray or not to spray? Understanding participation in an indoor residual spray campaign in Arequipa, Peru

    PubMed Central

    Bauer, Karin M.; Hunter, Gabrielle C.; Castillo-Neyra, Ricardo; Arriola, Vanessa D.; Rivera-Lanas, Daniel; Rodriguez, Geoffrey H.; Toledo Vizcarra, Amparo M.; Mollesaca Riveros, Lina M.; Levy, Michael Z.; Buttenheim, Alison M.

    2017-01-01

    Current low participation rates in vector control programmes in Arequipa, Peru complicate the control of Chagas disease. Using focus groups (n = 17 participants) and semi-structured interviews (n = 71) conducted in March and May 2013, respectively, we examined barriers to and motivators of household participation in an indoor residual spray (IRS) campaign that had taken place one year prior in Arequipa. The most common reported barriers to participation were inconvenient spray times due to work obligations, not considering the campaign to be necessary, concerns about secondary health impacts (e.g. allergic reactions to insecticides), and difficulties preparing the home for spraying (e.g. moving heavy furniture). There was also a low perception of risk for contracting Chagas disease that might affect participation. The main motivator to participate was to ensure personal health and well-being. Future IRS campaigns should incorporate more flexible hours, including weekends; provide appropriate educational messages to counter concerns about secondary health effects; incorporate peer educators to increase perceived risk to Chagas in community; obtain support from community members and leaders to build community trust and support for the campaign; and assist individuals in preparing their homes. Enhancing community trust in both the need for the campaign and its operations is key. PMID:27189446

  19. Developing a dispersant spraying capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, S.D.

    1979-01-01

    In developing a national dispersant spraying capability, the Canadian Coast Guard (CCG) has undertaken a modification program to enable the conventional offshore spraying gear to be mounted on almost any vessel of convenience. Smaller, more versatile inshore spraying vessels and pumps have been designed and built. With the popularization of concentrated dispersants, the inshore pumping equipment can be used aboard hovercraft for special application situations. A program of acquiring mobile dispersant storage tanks has been undertaken with auxiliary equipment that will facilitate the shipment of dispersants in bulk by air freight. Work also has commenced on extending the dispersant applicationmore » program to include the CCG fleet of helicopters.« less

  20. Ultrafast high-repetition imaging of fuel sprays using picosecond fiber laser.

    PubMed

    Purwar, Harsh; Wang, Hongjie; Tang, Mincheng; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Godin, Thomas; Hideur, Ammar

    2015-12-28

    Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.

  1. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  2. Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes

    NASA Astrophysics Data System (ADS)

    Sidhu, Hazoor Singh; Sidhu, Buta Singh; Prakash, S.

    2006-12-01

    The purpose of this study is to analyze and compare the mechanical properties and microstructure details at the interface of high-velocity oxyfuel (HVOF)-sprayed NiCr-coated boiler tube steels, namely ASTM-SA-210 grade A1, ASTM-SA213-T-11, and ASTM-SA213-T-22. Coatings were developed by two different techniques, and in these techniques liquefied petroleum gas was used as the fuel gas. First, the coatings were characterized by metallographic, scanning electron microscopy/energy-dispersive x-ray analysis, x-ray diffraction, surface roughness, and microhardness, and then were subjected to erosion testing. An attempt has been made to describe the transformations taking place during thermal spraying. It is concluded that the HVOF wire spraying process offers a technically viable and cost-effective alternative to HVOF powder spraying process for applications in an energy generation power plant with a point view of life enhancement and to minimize the tube failures because it gives a coating having better resistance to erosion.

  3. Atmospheric Spray Freeze-Drying: Numerical Modeling and Comparison With Experimental Measurements.

    PubMed

    Borges Sebastião, Israel; Robinson, Thomas D; Alexeenko, Alina

    2017-01-01

    Atmospheric spray freeze-drying (ASFD) represents a novel approach to dry thermosensitive solutions via sublimation. Tests conducted with a second-generation ASFD equipment, developed for pharmaceutical applications, have focused initially on producing a light, fine, high-grade powder consistently and reliably. To better understand the heat and mass transfer physics and drying dynamics taking place within the ASFD chamber, 3 analytical models describing the key processes are developed and validated. First, by coupling the dynamics and heat transfer of single droplets sprayed into the chamber, the velocity, temperature, and phase change evolutions of these droplets are estimated for actual operational conditions. This model reveals that, under typical operational conditions, the sprayed droplets require less than 100 ms to freeze. Second, because understanding the heat transfer throughout the entire freeze-drying process is so important, a theoretical model is proposed to predict the time evolution of the chamber gas temperature. Finally, a drying model, calibrated with hygrometer measurements, is used to estimate the total time required to achieve a predefined final moisture content. Results from these models are compared with experimental data. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. 46 CFR 34.25-20 - Spray nozzles-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Spray nozzles-T/ALL. 34.25-20 Section 34.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Water Spray Extinguishing Systems, Details § 34.25-20 Spray nozzles—T/ALL. (a) Spray nozzles shall be of an approved type. ...

  5. 46 CFR 34.25-20 - Spray nozzles-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Spray nozzles-T/ALL. 34.25-20 Section 34.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Water Spray Extinguishing Systems, Details § 34.25-20 Spray nozzles—T/ALL. (a) Spray nozzles shall be of an approved type. ...

  6. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  7. Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements

    NASA Astrophysics Data System (ADS)

    Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay

    2016-12-01

    Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.

  8. Combustion characteristics in the transition region of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Cernansky, N. P.; Namer, I.; Tidona, R. J.

    1986-01-01

    A number of important effects have been observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NOx formation. A monodisperse aerosol generator has been used to form and deliver a well controlled liquid fuel spray to the combustion test section where measurements of ignition energy have been made. The ignition studies were performed on monodisperse n-heptane sprays at atmospheric pressure over a range of equivalence ratios and droplet diameters. A capacitive discharge spark ignition system was used as the ignition source, providing independent control of spark energy and duration. Preliminary measurements were made to optimize spark duration and spark gap, optimum conditions being those at which the maximum frequency or probability of ignition was observed. Using the optimum electrode spacing and spark duration, the frequency of ignition was determined as a function of spark energy for three overall equivalence ratios (0.6, 0.8, and 1.0) and for initial droplet diameters of 25, 40, 50, 60, and 70 micro m.

  9. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.

    PubMed

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O

    2017-05-01

    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon ® VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon ® VA 64, Soluplus ® and Eudragit ® E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon ® VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon ® VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  10. A Global Approach to the Optimal Trajectory Based on an Improved Ant Colony Algorithm for Cold Spray

    NASA Astrophysics Data System (ADS)

    Cai, Zhenhua; Chen, Tingyang; Zeng, Chunnian; Guo, Xueping; Lian, Huijuan; Zheng, You; Wei, Xiaoxu

    2016-12-01

    This paper is concerned with finding a global approach to obtain the shortest complete coverage trajectory on complex surfaces for cold spray applications. A slicing algorithm is employed to decompose the free-form complex surface into several small pieces of simple topological type. The problem of finding the optimal arrangement of the pieces is translated into a generalized traveling salesman problem (GTSP). Owing to its high searching capability and convergence performance, an improved ant colony algorithm is then used to solve the GTSP. Through off-line simulation, a robot trajectory is generated based on the optimized result. The approach is applied to coat real components with a complex surface by using the cold spray system with copper as the spraying material.

  11. Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Vackel, Andrew; Dwivedi, Gopal; Sampath, Sanjay

    2015-07-01

    Thermal spray coatings are used extensively for the protection and life extension of engineering components exposed to harsh wear and/or corrosion during service in aerospace, energy, and heavy machinery sectors. Cermet coatings applied via high-velocity thermal spray are used in aggressive wear situations almost always coupled with corrosive environments. In several instances (e.g., landing gear), coatings are considered as part of the structure requiring system-level considerations. Despite their widespread use, the technology has lacked generalized scientific principles for robust coating design, manufacturing, and performance analysis. Advances in process and in situ diagnostics have provided significant insights into the process-structure-property-performance correlations providing a framework-enhanced design. In this overview, critical aspects of materials, process, parametrics, and performance are discussed through exemplary studies on relevant compositions. The underlying connective theme is understanding and controlling residual stresses generation, which not only addresses process dynamics but also provides linkage for process-property relationship for both the system (e.g., fatigue) and the surface (wear and corrosion). The anisotropic microstructure also invokes the need for damage-tolerant material design to meet future goals.

  12. Optimization of the bake-on siliconization of cartridges. Part I: Optimization of the spray-on parameters.

    PubMed

    Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2016-07-01

    Biopharmaceutical products are increasingly commercialized as drug/device combinations to enable self-administration. Siliconization of the inner syringe/cartridge glass barrel for adequate functionality is either performed at the supplier or drug product manufacturing site. Yet, siliconization processes are often insufficiently investigated. In this study, an optimized bake-on siliconization process for cartridges using a pilot-scale siliconization unit was developed. The following process parameters were investigated: spray quantity, nozzle position, spray pressure, time for pump dosing and the silicone emulsion concentration. A spray quantity of 4mg emulsion showed best, immediate atomization into a fine spray. 16 and 29mg of emulsion, hence 4-7-times the spray volume, first generated an emulsion jet before atomization was achieved. Poor atomization of higher quantities correlated with an increased spray loss and inhomogeneous silicone distribution, e.g., due to runlets forming build-ups at the cartridge lower edge and depositing on the star wheel. A prolonged time for pump dosing of 175ms led to a more intensive, long-lasting spray compared to 60ms as anticipated from a higher air-to-liquid ratio. A higher spray pressure of 2.5bar did not improve atomization but led to an increased spray loss. At a 20mm nozzle-to-flange distance the spray cone exactly reached the cartridge flange, which was optimal for thicker silicone layers at the flange to ease piston break-loose. Initially, 10μg silicone was sufficient for adequate extrusion in filled cartridges. However, both maximum break-loose and gliding forces in filled cartridges gradually increased from 5-8N to 21-22N upon 80weeks storage at room temperature. The increase for a 30μg silicone level from 3-6N to 10-12N was moderate. Overall, the study provides a comprehensive insight into critical process parameters during the initial spray-on process and the impact of these parameters on the characteristics of the

  13. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  14. Simulation of future stream alkalinity under changing deposition and climate scenarios.

    PubMed

    Welsch, Daniel L; Cosby, B Jack; Hornberger, George M

    2006-08-31

    Models of soil and stream water acidification have typically been applied under scenarios of changing acidic deposition, however, climate change is usually ignored. Soil air CO2 concentrations have potential to increase as climate warms and becomes wetter, thus affecting soil and stream water chemistry by initially increasing stream alkalinity at the expense of reducing base saturation levels on soil exchange sites. We simulate this change by applying a series of physically based coupled models capable of predicting soil air CO2 and stream water chemistry. We predict daily stream water alkalinity for a small catchment in the Virginia Blue Ridge for 60 years into the future given stochastically generated daily climate values. This is done for nine different combinations of climate and deposition. The scenarios for both climate and deposition include a static scenario, a scenario of gradual change, and a scenario of abrupt change. We find that stream water alkalinity continues to decline for all scenarios (average decrease of 14.4 microeq L-1) except where climate is gradually warming and becoming more moist (average increase of 13 microeq L-1). In all other scenarios, base cation removal from catchment soils is responsible for limited alkalinity increase resulting from climate change. This has implications given the extent that acidification models are used to establish policy and legislation concerning deposition and emissions.

  15. Evaluation of mechanical properties of Aluminum-Copper cold sprayed and alloy 625 wire arc sprayed coatings

    NASA Astrophysics Data System (ADS)

    Bashirzadeh, Milad

    This study examines microstructural-based mechanical properties of Al-Cu composite deposited by cold spraying and wire arc sprayed nickel-based alloy 625 coating using numerical modeling and experimental techniques. The microhardness and elastic modulus of samples were determined using the Knoop hardness technique. Hardness in both transverse and longitudinal directions on the sample cross-sections has been measured. An image-based finite element simulation algorithm was employed to determine the mechanical properties through an inverse analysis. In addition mechanical tests including, tensile, bending, and nano-indentation tests were performed on alloy 625 wire arc sprayed samples. Overall, results from the experimental tests are in relatively good agreement for deposited Al-Cu composites and alloy 625 coating. However, results obtained from numerical simulation are significantly higher in value than experimentally obtained results. Examination and comparison of the results are strong indications of the influence of microstructure characteristics on the mechanical properties of thermally spray deposited coatings.

  16. Development and evaluation of suspension plasma sprayed yttria stabilized zirconia coatings as thermal barriers

    NASA Astrophysics Data System (ADS)

    van Every, Kent J.

    The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs

  17. Probing a Spray Using Frequency-Analyzed Light Scattering

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard; Lee, Michael H.; Rhys, Noah O.

    2008-01-01

    Frequency-analyzed laser-light scattering (FALLS) is a relatively simple technique that can be used to measure principal characteristics of a sheet of sprayed liquid as it breaks up into ligaments and then the ligaments break up into droplets. In particular, through frequency analysis of laser light scattered from a spray, it is possible to determine whether the laser-illuminated portion of the spray is in the intact-sheet region, the ligament region, or the droplet region. By logical extension, it is possible to determine the intact length from the location of the laser beam at the transition between the intact-sheet and ligament regions and to determine a breakup frequency from the results of the frequency analysis. Hence, FALLS could likely be useful both as a means of performing research on sprays in general and as a means of diagnostic sensing in diverse applications in which liquid fuels are sprayed. Sprays are also used for drying and to deposit paints and other coating materials.

  18. Development of spray guns for the application of rigid foam insulation

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1993-01-01

    The paper describes the activities initiated to improve the existing spray gun system used for spraying insulating foam on the External Tank of the Space Shuttle, due to the quality variations of the applied foam noted in the past. Consideration is given to the two tasks of the project: (1) investigations of possible improvements, as an interim measure, to the spray gun currently used to apply the large acreage spray-on-foam insulation and the evaluation of other commercial equipment; and (2) the design and fabrication of a new automatic spray gun. The design and operation of the currently used Binks 43 PA spray gun are described together with several new breadboard spray guns designed and fabricated and the testing procedures developed. These new guns include the Modular Automatic Foam spray gun, the Ball Valve spray gun, and the Tapered Plug Valve (TPV) gun. As a result of tests, the TPV spray gun is recommended to replace the currently used automatic spray gun.

  19. High-volume use of self-cementing spray dry absorber material for structural applications

    NASA Astrophysics Data System (ADS)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  20. Combustion of liquid sprays at high pressures

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.

    1977-01-01

    The combustion of pressure atomized fuel sprays in high pressure stagnant air was studied. Measurements were made of flame and spray boundaries at pressures in the range 0.1-9 MPa for methanol and n-pentane. At the higher test pressure levels, critical phenomena are important. The experiments are compared with theoretical predictions based on a locally homogeneous two-phase flow model. The theory correctly predicted the trends of the data, but underestimates flame and spray boundaries by 30-50 percent, indicating that slip is still important for the present experiments (Sauter mean diameters of 30 microns at atmospheric pressure under cold flow conditions). Since the sprays are shorter at high pressures, slip effects are still important even though the density ratio of the phases approach one another as the droplets heat up. The model indicates the presence of a region where condensed water is present within the spray and provides a convenient means of treating supercritical phenomena.

  1. Cold Spray for Repair of Magnesium Components

    DTIC Science & Technology

    2011-11-01

    powder material. Other advantages of the Cold Spray process include:  It provides extremely dense coatings with virtually no inclusions or cracks ... crack on insertion of Rosan fitting and does not reclaim the mechanical properties of the Mg alloy. It is expected that the use of Cold Spray coating...Spray process include:  Extremely dense coatings with virtually no inclusions or cracks .  Retains properties and microstructure of initial powder

  2. Balanced-Rotating-Spray Tank-And-Pipe-Cleaning System

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Caimi, Raoul E. B.

    1995-01-01

    Spray head translates and rotates to clean entire inner surface of tank or pipe. Cleansing effected by three laterally balanced gas/liquid jets from spray head that rotates about longitudinal axis. Uses much less liquid. Cleaning process in system relies on mechanical action of jets instead of contaminant dissolution. Eliminates very difficult machining needed to make multiple converging/diverging nozzles within one spray head. Makes nozzle much smaller. Basic two-phase-flow, supersonic-nozzle design applied to other spray systems for interior or exterior cleaning.

  3. Efficacy of clobetasol spray: factors beyond patient compliance.

    PubMed

    Bhutani, Tina; Koo, John; Maibach, Howard I

    2012-02-01

    Clobetasol 0.05% spray, a topical clobetasol propionate, is a non-greasy formulation that has shown increased clinical efficacy in a head-to-head comparison with foam formulation. Moreover, available data from randomized, controlled, double-blind trials suggests that clobetasol spray is, in fact, slightly more effective than most, if not all, other preparations of clobetasol. The fact that clobetasol spray is exceptionally easy to comply with may have played a major role in this outcome; however, other factors must be considered. These include vehicle metamorphosis post-application as well as vehicle and excipient effects on stratum corneum permeability. Basic concepts in topical drug delivery and how they apply to this spray vehicle may further explain the greater efficacy of clobetasol spray.

  4. Liquid Fertilizer Spraying Performance Using A Knapsack Power Sprayer On Soybean Field

    NASA Astrophysics Data System (ADS)

    Gatot, P.; Anang, R.

    2018-05-01

    An effort for increasing soybean production can be conducted by applying liquid fertilizer on soybean cultivation field. The objective of this research was to determine liquid fertilizer spraying performance using knapsack power sprayer TASCO TF-900 on a soybean cultivation field. Performances test were conducted in the Laboratory of Spraying Test and on a soybean cultivation field to determine (1) effective spraying width, (2) droplets diameter, (3) droplets density, (4) effective spraying discharge rate, and (5) effective field capacity of spraying. The research was conducted using 2 methods: (1) one-nozzle spraying, and (2) four- nozzles spraying. Results of the research showed that at a constant pressure of 900 kPa effective spraying width using one-nozzle spraying and four-nozzles spraying were 0.62 m and 1.10 m. A bigger effective spraying width was resulted in a bigger average effective spraying discharge rate and average effective spraying field capacity of 4.52 l/min and 83.92 m2/min on forward walking speed range of 0.94 m/s up to 1.77 m/s. On the contrary, bigger effective spraying width was result in bigger droplets diameter of 502.73 μm and a smaller droplets density of 98.39 droplets/cm2, whereas smaller effective spraying width was resulted in a smaller droplets diameter of 367.09 μm and a bigger droplets density of 350.53 droplets/cm2. One-nozzle spraying method produced a better spraying quality than four-nozzles spraying method, although four-nozzles spraying was resulted in a bigger effective field capacity of spraying.

  5. Cryogen spray cooling: Effects of droplet size and spray density on heat removal.

    PubMed

    Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.

  6. LSPRAY-III: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2008-01-01

    LSPRAY-III is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray because of its importance in aerospace application. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-III, we have advanced the state-of-the-art in spray computations in several important ways.

  7. LSPRAY-II: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2004-01-01

    LSPRAY-II is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray because of its importance in aerospace application. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-II, we have advanced the state-of-the-art in spray computations in several important ways.

  8. Ballistic Imaging of Liquid Breakup Processes in Dense Sprays

    DTIC Science & Technology

    2009-06-24

    spray breakup in its entirety. Gas-phase flowfield dynamics can be captured via particle image velocimetry (PIV) and/or laser Doppler velocimetry... Coherent Legend Ti:Sapphire regenerative amplifier, seeded with a Spectra-Physics Tsunami Ti:Sapphire mode-locked laser generating 40 fs, 2.5 mJ pulses...scattering turbid media. Laser Phys. Lett., 3(9):464–7, 2006. [44] B. Kaldvee, A. Ehn, J. Bood, and M. Aldén. Development of a picosecond- LIDAR system

  9. Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study.

