Sample records for alkalinity calcium magnesium

  1. Cord blood calcium, phosphate, magnesium, and alkaline phosphatase gestational age-specific reference intervals for preterm infants.

    PubMed

    Fenton, Tanis R; Lyon, Andrew W; Rose, M Sarah

    2011-08-31

    The objective was to determine the influence of gestational age, maternal, and neonatal variables on reference intervals for cord blood bone minerals (calcium, phosphate, magnesium) and related laboratory tests (alkaline phosphatase, and albumin-adjusted calcium), and to develop gestational age specific reference intervals based on infants without influential pathological conditions. Cross-sectional study. 702 babies were identified as candidates for this study in a regional referral neonatal unit. After exclusions (for anomalies, asphyxia, maternal magnesium sulfate administration, and death), relationships were examined between cord blood serum laboratory analytes (calcium, phosphate, magnesium, alkaline phosphatase, and albumin-adjusted calcium) with gestation age and also with maternal and neonatal variables using multiple linear regression. Infants with influential pathological conditions were omitted from the development of gestational age specific reference intervals for the following categories: 23-27, 28-31, 32-34, 35-36 and > 36 weeks. Among the 506 preterm and 54 terms infants included in the sample. Phosphate, magnesium, and alkaline phosphatase in cord blood serum decreased with gestational age, calcium increased with gestational age. Those who were triplets, small for gestational age, and those whose mother had pregnancy-induced hypertension were influential for most of the analytes. The reference ranges for the preterm infants ≥ 36 weeks were: phosphate 1.5 to 2.6 mmol/L (4.5 to 8.0 mg/dL), calcium: 2.1 to 3.1 mmol/L (8.3 to 12.4 mg/dL); albumin-adjusted calcium: 2.3 to 3.2 mmol/L (9.1 to 12.9 mg/dL); magnesium 0.6 to 1.0 mmol/L (1.4 to 2.3 mg/dL), and alkaline phosphatase 60 to 301 units/L. These data suggest that gestational age, as well as potentially pathogenic maternal and neonatal variables should be considered in the development of reference intervals for preterm infants.

  2. The Association Between Calcium, Magnesium, and Ratio of Calcium/Magnesium in Seminal Plasma and Sperm Quality.

    PubMed

    Liang, Hong; Miao, Maohua; Chen, Jianping; Chen, Kanglian; Wu, Bin; Dai, Qi; Wang, Jian; Sun, Fei; Shi, Huijuan; Yuan, Wei

    2016-11-01

    The study aimed to examine the relationships between calcium, magnesium, and calcium/magnesium ratio in semen plasma and sperm quality. It was a cross-sectional study based on a program aiming at promoting the reproductive health in less-developed areas. A total of 515 men aged between 18 and 55 years provided semen specimens at family planning clinics in Sandu County, Guizhou Province, China. Total calcium and magnesium concentrations in semen plasma were measured with flame atomic absorption spectrometry. Sperm quality, including sperm motility and concentration, was evaluated by using a computer-assisted sperm analysis method. The medians of seminal plasma calcium, magnesium, and zinc concentrations were 9.61, 4.41, and 2.23 mmol/l, respectively. Calcium concentration and calcium/magnesium ratio were negatively associated with sperm concentrations (β = -0.47, P = 0.0123 for calcium; β = -0.25, P = 0.0393 for calcium/magnesium ratio) after adjusting for zinc and other covariates. In stratified analyses, the association between calcium and sperm concentrations only persisted among subjects with a calcium/magnesium ratio of ≤2.5 (β = -0.71, P = 0.0268). In the same stratum, magnesium was associated with increased sperm concentration (β = 0.73, P = 0.0386). Among subjects with a calcium/magnesium ratio of >2.5, neither calcium nor magnesium was associated with sperm concentration. In conclusion, total calcium and magnesium concentrations were associated with sperm concentration among subjects with a lower calcium/magnesium ratio. The calcium and magnesium ratio had a modifying effect on the associations of calcium and magnesium with sperm concentration.

  3. Evolution of the magnesium incorporated amorphous calcium phosphate to nano-crystallized hydroxyapatite in alkaline solution

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Juan; Lin, Dong-Yang; Yan, Xiao-Hui; Wang, Xiao-Xiang

    2011-12-01

    A homogeneous amorphous calcium phosphate (ACP) coating containing magnesium was achieved on titanium substrates by electrochemical deposition (ECD). Its amorphous structure is confirmed by transmission electron microscope (TEM) together with grazing reflection absorption infrared spectroscopy (IR) spectrometer. In the images of high-resolution transmission electron microscope (HRTEM), the ACP spheres are assembled by nano-particles with the diameter of 5-10 nm. In the alkaline environment, nucleation of hydroxyapatite (HAP) occurs on the surfaces of ACP spheres. By consuming the Ca and PO 4 ions inside the ACP spheres, the HAP nuclei grow outward. Confirmed by TEM, the ACP spheres converse to hollow HAP spheres composed of HAP nano-needles. The coating is finally constructed by the HAP nano-needles, which are themselves aggregated by numerous nano-particles.

  4. Calcium carbonate with magnesium overdose

    MedlinePlus

    The combination of calcium carbonate and magnesium is commonly found in antacids. These medicines provide heartburn relief. Calcium carbonate with magnesium overdose occurs when someone takes more than the ...

  5. Synthesis and Structural Studies of Calcium and Magnesium Phosphinate and Phosphonate Compounds

    NASA Astrophysics Data System (ADS)

    Bampoh, Victoria Naa Kwale

    The work presented herein describes synthetic methodologies leading to the design of a wide array of magnesium and calcium based phosphinate and phosphonates with possible applications as bone scaffolding materials or additives to bone cements. The challenge to the chemistry of the alkaline earth phosphonate target compounds includes poor solubility of compounds, and poorly understood details on the control of the metal's coordination environment. Hence, less is known on phosphonate based alkaline earth metal organic frameworks as compared to transition metal phosphonates. Factors governing the challenges in obtaining crystalline, well-defined magnesium and calcium solids lie in the large metal diameters, the absence of energetically available d-orbitals to direct metal geometry, as well as the overall weakness of the metal-ligand bonds. A significant part of this project was concerned with the development of suitable reaction conditions to obtain X-ray quality crystals of the reaction products to allow for structural elucidation of the novel compounds. Various methodologies to aid in crystal growth including hydrothermal methods and gel crystallization were employed. We have used phosphinate and phosphonate ligands with different number of phosphorus oxygen atoms as well as diphosphonates with different linker lengths to determine their effects on the overall structural features. An interesting correlation is observed between the dimensionality of products and the increasing number of donor oxygen atoms in the ligands as we progress from phosphinic acid to the phosphorous acids. As an example, monophosphinate ligand only yielded one-dimensional compounds, whereas the phosphonates crystallize as one and two-dimensional compounds, and the di- and triphosphonate based compounds display two or three-dimensional geometries. This thesis provides a selection of calcium and magnesium compounds with one-dimensional geometry, as represented in a calcium phosphinate to novel

  6. Magnesium/Calcium Competition at Excitable Membranes.

    ERIC Educational Resources Information Center

    Belzer, Bill; Fry, Panni

    1998-01-01

    Considers some consequences of altering intracellular calcium supply by magnesium concentration changes. Focuses on using this procedure as an exercise with allied health students as they witness therapeutic uses of magnesium and other calcium entry inhibitors. (DDR)

  7. Magnesium and Calcium in Isolated Cell Nuclei

    PubMed Central

    Naora, H.; Naora, H.; Mirsky, A. E.; Allfrey, V. G.

    1961-01-01

    The calcium and magnesium contents of thymus nuclei have been determined and the nuclear sites of attachment of these two elements have been studied. The nuclei used for these purposes were isolated in non-aqueous media and in sucrose solutions. Non-aqueous nuclei contain 0.024 per cent calcium and 0.115 per cent magnesium. Calcium and magnesium are held at different sites. The greater part of the magnesium is bound to DNA, probably to its phosphate groups. Evidence is presented that the magnesium atoms combined with the phosphate groups of DNA are also attached to mononucleotides. There is reason to believe that those DNA-phosphate groups to which magnesium is bound, less than 1/10th of the total, are metabolically active, while those to which histones are attached seem to be inactive. PMID:13727745

  8. Process for converting magnesium fluoride to calcium fluoride

    DOEpatents

    Kreuzmann, A.B.; Palmer, D.A.

    1984-12-21

    This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.

  9. Impact of magnesium:calcium ratio on calcification of the aortic wall.

    PubMed

    Villa-Bellosta, Ricardo

    2017-01-01

    An inverse relationship between serum magnesium concentration and vascular calcification has been reported following observational clinical studies. Moreover, several studies have been suggesting a protective effect of magnesium on the vascular calcification. However, the exact mechanism remains elusive, and investigators have speculated among a myriad of potential actions. The effect of magnesium on calcification of the aortic wall is yet to be investigated. In the present study, the effects of magnesium and calcium on the metabolism of extracellular PPi, the main endogenous inhibitor of vascular calcification, were investigated in the rat aorta. Calcium and magnesium have antagonist effects on PPi hydrolysis in the aortic wall. Km and Ki values for PPi hydrolysis in rat aortic rings were 1.1 mmol/L magnesium and 32 μmol/L calcium, respectively, but ATP hydrolysis was not affected with calcium. Calcium deposition in the rat aortic wall dramatically increased when the magnesium concentration was increased (ratio of Mg:Ca = 1:1; 1.5 mmol/L calcium and 1.5 mmol/L magnesium) respect to low magnesium concentration (ratio Mg:Ca = 1:3, 1.5 mmol/L calcium and 0.75 mmol/L magnesium). Data from observational clinical studies showing that the serum magnesium concentration is inversely correlated with vascular calcification could be reinterpreted as a compensatory regulatory mechanism that reduces both PPi hydrolysis and vascular calcification. The impact of magnesium in vascular calcification in humans could be studied in association with calcium levels, for example, as the magnesium:calcium ratio.

  10. Role of magnesium on the biomimetic deposition of calcium phosphate

    NASA Astrophysics Data System (ADS)

    Sarma, Bimal K.; Sarma, Bikash

    2016-10-01

    Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.

  11. The impact of diets with different magnesium contents on magnesium and calcium in serum and tissues of the rat.

    PubMed

    Zimmermann, P; Weiss, U; Classen, H G; Wendt, B; Epple, A; Zollner, H; Temmel, W; Weger, M; Porta, S

    2000-07-14

    The impact of three different magnesium diets (70, 1,000 and 9,000 ppm) on total, ionized and bound magnesium as well as ionized calcium in serum and total calcium and magnesium in femoral bone, skeletal muscle, heart and liver of male Sprague-Dawley rats was investigated. The percentage of ionized serum magnesium was unproportionally high in rats fed a low magnesium (70 ppm) diet. Femoral magnesium was correlated with ionized and total serum magnesium. In contrast, there was generally no correlation between total serum magnesium and the magnesium fractions in skeletal muscle, heart and liver. In rats fed the magnesium deficient diet, total cardiac concentration of magnesium was even significantly increased along with total calcium content, while there were no effects on total muscle and liver magnesium. Within the single groups, ionized serum calcium was never proportional to dietary magnesium, but in all three magnesium diet groups together, it was inversely correlated with dietary magnesium. Moreover, ionized serum calcium was inversely correlated with both ionized and total serum magnesium. In all 3 groups together, the concentrations of total calcium and magnesium in heart and skeletal muscle were correlated, within the single groups correlation existed only in the 1000 ppm group. Magnesium influx via calcium channels during low magnesium intake has been seen in non cardiac tissues [35,36], but nothing similar is known about non selective channels for divalent cations in the heart [33]. Thus, magnesium uptake by cardiac cells along with calcium seems to be possible, especially at low intracellular magnesium concentrations, but is still poorly investigated. We suggest that the calcium-antagonistic effect of magnesium is related to the turnover rate of magnesium rather than to its tissue concentrations.

  12. Impact of magnesium:calcium ratio on calcification of the aortic wall

    PubMed Central

    2017-01-01

    Objective An inverse relationship between serum magnesium concentration and vascular calcification has been reported following observational clinical studies. Moreover, several studies have been suggesting a protective effect of magnesium on the vascular calcification. However, the exact mechanism remains elusive, and investigators have speculated among a myriad of potential actions. The effect of magnesium on calcification of the aortic wall is yet to be investigated. In the present study, the effects of magnesium and calcium on the metabolism of extracellular PPi, the main endogenous inhibitor of vascular calcification, were investigated in the rat aorta. Approach and results Calcium and magnesium have antagonist effects on PPi hydrolysis in the aortic wall. Km and Ki values for PPi hydrolysis in rat aortic rings were 1.1 mmol/L magnesium and 32 μmol/L calcium, respectively, but ATP hydrolysis was not affected with calcium. Calcium deposition in the rat aortic wall dramatically increased when the magnesium concentration was increased (ratio of Mg:Ca = 1:1; 1.5 mmol/L calcium and 1.5 mmol/L magnesium) respect to low magnesium concentration (ratio Mg:Ca = 1:3, 1.5 mmol/L calcium and 0.75 mmol/L magnesium). Conclusion Data from observational clinical studies showing that the serum magnesium concentration is inversely correlated with vascular calcification could be reinterpreted as a compensatory regulatory mechanism that reduces both PPi hydrolysis and vascular calcification. The impact of magnesium in vascular calcification in humans could be studied in association with calcium levels, for example, as the magnesium:calcium ratio. PMID:28570619

  13. Development of magnesium calcium phosphate biocement for bone regeneration.

    PubMed

    Jia, Junfeng; Zhou, Huanjun; Wei, Jie; Jiang, Xin; Hua, Hong; Chen, Fangping; Wei, Shicheng; Shin, Jung-Woog; Liu, Changsheng

    2010-08-06

    Magnesium calcium phosphate biocement (MCPB) with rapid-setting characteristics was fabricated by using the mixed powders of magnesium oxide (MgO) and calcium dihydrogen phosphate (Ca(H(2)PO(4))(2).H(2)O). The results revealed that the MCPB hardened after mixing the powders with water for about 7 min, and the compressive strength reached 43 MPa after setting for 1 h, indicating that the MCPB had a short setting time and high initial mechanical strength. After the acid-base reaction of MCPB containing MgO and Ca(H(2)PO(4))(2).H(2)O in a molar ratio of 2 : 1, the final hydrated products were Mg(3)(PO(4))(2) and Ca(3)(PO(4))(2). The MCPB was degradable in Tris-HCl solution and the degradation ratio was obviously higher than calcium phosphate biocement (CPB) because of its fast dissolution. The attachment and proliferation of the MG(63) cells on the MCPB were significantly enhanced in comparison with CPB, and the alkaline phosphatase activity of MG(63) cells on the MCPB was significantly higher than on the CPB at 7 and 14 days. The MG(63) cells with normal phenotype spread well on the MCPB surfaces, and were attached in close proximity to the substrate, as seen by scanning electron microscopy (SEM). The results demonstrated that the MCPB had a good ability to support cell attachment, proliferation and differentiation, and exhibited good cytocompatibility.

  14. Media calcification, low erythrocyte magnesium, altered plasma magnesium, and calcium homeostasis following grafting of the thoracic aorta to the infrarenal aorta in the rat--differential preventive effects of long-term oral magnesium supplementation alone and in combination with alkali.

    PubMed

    Schwille, P O; Schmiedl, A; Schwille, R; Brunner, P; Kissler, H; Cesnjevar, R; Gepp, H

    2003-03-01

    Calcifications in arterial media are clinically well documented, but the role played by magnesium in pathophysiology and therapy is uncertain. To clarify this, an animal model in which the juxtacardial aorta was grafted to the infrarenal aorta, and the subsequent calcifications in the media of the graft and their response to oral supplementation with three magnesium-containing and alkalinizing preparations was investigated. Groups of highly inbred rats were formed as follows: sham-operation (Sham, n = 12), aorta transplantation (ATx, n = 12), ATx + magnesium citrate (MgC, n = 12), ATx + MgC + potassium citrate (MgCPC, n = 12), ATx + MgC + MgCPC (MgCPCSB, n = 12). At 84 (+/-2) days after ATx with or without treatment the following observations were made: (1) weight gain and general status were normal; (2) ATx rats developed massive media calcification, mineral accumulation in the graft, decreased erythrocyte magnesium and plasma parathyroid hormone, and increased plasma ionized magnesium and calcium, and uric acid; (3) Mg-treated rats developed variable degrees of metabolic alkalosis, but only MgCPCSB supplementation prevented calcifications. Additional findings after ATx alone were: imbalance in endothelin and nitric oxide production, the mineral deposited in media was poorly crystallized calcium phosphate, calcium exchange between plasma and graft, and bone resorption were unchanged. The superior anti-calcification effect of MgCPCSB was characterized by complete restoration of normal extracellular mineral homeostasis and uric acid, but sub-optimal normalization of erythrocyte magnesium. It was concluded that in the rat: (1) ATx causes loss of cellular magnesium, excess of extracellular magnesium and calcium in the presence of apparently unchanged bone resorption, and increased uricemia; (2) ATx facilitates enhanced influx of calcium into vascular tissue, leading to calcium phosphate deposition in the media; (3) ATx-induced calcification is prevented by dietary

  15. Magnesium supplementation through seaweed calcium extract rather than synthetic magnesium oxide improves femur bone mineral density and strength in ovariectomized rats.

    PubMed

    Bae, Yun Jung; Bu, So Young; Kim, Jae Young; Yeon, Jee-Young; Sohn, Eun-Wha; Jang, Ki-Hyo; Lee, Jae-Cheol; Kim, Mi-Hyun

    2011-12-01

    Commercially available seaweed calcium extract can supply high amounts of calcium as well as significant amounts of magnesium and other microminerals. The purpose of this study was to investigate the degree to which the high levels of magnesium in seaweed calcium extract affects the calcium balance and the bone status in ovariectomized rats in comparison to rats supplemented with calcium carbonate and magnesium oxide. A total of 40 Sprague-Dawley female rats (7 weeks) were divided into four groups and bred for 12 weeks: sham-operated group (Sham), ovariectomized group (OVX), ovariectomized with inorganic calcium and magnesium supplementation group (OVX-Mg), and ovariectomized with seaweed calcium and magnesium supplementation group (OVX-SCa). All experimental diets contained 0.5% calcium. The magnesium content in the experimental diet was 0.05% of the diet in the Sham and OVX groups and 0.1% of the diet in the OVX-Mg and OVX-SCa groups. In the calcium balance study, the OVX-Mg and OVX-SCa groups were not significantly different in calcium absorption compared to the OVX group. However, the femoral bone mineral density and strength of the OVX-SCa group were higher than those of the OVX-Mg and OVX groups. Seaweed calcium with magnesium supplementation or magnesium supplementation alone did not affect the serum ALP and CTx levels in ovariectomized rats. In summary, consumption of seaweed calcium extract or inorganic calcium carbonate with magnesium oxide demonstrated the same degree of intestinal calcium absorption, but only the consumption of seaweed calcium extract resulted in increased femoral bone mineral density and strength in ovariectomized rats. Our results suggest that seaweed calcium extract is an effective calcium and magnesium source for improving bone health compared to synthetic calcium and magnesium supplementation.

  16. Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications.

    PubMed

    Douglas, Timothy E L; Łapa, Agata; Samal, Sangram Keshari; Declercq, Heidi A; Schaubroeck, David; Mendes, Ana C; der Voort, Pascal Van; Dokupil, Agnieszka; Plis, Agnieszka; De Schamphelaere, Karel; Chronakis, Ioannis S; Pamuła, Elżbieta; Skirtach, Andre G

    2017-12-01

    Mineralization of hydrogel biomaterials is considered desirable to improve their suitability as materials for bone regeneration. Calcium carbonate (CaCO 3 ) has been successfully applied as a bone regeneration material, but hydrogel-CaCO 3 composites have received less attention. Magnesium (Mg) has been used as a component of calcium phosphate biomaterials to stimulate bone-forming cell adhesion and proliferation and bone regeneration in vivo, but its effect as a component of carbonate-based biomaterials remains uninvestigated. In the present study, gellan gum (GG) hydrogels were mineralized enzymatically with CaCO 3 , Mg-enriched CaCO 3 and magnesium carbonate to generate composite biomaterials for bone regeneration. Hydrogels loaded with the enzyme urease were mineralized by incubation in mineralization media containing urea and different ratios of calcium and magnesium ions. Increasing the magnesium concentration decreased mineral crystallinity. At low magnesium concentrations calcite was formed, while at higher concentrations magnesian calcite was formed. Hydromagnesite (Mg 5 (CO 3 ) 4 (OH) 2 .4H 2 O) formed at high magnesium concentration in the absence of calcium. The amount of mineral formed and compressive strength decreased with increasing magnesium concentration in the mineralization medium. The calcium:magnesium elemental ratio in the mineral formed was higher than in the respective mineralization media. Mineralization of hydrogels with calcite or magnesian calcite promoted adhesion and growth of osteoblast-like cells. Hydrogels mineralized with hydromagnesite displayed higher cytotoxicity. In conclusion, enzymatic mineralization of GG hydrogels with CaCO 3 in the form of calcite successfully reinforced hydrogels and promoted osteoblast-like cell adhesion and growth, but magnesium enrichment had no definitive positive effect. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Effects of calcium and magnesium on strontium distribution coefficients

    USGS Publications Warehouse

    Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.; Hemming, C.H.; Welhan, J.

    1997-01-01

    The effects of calcium and magnesium on the distribution of strontium between a surficial sediment and simulated wastewater solutions were measured as part of an investigation to determine strontium transport properties of surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experimental techniques were used to determine strontium linear sorption isotherms and distribution coefficients (K(d)'s) using simulated wastewater solutions prepared at pH 8.0??0.1 with variable concentrations of calcium and magnesium. Strontium linear sorption isotherm K(d)'s ranged from 12??1 to 85??3 ml/g, increasing as the concentration of calcium and magnesium decreased. The concentration of sorbed strontium and the percentage of strontium retained by the sediment were correlated to aqueous concentrations of strontium, calcium, and magnesium. The effect of these cation concentrations on strontium sorption was quantified using multivariate least-squares regression techniques. Analysis of data from these experiments indicates that increased concentrations of calcium and magnesium in wastewater discharged to waste disposal ponds at the INEL increases the availability of strontium for transport beneath the ponds by decreasing strontium sorption to the surficial sediment.

  18. Physiology of Calcium, Phosphate, Magnesium and Vitamin D.

    PubMed

    Allgrove, Jeremy

    2015-01-01

    The physiology of calcium and the other minerals involved in its metabolism is complex and intimately linked to the physiology of bone. Five principal humoral factors are involved in maintaining plasma concentrations of calcium, magnesium and phosphate and in coordinating the balance between their content in bone. The transmembrane transport of these elements is dependent on a series of complex mechanisms that are partly controlled by these hormones. The plasma concentration of calcium is initially sensed by a calcium-sensing receptor, which then sets up a cascade of events that initially determines parathyroid hormone secretion and eventually results in a specific action within the target organs, mainly bone and kidney. This chapter describes the physiology of these humoral factors and relates them to the pathological processes that give rise to disorders of calcium, phosphate and magnesium metabolism as well as of bone metabolism. This chapter also details the stages in the calcium cascade, describes the effects of calcium on the various target organs, gives details of the processes by which phosphate and magnesium are controlled and summarises the metabolism of vitamin D. The pathology of disorders of bone and calcium metabolism is described in detail in the relevant chapters. © 2015 S. Karger AG, Basel.

  19. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    PubMed Central

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  20. A facile magnesium-containing calcium carbonate biomaterial as potential bone graft.

    PubMed

    He, Fupo; Zhang, Jing; Tian, Xiumei; Wu, Shanghua; Chen, Xiaoming

    2015-12-01

    The calcium carbonate is the main composition of coral which has been widely used as bone graft in clinic. Herein, we readily prepared novel magnesium-containing calcium carbonate biomaterials (MCCs) under the low-temperature conditions based on the dissolution-recrystallization reaction between unstable amorphous calcium carbonate (ACC) and metastable vaterite-type calcium carbonate with water involved. The content of magnesium in MCCs was tailored by adjusting the proportion of ACC starting material that was prepared using magnesium as stabilizer. The phase composition of MCCs with various amounts of magnesium was composed of one, two or three kinds of calcium carbonates (calcite, aragonite, and/or magnesian calcite). The different MCCs differed in topography. The in vitro degradation of MCCs accelerated with increasing amount of introduced magnesium. The MCCs with a certain amount of magnesium not only acquired higher compressive strength, but also promoted in vitro cell proliferation and osteogenic differentiation. Taken together, the facile MCCs shed light on their potential as bone graft. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Renal control of calcium, phosphate, and magnesium homeostasis.

    PubMed

    Blaine, Judith; Chonchol, Michel; Levi, Moshe

    2015-07-07

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. Copyright © 2015 by the American Society of Nephrology.

  2. Magnesium-to-calcium ratio in tap water, and its relationship to geological features and the incidence of calcium-containing urinary stones.

    PubMed

    Kohri, K; Kodama, M; Ishikawa, Y; Katayama, Y; Takada, M; Katoh, Y; Kataoka, K; Iguchi, M; Kurita, T

    1989-11-01

    We examined the relationship among magnesium and calcium content in tap water, the geological features and urinary stone incidence in Japan. The magnesium-to-calcium ratio in tap water correlated negatively with the incidence of urolithiasis. There was no correlation between calcium and magnesium concentration in tap water and urinary stone incidence. Geological features in Japan were classified into 5 groups. The magnesium-to-calcium ratio in the basalt areas was higher than in the other areas, while ratio in the granite areas was low. In the sedimentary rock areas calcium and magnesium concentrations were high; the magnesium-to-calcium ratio in these areas was between those of the basalt and granite areas. The limestone areas had a much higher calcium concentration. The incidence of urinary stones in the sedimentary rock and basalt areas was lower than that of the granite areas, while that in the limestone areas was the highest. Thus, the incidence of urinary stone is related to the magnesium-to-calcium ratio in tap water and the geological area.

  3. Preparation of calcium- and magnesium-fortified potato starches with altered pasting properties.

    PubMed

    Noda, Takahiro; Takigawa, Shigenobu; Matsuura-Endo, Chie; Ishiguro, Koji; Nagasawa, Koichi; Jinno, Masahiro

    2014-09-15

    Calcium- and magnesium-fortified potato starches were prepared by immersion in various concentrations of CaCl2 and MgCl2 aqueous solutions, respectively. The pasting properties, i.e., peak viscosity and breakdown, of all the starches obtained above were analyzed using a Rapid Visco Analyzer. Furthermore, the gelatinization properties and in vitro digestibility of the representative calcium- and magnesium-fortified starches were tested. The maximum calcium content of the fortified potato starches was as high as 686 ppm with the addition of a high-concentration CaCl2 solution, while the calcium content of the control potato starch was 99 ppm. The magnesium content increased from 89 to 421 ppm by treatment of the potato starch with an MgCl2 solution. Markedly lower values of peak viscosity and breakdown were observed in calcium- and magnesium-fortified potato starches than in the control potato starch. However, the gelatinization temperature and enthalpy as well as resistant starch content of calcium- and magnesium-fortified potato starches were similar to those of the control potato starch. It is concluded that potato starches with altered pasting properties can be easily manufactured by the use of solutions containing high levels of calcium and magnesium.

  4. Synthesis and effectiveness of overbased magnesium and calcium petroleum sulfonates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fialkovskii, R.V.; Romanyutina, L.V.; Korbut, L.F.

    Overbased sulfonate additives are widely used to improve the service properties of motor oils. This paper describes the preparation of an overbased magnesium sulfonate additive from MSG-8 oil and an investigation of its functional properties. In experiments, the solution of ammonium sulfate, fat diluted with I-20A oil to a 38% concentration, was heated and stirred continuously in the presence of water and excess magnesium oxide for a period of 4 h at 80-120/degree/C while stripping out the liberated ammonia with nitrogen. The resulting oil solution of magnesium sulfonate was dissolved in toluene. The toluene solution after cleanup was held undermore » vacuum to remove the solvent; the residue was an oil solution of overbased magnesium sulfonate. Their properties are tabulated. Comparative data are shown in Table 1 for a calcium sulfonate additive synthesized from the same intermediate (ammonium sulfate), using calcium hydroxide as the base. Test results on M-11 oil containing 5% of the magnesium or calcium additive are listed. It is shown that the magnesium additive gave better results from the calcium additive at the same concentration in terms of oxidation stability, corrosion properties, detergency, and dispersancy. 9 refs.« less

  5. Serum magnesium and calcium levels in infertile women during a cycle of reproductive assistance.

    PubMed

    Grossi, Elena; Castiglioni, Sara; Moscheni, Claudia; Antonazzo, Patrizio; Cetin, Irene; Savasi, Valeria Maria

    2017-05-01

    Magnesium (Mg) and calcium (Ca) are essential cations for women's preconception health. It is well known that, in blood, the concentration of ionized form of these two cations is temporally altered during menstrual cycle, suggesting a correlation between sex steroid hormones and serum calcium and magnesium levels. Evidence from literature suggests that in assisted reproductive technology increasing estrogens during ovarian hyperstimulation may also modulate serum magnesium and calcium levels. Therefore, we first examined total serum magnesium and calcium levels during follicular phase in a large population of infertile patients who underwent intrauterine insemination (IUI). The results were compared to a group of fertile women. Successively, we studied the total serum magnesium and calcium concentrations in infertile patients before and after ovarian hyperstimulation for in vitro fertilization (IVF). Results highlight that total serum concentration of magnesium and calcium does not seem altered in infertile women. During stimulation with gonadotropins, the values of the two cations do not change significantly in ovarian-stimulated women. However, we found a downward trend in the total magnesium and calcium levels in relation to the rising estrogens.

  6. Monitoring glucose, calcium, and magnesium levels in saliva as a non-invasive analysis by sequential injection multi-parametric determination.

    PubMed

    Machado, Ana; Maneiras, Rui; Bordalo, Adriano A; Mesquita, Raquel B R

    2018-08-15

    The use of saliva for diagnose and surveillance of systemic illnesses, and general health has been arousing great interest worldwide, emerging as a highly desirable goal in healthcare. The collection is non-invasive, stress-free, inexpensive, and simple representing a major asset. Glucose, calcium, and magnesium concentration are three major parameters evaluated in clinical context due to their essential role in a wide range of biochemical reactions, and consequently many health disorders. In this work, a spectrophotometric sequential injection method is described for the fast screening of glucose, calcium, and magnesium in saliva samples. The glucose determination reaction involves the oxidation of the aldehyde functional group present in glucose with simultaneous reduction of 3,5-dinitrosalicylic acid (DNS) to 3-amino, 5-nitrosalicylic acid under alkaline conditions, followed by the development of colour. The determination of both metals is based on their reaction with cresolphtalein complexone (CPC), and the interference of calcium in the magnesium determination minimized by ethylene glycol-bis[β-aminoethyl ether]-N,N,N',N'-tetraacetic acid (EGTA). The developed multi-parametric method enabled dynamic ranges of 50 - 300 mg/dL for glucose, 0.1 - 2 mg/dL for calcium, and 0.1 - 0.5 mg/dL for magnesium. Determination rates of 28, 60, 52 h -1 were achieved for glucose, calcium, and magnesium, respectively. Less than 300 µL of saliva is required for the multi-parametric determination due to saliva viscosity and inherent necessity of dilution prior to analysis. RSDs lower than 5% were obtained, and the results agreed with those obtained by reference methods, while recovery tests confirmed its accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Relation of Urinary Calcium and Magnesium Excretion to Blood Pressure

    PubMed Central

    Kesteloot†, Hugo; Tzoulaki, Ioanna; Brown, Ian J.; Chan, Queenie; Wijeyesekera, Anisha; Ueshima, Hirotsugu; Zhao, Liancheng; Dyer, Alan R.; Unwin, Robert J.; Stamler, Jeremiah; Elliott, Paul

    2011-01-01

    Data indicate an inverse association between dietary calcium and magnesium intakes and blood pressure (BP); however, much less is known about associations between urinary calcium and magnesium excretion and BP in general populations. The authors assessed the relation of BP to 24-hour excretion of calcium and magnesium in 2 cross-sectional studies. The International Study of Macro- and Micro-Nutrients and Blood Pressure (INTERMAP) comprised 4,679 persons aged 40–59 years from 17 population samples in China, Japan, the United Kingdom, and the United States, and the International Cooperative Study on Salt, Other Factors, and Blood Pressure (INTERSALT) comprised 10,067 persons aged 20–59 years from 52 samples around the world. Timed 24-hour urine collections, BP measurements, and nutrient data from four 24-hour dietary recalls (INTERMAP) were collected. In multiple linear regression analyses, urinary calcium excretion was directly associated with BP. After adjustment for multiple confounders (including weight, height, alcohol intake, calcium intake, urinary sodium level, and urinary potassium intake), systolic BP was 1.9 mm Hg higher per each 4.1 mmol per 24 hours (2 standard deviations) of higher urinary calcium excretion (associations were smaller for diastolic BP) in INTERMAP. Qualitatively similar associations were observed in INTERSALT analyses. Associations between magnesium excretion and BP were small and nonsignificant for most of the models examined. The present data suggest that altered calcium homoeostasis, as exhibited by increased calcium excretion, is associated with higher BP levels. PMID:21624957

  8. The determination of ultrafiltrable calcium and magnesium in serum.

    PubMed

    Danielson, B G; Pallin, E; Sohtell, M

    1982-01-01

    Ultrafiltrate of human serum was investigated in order to evaluate the serum content of calcium and magnesium. The acid and base concentrations and pH of the serum was altered through titration with HCl- or NaOH-solutions. The Pco2 was varied in the titrated serum using different carbon dioxide tensions. This was performed when serum was filtered in a recycling system. It is shown that the analysis of calcium and magnesium have to be done under anaerobic conditions or at standardized pH and Pco2 situations, as the concentrations vary with both pH and Pco2. The concentration ratio between ultrafiltrate and serum for calcium and magnesium was found to be 0.56 and 0.74 respectively at pH=7.41 and Pco2=40 mmHg.

  9. Forced-flow chromatographic determination of calcium and magnesium with continuous spectrophotometric detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arguello, M.D.

    1977-12-01

    Modifications to the forced-flow chromatograph include a flow-through pH monitor to continuously monitor the pH of the final effluent and an active low-pass filter to eliminate noise in the spectrophotometric detector. All separations are performed using partially sulfonated XAD-2 as the ion exchanger. Elution of calcium and magnesium is accomplished using ammonium chloride and ethylenediammonium chloride solutions. Calcium and magnesium are detected by means of Arsenazo I and PAR-ZnEDTA color-forming reagents. Other metal ions are detected by means of PAR and Chromazurol S color-forming reagents. Calcium and magnesium distribution coefficients on partially sulfonated XAD-2 as functions of ammonium chloride andmore » ethylenediammonium chloride concentration are given together with distribution coefficients of other metal ions. Methods for the selective elution of interfering metal ions prior to the elution of calcium and magnesium are described. Beryllium and aluminum are selectively eluted with sulfosalicylic acid. Those elements forming anionic chloride complexes are selectively eluted with HCl-acetone. Nickel is selectively eluted with HCl-acetone-dimethylglyoxime. Synthetic samples containing calcium and magnesium, both alone and in combination with alkali metals, strontium, barium, beryllium, aluminum, transition metals, and rare earths, are analyzed. Hard water samples are analyzed for calcium and magnesium and the results compared to those obtained by EDTA titration, atomic absorption spectroscopy, and plasma emission spectroscopy. Several clinical serum samples are analyzed for calcium and magnesium and the results compared to those obtained by atomic absorption spectroscopy.« less

  10. Low Serum Calcium and Magnesium Levels and Rupture of Intracranial Aneurysms.

    PubMed

    Can, Anil; Rudy, Robert F; Castro, Victor M; Dligach, Dmitriy; Finan, Sean; Yu, Sheng; Gainer, Vivian; Shadick, Nancy A; Savova, Guergana; Murphy, Shawn; Cai, Tianxi; Weiss, Scott T; Du, Rose

    2018-05-29

    Both low serum calcium and magnesium levels have been associated with the extent of bleeding in patients with intracerebral hemorrhage, suggesting hypocalcemia- and hypomagnesemia-induced coagulopathy as a possible underlying mechanism. We hypothesized that serum albumin-corrected total calcium and magnesium levels are associated with ruptured intracranial aneurysms. The medical records of 4701 patients, including 1201 prospective patients, diagnosed at the Brigham and Women's Hospital and Massachusetts General Hospital between 1990 and 2016 were reviewed and analyzed. One thousand two hundred seventy-five patients had available serum calcium, magnesium, and albumin values within 1 day of diagnosis. Individuals were divided into cases with ruptured aneurysms and controls with unruptured aneurysms. Univariable and multivariable logistic regression analyses were performed to determine the association between serum albumin-corrected total calcium and magnesium levels and ruptured aneurysms. In multivariable analysis, both albumin-corrected calcium (odds ratio, 0.33; 95% confidence interval, 0.27-0.40) and magnesium (odds ratio, 0.40; 95% confidence interval, 0.28-0.55) were significantly and inversely associated with ruptured intracranial aneurysms. In this large case-control study, hypocalcemia and hypomagnesemia at diagnosis were significantly associated with ruptured aneurysms. Impaired hemostasis caused by hypocalcemia and hypomagnesemia may explain this association. © 2018 American Heart Association, Inc.

  11. Automatic photometric titrations of calcium and magnesium in carbonate rocks

    USGS Publications Warehouse

    Shapiro, L.; Brannock, W.W.

    1955-01-01

    Rapid nonsubjective methods have been developed for the determination of calcium and magnesium in carbonate rocks. From a single solution of the sample, calcium is titrated directly, and magnesium is titrated after a rapid removal of R2O3 and precipitation of calcium as the tungstate. A concentrated and a dilute solution of disodium ethylenediamine tetraacetate are used as titrants. The concentrated solution is added almost to the end point, then the weak solution is added in an automatic titrator to determine the end point precisely.

  12. New agent to treat elevated phosphate levels: magnesium carbonate/calcium carbonate tablets.

    PubMed

    Meyer, Caitlin; Cameron, Karen; Battistella, Marisa

    2012-01-01

    In summary, Binaphos CM, a magnesium carbonate/calcium carbonate combination phosphate binder, is marketed for treating elevated phosphate levels in dialysis patients. Although studies using magnesium/calcium carbonate as a phosphate binder are short term with small numbers of patients, this phosphate binder has shown some promising results and may provide clinicians with an alternative for phosphate binding. Using a combination phosphate binder may reduce pill burden and encourage patient compliance. In addition to calcium and phosphate, it is imperative to diligently monitor magnesium levels in patients started on this medication, as magnesium levels may increase with longer duration of use. Additional randomized controlled trials are necessary to evaluate long-term efficacy and safety of this combination phosphate binder.

  13. Effects of nicergoline on calcium and magnesium deposition in the central nervous system tissues of rats maintained on low-calcium diets.

    PubMed

    Yasui, M; Kihira, T; Tsujimoto, M; Ota, K

    1992-11-01

    Reduction of calcium intake leads to the mobilization of calcium and magnesium from the bone pool and to calcium deposition in the soft tissues, especially in the central nervous system (CNS). The effects of 10 alpha-methoxy-1,6-dimethylergoline-8 beta-methanol 5-bromonicotinate (nicergoline), an ameliorator of cerebral circulation and metabolism, on the deposition of calcium and magnesium in the CNS, heart, liver, kidney, muscle, abdominal aorta and bones were studied in rats maintained on standard and low-calcium diets. Rats were fed the following diets for 90 days: standard calcium (12.5 g/kg); standard calcium with 60 mg/kg nicergoline; low-calcium (30 mg/kg); and low-calcium with 60 mg/kg nicergoline. The presence of nicergoline did not affect blood chemistry but magnesium concentrations in the liver were significantly (P < 0.05) higher in rats fed standard diet with nicergoline. Magnesium concentrations in the occipital cortex, pons, cerebellum, liver, kidney, muscle and femur of nicergoline-treated rats fed low-calcium diet were significantly (P < 0.01-0.05) higher compared with those in the corresponding controls, whereas the calcium concentrations in the femur of nicergoline-treated rats fed both standard and low-calcium diets were significantly (P < 0.05) higher than those in the corresponding controls. In general, nicergoline tended to preserve the calcium content in the bone of rats fed a standard diet. Nicergoline may be implicated in calcium metabolism in rats fed low-calcium diets and may activate cerebral metabolism through the maintenance of magnesium concentrations in the CNS and soft tissues.

  14. Essential Nutrient Interactions: Does Low or Suboptimal Magnesium Status Interact with Vitamin D and/or Calcium Status?

    PubMed

    Rosanoff, Andrea; Dai, Qi; Shapses, Sue A

    2016-01-01

    Although much is known about magnesium, its interactions with calcium and vitamin D are less well studied. Magnesium intake is low in populations who consume modern processed-food diets. Low magnesium intake is associated with chronic diseases of global concern [e.g., cardiovascular disease (CVD), type 2 diabetes, metabolic syndrome, and skeletal disorders], as is low vitamin D status. No simple, reliable biomarker for whole-body magnesium status is currently available, which makes clinical assessment and interpretation of human magnesium research difficult. Between 1977 and 2012, US calcium intakes increased at a rate 2-2.5 times that of magnesium intakes, resulting in a dietary calcium to magnesium intake ratio of >3.0. Calcium to magnesium ratios <1.7 and >2.8 can be detrimental, and optimal ratios may be ∼2.0. Background calcium to magnesium ratios can affect studies of either mineral alone. For example, US studies (background Ca:Mg >3.0) showed benefits of high dietary or supplemental magnesium for CVD, whereas similar Chinese studies (background Ca:Mg <1.7) showed increased risks of CVD. Oral vitamin D is widely recommended in US age-sex groups with low dietary magnesium. Magnesium is a cofactor for vitamin D biosynthesis, transport, and activation; and vitamin D and magnesium studies both showed associations with several of the same chronic diseases. Research on possible magnesium and vitamin D interactions in these human diseases is currently rare. Increasing calcium to magnesium intake ratios, coupled with calcium and vitamin D supplementation coincident with suboptimal magnesium intakes, may have unknown health implications. Interactions of low magnesium status with calcium and vitamin D, especially during supplementation, require further study. © 2016 American Society for Nutrition.

  15. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review.

    PubMed

    Shadanbaz, Shaylin; Dias, George J

    2012-01-01

    Magnesium has been suggested as a revolutionary biodegradable metal for use as an orthopaedic material. As a biocompatible and degradable metal, it has several advantages over the permanent metallic materials currently in use, including eliminating the effects of stress shielding, improving biocompatibility concerns in vivo and improving degradation properties, removing the requirement of a second surgery for implant removal. The rapid degradation of magnesium, however, is a double-edged sword as it is necessary to control the corrosion rates of the materials to match the rates of bone healing. In response, calcium phosphate coatings have been suggested as a means to control these corrosion rates. The potential calcium phosphate phases and their coating techniques on substrates are numerous and can provide several different properties for different applications. The reactivity and low melting point of magnesium, however, require specific parameters for calcium phosphate coatings to be successful. Within this review, an overview of the different calcium phosphate phases, their properties and their behaviour in vitro and in vivo has been provided, followed by the current coating techniques used for calcium phosphates that may be or may have been adapted for magnesium substrates. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Sensitive methods for the titrimetric micro-determination of biological calcium and magnesium

    PubMed Central

    Beale, R. N.; Bostrom, J. O.

    1963-01-01

    New reagents containing high concentrations of urea are developed for micro-titration of calcium and magnesium, with ethylenediamine tetra-acetic acid (E.D.T.A.) as titrant and Corinth Ca (Plasmocorinth B) as indicator. Magnesium is determined as the difference between calcium plus magnesium and calcium. Quantitative aspects are studied, and accurate titration of untreated serum or urine is believed to be possible; precision is satisfactory. The methods are simple, robust, and suitable for routine use. Normal ranges are established for serum from blood donors of each sex. The mean serum calcium level for women is found to be lower than for men, while the mean magnesium contents are approximately the same. The latter appear to be somewhat lower than values found by flame emission spectrophotometry; in very good agreement with a mean value for plasma obtained by flame absorption spectrophotometry; and intermediate when compared with the values obtained by two other titrimetric procedures. PMID:13969919

  17. FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals.

    PubMed

    Edwards, Howell G M; Villar, Susana E Jorge; Jehlicka, Jan; Munshi, Tasnim

    2005-08-01

    Calcium and magnesium carbonates are important minerals found in sedimentary environments. Although sandstones are the most common rock colonized by endolith organisms, the production of calcium and magnesium carbonates is important in survival strategies of organisms and as a source for the removal of oxalate ions. Extremophile organisms in some situations may convert or destroy carbonates of calcium and magnesium, which gives important information about the conditions under which these organisms can survive. The identification on the surface of Mars of 'White Rock' formations, in Juventae Chasma or Sabaea Terra, as possibly carbonate rocks makes the study of these minerals a prerequisite of remote Martian exploration. Here, we show the protocol for the identification by Raman spectroscopy of different calcium and magnesium carbonates and we present a database of relevance in the search for life, extinct or extant, on Mars; this will be useful for the assessment of data obtained from remote, miniaturized Raman spectrometers now proposed for Mars exploration.

  18. Calcium-pH crosstalks in rat mast cells: cytosolic alkalinization, but not intracellular calcium release, is a sufficient signal for degranulation

    PubMed Central

    Alfonso, A; Cabado, A G; Vieytes, M R; Botana, L M

    2000-01-01

    The aim of this work was to study the relationship between intracellular alkalinization, calcium fluxes and histamine release in rat mast cells. Intracellular alkalinization was induced by nigericin, a monovalent cation ionophore, and by NH4Cl (ammonium chloride). Calcium cytosolic and intracellular pH were measured by fluorescence digital imaging using Fura-2-AM and BCECF-AM.In rat mast cells, nigericin and NH4Cl induce a dose-dependent intracellular alkalinization, a dose-dependent increase in intracellular calcium levels by releasing calcium from intracellular pools, and an activation of capacitative calcium influx.The increase in both intracellular calcium and pH activates exocytosis (histamine release) in the absence of external calcium. Under the same conditions, thapsigargin does not activate exocytosis, the main difference being that thapsigargin does not alkalinize the cytosol.After alkalinization, histamine release is intracellular-calcium dependent. With 2.5 mM EGTA and thapsigargin the cell response decreases by 62%.The cytosolic alkalinization, in addition to the calcium increase it is enough signal to elicit the exocytotic process in rat mast cells. PMID:10952669

  19. Calcium/magnesium intake ratio, but not magnesium intake, interacts with genetic polymorphism in relation to colorectal neoplasia in a two-phase study.

    PubMed

    Zhu, Xiangzhu; Shrubsole, Martha J; Ness, Reid M; Hibler, Elizabeth A; Cai, Qiuyin; Long, Jirong; Chen, Zhi; Li, Guoliang; Jiang, Ming; Hou, Lifang; Kabagambe, Edmond K; Zhang, Bing; Smalley, Walter E; Edwards, Todd L; Giovannucci, Edward L; Zheng, Wei; Dai, Qi

    2016-10-01

    Some studies suggest that the calcium to magnesium ratio intakes modify the associations of calcium or magnesium with risk of colorectal adenoma, adenoma recurrence, and cancer. Parathyroid hormone (PTH) plays a key role in the regulation of homeostasis for both calcium and magnesium. We hypothesized that polymorphisms in PTH and 13 other genes may modify the association between the calcium/magnesium intake ratio and colorectal neoplasia risk. We conducted a two-phase study including 1336 cases and 2891 controls from the Tennessee Colorectal Polyp Study. In Phase I, we identified 19 SNPs that significantly interacted with the calcium/magnesium intake ratio in adenoma risk. In Phase II, rs11022858 in PTH was replicated. In combined analysis of phases I and II, we found high calcium/magnesium intake ratio tended to be associated with a reduced risk of colorectal adenoma (P for trend, 0.040) among those who carried the TT genotype in rs11022858. In stratified analyses, calcium intake (≥ 1000 mg/d) was significantly associated with 64% reduced adenoma risk (OR = 0.36 (95% CI : 0.18-0.74)) among those homozygous for the minor allele (TT genotype) (P for trend, 0.012), but not associated with risk in other genotypes (CC/TC). Conversely, we found that highest magnesium intake was significantly associated with 27% reduced risk (OR = 0.73 (95% CI : 0.54-0.97)) of colorectal adenoma (P for trend, 0.026) among those who possessed the CC/TC genotypes, particularly among those with the TC genotype, whereas magnesium intake was not linked to risk among those with the TT genotype. These findings, if confirmed, will help for the development of personalized prevention strategies for colorectal cancer. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Calcium/magnesium intake ratio, but not magnesium intake, interacts with genetic polymorphism in relation to colorectal neoplasia in a two-phase study

    PubMed Central

    Zhu, Xiangzhu; Shrubsole, Martha J.; Ness, Reid M.; Hibler, Elizabeth A; Cai, Qiuyin; Long, Jirong; Chen, Zhi; Li, Guoliang; Ming, Jiang; Hou, Lifang; Kabagambe, Edmond K.; Zhang, Bing; Smalley, Walter E.; Edwards, Todd L.; Giovannucci, Edward L.; Zheng, Wei; Dai, Qi

    2016-01-01

    Background Some studies suggest that the calcium to magnesium ratio intakes modifies the associations of calcium or magnesium with risk of colorectal adenoma, adenoma recurrence and cancer. Parathyroid hormone (PTH) plays a key role in the regulation of homeostasis for both calcium and magnesium. We hypothesized that polymorphisms in PTH and 13 other genes may modify the association between the calcium/magnesium intake ratio and colorectal neoplasia risk. Methods We conducted a two-phase study including 1,336 cases and 2,891 controls from the Tennessee Colorectal Polyp Study. Results In Phase I, we identified 19 SNPs that significantly interacted with the calcium/magnesium intake ratio in adenoma risk. In Phase II, rs11022858 in PTH was replicated. In combined analysis of phases I and II, we found high calcium/magnesium intake ratio tended to be associated with a reduced risk of colorectal adenoma (p for trend, 0.040) among those who carried the TT genotype in rs11022858. In stratified analyses, calcium intake (≥1000 mg/day) was significantly associated with 64% reduced adenoma risk (OR=0.36 (95% CI: 0.18–0.74)) among those homozygous for the minor allele (TT genotype) (p for trend, 0.012), but not associated with risk in other genotypes (CC/TC). Conversely, we found highest magnesium intake was significantly associated with 27% reduced risk (OR=0.73 (95% CI: 0.54–0.97)) of colorectal adenoma (p for trend, 0.026) among those who possessed the CC/TC genotypes, particularly among those with the TC genotype; whereas magnesium intake was not linked to risk among those with the TT genotype. Conclusions These findings, if confirmed, will help for the development of personalized prevention strategies for colorectal cancer. PMID:26333203

  1. Estimation of calcium and magnesium in serum and urine by atomic absorption spectrophotometry

    PubMed Central

    Thin, Christian G.; Thomson, Patricia A.

    1967-01-01

    A method has been described for the estimation of calcium and magnesium in serum and urine using atomic absorption spectrophotometry. The precision and accuracy of the techniques have been determined and were found to be acceptable. The range of values for calcium and magnesium in the sera of normal adults was found to be: serum calcium (corrected to a specific gravity of 1·026) 8·38-10·08 mg. per 100 ml.; serum magnesium 1·83-2·43 mg. per 100 ml. PMID:5602562

  2. Essential Nutrient Interactions: Does Low or Suboptimal Magnesium Status Interact with Vitamin D and/or Calcium Status?12

    PubMed Central

    Rosanoff, Andrea; Dai, Qi; Shapses, Sue A

    2016-01-01

    Although much is known about magnesium, its interactions with calcium and vitamin D are less well studied. Magnesium intake is low in populations who consume modern processed-food diets. Low magnesium intake is associated with chronic diseases of global concern [e.g., cardiovascular disease (CVD), type 2 diabetes, metabolic syndrome, and skeletal disorders], as is low vitamin D status. No simple, reliable biomarker for whole-body magnesium status is currently available, which makes clinical assessment and interpretation of human magnesium research difficult. Between 1977 and 2012, US calcium intakes increased at a rate 2–2.5 times that of magnesium intakes, resulting in a dietary calcium to magnesium intake ratio of >3.0. Calcium to magnesium ratios <1.7 and >2.8 can be detrimental, and optimal ratios may be ∼2.0. Background calcium to magnesium ratios can affect studies of either mineral alone. For example, US studies (background Ca:Mg >3.0) showed benefits of high dietary or supplemental magnesium for CVD, whereas similar Chinese studies (background Ca:Mg <1.7) showed increased risks of CVD. Oral vitamin D is widely recommended in US age-sex groups with low dietary magnesium. Magnesium is a cofactor for vitamin D biosynthesis, transport, and activation; and vitamin D and magnesium studies both showed associations with several of the same chronic diseases. Research on possible magnesium and vitamin D interactions in these human diseases is currently rare. Increasing calcium to magnesium intake ratios, coupled with calcium and vitamin D supplementation coincident with suboptimal magnesium intakes, may have unknown health implications. Interactions of low magnesium status with calcium and vitamin D, especially during supplementation, require further study. PMID:26773013

  3. Relationship between the incidence infection stones and the magnesium-calcium ratio of tap water.

    PubMed

    Kohri, K; Ishikawa, Y; Iguchi, M; Kurita, T; Okada, Y; Yoshida, O

    1993-01-01

    In a previous study we showed that the magnesium-calcium ratio of tap water is negatively correlated with the incidence of calcium-containing urinary stones. In this study we examined the relationship between the incidence of struvite stones, water hardness and the regional geological features on the basis of our previous study and an epidemiological study of urolithiasis performed in Japan. The magnesium-calcium ratio of tap water was found to correlate positively with the incidence of struvite stones. The tap water magnesium-calcium ratio was high in regions of basalt and sedimentary rock and was low in granite and limestone areas. The incidence of struvite stones in the regions of basalt and sedimentary rock was higher than that in the granite and limestone areas. Thus, this study suggested that the incidence of struvite stones is related to the magnesium-calcium ratio of tap water and to the regional geology, as is the case for calcium-containing stones.