    PubMed

    Noack, Clinton W; Dzombak, David A; Nakles, David V; Hawthorne, Steven B; Heebink, Loreal V; Dando, Neal; Gershenzon, Michael; Ghosh, Rajat S

    2014-10-01

    Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials - cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash - are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Nano spray drying for encapsulation of pharmaceuticals.

    PubMed

    Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi

    2018-05-17

    Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Combining spray nozzle simulators with meshes: characterization of rainfall intensity and drop properties

    NASA Astrophysics Data System (ADS)

    Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.

    2013-04-01

    Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.

  12. Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak

    1987-01-01

    A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.

  13. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the

  14. Current implications of past DDT indoor spraying in Oman.

    PubMed

    Booij, Petra; Holoubek, Ivan; Klánová, Jana; Kohoutek, Jiří; Dvorská, Alice; Magulová, Katarína; Al-Zadjali, Said; Čupr, Pavel

    2016-04-15

    In Oman, DDT was sprayed indoors during an intensive malaria eradication program between 1976 and 1992. DDT can remain for years after spraying and is associated with potential health risk. This raises the concern for human exposure in areas where DDT was used for indoor spraying. Twelve houses in three regions with a different history of DDT indoor spraying were chosen for a sampling campaign in 2005 to determine p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and p,p'-dichlorodiphenyldichloroethane (p,p'-DDD) levels in indoor air, dust, and outdoor soil. Although DDT was only sprayed indoor, p,p'-DDT, p,p'-DDE and p,p'-DDD were also found in outdoor soil. The results indicate that release and exposure continue for years after cessation of spraying. The predicted cancer risk based on concentrations determined in 2005, indicate that there was still a significant cancer risk up to 13 to 16years after indoor DDT spraying. A novel approach, based on region-specific half-lives, was used to predict concentrations in 2015 and showed that more than 21years after spraying, cancer risk for exposure to indoor air, dust, and outdoor soil are acceptable in Oman for adults and young children. The model can be used for other locations and countries to predict prospective exposure of contaminants based on indoor experimental measurements and knowledge about the spraying time-schedule to extrapolate region-specific half-lives and predict effects on the human population years after spraying. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Evaluation of Alkaline Cleaner Materials

    NASA Technical Reports Server (NTRS)

    Partz, Earl

    1998-01-01

    Alkaline cleaners used to process aluminum substrates have contained chromium as the corrosion inhibitor. Chromium is a hazardous substance whose use and control are described by environmental laws. Replacement materials that have the characteristics of chromated alkaline cleaners need to be found that address both the cleaning requirements and environmental impacts. This report will review environmentally friendly candidates evaluated as non-chromium alkaline cleaner replacements and methods used to compare those candidates one versus another. The report will also list characteristics used to select candidates based on their declared contents. It will also describe and evaluate methods used to discriminate among the large number of prospective candidates.

  16. Thermophysical properties of plasma sprayed coatings

    NASA Technical Reports Server (NTRS)

    Wilkes, K. E.; Lagedrost, J. F.

    1973-01-01

    Thermophysical properties of plasma sprayed materials were determined for the following plasma sprayed materials: CaO - stabilized ZrO2, Y2O3 - stabilized ZerO2, Al2O3, HfO2 Mo, nichrome, NiAl, Mo-ZrO2, and MoAl2O3 mixtures. In all cases the thermal conductivity of the as-sprayed materials was found to be considerably lower than that of the bulk material. The flash-laser thermal diffusivity technique was used both for diffusivity determination of single-layer materials and to determine the thermal contact resistance at the interface of two-layer specimens.

  17. Polydisperse effects in jet spray flames

    NASA Astrophysics Data System (ADS)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  18. Indoor spraying with the pyrethroid insecticide lambda-cyhalothrin: effects on spraymen and inhabitants of sprayed houses.

    PubMed Central

    Moretto, A.

    1991-01-01

    In March 1990 a study was carried out in the village of Kicheba, United Republic of Tanzania, in which the pyrethroid insecticide lambda-cyhalothrin was sprayed on all the internal surfaces of houses and other shelters at a coverage of about 25 mg of active ingredient per m2. Every day for 6 days, 12 spraymen and 3 squad-leaders were interviewed about symptoms of overexposure to the insecticide. Each sprayman used up to 62 g of lambda-cyhalothrin over 2.7-5.1 hours every day. All the spraymen complained at least once of symptoms that were related to exposure to lambda-cyhalothrin, the commonest being itching and burning of the face, and nose or throat irritation frequently accompanied by sneezing or coughing. Facial symptoms occurred on non-protected areas only. The symptoms were experienced at various times after the beginning of exposure and disappeared before the following morning. The number of subjects affected and the duration of their facial symptoms were proportional to the amount of compound sprayed. A sample of individuals was interviewed 1 day and 5-6 days after their houses had been sprayed. One woman, who entered her house 30 minutes after the end of spraying, complained of periorbicular itching, but this lasted only a few minutes. No other significant, insecticide-related adverse effect was reported by the inhabitants of the sprayed houses. PMID:1959160

  19. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance againstmore » corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.« less

  20. Optimization of the Büchi B-90 spray drying process using central composite design for preparation of solid dispersions.

    PubMed

    Gu, Bing; Linehan, Brian; Tseng, Yin-Chao

    2015-08-01

    A central composite design approach was applied to study the effect of polymer concentration, inlet temperature and air flow rate on the spray drying process of the Büchi B-90 nano spray dryer (B-90). Hypromellose acetate succinate-LF was used for the Design of Experiment (DoE) study. Statistically significant models to predict the yield, spray rate, and drying efficiency were generated from the study. The spray drying conditions were optimized according to the models to maximize the yield and efficiency of the process. The models were further validated using a poorly water-soluble investigational compound (BI064) from Boehringer Ingelheim Pharmaceuticals. The polymer/drug ratio ranged from 1/1 to 3/1w/w. The spray dried formulations were amorphous determined by differential scanning calorimetry and X-ray powder diffraction. The particle size of the spray dried formulations was 2-10 μm under polarized light microscopy. All the formulations were physically stable for at least 3h when suspended in an aqueous vehicle composed of 1% methyl cellulose. This study demonstrates that DoE is a useful tool to optimize the spray drying process, and the B-90 can be used to efficiently produce amorphous solid dispersions with a limited quantity of drug substance available during drug discovery stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Development of the improved helicopter icing spray system (IHISS)

    NASA Technical Reports Server (NTRS)

    Peterson, Andrew A.; Jenks, Mark D.; Gaitskill, William H.

    1989-01-01

    Boeing Helicopters has been awarded a contract by the U.S. Army to design, fabricate and test a replacement for the existing Helicopter Icing Spray System (HISS). The Improved Hiss (IHISS), capable of deployment from any CH-47D helicopter, will include new icing spray nozzles and pneumatic pressure source, and a significantly larger water tank and spray boom. Results are presented for extensive bench and icing tunnel test programs used to select and modify an improved spray nozzle and validate spray boom aerodynamic characteristics. The resulting system will provide a significantly larger icing cloud with droplet characteristics closely matching natural icing conditions.

  2. Automated Plasma Spray (APS) process feasibility study: Plasma spray process development and evaluation

    NASA Technical Reports Server (NTRS)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1979-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.

  3. Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review

    NASA Astrophysics Data System (ADS)

    Feuerstein, Albert; Knapp, James; Taylor, Thomas; Ashary, Adil; Bolcavage, Ann; Hitchman, Neil

    2008-06-01

    The most advanced thermal barrier coating (TBC) systems for aircraft engine and power generation hot section components consist of electron beam physical vapor deposition (EBPVD) applied yttria-stabilized zirconia and platinum modified diffusion aluminide bond coating. Thermally sprayed ceramic and MCrAlY bond coatings, however, are still used extensively for combustors and power generation blades and vanes. This article highlights the key features of plasma spray and HVOF, diffusion aluminizing, and EBPVD coating processes. The coating characteristics of thermally sprayed MCrAlY bond coat as well as low density and dense vertically cracked (DVC) Zircoat TBC are described. Essential features of a typical EBPVD TBC coating system, consisting of a diffusion aluminide and a columnar TBC, are also presented. The major coating cost elements such as material, equipment and processing are explained for the different technologies, with a performance and cost comparison given for selected examples.

  4. Thermal Spray Maps: Material Genomics of Processing Technologies

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Sanpo, Noppakun; Sesso, Mitchell L.; Kim, Sun Yung; Berndt, Christopher C.

    2013-10-01

    There is currently no method whereby material properties of thermal spray coatings may be predicted from fundamental processing inputs such as temperature-velocity correlations. The first step in such an important understanding would involve establishing a foundation that consolidates the thermal spray literature so that known relationships could be documented and any trends identified. This paper presents a method to classify and reorder thermal spray data so that relationships and correlations between competing processes and materials can be identified. Extensive data mining of published experimental work was performed to create thermal spray property-performance maps, known as "TS maps" in this work. Six TS maps will be presented. The maps are based on coating characteristics of major importance; i.e., porosity, microhardness, adhesion strength, and the elastic modulus of thermal spray coatings.

  5. A Comparison of Fuel Sprays from Several Types of Injection Nozzles

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1936-01-01

    This report presents the tests results of a series of tests made of the sprays from 14 fuel injection nozzles of 9 different types, the sprays being injected into air at atmospheric density and at 6 and 14 times atmospheric density. High-speed spark photographs of the sprays from each nozzle at each air density were taken at the rate of 2,000 per second, and from them were obtained the dimensions of the sprays and the rates of spray-tip penetration. The sprays were also injected against plasticine targets placed at different distances from the nozzles, and the impressions made in the plasticine were used as an indication of the distribution of the fuel within the spray. Cross-sectional sketches of the different types of sprays are given showing the relative sizes of the spray cores and envelopes. The characteristics of the sprays are compared and discussed with respect to their application to various types of engines.

  6. Spray Gun With Constant Mixing Ratio

    NASA Technical Reports Server (NTRS)

    Simpson, William G.

    1987-01-01

    Conceptual mechanism mounted in handle of spray gun maintains constant ratio between volumetric flow rates in two channels leading to spray head. With mechanism, possible to keep flow ratio near 1:1 (or another desired ratio) over range of temperatures, orifice or channel sizes, or clogging conditions.

  7. Skin sterility after application of ethyl chloride spray.

    PubMed

    Polishchuk, Daniil; Gehrmann, Robin; Tan, Virak

    2012-01-18

    Ethyl chloride topical anesthetic spray is labeled as nonsterile, yet it is widely used during injection procedures performed in an outpatient setting. The purpose of this study was to investigate the sterility of ethyl chloride topical anesthetic spray applied before an injection. Our a priori hypothesis was that application of the spray after the skin has been prepared would not alter the sterility of the injection site. We conducted a prospective, blinded, controlled study to assess the effect of ethyl chloride spray on skin sterility. Fifteen healthy adult subjects (age, twenty-three to sixty-one years) were prepared for mock injections into both shoulders and both knees, although no injection was actually performed. Three culture samples were obtained from each site on the skin: one before skin preparation with isopropyl alcohol, one after skin preparation and before application of ethyl chloride, and one after ethyl chloride had been sprayed on the site. In addition, the sterility of the ethyl chloride was tested directly by inoculating cultures with spray from the bottles. Growth occurred in 70% of the samples obtained before skin preparation, 3% of the samples obtained after skin preparation but before application of ethyl chloride, and 5% of the samples obtained after the injection site had been sprayed with ethyl chloride. The percentage of positive cultures did not increase significantly after application of ethyl chloride (p = 0.65). Spraying of ethyl chloride directly on agar plates resulted in growth on 13% of these plates compared with 11% of the control plates; this difference was also not significant (p = 0.80). Although ethyl chloride spray is not sterile, its application did not alter the sterility of the injection sites in the shoulder and knee.

  8. Fuel thermal stability effects on spray characteristics

    NASA Technical Reports Server (NTRS)

    Lefebvre, A. H.; Nickolaus, D.

    1987-01-01

    The propensity of a heated hydrocarbon fuel toward solids deposition within a fuel injector is investigated experimentally. Fuel is arranged to flow through the injector at constant temperature, pressure, and flow rate and the pressure drop across the nozzle is monitored to provide an indication of the amount of deposition. After deposits have formed, the nozzle is removed from the test rig and its spray performance is compared with its performance before deposition. The spray characteristics measured include mean drop size, drop-size distribution, and radial and circumferential fuel distribution. It is found that small amounts of deposition can produce severe distortion of the fuel spray pattern. More extensive deposition restores spray uniformity, but the nozzle flow rate is seriously curtailed.

  9. Clinicopathological effects of pepper (oleoresin capsicum) spray.

    PubMed

    Yeung, M F; Tang, William Y M

    2015-12-01

    Pepper (oleoresin capsicum) spray is one of the most common riot-control measures used today. Although not lethal, exposure of pepper spray can cause injury to different organ systems. This review aimed to summarise the major clinicopathological effects of pepper spray in humans. MEDLINE, EMBASE database, and Cochrane Database of Systematic Reviews were used to search for terms associated with the clinicopathological effects of pepper spray in humans and those describing the pathophysiology of capsaicin. A phone interview with two individuals recently exposed to pepper spray was also conducted to establish clinical symptoms. Major key words used for the MEDLINE search were "pepper spray", "OC spray", "oleoresin capsicum"; and other key words as "riot control agents", "capsaicin", and "capsaicinoid". We then combined the key words "capsaicin" and "capsaicinoid" with the major key words to narrow down the number of articles. A search with other databases including EMBASE and Cochrane Database of Systematic Reviews was also conducted with the above phrases to identify any additional related articles. All article searches were confined to human study. The bibliography of articles was screened for additional relevant studies including non-indexed reports, and information from these was also recorded. Non-English articles were included in the search. Fifteen articles were considered relevant. Oleoresin capsicum causes almost instantaneous irritative symptoms to the skin, eyes, and respiratory system. Dermatological effects include a burning sensation, erythema, and hyperalgesia. Ophthalmic effects involve blepharospasm, conjunctivitis, peri-orbital oedema, and corneal pathology. Following inhalation, a stinging or burning sensation can be felt in the nose with sore throat, chest tightness, or dyspnoea. The major pathophysiology is neurogenic inflammation caused by capsaicinoid in the pepper spray. There is no antidote for oleoresin capsicum. Treatment consists of

  10. Understanding the effects of process parameters on the properties of cold gas dynamic sprayed pure titanium coatings

    NASA Astrophysics Data System (ADS)

    Wong, Wilson

    The cold gas dynamic spraying of commercially pure titanium coatings was investigated. Specifically, the relationship between several key cold spray parameters on the quality of the resulting coatings was studied in order to gain a more thorough understanding of the cold spray process. To achieve this goal, three distinct investigations were performed. The first part of the investigation focussed on the effect of propelling gas, particularly helium and nitrogen, during the cold spraying of titanium coatings. Coatings were characterised by SEM and were evaluated for their deposition efficiency (DE), microhardness, and porosity. In selected conditions, three particle velocities were investigated such that for each condition, the propelling gasses temperature and pressure were attuned to attain similar particle velocities for each gas. In addition, a thick and fully dense cold sprayed titanium coating was achieved with optimised spray parameters and nozzle using helium. The corresponding average particle velocity was 1173 m/s. The second part of the investigation studied the effect of particle morphology (spherical, sponge, and irregular) and size distributions (mean particle sizes of 20, 29, and 36 mum) of commercially pure titanium on the mechanical properties of the resulting cold sprayed coatings. Numerous powder and coating characterisations were performed. From these data, semi-empirical flow (stress-strain) curves were generated based on the Johnson-Cook plasticity model which could be used as a measure of cold sprayability. Cold sprayability can be defined as the ease with which a powder can be cold sprayed. It was found that the sponge and irregular commercially pure titanium powders had higher oxygen content, poorer powder flowability, higher compression ratio, lower powder packing factor, and higher average particle impact velocities compared to the spherical powders. XRD results showed no new phases present when comparing the various feedstock powders to

  11. Deodorant spray: a newly identified cause of cold burn.

    PubMed

    May, Ulrich; Stirner, Karl-Heinz; Lauener, Roger; Ring, Johannes; Möhrenschlager, Matthias

    2010-09-01

    Two patients encountered a first-degree cold burn after use of a deodorant spray. The spray-nozzle to skin-surface distance was approximately 5 cm, and the spraying lasted approximately 15 seconds. Under laboratory conditions, the deodorant in use was able to induce a decline in temperature of >60 degrees C. These 2 cases highlight a little-known potential for skin damage by deodorant sprays if used improperly.

  12. Water Quality Interaction with Alkaline Phosphatase in the Ganga River: Implications for River Health.

    PubMed

    Yadav, Amita; Pandey, Jitendra

    2017-07-01

    Carbon, nitrogen and phosphorus inputs through atmospheric deposition, surface runoff and point sources were measured in the Ganga River along a gradient of increasing human pressure. Productivity variables (chlorophyll a, gross primary productivity, biogenic silica and autotrophic index) and heterotrophy (respiration, substrate induced respiration, biological oxygen demand and fluorescein diacetate hydrolysis) showed positive relationships with these inputs. Alkaline phosphatase (AP), however, showed an opposite trend. Because AP is negatively influenced by available P, and eutrophy generates a feedback on P fertilization, the study implies that the alkaline phosphatase can be used as a high quality criterion for assessing river health.

  13. Investigation of spray dispersion and particulate formation in diesel fuel flames

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Bankston, C. P.; Kwack, E. Y.; Bellan, J.; Harstad, K.

    1988-01-01

    An experimental study of electrostatical atomized and dispersed diesel fuel jets was conducted at various back pressures to 40 atm. A new electrostatic injection technique was utilized to generate continuous, stable fuel sprays at charge densities of 1.5 to 2.0 C/m3 of fluid at one atm, and about 1.0 C/m3 at 40 atm. Flowrates were varied from 0.5 to 2.5 ml/s and electric potentials to -18 kV. Visual observations showed that significant enhanced dispersion of charged fuel jets occurred at high back pressures compared to aerodynamic breakup and dispersion. The average drop size was about the same as the spray triode orifice diameter, and was between the Kelly theory and the Rayleigh limit. The ignition tests, done only at one atm, indicated stable combustion of the electrostatically dispersed fuel jets.

  14. Spray characteristics of two combined jet atomizers

    NASA Astrophysics Data System (ADS)

    Tambour, Y.; Portnoy, D.

    The downstream changes in droplet volume concentration of a vaporizing fuel spray produced by two jet atomizers which form an overlapping zone of influence is theoretically analyzed, employing experimental data of Yule et al. (1982) for a single jet atomizer as initial conditions. One of the atomizers is located below the other at a certain distance downstream. Such an injection geometry can be found in afterburners of modern jet engines. The influence of various vertical and horizontal distances between the two atomizers on the downstream spray characteristics is investigated for a vaporizing kerosene spray in a 'cold' (293 K) and a 'hot' (450 K) environment. The analysis shows how one can control the downstream spray characteristics via the geometry of injection. Such geometrical considerations may be of great importance in the design of afterburner wall geometry and in the reduction of wall thermal damage. The injection geometry may also affect the intensity of the spray distribution which determines the mode of droplet group combustion. The latter plays an important role in improving afterburner combustion efficiency.

  15. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    PubMed

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90.

    PubMed

    Li, Xiang; Anton, Nicolas; Arpagaus, Cordin; Belleteix, Fabrice; Vandamme, Thierry F

    2010-10-15

    Spray drying technology is widely known and used to transform liquids (solutions, emulsions, suspension, slurries, pastes or even melts) into solid powders. Its main applications are found in the food, chemical and materials industries to enhance ingredient conservation, particle properties, powder handling and storage etc. However, spray drying can also be used for specific applications in the formulation of pharmaceuticals for drug delivery (e.g. particles for pulmonary delivery). Büchi is a reference in the development of spray drying technology, notably for laboratory scale devices. This study presents the Nano Spray Dryer B-90, a revolutionary new sprayer developed by Büchi, use of which can lower the size of the produced dried particles by an order of magnitude attaining submicron sizes. In this paper, results are presented with a panel of five representative polymeric wall materials (arabic gum, whey protein, polyvinyl alcohol, modified starch, and maltodextrin) and the potentials to encapsulate nano-emulsions, or to formulate nano-crystals (e.g. from furosemide) are also shown. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Controlled overspray spray nozzle

    NASA Technical Reports Server (NTRS)

    Prasthofer, W. P. (Inventor)

    1981-01-01

    A spray system for a multi-ingredient ablative material wherein a nozzle A is utilized for suppressing overspray is described. The nozzle includes a cyclindrical inlet which converges to a restricted throat. A curved juncture between the cylindrical inlet and the convergent portion affords unrestricted and uninterrupted flow of the ablative material. A divergent bell-shaped chamber and adjustable nozzle exit B is utilized which provides a highly effective spray pattern in suppressing overspray to an acceptable level and producing a homogeneous jet of material that adheres well to the substrate.

  18. An experimental study of unsteady sprays at very high injection pressures

    NASA Astrophysics Data System (ADS)

    Reggiori, A.; Mariani, F.; Parigi, G.; Carlevaro, R.

    An experimental study of the development of fuel sprays under very high injection pressures is described. A gas gun capable of generating pressure pulses up to 10,000 bar has been employed as an injection pump. Tests have been carried out with simple cylindrical nozzles, injecting diesel oil in ambient air. The development of the jet has been visualized by means of flash shadowgraphy.

  19. Influence of handpiece maintenance sprays on resin bonding to dentin.

    PubMed

    Sugawara, Toyotarou; Kameyama, Atsushi; Haruyama, Akiko; Oishi, Takumi; Kukidome, Nobuyuki; Takase, Yasuaki; Tsunoda, Masatake

    2010-01-01

    To investigate the influence of maintenance spray on resin bonding to dentin. The crown of extracted, caries-free human molars was transversally sectioned with a model trimmer to prepare the dentin surfaces from mid-coronal sound dentin, and then uniformly abraded with #600 silicon carbide paper. The dentin surfaces were randomly divided into three groups: oil-free spray group where maintenance cleaner for air bearing handpieces was sprayed onto the dentin surface for 1 s and rinsed with water spray for 30 s; oil-containing spray group where maintenance cleaner for micro motor handpieces was sprayed onto the dentin surface for 1 s and rinsed with water spray for 30 s; and control group where the surface was rinsed with water spray for 30 s and then air-dried. These surfaces were then bonded with Clearfil SE Bond (Kuraray Medical), and resin composite (Clearfil AP-X, Kuraray Medical) build-up crowns were incrementally constructed on the bonded surfaces. After storage for 24 h in 37°C water, the bonded teeth were sectioned into hour-glass shaped slices (0.7-mm thick) perpendicular to the bonded surfaces. The specimens were then subjected to microtensile bond strength (μTBS) testing at a crosshead speed of 1.0 mm/min. Data were analyzed with one-way ANOVA and the Tukey-Kramer test. Maintenance spray-contaminated specimens (oil-free and oil-containing spray groups) showed significantly lower μTBS than control specimens (P < 0.05). However, there was no significant difference between the spray-contaminated groups (P > 0.05). Maintenance spray significantly reduces the bond strength of Clearfil SE Bond to dentin.

  20. Spray visualization of alternative fuels at hot ambient conditions

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2017-11-01

    Gas-to-Liquid (GTL) has gained significant interest as drop-in alternative jet fuel owing to its cleaner combustion characteristics. The physical and evaporation properties of GTL fuels are different from those of the conventional jet fuels. Those differences will have an effect on the spray, and in turn, the combustion performance. In this study, the non-reacting near nozzle spray dynamics such as spray cone angle, liquid sheet breakup and liquid velocity of GTL fuel will be investigated and compared with those of the conventional jet fuel. This work is a follow up of the preliminary study performed at atmospheric ambient conditions where differences were observed in the near nozzle spray characteristics between the fuels. Whereas, in this study the spray visualization will be performed in a hot and inert environment to account for the difference in evaporation characteristics of the fuels. The spray visualization images will be captured using the shadowgraph technique. A rigorous statistical analysis of the images will be performed to compare the spray dynamics between the fuels.

  1. Venom-spraying behavior of the scorpion Parabuthus transvaalicus (Arachnida: Buthidae).

    PubMed

    Nisani, Zia; Hayes, William K

    2015-06-01

    Many animals use chemical squirting or spraying behavior as a defensive response. Some members of the scorpion genus Parabuthus (family Buthidae) can spray their venom. We examined the stimulus control and characteristics of venom spraying by Parabuthus transvaalicus to better understand the behavioral context for its use. Venom spraying occurred mostly, but not always, when the metasoma (tail) was contacted (usually grasped by forceps), and was absent during stinging-like thrusts of the metasoma apart from contact. Scorpions were significantly more likely to spray when contact was also accompanied by airborne stimuli. Sprays happened almost instantaneously following grasping by forceps (median=0.23s) as a brief (0.07-0.30s, mean=0.18s), fine stream (<5° arc) that was not directed toward the stimulus source; however, rapid independent movements of the metasoma and/or telson (stinger) often created a more diffuse spray, increasing the possibility of venom contact with the sensitive eyes of potential scorpion predators. Successive venom sprays varied considerably in duration and velocity. Collectively, these results suggest that venom spraying might be useful as an antipredator function and can be modulated based on threat. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. [Research about effect of spray drying conditions on hygroscopicity of spray dry powder of gubi compound's water extract and its mechanism].

    PubMed

    Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei

    2014-02-01

    To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).

  3. Mechanism of alcohol-enhanced lucigenin chemiluminescence in alkaline solution.

    PubMed

    Chi, Quan; Chen, Wanying; He, Zhike

    2015-11-01

    The chemiluminescence (CL) of lucigenin (Luc(2+)) can be enhanced by different alcohols in alkaline solution. The effect of different fatty alcohols on the CL of lucigenin was related to the carbon chain length and the number of hydroxyl groups. Glycerol provides the greatest enhancement. UV/Vis absorption spectra and fluorescence spectra showed that N-methylacridone (NMA) was produced in the CL reaction in the presence of different alcohols. The peak of the CL spectrum was located at 470 nm in all cases, indicating that the luminophore was always the excited-state NMA. The quenching of lucigenin CL by superoxide dismutase (SOD) and the electron spin resonance (ESR) results with the spin trap of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) demonstrated that superoxide anions (O2 (•-)) were generated from dissolved oxygen in the CL reaction and that glycerol and dihydroxyacetone (DHA) can promote O2 (•-) production by the reduction of dissolved oxygen in alkaline solution. It was assumed that the enhancement provided by different alcohols was related to the solvent effect and reducing capacity. Glycerol and DHA can also reduce Luc(2+) into lucigenin cation radicals (Luc(•+) ), which react with O2 (•-) to produce CL, and glycerol can slowly transform into DHA, which is oxidized quickly in alkaline solution. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Alkaline biodegradable implants for osteoporotic bone defects--importance of microenvironment pH.

    PubMed

    Liu, W; Wang, T; Yang, C; Darvell, B W; Wu, J; Lin, K; Chang, J; Pan, H; Lu, W W

    2016-01-01

    Change of microenvironment pH by biodegradable implants may ameliorate unbalanced osteoporotic bone remodeling. The present work demonstrated that a weak alkaline condition stimulated osteoblasts differentiation while suppressed osteoclast generation. In vivo, implants with an alkaline microenvironment pH (monitored by a pH microelectrode) exhibited a promising healing effect for the repair of osteoporotic bone defects. Under osteoporotic conditions, the response of the bone microenvironment to an endosseous implant is significantly impaired, and this substantially increases the risk of fracture, non-union and aseptic implant loosening. Acid-base equilibrium is an important factor influencing bone cell behaviour. The present purpose was to study the effect of a series of alkaline biodegradable implant materials on regeneration of osteoporotic bone defect, monitoring the microenvironment pH (μe-pH) over time. The proliferation and differentiation potential of osteoporotic rat bone marrow stromal cells and RAW 264.7 cells were examined under various pH conditions. Ovariectomized rat bone defects were filled with specific biodegradable materials, and μe-pH was measured by pH microelectrode. New osteoid and tartrate-resistant acid phosphatase-positive osteoclast-like cells were examined by Goldner's trichrome and TRAP staining, respectively. The intermediate layer between implants and new bone were studied using energy-dispersive X-ray spectroscopy (EDX) linear scanning. In vitro, weak alkaline conditions stimulated osteoporotic rat bone marrow stromal cells (oBMSC) differentiation, while inhibiting the formation of osteoclasts. In vivo, μe-pH differs from that of the homogeneous peripheral blood and exhibits variations over time particular to each material. Higher initial μe-pH was associated with more new bone formation, late response of TRAP-positive osteoclast-like cells and the development of an intermediate 'apatitic' layer in vivo. EDX suggested that

  5. Enhanced decomposition of 1,4-dioxane in water by ozonation under alkaline condition.

    PubMed

    Tian, Gui-Peng; Wu, Qian-Yuan; Li, Ang; Wang, Wen-Long; Hu, Hong-Ying

    2014-01-01

    1,4-Dioxane is a probable human carcinogenic and refractory substance that is widely detected in aquatic environments. Traditional wastewater treatment processes, including activated sludge, cannot remove 1,4-dioxane. Removing 1,4-dioxane with a reaction kinetic constant of 0.32 L/(mol·s) by using ozone, a strong oxidant, is difficult. However, under alkaline environment, ozone generates a hydroxyl radical (•OH) that exhibits strong oxidative potential. Thus, the ozonation of 1,4-dioxane in water under different pH conditions was investigated in this study. In neutral solution, with an inlet ozone feed rate of 0.19 mmol/(L·min), the removal efficiency of 1,4-dioxane was 7.6% at 0.5 h, whereas that in alkaline solution was higher (16.3-94.5%) within a pH range of 9-12. However, the removal efficiency of dissolved organic carbon was considerably lower than that of 1,4-dioxane. This result indicates that several persistent intermediates were generated during 1,4-dioxane ozonation. The pseudo first-order reaction further depicted the reaction of 1,4-dioxane. The obvious kinetic constants (kobs) at pH 9, 10, 11 and 12 were 0.94, 2.41, 24.88 and 2610 L/(mol·s), respectively. Scavenger experiments on radical species indicated that •OH played a key role in removing 1,4-dioxane during ozonation under alkaline condition.

  6. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhuri, Ahsan; Love, Norman

    spray systems, there exists a lack of fundamental understanding of the effect of hardware characteristics and operating parameters on HVOF thermally sprayed coatings. Motivated by these issues, this study is devoted to investigate the effect of hardware characteristics (e.g. spraying distance) and operating parameters (e.g. combustion chamber pressure, equivalence ratio, and total gas flow rate) on HVOF sprayed coatings using Inconel 718 alloy. The current study provides extensive understanding of several key operating and process parameters to optimize the next generation of HVOF thermally sprayed coatings for high temperature and harsh environment applications. A facility was developed to support this endeavor in a safe and efficient way, including a HVOF thermal spray system with a Data Acquisition and Remote Controls system (DARCS). The coatings microstructure and morphology were examined using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Nanoindentation.« less

  7. Spray Formation during the Impact of a Flat Plate on Water Surface

    NASA Astrophysics Data System (ADS)

    Wang, An; Duncan, James H.

    2015-11-01

    Spray formation during the impact of a flat plate on a water surface is studied experimentally. The plate is mounted on a two-axis carriage that can slam the plate vertically into the water surface as the carriage moves horizontally along a towing tank. The plate is 122 cm by 38 cm and oriented with adjustable pitch and roll angle. The port (lower) edge of the plate is positioned with a 3-mm gap from one of the tank walls. A laser sheet is created in a plane oriented perpendicular to the axis of the horizontal motion of the carriage. The temporal evolution of the spray within the light sheet is measured with a cinematic laser induced fluorescence technique at a frame rate of 800 Hz. Experiments are performed with a fixed plate trajectory in a vertical plane, undertaken at various speeds. Two types of spray are found when the plate has nonzero pitch and roll angles. The first type is composed of a cloud of high-speed droplets and ligaments generated as the port edge of the plate hits the water surface during the initial impact. The second type is a thin sheet of water that grows from the starboard edge of the plate as it moves below the local water level. The geometrical features of the spray are found to be dramatically affected by the impact velocity. The support of the Office of Naval Research under grant N000141310587 is gratefully acknowledged.

  8. Aerial electrostatic spray deposition and canopy penetration in cotton

    USDA-ARS?s Scientific Manuscript database

    Spray deposition on abaxial and adaxial leaf surfaces along with canopy penetration are essential for insect control and foliage defoliation in cotton production agriculture. Researchers have reported that electrostatically charged sprays have increased spray deposit onto these surfaces under widel...

  9. Calculations for reproducible autologous skin cell-spray grafting.

    PubMed

    Esteban-Vives, Roger; Young, Matthew T; Zhu, Toby; Beiriger, Justin; Pekor, Chris; Ziembicki, Jenny; Corcos, Alain; Rubin, Peter; Gerlach, Jörg C

    2016-12-01

    Non-cultured, autologous cell-spray grafting is an alternative to mesh grafting for larger partial- and deep partial-thickness burn wounds. The treatment uses a suspension of isolated cells, from a patient's donor site skin tissue, and cell-spray deposition onto the wound that facilitates re-epithelialization. Existing protocols for therapeutic autologous skin cell isolation and cell-spray grafting have defined the donor site area to treatment area ratio of 1:80, substantially exceeding the coverage of conventional mesh grafting. However, ratios of 1:100 are possible by maximizing the wound treatment area with harvested cells from a given donor site skin tissue according to a given burn area. Although cell isolation methods are very well described in the literature, a rational approach addressing critical aspects of these techniques are of interest in planning clinical study protocols. We considered in an experimental study the cell yield as a function of the donor site skin tissue, the cell density for spray grafting, the liquid spray volume, the sprayed distribution area, and the percentage of surface coverage. The experimental data was then used for the development of constants and mathematical equations to give a rationale for the cell isolation and cell-spray grafting processes and in planning for clinical studies. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  10. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast,more » treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.« less

  11. Increased river alkalinization in the Eastern U.S.

    PubMed

    Kaushal, Sujay S; Likens, Gene E; Utz, Ryan M; Pace, Michael L; Grese, Melissa; Yepsen, Metthea

    2013-09-17

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km(2). We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These three variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the Eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  12. Sea spray production by bag breakup mode of fragmentation of the air-water interface at strong and hurricane wind

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil; Zilitinkevich, Sergej

    2016-04-01

    Sea sprays is a typical element of the marine atmospheric boundary layer (MABL) of large importance for marine meteorology, atmospheric chemistry and climate studies. They are considered as a crucial factor in the development of hurricanes and severe extratropical storms, since they can significantly enhance exchange of mass, heat and momentum between the ocean and the atmosphere. This exchange is directly provided by spume droplets with the sizes from 10 microns to a few millimeters mechanically torn off the crests of a breaking waves and fall down to the ocean due to gravity. The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Experimental core of our work comprise laboratory experiments employing high-speed video-filming, which have made it possible to disclose how water surface looks like at extremely strong winds and how exactly droplets are torn off wave crests. We classified events responsible for spume droplet, including bursting of submerged bubbles, generation and breakup of "projections" or liquid filaments (Koa, 1981) and "bag breakup", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film, "bags". The process is similar to "bag-breakup" mode of fragmentation of liquid droplets and jets in gaseous flows. Basing on statistical analysis of results of these experiments we show that the main mechanism of spray-generation is attributed to "bag-breakup mechanism On the base of general principles

  13. Computational sensitivity study of spray dispersion and mixing on the fuel properties in a gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Grosshans, Holger; Cao, Le; Fuchs, Laszlo; Szász, Robert-Zoltán

    2017-04-01

    A swirl stabilized gas turbine burner has been simulated in order to assess the effects of the fuel properties on spray dispersion and fuel-air mixing. The properties under consideration include fuel surface tension, viscosity and density. The turbulence of the gas phase is modeled applying the methodology of large eddy simulation whereas the dispersed liquid phase is described by Lagrangian particle tracking. The exchange of mass, momentum and energy between the two phases is accounted for by two-way coupling. Bag and stripping breakup regimes are considered for secondary droplet breakup, using the Reitz-Diwakar and the Taylor analogy breakup models. Moreover, a model for droplet evaporation is included. The results reveal a high sensitivity of the spray structure to variations of all investigated parameters. In particular, a decrease in the surface tension or the fuel viscosity, or an increase in the fuel density, lead to less stable liquid structures. As a consequence, smaller droplets are generated and the overall spray surface area increases, leading to faster evaporation and mixing. Furthermore, with the trajectories of the small droplets being strongly influenced by aerodynamic forces (and less by their own inertia), the spray is more affected by the turbulent structures of the gaseous phase and the spray dispersion is enhanced.

  14. Joint Test Plan for Gas Dynamic Spray Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2008-01-01

    Air Force Space Command (AFSPC) and NASA have similar missions, facilities, and structures located in similar harsh environments. Both are responsible for a number of facilities/structures with metallic structural and non-structural components in highly and moderately corrosive environments. Regardless of the corrosivity of the environment, all metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are subject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by AFSPC and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GDS) technology (also known as Cold Spray) will be evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GDS coatings also have no VOCs and are environmentally preferable coatings. To achieve a condition suitable for the application of a coating system, including GDS coatings, the substrate must

  15. VERIFYING THE PERFORMANCE OF PESTICIDE SPRAY DRIFT REDUCTION TECHNOLOGIES

    EPA Science Inventory

    Application of pesticide sprays usually results in formation of small spray droplets which can drift with air currents to nearby sensitive sites. A number of technologies offer the potential to reduce the amount of spray drift from pesticide applications. Acceptance and use of ...

  16. No Heat Spray Drying Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beetz, Charles

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. Inmore » short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.« less

  17. Progesterone administration by nasal spray in menopausal women: comparison between two different spray formulations.

    PubMed

    Cicinelli, E; Savino, F; Cagnazzo, I; Scorcia, P; Galantino, P

    1992-12-01

    The aim of the study was to compare the bioavailability of progesterone dissolved in almond oil or dimethicone, and administered by nasal spray. Twenty healthy menopausal women were randomly allocated to treatment by four doses of intranasal spray either of a progesterone solution in almond oil, 2 mg/0.1 ml, corresponding to a total dose of approximately 11 mg of progesterone, or a progesterone solution in dimethicone 5 mg/0.1 ml corresponding to a total dose of approximately 28 mg of progesterone. Circulating progesterone levels were calculated at various time intervals following administration. The formulation with almond oil yielded a maximum progesterone concentration (Cmax of 3.75 ng/ml at Tmax = 60 min, and the area under the curve (AUC0-720) value was 1481.6 +/- 343. The formulation with dimethicone yielded a mean Cmax of 1.049 ng/ml at Tmax = 30 min; the AUC0-720 value was 302.06 +/- 37.5. Therefore, bioavailability of progesterone dissolved in almond oil proved to be largely superior compared to the solution in dimethicone. The crucial role of the carrier in the spray formulations is discussed; in addition to ensuring clinical safety, it must have good solubility for progesterone, be fluid enough to enable efficient 'spraying' and also must allow progesterone to be absorbed through the nasal mucosa.

  18. Holodiscus (K. Koch) Maxim.: ocean-spray

    Treesearch

    Nancy L. Shaw; Emerenciana G. Hurd; Peter F. Stickney

    2008-01-01

    Holodiscus is a taxonomically complex genus including about 6 species of western North America and northern South America (Hitchcock and others 1961; Ley 1943). The 2 generally recognized North American species (table 1) - creambush ocean-spray and gland ocean-spray - are deciduous, multistemmed shrubs with simple, alternate, deciduous, toothed to shallowly lobed,...