  4. Efficacy of Mixtures of Magnesium, Citrate and Phytate as Calcium Oxalate Crystallization Inhibitors in Urine.

    PubMed

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2015-09-01

    The main aim of the current study was to evaluate the effectiveness of mixtures of magnesium, citrate and phytate as calcium oxalate crystallization inhibitors. A turbidimetric assay in synthetic urine was performed to obtain induction times for calcium oxalate crystallization in the absence and presence of different mixtures of inhibitors. The morphology of calcium oxalate crystals in the absence or presence of inhibitors and mixtures of the inhibitors was evaluated in 2 crystallization experiments at low and high calcium oxalate supersaturation. The crystals formed were examined using scanning electron microscopy. Examination of crystallization induction times revealed clear inhibitory effects of magnesium, citrate and phytate on calcium oxalate crystallization, supporting usefulness in the treatment and prevention of calcium oxalate nephrolithiasis. Significant synergistic effects between magnesium and phytate were observed. Scanning electron microscopy images revealed that phytate is a powerful crystal growth inhibitor of calcium oxalate, totally preventing the formation of trihydrate and monohydrate. In addition to crystallization inhibition capacity, citrate and magnesium avoided calcium oxalate crystallization by decreasing its supersaturation. The synergistic effect between magnesium and phytate on calcium oxalate crystallization suggests that a combination of these 2 compounds may be highly useful as antilithiasis therapy. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Mineralization of gellan gum hydrogels with calcium and magnesium carbonates by alternate soaking in solutions of calcium/magnesium and carbonate ion solutions.

    PubMed

    Lopez-Heredia, Marco A; Łapa, Agata; Reczyńska, Katarzyna; Pietryga, Krzysztof; Balcaen, Lieve; Mendes, Ana C; Schaubroeck, David; Van Der Voort, Pascal; Dokupil, Agnieszka; Plis, Agnieszka; Stevens, Chris V; Parakhonskiy, Bogdan V; Samal, Sangram Keshari; Vanhaecke, Frank; Chai, Feng; Chronakis, Ioannis S; Blanchemain, Nicolas; Pamuła, Elżbieta; Skirtach, Andre G; Douglas, Timothy E L

    2018-04-27

    Mineralization of hydrogels is desirable prior to applications in bone regeneration. CaCO 3 is a widely used bone regeneration material and Mg, when used as a component of calcium phosphate biomaterials, has promoted bone-forming cell adhesion and proliferation and bone regeneration. In this study, gellan gum (GG) hydrogels were mineralized with carbonates containing different amounts of calcium (Ca) and magnesium (Mg) by alternate soaking in, firstly, a calcium and/or magnesium ion solution and, secondly, a carbonate ion solution. This alternate soaking cycle was repeated five times. Five different calcium and/or magnesium ion solutions, containing different molar ratios of Ca to Mg ranging from Mg-free to Ca-free were compared. Carbonate mineral formed in all sample groups subjected to the Ca:Mg elemental ratio in the carbonate mineral formed was higher than in the respective mineralizing solution. Mineral formed in the absence of Mg was predominantly CaCO 3 in the form of a mixture of calcite and vaterite. Increasing the Mg content in the mineral formed led to the formation of magnesian calcite, decreased the total amount of the mineral formed and its crystallinity. Hydrogel mineralization and increasing Mg content in mineral formed did not obviously improve proliferation of MC3T3-E1 osteoblast-like cells or differentiation after 7 days. This article is protected by copyright. All rights reserved.

  6. Effects of dietary calcium, phosphorus and magnesium on intranephronic calculosis in rats.

    PubMed

    Woodward, J C; Jee, W S

    1984-12-01

    The effects of varying dietary levels of calcium, phosphorus and magnesium on the incidence and severity of intranephronic calculosis were studied. Renal calculi were induced by feeding female rats the AIN-76TM semipurified diet for 4 weeks. During this time period, dietary levels of 350, 450 or 550 mg calcium per 100 g diet did not influence the occurrence of urolithiasis. Increasing dietary magnesium levels from 50 to 350 mg was beneficial in preventing the occurrence of calculi if the diet contained 400 mg or less phosphorus. The protective effects of dietary magnesium were counteracted when dietary phosphorus levels were increased from 400 mg to 550 or 700 mg. If the dietary content of phosphorus and magnesium permitted the formation of renal calculi, the severity of the condition was also influenced by the dietary level of calcium. Some animal groups fed semipurified diets did not have microscopic or radiographic evidence of renal calculi but were found to have significantly elevated renal calcium values. It was suggested that these animals might be in a precalculus-forming state.

  7. [Calcium and magnesium concentrations in "Healthy" and lithiasic human kidney (author's transl)].

    PubMed

    Terhorst, B; Stoeppler, M

    1976-07-01

    Calcium and magnesium levels in the cortex, medulla, and papilla of human kidney from 32 so-called healthy patients and from eleven patients with calcium-oxalate lithiasis were determined by atom-absorption spectralphotometry. A positive calcium gradient with the highest calcium concentration in the papilla was found in all kidneys. Compared to the control group, that calcium concentration in the lithiasic kidneys was reduced by 50% in the papilla, but in the cortex and medulla, the levels were the same. A relative depletion of calcium in the papilla in hypercalciuria goes against the theory that the papilla is the main center of development of calcium-containing stones. The magnesium concentration was practically the same in cortex, medulla, and papilla, and no significant difference was found between lithiasic and healthy kidneys. These findings underline the central role of calcium in the genesis of calcium-containing stones.

  8. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

    DOE PAGES

    Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; ...

    2015-08-20

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH) 2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potentialmore » measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.« less

  9. RIGOR MORTIS AND THE INFLUENCE OF CALCIUM AND MAGNESIUM SALTS UPON ITS DEVELOPMENT.

    PubMed

    Meltzer, S J; Auer, J

    1908-01-01

    Calcium salts hasten and magnesium salts retard the development of rigor mortis, that is, when these salts are administered subcutaneously or intravenously. When injected intra-arterially, concentrated solutions of both kinds of salts cause nearly an immediate onset of a strong stiffness of the muscles which is apparently a contraction, brought on by a stimulation caused by these salts and due to osmosis. This contraction, if strong, passes over without a relaxation into a real rigor. This form of rigor may be classed as work-rigor (Arbeitsstarre). In animals, at least in frogs, with intact cords, the early contraction and the following rigor are stronger than in animals with destroyed cord. If M/8 solutions-nearly equimolecular to "physiological" solutions of sodium chloride-are used, even when injected intra-arterially, calcium salts hasten and magnesium salts retard the onset of rigor. The hastening and retardation in this case as well as in the cases of subcutaneous and intravenous injections, are ion effects and essentially due to the cations, calcium and magnesium. In the rigor hastened by calcium the effects of the extensor muscles mostly prevail; in the rigor following magnesium injection, on the other hand, either the flexor muscles prevail or the muscles become stiff in the original position of the animal at death. There seems to be no difference in the degree of stiffness in the final rigor, only the onset and development of the rigor is hastened in the case of the one salt and retarded in the other. Calcium hastens also the development of heat rigor. No positive facts were obtained with regard to the effect of magnesium upon heat vigor. Calcium also hastens and magnesium retards the onset of rigor in the left ventricle of the heart. No definite data were gathered with regard to the effects of these salts upon the right ventricle.

  10. RIGOR MORTIS AND THE INFLUENCE OF CALCIUM AND MAGNESIUM SALTS UPON ITS DEVELOPMENT

    PubMed Central

    Meltzer, S. J.; Auer, John

    1908-01-01

    Calcium salts hasten and magnesium salts retard the development of rigor mortis, that is, when these salts are administered subcutaneously or intravenously. When injected intra-arterially, concentrated solutions of both kinds of salts cause nearly an immediate onset of a strong stiffness of the muscles which is apparently a contraction, brought on by a stimulation caused by these salts and due to osmosis. This contraction, if strong, passes over without a relaxation into a real rigor. This form of rigor may be classed as work-rigor (Arbeitsstarre). In animals, at least in frogs, with intact cords, the early contraction and the following rigor are stronger than in animals with destroyed cord. If M/8 solutions—nearly equimolecular to "physiological" solutions of sodium chloride—are used, even when injected intra-arterially, calcium salts hasten and magnesium salts retard the onset of rigor. The hastening and retardation in this case as well as in the cases of subcutaneous and intravenous injections, are ion effects and essentially due to the cations, calcium and magnesium. In the rigor hastened by calcium the effects of the extensor muscles mostly prevail; in the rigor following magnesium injection, on the other hand, either the flexor muscles prevail or the muscles become stiff in the original position of the animal at death. There seems to be no difference in the degree of stiffness in the final rigor, only the onset and development of the rigor is hastened in the case of the one salt and retarded in the other. Calcium hastens also the development of heat rigor. No positive facts were obtained with regard to the effect of magnesium upon heat vigor. Calcium also hastens and magnesium retards the onset of rigor in the left ventricle of the heart. No definite data were gathered with regard to the effects of these salts upon the right ventricle. PMID:19867124

  11. A field method for the determination of calcium and magnesium in limestone and dolomite

    USGS Publications Warehouse

    Shapiro, Leonard; Brannock, Walter Wallace

    1957-01-01

    The method is an adaptation of a procedure described by Betz and Noll1 in 1950. Calcium and magnesium are determined by visual titration using Versene (disodium ethylenediamine tetraacetate) with Murexide (ammonium purpurate) as the indicator for calcium and Eriochrome Black T as the indicator for magnesium.

  12. Bioactive Peptides Isolated from Casein Phosphopeptides Enhance Calcium and Magnesium Uptake in Caco-2 Cell Monolayers.

    PubMed

    Cao, Yong; Miao, Jianyin; Liu, Guo; Luo, Zhen; Xia, Zumeng; Liu, Fei; Yao, Mingfei; Cao, Xiaoqiong; Sun, Shengwei; Lin, Yanyin; Lan, Yaqi; Xiao, Hang

    2017-03-22

    The ability of casein phosphopeptides (CPPs) to bind and transport minerals has been previously studied. However, the single bioactive peptides responsible for the effects of CPPs have not been identified. This study was to purify calcium-binding peptides from CPPs and to determine their effects on calcium and magnesium uptake by Caco-2 cell monolayers. Five monomer peptides designated P1 to P5 were isolated and the amino acid sequences were determined using LC-MS/MS. Compared with the CPP-free control, all five monomeric peptides exhibited significant enhancing effects on the uptake of calcium and magnesium (P < 0.05). Interestingly, when calcium and magnesium were presented simultaneously with P5, magnesium was taken up with priority over calcium in the Caco-2 cell monolayers. For example, at 180 min, the amount of transferred magnesium and calcium was 78.4 ± 0.95 μg/well and 2.56 ± 0.64 μg/well, respectively, showing a more than 30-fold difference in the amount of transport caused by P5. These results provide novel insight into the mineral transport activity of phosphopeptides obtained from casein.

  13. Exacerbated immune stress response during experimental magnesium deficiency results from abnormal cell calcium homeostasis.

    PubMed

    Malpuech-Brugère, C; Rock, E; Astier, C; Nowacki, W; Mazur, A; Rayssiguier, Y

    1998-01-01

    The aim of this study was to assess the potential mechanism underlying the enhanced inflammatory processes during magnesium deficit. In this study, exacerbated response to live bacteria and platelet activating factors was shown in rats fed a magnesium-deficient diet. Peritoneal cells from these animals also showed enhanced superoxide anion production and calcium mobilising potency following in vitro stimulation. The latter effect occurred very early in the course of magnesium deficiency. These studies first showed that an abnormal calcium handling induced by extracellular magnesium depression in vivo may be at the origin of exacerbated inflammatory response.

  14. The influence of phosphate, calcium and magnesium on matrix Gla-protein and vascular calcification: a systematic review.

    PubMed

    Houben, E; Neradova, A; Schurgers, L J; Vervloet, Marc

    2016-01-01

    Vitamin K-dependent matrix Gla protein (MGP) is a key inhibitor of vascular calcification (VC). MGP is synthesized by chondrocytes and vascular smooth muscle cells (VSMC) and the absence or inactivity of MGP results in excessive calcification of both growth plate and vasculature. Apart from its vitamin K dependency little is known about other factors that influence MGP metabolism. Phosphate, calcium and magnesium are involved in bone mineralization and play an important role in VC. In this review we provide a summary of the effect of phosphate, calcium, and magnesium on MGP metabolism. Elevated phosphate and calcium levels promote VC, in part by increasing the release of matrix vesicles (MV) that under the influence of calcium and phosphate become calcification competent. Phosphate and calcium simultaneously induce an upregulation of MGP protein and gene expression, which possibly inhibits calcification. Elevated phosphate levels did not change MGP protein levels in MV. On the contrary, elevated calcium concentrations caused a decrease of MGPloading in MV, which might in part explainthe calcifying effects of MV. Magnesium is a known inhibitor of VC. However, magnesium has been shown to have an inhibitory effect on MGP synthesis induced through downregulation of the calcium-sensing receptor and hereby causing a decrease in calcium induced MGP upregulation. There might also be stimulatory effect of magnesium on MGP in which the TRPM7 channel is involved. In conclusion there is a clear interaction between MGP and phosphate, calcium and magnesium. The upregulation of MGP by phosphate and calcium might be a cellular response that possibly results in the mitigation of VC.

  15. Daily intake of magnesium and calcium from drinking water in relation to myocardial infarction.

    PubMed

    Rosenlund, Mats; Berglind, Niklas; Hallqvist, Johan; Bellander, Tom; Bluhm, Gösta

    2005-07-01

    A decreased risk for cardiovascular disease has been related to the hardness of drinking water, particularly high levels of magnesium. However, the evidence is still uncertain, especially in relation to individual intake from water. We used data from the Stockholm Heart Epidemiology Program, a population-based case-control study conducted during 1992-1994, to study the association between myocardial infarction and the daily intake of drinking water magnesium and calcium. Our analyses are based on 497 cases age 45-70 years, and 677 controls matched on age, sex, and hospital catchment area. Individual data on magnesium, calcium, and hardness of the domestic drinking water were assessed from waterwork registers or analyses of well water. After adjustment for the matching variables and smoking, hypertension, socioeconomic status, job strain, body mass index, diabetes, and physical inactivity, the odds ratio for myocardial infarction was 1.09 (95% confidence interval = 0.81-1.46) associated with a tap water hardness above the median (>4.4 German hardness degrees) and 0.88 (0.67-1.15) associated with a water magnesium intake above the median (>1.86 mg/d). There was no apparent sign of any exposure-response pattern related to water intake of magnesium or calcium. This study does not support previous reports of a protective effect on myocardial infarction associated with consumption of drinking water with higher levels of hardness, magnesium, or calcium.

  16. Magnesium retention from metabolic-balance studies in female adolescents: impact of race, dietary salt, and calcium123

    PubMed Central

    Palacios, Cristina; Wigertz, Karin; Braun, Michelle; Martin, Berdine R; McCabe, George P; McCabe, Linda; Pratt, J Howard; Peacock, Munro; Weaver, Connie M

    2013-01-01

    Background: Previously, we showed that black girls retained more calcium than white girls did and that salt loading negatively affected calcium retention. Racial differences likely exist in other bone minerals also, such as magnesium, in response to salt loading during growth. Objective: We studied racial differences in magnesium metabolism in response to dietary sodium and calcium during rapid bone growth. Design: Twenty-seven white and 40 black girls (11–15 y old) were studied for 3 wk while they consumed low-sodium (1.3 g/d) and high-sodium (3.8 g/d) diets by using a randomized-order, crossover metabolic study with 3 dietary calcium intakes; the magnesium dietary intake was fixed at 230 mg/d. Urine and feces were collected during each 3-wk period in 24-h pools and analyzed for magnesium. A mixed-model ANOVA was used to determine the effect of race and dietary sodium with calcium intake as a covariate. Results: Salt loading or calcium intake had no significant effect on urinary magnesium excretion. Blacks excreted significantly less urinary magnesium (mean ± SD: 83.8 ± 25.6 mg/d) than did whites (94.9 ± 27.3 mg/d; P < 0.05). No effects were observed in fecal magnesium excretion. Magnesium retention was higher with the low-sodium diet (50.1 ± 44.0 mg/d) than with the high-sodium diet (39.3 ± 49.8 mg/d) (P < 0.05), with no effects of race or calcium intake. Salt loading had no effect on biomarkers. Whites had higher 25-hydroxyvitamin D and insulin-like growth factor binding protein 3 but lower 1,25-dihydroxyvitamin D and parathyroid hormone concentrations. Conclusions: Blacks excreted less urinary magnesium than did whites. Magnesium retention was similar between races but higher with the low-sodium diet. Kinetic studies are needed to fully explain magnesium homeostasis. This trial was registered at clinicaltrials.gov as NCT01564238. PMID:23553157

  17. In situ synthesis of magnesium-substituted biphasic calcium phosphate and in vitro biodegradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Wan; Lee, Hyeong-Shin; Kim, Dong-Hyun

    Highlights: ► Mg–BCP were successfully prepared through in situ aqueous co-precipitation method. ► The amount of β-TCP phase was changed with the magnesium substitution level. ► The substitution of magnesium led to a decrease in the unit cell volume. ► Mg–BCP could be able to develop a new apatite phase on the surface faster than BCP. -- Abstract: In situ preparation of magnesium (Mg) substituted biphasic calcium phosphate (BCP) of hydroxyapatite (HAp)/β-tricalcium phosphate (β-TCP) were carried out through aqueous co-precipitation method. The concentrations of added magnesium were varied with the calcium in order to obtain constant (Ca + Mg)/P ratiosmore » of 1.602. X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy were used to characterize the structure of synthesized magnesium substituted BCP powders. The results have shown that substitution of magnesium in the calcium deficient apatites revealed the formation of biphasic mixtures of different HAp/β-TCP ratios after heating at 1000 °C. The ratios of the formation of phase mixtures were dependent on the content of magnesium. After immersing in Hanks’ balanced salt solution (HBSS) for 1 week, 1 wt% magnesium substituted BCP powders were degraded and precipitation started to be formed with small granules consisting of number of flake-like crystal onto the surface of synthesized powders. On the other hand, in the case of pure BCP powders, the formation of new precipitates was detected after immersion in HBSS for 2 weeks. On the basis of these results, magnesium substituted BCP could be able to develop a new apatite phase on the surface in contact with physiological fluids faster than BCP does. In addition, the retention time to produce the new apatite phase in implantation operation for the BCP powder could be controlled by the amount of magnesium substitution.« less

  18. [Impact of drinking water calcium and magnesium levels on morbidity in the Omsk Region].

    PubMed

    Erofeev, Iu V; Neskin, T A; Turchaninov, D V

    2006-01-01

    Drinking water calcium and magnesium levels were examined for impact on morbidity in a model rural area of a West Siberian region. It was ascertained that there were negative correlations between the water levels of the above elements and the incidence of respiratory, gastrointestinal, and locomotor diseases and positive correlations between the concentrations of calcium and magnesium and the incidence of nervous, urogenital, and eye diseases. It is concluded that by adjusting the findings, the medical care availability factor should be taken into account in the investigations using the health indices calculated on the data from official medical accounts. This investigation has shown the estimation of the drinking water levels of calcium and magnesium as a significant hygienic problem for a model region.

  19. Responses to the lowering of magnesium and calcium concentrations in the cerebrospinal fluid of unanesthetized sheep.

    PubMed

    Allsop, T F; Pauli, J V

    1975-12-01

    A technique for ventriculolumbar perfusion of the cerebrospinal fluid space has been used to study the neuromuscular effects of low concentrations of magnesium and calcium in the cerebrospinal fluid of conscious sheep. Perfusion with synthetic cerebrospinal fluid solutions containing less than 0-6 mg magnesium/100 ml produced episodes of tetany which were abolished by perfusion with a solution of normal magnesium concentration. This suggests that the low cerebrospinal fluid magnesium concentrations reported in cases of hypomagneseamic tetany may result in changes within the central nervous system that could produce the nervous signs. Perfusates with a calcium concentration below 2-0 mg/100 ml caused hyperpnoea and continuous muscle tremors. Magnesium (0-6 mg/100 ml) and calcium (2-0 mg/100 ml) perfused simultaneously acted synergistically to produce signs characteristic of low levels of each of the ions.

  20. Microdetermination of calcium and magnesium in biological materials

    PubMed Central

    Bowden, C. H.; Patston, Valerie J.

    1963-01-01

    The use of the dye calcon (1-(2 hydroxy-1-naphthylazo)-2-naphthol-4 sulphonic acid) for the estimation of calcium using E.D.T.A. and a commercial photoelectric titrimeter is described. The interfering effects of magnesium and phosphate have been overcome. The method has been extended to estimations on biological materials. Results on 55 sera show that the E.D.T.A./calcon method gave slightly lower results (—0·15 mg./100 ml. ± 0·029) than the oxalate precipitation method. Magnesium may also be estimated by incorporating the use of Eriochrome black T. PMID:14014590

  1. Assay of calcium borogluconate veterinary medicines for calcium gluconate, boric acid, phosphorus, and magnesium by using inductively coupled plasma emission spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, D.J.; Spann, K.P.

    1985-03-01

    An inductively coupled plasma spectrometric method is described for the determination of 4 elements (Ca, B, P, and Mg) in calcium borogluconate veterinary medicines. Samples are diluted, acidified, and sprayed directly into the plasma. Reproducibility relative confidence intervals for a single sample assay are +/- 1.4% (calcium), +/- 1.8% (boron), +/- 2.6% (phosphorus), and +/- 1.4% (magnesium). The total element concentrations for each of 4 elements compared favorably with concentrations determined by alternative methods. Formulation estimates of levels of calcium gluconate, boric acid, phosphorus, and magnesium salts can be made from the analytical data.

  2. Perturbation Analysis of Calcium, Alkalinity and Secretion during Growth of Lily Pollen Tubes

    PubMed Central

    Winship, Lawrence J.; Rounds, Caleb; Hepler, Peter K.

    2016-01-01

    Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion. Cross-correlation studies on oscillating lily (Lilium formosanum Wallace) pollen tubes showed that an increase in intracellular calcium follows an increase in growth, whereas the increase in the alkaline band and in secretion both anticipate the increase in growth rate. Calcium, as a follower, is unlikely to be a stimulator of growth, whereas the alkaline band, as a leader, may be an activator. To gain further insight herein we reversibly inhibited growth with potassium cyanide (KCN) and followed the re-establishment of calcium, pH and secretion patterns as growth resumed. While KCN markedly slows growth and causes the associated gradients of calcium and pH to sharply decline, its removal allows growth and vital processes to fully recover. The calcium gradient reappears before growth restarts; however, it is preceded by both the alkaline band and secretion, in which the alkaline band is slightly advanced over secretion. Thus the pH gradient, rather than the tip-focused calcium gradient, may regulate pollen tube growth. PMID:28042810

  3. Perturbation Analysis of Calcium, Alkalinity and Secretion during Growth of Lily Pollen Tubes.

    PubMed

    Winship, Lawrence J; Rounds, Caleb; Hepler, Peter K

    2016-12-30

    Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion. Cross-correlation studies on oscillating lily ( Lilium formosanum Wallace) pollen tubes showed that an increase in intracellular calcium follows an increase in growth, whereas the increase in the alkaline band and in secretion both anticipate the increase in growth rate. Calcium, as a follower, is unlikely to be a stimulator of growth, whereas the alkaline band, as a leader, may be an activator. To gain further insight herein we reversibly inhibited growth with potassium cyanide (KCN) and followed the re-establishment of calcium, pH and secretion patterns as growth resumed. While KCN markedly slows growth and causes the associated gradients of calcium and pH to sharply decline, its removal allows growth and vital processes to fully recover. The calcium gradient reappears before growth restarts; however, it is preceded by both the alkaline band and secretion, in which the alkaline band is slightly advanced over secretion. Thus the pH gradient, rather than the tip-focused calcium gradient, may regulate pollen tube growth.

  4. Quality of 4-hourly ejaculates--levels of calcium and magnesium.

    PubMed

    Valsa, J; Skandhan, K P; Gusani, P H; Sahab Khan, P; Amith, S

    2013-02-01

    A four-hourly ejaculation study was conducted in which eleven normal healthy subjects participated. Five of them discontinued after submitting three samples. One alone was present for submission at the end of 16 h (fifth ejaculate), which was his last submission. Physical exhaustion was the sole reason for all participants for their discontinuation from the study. The result showed a decrease in semen volume and sperm count from first to last ejaculate. The increase in motility was probably due to reduction in exposure time to sperm motility inhibitory factors. In general, total motile spermatozoa as well as actively motile spermatozoa progressively increased from first to last ejaculate at the cost of sluggish spermatozoa. A significant increase in seminal plasma calcium and magnesium was seen as well as a significant increase in magnesium inside the cell from the first to the fourth ejaculate. Considering the quality of semen, which was good in sperm count and excellent in motility, calcium and magnesium may be helpful in cleaning motility inhibitory factors of spermatozoa. © 2012 Blackwell Verlag GmbH.

  5. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites.

    PubMed

    Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B

    2015-01-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg(+2) and Ca(+2) ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg(+2) and Ca(+2) ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg(+2), calcium magnesium phosphates (CMPs) which release Mg(+2) and Ca(+2), and hydroxyapatites (HAs) which release Ca(+2) were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg(+2) and Ca(+2) ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater.

    PubMed

    Crutchik, D; Garrido, J M

    2011-01-01

    Struvite crystallization (MgNH(4)PO(4)·6H(2)O, MAP) could be an alternative for the sustainable and economical recovery of phosphorus from concentrated wastewater streams. Struvite precipitation is recommended for those wastewaters which have high orthophosphate concentration. However the presence of a cheap magnesium source is required in order to make the process feasible. For those wastewater treatment plants (WWTP) located near the seashore magnesium could be economically obtained using seawater. However seawater contains calcium ions that could interfere in the process, by promoting the precipitation of amorphous magnesium and calcium phosphates. Precipitates composition was affected by the NH(4)(+)/PO(4)(3-) molar ratio used. Struvite or magnesium and calcium phosphates were obtained when NH(4)(+)/PO(4)(3-) was fixed at 4.7 or 1.0, respectively. This study demonstrates that by manipulating the NH(4)(+)/PO(4)(3-) it is possible to obtain pure struvite crystals, instead of precipitates of amorphous magnesium and calcium phosphates. This was easily performed by using either raw or secondary treated wastewater with different ammonium concentrations.