  19. Droplet-surface Impingement Dynamics for Intelligent Spray Design

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Kizito, John P.; Tryggvason, Gretar; Berger, Gordon M.; Mozes, Steven D.

    2004-01-01

    Spray cooling has high potential in thermal management and life support systems by overcoming the deleterious effect of microgravity upon two-phase heat transfer. In particular spray cooling offers several advantages in heat flux removal that include the following: 1. By maintaining a wetted surface, spray droplets impinge upon a thin fluid film rather than a dry solid surface 2. Most heat transfer surfaces will not be smooth but rough. Roughness can enhance conductive cooling, aid liquid removal by flow channeling. 3. Spray momentum can be used to a) substitute for gravity delivering fluid to the surface, b) prevent local dryout and potential thermal runaway and c) facilitate liquid and vapor removal. Yet high momentum results in high We and Re numbers characterizing the individual spray droplets. Beyond an impingement threshold, droplets splash rather than spread. Heat flux declines and spray cooling efficiency can markedly decrease. Accordingly we are investigating droplet impingement upon a) dry solid surfaces, b) fluid films, c) rough surfaces and determining splashing thresholds and relationships for both dry surfaces and those covered by fluid films. We are presently developing engineering correlations delineating the boundary between splashing and non-splashing regions.

  20. Cold Spray Repair of Martensitic Stainless Steel Components

    NASA Astrophysics Data System (ADS)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  1. The Influence of Spray Parameters on the Characteristics of Hydroxyapatite In-Flight Particles, Splats and Coatings by Micro-plasma Spraying

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-mei; He, Ding-yong; Wang, Yi-ming; Zhou, Zheng; Wang, Guo-hong; Tan, Zhen; Wang, Zeng-jie

    2018-04-01

    Hydroxyapatite (HA) is one of the most important bioceramic materials used in medical implants. The structure of HA coatings is closely related to their manufacturing process. In the present study, HA coatings were deposited on Ti-6Al-4V substrate by micro-plasma spraying. Results show that three distinct HA coatings could be obtained by changing the spraying power from 0.5 to 1.0 kW and spraying stand-off distance from 60 to 110 mm: (1) high crystallinity (93.3%) coatings with porous structure, (2) high crystallinity coatings (86%) with columnar structure, (3) higher amorphous calcium phosphate (ACP, 50%) coatings with dense structure. The in-flight particles melting state and splat topography was analyzed to better understand the formation mechanism of three distinct HA coatings. Results show that HA coatings sprayed at low spraying power and short stand-off distance exhibit high crystallinity and porosity is attributed to the presence of partially melted particles. High crystallinity HA coatings with (002) crystallographic texture could be deposited due to the complete melting of the in-flight particles and low cooling rate of the disk shape splats under higher spraying power and shorter SOD. However, splashed shape splats with relative high cooling can be provided by increasing SOD, which leads to the formation of ACP.

  2. 21 CFR 524.1662a - Oxytetracycline and hydrocortisone spray.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Oxytetracycline and hydrocortisone spray. 524... ANIMAL DRUGS § 524.1662a Oxytetracycline and hydrocortisone spray. (a) Specifications. Each 3-ounce unit of oxytetracycline hydrochloride and hydrocortisone spray contains 300 milligrams of oxytetracycline...

  3. Combined control of morphology and polymorph in spray drying of mannitol for dry powder inhalation

    NASA Astrophysics Data System (ADS)

    Lyu, Feng; Liu, Jing J.; Zhang, Yang; Wang, Xue Z.

    2017-06-01

    The morphology and polymorphism of mannitol particles were controlled during spray drying with the aim of improving the aerosolization properties of inhalable dry powders. The obtained microparticles were characterized using scanning electron microscopy, infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction and inhaler testing with a next generation impactor. Mannitol particles of varied α-mannitol content and surface roughness were prepared via spray drying by manipulating the concentration of NH4HCO3 in the feed solution. The bubbles produced by NH4HCO3 led to the formation of spheroid particles with a rough surface. Further, the fine particle fraction was increased by the rough surface of carriers and the high α-mannitol content. Inhalable dry powders with a 29.1 ± 2.4% fine particle fraction were obtained by spray-drying using 5% mannitol (w/v)/2% NH4HCO3 (w/v) as the feed solution, proving that this technique is an effective method to engineer particles for dry powder inhalation.

  4. Exposures to 1,6-hexamethylene diisocyanate during polyurethane spray painting in the U.S. Air Force.

    PubMed

    Carlton, G N; England, E C

    2000-09-01

    1,6-Hexamethylene diisocyanate (HDI) exposures were measured during polyurethane enamel spray painting at four Air Force bases. Breathing zone samples were collected for HDI monomer and polyisocyanates (oligomers) using three sampling methods: NIOSH Method 5521, the Iso-Chek sampler, and the total aerosol mass method (TAMM). Exposures to HDI monomer are low when compared to current occupational exposure limits; the highest 8-hr time-weighted average (TWA) exposure found was 3.5 micrograms/m3, below the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 34 micrograms/m3. HDI oligomer levels were higher; mean task exposures indicated by either the Iso-Chek sampler or TAMM are above the Oregon ceiling limit of 1 mg/m3. Eight-hour TWA exposures, however, were much lower, with only one exceeding the Oregon standard of 0.5 mg/m3. Poor worker practices commonly observed during this study included: standing in downwind positions so paint overspray passed through breathing zones; spraying toward other painters; and using excessive paint spray gun air cap pressures. Workers should stand in upwind orientation relative to the aircraft being painted, causing overspray to move away from the painter's breathing zone; adjust their position to prevent spraying other painters or limit paint application to one worker at a time; and use air cap pressure gauges prior to spraying to limit spray gun air cap pressures and reduce paint overspray generation rates. These improved techniques will result in reduced worker exposures to isocyanates.

  5. Uniform-droplet spray forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, C.A.; Sikka, V.K.; Chun, Jung-Hoon

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets thatmore » can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.« less

  6. Triamcinolone Nasal Spray

    MedlinePlus

    ... An adult should help children under 12 years old to use triamcinolone nasal spray. Children younger than ... This branded product is no longer on the market. Generic alternatives may be available.

  7. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    PubMed

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene

  8. Development of a rapid screening protocol for selection of strains resistant to spray drying and storage in dry powder.

    PubMed

    Reimann, S; Grattepanche, F; Baggenstos, C; Rezzonico, E; Berger, B; Arigoni, F; Lacroix, C

    2010-06-01

    An efficient screening method for selection of Bifidobacterium longum strains resistant to spray drying and storage was developed based on randomly amplified polymorphic DNA (RAPD) for identification of the best survivors in mixed strains bacterial preparations. Three different primers were used to generate RAPD profiles of 22 B. longum strains. All strains were distinguished according to their RAPD profiles except for the strain NCC2705 and its H(2)O(2) resistant derivative variant. The 22 strains were grouped in 3 batches of 7, 7 and 8 strains and subjected to spray drying and storage at 30 and 37 °C under anaerobic conditions. Batch survival rates after spray drying reached 17.1±4.4%. Strains showing the highest prevalence and/or resistance to storage at 37 °C were selected from individual batches for subsequent spray drying and storage testing. After 67 days of storage, NCC572 was identified as the dominant strain in powder. The stability of strain NCC572 was confirmed by performing single spray drying and storage tests. Out of 22 B. longum strains, a robust strain was identified by combining RAPD with a simultaneous screening test for survival under spray drying and storage. The method allowed a fast screening of B. longum strains in mixture for resistance to spray drying and storage compared to traditional screening procedures carried out with individual strains, in the same conditions. This approach could be applied to other stress conditions.

  9. Posttranslational heterogeneity of bone alkaline phosphatase in metabolic bone disease.

    PubMed

    Langlois, M R; Delanghe, J R; Kaufman, J M; De Buyzere, M L; Van Hoecke, M J; Leroux-Roels, G G

    1994-09-01

    Bone alkaline phosphatase is a marker of osteoblast activity. In order to study the posttranscriptional modification (glycosylation) of bone alkaline phosphatase in bone disease, we investigated the relationship between mass and catalytic activity of bone alkaline phosphatase in patients with osteoporosis and hyperthyroidism. Serum bone alkaline phosphatase activity was measured after lectin precipitation using the Iso-ALP test kit. Mass concentration of bone alkaline phosphatase was determined with an immunoradiometric assay (Tandem-R Ostase). In general, serum bone alkaline phosphatase mass and activity concentration correlated well. The activity : mass ratio of bone alkaline phosphatase was low in hyperthyroidism. Activation energy of the reaction catalysed by bone alkaline phosphatase was high in osteoporosis and in hyperthyroidism. Experiments with neuraminidase digestion further demonstrated that the thermodynamic heterogeneity of bone alkaline phosphatase can be explained by a different glycosylation of the enzyme.

  10. 3D Modeling of Transport Phenomena and the Injection of the Solution Droplets in the Solution Precursor Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Shan, Yanguang; Coyle, Thomas W.; Mostaghimi, Javad

    2007-12-01

    Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature, and position distribution on the substrate are predicted.

  11. Numerical modeling for dilute and dense sprays

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.

    1992-01-01

    We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.

  12. Arc spray process for the aircraft and stationary gas turbine industry

    NASA Astrophysics Data System (ADS)

    Sampson, E. R.; Zwetsloot, M. P.

    1997-06-01

    Technological advances in arc spray have produced a system that competes favorably with other thermal spray processes. In the past, arc spray was thought of as a process for very large parts that need thick buildups. However, an attachment device known as the arc jet system has been developed that focuses the pattern and accelerates the particles. This attachment device, coupled with the in-troduction of metal-cored wires that provide the same chemistries as plasma-sprayed powders, pro-vides application engineers with a viable economic alternative to existing spray methods. A comparative evaluation of a standard production plasma spray system was conducted with the arc spray process using the attachment device. This evaluation was conducted by an airline company on four major parts coated with nickel-aluminum. Results show that, for these applications, the arc spray process offers several benefits.

  13. Low pressure cold spraying on materials with low erosion resistance

    NASA Astrophysics Data System (ADS)

    Shikalov, V. S.; Klinkov, S. V.; Kosarev, V. F.

    2017-10-01

    In present work, the erosion-adhesion transition was investigated during cold spraying of aluminum particles on brittle ceramic substrates. Cold spraying was carried out with aid of sonic nozzle, which use allows significantly reducing the gas stagnation pressure without the effect of flow separation inside the nozzle and, accordingly, reducing the velocity of the spraying particles. Two stagnation pressures were chosen. The coating tracks were sprayed at different air temperatures in nozzle pre-chamber under each of regimes. Single sprayed tracks were obtained and their profiles were investigated by optical profilometry.

  14. Quantitative Assessment of Spray Deposition with Water-Sensitive Paper

    USDA-ARS?s Scientific Manuscript database

    Spray droplets, discharged from the lower six nozzles of an airblast sprayer, were sampled on pairs of absorbent filter and water-sensitive papers at nine distances from sprayer. Spray deposition on filter targets were measured by fluorometry and spray distribution on WSP targets were assessed by t...

  15. X-ray vision of fuel sprays.

    PubMed

    Wang, Jin

    2005-03-01

    With brilliant synchrotron X-ray sources, microsecond time-resolved synchrotron X-ray radiography and tomography have been used to elucidate the detailed three-dimensional structure and dynamics of high-pressure high-speed fuel sprays in the near-nozzle region. The measurement allows quantitative determination of the fuel distribution in the optically impenetrable region owing to the multiple scattering of visible light by small atomized fuel droplets surrounding the jet. X-radiographs of the jet-induced shock waves prove that the fuel jets become supersonic under appropriate injection conditions and that the quantitative analysis of the thermodynamic properties of the shock waves can also be derived from the most direct measurement. In other situations where extremely axial-asymmetric sprays are encountered, mass deconvolution and cross-sectional fuel distribution models can be computed based on the monochromatic and time-resolved X-radiographic images collected from various rotational orientations of the sprays. Such quantitative analysis reveals the never-before-reported characteristics and most detailed near-nozzle mass distribution of highly transient fuel sprays.

  16. Detailed investigation of a vaporising fuel spray. Part 1: Experimental investigation of time averaged spray

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Seng, C. A.; Boulderstone, R.; Ungut, A.; Felton, P. G.; Chigier, N. A.

    1980-01-01

    A laser tomographic light scattering technique provides rapid and accurate high resolution measurements of droplet sizes, concentrations, and vaporization. Measurements using a computer interfaced thermocouple are presented and it is found that the potential exists for separating gas and liquid temperature measurements and diagnosing local spray density by in situ analysis of the response characteristics of the thermocouple. The thermocouple technique provides a convenient means for measuring mean gas velocity in both hot and cold two phase flows. The experimental spray is axisymmetric and has carefully controlled initial and boundary conditions. The flow is designed to give relatively insignificant transfer of momentum and mass from spray to air flow. The effects of (1) size-dependent droplet dispersion by the turbulence, (2) the initial spatial segregation of droplet sizes during atomization, and (3) the interaction between droplets and coherent large eddies are diagnosed.

  17. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    PubMed

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.

  18. Spray drift reduction under Southern European conditions: a pilot study in the Ecopest Project in Greece.

    PubMed

    Kasiotis, Konstantinos M; Glass, C Richard; Tsakirakis, Angelos N; Machera, Kyriaki

    2014-05-01

    The objective of this work was to generate spray drift data from pesticide application in the field comparing spray drift from traditional equipment with emerging, anti-drift technologies. The applications were carried out in the Kopais area in central Greece. Currently few data exist as regards to pesticide spray drift in Southern European conditions. This work details the data for ground and airborne deposition of spray drift using the methodology developed in the UK by the Food and Environment Research Agency (FERA). Three trials were performed in two days using sunset yellow dye which deposited on dosimeters placed at specific distances from the edge of the sprayer boom. The application was carried out with a tractor mounted boom sprayer, which was of local manufacture, as were the nozzles of Trial I, being flat fan brass nozzles. For Trials II and III anti-drift nozzles were used. The boom sprayers were used with the settings as employed by the farmers for the routine pesticide applications. The results of this work indicate that drift was significantly reduced when anti-drift nozzles were utilized. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Passive Wireless Hermetic Environment Monitoring System for Spray Painting Workshop

    PubMed Central

    Wang, Lifeng; Ma, Jingjing; Huang, Yan; Tang, Dan; Huang, Qing-An

    2016-01-01

    Passive wireless sensors have the advantages of operating without a power supply and remote sensing capability. Hence, they are very suitable for some harsh environments, such as hermetic environments, rotating parts, or very high temperature environments. The spray painting workshop is such a harsh environment, containing a large amount of flammable paint mist and organic gas. Aiming at this special environment of spray painting workshop, a passive wireless hermetic environment monitoring system was designed, fabricated, and demonstrated. The proposed system is composed of a transponder and a reader, and the circuit design of each part is given in detail in this paper. The power and the data transmission between the transponder and the reader are realized by the inductive coupling mechanism. Utilizing the back scatter modulation and channel multiplexing, the frequency signals generated by three different environmental sensors—together with their interfaces in the transponder—are wirelessly read out by the reader. Because of the harsh environment of the spray painting room, the package of the monitoring system is quite important. Three different kinds of filter films for the system package were compared. The experimental results show that the composite filter film aluminum anodic oxide/polytetrafluoroethylene (AAO/PTFE) has the best performance. After fabrication, the measured temperature, humidity, and pressure sensitivities were measured and found to be 180 Hz/°C in the range of 0~60 °C, 100 Hz/%RH in the range of 15~95 %RH, and 42 Hz/hPa in the range of 600~1100 hPa, respectively. Additionally, the remote sensing distance of the monitoring system reaches 4 cm. Finally, the passive wireless hermetic environment monitoring system was installed on the glass wall of the spray painting workshop and was successfully demonstrated. PMID:27490546

  20. A fluorescent imaging technique for quantifying spray deposits on plant leaves

    USDA-ARS?s Scientific Manuscript database

    Because of the unique characteristics of electrostatically-charged sprays, use of traditional methods to quantify deposition from these sprays has been challenging. A new fluorescent imaging technique was developed to quantify spray deposits from electrostatically-charged sprays on natural plant lea...

  1. Alkaline polymer electrolyte membranes for fuel cell applications.

    PubMed

    Wang, Yan-Jie; Qiao, Jinli; Baker, Ryan; Zhang, Jiujun

    2013-07-07

    In this review, we examine the most recent progress and research trends in the area of alkaline polymer electrolyte membrane (PEM) development in terms of material selection, synthesis, characterization, and theoretical approach, as well as their fabrication into alkaline PEM-based membrane electrode assemblies (MEAs) and the corresponding performance/durability in alkaline polymer electrolyte membrane fuel cells (PEMFCs). Respective advantages and challenges are also reviewed. To overcome challenges hindering alkaline PEM technology advancement and commercialization, several research directions are then proposed.

  2. Herbicidal drift control: aerial spray equipment, formulations, and supervision.

    Treesearch

    H. Gratkowski

    1974-01-01

    Public concern over environmental pollution requires increasingly sophisticated procedures when herbicides are used in silviculture. Many specialized aerial application systems and spray additives have been developed to reduce drift of herbicidal sprays. This publication provides forest-land managers with a brief description of these aerial spray systems and additives...

  3. Spray drying of fruit and vegetable juices--a review.

    PubMed

    Verma, Anjali; Singh, Satya Vir

    2015-01-01

    The main cause of spray drying is to increase the shelf life and easy handling of juices. In the present paper, the studies carried out so far on spray drying of various fruits and vegetables are reported. The major fruit juices dried are mango, banana, orange, guava, bayberry, watermelon, pineapple, etc. However, study on vegetable juices is limited. In spray drying, the major optimized parameters are inlet air temperature, relative humidity of air, outlet air temperature, and atomizer speed that are given for a particular study. The juices in spray drying require addition of drying agents that include matlodextrin, liquid glucose, etc. The drying agents are added to increase the glass transition temperature. Different approaches for spray dryer design have also been discussed in the present work.

  4. The role of water in generating Fe-depletion and the calc-alkaline trend

    NASA Astrophysics Data System (ADS)

    Zimmer, M. M.; Plank, T.

    2006-12-01

    Describing a magmatic suite as calc-alkaline (CA) or tholeiitic (TH) is a first order characterization, but existing classification schemes (AFM ternary plots and FeO*/MgO vs. SiO2) may convolute magmatic processes and can result in contradictory classification. The salient feature of TH vs. CA evolution is the extent of Fe enrichment or depletion in the magma. A plot of FeO* vs. MgO provides the most straightforward way to quantify Fe enrichment and to develop models for its origin. We present a new quantitative classification utilizing the FeO*-MgO plot, the tholeiitic index (THI) = Fe3-5/Fe8 (Fe3-5=average FeO* at 3-5 wt% MgO; Fe8=FeO* at 8 wt% MgO). THI of 1.2 indicates 20% FeO* enrichment from a magma's starting composition at Fe8, while THI of 0.8 indicates 20% depletion in FeO*. A magmatic suite is CA if THI is <1, and TH if THI is >1. Arcs range from 0.6 to 1.1, back arc basins from 1.1-1.3, and MORBs are \\ge1.6. This classification allows comparison of magmatic evolution on a global basis, regardless of starting composition, and is useful for quantitative comparison to liquid line of descent models. Hypotheses for generating CA magmas include high water contents, high pressure of crystallization, high oxygen fugacity, and high Mg# andesitic starting compositions. In order to test the control of H2O, we compare the THI to average magmatic water contents from undegassed melt inclusions and glasses (S>1000 ppm or CO2>50 ppm) from twenty-eight arc volcanoes and back arc basins, including new water contents from seven Aleutian volcanoes. The resulting negative correlation (R2=0.8) between water concentration and THI (with end-members at 0.8 wt% H2O, THI =1.3 and 6.1 wt% H2O, THI = 0.6) suggests water plays a fundamental role in generating the CA fractionation trend. MORB data plot off the trend at a higher THI, possibly related to lower oxygen fugacity during melting and/or crystallization. Models using the pMelts program are consistent with experimentally

  5. M-52 spray booth qualification test

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The procedures, performance, and results obtained from the M-52 spray booth qualification test are documented. The test was conducted at Thiokol Corporation, Space Operations, M-52 Inert Parts Preparation facility. The purpose of this testing sequence was to ensure the spray booth would produce flight qualified hardware. The testing sequence was conducted in two series. The first series was conducted under CTP-0142, Revision 1. The second series was conducted in accordance with CTP-0142, Revision 2. The test sequence started with CTP-0142, Revision 1. The series consisted of the contamination removal test and the performance test. The contamination removal test was used to assess the Teflon level in the spray booth. The performance test consisted of painting and Chemloking a forward dome inside the spray booth per flight procedures. During the performance test, two sets of witness panels (case/insulation and steel/epoxy/steel) were prepared and pull tested. The CTP-0142, Revision 2, series of testing consisted of re-testing the steel/epoxy/steel witness panels. The pull tests analysis indicates the results of the tensile tests were comparable to the systems tunnel witness panel database. The exposed panel set and the control panel set average tensile values were above the 1-basis lower limits established on the systems tunnel witness panel database. It is recommended that the M-52 spray booth be qualified for producing flight hardware.

  6. Some Characteristics of Fuel Sprays from Open Nozzles

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Lee, D W

    1930-01-01

    The penetration and cone-angle of fuel sprays from open nozzles were recorded with the NACA Spray Photography Equipment. The results show that for injection systems in which the rate of pressure rise at the discharge orifice is high, open nozzles give spray-tip velocities and penetrations which compare favorably with those of closed nozzles. The spray cone-angle was the same for all tests, although open nozzles having different orifice diameters were used, and one nozzle was used both as an open and as a closed nozzle. In designing a fuel system using open nozzles, particular care must be taken to avoid air pockets. The check valve should be placed close to the discharge orifice.

  7. Spray Penetration with a Simple Fuel Injection Nozzle

    NASA Technical Reports Server (NTRS)

    Miller, Harold E; Beardsley, Edward G

    1926-01-01

    The purpose of the tests covered by this report was to obtain specific information on the rate of penetration of the spray from a simple injection nozzle, having a single orifice with a diameter of 0.015 inch when injecting into compressed gases. The results have shown that the effects of both chamber and fuel pressures on penetration are so marked that the study of sprays by means of high-speed photography or its equivalent is necessary if the effects are to be appreciated sufficiently to enable rational analysis. It was found for these tests that the negative acceleration of the spray tip is approximately proportional to the 1.5 power of the instantaneous velocity of the spray tip.

  8. 46 CFR 35.40-18 - Water spray systems-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Water spray systems-TB/ALL. 35.40-18 Section 35.40-18 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-18 Water spray systems—TB/ALL. (a) Water spray system apparatus shall be marked: “WATER SPRAY SYSTEM,” as appropriate, in not...

  9. 46 CFR 35.40-18 - Water spray systems-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Water spray systems-TB/ALL. 35.40-18 Section 35.40-18 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-18 Water spray systems—TB/ALL. (a) Water spray system apparatus shall be marked: “WATER SPRAY SYSTEM,” as appropriate, in not...

  10. Potential hazard of volatile organic compounds contained in household spray products

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mahmudur; Kim, Ki-Hyun

    2014-03-01

    To assess the exposure levels of hazardous volatile pollutants released from common household spray products, a total of 10 spray products consisting of six body spray and four air spray products have been investigated. The body spray products included insect repellents (two different products), medicated patch, deodorant, hair spray, and humectant, whereas the air spray products included two different insecticides (mosquito and/or cockroach), antibacterial spray, and air freshener. The main objective of this study was to measure concentrations of 15 model volatile organic compounds (VOCs) using GC/MS coupled with a thermal desorber. In addition, up to 34 ‘compounds lacking authentic standards or surrogates (CLASS)' were also quantified based on the effective carbon number (ECN) theory. According to our analysis, the most common indoor pollutants like benzene, toluene, styrene, methyl ethyl ketone, and butyl acetate have been detected frequently in the majority of spray products with the concentration range of 5.3-125 mg L-1. If one assumes that the amount of spray products released into air reaches the 0.3 mL level for a given space size of 5 m3, the risk factor is expected to exceed the carcinogenic risk level set for benzene (10-5) by the U.S. EPA.

  11. Flunisolide Nasal Spray

    MedlinePlus

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... your thumb. Point the applicator away from your face. If you are using the spray for the ...

  12. Fentanyl Sublingual Spray

    MedlinePlus

    Fentanyl sublingual spray is used to treat breakthrough pain (sudden episodes of pain that occur despite round ... effects of the medication) to narcotic pain medications. Fentanyl is in a class of medications called narcotic ( ...

  13. Fentanyl Nasal Spray

    MedlinePlus

    Fentanyl nasal spray is used to treat breakthrough pain (sudden episodes of pain that occur despite round ... effects of the medication) to narcotic pain medications. Fentanyl is in a class of medications called narcotic ( ...

  14. Ipratropium Nasal Spray

    MedlinePlus

    ... follow these steps: Remove the clear plastic dust cap and the safety clip from the nasal spray ... the other nostril. Replace the clear plastic dust cap and safety clip. If the nasal tip becomes ...

  15. Sumatriptan Nasal Spray

    MedlinePlus

    ... spray is used to treat the symptoms of migraine headaches (severe, throbbing headaches that sometimes are accompanied ... that cause pain, nausea, and other symptoms of migraine. Sumatriptan does not prevent migraine attacks or reduce ...

  16. Zolmitriptan Nasal Spray

    MedlinePlus

    ... spray is used to treat the symptoms of migraine headaches (severe, throbbing headaches that sometimes are accompanied ... that cause pain, nausea, and other symptoms of migraine. Zolmitriptan does not prevent migraine attacks or reduce ...

  17. Beclomethasone Nasal Spray

    MedlinePlus

    ... the lining of the nose) after nasal polyp removal surgery. Beclomethasone nasal spray should not be used ... room temperature and away from excess heat and moisture (not in the bathroom).Unneeded medications should be ...

  18. Nasal corticosteroid sprays

    MedlinePlus

    ... effects may include any of these symptoms: Dryness, burning, or stinging in the nasal passage.You can ... or your child uses the spray exactly as prescribed to avoid side effects. If you or your ...

  19. Fluticasone Nasal Spray

    MedlinePlus

    ... you are giving fluticasone nasal spray to a child, you will begin treatment with a lower dose ... the medication and increase the dose if the child's symptoms do not improve. Decrease the dose when ...

  20. Budesonide Nasal Spray

    MedlinePlus

    ... you are giving budesonide nasal spray to a child, you will begin treatment with a lower dose ... the medication and increase the dose if the child's symptoms do not improve. Decrease the dose when ...

  1. Spray drying formulation of amorphous solid dispersions.

    PubMed

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Characterization and application of droplet spray ionization for real-time reaction monitoring.

    PubMed

    Zhang, Hong; Li, Na; Li, Xiao-di; Jiang, Jie; Zhao, Dan-Dan; You, Hong

    2016-08-01

    The ionization source for real-time reaction monitoring has attracted tremendous interest in recent years. We have previously reported a reliable approach in which droplet spray ionization (DSI) was used for monitoring chemical reactions in real-time. Herein, we systematically investigated the characterization and application of DSI for real-time reaction monitoring. Analyte ions are generated by loading a sample solution onto a corner of a microscope cover glass positioned in front of the MS inlet and applying a high voltage to the sample. The tolerance to positioning, solvent effect, spray angle and spray time were investigated. Extension to real-time monitoring of macromolecule reactions was also demonstrated by the charge state change of cytochrome c in the presence of acetic acid. The corner could be positioned within an area of approximately 10 × 6 × 5 mm (x, y, z) in front of the MS inlet. The broad polarities of solvents from methanol to PhF were suitable for DSI. It featured monitoring real-time changes in reactions on the time scale of seconds to minutes. A real-time charge state change of cytochrome c was captured. DSI-MS features ease of use, durability of the spray platform and reusability of the ion source. Eliminating the need for a sample transport capillary, DSI opens a new avenue for the in situ analysis and real-time monitoring of short-lived key reaction intermediates even at subsecond dead times. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Monitoring Coating Thickness During Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    1990-01-01

    High-resolution video measures thickness accurately without interfering with process. Camera views cylindrical part through filter during plasma spraying. Lamp blacklights part, creating high-contrast silhouette on video monitor. Width analyzer counts number of lines in image of part after each pass of spray gun. Layer-by-layer measurements ensure adequate coat built up without danger of exceeding required thickness.

  4. Thermal Spraying of Bioactive Polymer Coatings for Orthopaedic Applications

    NASA Astrophysics Data System (ADS)

    Chebbi, A.; Stokes, J.

    2012-06-01

    Flame sprayed biocompatible polymer coatings, made of biodegradable and non-biodegradable polymers, were investigated as single coatings on titanium and as top coatings on plasma sprayed Hydroxyapatite. Biocompatible polymers can act as drug carriers for localized drug release following implantation. The polymer matrix consisted of a biodegradable polymer, polyhydroxybutyrate 98%/ polyhydroxyvalerate 2% (PHBV) and a non-biodegradable polymer, polymethylmethacrylate (PMMA). Screening tests were performed to determine the suitable range of spraying parameters, followed by a Design of Experiments study to determine the effects of spraying parameters on coating characteristics (thickness, roughness, adhesion, wettability), and to optimize the coating properties accordingly. Coatings characterization showed that optimized flame sprayed biocompatible polymers underwent little chemical degradation, did not produce acidic by-products in vitro, and that cells proliferated well on their surface.

  5. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  6. Thermal spray manual for machinery components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis, R.; Ginther, C.; Herbstritt, M.

    1995-12-31

    The Thermal Spray Manual For Machinery Components is a National Shipbuilding Research (SP-7) Project. This Manual is being developed by Puget Sound Naval Shipyard with the help of other government thermal spray facilities and SP-7 panel members. The purpose of the manual is to provide marine repair facilities with a ``how to do`` document that will be ``user friendly`` and known to be technically sound through production experience. The manual`s intent is to give marine repair facilities the ability to maximize the thermal spray process as a repair method for machinery components and to give these facilities guidelines on howmore » to become qualified to receive certification that they meet the requirements of Military Standard 1687A.« less

  7. An investigation of flow-limited field-injection electrostatic spraying (FFESS) and its applications to thin film deposition

    NASA Astrophysics Data System (ADS)

    Singh, Ravindra Pratap

    Electrostatic spraying is the process of controlled disruption of a liquid surface due to excess surface charge density. The technique has found applications in a wide range of fields from agricultural sprays to fuel injectors to colloidal thrusters for space vehicle propulsion. Over the past 20 years, the technique has been intensely studied in material processing for synthesis of ceramic and metal powders, nanoparticles and thin films. The importance of the technique lies in its simple setup, high deposition efficiency, and ambient atmosphere operation. In conventional electrostatic spraying (CESS), one uses a conducting nozzle to charge the liquid, mostly by induction charging. CESS is therefore restricted to the single jet mode of spraying which occurs at low spray currents. It lacks stability and reproducibility in the high current, multiple jet regime, which can generate much finer sprays. In flow-limited field-injection electrostatic spraying (FFESS), one uses a field-injection electrode to stably and controllably inject higher currents into the liquid, a la Fowler-Nordheim, using an otherwise insulating nozzle. This way, it is possible to stably electrospray in the multiple jet mode. In addition to producing much finer sprays, the multi-jet mode atomizes liquids at higher rates, and spreads the spray over a wider region and more uniformly than single jet sprays, thus paving way for large-area uniform thin film deposition. A simple yet comprehensive theory is formulated to describe the multi jet formation. The theory, which is based on the energy minimization principle, takes into account, for the first time, the interactions between charged jets which leads to saturation in the number of jets at high spray currents. The possibility of using an array of nozzles to obtain uniform large-area high-throughput thin film deposition is also investigated. A large number of FFESS nozzles with alternating positive and negative polarities arranged in a periodic 2

  8. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate.

    PubMed

    Halawa, Mohamed Ibrahim; Gao, Wenyue; Saqib, Muhammad; Kitte, Shimeles Addisu; Wu, Fengxia; Xu, Guobao

    2017-09-15

    In this work, we designed highly sensitive and selective luminescent detection method for alkaline phosphatase using bovine serum albumin functionalized gold nanoclusters (BSA-AuNCs) as the nanosensor probe and pyridoxal phosphate as the substrate of alkaline phosphatase. We found that pyridoxal phosphate can quench the fluorescence of BSA-AuNCs and pyridoxal has little effect on the fluorescence of BSA-AuNCs. The proposed mechanism of fluorescence quenching by PLP was explored on the basis of data obtained from high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), UV-vis spectrophotometry, fluorescence spectroscopy, fluorescence decay time measurements and circular dichroism (CD) spectroscopy. Alkaline phosphatase catalyzes the hydrolysis of pyridoxal phosphate to generate pyridoxal, restoring the fluorescence of BSA-AuNCs. Therefore, a recovery type approach has been developed for the sensitive detection of alkaline phosphatase in the range of 1.0-200.0U/L (R 2 =0.995) with a detection limit of 0.05U/L. The proposed sensor exhibit excellent selectivity among various enzymes, such as glucose oxidase, lysozyme, trypsin, papain, and pepsin. The present switch-on fluorescence sensing strategy for alkaline phosphatase was successfully applied in human serum plasma with good recoveries (100.60-104.46%), revealing that this nanosensor probe is a promising tool for ALP detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Vacuum plasma spray coating

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  10. Francisella DnaK Inhibits Tissue-nonspecific Alkaline Phosphatase*

    PubMed Central

    Arulanandam, Bernard P.; Chetty, Senthilnath Lakshmana; Yu, Jieh-Juen; Leonard, Sean; Klose, Karl; Seshu, Janakiram; Cap, Andrew; Valdes, James J.; Chambers, James P.

    2012-01-01

    Following pulmonary infection with Francisella tularensis, we observed an unexpected but significant reduction of alkaline phosphatase, an enzyme normally up-regulated following inflammation. However, no reduction was observed in mice infected with a closely related Gram-negative pneumonic organism (Klebsiella pneumoniae) suggesting the inhibition may be Francisella-specific. In similar fashion to in vivo observations, addition of Francisella lysate to exogenous alkaline phosphatase (tissue-nonspecific isozyme) was inhibitory. Partial purification and subsequent proteomic analysis indicated the inhibitory factor to be the heat shock protein DnaK. Incubation with increasing amounts of anti-DnaK antibody reduced the inhibitory effect in a dose-dependent manner. Furthermore, DnaK contains an adenosine triphosphate binding domain at its N terminus, and addition of adenosine triphosphate enhances dissociation of DnaK with its target protein, e.g. alkaline phosphatase. Addition of adenosine triphosphate resulted in decreased DnaK co-immunoprecipitated with alkaline phosphatase as well as reduction of Francisella-mediated alkaline phosphatase inhibition further supporting the binding of Francisella DnaK to alkaline phosphatase. Release of DnaK via secretion and/or bacterial cell lysis into the extracellular milieu and inhibition of plasma alkaline phosphatase could promote an orchestrated, inflammatory response advantageous to Francisella. PMID:22923614

  11. Francisella DnaK inhibits tissue-nonspecific alkaline phosphatase.

    PubMed

    Arulanandam, Bernard P; Chetty, Senthilnath Lakshmana; Yu, Jieh-Juen; Leonard, Sean; Klose, Karl; Seshu, Janakiram; Cap, Andrew; Valdes, James J; Chambers, James P

    2012-10-26

    Following pulmonary infection with Francisella tularensis, we observed an unexpected but significant reduction of alkaline phosphatase, an enzyme normally up-regulated following inflammation. However, no reduction was observed in mice infected with a closely related gram-negative pneumonic organism (Klebsiella pneumoniae) suggesting the inhibition may be Francisella-specific. In similar fashion to in vivo observations, addition of Francisella lysate to exogenous alkaline phosphatase (tissue-nonspecific isozyme) was inhibitory. Partial purification and subsequent proteomic analysis indicated the inhibitory factor to be the heat shock protein DnaK. Incubation with increasing amounts of anti-DnaK antibody reduced the inhibitory effect in a dose-dependent manner. Furthermore, DnaK contains an adenosine triphosphate binding domain at its N terminus, and addition of adenosine triphosphate enhances dissociation of DnaK with its target protein, e.g. alkaline phosphatase. Addition of adenosine triphosphate resulted in decreased DnaK co-immunoprecipitated with alkaline phosphatase as well as reduction of Francisella-mediated alkaline phosphatase inhibition further supporting the binding of Francisella DnaK to alkaline phosphatase. Release of DnaK via secretion and/or bacterial cell lysis into the extracellular milieu and inhibition of plasma alkaline phosphatase could promote an orchestrated, inflammatory response advantageous to Francisella.

  12. Numerical parametric studies of spray combustion instability

    NASA Technical Reports Server (NTRS)

    Pindera, M. Z.

    1993-01-01

    A coupled numerical algorithm has been developed for studies of combustion instabilities in spray-driven liquid rocket engines. The model couples gas and liquid phase physics using the method of fractional steps. Also introduced is a novel, efficient methodology for accounting for spray formation through direct solution of liquid phase equations. Preliminary parametric studies show marked sensitivity of spray penetration and geometry to droplet diameter, considerations of liquid core, and acoustic interactions. Less sensitivity was shown to the combustion model type although more rigorous (multi-step) formulations may be needed for the differences to become apparent.

  13. The use of cold sprayed alloys for metallic stents

    NASA Astrophysics Data System (ADS)

    AL-Mangour, Bandar

    With the invention of the coronary stent, which is a wire metal mesh tube designed to keep the arteries open in the treatment of heart diseases, promising clinical outcomes were generated. However, the long term successes of stents have been delayed by significant in-stent restenosis (blockages) and stent fracture. In this research work, it has been proposed to use Cold Gas Dynamic Spraying (CGDS) coating material as an alternative choice to manufacture metallic stent. In CGDS, fine particles are accelerated to a high velocity and undergo solid-state plastic deformation upon impact on the substrate, which leads to particle-particle bonding. The feature of CGDS distinct from other thermal spray techniques is that the processing gas temperature is below the melting point of the feedstock. Therefore, unwanted effects of high temperatures, such as oxidation, grain growth and thermal stresses, are absent. In response to the fact that the majority of stents are made from stainless steel (316L) or Co-Cr alloy (L605), this study specifically addresses the development and characterization of 316L and 316L mixed with L605 coatings produced by the CGDS process. Scanning electron microscopy and electron backscatter diffraction were used to investigate the microstructural changes of these coatings before and after annealing. The effect of gas type on the microstructure of 316L coatings and the role of post-heat treatment in the microstructure and properties are also studied. Of particular interest are grain refinement, heat treatment, mechanical properties and corrosion behavior of the cold sprayed material.

  14. Nantucket pine tip moth phenology and timing of insecticide spray applications in seven Southeastern States

    Treesearch

    Christopher J. Fettig; Mark J. Dalusky; C. Wayne Berisford

    2000-01-01

    The Nantucket pine tip moth, Rhyacionia frustrana (Comstock) (Lepidoptera: Tortricidae), is a common pest of Christmas tree and pine plantations throughout much of the Eastern United States. The moth completes two to five generations annually, and insecticide spray timing models are currently available for controlling populations where three or...