  7. Calcium phosphate coating on magnesium alloy for modification of degradation behavior

    NASA Astrophysics Data System (ADS)

    Cui, Fu-zhai; Yang, Jing-xin; Jiao, Yan-peng; Yin, Qing-shui; Zhang, Yu; Lee, In-Seop

    2008-06-01

    Magnesium alloy has similar mechanical properties with natural bone, but its high susceptibility to corrosion has limited its application in orthopedics. In this study, a calcium phosphate coating is formed on magnesium alloy (AZ31) to control its degradation rate and enhance its bioactivity and bone inductivity. Samples of AZ31 plate were placed in the supersaturated calcification solution prepared with Ca(NO3)2, NaH2PO4 and NaHCO3, then the calcium phosphate coating formed. Through adjusting the immersion time, the thickness of uniform coatings can be changed from 10 to 20 μm. The composition, phase structure and morphology of the coatings were investigated. Bonding strength of the coatings and substrate was 2-4 MPa in this study. The coatings significantly decrease degradation rate of the original Mg alloy, indicating that the Mg alloy with calcium phosphate coating is a promising degradable bone material.

  8. Absorption of calcium and magnesium in patients with intestinal resections treated with medium chain fatty acids

    PubMed Central

    Haderslev, K; Jeppesen, P; Mortensen, P; Staun, M

    2000-01-01

    BACKGROUND—Steatorrhoea is associated with increased faecal loss of calcium and magnesium. Medium chain C8-C10 triglycerides (MCTs) improve fat absorption in patients with small bowel resections but the effects on intestinal absorption of divalent cations are not clear.
AIM—To assess the effect of dietary replacement of long chain triglycerides (LCTs) with MCTs on calcium and magnesium absorption in patients with small bowel resections.
PATIENTS—Nineteen adult patients with a remaining small intestine averaging 171 cm (range 50-300).
METHODS—In a crossover design, patients were randomised to two high fat diets (10 MJ/day, 50% as fat) for four days each separated by one day of washout. Diets were prepared in duplicate and were based on either LCT (LCT period) or equal quantities of LCT and MCT (L/MCT period). Metabolic balances were calculated during the last three days of each period.
RESULTS—Mean stool volume increased significantly with the L/MCT diet and was 336 ml more than that with the LCT diet (95% confidence interval of mean difference, 26-649 ml). There was no significant change in the net absorption of calcium and magnesium between the two diets. On average, percentage calcium absorption was 8.6% with the LCT diet and 12.5% with the L/MCT diet. Mean percentage magnesium absorption was 5.4% with the LCT diet and 2.9% with the L/MCT diet.
CONCLUSIONS—Dietary replacement of 50% long chain triglycerides with medium chain triglycerides in small bowel resected patients increased faecal volume significantly. No changes in the intestinal net absorption of calcium and magnesium were demonstrated.


Keywords: medium chain triglycerides; calcium absorption; magnesium absorption; intestinal resections; fat absorption PMID:10807894

  9. Determination of thermodynamic parameters for complexation of calcium and magnesium with chondroitin sulfate isomers using isothermal titration calorimetry: Implications for calcium kidney-stone research

    NASA Astrophysics Data System (ADS)

    Rodgers, Allen L.; Jackson, Graham E.

    2017-04-01

    Chondroitin sulfate (CS) occurs in human urine. It has several potential binding sites for calcium and as such may play an inhibitory role in calcium oxalate and calcium phosphate (kidney stone disease by reducing the supersaturation (SS) and crystallization of these salts. Urinary magnesium is also a role player in determining speciation in stone forming processes. This study was undertaken to determine the thermodynamic parameters for binding of the disaccharide unit of two different CS isomers with calcium and magnesium. These included the binding constant K. Experiments were performed using an isothermal titration calorimeter (ITC) at 3 different pH levels in the physiological range in human urine. Data showed that interactions between the CS isomers and calcium and magnesium occur via one binding site, thought to be sulfate, and that log K values are 1.17-1.93 and 1.77-1.80 for these two metals respectively. Binding was significantly stronger in Mg-CS than in Ca-CS complexes and was found to be dependent on pH in the latter but not in the former. Furthermore, binding in Ca-CS complexes was dependent on the location of the sulfate binding site. This was not the case in the Mg-CS complexes. Interactions were shown to be entropy driven and enthalpy unfavourable. These findings can be used in computational modeling studies to predict the effects of the calcium and magnesium CS complexes on the speciation of calcium and the SS of calcium salts in real urine samples.

  10. Fast pressure jumps can perturb calcium and magnesium binding to troponin C F29W.

    PubMed

    Pearson, David S; Swartz, Darl R; Geeves, Michael A

    2008-11-18

    We have used rapid pressure jump and stopped-flow fluorometry to investigate calcium and magnesium binding to F29W chicken skeletal troponin C. Increased pressure perturbed calcium binding to the N-terminal sites in the presence and absence of magnesium and provided an estimate for the volume change upon calcium binding (-12 mL/mol). We observed a biphasic response to a pressure change which was characterized by fast and slow reciprocal relaxation times of the order 1000/s and 100/s. Between pCa 8-5.4 and at troponin C concentrations of 8-28 muM, the slow relaxation times were invariant, indicating that a protein isomerization was rate-limiting. The fast event was only detected over a very narrow pCa range (5.6-5.4). We have devised a model based on a Monod-Wyman-Changeux cooperative mechanism with volume changes of -9 and +6 mL/mol for the calcium binding to the regulatory sites and closed to open protein isomerization steps, respectively. In the absence of magnesium, we discovered that calcium binding to the C-terminal sites could be detected, despite their position distal to the calcium-sensitive tryptophan, with a volume change of +25 mL/mol. We used this novel observation to measure competitive magnesium binding to the C-terminal sites and deduced an affinity in the range 200-300 muM (and a volume change of +35 mL/mol). This affinity is an order of magnitude tighter than equilibrium fluorescence data suggest based on a model of direct competitive binding. Magnesium thus indirectly modulates binding to the N-terminal sites, which may act as a fine-tuning mechanism in vivo.

  11. Fast Pressure Jumps Can Perturb Calcium and Magnesium Binding to Troponin C F29W

    PubMed Central

    Pearson, David S.; Swartz, Darl R.; Geeves, Michael A.

    2009-01-01

    We have used rapid pressure jump and stopped-flow fluorimetry to investigate calcium and magnesium binding to F29W chicken skeletal troponin C. Increased pressure perturbed calcium binding to the N-terminal sites in the presence and absence of magnesium and provided an estimate for the volume change upon calcium binding (-12 mL.mol-1). We observed a biphasic response to a pressure change which was characterized by fast and slow reciprocal relaxation times of the order 1000 s-1 and 100 s-1. Between pCa 8-5.4 and at troponin C concentrations of 8-28 μM, the slow relaxation times were invariant indicating that a protein isomerization was rate-limiting. The fast event was only detected over a very narrow pCa range (5.6-5.4). We have devised a model based on a Monod-Wyman-Changeux cooperative mechanism with volume changes of -9 and +6 mL/mol for the calcium binding to the regulatory sites and closed to open protein isomerization steps respectively. In the absence of magnesium, we discovered that calcium binding to the C-terminal sites could be detected, despite their position distal to the calcium sensitive tryptophan, with a volume change of +25 mL/mol. We used this novel observation to measure competitive magnesium binding to the C-terminal sites and deduced an affinity in the range 200 - 300 μM (and a volume change of +35 mL/mol). This affinity is an order of magnitude tighter than equilibrium fluorescence data suggest based on a model of direct competitive binding. Magnesium thus indirectly modulates binding to the N-terminal sites, which may act as a fine-tuning mechanism in vivo. PMID:18942859

  12. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  13. The effects of surgery and anesthesia on blood magnesium and calcium concentrations in canine and feline patients.

    PubMed

    Brainard, Benjamin M; Campbell, Vicki L; Drobatz, Kenneth J; Perkowski, Sandra Z

    2007-03-01

    To demonstrate the effect of anesthesia and surgery on serum ionized magnesium and ionized calcium concentrations in clinical canine and feline patients. 37 client-owned dogs, ASA PS I-III and 10 client-owned cats, ASA PS I, all receiving anesthesia for elective or emergent surgery at a Veterinary Teaching Hospital. Plasma ionized and serum total magnesium, and plasma ionized calcium were measured prior to and after a group-standardized anesthetic protocol. Regardless of pre-operative medication (hydromorphone or butorphanol), anesthetic induction (thiopental or lidocaine/hydromorphone/diazepam (LHD) and propofol combination), or type of surgical procedure (peripheral surgery or laparotomy), post-operative plasma ionized calcium concentration decreased in all groups of dogs, while post-operative plasma ionized magnesium increased in all groups, although the changes were not always significant. The dogs who were induced with an LHD and propofol technique had a greater increase in ionized magnesium (0.36 +/- 0.07 to 0.42 +/- 0.07 mmol L(-1)) than the group in which anesthesia was induced with thiopental (0.41 +/- 0.07 to 0.42 +/- 0.07 mmol L(-1), p = 0.009). The cats showed similar changes in ionized magnesium and ionized calcium, and also had a significant increase in serum total magnesium (2.17 +/- 0.20 to 2.31 +/- 0.25 mg dL(-1), p = 0.009) CONCLUSIONS, CLINICAL RELEVANCE: A post-operative decrease in ionized calcium was demonstrated in healthy animals, as well as an increase in ionized or total magnesium after various anesthetic protocols and surgeries. These changes, while statistically significant, do not appear to be clinically significant, as values remained within reference ranges at all times.

  14. Intakes of magnesium, potassium, and calcium and the risk of stroke among men.

    PubMed

    Adebamowo, Sally N; Spiegelman, Donna; Flint, Alan J; Willett, Walter C; Rexrode, Kathryn M

    2015-10-01

    Intakes of magnesium, potassium, and calcium have been inversely associated with the incidence of hypertension, a known risk factor for stroke. However, only a few studies have examined intakes of these cations in relation to risk of stroke. The aim of this study was to investigate whether high intake of magnesium, potassium, and calcium is associated with reduced stroke risk among men. We prospectively examined the associations between intakes of magnesium, potassium, and calcium from diet and supplements, and the risk of incident stroke among 42 669 men in the Health Professionals Follow-up Study, aged 40 to 75 years and free of diagnosed cardiovascular disease and cancer at baseline in 1986. We calculated the hazard ratio of total, ischemic, and haemorrhagic strokes by quintiles of each cation intake, and of a combined dietary score of all three cations, using multivariate Cox proportional hazard models. During 24 years of follow-up, 1547 total stroke events were documented. In multivariate analyses, the relative risks and 95% confidence intervals of total stroke for men in the highest vs. lowest quintile were 0·87 (95% confidence interval, 0·74-1·02; P, trend = 0·04) for dietary magnesium, 0·89 (95% confidence interval, 0·76-1·05; P, trend = 0·10) for dietary potassium, and 0·89 (95% confidence interval, 0·75-1·04; P, trend = 0·25) for dietary calcium intake. The relative risk of total stroke for men in the highest vs. lowest quintile was 0·74 (95% confidence interval, 0·59-0·93; P, trend = 0·003) for supplemental magnesium, 0·66 (95% confidence interval, 0·50-0·86; P, trend = 0·002) for supplemental potassium, and 1·01 (95% confidence interval, 0·84-1·20; P, trend = 0·83) for supplemental calcium intake. For total intake (dietary and supplemental), the relative risk of total stroke for men in the highest vs. lowest quintile was 0·83 (95% confidence interval, 0·70-0·99; P, trend = 0·04) for magnesium, 0

  15. Serum magnesium but not calcium was associated with hemorrhagic transformation in stroke overall and stroke subtypes: a case-control study in China.

    PubMed

    Tan, Ge; Yuan, Ruozhen; Wei, ChenChen; Xu, Mangmang; Liu, Ming

    2018-05-26

    Association between serum calcium and magnesium versus hemorrhagic transformation (HT) remains to be identified. A total of 1212 non-thrombolysis patients with serum calcium and magnesium collected within 24 h from stroke onset were enrolled. Backward stepwise multivariate logistic regression analysis was conducted to investigate association between calcium and magnesium versus HT. Calcium and magnesium were entered into logistic regression analysis in two models, separately: model 1, as continuous variable (per 1-mmol/L increase), and model 2, as four-categorized variable (being collapsed into quartiles). HT occurred in 140 patients (11.6%). Serum calcium was slightly lower in patients with HT than in patient without HT (P = 0.273). But serum magnesium was significantly lower in patients with HT than in patients without HT (P = 0.007). In logistic regression analysis, calcium displayed no association with HT. Magnesium, as either continuous or four-categorized variable, was independently and inversely associated with HT in stroke overall and stroke of large-artery atherosclerosis (LAA). The results demonstrated that serum calcium had no association with HT in patients without thrombolysis after acute ischemic stroke. Serum magnesium in low level was independently associated with increasing HT in stroke overall and particularly in stroke of LAA.

  16. Magnesium reduces calcification in bovine vascular smooth muscle cells in a dose-dependent manner

    PubMed Central

    Peter, Mirjam E.; Sevinc Ok, Ebru; Celenk, Fatma Gul; Yilmaz, Mumtaz; Steppan, Sonja; Asci, Gulay; Ok, Ercan; Passlick-Deetjen, Jutta

    2012-01-01

    Background. Vascular calcification (VC), mainly due to elevated phosphate levels, is one major problem in patients suffering from chronic kidney disease. In clinical studies, an inverse relationship between serum magnesium and VC has been reported. However, there is only few information about the influence of magnesium on calcification on a cellular level available. Therefore, we investigated the effect of magnesium on calcification induced by β-glycerophosphate (BGP) in bovine vascular smooth muscle cells (BVSMCs). Methods. BVSMCs were incubated with calcification media for 14 days while simultaneously increasing the magnesium concentration. Calcium deposition, transdifferentiation of cells and apoptosis were measured applying quantification of calcium, von Kossa and Alizarin red staining, real-time reverse transcription–polymerase chain reaction and annexin V staining, respectively. Results. Calcium deposition in the cells dramatically increased with addition of BGP and could be mostly prevented by co-incubation with magnesium. Higher magnesium levels led to inhibition of BGP-induced alkaline phosphatase activity as well as to a decreased expression of genes associated with the process of transdifferentiation of BVSMCs into osteoblast-like cells. Furthermore, estimated calcium entry into the cells decreased with increasing magnesium concentrations in the media. In addition, higher magnesium concentrations prevented cell damage (apoptosis) induced by BGP as well as progression of already established calcification. Conclusions. Higher magnesium levels prevented BVSMC calcification, inhibited expression of osteogenic proteins, apoptosis and further progression of already established calcification. Thus, magnesium is influencing molecular processes associated with VC and may have the potential to play a role for VC also in clinical situations. PMID:21750166

  17. Nanostructured calcium phosphate coatings on magnesium alloys: characterization and cytocompatibility with mesenchymal stem cells.

    PubMed

    Iskandar, Maria Emil; Aslani, Arash; Tian, Qiaomu; Liu, Huinan

    2015-05-01

    This article reports the deposition and characterization of nanostructured calcium phosphate (nCaP) on magnesium-yttrium alloy substrates and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The nCaP coatings were deposited on magnesium and magnesium-yttrium alloy substrates using proprietary transonic particle acceleration process for the dual purposes of modulating substrate degradation and BMSC adhesion. Surface morphology and feature size were analyzed using scanning electron microscopy and quantitative image analysis tools. Surface elemental compositions and phases were analyzed using energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. The deposited nCaP coatings showed a homogeneous particulate surface with the dominant feature size of 200-500 nm in the long axis and 100-300 nm in the short axis, and a Ca/P atomic ratio of 1.5-1.6. Hydroxyapatite was the major phase identified in the nCaP coatings. The modulatory effects of nCaP coatings on the sample degradation and BMSC behaviors were dependent on the substrate composition and surface conditions. The direct culture of BMSCs in vitro indicated that multiple factors, including surface composition and topography, and the degradation-induced changes in media composition, influenced cell adhesion directly on the sample surface, and indirect adhesion surrounding the sample in the same culture. The alkaline pH, the indicator of Mg degradation, played a role in BMSC adhesion and morphology, but not the sole factor. Additional studies are necessary to elucidate BMSC responses to each contributing factor.

  18. Levels of Serum Calcium and Magnesium in Pre-eclamptic and Normal Pregnancy: A Study from Coastal India.

    PubMed

    Kanagal, Deepa V; Rajesh, Aparna; Rao, Kavyarashmi; Devi, Ullal Harshini; Shetty, Harish; Kumari, Sucheta; Shetty, Prasanna Kumar

    2014-07-01

    Pre-eclampsia is one of the major causes of maternal and fetal morbidity and mortality. Though the aetiology is obscure, recent studies indicate that serum levels of calcium and magnesium may have a role in pre-eclampsia. The aim of this study was to find out the relationship of serum levels of calcium and magnesium in pre-eclamptic pregnancies compared to normal pregnancies in women from southern coastal India. This study was done in a medical college hospital in southern coastal India. The blood samples from 60 pre-eclamptic women and an equal number of controls were analysed for calcium and magnesium levels. Data on Body Mass Index, maternal and gestational ages, serum calcium and magnesium were compared between the two groups. Outcome of pregnancy was analysed in both the groups and compared. Data was expressed as Mean ± Standard Deviation. Data analysis was done by SPSS version 20. Comparison of serum levels of the elements between the two groups was performed by Independent t-test and Chi-square test and P-value of < 0.05 was considered as statistically significant. The serum calcium concentration was significantly lower in the pre-eclamptic group compared to normotensives (7.84 ± 0.87 mg/dl Vs 8.97± 0.69 mg/dl, p<0.001) whereas the levels of serum magnesium showed a marginal difference in both the groups. (1.43± 0.55 mg/dl Vs, 1.57 ± 0.72 mg/dl P 0.257) The study also showed that pre-eclamptic women were older, their BMI was higher and birth weight of babies lower compared to normotensives. According to the results of our research, intake of supplements, mainly calcium may help in the reduction of incidence of pre-eclampsia especially in a population of a developing country like ours where the nutrition is poor. Not many studies have been done in developing countries to assess the role of these elements in pre-eclampsia. The actual role of magnesium and calcium supplements needs further investigation.

  19. Genetic variation in SLC7A2 interacts with calcium and magnesium intakes in modulating the risk of colorectal polyps.

    PubMed

    Sun, Pin; Zhu, Xiangzhu; Shrubsole, Martha J; Ness, Reid M; Hibler, Elizabeth A; Cai, Qiuyin; Long, Jirong; Chen, Zhi; Li, Guoliang; Hou, Lifang; Smalley, Walter E; Edwards, Todd L; Giovannucci, Edward; Zheng, Wei; Dai, Qi

    2017-09-01

    Solute carrier family 7, member 2 (SLC7A2) gene encodes a protein called cationic amino acid transporter 2, which mediates the transport of arginine, lysine and ornithine. l-Arginine is necessary for cancer development and progression, including an important role in colorectal cancer pathogenesis. Furthermore, previous studies found that both calcium and magnesium inhibit the transport of arginine. Thus, calcium, magnesium or calcium:magnesium intake ratio may interact with polymorphisms in the SLC7A2 gene in association with colorectal cancer. We conducted a two-phase case-control study within the Tennessee Colorectal Polyps Study. In the first phase, 23 tagging single-nucleotide polymorphisms in the SLC7A2 gene were included for 725 colorectal adenoma cases and 755 controls. In the second phase conducted in an independent set of 607 cases and 2113 controls, we replicated the significant findings in the first phase. We observed that rs2720574 significantly interacted with calcium:magnesium intake ratio in association with odds of adenoma, particularly multiple/advanced adenoma. In the combined analysis, among those with a calcium:magnesium intake ratio below 2.78, individuals who carried GC/CC genotypes demonstrated higher odds of adenoma [OR (95% CI):1.36 (1.11-1.68)] and multiple/advanced adenoma [OR (95% CI): 1.68 (1.28, 2.20)] than those who carried the GG genotype. The P values for interactions between calcium:magnesium intake ratio and rs2720574 were .002 for all adenomas and <.001 for multiple/advanced adenoma. Among those with the GG genotype, a high calcium:magnesium ratio was associated with increased odds of colorectal adenoma [OR (95% CI): 1.73 (1.27-2.36)] and advanced/multiple adenomas [1.62 (1.05-2.50)], whereas among those with the GC/CC genotypes, high calcium:magnesium ratio was related to reduced odds of colorectal adenoma [0.64 (0.42-0.99)] and advanced/multiple adenomas [0.55 (0.31-1.00)]. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Precipitation of calcium, magnesium, strontium and barium in tissues of four Acacia species (Leguminosae: Mimosoideae).

    PubMed

    He, Honghua; Bleby, Timothy M; Veneklaas, Erik J; Lambers, Hans; Kuo, John

    2012-01-01

    Precipitation of calcium in plants is common. There are abundant studies on the uptake and content of magnesium, strontium and barium, which have similar chemical properties to calcium, in comparison with those of calcium in plants, but studies on co-precipitation of these elements with calcium in plants are rare. In this study, we compared morphologies, distributional patterns, and elemental compositions of crystals in tissues of four Acacia species grown in the field as well as in the glasshouse. A comparison was also made of field-grown plants and glasshouse-grown plants, and of phyllodes of different ages for each species. Crystals of various morphologies and distributional patterns were observed in the four Acacia species studied. Magnesium, strontium and barium were precipitated together with calcium, mainly in phyllodes of the four Acacia species, and sometimes in branchlets and primary roots. These elements were most likely precipitated in forms of oxalate and sulfate in various tissues, including epidermis, mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex. In most cases, precipitation of calcium, magnesium, strontium and barium was biologically induced, and elements precipitated differed between soil types, plant species, and tissues within an individual plant; the precipitation was also related to tissue age. Formation of crystals containing these elements might play a role in regulating and detoxifying these elements in plants, and protecting the plants against herbivory.

  1. Precipitation of Calcium, Magnesium, Strontium and Barium in Tissues of Four Acacia Species (Leguminosae: Mimosoideae)

    PubMed Central

    He, Honghua; Bleby, Timothy M.; Veneklaas, Erik J.; Lambers, Hans; Kuo, John

    2012-01-01

    Precipitation of calcium in plants is common. There are abundant studies on the uptake and content of magnesium, strontium and barium, which have similar chemical properties to calcium, in comparison with those of calcium in plants, but studies on co-precipitation of these elements with calcium in plants are rare. In this study, we compared morphologies, distributional patterns, and elemental compositions of crystals in tissues of four Acacia species grown in the field as well as in the glasshouse. A comparison was also made of field-grown plants and glasshouse-grown plants, and of phyllodes of different ages for each species. Crystals of various morphologies and distributional patterns were observed in the four Acacia species studied. Magnesium, strontium and barium were precipitated together with calcium, mainly in phyllodes of the four Acacia species, and sometimes in branchlets and primary roots. These elements were most likely precipitated in forms of oxalate and sulfate in various tissues, including epidermis, mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex. In most cases, precipitation of calcium, magnesium, strontium and barium was biologically induced, and elements precipitated differed between soil types, plant species, and tissues within an individual plant; the precipitation was also related to tissue age. Formation of crystals containing these elements might play a role in regulating and detoxifying these elements in plants, and protecting the plants against herbivory. PMID:22848528

  2. Medium-chain triglyceride feeding in premature infants: effects on calcium and magnesium absorption.

    PubMed

    Tantibhedhyangkul, P; Hashim, S A

    1978-04-01

    The effect of medium-chain triglycerides (MCT) on the absorption of calcium and magnesium in premature infants was studied in 34 infants with birth weights lower than 2,000 gm. The infants were divided into three groups and fed three formulas similar in nutrient content except for the type of fat, as follows: group 1 (control): corn oil, oleo, and coconut oil (39:41:20); group 2: MCT, corn oil, and coconut oil (40:40:20); group 3: MCT and corn oil (80:20). The infants fed MCT-containing formulas absorbed significantly more calcium than the control group. Magnesium absorption was significantly increased in the 80% MCT group.

  3. The role of calcium and magnesium in the concrete tubes of the sandcastle worm.

    PubMed

    Sun, ChengJun; Fantner, Georg E; Adams, Jonathan; Hansma, Paul K; Waite, J Herbert

    2007-04-01

    Sandcastle worms Phragmatopoma californica build mound-like reefs by sticking together large numbers of sand grains with cement secreted from the building organ. The cement consists of protein plus substantial amounts of calcium and magnesium, which are not invested in any mineral form. This study examined the effect of calcium and magnesium depletion on the structural and mechanical properties of the cement. Divalent ion removal by chelating with EDTA led to a partial collapse of cement architecture and cement dislodgement from silica surfaces. Mechanical properties examined were sand grain pull-out force, tube resistance to compression and cement adhesive force. EDTA treatment reduced sand grain pull-out forces by 60% and tube compressive strength by 50% relative to controls. EDTA lowered both the maximal adhesive force and energy dissipation of cement by up to an order of magnitude. The adhesiveness of calcium- and magnesium-depleted cement could not be restored by re-exposure to the ions. The results suggest that divalent ions play a complex and multifunctional role in maintaining the structure and stickiness of Phragmatopoma cement.

  4. Disorders of calcium, phosphorus, and magnesium metabolism in the neonate

    USDA-ARS?s Scientific Manuscript database

    Approximately 98% of the calcium, 80% of the phosphorus, and 65% of the magnesium in the body are in the skeleton. These elements, often referred to as the "bone minerals" are also constituents of the intracellular and extracellular spaces. The metabolism of these bone minerals and mineralization of...

  5. Calcium, magnesium, and phosphate abnormalities in the emergency department.

    PubMed

    Chang, Wan-Tsu W; Radin, Bethany; McCurdy, Michael T

    2014-05-01

    Derangements of calcium, magnesium, and phosphate are associated with increased morbidity and mortality. These minerals have vital roles in the cellular physiology of the neuromuscular and cardiovascular systems. This article describes the pathophysiology of these mineral disorders. It aims to provide the emergency practitioner with an overview of the diagnosis and management of these disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The Effect of Alkaline Earth Metal on the Cesium Loading of Ionsiv(R) IE-910 and IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.F.

    2001-01-16

    This study investigated the effect of variances in alkaline earth metal concentrations on cesium loading of IONSIV(R) IE-911. The study focused on Savannah River Site (SRS) ''average'' solution with varying amounts of calcium, barium and magnesium.

  7. Importance of calcium and magnesium in water - water hardening

    NASA Astrophysics Data System (ADS)

    Barloková, D.; Ilavský, J.; Kapusta, O.; Šimko, V.

    2017-10-01

    Basic information about importance of calcium and magnesium in water, about their properties, effect to human health, problems what can cause under the lower (< 1 mmol/L) and higher (> 5 mmol/L) concentrations in water supply distribution systems, the most commonly used methods of water hardening are presented. The article contains the water hardening results carried out during the pilot plant experiments in WTP Hriňová and WTP Turček. For water hardening, treated water at the end of the process line, i.e., after coagulation, sedimentation and filtration, saturated with CO2 and filtrated through half-burnt dolomite material (PVD) was used. The results show that the filtration rate is 17.1 m/h in the case of WTP Hriňová and 15.2 m/h in the case of WTP Turček to achieve the recommended concentration of Ca and Mg in the treated water after the addition of CO2 and filtration through PVD. The longer the water contact time with PVD (depending on the CO2 content), the more water is enriched with magnesium, but the calcium concentration has not so much increased.

  8. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false D-Glucuronic acid, polymer with 6...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

  9. Natural mineral bottled waters available on the Polish market as a source of minerals for the consumers. Part 1. Calcium and magnesium.

    PubMed

    Gątarska, Anna; Tońska, Elżbieta; Ciborska, Joanna

    2016-01-01

    Natural mineral waters may be an essential source of calcium, magnesium and other minerals. In bottled waters, minerals occur in an ionized form which is very well digestible. However, the concentration of minerals in underground waters (which constitute the material for the production of bottled waters) varies. In view of the above, the type of water consumed is essential. The aim of the study was to estimate the calcium and magnesium contents in products available on the market and to evaluate calcium and magnesium consumption with natural mineral water by different consumer groups with an assumed volume of the consumed product. These represented forty different brands of natural mineral available waters on Polish market. These waters were produced in Poland or other European countries. Among the studied products, about 30% of the waters were imported from Lithuania, Latvia, Czech Republic, France, Italy and Germany. The content of calcium and magnesium in mineral waters was determined using flame atomic absorption spectrometry in an acetylene-air flame. Further determinations were carried out using atomic absorption spectrometer--ICE 3000 SERIES-THERMO-England, equipped with a GLITE data station, background correction (a deuterium lamp) as well as other cathode lamps. Over half of the analysed natural mineral waters were medium-mineralized. The natural mineral waters available on the market can be characterized by a varied content of calcium and magnesium and a high degree of product mineralization does not guarantee significant amounts of these components. Among the natural mineral waters available on the market, only a few feature the optimum calcium-magnesium proportion (2:1). Considering the mineralization degree of the studied products, it can be stated that the largest percentage of products with significant calcium and magnesium contents can be found in the high-mineralized water group. For some natural mineral waters, the consumption of 1 litre daily may

  10. Mutual independence of alkaline- and calcium-mediated signalling in Aspergillus fumigatus refutes the existence of a conserved druggable signalling nexus.

    PubMed

    Loss, Omar; Bertuzzi, Margherita; Yan, Yu; Fedorova, Natalie; McCann, Bethany L; Armstrong-James, Darius; Espeso, Eduardo A; Read, Nick D; Nierman, William C; Bignell, Elaine M

    2017-12-01

    Functional coupling of calcium- and alkaline responsive signalling occurs in multiple fungi to afford efficient cation homeostasis. Host microenvironments exert alkaline stress and potentially toxic concentrations of Ca 2+ , such that highly conserved regulators of both calcium- (Crz) and pH- (PacC/Rim101) responsive signalling are crucial for fungal pathogenicity. Drugs targeting calcineurin are potent antifungal agents but also perturb human immunity thereby negating their use as anti-infectives, abrogation of alkaline signalling has, therefore, been postulated as an adjunctive antifungal strategy. We examined the interdependency of pH- and calcium-mediated signalling in Aspergillus fumigatus and found that calcium chelation severely impedes hyphal growth indicating a critical requirement for this ion independently of ambient pH. Transcriptomic responses to alkaline pH or calcium excess exhibited minimal similarity. Mutants lacking calcineurin, or its client CrzA, displayed normal alkaline tolerance and nuclear translocation of CrzA was unaffected by ambient pH. Expression of a highly conserved, alkaline-regulated, sodium ATPase was tolerant of genetic or chemical perturbations of calcium-mediated signalling, but abolished in null mutants of the pH-responsive transcription factor PacC, and PacC proteolytic processing occurred normally during calcium excess. Taken together our data demonstrate that in A. fumigatus the regulatory hierarchy governing alkaline tolerance circumvents calcineurin signalling. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  11. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for the...

  12. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for the...

  13. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for the...

  14. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... potassium sodium salt (PMN P-00-7; CAS No.125005-87-0) is subject to reporting under this section for the...

  15. Analysis of the Effects of Calcium or Magnesium on Voltage-Clamp Currents in Perfused Squid Axons Bathed in Solutions of High Potassium

    PubMed Central

    Rojas, Eduardo; Taylor, Robert E.; Atwater, Illani; Bezanilla, Francisco

    1969-01-01

    Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15–30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system. PMID:5823216

  16. Analysis of the effects of calcium or magnesium on voltage-clamp currents in perfused squid axons bathed in solutions of high potassium.

    PubMed

    Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F

    1969-10-01

    Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.

  17. A SIMPLE AND RAPID METHOD FOR THE SIMULTANEOUS DETERMINATION OF CALCIUM AND MAGNESIUM FROM THE SAME SAMPLE OF BLOOD SERUM

    PubMed Central

    Kovács, G. S.; Tárnoky, K. E.

    1960-01-01

    A simple and rapid procedure has been developed for the complexometric titration of serum calcium and magnesium using “plasmocorinth B” as indicator. Both determinations can be carried out from the same 0.5 ml. sample. The method is in good agreement with the established calcium and magnesium methods. PMID:14411396

  18. Determination of Sodium, Potassium, Magnesium, and Calcium Minerals Level in Fresh and Boiled Broccoli and Cauliflower by Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Nerdy

    2018-01-01

    Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.

  19. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.

    PubMed

    Kannan, M Bobby; Raman, R K Singh

    2008-05-01

    The successful applications of magnesium-based alloys as degradable orthopaedic implants are mainly inhibited due to their high degradation rates in physiological environment and consequent loss in the mechanical integrity. This study examines the degradation behaviour and the mechanical integrity of calcium-containing magnesium alloys using electrochemical techniques and slow strain rate test (SSRT) method, respectively, in modified-simulated body fluid (m-SBF). Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) results showed that calcium addition enhances the general and pitting corrosion resistances of magnesium alloys significantly. The corrosion current was significantly lower in AZ91Ca alloy than that in AZ91 alloy. Furthermore, AZ91Ca alloy exhibited a five-fold increase in the surface film resistance than AZ91 alloy. The SSRT results showed that the ultimate tensile strength and elongation to fracture of AZ91Ca alloy in m-SBF decreased only marginally (approximately 15% and 20%, respectively) in comparison with these properties in air. The fracture morphologies of the failed samples are discussed in the paper. The in vitro study suggests that calcium-containing magnesium alloys to be a promising candidate for their applications in degradable orthopaedic implants, and it is worthwhile to further investigate the in vivo corrosion behaviour of these alloys.

  20. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A.

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium weremore » prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.« less

  1. Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance.

    PubMed

    Salahshoor, Meisam; Guo, Yuebin

    2012-01-09

    Magnesium-Calcium (Mg-Ca) alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the key issue facing a biodegradable Mg-Ca implant is the fast corrosion in the human body environment. The ability to adjust degradation rate of Mg-Ca alloys is critical for the successful development of biodegradable orthopedic implants. This paper focuses on the functions and requirements of bone implants and critical issues of current implant biomaterials. Microstructures and mechanical properties of Mg-Ca alloys, and the unique properties of novel magnesium-calcium implant materials have been reviewed. Various manufacturing techniques to process Mg-Ca based alloys have been analyzed regarding their impacts on implant performance. Corrosion performance of Mg-Ca alloys processed by different manufacturing techniques was compared. In addition, the societal and economical impacts of developing biodegradable orthopedic implants have been emphasized.

  2. Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance

    PubMed Central

    Salahshoor, Meisam; Guo, Yuebin

    2012-01-01

    Magnesium-Calcium (Mg-Ca) alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the key issue facing a biodegradable Mg-Ca implant is the fast corrosion in the human body environment. The ability to adjust degradation rate of Mg-Ca alloys is critical for the successful development of biodegradable orthopedic implants. This paper focuses on the functions and requirements of bone implants and critical issues of current implant biomaterials. Microstructures and mechanical properties of Mg-Ca alloys, and the unique properties of novel magnesium-calcium implant materials have been reviewed. Various manufacturing techniques to process Mg-Ca based alloys have been analyzed regarding their impacts on implant performance. Corrosion performance of Mg-Ca alloys processed by different manufacturing techniques was compared. In addition, the societal and economical impacts of developing biodegradable orthopedic implants have been emphasized. PMID:28817036

  3. Effect of Oestrogen on Altering the Serum and Urinary Levels of Calcium, Phosphate and Magnesium in Hysterectomised Women Compared to Natural Menopausal South Indian Women: A Case Control Study.

    PubMed

    Sonu, Yeldose; Avinash, S S; Sreekantha; Arun Kumar, K; Malathi, M; Shivashankara, A R

    2016-07-01

    Given the paucity of studies conducted to know the effect of suddenness and earlier onset of endocrinological changes associated with hysterectomy, on the serum and urinary levels of calcium, magnesium and phosphate the present study was conducted to compare the levels of calcium, magnesium and phosphate in serum and urine of hysterectomised and natural menopausal south Indian women. This is a cross-sectional observational study. The study included three groups of 30 healthy premenopausal, 30 early surgical menopausal and 30 natural post menopausal women. Women suffering from any endocrine disease were excluded. Analysis was performed in serum and urine sample. The levels of calcium, magnesium and phosphate in serum and calcium/creatinine, magnesium/creatinine and phosphate/creatinine ratio were estimated in urine by spectrophotometric method. Hysterectomised women (serum calcium: 8.7 ± 0.09 mg/dl; urine calcium/creatinine: 0.16 ± 0.02) have significantly low serum calcium (p < 0.001) and high urinary calcium/creatinine (p = 0.002) ratio and post menopausal women (serum magnesium: 2.1 ± 0.03; serum phosphate: 4.4 ± 0.16; urinary calcium/creatinine: 0.17 ± 0.02; urinary magnesium/creatinine: 0.09 ± 0.01) have significantly high serum magnesium (p = 0.016), serum phosphate (p = 0.043) and high urinary calcium/creatinine (p = 0.002), magnesium/creatinine ratio (p = 0.025) compared to healthy pre menopausal women. Post menopausal women (serum calcium: 9.1 ± 0.08) have significantly high serum calcium and phosphate compared to hysterectomised women (serum phosphate: 3.93 ± 0.11). Hysterectomised women have significantly low serum calcium, oestrogen and high urinary calcium/creatinine ratio compared to healthy premenopausal women and low serum calcium and low serum phosphate compared to natural postmenopausal women. Natural postmenopausal women had low serum oestrogen and high serum magnesium, serum phosphate, urinary calcium

  4. Contribution of activity to the circadian rhythm in excretion of magnesium and calcium.

    DOT National Transportation Integrated Search

    1968-03-01

    Eight subjects were maintained on a standard dietary regimen ingested every four hours for 120 hours. Measurements of the magnesium and calcium excretion in these subjects revealed a circadian periodicity with maximal levels of excretion for both ion...

  5. Nitrogen, phosphorus, potassium, calcium, magnesium, and zinc in southeastern USA harvested flax

    USDA-ARS?s Scientific Manuscript database

    Flax (Linum usitatissimum L.) is a winter crop in the Southeast USA that has potential in double cropping systems. This research was conducted to provide estimates of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and zinc (Zn) removal in the harvested portions of the cro...

  6. Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9 % NaCl solution.

    PubMed

    Hadzima, Branislav; Mhaede, Mansour; Pastorek, Filip

    2014-05-01

    Magnesium alloys suffer from their high reactivity in common environments. Protective layers are widely created on the surface of magnesium alloys to improve their corrosion resistance. This article evaluates the influence of a calcium-phosphate layer on the electrochemical characteristics of AZ31 magnesium alloy in 0.9 % NaCl solution. The calcium phosphate (CaP) layer was electrochemically deposited in a solution containing 0.1 M Ca(NO3)2, 0.06 M NH4H2PO4 and 10 ml l(-1) of H2O2. The formed surface layer was composed mainly of brushite [(dicalcium phosphate dihidrate (DCPD)] as proved by energy-dispersive X-ray analysis. The surface morphology was observed by scanning electron microscopy. Immersion test was performed in order to observe degradation of the calcium phosphatized surfaces. The influence of the phosphate layer on the electrochemical characteristics of AZ31, in 0.9 % NaCl solution, was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy. The obtained results were analysed by the Tafel-extrapolation method and equivalent circuits method. The results showed that the polarization resistance of the DCPD-coated surface is about 25 times higher than that of non-coated surface. The CaP electro-deposition process increased the activation energy of corrosion process.

  7. [Serum calcium and phosphorus concentration and alkaline phosphatase activity in healthy children during growth and development].

    PubMed

    Savić, Ljiljana; Savić, Dejan

    2008-01-01

    Many changes happen during growth and development in an organism as a result of important hormon changes, especially biohumoral ones. These changes make a problem when interpreting biochemical results in pediatric population. The most important changes are intensive calcium and phosphorus metabolic turnover in bone tissue with changes in alkaline phosphatase activity as a result of osteoblast activity. The aim of this study was to follow the serum calcium and phosphorus concentration and alkaline phosphatase activity in children 1-15 years old in different growth and development period and of different sexes and to fortify the influence of growth and development dynamics on biohumoral status in healthy male and female children. We evaluated 117 healthy children of both sexes from 1-15 years of age and divided them into three age groups: 1-5, 6-10 and 11-15 years. We followed the serum calcium and phosphorus concentration and alkaline phosphatase activity in different groups and in different sexes. Our investigation found significantly higher values of serum calcium in boys than in girls with no important changes between the age groups and significantly higher values of serum phosphorus in the youngest age group in all children and in different sexes with no important sex differences. Alkaline phosphatase activity followed the growth spurt and was the biggest in 6-10 years group in girls and in 11-15 years group in boys.

  8. Crystal Analysis of Multi Phase Calcium Phosphate Nanoparticles Containing Different amount of Magnesium

    NASA Astrophysics Data System (ADS)

    Gozalian, Afsaneh; Behnamghader, Ali Asghar; Moshkforoush, Arash

    In this study, Mg doped hydroxyapatite [(Ca, Mg)10(PO4)6(OH)2] and β-tricalcium phosphate nanoparticles were synthesized via sol gel method. Triethyl phosphite, calcium nitrate tetrahydrate and magnesium nitrate hexahydrate were used as P, Ca and Mg precursors. The ratio of (Ca+Mg)/P and the amount of magnesium (x) were kept constant at 1.67 and ranging x = 0 up to 3 in molecular formula of Ca10-xMgx (PO4)6(OH)2, respectively. Phase composition and chemical structure were performed using X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Phase percentages, crystallite size, degree of crystallinity and lattice parameters were investigated. The presence of magnesium led to form the Mg doped tricalcium phosphate (β-TCMP) and Mg doped hydroxyapatite (Mg-HA). Based on the results of this study, lattice parameters, degree of crystallinity and crystallite size decreased with magnesium content. In addition, with increasing magnesium content, the amount of CaO phase decreased whereas the amount of MgO phase increased significantly. Obtained results can be used for new biomaterials design.

  9. Influence of calcium, magnesium, or potassium ions on the formation and stability of emulsions prepared using highly hydrolyzed whey proteins.

    PubMed

    Ramkumar, C; Singh, H; Munro, P A; Singh, A M

    2000-05-01

    Oil-in-water emulsions (4 wt % soy oil) containing 4 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis) and different levels of calcium, magnesium, or potassium chloride were prepared in a two-stage homogenizer. Other emulsions containing 4 wt % WPH but including 0.35 wt % hydroxylated lecithin and different levels of the above minerals were similarly prepared. The formation and stability of these emulsions were determined by measuring oil droplet size distributions using laser light scattering and by confocal scanning laser microscopy and a gravity creaming test. Both lecithin-free and lecithin-containing emulsions showed no change in droplet size distributions with increasing concentration of potassium in the range 0-37.5 mM. In contrast, the diameter of emulsion droplets increased with increasing calcium or magnesium concentration >12.5 mM. Emulsions containing hydroxylated lecithin were more sensitive to the addition of calcium or magnesium than the lecithin-free emulsions. Storage of emulsions at 20 degrees C for 24 h further increased the diameter of droplets and resulted in extensive creaming in emulsions containing >25 mM calcium or magnesium. It appears that both flocculation and coalescence processes were involved in the destabilization of emulsions induced by the addition of divalent cations.

  10. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, nutrient concentrations, and plant nutrition and growth

    USDA-ARS?s Scientific Manuscript database

    Liming agents in irrigation water, typically associated with carbonates and bicarbonates of calcium and magnesium, contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient availability imbalan...

  11. Women with Fibromyalgia Have Lower Levels of Calcium, Magnesium, Iron and Manganese in Hair Mineral Analysis

    PubMed Central

    Kim, Young-Sang; Kim, Kwang-Min; Lee, Duck-Joo; Kim, Bom-Taeck; Park, Sat-Byul; Cho, Doo-Yeoun; Suh, Chang-Hee; Kim, Hyoun-Ah; Park, Rae-Woong

    2011-01-01

    Little is known about hair mineral status in fibromyalgia patients. This study evaluated the characteristics of hair minerals in female patients with fibromyalgia compared with a healthy reference group. Forty-four female patients diagnosed with fibromyalgia according to the American College of Rheumatology criteria were enrolled as the case group. Ageand body mass index-matched data were obtained from 122 control subjects enrolled during visit for a regular health check-up. Hair minerals were analyzed and compared between the two groups. The mean age was 43.7 yr. General characteristics were not different between the two groups. Fibromyalgia patients showed a significantly lower level of calcium (775 µg/g vs 1,093 µg/g), magnesium (52 µg/g vs 72 µg/g), iron (5.9 µg/g vs 7.1 µg/g), copper (28.3 µg/g vs 40.2 µg/g) and manganese (140 ng/g vs 190 ng/g). Calcium, magnesium, iron, and manganese were loaded in the same factor using factor analysis; the mean of this factor was significantly lower in fibromyalgia group in multivariate analysis with adjustment for potential confounders. In conclusion, the concentrations of calcium, magnesium, iron, and manganese in the hair of female patients with fibromyalgia are lower than of controls, even after adjustment of potential confounders. PMID:22022174

  12. Low pressure ion chromatography with a low cost paired emitter-detector diode based detector for the determination of alkaline earth metals in water samples.

    PubMed

    Barron, Leon; Nesterenko, Pavel N; Diamond, Dermot; O'Toole, Martina; Lau, King Tong; Paull, Brett

    2006-09-01

    The use of a low pressure ion chromatograph based upon short (25 mm x 4.6 mm) surfactant coated monolithic columns and a low cost paired emitter-detector diode (PEDD) based detector, for the determination of alkaline earth metals in aqueous matrices is presented. The system was applied to the separation of magnesium, calcium, strontium and barium in less than 7min using a 0.15M KCl mobile phase at pH 3, with post-column reaction detection at 570 nm using o-cresolphthalein complexone. A comparison of the performance of the PEDD detector with a standard laboratory absorbance detector is shown, with limits of detection for magnesium and calcium using the low cost PEDD detector equal to 0.16 and 0.23 mg L(-1), respectively. Finally, the developed system was used for the determination of calcium and magnesium in a commercial spring water sample.

  13. Maxillary sinus floor elevation using a tissue-engineered bone with calcium-magnesium phosphate cement and bone marrow stromal cells in rabbits.

    PubMed

    Zeng, Deliang; Xia, Lunguo; Zhang, Wenjie; Huang, Hui; Wei, Bin; Huang, Qingfeng; Wei, Jie; Liu, Changsheng; Jiang, Xinquan

    2012-04-01

    The objective of this study was to assess the effects of maxillary sinus floor elevation with a tissue-engineered bone constructed with bone marrow stromal cells (bMSCs) and calcium-magnesium phosphate cement (CMPC) material. The calcium (Ca), magnesium (Mg), and phosphorus (P) ions released from calcium phosphate cement (CPC), magnesium phosphate cement (MPC), and CMPC were detected by inductively coupled plasma atomic emission spectroscopy (ICP-AES), and the proliferation and osteogenic differentiation of bMSCs seeded on CPC, MPC, and CMPC or cultured in CPC, MPC, and CMPC extracts were measured by MTT analysis, alkaline phosphatase (ALP) activity assay, alizarin red mineralization assay, and real-time PCR analysis of the osteogenic genes ALP and osteocalcin (OCN). Finally, bMSCs were combined with CPC, MPC, and CMPC and used for maxillary sinus floor elevation in rabbits, while CPC, MPC, or CMPC without cells served as control groups. The new bone formation in each group was detected by histological finding and fluorochrome labeling at weeks 2 and 8 after surgical operation. It was observed that the Ca ion concentrations of the CMPC and CPC scaffolds was significantly higher than that of the MPC scaffold, while the Mg ions concentration of CMPC and MPC was significantly higher than that of CPC. The bMSCs seeded on CMPC and MPC or cultured in their extracts proliferated more quickly than the cells seeded on CPC or cultured in its extract, respectively. The osteogenic differentiation of bMSCs seeded on CMPC and CPC or cultured in the corresponding extracts was significantly enhanced compared to that of bMSCs seeded on MPC or cultured in its extract; however, there was no significant difference between CMPC and CPC. As for maxillary sinus floor elevation in vivo, CMPC could promote more new bone formation and mineralization compared to CPC and MPC, while the addition of bMSCs could further enhance its new bone formation ability significantly. Our data suggest that

  14. Influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation with calcium oxalate and struvite in healthy cats.

    PubMed

    Bartges, Joseph W; Kirk, Claudia A; Cox, Sherry K; Moyers, Tamberlyn D

    2013-10-01

    To evaluate the influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation (URSS) with calcium oxalate and struvite in healthy cats. 6 castrated male and 6 spayed female cats. 3 groups of 4 cats each were fed diets for 12 months that differed only in acidifying or alkalinizing properties (alkalinizing, neutral, and acidifying). Body composition was estimated by use of dual energy x-ray absorptiometry, and 48-hour urine samples were collected for URSS determination. Urine pH differed significantly among diet groups, with the lowest urine pH values in the acidifying diet group and the highest values in the alkalinizing diet group. Differences were not observed in other variables except urinary ammonia excretion, which was significantly higher in the neutral diet group. Calcium oxalate URSS was highest in the acidifying diet group and lowest in the alkalinizing diet group; struvite URSS was not different among groups. Diet was not significantly associated with bone mineral content or density. Urinary undersaturation with calcium oxalate was achieved by inducing alkaluria. Feeding an alkalinizing diet was not associated with URSS with struvite. Bone mineral density and calcium content were not adversely affected by diet; therefore, release of calcium from bone caused by feeding an acidifying diet may not occur in healthy cats.

  15. The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate.

    PubMed

    Becker, Alexander; Ziegler, Andreas; Epple, Matthias

    2005-05-21

    The cuticules (shells) of the woodlice Porcellio scaber and Armadillidium vulgare were analysed with respect to their content of inorganic material. It was found that the cuticles consist of crystalline magnesium calcite, amorphous calcium carbonate (ACC), and amorphous calcium phosphate (ACP), besides small amounts of water and an organic matrix. It is concluded that the cuticle, which constitutes a mineralized protective organ, is chemically adapted to the biological requirements by this combination of different materials.

  16. Structural studies of human alkaline phosphatase in complex with strontium: Implication for its secondary effect in bones

    PubMed Central

    Llinas, Paola; Masella, Michel; Stigbrand, Torgny; Ménez, André; Stura, Enrico A.; Le Du, Marie Hélène

    2006-01-01

    Strontium is used in the treatment of osteoporosis as a ranelate compound, and in the treatment of painful scattered bone metastases as isotope. At very high doses and in certain conditions, it can lead to osteomalacia characterized by impairment of bone mineralization. The osteomalacia symptoms resemble those of hypophosphatasia, a rare inherited disorder associated with mutations in the gene encoding for tissue-nonspecific alkaline phosphatase (TNAP). Human alkaline phosphatases have four metal binding sites—two for zinc, one for magnesium, and one for calcium ion—that can be substituted by strontium. Here we present the crystal structure of strontium-substituted human placental alkaline phosphatase (PLAP), a related isozyme of TNAP, in which such replacement can have important physiological implications. The structure shows that strontium substitutes the calcium ion with concomitant modification of the metal coordination. The use of the flexible and polarizable force-field TCPEp (topological and classical polarization effects for proteins) predicts that calcium or strontium has similar interaction energies at the calcium-binding site of PLAP. Since calcium helps stabilize a large area that includes loops 210–228 and 250–297, its substitution by strontium could affect the stability of this region. Energy calculations suggest that only at high doses of strontium, comparable to those found for calcium, can strontium substitute for calcium. Since osteomalacia is observed after ingestion of high doses of strontium, alkaline phosphatase is likely to be one of the targets of strontium, and thus this enzyme might be involved in this disease. PMID:16815919

  17. Nationwide data on municipal drinking water and hip fracture: could calcium and magnesium be protective? A NOREPOS study.

    PubMed

    Dahl, Cecilie; Søgaard, Anne Johanne; Tell, Grethe S; Flaten, Trond Peder; Hongve, Dag; Omsland, Tone Kristin; Holvik, Kristin; Meyer, Haakon E; Aamodt, Geir

    2013-11-01

    Norway has a high incidence of hip fractures, and the incidence varies by degree of urbanization. This variation may reflect a difference in underlying environmental factors, perhaps variations in the concentration of calcium and magnesium in municipal drinking water. A trace metal survey (1986-1991) in 556 waterworks (supplying 64% of the Norwegian population) was linked geographically to hip fractures from hospitals throughout the country (1994-2000). In all, 5472 men and 13,604 women aged 50-85years suffered a hip fracture. Poisson regression models were fitted, adjusting for age, urbanization degree, region of residence, type of water source, and pH. The concentrations of calcium and magnesium in drinking water were generally low. An inverse association was found between concentration of magnesium and risk of hip fracture in both genders (IRR men highest vs. lowest tertile=0.80, 95% CI: 0.74, 0.87; IRR women highest vs. lowest tertile=0.90, 95% CI: 0.85, 0.95), but no consistent association between calcium and hip fracture risk was observed. The highest tertile of urbanization degree (city), compared to the lowest (rural), was related to a 23 and 24% increase in hip fracture risk in men and women, respectively. The association between magnesium and hip fracture did not explain the variation in hip fracture risk between city and rural areas. Magnesium in drinking water may have a protective role against hip fractures; however this association should be further investigated. © 2013 Elsevier Inc. All rights reserved.

  18. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, and nutrient concentrations; and plant nutrition and growth

    USDA-ARS?s Scientific Manuscript database

    Liming agents (LA) in irrigation water, typically associated with carbonates and bicarbonates of calcium (Ca) and magnesium (Mg), contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient avail...