  15. Relationships between spray parameters, microstructures and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amorphous/nanocrystalline coatings.

    PubMed

    Qiao, Lei; Wu, Yuping; Hong, Sheng; Zhang, Jianfeng; Shi, Wei; Zheng, Yugui

    2017-11-01

    Fe-based amorphous/nanocrystalline coatings were prepared on the AISI 321 steel substrate by the high-velocity oxygen-fuel (HVOF) thermal spraying technology. The effect of selected parameters (oxygen flow, kerosene flow and spray distance) on the cavitation erosion resistance (denoted as Rc) of the coating were investigated by using the Taguchi method. Statistical tools such as design of experiments (DOE), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were used to meet the expected objective. It was concluded that the kerosene flow had greater influence on the Rc of the coating and followed by the spray distance and the oxygen flow, respectively. The optimum spray parameters (OSP) were 963L/min for the oxygen flow, 28L/h for the kerosene flow, and 330mm for the spray distance. The Rc of the coating increased with the increase of hardness or the decrease of porosity, and the hardness had a greater influence on Rc than the porosity. The Fe-based coating deposited under the OSP exhibited the best cavitation erosion resistance in distilled water. The cracks initiated at the edge of the pores and the interfaces between the un-melted or half-melted particles, and finally leaded to the delamination of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Time constants for the evolution of sea spray droplets

    NASA Astrophysics Data System (ADS)

    Andreas, Edgar L.

    1990-11-01

    because of the rudimentary nature of the τw estimates. Future work must thus focus on the generation and turbulent transport of droplets of this size if we are to understand how sea spray affects air sea exchange.

  17. Let's think in alkaline phosphatase at heart function.

    PubMed

    Martins, Maria João; Azevedo, Isabel

    2010-10-08

    In their recent paper, Cheung et al [B.M. Cheung, K.L. Ong, L.Y. Wong, Elevated serum alkaline phosphatase and peripheral arterial disease in the United States National Health and Nutrition Examination Survey 1999-2004. Int J Cardiol 2008 (Electronic publication ahead of print)] described a significant association between serum alkaline phosphatase levels and low ankle-brachial blood pressure index, a risk factor for cardiovascular pathology. We had verified that alkaline phosphatase is present at the rat heart, showing a distribution compatible with cardiomyocyte sarcoplasmic reticulum. Moreover, several drugs with cardiac effect were shown to interfere with heart alkaline phosphatase activity. We therefore propose that alkaline phosphatase may be a local regulator at heart function and a putative target for therapeutic interventions. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  18. Generator of the low-temperature heterogeneous plasma flow

    NASA Astrophysics Data System (ADS)

    Yusupov, D. I.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Chinnov, V. F.; Sargsyan, M. A.

    2018-01-01

    A generator of low-temperature dc plasma with an expanding channel of an output electrode for gas-thermal spraying was designed and constructed. The delivery of the sprayed powder into the cathode and anode arc-binding zones or into the plasma jet below the anode binding was realized. The electrophysical characteristics of both the plasma torch and the heterogeneous plasma flow with Al2O3 powder are studied. It is shown that the current-voltage characteristic (CVC) of a plasma torch depends on the gas flow rate. If the flow rate varies from 1 to 3 g/s, the falling CVC becomes gradually increasing. The speed and temperature of the sprayed powder are determined.

  19. Characterization and Analysis of Paper Spray Ionization of Organic Compounds.

    PubMed

    Aliaga-Aguilar, Hugo

    2018-01-01

    Paper spray ionization has arisen relatively recently as a complement and alternative to electro- and nanospray ionization with silica capillaries. A majority of the work in the present literature focuses on the chemical aspect of paper spray. In order to study the physical and phenomenological facet of its implementation, we measured current and voltage distributions of Taylor cones. To study transport phenomena on filter paper, we addressed the behavior of large, sparingly soluble tetraalkylammonium ions, which are usually used as mobility standards, in paper spray. The variation of intensity with time of monomers and dimers of these ions was measured with a differential mobility analyzer and compared with that produced by contamination in the paper. At the same time, we evaluated the proficiency of different paper spray techniques for protein analysis using nano spray as a reference. Experiments suggest that Taylor cones in paper spray are subject to hysteresis, whereas transport phenomena in the porous substrate notably affects the ionization of the sample. Additionally, we observed that paper spray tends to favor lower charge states in proteins. Graphical Abstract.

  20. Developments in the formulation and delivery of spray dried vaccines.

    PubMed

    Kanojia, Gaurav; Have, Rimko Ten; Soema, Peter C; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-10-03

    Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery.

  1. Developments in the formulation and delivery of spray dried vaccines

    PubMed Central

    Kanojia, Gaurav; Have, Rimko ten; Soema, Peter C.; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-01-01

    ABSTRACT Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery. PMID:28925794

  2. Density of Spray-Formed Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin M. McHugh; Volker Uhlenwinkel; Nils Ellendr

    2008-06-01

    Spray Forming is an advanced materials processing technology that transforms molten metal into a near-net-shape solid by depositing atomized droplets onto a substrate. Depending on the application, the spray-formed material may be used in the as-deposited condition or it may undergo post-deposition processing. Regardless, the density of the as-deposited material is an important issue. Porosity is detrimental because it can significantly reduce strength, toughness, hardness and other properties. While it is not feasible to achieve fully-dense material in the as-deposited state, density greater than 99% of theoretical density is possible if the atomization and impact conditions are optimized. Thermal conditionsmore » at the deposit surface and droplet impact angle are key processing parameters that influence the density of the material. This paper examines the factors that contribute to porosity formation during spray forming and illustrates that very high as-deposited density is achieved by optimizing processing parameters.« less

  3. Time-resolved measurements of supersonic fuel sprays using synchrotron X-rays.

    PubMed

    Powell, C F; Yue, Y; Poola, R; Wang, J

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 micros. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date.

  4. Metsulfuron spray drift reduces fruit yield of hawthorn (Crataegus monogyna L.).

    PubMed

    Kjaer, Christian; Strandberg, Morten; Erlandsen, Mogens

    2006-03-01

    This study was carried out to investigate whether spray drift of metsulfuron has a potential to negatively affect hawthorn (Crataegus monogyna) hedgerows near agricultural fields. For this purpose four doses of metsulfuron ranging from 5% to 40% of the field dose (4 g metsulfuron per hectare) were sprayed on trees in seven different hawthorn hedgerows. The actual deposition on the leaves was measured by means of a tracer (glycine). Spraying was conducted both at the bud stage and at early flowering. Leaves, flowers, green berries and mature berries were harvested and the number and weight of each were measured. The spraying at the bud stage caused a highly significant reduction in number and dry weight of berries, whereas it had no effects on leaf and flower production. The berry reduction was close to 100% at actual depositions relevant for spray drift under normal conditions. Spraying at early flowering also significantly reduced berries although the effect was smaller than for the spraying at bud stage. The early flower stage spraying caused no reduction in number and size of leaves. The possible ecological consequence is that metsulfuron spray drift from agricultural fields has a potential to reduce the amount of berries available for frugivorous birds in nearby hedgerows. A potential need for regulatory measures to reduce herbicide spray drift to hedgerows situated near agricultural fields with herbicide use is also indicated.

  5. Micrometeorological measurements during the Blackmo 88 spray trials

    Treesearch

    D. E. Anderson; D. R. Miller; Y. S. Wang; W. E. Yendol; M. L. McManus

    1991-01-01

    Instrumentation was arrayed on a 120 foot tower to detail the local atmospheric conditions during the Blackmo 88 spray experiment. Measurements were continuous for 30 minute periods encompassing each spray pass.

  6. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  7. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  8. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  9. Oil recovery by alkaline waterflooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, C.E. Jr.; Williams, R.E.; Kolodzie, P.A.

    1974-01-01

    Flooding of oil containing organic acids with alkaline water under favorable conditions can result in recovery of around 50% of the residual oil left in a watered-out model. A high recovery efficiency results from the formation of a bank of viscous water-in-oil emulsion as surface active agents (soaps) are created by reactions of base in the water with the organic acids in the oil. The type and amount of organic acids in the oil, the pH and salt content of the water, and the amount of fines in the porous medium are the primary factors which determine the amount ofmore » additional oil recovered by this method. Interaction of alkaline water with reservoir rock largely determines the amount of chemical needed to flood a reservoir. Laboratory investigations using synthetic oils and crude oils show the importance of oil-water and liquid-solid interfacial properties to the results of an alkaline waterflood. A small field test demonstrated that emulsion banks can be formed in the reservoir and that chemical costs can be reasonable in selected reservoirs. Although studies have provided many qualitative guide lines for evaluating the feasibility of alkaline waterflooding, the economic attractiveness of the process must be considered on an individual reservoir.« less

  10. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Kenneth L.

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinidesmore » under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.« less

  11. Automatic targeting of plasma spray gun

    DOEpatents

    Abbatiello, Leonard A.; Neal, Richard E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.

  12. Extraction of hexavalent chromium from chromated copper arsenate treated wood under alkaline conditions.

    PubMed

    Radivojevic, Suzana; Cooper, Paul A

    2008-05-15

    Information on chromium (Cr) oxidation states is essential for the assessment of environmental and health risks associated with the overall life-cycle of chromated copper arsenate (CCA) treated wood products because of differences in toxicity between trivalent [Cr(III)] and hexavalent [Cr(VI)] chromium compounds. Hypothetical Cr(VI) fixation products were investigated in CCA type C treated sawdust of aspen and red pine during or following preservative fixation by extraction with Cr(VI)-specific extractants. Cr(VI) was found only in alkaline extracts of treated wood. A major source of Cr(VI) was method-induced oxidation of fixed Cr(III) during alkaline extraction, as confirmed by demonstrated oxidation of Cr(III) from CrCl3 treated wood. Oxidation of nontoxic and immobile Cr(III) to toxic and mobile Cr(VI) was facilitated by the presence of wood at pH > 8.5. Thermodynamic equilibrium between Cr(III) and Cr(VI) is affected by pH, temperature, rates of dissolution of CrIII) compounds, and oxygen availability. Results of this study recommend against alkaline extraction protocols for determination of Cr(VI) in treated wood. This Cr oxidation mechanism can act as a previously unrecognized route for generation of hazardous Cr(VI) if CCA treated wood is exposed to alkaline conditions during its production, use, or waste management.

  13. The route of liquid precursor to ZnO nanoparticles in premixed combustion spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2018-04-01

    Zinc oxide nanoparticles had been successfully synthesized by premixed combustion spray pyrolysis. Zinc acetate was dissolved in distilled water was selected as a liquid precursor. Zinc nitrate was also used for comparison the effect of precursor type on the generated particles morphology and the crystallinity. The premixed combustion reaction used liquefied petroleum gas (LPG) mainly consisting of butane and propane as a fuel and compressed air used as an oxidizer. The liquid precursor was atomized using a custom two fluid nozzle to generate droplets. Then, the droplets were sprayed by the flow of air as a carrier gas into the premixed combustion reactor. The zinc precursor was decomposed to zinc oxide due to the high temperature as a result of combustion reaction inside the reactor resulting in nanoparticles formation. The particle size decreased with the increase of the fuel flow rate. In addition, it can be found that at the same flow rate of fuel, the particle size of zinc oxide synthesized using zinc nitrate is larger than that of the use of zinc acetate as a precursor.

  14. Structure of High-Speed Sprays.

    DTIC Science & Technology

    1985-02-01

    red (Appendix B and Ref. 9) and computed (Appendix C and Ref. 10) the drop veloci lies in the farfield of non vaporizing Diesel-type sprays; measured...and Ref. 9) and computed (Appendix C and Ref. 10) the drop velocities in the farfield of non vaporizing Diesel-type sprays; measured (11) (and are...r) e and 41 - ,(r) e Solutions free from singularities on the axis r- O are found to be f, = C , Io(kr) and #I = C , rI,(.r), where C , and Ca are

  15. Process optimization of ultrasonic spray coating of polymer films.

    PubMed

    Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer

    2013-06-11

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films.

  16. Fabrication of topical metered dose film forming sprays for pain management.

    PubMed

    Ranade, Sneha; Bajaj, Amrita; Londhe, Vaishali; Babul, Najib; Kao, Danny

    2017-03-30

    Topical film-forming metered dose spray formulations were designed for management of pain. Ropivacaine, a local anesthetic is explored for its topical efficacy in alleviating pain. Metered dose spray containers, organic solvents, film forming polymers and permeation enhancers were utilized to fabricate the Metered Dose topical spray. Factors like viscosity, spray pattern, spray angle, volume of actuation, droplet size distribution of the metered dose spray formulation and drying time, flexibility and wash-ability of the film formed after spraying were assessed. Permeation of the drug into the porcine skin was observed based on ex-vivo diffusion studies and confocal microscopy. The results indicated a high level of drug concentration in the skin layers. Anti-nociceptive efficacy of the formulations was assessed on Wistar rats by hot plate and tail flick tests, based on the response to pain perception. The results were comparable to the conventional lidocaine gel. Topical film forming sprays have the ability to provide an accurate, long lasting and patient compliant delivery of drugs on the skin as compared to conventional gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Japan's research on particle clouds and sprays

    NASA Technical Reports Server (NTRS)

    Sato, Jun'ichi

    1995-01-01

    Most of energy used by us is generated by combustion of liquid and solid fuels. These fuels are burned in combustors mainly as liquid sprays and pulverized solids, respectively. A knowledge of the combustion processes in combustors is needed to achieve proper designs that have stable operation, high efficiency, and low emission levels. However, current understanding of liquid and solid particle cloud combustion is far from complete. If combustion experiments for these fuels are performed under a normal gravity field, some experimental difficulties are encountered. These difficulties encountered include, that since the particles fall by the force of gravity it is impossible to stop the particles in the air, the falling speeds of particles are different from each other, and are depend on the particle size, the flame is lifted up and deformed by the buoyancy force, and natural convection makes the flow field more complex. Since these experimental difficulties are attributable to the gravity force, a microgravity field can eliminate the above problems. This means that the flame propagation experiments in static homogeneous liquid and solid particle clouds can be carried out under a microgravity field. This will provide much information for the basic questions related to combustion processes of particle clouds and sprays. In Japan, flame propagation processes in the combustible liquid and solid particle clouds have been studied experimentally by using a microgravity field generated by a 4.5 s dropshaft, a 10 s dropshaft, and by parabolic flight. Described in this presentation are the recent results of flame propagations studies in a homogeneous liquid particle cloud, in a mixture of liquid particles/gas fuel/air, in a PMMA particle cloud, and in a pulverized coal particle cloud.

  18. Alkaline earth silicate wools - A new generation of high temperature insulation.

    PubMed

    Brown, Robert C; Harrison, Paul T C

    2012-11-01

    Intensive study of the natural asbestiform minerals that cause human diseases, and the consequent understanding of their hazardous characteristics, has enabled the development of manufactured fibres whose physical and/or chemical properties, in particular as they relate to biopersistence, have been adjusted to minimize possible harm to health. A strong driver for the developmentof new high temperature insulation materials wasthe perception of the toxicity of refractory ceramic fibres (RCF)and their classification in the EU as a category 2 carcinogen under Directive 67/548/EEC. Such classification carries with it the requirement for substitution by less hazardous materials. This paper focuses on the development of alkaline earth silicate (AES) wools as a new class of high temperature insulation with the capability of such substitution in a number of applications. These wools have only a low potential to cause harm because they do not persist in lung tissue once deposited, and have produced minimal effects in experimental test systems. AES wools are increasingly being used in a wide range of high temperature applications. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Modeling spray/puddle dissolution processes for deep-ultraviolet acid-hardened resists

    NASA Astrophysics Data System (ADS)

    Hutchinson, John M.; Das, Siddhartha; Qian, Qi-De; Gaw, Henry T.

    1993-10-01

    A study of the dissolution behavior of acid-hardened resists (AHR) was undertaken for spray and spray/puddle development processes. The Site Services DSM-100 end-point detection system is used to measure both spray and puddle dissolution data for a commercially available deep-ultraviolet AHR resist, Shipley SNR-248. The DSM allows in situ measurement of dissolution rate on the wafer chuck and hence allows parameter extraction for modeling spray and puddle processes. The dissolution data for spray and puddle processes was collected across a range of exposure dose and postexposure bake temperature. The development recipe was varied to decouple the contribution of the spray and puddle modes to the overall dissolution characteristics. The mechanisms involved in spray versus puddle dissolution and the impact of spray versus puddle dissolution on process performance metrics has been investigated. We used the effective-dose-modeling approach and the measurement capability of the DSM-100 and developed a lumped parameter model for acid-hardened resists that incorporates the effects of exposure, postexposure bake temperature and time, and development condition. The PARMEX photoresist-modeling program is used to determine parameters for the spray and for the puddle process. The lumped parameter AHR model developed showed good agreement with experimental data.

  20. Alkaline Phosphatase: MedlinePlus Lab Test Information

    MedlinePlus

    ... Test Information → Alkaline Phosphatase URL of this page: https://medlineplus.gov/labtests/alkalinephosphatase.html Alkaline Phosphatase To ... 2017 Mar 13]; [about 3 screens]. Available from: http://www.liverfoundation.org/abouttheliver/info/liverfunctiontests/ Centers for ...

  1. Timing of K-alkaline magmatism in the Balkan segment of southeast European Variscan edifice: ID-TIMS and LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    Dyulgerov, Momchil; Ovtcharova-Schaltegger, Maria; Ulianov, Alexey; Schaltegger, Urs

    2018-06-01

    The Variscan orogen in southeast Europe is exposed in isolated remnants, affected by a subsequent Alpine tectono-magmatic overprint. Unlike the central European Variscides, in SE Europe the juxtaposition and correlation of the events and products are impeded by the scarcity of Variscan domains with preserved magmatic, metamorphic, sedimentological and structural characteristics. To reveal the particular evolution of the Variscan orogen in Balkan Mts, we present the results of ID-TIMS and LA-ICP-MS dating of three potassic-alkaline intrusions: Svidnya, Buhovo-Seslavtsi and Shipka. The age determinations from the plutons do not permit to establish their unequivocal ages, but they bracket the time interval of emplacements. Based on geochronological, tectonic and stratigraphic evidence the emplacement interval for plutons could be: 317-310 Ma for Svidnya, 330-310 Ma for Buhovo-Seslavtsi and 320-303 Ma for Shipka. These results show that the generation of potassic-alkaline magmas was post-Visean and is contemporaneous with the adjacent numerous calc-alkaline granitoid plutons. Thus, the Variscan orogen in the Balkan Mts is not characterized by a time-dependent geochemical evolution of magma generation. Hence, the observed differences in the rocks' compositions can be interpreted solely by distinction between the magma sources. The available data for both potassic-alkaline and calc-alkaline rocks indicate that the major episodes of crustal stacking and shearing in the Balkan part of the Variscan edifice are pre-Visean ( 330 Ma). The present study reveals that the potassic-alkaline rocks from the Balkan Mts are younger than the central European potassic granitoids (durbachites). It suggests that melting of enriched mantle source took place at different times throughout the Variscan orogen. In spite of the alkaline character of the magmas, the studied zircons show a complex nature, with inherited cores and magmatic overgrowths. The observed heterogeneities in the zircons

  2. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alkaline phosphatase or isoenzymes test system... Test Systems § 862.1050 Alkaline phosphatase or isoenzymes test system. (a) Identification. An alkaline phosphatase or isoenzymes test system is a device intended to measure alkaline phosphatase or its isoenzymes...