  19. Performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation in pig manure composting.

    PubMed

    Li, Yun; Luo, Wenhai; Li, Guoxue; Wang, Kun; Gong, Xiaoyan

    2018-02-01

    This study investigated the performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation during pig manure composting with cornstalk as the bulking agent. Results show that phosphogypsum increased nitrous oxide (N 2 O) emission, but significantly reduced ammonia (NH 3 ) emission and thus enhanced the mineral and total nitrogen (TN) contents in compost. Although N 2 O emission could be reduced by adding calcium magnesium phosphate fertilizer, NH 3 emission was considerably increased, resulting in an increase in TN loss during composting. By blending these two additives, both NH 3 and N 2 O emissions could be mitigated, achieving effective nitrogen conservation in composting. More importantly, with the addition of 20% TN of the mixed composting materials, these two additives could synergistically improve the compost maturity and quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of calcium phosphate and vitamin D₃ supplementation on bone remodelling and metabolism of calcium, phosphorus, magnesium and iron.

    PubMed

    Trautvetter, Ulrike; Neef, Nadja; Leiterer, Matthias; Kiehntopf, Michael; Kratzsch, Jürgen; Jahreis, Gerhard

    2014-01-17

    The aim of the present study was to determine the effect of calcium phosphate and/or vitamin D₃ on bone and mineral metabolism. Sixty omnivorous healthy subjects participated in the double-blind, placebo-controlled parallel designed study. Supplements were tricalcium phosphate (CaP) and cholecalciferol (vitamin D₃). At the beginning of the study (baseline), all subjects documented their normal nutritional habits in a dietary record for three successive days. After baseline, subjects were allocated to three intervention groups: CaP (additional 1 g calcium/d), vitamin D₃ (additional 10 μg/d) and CaP + vitamin D₃. In the first two weeks, all groups consumed placebo bread, and afterwards, for eight weeks, the test bread according to the intervention group. In the last week of each study period (baseline, placebo, after four and eight weeks of intervention), a faecal (three days) and a urine (24 h) collection and a fasting blood sampling took place. Calcium, phosphorus, magnesium and iron were determined in faeces, urine and blood. Bone formation and resorption markers were analysed in blood and urine. After four and eight weeks, CaP and CaP + vitamin D₃ supplementations increased faecal excretion of calcium and phosphorus significantly compared to placebo. Due to the vitamin D₃ supplementations (vitamin D₃, CaP + vitamin D₃), the plasma 25-(OH)D concentration significantly increased after eight weeks compared to placebo. The additional application of CaP led to a significant increase of the 25-(OH)D concentration already after four weeks. Bone resorption and bone formation markers were not influenced by any intervention. Supplementation with daily 10 μg vitamin D₃ significantly increases plasma 25-(OH)D concentration. The combination with daily 1 g calcium (as CaP) has a further increasing effect on the 25-(OH)D concentration. Both CaP alone and in combination with vitamin D₃ have no beneficial effect on bone remodelling markers and on

  1. Production of calcium- and magnesium-enriched caseins and caseinates by an ecofriendly technology.

    PubMed

    Masson, Félix-André; Mikhaylin, Sergey; Bazinet, Laurent

    2018-05-09

    Finding new green ways of producing proteins has never been of such critical public interest, both to meet consumers' needs and to preserve the environment. Milk proteins are among the most attractive protein types due to their high nutritional value and attractive functional properties. In this work, the separation of caseins by conventional chemical acidification was compared with electrodialysis with bipolar membrane coupled to an ultrafiltration module (EDBM-UF), a green process that allows the precipitation of caseins by H + generated in situ by the bipolar membrane and, simultaneously, the production of a separated NaOH stream from OH - electrogenerated by the bipolar membrane. Caseinate production using this NaOH stream by-product and the quantity of NaOH needed to produce caseinates from both methods were also investigated. Hence, the purity and composition of caseins and caseinates were compared in terms of protein, ash, and lactose contents as well as mineral composition. The results showed for the first time that caseinates can be produced by solubilizing caseins with NaOH stream from the EDBM process. Furthermore, the caseins and caseinates produced by EDBM-UF were equivalent in terms of lactose and protein contents to their respective caseins and caseinates that were chemically produced but presented slightly lower sodium content and 3 to 4 times higher magnesium and calcium contents. The fact that calcium and magnesium are likely bound to milk caseins would ensure their favorable absorbability. These caseins or caseinates from the new EDBM-UF process could be suitable as an improved protein-based calcium or magnesium supplement, both for their enhanced nutritional quality and because they are produced by a green process. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. The Preparation, Characterization and Formation Mechanism of a Calcium Phosphate Conversion Coating on Magnesium Alloy AZ91D.

    PubMed

    Liu, Dong; Li, Yanyan; Zhou, Yong; Ding, Yigang

    2018-05-28

    The poor corrosion resistance of magnesium alloys is one of the main obstacles preventing their widespread usage. Due to the advantages of lower cost and simplicity in operation, chemical conversion coating has drawn considerable attention for its improvement of the corrosion resistance of magnesium alloys. In this study, a calcium phosphate coating was prepared on magnesium alloy AZ91D by chemical conversion. For the calcium phosphate coating, the effect of processing parameters on the microstructure and corrosion resistance was studied by scanning electron microscope (SEM) and electrochemical methods, and the coating composition was characterized by X-ray diffraction (XRD). The calcium phosphate coating was mainly composed of CaHPO₄·2H₂O (DCPD), with fewer cracks and pores. The coating with the leaf-like microstructure provided great corrosion resistance to the AZ91D substrate, and was obtained under the following conditions: 20 min, ambient temperature, and no stirring. At the same time, the role of NH₄H₂PO₄ as the coating-forming agent and the acidifying agent in the conversion process was realized, and the formation mechanism of DCPD was discussed in detail in this work.

  3. Multiparametric Flow System for the Automated Determination of Sodium, Potassium, Calcium, and Magnesium in Large-Volume Parenteral Solutions and Concentrated Hemodialysis Solutions

    PubMed Central

    Pistón, Mariela; Dol, Isabel

    2006-01-01

    A multiparametric flow system based on multicommutation and binary sampling has been designed for the automated determination of sodium, potassium, calcium, and magnesium in large-volume parenteral solutions and hemodialysis concentrated solutions. The goal was to obtain a computer-controlled system capable of determining the four metals without extensive modifications. The system involved the use of five solenoid valves under software control, allowing the establishment of the appropriate flow conditions for each analyte, that is, sample size, dilution, reagent addition, and so forth. Detection was carried out by either flame atomic emission spectrometry (sodium, potassium) or flame atomic absorption spectrometry (calcium, magnesium). The influence of several operating parameters was studied. Validation was carried out by analyzing artificial samples. Figures of merit obtained include linearity, accuracy, precision, and sampling frequency. Linearity was satisfactory: sodium, r 2 >0.999 ( 0.5 – 3.5 g/L), potassium, r 2 >0.996 (50–150 mg/L), calcium, r 2 >0.999 (30–120 mg/L), and magnesium, r 2 >0.999 (20–40 mg/L). Precision ( s r , %, n=5 ) was better than 2.1 %, and accuracy (evaluated through recovery assays) was in the range of 99.8 %– 101.0 % (sodium), 100.8 – 102.5 % (potassium), 97.3 %– 101.3 % (calcium), and 97.1 %– 99.8 % (magnesium). Sampling frequencies ( h −1 ) were 70 (sodium), 75 (potassium), 70 (calcium), and 58 (magnesium). According to the results obtained, the use of an automated multiparametric system based on multicommutation offers several advantages for the quality control of large-volume parenteral solutions and hemodialysis concentrated solutions. PMID:17671619

  4. Ascorbic acid induces alkaline phosphatase, type X collagen, and calcium deposition in cultured chick chondrocytes.

    PubMed

    Leboy, P S; Vaias, L; Uschmann, B; Golub, E; Adams, S L; Pacifici, M

    1989-10-15

    During the process of endochondral bone formation, proliferating chondrocytes give rise to hypertrophic chondrocytes, which then deposit a mineralized matrix to form calcified cartilage. Chondrocyte hypertrophy and matrix mineralization are associated with expression of type X collagen and the induction of high levels of the bone/liver/kidney isozyme of alkaline phosphatase. To determine what role vitamin C plays in these processes, chondrocytes derived from the cephalic portion of 14-day chick embryo sternae were grown in the absence or presence of exogenous ascorbic acid. Control untreated cells displayed low levels of type X collagen and alkaline phosphatase activity throughout the culture period. However, cells grown in the presence of ascorbic acid produced increasing levels of alkaline phosphatase activity and type X collagen mRNA and protein. Both alkaline phosphatase activity and type X collagen mRNA levels began to increase within 24 h of ascorbate treatment; by 9 days, the levels of both alkaline phosphatase activity and type X collagen mRNA were 15-20-fold higher than in non-ascorbate-treated cells. Ascorbate treatment also increased calcium deposition in the cell layer and decreased the levels of types II and IX collagen mRNAs; these effects lagged significantly behind the elevation of alkaline phosphatase and type X collagen. Addition of beta-glycerophosphate to the medium increased calcium deposition in the presence of ascorbate but had no effect on levels of collagen mRNAs or alkaline phosphatase. The results suggest that vitamin C may play an important role in endochondral bone formation by modulating gene expression in hypertrophic chondrocytes.

  5. The influence of calcium and magnesium in drinking water and diet on cardiovascular risk factors in individuals living in hard and soft water areas with differences in cardiovascular mortality

    PubMed Central

    Nerbrand, Christina; Agréus, Lars; Lenner, Ragnhild Arvidsson; Nyberg, Per; Svärdsudd, Kurt

    2003-01-01

    Background The role of water hardness as a risk factor for cardiovascular disease has been widely investigated and evaluated as regards regional differences in cardiovascular disease. This study was performed to evaluate the relation between calcium and magnesium in drinking water and diet and risk factors for cardiovascular disease in individuals living in hard and soft water areas with considerable differences in cardiovascular mortality. Methods A random sample of 207 individuals living in two municipalities characterised by differences in cardiovascular mortality and water hardness was invited for an examination including a questionnaire about health, social and living conditions and diet. Intake of magnesium and calcium was calculated from the diet questionnaire with special consideration to the use of local water. Household water samples were delivered by each individual and were analysed for magnesium and calcium. Results In the total sample, there were positive correlations between the calcium content in household water and systolic blood pressure (SBP) and negative correlations with s-cholesterol and s-LDL-cholesterol. No correlation was seen with magnesium content in household water to any of the risk factors. Calcium content in diet showed no correlation to cardiovascular risk factors. Magnesium in diet was positively correlated to diastolic blood pressure (DBP). In regression analyses controlled for age and sex 18.5% of the variation in SBP was explained by the variation in BMI, HbA1c and calcium content in water. Some 27.9% of the variation in s-cholesterol could be explained by the variation in s-triglycerides (TG), and calcium content in water. Conclusions This study of individuals living in soft and hard water areas showed significant correlations between the content of calcium in water and major cardiovascular risk factors. This was not found for magnesium in water or calcium or magnesium in diet. Regression analyses indicated that calcium content

  6. Concurrent determination of total serum calcium and magnesium by thermometric titration with ethylenediaminetetraacetate.

    PubMed

    Callicott, R H; Carr, P W

    1976-07-01

    Total serum calcium and magnesium may be determined in one thermometric titration, with disodium ethylenediaminetetraacetate as the titrant. A 1-ml serum sample is diluted with 1 ml of tris(hydroxymethyl)aminomethane buffer (pH 8) and titrated at a constant rate with a motorized syringe buret. Results by the thermometric method compared well with those by atomic absorption spectroscopy.

  7. RGDC Peptide-Induced Biomimetic Calcium Phosphate Coating Formed on AZ31 Magnesium Alloy

    PubMed Central

    Cao, Lin; Wang, Lina; Fan, Lingying; Xiao, Wenjun; Lin, Bingpeng; Xu, Yimeng; Liang, Jun; Cao, Baocheng

    2017-01-01

    Magnesium alloys as biodegradable metal implants have received a lot of interest in biomedical applications. However, magnesium alloys have extremely high corrosion rates a in physiological environment, which have limited their application in the orthopedic field. In this study, calcium phosphate compounds (Ca–P) coating was prepared by arginine–glycine–aspartic acid–cysteine (RGDC) peptide-induced mineralization in 1.5 simulated body fluid (SBF) to improve the corrosion resistance and biocompatibility of the AZ31 magnesium alloys. The adhesion of Ca–P coating to the AZ31 substrates was evaluated by a scratch test. Corrosion resistance and cytocompatibility of the Ca–P coating were investigated. The results showed that the RGDC could effectively promote the nucleation and crystallization of the Ca–P coating and the Ca–P coating had poor adhesion to the AZ31 substrates. The corrosion resistance and biocompatibility of the biomimetic Ca–P coating Mg alloys were greatly improved compared with that of the uncoated sample. PMID:28772717

  8. The role of potassium, magnesium and calcium in the Enhanced Biological Phosphorus Removal treatment plants.

    PubMed

    Barat, R; Montoya, T; Seco, A; Ferrer, J

    2005-09-01

    Cations as potassium and magnesium play an important role in maintaining the stability of Enhanced Biological Phosphorus Removal (EBPR) process. In this paper potassium, magnesium and calcium behaviour in EBPR treatment plants has been studied. An ASM2d model extension which takes into account the role of potassium and magnesium in the EBPR process has been developed. Finally, a simulation of the effect on P removal of a shortage of K and Mg was studied. The experimental results showed that K and Mg play an important role in the EBPR process being cotransported with P into and out of bacterial cells. It has been observed that calcium is not involved in P release and uptake. The values of the molar ratios K/P (0.28 mol K mol P(-1)) and Mg/P (0.36 mol Mg mol P(-1)) were obtained accomplishing the charge balance, with different K/Mg mass ratios and without phosphorus precipitation. Model predictions accurately reproduced experimental data. The simulations carried out showed the important effect of the K and Mg influent concentration for P removal efficiency. The results illustrate that the proposed ASM2d model extension must be considered in order to accurately simulate the phosphorus removal process.

  9. Urbanization accelerates long-term salinization and alkalinization of fresh water

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Duan, S.; Doody, T.; Haq, S.; Smith, R. M.; Newcomer Johnson, T. A.; Delaney Newcomb, K.; Gorman, J. K.; Bowman, N.; Mayer, P. M.; Wood, K. L.; Belt, K.; Stack, W.

    2017-12-01

    Human dominated land-use increases transport a major ions in streams due to anthropogenic salts and accelerated weathering. We show long-term trends in calcium, magnesium, sodium, alkalinity, and hardness over 50 years in the Baltimore metropolitan region and elsewhere. We also examine how major ion concentrations have increased significantly with impervious surface cover in watersheds across land use. Base cations show strong relationships with acid anions, which illustrates the coupling of major biogeochemical cycles in urban watersheds over time. Longitudinal patterns in major ions can also show increasing trends from headwaters to coastal waters, which suggests coupled biogeochemical cycles over space. We present new results from manipulative experiments and long-term monitoring across different urban regions regarding patterns and processes of salinization and alkalinization. Overall, our work demonstrates that urbanization dramatically increases major ions, ionic strength, and pH over decades from headwaters to coastal waters, which impacts the integrity of aquatic life, infrastructure, drinking water, and coastal ocean alkalinization.

  10. Calcium, magnesium, and phosphorus metabolism in dogs given intravenous triacetin.

    PubMed

    Bailey, J W; Heath, H; Miles, J M

    1989-02-01

    Previous studies suggested that acetate in parenteral solutions may adversely affect mineral metabolism by causing sequestration of inorganic phosphate and calcium in the liver. In this study, triacetin, a short-chain triglyceride of acetate and a potential parenteral nutrient, was infused for 3 h at an isocaloric rate in mongrel dogs (n = 6) to test its effects on serum phosphorus, calcium, and magnesium metabolism. There was no change in serum P or Ca. The serum Mg concentration decreased from 0.7 +/- 0.03 to 0.57 +/- 0.03 mmol/L (p less than 0.001) by 90 min and remained at this level for the remainder of the study. The triacetin infusion did not influence fractional urinary Mg excretion; thus, the decrease in serum Mg was likely because of an increase in cellular transport of this cation. A short-chain triglyceride administered to dogs at a rate approximating resting energy expenditure has no demonstrable adverse effects on mineral metabolism.

  11. Impact of Testosterone, Zinc, Calcium and Magnesium Concentrations on Sperm Parameters in Subfertile Men

    NASA Astrophysics Data System (ADS)

    Aydemir, Birsen; Kiziler, Ali Riza; Onaran, Ilhan; Alici, Bülent; Özkara, Hamdi; Akyolcu, Mehmet Can

    2007-04-01

    To investigate the impact of testosterone, zinc, calcium and magnesium concentrations in serum and seminal plasma on sperm parameters. There were significant decrease in sperm parameters, serum and seminal plasma zinc levels in subfertile males. It indicates zinc has a essential role in male infertility; the determination the level of zinc during infertility investigation is recommended.

  12. Magnesium ions facilitate integrin alpha 2- and alpha 3-mediated proliferation and enhance alkaline phosphatase expression and activity in hBMSCs.

    PubMed

    Leem, Yea-Hyun; Lee, Kang-Sik; Kim, Jung-Hwa; Seok, Hyun-Kwang; Chang, Jae-Suk; Lee, Dong-Ho

    2016-10-01

    Magnesium metal and its alloys have been proposed as a novel class of bone implant biomaterials because of their biodegradability and mechanical properties. The purpose of this study was to determine whether magnesium ions, which are released abundantly from alloys, affect proliferation and differentiation of human bone marrow-derived stromal cells (hBMSCs). High levels of magnesium ions did not induce cytotoxicity in hBMSCs, but treatment with 2.5-10 mm magnesium ions for 48-72 h significantly increased hBMSC proliferation. The expression of integrins α2 and α3, but not β1, was upregulated compared with the control and shifted from α3 to α2 in hBMSCs treated with magnesium ions. Knockdown of integrins α2 and/or α3 significantly reduced magnesium-induced proliferation of hBMSCs. Magnesium exposure profoundly enhanced alkaline phosphatase (ALP) gene expression and activity even at a relatively low magnesium concentration (2.5 mm). Exposure to magnesium ions facilitated hBMSC proliferation via integrin α2 and α3 expression and partly promoted differentiation into osteoblasts via the alteration of ALP expression and activity. Accordingly, magnesium could be a useful biomaterial for orthopaedic applications such as bone implant biomaterials for repair and regeneration of bone defects in orthopaedic and dental fields. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Assessment of salivary calcium, phosphate, magnesium, pH, and flow rate in healthy subjects, periodontitis, and dental caries

    PubMed Central

    Rajesh, K. S.; Zareena; Hegde, Shashikanth; Arun Kumar, M. S.

    2015-01-01

    Aim: This study was conducted to estimate and compare inorganic salivary calcium, phosphate, magnesium, salivary flow rate, and pH of unstimulated saliva and oral hygiene status of healthy subjects, subjects with periodontitis and dental caries, and to correlate salivary calcium level with number of intact teeth. Materials and Methods: The study population consisted of 48 systemically healthy subjects in the age group of 18-55 years, which was further divided into three groups: healthy, periodontitis, and dental caries. Oral hygiene index-simplified, probing pocket depth, clinical attachment level, the number of intact teeth, and active carious lesions were recorded. Estimation of inorganic salivary calcium, phosphate, and magnesium was performed spectrophotometrically using Vitros 5.1 FS. Statistical analysis was performed using the one-way analysis of variance test at 5% significance level. Results: There was a statistically significant increase in inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene status in periodontitis group compared to dental caries and healthy group. Conclusion: Subjects with increased inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene are at a higher risk of developing periodontitis. Since there is increased remineralization potential, these subjects have more number of intact teeth compared to the dental caries group. PMID:26681848

  14. Assessment of salivary calcium, phosphate, magnesium, pH, and flow rate in healthy subjects, periodontitis, and dental caries.

    PubMed

    Rajesh, K S; Zareena; Hegde, Shashikanth; Arun Kumar, M S

    2015-01-01

    This study was conducted to estimate and compare inorganic salivary calcium, phosphate, magnesium, salivary flow rate, and pH of unstimulated saliva and oral hygiene status of healthy subjects, subjects with periodontitis and dental caries, and to correlate salivary calcium level with number of intact teeth. The study population consisted of 48 systemically healthy subjects in the age group of 18-55 years, which was further divided into three groups: healthy, periodontitis, and dental caries. Oral hygiene index-simplified, probing pocket depth, clinical attachment level, the number of intact teeth, and active carious lesions were recorded. Estimation of inorganic salivary calcium, phosphate, and magnesium was performed spectrophotometrically using Vitros 5.1 FS. Statistical analysis was performed using the one-way analysis of variance test at 5% significance level. There was a statistically significant increase in inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene status in periodontitis group compared to dental caries and healthy group. Subjects with increased inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene are at a higher risk of developing periodontitis. Since there is increased remineralization potential, these subjects have more number of intact teeth compared to the dental caries group.

  15. Influence of ethanol content in the precipitation medium on the composition, structure and reactivity of magnesium-calcium phosphate.

    PubMed

    Babaie, Elham; Zhou, Huan; Lin, Boren; Bhaduri, Sarit B

    2015-08-01

    Biocompatible amorphous magnesium calcium phosphate (AMCP) particles were synthesized using ethanol in precipitation medium from moderately supersaturated solution at pH10. Some synthesis parameters such as, (Mg+Ca):P, Mg:Ca ratio and different drying methods on the structure and stability of as-produced powder was studied and characterized using SEM, XRD and cell cytocompatibility. The results showed that depending on the Mg(2+) concentration, nano crystalline Struvite (MgNH4PO4·6H2O) can also be alternatively formed. However, the as-formed AMCP preserved its amorphous structure after 7 days of incubation in SBF for tested phosphate concentration, and equally ionic concentration of magnesium and calcium. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effects of seawater alkalinity on calcium and acid-base regulation in juvenile European lobster (Homarus gammarus) during a moult cycle.

    PubMed

    Middlemiss, Karen L; Urbina, Mauricio A; Wilson, Rod W

    2016-03-01

    Fluxes of NH4(+) (acid) and HCO3(-) (base), and whole body calcium content were measured in European lobster (Homarus gammarus) during intermoult (megalopae stage), and during the first 24h for postmoult juveniles under control (~2000 μeq/L) and low seawater alkalinity (~830 μeq/L). Immediately after moulting, animals lost 45% of the total body calcium via the shed exoskeleton (exuvia), and only 11% was retained in the uncalcified body. At 24h postmoult, exoskeleton calcium increased to ~46% of the intermoult stage. Ammonia excretion was not affected by seawater alkalinity. After moulting, bicarbonate excretion was immediately reversed from excretion to uptake (~4-6 fold higher rates than intermoult) over the whole 24h postmoult period, peaking at 3-6h. These data suggest that exoskeleton calcification is not completed by 24h postmoult. Low seawater alkalinity reduced postmoult bicarbonate uptake by 29% on average. Net acid-base flux (equivalent to net base uptake) followed the same pattern as HCO3(-) fluxes, and was 22% lower in low alkalinity seawater over the whole 24h postmoult period. The common occurrence of low alkalinity in intensive aquaculture systems may slow postmoult calcification in juvenile H. gammarus, increasing the risk of mortalities through cannibalism. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Zinc and magnesium in the uterus of the pregnant and pseudopregnant mouse and the effects of Mg2+ ions on uterine alkaline phosphatase.

    PubMed

    Buxton, L E; Murdoch, R N

    1981-01-01

    The levels of zinc and magnesium in the mouse uterus during early pregnancy and pseudopregnancy were determined using atomic absorption spectroscopy techniques. The total zinc and magnesium content of the uterus increased between days 5 and 12 of pregnancy and between days 5 and 9 of content of the pseudopregnancy when decidual cells were present. However, the metals were not accumulated at a rate sufficient to match increases in uterine weight and constant concentrations (micrograms of metals per gram wet weight ot tissue) were not maintained over the various reproductive stages studied. The accumulation of the metals was associated with the presence of decidual cells, and non-decidualized horns of pseudopregnant mice failed to increase their total content of zinc and magnesium between days 5 and 9. The magnesium content of each uterus was usually between 5- and 13-fold greater than the total zinc content. mg2+ in low concentration (0-2mM) stimulated both the pyrophosphatase and orthophosphatase activities of purified preparations of the mouse uterine metalloenzyme, alkaline phosphatase. Higher concentrations (up to 8 mM) of the cation decreased pyrophosphatase activity but did not alter orthophosphatase activity. Mg/+ was more effective, however, in increasing the orthophosphatase activity of the enzyme and its stimulating effects in this case were greater in carbonate-bicarbonate buffer than in glycine-NaOH buffer. Mg2+ did not significantly influence apparent Km values or the response of the enzyme to changes in temperature. Zn2+, however, was required to maintain the stability of alkaline phosphatase apoenzyme preparations. It was concluded that during normal pregnancy and pseudopregnancy zinc and magnesium would always be present in amounts considerably greater than those required to saturate alkaline phosphatase for full catalytic activity. Thus, while the metals exert major effects on the activity and stability of the enzyme in vitro, they may not be major

  18. The simultaneous removal of calcium, magnesium and chloride ions from industrial wastewater using magnesium-aluminum oxide.

    PubMed

    Hamidi, Roya; Kahforoushan, Davood; Fatehifar, Esmaeil

    2013-01-01

    In this article, a method for simultaneous removal of calcium, magnesium and chloride by using Mg0.80Al0.20O1.10 as a Magnesium-Aluminum oxide (Mg‒Al oxide) was investigated. Mg‒Al oxide obtained by thermal decomposition of the Mg-Al layered double hydroxide (Mg-Al LDH). The synthesized Mg‒Al oxide were characterized with respect to nitrogen physicosorption, X-ray diffraction (XRD) and field emission scan electron microscopy (FESEM) morphology. Due to high anion-exchange capacity of Mg‒Al oxide, it was employed in simultaneously removal of Cl(-), Mg(+2) and Ca(+2) from distiller waste of a sodium carbonate production factory. For this purpose, experiments were designed to evaluate the effects of quantity of Mg‒Al oxide, temperature and time on the removal process. The removal of Cl(-), Mg(+2) and Ca(+2) from wastewater was found 93.9%, 93.74% and 93.25% at 60°C after 0.5 h, respectively. Results showed that the removal of Cl(-), Mg(+2) and Ca(+2) by Mg‒Al oxide increased with increasing temperature, time and Mg‒Al oxide quantity.

  19. Simultaneous measurements of magnesium, calcium and sodium influxes in perfused squid giant axons under membrane potential control.