  3. Spray Characterization of Gas-to-Liquid Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza; GTL jet fuel Consortium Team

    2012-11-01

    Gas-to-Liquid (GTL) Synthetic Paraffinic Kerosene (SPK) fuel obtained from Fischer-Tropsch synthesis has grabbed the global attention due to its cleaner combustion characteristics. GTL fuels are expected to meet the vital qualities such as atomization, combustion and emission characteristics of conventional jet fuels. It is imperative to understand fuel atomization in order to gain insights on the combustion and emission aspects of an alternative fuel. In this work spray characteristics of GTL-SPK, which could be used as a drop-in fuel in aircraft gas turbine engines, is studied. This work outlines the spray experimental facility, the methodology used and the results obtained using two SPK's with different chemical compositions. The spray characteristics, such as droplet size and distribution, are presented at three differential pressures across a simplex nozzle and compared with that of the conventional Jet A-1 fuel. Experimental results clearly show that although the chemical composition is significantly different between SPK's, the spray characteristics are not very different. This could be attributed to the minimal difference in fluid properties between the SPK's. Also, the spray characteristics of SPK's show close resemblance to the spray characteristics of Jet A-1 fuel.

  4. Preliminary Design of Aerial Spraying System for Microlight Aircraft

    NASA Astrophysics Data System (ADS)

    Omar, Zamri; Idris, Nurfazliawati; Rahim, M. Zulafif

    2017-10-01

    Undoubtedly agricultural is an important sector because it provides essential nutrients for human, and consequently is among the biggest sector for economic growth worldwide. It is crucial to ensure crops production is protected from any plant diseases and pests. Thus aerial spraying system on crops is developed to facilitate farmers to for crops pests control and it is very effective spraying method especially for large and hilly crop areas. However, the use of large aircraft for aerial spaying has a relatively high operational cost. Therefore, microlight aircraft is proposed to be used for crops aerial spraying works for several good reasons. In this paper, a preliminary design of aerial spraying system for microlight aircraft is proposed. Engineering design methodology is adopted in the development of the aerial sprayer and steps involved design are discussed thoroughly. A preliminary design for the microlight to be attached with an aerial spraying system is proposed.

  5. The role of drop velocity in statistical spray description

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; El-Wakil, M. M.; Myers, P. S.; Uyehara, O. A.

    1978-01-01

    The justification for describing a spray by treating drop velocity as a random variable on an equal statistical basis with drop size was studied experimentally. A double exposure technique using fluorescent drop photography was used to make size and velocity measurements at selected locations in a steady ethanol spray formed by a swirl atomizer. The size velocity data were categorized to construct bivariate spray density functions to describe the spray immediately after formation and during downstream propagation. Bimodal density functions were formed by environmental interaction during downstream propagation. Large differences were also found between spatial mass density and mass flux size distribution at the same location.

  6. A User-Friendly Model for Spray Drying to Aid Pharmaceutical Product Development

    PubMed Central

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach. PMID:24040240

  7. A user-friendly model for spray drying to aid pharmaceutical product development.

    PubMed

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach.

  8. Effects of Anode Arc Root Fluctuation on Coating Quality During Plasma Spraying

    NASA Astrophysics Data System (ADS)

    An, Lian-Tong; Gao, Yang; Sun, Chengqi

    2011-06-01

    To obtain a coating of high quality, a new type of plasma torch was designed and constructed to increase the stability of the plasma arc and reduce the air entrainment into the plasma jet. The torch, called bi-anode torch, generates an elongated arc with comparatively high arc voltage and low arc fluctuation. Spraying experiments were carried out to compare the quality of coatings deposited by a conventional torch and a bi-anode torch. Alumina coatings and tungsten carbide coatings were prepared to appraise the heating of the sprayed particles in the plasma jets and the entrainment of the surrounding air into the plasma jets, respectively. The results show that anode arc root fluctuation has only a small effect on the melting rate of alumina particles. On the other hand, reduced air entrainment into the plasma jet of the bi-anode torch will drastically reduce the decarbonization of tungsten carbide coatings.

  9. Acidity and alkalinity in mine drainage: Theoretical considerations

    USGS Publications Warehouse

    Kirby, Carl S.; Cravotta,, Charles A.

    2004-01-01

    Acidity, net acidity, and net alkalinity are widely used parameters for the characterization of mine drainage, but these terms are not well defined and are often misunderstood. Incorrect interpretation of acidity, alkalinity, and derivative terms can lead to inadequate treatment design or poor regulatory decisions. We briefly explain derivations of theoretical expressions of three types of alkalinities (caustic, phenolphthalein, and total) and acidities (mineral, CO2, and total). Theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined “CO2- acidity” is closely related to most standard titration methods used for mine drainage with an endpoint pH of 8.3, but it presents numerous interpretation problems, and it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/massaction approach and employing graphs for visualization, we explore the concept of principal components and how to assign acidity contributions to solution species, including aqueous complexes, commonly found in mine drainage. We define a comprehensive theoretical definition of acidity in mine drainage on the basis of aqueous speciation at the sample pH and the capacity of these species to undergo hydrolysis to pH 8.3. This definition indicates the computed acidity in milligrams per liter (mg L-1 ) as CaCO3 (based on pH and analytical concentrations of dissolved FeIII , FeII , Mn, and Al in mg L-1 ): Aciditycomputed = 50. (10(3-pH) + 3.CFeIII/55.8 + 2.CFeII/55.8 + 2.CMn/54.9 + 3.CAl/27.0) underestimates contributions from HSO4 - and H+ , but overestimates the acidity due to Fe3+. These errors tend to approximately cancel each other. We demonstrate that “net alkalinity” is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. We demonstrate that, for most mine-drainage solutions, a

  10. Effects of nozzle spray angle on droplet size and velocity

    USDA-ARS?s Scientific Manuscript database

    Spray applicators have many choices in selecting a spray nozzle to make an application of an agricultural product. They must balance flowrate, spray pressure, and nozzle type and setup to deliver their agrochemical in the right droplet size for their particular needs. Studies were conducted to det...

  11. Use of Proper Orthogonal Decomposition Towards Time-resolved Image Analysis of Sprays

    DTIC Science & Technology

    2011-03-15

    High-speed movies of optically dense sprays exiting a Gas-Centered Swirl Coaxial (GCSC) injector are subjected to image analysis to determine spray...sequence prior to image analysis . Results of spray morphology including spray boundary, widths, angles and boundary oscillation frequencies, are

  12. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  13. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  14. Sequential cryogen spraying for heat flux control at the skin surface

    NASA Astrophysics Data System (ADS)

    Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart

    2001-05-01

    Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.

  15. Balanced Rotating Spray Tank and Pipe Cleaning and Cleanliness Verification System

    NASA Technical Reports Server (NTRS)

    Caimi, Raoul E. B. (Inventor); Thaxton, Eric A. (Inventor)

    1998-01-01

    A system for cleaning and verifying the cleanliness of the interior surfaces of hollow items, such as small bottles, tanks, pipes and tubes, employs a rotating spray head for supplying a gas-liquid cleaning mixture to the item's surface at a supersonic velocity. The spray head incorporates a plurality of nozzles having diverging cross sections so that the incoming gas-liquid mixture is first converged within the spray head and then diverged through the nozzles, thereby accelerating the mixture to a supersonic velocity. In the preferred embodiment, three nozzles are employed; one forwardly facing nozzle at the end of the spray head and two oppositely facing angled nozzles exiting on opposite sides of the spray head which balance each other, and therefore impart no net side load on the spray head. A drive mechanism is provided to rotate the spray head and at the same time move the head back and forth within the item to be cleaned. The drive mechanism acts on a long metal tube to which the spray head is fixed, and thus no moving parts are exposed to the interior surfaces of the items to be cleaned, thereby reducing the risk of contamination.

  16. The influence of spray properties on intranasal deposition.

    PubMed

    Foo, Mow Yee; Cheng, Yung-Sung; Su, Wei-Chung; Donovan, Maureen D

    2007-01-01

    While numerous devices, formulations, and spray characteristics have been shown to influence nasal deposition efficiency, few studies have attempted to identify which of these interacting factors plays the greatest role in nasal spray deposition. The deposition patterns of solutions with a wide range of surface tensions and viscosities were measured using an MRI-derived nasal cavity replica. The resulting spray plumes had angles between 29 degrees and 80 degrees and contained droplet sizes (D(v50)) from 37-157 microm. Each formulation contained rhodamine 590 as a fluorescent marker for detection. Administration angles of 30 degrees , 40 degrees , or 50 degrees above horizontal were tested to investigate the role of user technique on nasal deposition. The amount of spray deposited within specific regions of the nasal cavity was determined by disassembling the replica and measuring the amount of rhodamine retained in each section. Most of the spray droplets were deposited onto the anterior region of the model, but sprays with small plume angles were capable of reaching the turbinate region with deposition efficiencies approaching 90%. Minimal dependence on droplet size, viscosity, or device was observed. Changes in inspiratory flow rate (0-60 L/min) had no significant effect on turbinate deposition efficiency. Both plume angle and administration angle were found to be important factors in determining deposition efficiency. For administration angles of 40 degrees or 50 degrees , maximal turbinate deposition efficiency (30-50%) occurred with plume angles of 55-65 degrees , whereas a 30 degrees administration angle gave an approximately 75% deposition efficiency for similar plume angles. Deposition efficiencies of approximately 90% could be achieved with plume angles <30 degrees using 30 degrees administration angles. Both the plume angle and administration angle are critical factors in determining deposition efficiency, while many other spray parameters, including

  17. Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors

    PubMed Central

    Rudin, Thomas; Wegner, Karsten

    2013-01-01

    A new flame-assisted spray pyrolysis (FASP) reactor design is presented, which allows the use of inexpensive precursors and solvents (e.g., ethanol) for synthesis of nanoparticles (10–20 nm) with uniform characteristics. In this reactor design, a gas-assisted atomizer generates the precursor solution spray that is mixed and combusted with externally fed inexpensive fuel gases (acetylene or methane) at a defined height above the atomizing nozzle. The gaseous fuel feed can be varied to control the combustion enthalpy content of the flame and onset of particle formation. This way, the enthalpy density of the flame is decoupled from the precursor solution composition. Low enthalpy content precursor solutions are prone to synthesis of non-uniform particles (e.g., bimodal particle size distribution) by standard flame spray pyrolysis (FSP) processes. For example, metal nitrates in ethanol typically produce nanosized particles by gas-to-particle conversion along with larger particles by droplet-to-particle conversion. The present FASP design facilitates the use of such low enthalpy precursor solutions for synthesis of homogeneous nanopowders by increasing the combustion enthalpy density of the flame with low-cost, gaseous fuels. The effect of flame enthalpy density on product properties in the FASP configuration is explored by the example of Bi2O3 nanoparticles produced from bismuth nitrate in ethanol. Product powders were characterized by nitrogen adsorption, X-ray diffraction, X-ray disk centrifuge, and transmission electron microscopy. Homogeneous Bi2O3 nanopowders were produced both by increasing the gaseous fuel content and, most notably, by cutting the air entrainment prior to ignition of the spray. PMID:23408113

  18. Oxymetazoline Nasal Spray

    MedlinePlus

    ... is recommended by a doctor. Children 6 to 12 years of age should use oxymetazoline nasal spray carefully and under adult supervision. Oxymetazoline is in a class of medications called nasal decongestants. It works by narrowing the blood vessels in the nasal passages.

  19. Temperature Dependence of Mineral Solubility in Water. Part 3. Alkaline and Alkaline Earth Sulfates

    NASA Astrophysics Data System (ADS)

    Krumgalz, B. S.

    2018-06-01

    The databases of alkaline and alkaline earth sulfate solubilities in water at various temperatures were created using experimental data from the publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed minerals have been calculated at various temperatures and represented by polynomial expressions.

  20. Temperature Dependence of Mineral Solubility in Water. Part 2. Alkaline and Alkaline Earth Bromides

    NASA Astrophysics Data System (ADS)

    Krumgalz, B. S.

    2018-03-01

    Databases of alkaline and alkaline earth bromide solubilities in water at various temperatures were created using experimental data from publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed bromide minerals have been calculated at various temperature intervals and also represented by polynomial expressions.

  1. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    NASA Astrophysics Data System (ADS)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-03-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared

  2. [Investigation on Spray Drying Technology of Auricularia auricular Extract].

    PubMed

    Zhou, Rong; Chen, Hui; Xie, Yuan; Chen, Peng; Wang, Luo-lin

    2015-07-01

    To investigate the feasibility of spray drying technology of Auricularia auricular extract and its optimum process. On the basis of single factor test, with the yield of dry extract and the content of polysaccharide as indexes, orthogonal test method was used to optimize the spray drying technology on the inlet air temperature, injection speed and crude drug content. Using ultraviolet spectrophotometry, thin layer chromatography(TLC) and pharmacodynamics as indicators, extracts prepared by traditional alcohol precipitation drying process and spray drying process were compared. Compared with the traditional preparation method, the extract prepared by spray drying had little differences from the polysaccharide content, TLC and the function of reducing TG and TC, and its optimum technology condition were as follows: The inlet air temperature was 180 °C, injection speed was 10 ml/min and crude drugs content was 0. 4 g/mL. Auricularia auricular extract by spray drying technology is stable and feasible with high economic benefit.

  3. Plasma Spraying of Ceramics with Particular Difficulties in Processing

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Schlegel, N.; Guignard, A.; Jarligo, M. O.; Rezanka, S.; Hospach, A.; Vaßen, R.

    2015-01-01

    Emerging new applications and growing demands of plasma-sprayed coatings initiate the development of new materials. Regarding ceramics, often complex compositions are employed to achieve advanced material properties, e.g., high thermal stability, low thermal conductivity, high electronic and ionic conductivity as well as specific thermo-mechanical properties and microstructures. Such materials however, often involve particular difficulties in processing by plasma spraying. The inhomogeneous dissociation and evaporation behavior of individual constituents can lead to changes of the chemical composition and the formation of secondary phases in the deposited coatings. Hence, undesired effects on the coating characteristics are encountered. In this work, examples of such challenging materials are investigated, namely pyrochlores applied for thermal barrier coatings as well as perovskites for gas separation membranes. In particular, new plasma spray processes like suspension plasma spraying and plasma spray-physical vapor deposition are considered. In some cases, plasma diagnostics are applied to analyze the processing conditions.

  4. Chemiluminescence-based pesticide biosensor utilizing the intelligent evolved properties of the enzyme alkaline phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyagari, M.; Kamtekar, S.; Pande, R.

    A methodology is described for immobilizing the enzyme alkaline phosphatase onto a glass surface using a novel biotinylated copolymer, poly(3-undecylthiophene-co-3- methanoithiophene). A streptavidin conjugate of alkaline phosphatase is used in this study. The biotinylated polymer is attached to the silanized glass surface via hydrophobic interactions and the enzyme is interfaced with the polymer through the classical biotin- streptavidin interaction. Alkaline phosphatase catalyzes the dephosphorylation of a macrocyclic compound, chloro-3-(4-methoxy spiro) (1,2 dioxetane-3-2`-tricyclo-) (3.3.1.1 )-(decani-4-yl) phenyl phosphate, to a species which emits energy by chemiluminescence. This chemiluminescence signal can be detected with a photomultiplier tube for enzymatic catalysis with the biocatalystmore » both in solution and immobilized on a glass surface. The signal generation is inhibited by the organophosphorus based insecticides such as paraoxon as well as nerve agents. We demonstrate in this study that a number of organophosphorus based insecticides inhibit the enzyme-mediated generation of chemiluminescence signal. This is true for the enzyme conjugate both free in solution and immobilized on a glass surface. In solution, the inhibition resembles the case of a partially uncompetitive system. By this type of inhibition we are able to detect pesticides down to about 50 ppb for the enzyme in solution. The pesticide detection limit of immobilized enzyme is currently being investigated. The enzyme is capable of a number of measurement cycles without significant loss of signal level.« less

  5. High Fidelity Simulation of Atomization in Diesel Engine Sprays

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D

  6. Metallization of Various Polymers by Cold Spray

    NASA Astrophysics Data System (ADS)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  7. A Comparative Study: Taxonomic Grouping of Alkaline Protease Producing Bacilli.

    PubMed

    Tekin, Nilgun; Cihan, Arzu Coleri; Karaca, Basar; Cokmus, Cumhur

    2017-03-30

    Alkaline proteases have biotechnological importance due to their activity and stability at alkaline pH. 56 bacteria, capable of growing under alkaline conditions were isolated and their alkaline protease activities were carried out at different parameters to determine their optimum alkaline protease production conditions. Seven isolates were showed higher alkaline protease production capacity than the reference strains. The highest alkaline protease producing isolates (103125 U/g), E114 and C265, were identified as Bacillus licheniformis with 99.4% and Bacillus mojavensis 99.8% based on 16S rRNA gene sequence similarities, respectively. Interestingly, the isolates identified as Bacillus safensis were also found to be high alkaline protease producing strains. Genotypic characterizations of the isolates were also determined by using a wide range of molecular techniques (ARDRA, ITS-PCR, (GTG)5-PCR, BOX-PCR). These different techniques allowed us to differentiate the alkaliphilic isolates and the results were in concurrence with phylogenetic analyses of the 16S rRNA genes. While ITS-PCR provided the highest correlation with 16S rRNA groups, (GTG)5-PCR showed the highest differentiation at species and intra-species level. In this study, each of the biotechnologically valuable alkaline protease producing isolates was grouped into their taxonomic positions with multi-genotypic analyses.

  8. Factors influencing the effective spray cone angle of pressure-swirl atomizers

    NASA Astrophysics Data System (ADS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1992-01-01

    The spray cone angles produced by several simplex pressure-swirl nozzles are examined using three liquids whose viscosities range from 0.001 to 0.012 kg/ms (1 to 12 cp). Measurements of both the visible spray cone angle and the effective spray cone angle are carried out over wide ranges of injection pressure and for five different values of the discharge orifice length/diameter ratio. The influence of the number of swirl chamber feed slots on spray cone angle is also examined. The results show that the spray cone angle widens with increase in injection pressure but is reduced by increases in liquid viscosity and/or discharge orifice length/diameter ratio. Variation in the number of swirl chamber feed slots between one and three has little effect on the effective spray cone angle.

  9. Spray Drying of Mosambi Juice in Lab

    NASA Astrophysics Data System (ADS)

    Singh, S. V.; Verma, A.

    2014-01-01

    The studies on spray drying of mosambi juice were carried out with Laboratory spray dryer set-up (LSD-48 MINI SPRAY DRYER-JISL). Inlet and outlet air temperature and maltodextrin (drying agent) concentration was taken as variable parameters. Experiments were conducted by using 110 °C to 140 °C inlet air temperature, 60 °C to 70 °C outlet air temperature and 5-7 % maltodextrin concentration. The free flow powder of mosambi juice was obtained with 7 % maltodextrin at 140 °C inlet air temperature and 60 °C outlet air temperature. Fresh and reconstituted juices were evaluated for vitamin C, titrable acidity and sensory characteristics. The reconstituted juice was found slightly acceptable by taste panel.

  10. Spray-formed tooling

    NASA Astrophysics Data System (ADS)

    McHugh, K. M.; Key, J. F.

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  11. Evaluation of a locally homogeneous model of spray evaporation

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.

    1979-01-01

    A model of spray evaporation which employs a second-order turbulence model in conjunction with the locally homogeneous flow approximation, which implies infinitely fast interphase transport rates is presented. Measurements to test the model were completed for single phase constant and variable density jets, as well as an evaporating spray in stagnant air. Profiles of mean velocity, composition, temperature and drop size distribution as well as velocity fluctuations and Reynolds stress, were measured within the spray. Predictions were in agreement with measurements in single phase flows and also with many characteristics of the spray, e.g. flow width, radial profiles of mean and turbulent quantities, and the axial rate of decay of mean velocity and mixture fraction.

  12. Some Characteristics of Fuel Sprays at Low-injection Pressures

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1931-01-01

    This report presents the results of tests conducted at the Langley Memorial Aeronautical Laboratory, Langley Field, Va., to determine some of the characteristics of the fuel sprays obtained from an 0.008-inch and a 0.020-inch open nozzle when injection pressures from 100 to 500 pounds per square inch were used. Fuel oil and gasoline were injected into air at densities of atmospheric land 0.325 pound per cubic foot. It was found that the penetration rate at these low pressures was about the same as the rate obtained with higher pressures. Spray cone-angles were small and individual oil drops were visible in all the sprays. Gasoline and fuel oil sprays had similar characteristics.

  13. Hard tissue ablation with a spray-assisted mid-IR laser

    NASA Astrophysics Data System (ADS)

    Kang, H. W.; Rizoiu, I.; Welch, A. J.

    2007-12-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  14. Sea Spray Aerosol Production over the North Atlantic

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Quinn, P.

    2017-12-01

    Breaking waves on the ocean surface generate air bubbles that scavenge organic matter from the surrounding seawater. When injected into the atmosphere, these bubbles burst, yielding sea spray aerosol (SSA), a mixture of organic and inorganic compounds with the organic matter enriched relative to seawater. SSA mass is well documented as the dominant component of aerosol light scattering over the remote oceans. The importance of SSA number to marine boundary layer cloud condensation nuclei (CCN) is much less certain. During the Western Atlantic Climate Study cruises (WACS-1 - August 2012 and WACS-2 - May-June 2014) and the North Atlantic Aerosols and Marine Ecosystem Study cruises (NAAMES-1 - November 2015, NAAMES-2 - May 2016, and NAAMES-3 - September 2017), we generated and measured freshly emitted SSA using the Sea Sweep SSA generator. During the 2017 cruise we also generated SSA with a Marine Aerosol Reference Tank (MART). Using the data generated on these 5 cruises and a large database of remote marine boundary layer aerosol measurements we will address three questions during this presentation: 1 - Do phytoplankton ecosystems affect the organic enrichment of freshly emitted SSA?, 2 - Do plankton ecosystems affect the number production flux of SSA?, and 3 - Is SSA a significant source of atmospheric CCN?

  15. Zirconia coating stabilized super-iron alkaline cathodes

    NASA Astrophysics Data System (ADS)

    Yu, Xingwen; Licht, Stuart

    A low-level zirconia coating significantly stabilizes high energy alkaline super-iron cathodes, and improves the energy storage capacity of super-iron batteries. Zirconia coating is derived from ZrCl 4 in an organic medium through the conversion of ZrCl 4 to ZrO 2. In alkaline battery system, ZrO 2 provides an intact shield for the cathode materials and the hydroxide shuttle through the coating sustains alkaline cathode redox chemistry. Most super-iron cathodes are solid-state stable, such as K 2FeO 4 and Cs 2FeO 4, but tend to be passivated in alkaline electrolyte due to the formation of Fe(III) over layer. Zirconia coating effectively enhances the stability of these super-iron cathodes. However, for solid-state unstable super-iron cathode (e.g. BaFeO 4), only a little stabilization effect of zirconia coating is observed.

  16. To Spray or Not to Spray: A Decision Analysis of Coffee Berry Borer in Hawaii

    PubMed Central

    2017-01-01

    Integrated pest management strategies were adopted to combat the coffee berry borer (CBB) after its arrival in Hawaii in 2010. A decision tree framework is used to model the CBB integrated pest management recommendations, for potential use by growers and to assist in developing and evaluating management strategies and policies. The model focuses on pesticide spraying (spray/no spray) as the most significant pest management decision within each period over the entire crop season. The main result from the analysis suggests the most important parameter to maximize net benefit is to ensure a low initial infestation level. A second result looks at the impact of a subsidy for the cost of pesticides and shows a typical farmer receives a positive net benefit of $947.17. Sensitivity analysis of parameters checks the robustness of the model and further confirms the importance of a low initial infestation level vis-a-vis any level of subsidy. The use of a decision tree is shown to be an effective method for understanding integrated pest management strategies and solutions. PMID:29065464

  17. Microstructural characteristics of plasma sprayed nanostructured partially stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Lima, Rogerio Soares

    Thermal barrier coatings have been extensively applied in the aerospace industry in turbines and rocket engines as an insulation system. Partially stabilized zirconia, due to its high thermal stability and low thermal conductivity at high temperatures has been traditionally employed as the ceramic element of the thermal barrier coating system. Different approaches have been taken in order to improve the performance of these coatings. Nanostructured materials are promising an interesting future in the beginning of the 21st century. Due to its enhanced strain to failure and superplasticity new applications may be accomplished or the limits of materials utilization may be placed at higher levels. Single nanostructured particles can not be thermal sprayed by conventional thermal spray equipment. Due to its low mass, they would be deviated to the periphery of the thermal spray jet. To overcome this characteristic, single nanostructured particles were successively agglomerated into large microscopic particles, with particle size distribution similar to the conventional feedstocks for thermal spray equipment. Agglomerated nanostructured particles of partially stabilized zirconia were plasma sprayed in air with different spray parameters. According to traditional thermal spray procedure, the feedstock has to be melted in the thermal spray jet in order to achieve the necessary conditions for adhesion and cohesion on the substrate. Due to the nature of the nanostructured particles, a new step has to be taken in the thermal spray processing; particle melting has to be avoided in order to preserve the feedstock nanostructure in the coating overall microstructure. In this work, the adhesion/cohesion system of nanostructured coatings is investigated and clarified. A percentage of molten particles will retain and hold the non-molten agglomerated nanostructured particles in the coating overall microstructure. Controlling the spray parameters it was possible to produce coatings

  18. Global Variability and Changes in Ocean Total Alkalinity from Aquarius Satellite

    NASA Astrophysics Data System (ADS)

    Fine, R. A.; Willey, D. A.; Millero, F. J., Jr.

    2016-02-01

    To document effects of ocean acidification it is important to have an understanding of the processes and parameters that influence alkalinity. Alkalinity is a gauge on the ability of seawater to neutralize acids. We use Aquarius satellite data, which allow unprecedented global mapping of surface total alkalinity as it correlates strongly with salinity and to a lesser extent with temperature. Spatial variability in total alkalinity and salinity exceed temporal variability, the latter includes seasonal and differences compared to climatological data. The northern hemisphere has more spatial and monthly variability in total alkalinity and salinity, while less variability in Southern Ocean alkalinity is due to less salinity variability and upwelling of waters enriched in alkalinity. Satellite alkalinity data are providing a global baseline that can be used for comparing with future carbon data, and for evaluating spatial and temporal variability and past trends. For the first time it is shown that recent satellite derived total alkalinity in the subtropics have increased as compared with climatological data; this is reflective of large scale changes in the global water cycle. Total alkalinity increases imply increased dissolution of calcareous minerals and difficulty for calcifying organisms to make their shells.

  19. Comparison of the Characteristics and Performance of Flurbiprofen 8.75 mg Spray for Sore Throat.

    PubMed

    Veale, David; Shephard, Adrian; Adams, Verity; Lidster, Charlotte

    2017-01-01

    Sore throat sprays provide targeted relief by delivering the active ingredient directly to the site of pain. Different sprays vary in characteristics, thus affecting delivery of the active ingredient to the throat, which can impact compliance. The characteristics and performance of FLURBIPROFEN 8.75 mg SPRAY were compared with 12 other sprays. Parameters assessed included spray angle and pattern, droplet size distribution, shot weight uniformity and shot weight throughout life. Among all sprays tested WICK Sulagil Halsspray had the smallest spray angle (46°) and also the smallest diameter spray pattern (X=32.8 mm; Y=34.4 mm). Thiovalone® Buccal Spray Suspension had both the largest spray angle (82°) and largest diameter spray pattern (X=62.6 mm; Y=78.0 mm). Hasco Sept® Aerosol Spray had the smallest droplet size (Dv90=118.4 μm) whereas OKi infiammazione e dolore® 0.16% spray had the largest (Dv90=214.34 μm). In terms of shot weight uniformity, TANTUM® VERDE GOLA 0.25% spray showed the least variation (2% RSD) between shots and UNIBEN Aerosol Spray the most (23.4% RSD). Shot weight throughout life studies showed that FLURBIPROFEN 8.75 mg SPRAY had the least deviation from shot weight (1.77%) whereas OKi infiammazione e dolore® 0.16% spray deviated the most (44.9%). FLURBIPROFEN 8.75 mg SPRAY had the second smallest spray angle/pattern and droplet size distribution and also the least variation in shot weight. Different sore throat sprays vary in different attributes, affecting delivery of the active ingredient. FLURBIPROFEN 8.75 mg SPRAY performed well overall, ranking first among all sprays tested, and providing a dose which is targeted and uniformly delivered throughout the life of the bottle. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Vapor Phase Deposition Using Plasma Spray-PVD™

    NASA Astrophysics Data System (ADS)

    von Niessen, K.; Gindrat, M.; Refke, A.

    2010-01-01

    Plasma spray—physical vapor deposition (PS-PVD) is a low pressure plasma spray technology to deposit coatings out of the vapor phase. PS-PVD is a part of the family of new hybrid processes recently developed by Sulzer Metco AG (Switzerland) on the basis of the well-established low pressure plasma spraying (LPPS) technology. Included in this new process family are plasma spray—chemical vapor deposition (PS-CVD) and plasma spray—thin film (PS-TF) processes. In comparison to conventional vacuum plasma spraying and LPPS, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and EB-PVD coatings. This paper reports on the progress made at Sulzer Metco to develop functional coatings build up from vapor phase of oxide ceramics and metals.

  1. PAINT SPRAY BOOTH DESIGN USING RECIRCULATION/PARTITIONING VENTILATION

    EPA Science Inventory

    Many spray painting facility operators have been attempting to reduce the discharge of volatile organic compounds (VOCs) from paint spray booths to the atmosphere. Some have been able to convert to lower VOC containing paints and coatings such as powder coating, waterborne coatin...

  2. Feedback enhanced plasma spray tool

    DOEpatents

    Gevelber, Michael Alan; Wroblewski, Donald Edward; Fincke, James Russell; Swank, William David; Haggard, Delon C.; Bewley, Randy Lee

    2005-11-22

    An improved automatic feedback control scheme enhances plasma spraying of powdered material through reduction of process variability and providing better ability to engineer coating structure. The present inventors discovered that controlling centroid position of the spatial distribution along with other output parameters, such as particle temperature, particle velocity, and molten mass flux rate, vastly increases control over the sprayed coating structure, including vertical and horizontal cracks, voids, and porosity. It also allows improved control over graded layers or compositionally varying layers of material, reduces variations, including variation in coating thickness, and allows increasing deposition rate. Various measurement and system control schemes are provided.

  3. From drop impact physics to spray cooling models: a critical review

    NASA Astrophysics Data System (ADS)

    Breitenbach, Jan; Roisman, Ilia V.; Tropea, Cameron

    2018-03-01

    Spray-wall interaction is an important process encountered in a large number of existing and emerging technologies and is the underlying phenomenon associated with spray cooling. Spray cooling is a very efficient technology, surpassing all other conventional cooling methods, especially those not involving phase change and not exploiting the latent heat of vaporization. However, the effectiveness of spray cooling is dependent on a large number of parameters, including spray characteristics like drop size, velocity and number density, the surface morphology, but also on the temperature range and thermal properties of the materials involved. Indeed, the temperature of the substrate can have significant influence on the hydrodynamics of drop and spray impact, an aspect which is seldom considered in model formulation. This process is extremely complex, thus most design rules to date are highly empirical in nature. On the other hand, significant theoretical progress has been made in recent years about the interaction of single drops with heated walls and improvements to the fundamentals of spray cooling can now be anticipated. The present review has the objective of summarizing some of these recent advances and to establish a framework for future development of more reliable and universal physics-based correlations to describe quantities involved in spray cooling.

  4. Identifying Indicators of Progress in Thermal Spray Research Using Bibliometrics Analysis

    NASA Astrophysics Data System (ADS)

    Li, R.-T.; Khor, K. A.; Yu, L.-G.

    2016-12-01

    We investigated the research publications on thermal spray in the period of 1985-2015 using the data from Web of Science, Scopus and SciVal®. Bibliometrics analysis was employed to elucidate the country and institution distribution in various thermal spray research areas and to characterize the trends of topic change and technology progress. Results show that China, USA, Japan, Germany, India and France were the top countries in thermal spray research, and Xi'an Jiaotong University, Universite de Technologie Belfort-Montbeliard, Shanghai Institute of Ceramics, ETH Zurich, National Research Council of Canada, University of Limoges were among the top institutions that had high scholarly research output during 2005-2015. The terms of the titles, keywords and abstracts of the publications were analyzed by the Latent Dirichlet Allocation model and visually mapped using the VOSviewer software to reveal the progress of thermal spray technology. It is found that thermal barrier coating was consistently the main research area in thermal spray, and high-velocity oxy-fuel spray and cold spray developed rapidly in the last 10 years.

  5. Effect of Post-spray Shot Peening Treatment on the Corrosion Behavior of NiCr-Mo Coating by Plasma Spraying of the Shell-Core-Structured Powders

    NASA Astrophysics Data System (ADS)

    Tian, Jia-Jia; Wei, Ying-Kang; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2018-01-01

    Corrosion of metal plays a detrimental role in service lifetime of parts or systems. Therefore, coating a protective film which is fully dense and defects free on the base metal is an effective approach to protect the base metal from corrosion. In this study, a dense NiCr-20Mo coating with excellent lamellar interface bonding was deposited by plasma spraying of the novel shell-core-structured Mo-clad-NiCr powders, and then post-spray shot peening treatment by cold spraying of steel shots was applied to the plasma-sprayed NiCr-20Mo coating to obtain a fully dense coating through eliminating possibly existed pores and un-bonded interfaces within the NiCr-20Mo coating. Corrosion behaviors of the NiCr-20Mo coatings before and after shot peening were tested to investigate the effect of the post-spray shot peening on the corrosion behavior of the NiCr-20Mo coating. Results showed that a much dense and uniform plasma-sprayed NiCr-20Mo coating with perfect lamellar bonding at most of interfaces was deposited. However, the electrochemical tests revealed the existence of through-thickness pores in the as-plasma-sprayed NiCr-20Mo coating. Through the post-spray shot peening treatment, a completely dense top layer in the coating was formed, and with the increase in the shot peening intensity from one pass to three passes, the dense top layer became thicker from 100 μm to reach 300 μm of the whole coating thickness. Thus, a fully dense bulk-like coating was obtained. Corrosion test results showed that the dense coating layer resulting from densification of shot peening can act as an effective barrier coating to prevent the penetration of the corrosive medium and consequently protect the substrate from corrosion effectively. Therefore, a fully dense bulk-like NiCr-20Mo coating with excellent corrosion resistance can be achieved through the plasma spraying of Mo-clad-NiCr powders followed by appropriate post-spray shot peening treatment.

  6. Laser modification of thermally sprayed coatings

    NASA Astrophysics Data System (ADS)

    Uglov, A. A.; Fomin, A. D.; Naumkin, A. O.; Pekshev, P. Iu.; Smurov, I. Iu.

    1987-08-01

    Experimental results are reported on the modification of thermally sprayed coatings on steels and aluminum alloys using pulsed YAG and CW CO2 lasers. In particular, results obtained for self-fluxing Ni9CrBSi powders, ZRO2 ceramic, and titanium are examined. It is shown that the laser treatment of thermally sprayed coatings significantly improves their physicomechanical properties; it also makes it possible to obtain refractory coatings on low-melting substrates with good coating-substrate adhesion.

  7. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  8. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voort, D. D. van der, E-mail: d.d.v.d.voort@tue.nl; Water, W. van de; Kunnen, R. P. J.

    2016-03-15

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383more » K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.« less

  9. Characteristics of Fe powders prepared by spray pyrolysis from a spray solution with ethylene glycol as the source material of heat pellet

    NASA Astrophysics Data System (ADS)

    Koo, H. Y.; Kim, J. H.; Hong, S. K.; Ko, Y. N.; Jang, H. C.; Jung, D. S.; Han, J. M.; Hong, Y. J.; Kang, Y. C.; Kang, S. H.; Cho, S. B.

    2012-06-01

    Fe powders as the heat pellet material for thermal batteries are prepared from iron oxide powders obtained by spray pyrolysis from a spray solution of iron nitrate with ethylene glycol. The iron oxide powders with hollow and thin wall structure produce Fe powders with elongated structure and fine primary particle size at a low reducing temperature of 615 °C. The mean size of the primary Fe powders with elongated structure decreases with increasing concentration of ethylene glycol dissolved into the spray solution. The heat pellets prepared from the fine-size Fe powders with elongated structure have good ignition sensitivities below 1 watt. The heat pellets formed from the Fe powders obtained from the spray solution with 0.5 M EG have an extremely high burn rate of 26 cms-1.

  10. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet

  11. Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches.

    PubMed

    Maryam Sadeghi, S; Vanpeteghem, Guillaumme; Neto, Isabel F F; Soares, Helena M V M

    2017-02-01

    The main aim of this work was to evaluate the possibility of using microwave or ultrasound to assist the efficient and selective leaching of Zn from spent alkaline batteries and compare the results with those obtained using the conventional method. Two different strategies were applied: acid leaching of a washed residue and alkaline leaching of the original residue. In both (acid and alkaline) approaches, the use of microwave- or ultrasound-assisted leaching increased the extraction of Zn compared with the best results obtained using conventional leaching [acid leaching (1.5mol/L H 2 SO 4 , 3h, 80°C), 90% of Zn extracted; alkaline leaching (6mol/L NaOH, 3h, 80°C), 42% of Zn extracted]. With acid leaching, 94% of the Zn was extracted using microwave-assisted leaching (1 cycle, 30s, 1mol/L H 2 SO 4 ), and 92% of the Zn was extracted using ultrasound-assisted leaching (2min, 0.1p, 20% amplitude, 1mol/L H 2 SO 4 ). Ultrasound-assisted leaching resulted in a more selective (Zn/Mn ratio of 5.1) Zn extraction than microwave-assisted leaching (Zn/Mn ratio of 3.5); both processes generated a concentrated Zn solution (⩾18.7g/L) with a purity (83.3% and 77.7%, respectively) that was suitable for electrowinning. With alkaline leaching, microwave- (1 cycle, 3 min, 4mol/L NaOH) and ultrasound-assisted (14min, 0.1p, 20% amplitude, 4mol/L NaOH) leaching extracted about 80% of the Zn and less than 0.01% of the Mn, which resulted in lesser concentrated Zn solutions (approximately 16.5g/L) but with high purity (>99.5%) that was suitable for the recovery of Zn by precipitation. The microwave- and ultrasound-assisted leaching strategies used in this work proved to be efficient and environmentally-friendly approaches for the extraction of Zn from spent alkaline residues since a concentrated Zn solution with adequate purity for subsequent Zn recovery was obtained using significantly decreased leaching times and concentrations of chemicals. Copyright © 2017 Elsevier Ltd. All rights

  12. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  13. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves.

    PubMed

    Wang, Yong; Yu, Yu-Song; Li, Guo-Xiu; Jia, Tao-Ming

    2017-01-05

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern's Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu's, Varde's and Merrigton's model). It is found that the Merrigton's model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton's model is fitted with experimental results.

  14. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  15. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  16. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  17. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  18. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  19. The role of spray-enhanced swirl flow for combustion stabilization in a stratified-charge DISI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Wei; Sjöberg, Magnus; Reuss, David L.

    Implementing spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Moreover, cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustionmore » repeatability from cycle to cycle. The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum. This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. Conversely, swirl flow always convects the spark plasma towards one

  20. The role of spray-enhanced swirl flow for combustion stabilization in a stratified-charge DISI engine

    DOE PAGES

    Zeng, Wei; Sjöberg, Magnus; Reuss, David L.; ...

    2016-06-01

    Implementing spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Moreover, cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustionmore » repeatability from cycle to cycle. The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum. This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. Conversely, swirl flow always convects the spark plasma towards one