    PubMed

    Rojas, E; Taylor, R E

    1975-10-01

    1. Giant axons from the squids Dosidicus gigas, Loligo forbesi and Loligo vulgaris were internally perfused with 550 or 275 mM KF plus sucrose and bathed in artificial sea water containing 45Ca, 28Mg or mixtures of 45Ca-28Mg or 45Ca-22Na. Resting influxes and extra influxes during voltage-clamp pulses were measured by collecting and counting the internal perfusate. 2. For Dosidicus axons in 10 mM-CaCl2 the resting influx of calcium was 0-016 +/- 0-007 p-mole/cm2 sec and a linear function of external concentration. For two experiments in 10 and 84-7 mM-CaCl2, 100 nM tetrodotoxin had no effect. Resting calcium influx in 10 mM-CaCl2 was 0-017 +/- 0-013 p-mole/cm2 sec for Loligo axons. 3. With 55 mM-MgCl2 outside the average resting magnesium influx was 0-124 +/- 0-080 p-mole/cm2 sec for Loligo axons. Discarding one aberrant point the value is 0-105 +/- 0-046 which is not significantly different from the resting calcium influx for Dosidicus fibres in 55 mM-CaCl2, given as 0-094 p-mole/cm2 sec by the regression line shown in Fig. 1. In two experiments 150 nM tetrodotoxin had no effect. 4. With 430 mM-NaCl outside 100 nM tetrodotoxin reduced the average resting influx of sodium in Dosidicus axon from 27-7 +/- 4-5 to 25-1 +/- 6-2 p-mole/cm2 sec and for Loligo fibres in 460 mM-NaCl from 50-5 +/- 4 to 20 +/- 8 p-mole/cm2 sec. 5. Using depolarizing pulses of various durations, the extra calcium influx occurred in two phases. The early phase was eliminated by external application of tetrodotoxin. The results of analysis are consistent with, but do not rigorously demonstrate, the conclusion that the tetrodotoxin sensitive calcium entry is flowing through the normal sodium channels (cf. Baker, Hodgkin & Ridgway, 1971). 6. Measurements of extra influxes using 22Na and 45Ca simultaneously indicate that the time courses of tetrodotoxin sensitive calcium and sodium entry are similar but not necessarily identical. It is very doubtful that any significant calcium entry occurs before

  20. Simultaneous measurements of magnesium, calcium and sodium influxes in perfused squid giant axons under membrane potential control.

    PubMed Central

    Rojas, E; Taylor, R E

    1975-01-01

    1. Giant axons from the squids Dosidicus gigas, Loligo forbesi and Loligo vulgaris were internally perfused with 550 or 275 mM KF plus sucrose and bathed in artificial sea water containing 45Ca, 28Mg or mixtures of 45Ca-28Mg or 45Ca-22Na. Resting influxes and extra influxes during voltage-clamp pulses were measured by collecting and counting the internal perfusate. 2. For Dosidicus axons in 10 mM-CaCl2 the resting influx of calcium was 0-016 +/- 0-007 p-mole/cm2 sec and a linear function of external concentration. For two experiments in 10 and 84-7 mM-CaCl2, 100 nM tetrodotoxin had no effect. Resting calcium influx in 10 mM-CaCl2 was 0-017 +/- 0-013 p-mole/cm2 sec for Loligo axons. 3. With 55 mM-MgCl2 outside the average resting magnesium influx was 0-124 +/- 0-080 p-mole/cm2 sec for Loligo axons. Discarding one aberrant point the value is 0-105 +/- 0-046 which is not significantly different from the resting calcium influx for Dosidicus fibres in 55 mM-CaCl2, given as 0-094 p-mole/cm2 sec by the regression line shown in Fig. 1. In two experiments 150 nM tetrodotoxin had no effect. 4. With 430 mM-NaCl outside 100 nM tetrodotoxin reduced the average resting influx of sodium in Dosidicus axon from 27-7 +/- 4-5 to 25-1 +/- 6-2 p-mole/cm2 sec and for Loligo fibres in 460 mM-NaCl from 50-5 +/- 4 to 20 +/- 8 p-mole/cm2 sec. 5. Using depolarizing pulses of various durations, the extra calcium influx occurred in two phases. The early phase was eliminated by external application of tetrodotoxin. The results of analysis are consistent with, but do not rigorously demonstrate, the conclusion that the tetrodotoxin sensitive calcium entry is flowing through the normal sodium channels (cf. Baker, Hodgkin & Ridgway, 1971). 6. Measurements of extra influxes using 22Na and 45Ca simultaneously indicate that the time courses of tetrodotoxin sensitive calcium and sodium entry are similar but not necessarily identical. It is very doubtful that any significant calcium entry occurs before

  1. Use of magnesium as a drug in chronic kidney disease

    PubMed Central

    Wilkie, Martin

    2012-01-01

    From chronic kidney disease (CKD) Stage 4 onwards, phosphate binders are needed in many patients to prevent the development of hyperphosphataemia, which can result in disturbed bone and mineral metabolism, cardiovascular disease and secondary hyperparathyroidism. In this review, we re-examine the use of magnesium-containing phosphate binders for patients with CKD, particularly as their use circumvents problems such as calcium loading, aluminum toxicity and the high costs associated with other agents of this class. The use of magnesium hydroxide in the 1980s has been superseded by magnesium carbonate, as the hydroxide salt was associated with poor gastrointestinal tolerability, whereas studies with magnesium carbonate show much better gastrointestinal profiles. The use of combined magnesium- and calcium-based phosphate binder regimens allows a reduction in the calcium load, and magnesium and calcium regimen comparisons show that magnesium may be as effective a phosphate binder as calcium. A large well-designed trial has recently shown that a drug combining calcium acetate and magnesium carbonate was non-inferior in terms of lowering serum phosphate to sevelamer-HCl and had an equally good tolerability profile. Because of the high cost of sevelamer and lanthanum carbonate, the use of magnesium carbonate could be advantageous and drug acquisition cost savings would compensate for the cost of introducing routine magnesium monitoring, if this is thought to be necessary and not performed anyway. Moreover, given the potential cost savings, it may be time to re-investigate magnesium-containing phosphate binders for CKD patients with further well-designed clinical research using vascular end points. PMID:26069822

  2. Effect of Calcium, Magnesium, and Aluminum-Iron on the Susceptibility of Loblolly Pine Seedlings to Fusiform Rust

    Treesearch

    S.J. Rowan

    1979-01-01

    The susceptibility (percentage of seedlings infected) of Pinus taeda seedlings to infection by Cronartium quercuum f. sp. fusiforme was not affected by fertilization with calcium, magnesium, or aluminum-iron. Fertilization with Al as Al2(SO4)2,and Fe as FeCl

  3. Relationship between tap water hardness, magnesium, and calcium concentration and mortality due to ischemic heart disease or stroke in The Netherlands.

    PubMed

    Leurs, Lina J; Schouten, Leo J; Mons, Margreet N; Goldbohm, R Alexandra; van den Brandt, Piet A

    2010-03-01

    Conflicting results on the relationship between the hardness of drinking water and mortality related to ischemic heart disease (IHD) or stroke have been reported. We investigated the possible association between tap water calcium or magnesium concentration and total hardness and IHD mortality or stroke mortality. In 1986, a cohort of 120,852 men and women aged 5569 years provided detailed information on dietary and other lifestyle habits. Follow-up for mortality until 1996 was established by linking data from the Central Bureau of Genealogy and Statistics Netherlands. We calculated tap water hardness for each postal code using information obtained from all pumping stations in the Netherlands. Tap water hardness was categorized as soft [< 1.5 mmol/L calcium carbonate (CaCO3)], medium hard (1.62.0 mmol/L CaCO3), and hard (> 2.0 mmol/L CaCO3). The multivariate case-cohort analysis was based on 1,944 IHD mortality and 779 stroke mortality cases and 4,114 subcohort members. For both men and women, we observed no relationship between tap water hardness and IHD mortality [hard vs. soft water: hazard ratio (HR) = 1.03; 95% confidence interval (CI), 0.851.28 for men and HR = 0.93; 95% CI, 0.711.21 for women) and stroke mortality (hard vs. soft water HR = 0.90; 95% CI, 0.661.21 and HR = 0.86; 95% CI, 0.621.20, respectively). For men with the 20% lowest dietary magnesium intake, an inverse association was observed between tap water magnesium intake and stroke mortality (HR per 1 mg/L intake = 0.75; 95% CI, 0.610.91), whereas for women with the 20% lowest dietary magnesium intake, the opposite was observed. We found no evidence for an overall significant association between tap water hardness, magnesium or calcium concentrations, and IHD mortality or stroke mortality. More research is needed to investigate the effect of tap water magnesium on IHD mortality or stroke mortality in subjects with low dietary magnesium intake.

  4. Enhancing recovery of magnesium as struvite from landfill leachate by pretreatment of calcium with simultaneous reduction of liquid volume via forward osmosis.

    PubMed

    Wu, Simiao; Zou, Shiqiang; Liang, Guannan; Qian, Guangren; He, Zhen

    2018-01-01

    Landfill leachate contains substances that can be potentially recovered as valuable resources. In this study, magnesium in a landfill leachate was recovered as struvite with calcium pretreatment; meanwhile, the leachate volume was reduced by using a submerged forward osmosis (FO) process, thereby enabling significant reduction of further treatment footprint and cost. Without pretreatment, calcium exhibited strong competition for phosphate with magnesium. The pretreatment with a Ca 2+ : CO 3 2- molar ratio of 1:1.4 achieved a relatively low loss rate of Mg 2+ (24.1±2.0%) and high Ca 2+ removal efficiency (89.5±1.7%). During struvite recovery, 98.6±0.1% of magnesium could be recovered with a significantly lower residual PO 4 3- -P concentration (<25mgL -1 ) under the condition of (Mg+Ca residual ): P molar ratio of 1:1.5 and pH9.5. The obtained struvite had a similar crystal structure and composition (19.3% Mg and 29.8% P) to that of standard struvite. The FO process successfully recovered water from the leachate and reduced its volume by 37%. The configuration of calcium pretreatment - FO - struvite recovery was found to be the optimal arrangement in terms of FO performance. These results have demonstrated the feasibility of magnesium recovery from landfill leachate and the importance of the calcium pretreatment, and will encourage further efforts to assess the value and purity of struvite for commercial use and to develop new methods for resource recovery from leachate. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Crystallization Kinetics of Calcium-magnesium Aluminosilicate (CMAS) Glass

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    The crystallization kinetics of a calcium-magnesium aluminosilicate (CMAS) glass with composition relevant for aerospace applications, like air-breathing engines, were evaluated using differential thermal analysis (DTA) in powder and bulk forms. Activation energy and frequency factor values for crystallization of the glass were evaluated. X-ray diffraction (XRD) was used to investigate the onset of crystallization and the phases that developed after heat treating bulk glass at temperatures ranging from 690 to 960 deg for various times. Samples annealed at temperatures below 900 deg remained amorphous, while specimens heat treated at and above 900 deg exhibited crystallinity originating at the surface. The crystalline phases were identified as wollastonite (CaSiO3) and aluminum diopside (Ca(Mg,Al) (Si,Al)2O6). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to examine the microstructure and chemical compositions of crystalline phases formed after heat treatment.

  6. Rapid recovery from major depression using magnesium treatment.

    PubMed

    Eby, George A; Eby, Karen L

    2006-01-01

    Major depression is a mood disorder characterized by a sense of inadequacy, despondency, decreased activity, pessimism, anhedonia and sadness where these symptoms severely disrupt and adversely affect the person's life, sometimes to such an extent that suicide is attempted or results. Antidepressant drugs are not always effective and some have been accused of causing an increased number of suicides particularly in young people. Magnesium deficiency is well known to produce neuropathologies. Only 16% of the magnesium found in whole wheat remains in refined flour, and magnesium has been removed from most drinking water supplies, setting a stage for human magnesium deficiency. Magnesium ions regulate calcium ion flow in neuronal calcium channels, helping to regulate neuronal nitric oxide production. In magnesium deficiency, neuronal requirements for magnesium may not be met, causing neuronal damage which could manifest as depression. Magnesium treatment is hypothesized to be effective in treating major depression resulting from intraneuronal magnesium deficits. These magnesium ion neuronal deficits may be induced by stress hormones, excessive dietary calcium as well as dietary deficiencies of magnesium. Case histories are presented showing rapid recovery (less than 7 days) from major depression using 125-300 mg of magnesium (as glycinate and taurinate) with each meal and at bedtime. Magnesium was found usually effective for treatment of depression in general use. Related and accompanying mental illnesses in these case histories including traumatic brain injury, headache, suicidal ideation, anxiety, irritability, insomnia, postpartum depression, cocaine, alcohol and tobacco abuse, hypersensitivity to calcium, short-term memory loss and IQ loss were also benefited. Dietary deficiencies of magnesium, coupled with excess calcium and stress may cause many cases of other related symptoms including agitation, anxiety, irritability, confusion, asthenia, sleeplessness

  7. Nanofiltration Results: Membrane Removal of Calcium, Magnesium, Sodium, Silica, Lithium, Chlorine, and Sulfate from Simulated Geothermal Brines

    DOE Data Explorer

    Jay Renew

    2016-02-06

    Results from a nanofiltration study utilizing simulated geothermal brines. The data includes a PDF documenting the process used to remove Calcium, Magnesium, Sodium, Silica, Lithium, Chlorine, and Sulfate from simulated geothermal brines. Three different membranes were evaluated. The results were analyzed using inductively coupled plasma mass spectrometry (ICP-MS).

  8. Serum magnesium, phosphorus, and calcium levels and subclinical calcific aortic valve disease: A population-based study.

    PubMed

    Hisamatsu, Takashi; Miura, Katsuyuki; Fujiyoshi, Akira; Kadota, Aya; Miyagawa, Naoko; Satoh, Atsushi; Zaid, Maryam; Yamamoto, Takashi; Horie, Minoru; Ueshima, Hirotsugu

    2018-06-01

    Calcific aortic valve disease (CAVD) is the most common valve disease. Although micronutrients are known to contribute to cardiovascular disease, the relationship with CAVD remains poorly evaluated. We examined the association of serum levels of magnesium, phosphorus, and calcium with prevalence, incidence, and progression of aortic valve calcification (AVC). We conducted a prospective study in a population-based sample of Japanese men aged 40-79 years without known cardiovascular disease and chronic kidney disease at baseline, and quantified AVC from serial computed tomographic images with the Agatston method. Of 938 participants at baseline (mean age, 63.7 ± 9.9 years), AVC prevalence was observed in 173 (18.4%). Of 596 participants without baseline AVC at follow-up (median duration, 5.1 years), AVC incidence was observed in 138 (23.2%). After adjustment for demographics, behaviors and cardiovascular risk factors, relative risks (95% confidence intervals) in the highest versus lowest categories of serum magnesium, phosphorus, and calcium were 0.62 (0.44-0.86), 1.45 (1.02-2.04), and 1.43 (0.95-2.15), respectively, for AVC prevalence and 0.62 (0.42-0.92), 1.93 (1.28-2.91), and 1.09 (0.77-1.55), respectively, for AVC incidence. Their linear trends of serum magnesium and phosphorus were also all statistically significant. Of 131 participants with baseline AVC, there was no association of any serum micronutrients with AVC progression. Serum magnesium was inversely associated, while serum phosphorus was positively associated with AVC prevalence and incidence, suggesting that these serum micronutrients may be potential candidates for risk prediction or prevention of CAVD, and warranting further studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The Effects of Alkaline pH on Microleakage of Mineral Trioxide Aggregate and Calcium Enriched Mixture Apical Plugs.

    PubMed

    Mirhadi, Hossein; Moazzami, Fariborz; Rangani Jahromi, Saeed; Safarzade, Sareh

    2016-03-01

    Alkaline pH can affect the physical and chemical properties and sealing ability of apical plug material. Calcium hydroxide is used as an intracanal medication to complete disinfection of root canals. It raises the pH of environment to alkaline value. The aim of this in vitro study was to evaluate and compare the effect of alkaline pH on the sealing ability of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA) apical plugs. Seventy single-rooted human maxillary anterior teeth were randomly divided to two experimental groups for Angelus MTA and CEM cement (n=30) and two control groups (n=5). Each group was divided into two subgroups of 15 for neutral and alkaline pH, and 1 negative and 1 positive control groups of 5. The root canals were cleaned and shaped by using ProTaper rotary system (Dentsply Maillefer; Ballaigues, Switzerland) and the terminal 3mm of the roots were resected. Then, MTA and CEM cement were condensed in apical region with 3mm thickness. The samples were exposed to two environments with different pH values of 13 and 7.4. The leakage was assessed by using the fluid filtration technique at 1, 7, 14, 30 days intervals. Data were analyzed by the repeated measures MANOVA. There was no statistically significant difference in the rate of microleakage between neutral and alkaline pH of CEM cement and MTA (p> 0.05). The sealing ability of MTA in an alkaline pH of 13 was significantly less than CEM cement in this pH (p< 0.05). An environment with alkaline pH had no adverse effect on the sealing ability of MTA and CEM cement used as apical plugs. CEM cement had better sealing ability in alkaline pH.

  10. DETERMINATION OF MATERNAL SERUM ZINC, IRON, CALCIUM AND MAGNESIUM DURING PREGNANCY IN PREGNANT WOMEN AND UMBILICAL CORD BLOOD AND THEIR ASSOCIATION WITH OUTCOME OF PREGNANCY

    PubMed Central

    Khoushabi, Fahimeh; Shadan, Mohammad Reza; Miri, Ali; Sharifi-Rad, Javad

    2016-01-01

    Background: Trace elements and specially minerals are critical for the development of fetus. Many minerals are transferred to the fetus for fetal stores in the latter part of the pregnancy. It has been shown that various trace elements such as Zinc, Iron, Calcium and Magnesium are metabolically interrelated and there is alteration in their concentration during pregnancy. Beyond pregnancy is associated with increased demand of all the nutrients and deficiency of any of these could affect pregnancy, delivery and outcome of pregnancy. Aim: To study the levels of trace elements namely zinc, iron, magnesium and calcium in maternal and umbilical cord blood and their association with pregnancy outcome. Methods: Sixty pregnant women in Zabol, Iran were selected from those who had registered their names for the prenatal care and who had followed up till the 3rd trimester of pregnancy ending in child birth. Biochemical parameters analyzed with help of the biochemical laboratory. Data were analyzed by SPSS software. Results: The mean biochemical profile such, serum calcium, magnesium, zinc and iron in the pregnant women were as follow: in the 1st trimester 8.3, 1.9, 74.9 and 74.4 µg/dl respectively; in the 2nd trimester 8.5, 1.9, 73.1 and 79.3 µg/dl, respectively; in the 3rd trimester 8.6, 1.9, 68.4, and 82.2 µg/dl, respectively. In the umbilical cord blood, the mean serum calcium, magnesium, zinc and iron were 8.5, 1.9, 84.1, and 89.8 µg/dl, respectively. The mean serum calcium and magnesium during the three trimesters of pregnancy were not significantly different from that in the umbilical cord blood, while the mean serum zinc and iron in the umbilical cord blood were significantly different (p<0.05) in the three trimester of pregnancy. The mean birth weight of neonates was 3.1 kg and 12% of neonates showed low birth weight. Our findings showed that, except magnesium, the profile of other biochemical variables, namely, calcium, zinc and iron in the umbilical cord blood

  11. An excess of topical calcium and magnesium reverses the therapeutic effect of citrate on the development of corneal ulcers after alkali injury.

    PubMed

    Haddox, J L; Pfister, R R; Slaughter, S E

    1996-03-01

    Our purpose was to determine whether chelation of Ca2+ and Mg2+ is the mechanism by which sodium citrate inhibits corneal ulceration in the alkali-injured rabbit eye. The right eyes of 60 albino rabbits (2-2.5 kg) were alkali-injured by filling a 12-mm-diameter plastic well placed on the corneal surface with 0.4 ml of 1 N NaOH. After 35 s the alkali was aspirated, and the well was rinsed with physiological saline. Animals were randomly distributed to three treatment groups of equal size. Two drops of the following topical medications were administered on the hour (14 times per day) for 35 days: physiological saline, 10% citrate in saline, and 346 mM Ca2+, 346 mM Mg2+, and 10% citrate in saline. During the experiment, significantly fewer ulcerations occurred in the citrate-treated eyes (five of 20, 25%) than in the saline-treated eyes (13 of 20, 65%) or in the calcium-magnesium-citrate-treated eyes (15 of 20, 75%). When ulcerations did develop in the citrate group, they occurred significantly later and were less severe than those in the saline and calcium-magnesium-citrate groups. There was a significant increase in the number of eyes with signs of band keratopathy and translucent areas in the calcium-magnesium-citrate group when compared with the other two groups. As in previous studies, sodium citrate significantly inhibited the development of corneal ulcers after alkali injury. The annullment of the favorable effect of citrate on ulceration in the alkali-injured eye by the addition of calcium and magnesium shows that the mechanism of action of citrate is the chelation of these divalent cations.

  12. Short term spatio-temporal variability of soil water-extractable calcium and magnesium after a low severity grassland fire in Lithuania.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Martin, David

    2014-05-01

    Fire has important impacts on soil nutrient spatio-temporal distribution (Outeiro et al., 2008). This impact depends on fire severity, topography of the burned area, type of soil and vegetation affected, and the meteorological conditions post-fire. Fire produces a complex mosaic of impacts in soil that can be extremely variable at small plot scale in the space and time. In order to assess and map such a heterogeneous distribution, the test of interpolation methods is fundamental to identify the best estimator and to have a better understanding of soil nutrients spatial distribution. The objective of this work is to identify the short-term spatial variability of water-extractable calcium and magnesium after a low severity grassland fire. The studied area is located near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. Four days after the fire, it was designed in a burned area a plot with 400 m2 (20 x 20 m with 5 m space between sampling points). Twenty five samples from top soil (0-5 cm) were collected immediately after the fire (IAF), 2, 5, 7 and 9 months after the fire (a total of 125 in all sampling dates). The original data of water-extractable calcium and magnesium did not respected the Gaussian distribution, thus a neperian logarithm (ln) was applied in order to normalize data. Significant differences of water-extractable calcium and magnesium among sampling dates were carried out with the Anova One-way test using the ln data. In order to assess the spatial variability of water-extractable calcium and magnesium, we tested several interpolation methods as Ordinary Kriging (OK), Inverse Distance to a Weight (IDW) with the power of 1, 2, 3 and 4, Radial Basis Functions (RBF) - Inverse Multiquadratic (IMT), Multilog (MTG), Multiquadratic (MTQ) Natural Cubic Spline (NCS) and Thin Plate Spline (TPS) - and Local Polynomial (LP) with the power of 1 and 2. Interpolation tests were carried out with Ln data. The best interpolation method was assessed using the

  13. Enhanced production of alkaline thermostable keratinolytic protease from calcium alginate immobilized cells of thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity.

    PubMed

    Shrinivas, Dengeti; Kumar, Raghwendra; Naik, G R

    2012-01-01

    The thermoalkalophilic Bacillus halodurans JB 99 cells known for production of novel thermostable alkaline keratinolytic protease were immobilized in calcium alginate matrix. Batch and repeated batch cultivation using calcium alginate immobilized cells were studied for alkaline protease production in submerged fermentation. Immobilized cells with 2.5% alginate and 350 beads/flask of initial cell loading showed enhanced production of alkaline protease by 23.2% (5,275 ± 39.4 U/ml) as compared to free cells (4,280 ± 35.4 U/ml) after 24 h. In the semicontinuous mode of cultivation, immobilized cells under optimized conditions produced an appreciable level of alkaline protease in up to nine cycles and reached a maximal value of 5,975 U/ml after the seventh cycle. The enzyme produced from immobilized cells efficiently degraded chicken feathers in the presence of a reducing agent which can help the poultry industry in the management of keratin-rich waste and obtaining value-added products.

  14. In Vitro Bioavailability of Calcium, Magnesium, Iron, Zinc, and Copper from Gluten-Free Breads Supplemented with Natural Additives.

    PubMed

    Regula, J; Cerba, A; Suliburska, J; Tinkov, A A

    2018-03-01

    The aim of this study was to measure the content of calcium, magnesium, iron, zinc, and copper and determine the bioavailability of these ingredients in gluten-free breads fortified with milk and selected seeds. Due to the increasing prevalence of celiac disease and mineral deficiencies, it has become necessary to produce food with higher nutritional values which maintains the appropriate product characteristics. This study was designed for gluten-free breads fortified with milk and seeds such as flax, poppy, sunflower seeds, pumpkin seeds or nuts, and flour with amaranth. Subsequently, digestion was performed in vitro and the potential bioavailability of the minerals was measured. In the case of calcium, magnesium, iron, and copper, higher bioavailability was observed in rice bread, and, in the case of copper and zinc, in buckwheat bread. This demonstrated a clear increase in bioavailability of all the minerals when the bread were enriched. However, satisfactory results are obtained only for the individual micronutrients.

  15. Fabrication and characterization of magnesium and calcium trimesate complexes via ion-exchange and one-pot self-assembly reaction

    NASA Astrophysics Data System (ADS)

    Ozer, Demet; Oztas, Nursen Altuntas; Köse, Dursun A.; Şahin, Onur

    2018-03-01

    Using two different synthesis methods, two diversified magnesium and calcium complexes were successfully prepared. When the ion exchange method was used, C9H14MgO11.H2O and C18H30Ca3O24 complexes were obtained. When the one-pot self-assembly reaction was used, C18H34Mg3O26.4H2O and C9H12CaO10 complexes were produced. The structural characterizations were performed by using X-ray diffraction, FT-IR and elemental analyses. Thermal behavior of complexes were also determined via TGA method. The both complexes of magnesium and calcium trimesate have micro and mesoporosity with low porosity because of hydrogen bonds. Then hydrogen storage capacities of complexes were also determined. The differences in synthesis method result in the differences on complexes structure, morphology (shape, particle size and specific surface area) and hydrogen storage capacities.

  16. Isotopically pure magnesium isotope-24 is prepared from magnesium-24 oxide

    NASA Technical Reports Server (NTRS)

    Chellew, N. R.; Schilb, J. D.; Steunenberg, R. K.

    1968-01-01

    Apparatus is used to prepare isotopically pure magnesium isotope-24, suitable for use in neutron scattering and polarization experiments. The apparatus permits thermal reduction of magnesium-24 oxide with aluminum and calcium oxide, and subsequent vaporization of the product metal in vacuum. It uses a resistance-heated furnace tube and cap assembly.

  17. Salivary alkaline phosphatase and calcium in caries-active type II diabetes mellitus patients: An in vivo study

    PubMed Central

    Hegde, Mithra N.; Tahiliani, Divya; Shetty, Shilpa; Devadiga, Darshana

    2014-01-01

    Background: Diabetes Mellitus is a metabolic syndrome, affecting the oral health in various ways with dental caries being one of the most common problems encountered. Saliva is one of the most abundant secretions in the human body with a variety of natural protective and defence molecules bathing the oral cavity maintaining equilibrium. Its collection is easy and non-invasive. Aims: To compare and evaluate salivary alkaline phosphatase levels and calcium ion levels between caries active type II diabetes mellitus patients and non-diabetics. Materials and Methods: This study was carried out on caries-active age and gender matched 60 non-diabetic and 60 patients with known Type II diabetes mellitus subjects of age group 25-50 years with DMFT index >10. Saliva sample was collected to analyse for alkaline phosphatase enzyme and concentration of calcium ions using Agappe kits. Statistical Analysis: Student ‘t’ test was used to correlate the salivary electrolyte concentration in non- diabetic and diabetic patients with dental caries. A ‘P’ value of 0.05 or less was considered significant. Results are presented as mean ± standard deviation (X ± SD). Results: The alkaline phosphatase (ALP) activity in saliva was higher in diabetic patients when compared to that of non-diabetic patients with salivary calcium ions were significantly higher in non-diabetic individuals. Conclusion: Diabetes Mellitus patients are more prone to dental caries, hence require intervention to improve the quality of saliva. PMID:25395756

  18. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg{sup 2+}, Ca{sup 2+} and Ba{sup 2+}) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO){sub 4}, which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (4{sup 4}·6{sup 2}){sub 3}(4{sup 9}·6{sup 6}){sub 2}. The calcium compound consists of 1D infinite “Ca-O” inorganic chains connected by the deprotonated ligands to from a 3Dmore » framework. The barium compound exhibits a 3D framework in which 1D “Ba-O” inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions’ influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural

  19. Magnesium and calcium sulfate stabilities and the water budget of Mars

    USGS Publications Warehouse

    Chou, I.-Ming; Seal, R.R.

    2007-01-01

    Magnesium sulfate probably plays a dominant role in the water cycle of Mars away from the polar ice caps through hydration and dehydration reactions. This prominence is due to its abundance, its occurrence in numerous hydration states, and its ability to hydrate and dehydrate rapidly. New experimental studies on the metastable reaction between hexahydrite (MgSO4??6H2O) and starkeyite (MgSO4-4H2O) as a function of temperature and relative humidity, supplemented by recent investigations of the stable reaction between epsomite (MgSO4??7H2O) and hexahydrite and by phase equilibrium calculations, suggest that the most important magnesium sulfate phases involved in the Martian water cycle are MgSO4??11 H2O, epsomite, starkeyite, and possibly kieserite (MgSO4??H2O). Hexahydrite is not predicted to be stable on the surface of Mars. During diurnal variations in temperature and relative humidity, 1 kg of MgSO4 can release or remove from the atmosphere 1.5 kg of H2O by cycling between kieserite and MgSO4??11 H2O. Despite subequal abundances of calcium sulfate, calcium sulfates are not likely to be important in the water cycle of the planet because of sluggish rates of hydration and dehydration and a more limited range of H2O concentrations per kilogram of CaSO4 (0.00 to 0.26 kg kg-1). Modern or recent erosion on Mars attributed to liquid water may be due to the dehydration Of MgSO4??11 H2O because of the inferred abundance and likelihood of occurrence of this phase and its limited stability relative to known variations in temperature and relative humidity.

  20. STUDYING THE EFFECTS OF CALCIUM AND MAGNESIUM ON SIZE-DISTRIBUTED NITRATE AND AMMONIUM WITH EQUISOLV II. (R823186)

    EPA Science Inventory

    Abstract

    A chemical equilibrium code was improved and used to show that calcium and magnesium have a large yet different effect on the aerosol size distribution in different regions of Los Angeles. In the code, a new technique of solving individual equilibrium equation...

  1. Estimation and Comparison of Salivary Calcium, Phosphorous, Alkaline Phosphatase and pH Levels in Periodontal Health and Disease: A Cross-sectional Biochemical Study.

    PubMed

    Patel, Rufi Murad; Varma, Siddhartha; Suragimath, Girish; Zope, Sameer

    2016-07-01

    In oral diagnostics there is a great challenge to determine biomarkers for screening and evaluating the disease activity. Biomarkers can also serve as a useful tool to measure the efficacy of the therapy. To evaluate and compare the levels of salivary calcium, phosphorous, alkaline phosphatase and pH levels in periodontally healthy subjects and patients with gingivitis and periodontitis. The present study consisted of 150 subjects aged between 20-45 years who were divided into three groups; periodontally healthy, gingivitis and chronic periodontitis. Prior to the clinical examination the demographic details, relevant information of the subject, gingival index, plaque index, Oral Hygiene Index (OHI) and pH were recorded. Biochemical assay of saliva i.e., inorganic calcium, phosphorous and alkaline phosphatase were estimated by colorimetric method. ANOVA and Tukey's test were applied for statistical analysis. The mean levels of biomarkers studied were; inorganic calcium (12.55μg/dl), phosphorous (14.50μg/dl), alkaline phosphatase (49.62μg/dl) and pH (11.65). There was a gradual increase in these levels as the condition progressed from health to gingivitis or periodontitis which was statistically significant at p<0.001. Based on these results, it can be concluded that, the biomarkers like salivary calcium, phosphorous, alkaline phosphatase and pH can be considered for evaluating the diagnosis and prognosis of periodontal tissues in disease and health.

  2. [Reference values of calcium, vitamin D, phosphorus, magnesium and fluoride for the Venezuelan population].

    PubMed

    Macías-Tomei, Coromoto; Palacios, Cristina; Mariño Elizondo, Mariana; Carías, Diamela; Noguera, Dalmacia; Chávez Pérez, José Félix

    2013-12-01

    The following micronutrients were considered together for their role in bone health: calcium, vitamin D, phosphorus, magnesium and fluoride. Calcium: not enough is known to change current recommendations. In adolescents and adults, limited data suggest that consuming the recommended level is associated with normal bone mass. In older adults, the limited data reported low consumption and a high rate of fractures but there is no information on whether the current values are adequate. Vitamin D: the limited data reported high deficiency in older adults, which was related to osteoporosis. Given the recent increase in North American recommendation for their contribution to bone health, we proposed to increase the recommendation to 400-600 IU/d for Venezuela. Phosphorus, magnesium and fluoride: the lack of local data does not support changing the latest recommendations. Therefore, it highlights the lack of local studies to assess current recommendations. Studies are needed to estimate the intake of these micronutrients in the population and evaluate their interaction and their relation to bone and overall health. Information of the adequacy of these nutrients in human milk for infants is needed. Alto, it is necessary to implement an effective nutrition surveillance system and implement interventions that maximize bone health from an early stage, including the design and implementation of a dairy policy that leads to an increase in production and consumption by the population.

  3. Methods of use of calcium hexa aluminate refractory linings and/or chemical barriers in high alkali or alkaline environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Kenneth A; Cullen, Robert M; Keiser, James R

    A method for improving the insulating character/and or penetration resistance of a liner in contact with at least one of an alkali and/or alkaline environments is provided. The method comprises lining a surface that is subject to wear by an alkali environment and/or an alkaline environment with a refractory composition comprising a refractory aggregate consisting essentially of a calcium hexa aluminate clinker having the formula CA.sub.6, wherein C is equal to calcium oxide, wherein A is equal to aluminum oxide, and wherein the hexa aluminate clinker has from zero to less than about fifty weight percent C.sub.12A.sub.7, and wherein greatermore » than 98 weight percent of the calcium hexa aluminate clinker having a particle size ranging from -20 microns to +3 millimeters, for forming a liner of the surface. This method improves the insulating character/and or penetration resistance of the liner.« less

  4. Ocean alkalinity and the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Caldeira, K. G.; Rampino, Michael R.

    1988-01-01

    A biogeochemical cycle model resolving ocean carbon and alkalinity content is applied to the Maestrichtian and Danian. The model computes oceanic concentrations and distributions of Ca(2+), Mg(2+), and Sigma-CO2. From these values an atmospheric pCO2 value is calculated, which is used to estimate rates of terrestrial weathering of calcite, dolomite, and calcium and magnesium silicates. Metamorphism of carbonate rocks and the subsequent outgassing of CO2 to the atmosphere are parameterized in terms of carbonate rock reservoir sizes, total land area, and a measure of overall tectonic activity, the sea-floor generation rate. The ocean carbon reservoir computed by the model is used with Deep Sea Drilling Project (DSDP) C-13 data to estimate organic detrital fluxes under a variety of ocean mixing rate assumptions. Using Redfield ratios, the biogenic detrital flux estimate is used to partition the ocean carbon and alkalinity reservoirs between the mixed layer and deep ocean. The calcite flux estimate and carbonate ion concentrations are used to determine the rate of biologically mediated CaCO3 titration. Oceanic productivity was severely limited for approximately 500 kyr following the K/T boundary resulting in significant increases in total ocean alkalinity. As productivity returned to the ocean, excess carbon and alkalinity was removed from the ocean as CaCO3. Model runs indicate that this resulted in a transient imbalance in the other direction. Ocean chemistry returned to near-equilibrium by about 64 mybp.

  5. Nanostructured calcium phosphate coatings on magnesium alloys: characterization and cytocompatibility with mesenchymal stem cells

    PubMed Central

    Iskandar, Maria Emil; Aslani, Arash; Tian, Qiaomu

    2016-01-01

    This article reports the deposition and characterization of nanostructured calcium phosphate (nCaP) on magnesium–yttrium alloy substrates and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The nCaP coatings were deposited on magnesium and magnesium–yttrium alloy substrates using proprietary transonic particle acceleration process for the dual purposes of modulating substrate degradation and BMSC adhesion. Surface morphology and feature size were analyzed using scanning electron microscopy and quantitative image analysis tools. Surface elemental compositions and phases were analyzed using energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. The deposited nCaP coatings showed a homogeneous particulate surface with the dominant feature size of 200–500 nm in the long axis and 100–300 nm in the short axis, and a Ca/P atomic ratio of 1.5–1.6. Hydroxyapatite was the major phase identified in the nCaP coatings. The modulatory effects of nCaP coatings on the sample degradation and BMSC behaviors were dependent on the substrate composition and surface conditions. The direct culture of BMSCs in vitro indicated that multiple factors, including surface composition and topography, and the degradation-induced changes in media composition, influenced cell adhesion directly on the sample surface, and indirect adhesion surrounding the sample in the same culture. The alkaline pH, the indicator of Mg degradation, played a role in BMSC adhesion and morphology, but not the sole factor. Additional studies are necessary to elucidate BMSC responses to each contributing factor. PMID:25917827

  6. Effects of calcium carbonate, magnesium oxide and sodium citrate bicarbonate health supplements on the urinary risk factors for kidney stone formation.

    PubMed

    Allie, Shameez; Rodgers, Allen

    2003-01-01

    We describe a model to illustrate different chemical interactions that can occur in urine following ingestion of individual and combined health supplements. Two types of interactions are defined: synergism and addition. The model was applied to eight healthy males who participated in a study to investigate the chemical interactions between calcium carbonate, magnesium oxide and sodium citrate-bicarbonate health supplements on calcium oxalate urinary stone risk factors. Subjects ingested these components individually and in combination for 7 days. Twenty-four-hour urines were collected at baseline and during the final day of supplementation. These were analysed using standard laboratory techniques. Three different chemical interactions, all involving citrate, were identified: magnesium and citrate exerted a synergistic effect on lowering the relative superaturation (RS) of brushite; the same two components produced a synergistic effect on raising pH; finally, calcium and citrate exerted an additive effect on lowering the RS of uric acid. We propose that the novel approach described in this paper allows for the evaluation of individual, additive and synergistic interactions in the assessment of the efficacy of stone-risk reducing preparations.

  7. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean

    PubMed Central

    Tao, Jinhui; Zhou, Dongming; Zhang, Zhisen; Xu, Xurong; Tang, Ruikang

    2009-01-01

    Many animals such as crustacean periodically undergo cyclic molt of the exoskeleton. During this process, amorphous calcium mineral phases are biologically stabilized by magnesium and are reserved for the subsequent rapid formation of new shell tissue. However, it is a mystery how living organisms can regulate the transition of the precursor phases precisely. We reveal that the shell mineralization from the magnesium stabilized precursors is associated with the presence of Asp-rich proteins. It is suggested that a cooperative effect of magnesium and Asp-rich compound can result into a crystallization switch in biomineralization. Our in vitro experiments confirm that magnesium increases the lifetime of amorphous calcium carbonate and calcium phosphate in solution so that the crystallization can be temporarily switched off. Although Asp monomer alone inhibits the crystallization of pure amorphous calcium minerals, it actually reduces the stability of the magnesium-stabilized precursors to switch on the transformation from the amorphous to crystallized phases. These modification effects on crystallization kinetics can be understood by an Asp-enhanced magnesium desolvation model. The interesting magnesium-Asp-based switch is a biologically inspired lesson from nature, which can be developed into an advanced strategy to control material fabrications. PMID:20007788

  8. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean.

    PubMed

    Tao, Jinhui; Zhou, Dongming; Zhang, Zhisen; Xu, Xurong; Tang, Ruikang

    2009-12-29

    Many animals such as crustacean periodically undergo cyclic molt of the exoskeleton. During this process, amorphous calcium mineral phases are biologically stabilized by magnesium and are reserved for the subsequent rapid formation of new shell tissue. However, it is a mystery how living organisms can regulate the transition of the precursor phases precisely. We reveal that the shell mineralization from the magnesium stabilized precursors is associated with the presence of Asp-rich proteins. It is suggested that a cooperative effect of magnesium and Asp-rich compound can result into a crystallization switch in biomineralization. Our in vitro experiments confirm that magnesium increases the lifetime of amorphous calcium carbonate and calcium phosphate in solution so that the crystallization can be temporarily switched off. Although Asp monomer alone inhibits the crystallization of pure amorphous calcium minerals, it actually reduces the stability of the magnesium-stabilized precursors to switch on the transformation from the amorphous to crystallized phases. These modification effects on crystallization kinetics can be understood by an Asp-enhanced magnesium desolvation model. The interesting magnesium-Asp-based switch is a biologically inspired lesson from nature, which can be developed into an advanced strategy to control material fabrications.

  9. Amino Acid Medical Foods Provide a High Dietary Acid Load and Increase Urinary Excretion of Renal Net Acid, Calcium, and Magnesium Compared with Glycomacropeptide Medical Foods in Phenylketonuria

    PubMed Central

    Stroup, Bridget M.; Sawin, Emily A.; Murali, Sangita G.; Binkley, Neil; Hansen, Karen E.

    2017-01-01

    Background. Skeletal fragility is a complication of phenylketonuria (PKU). A diet containing amino acids compared with glycomacropeptide reduces bone size and strength in mice. Objective. We tested the hypothesis that amino acid medical foods (AA-MF) provide a high dietary acid load, subsequently increasing urinary excretion of renal net acid, calcium, and magnesium, compared to glycomacropeptide medical foods (GMP-MF). Design. In a crossover design, 8 participants with PKU (16–35 y) provided food records and 24-hr urine samples after consuming a low-Phe diet in combination with AA-MF and GMP-MF for 1–3 wks. We calculated potential renal acid load (PRAL) of AA-MF and GMP-MF and determined bone mineral density (BMD) measurements using dual X-ray absorptiometry. Results. AA-MF provided 1.5–2.5-fold higher PRAL and resulted in 3-fold greater renal net acid excretion compared to GMP-MF (p = 0.002). Dietary protein, calcium, and magnesium intake were similar. GMP-MF significantly reduced urinary excretion of calcium by 40% (p = 0.012) and magnesium by 30% (p = 0.029). Two participants had low BMD-for-age and trabecular bone scores, indicating microarchitectural degradation. Urinary calcium with AA-MF negatively correlated with L1–L4 BMD. Conclusion. Compared to GMP-MF, AA-MF increase dietary acid load, subsequently increasing urinary calcium and magnesium excretion, and likely contributing to skeletal fragility in PKU. The trial was registered at clinicaltrials.gov as NCT01428258. PMID:28546877

  10. Chronic dietary fiber supplementation with wheat dextrin does not inhibit calcium and magnesium absorption in premenopausal and postmenopausal women

    USDA-ARS?s Scientific Manuscript database

    This placebo-controlled, randomized, crossover clinical study examined the effect of chronic wheat dextrin intake on calcium and magnesium absorption. Forty premenopausal and post menopausal women (mean +/- SD age 49.9 +/- 9.8 years)consumed wheat dextrin or placebo (15 g/day) for 2 weeks prior to 4...

  11. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    PubMed

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)). Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Magnesium and the Athlete.

    PubMed

    Volpe, Stella Lucia

    2015-01-01

    Magnesium is the fourth most abundant mineral and the second most abundant intracellular divalent cation in the body. It is a required mineral that is involved in more than 300 metabolic reactions in the body. Magnesium helps maintain normal nerve and muscle function, heart rhythm (cardiac excitability), vasomotor tone, blood pressure, immune system, bone integrity, and blood glucose levels and promotes calcium absorption. Because of magnesium's role in energy production and storage, normal muscle function, and maintenance of blood glucose levels, it has been studied as an ergogenic aid for athletes. This article will cover the general roles of magnesium, magnesium requirements, and assessment of magnesium status as well as the dietary intake of magnesium and its effects on exercise performance. The research articles cited were limited from those published in 2003 through 2014.

  13. Structural diversity of alkaline-earth 2,5-thiophenedicarboxylates

    NASA Astrophysics Data System (ADS)

    Balendra; Ramanan, Arunachalam

    2017-03-01

    Exploration of the structural landscape of the system containing divalent alkaline-earth metal ion (Mg, Ca and Sr) with the rigid 2,5-thiophenedicarboxylic acid (TDC) under varying solvothermal condition (DMF, DMA and DEF) yielded five new crystals: [Mg(TDC) (DEF)2(H2O)1/2] (1), [Ca(TDC) (DMA)] (2), [Ca(TDC) (DMA) (H2O)] (3), [Sr(TDC) (DMA)] (4) and [Sr(TDC) (DMA) (H2O)] (5) and two known solids. Single crystal structures of all the solids are characteristic of extended coordination interaction between metal and carboxylate ions. While the smaller magnesium ion crystallized into a 2D coordination polymer, the larger calcium and strontium compounds resulted into the growth of 3D metal organic frameworks. All the solids show blue emission arising from intra ligand charge transfer.

  14. Reported Dietary Intake, Disparity between the Reported Consumption and the Level Needed for Adequacy and Food Sources of Calcium, Phosphorus, Magnesium and Vitamin D in the Spanish Population: Findings from the ANIBES Study.

    PubMed

    Olza, Josune; Aranceta-Bartrina, Javier; González-Gross, Marcela; Ortega, Rosa M; Serra-Majem, Lluis; Varela-Moreiras, Gregorio; Gil, Ángel

    2017-02-21

    Calcium, phosphorus, magnesium and vitamin D have important biological roles in the body, especially in bone metabolism. We aimed to study the reported intake, the disparity between the reported consumption and the level needed for adequacy and food sources of these four nutrients in the Spanish population. We assessed the reported intake for both, general population and plausible reporters. Results were extracted from the ANIBES survey, n = 2009. Three-day dietary reported intake data were obtained and misreporting was assessed according to the European Food Safety Authority (EFSA). Mean ± SEM (range) total reported consumption of calcium, phosphorus, magnesium, and vitamin D for the whole population were 698 ± 7 mg/day (71-2551 mg/day), 1176 ± 8 mg/day, (331-4429 mg/day), 222 ± 2 mg/day (73-782 mg/day), and 4.4 ± 0.1 µg/day (0.0-74.2 µg/day), respectively. In the whole group, 76% and 66%; 79% and 72%; and 94% and 93% of the population had reported intakes below 80% of the national and European recommended daily intakes for calcium, magnesium and vitamin D, respectively; these percentages were over 40% when the plausible reporters were analysed separately. The main food sources were milk and dairy products for calcium and phosphorus, cereals and grains for magnesium and fish for vitamin D. In conclusion, there is an important percentage of the Spanish ANIBES population not meeting the recommended intakes for calcium, magnesium and vitamin D.

  15. Revised Model of Calcium and Magnesium Binding to the Bacterial Cell Wall

    PubMed Central

    Thomas, Kieth J.; Rice, Charles V.

    2014-01-01

    Metals bind to the bacterial cell wall yet the binding mechanisms and affinity constants are not fully understood. The cell wall of gram positive bacteria is characterized by a thick layer of peptidoglycan and anionic teichoic acids anchored in the cytoplasmic membrane (lipoteichoic acid) or covalently bound to the cell wall (wall teichoic acid). The polyphosphate groups of teichoic acid provide one-half of the metal binding sites for calcium and magnesium, contradicting previous reports that calcium binding is 100% dependent on teichoic acid. The remaining binding sites are formed with the carboxyl units of peptidoglycan. In this work we report equilibrium association constants and total metal binding capacities for the interaction of calcium and magnesium ions with the bacterial cell wall. Metal binding is much stronger and previously reported. Curvature of Scatchard plots from the binding data and the resulting two regions of binding affinity suggest the presence of negative cooperative binding, meaning that the binding affinity decreases as more ions become bound to the sample. For Ca2+, Region I has a KA = (1.0 ± 0.2) × 106 M−1 and Region II has a KA = (0.075 ± 0.058) × 106 M−1. For Mg2+, KA1 = (1.5 ± 0.1) × 106 and KA2 = (0.17 ± 0.10) × 106. A binding capacity (η) is reported for both regions. However, since binding is still occurring in Region II, the total binding capacity is denoted by η2, which are 0.70 ± 0.04 µmol/mg and 0.67 ± 0.03 µmol/mg for Ca2+ and Mg2+ respectively. These data contradict the current paradigm of there being a single metal affinity value that is constant over a range of concentrations. We also find that measurement of equilibrium binding constants is highly sample dependent, suggesting a role for diffusion of metals through heterogeneous cell wall fragments. As a result, we are able to reconcile many contradictory theories that describe binding affinity and the binding mode of divalent metal cations. PMID:25315444

  16. Dynamical behaviors of structural, constrained and free water in calcium- and magnesium-silicate-hydrate gels

    DOE PAGES

    Le, Peisi; Fratini, Emiliano; Ito, Kanae; ...

    2016-01-28

    We present the hypothesis that the mechanical properties of cement pastes depend strongly on their porosities. In a saturated paste, the porosity links to the free water volume after hydration. Structural water, constrained water, and free water have different dynamical behavior. Hence, it should be possible to extract information on pore system by exploiting the water dynamics. With our experiments we investigated the slow dynamics of hydration water confined in calcium- and magnesium-silicate-hydrate (C-S-H and M-S-H) gels using high-resolution quasi-elastic neutron scattering (QENS) technique. C-S-H and M-S-H are the chemical binders present in calcium rich and magnesium rich cements. Wemore » measured three M-S-H samples: pure M-S-H, M-S-H with aluminum-silicate nanotubes (ASN), and M-S-H with carboxyl group functionalized ASN (ASN-COOH). A C-S-H sample with the same water content (i.e. 0.3) is also studied for comparison. We found that structural water in the gels contributes to the elastic component of the QENS spectrum, while constrained water and free water contribute the quasi-elastic component. The quantitative analysis suggests that the three components vary for different samples and indicate the variance in the system porosity, which controls the mechanical properties of cement pastes.« less

  17. Dynamical behaviors of structural, constrained and free water in calcium- and magnesium-silicate-hydrate gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Peisi; Fratini, Emiliano; Ito, Kanae

    We present the hypothesis that the mechanical properties of cement pastes depend strongly on their porosities. In a saturated paste, the porosity links to the free water volume after hydration. Structural water, constrained water, and free water have different dynamical behavior. Hence, it should be possible to extract information on pore system by exploiting the water dynamics. With our experiments we investigated the slow dynamics of hydration water confined in calcium- and magnesium-silicate-hydrate (C-S-H and M-S-H) gels using high-resolution quasi-elastic neutron scattering (QENS) technique. C-S-H and M-S-H are the chemical binders present in calcium rich and magnesium rich cements. Wemore » measured three M-S-H samples: pure M-S-H, M-S-H with aluminum-silicate nanotubes (ASN), and M-S-H with carboxyl group functionalized ASN (ASN-COOH). A C-S-H sample with the same water content (i.e. 0.3) is also studied for comparison. We found that structural water in the gels contributes to the elastic component of the QENS spectrum, while constrained water and free water contribute the quasi-elastic component. The quantitative analysis suggests that the three components vary for different samples and indicate the variance in the system porosity, which controls the mechanical properties of cement pastes.« less

  18. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    NASA Astrophysics Data System (ADS)

    Vanderdeelen, Jan

    2012-06-01

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO3 types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO3. H2O), the hexahydrate ikaite (CaCO3.6H2O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  19. [Determination of calcium and magnesium in tobacco by near-infrared spectroscopy and least squares-support vector machine].

    PubMed

    Tian, Kuang-da; Qiu, Kai-xian; Li, Zu-hong; Lü, Ya-qiong; Zhang, Qiu-ju; Xiong, Yan-mei; Min, Shun-geng

    2014-12-01

    The purpose of the present paper is to determine calcium and magnesium in tobacco using NIR combined with least squares-support vector machine (LS-SVM). Five hundred ground and dried tobacco samples from Qujing city, Yunnan province, China, were surveyed by a MATRIX-I spectrometer (Bruker Optics, Bremen, Germany). At the beginning of data processing, outliers of samples were eliminated for stability of the model. The rest 487 samples were divided into several calibration sets and validation sets according to a hybrid modeling strategy. Monte-Carlo cross validation was used to choose the best spectral preprocess method from multiplicative scatter correction (MSC), standard normal variate transformation (SNV), S-G smoothing, 1st derivative, etc., and their combinations. To optimize parameters of LS-SVM model, the multilayer grid search and 10-fold cross validation were applied. The final LS-SVM models with the optimizing parameters were trained by the calibration set and accessed by 287 validation samples picked by Kennard-Stone method. For the quantitative model of calcium in tobacco, Savitzky-Golay FIR smoothing with frame size 21 showed the best performance. The regularization parameter λ of LS-SVM was e16.11, while the bandwidth of the RBF kernel σ2 was e8.42. The determination coefficient for prediction (Rc(2)) was 0.9755 and the determination coefficient for prediction (Rp(2)) was 0.9422, better than the performance of PLS model (Rc(2)=0.9593, Rp(2)=0.9344). For the quantitative analysis of magnesium, SNV made the regression model more precise than other preprocess. The optimized λ was e15.25 and σ2 was e6.32. Rc(2) and Rp(2) were 0.9961 and 0.9301, respectively, better than PLS model (Rc(2)=0.9716, Rp(2)=0.8924). After modeling, the whole progress of NIR scan and data analysis for one sample was within tens of seconds. The overall results show that NIR spectroscopy combined with LS-SVM can be efficiently utilized for rapid and accurate analysis of calcium

  20. Chemical equilibria model of strontium-90 adsorption and transport in soil in response to dynamic alkaline conditions.

    PubMed

    Spalding, B P; Spalding, I R

    2001-01-15

    Strontium-90 is a major hazardous contaminant of radioactive wastewater and its processing sludges at many Department of Energy (DOE) facilities. In the past, such contaminated wastewater and sludge have been disposed in soil seepage pits, lagoons, or cribs often under highly perturbed alkaline conditions (pH > 12) where 90Sr solubility is low and its adsorption to surrounding soil is high. As natural weathering returns these soils to near-neutral or slightly acidic conditions, the adsorbed and precipitated calcium and magnesium phases, in which 90Sr is carried, change significantly in both nature and amounts. No comprehensive computational method has been formulated previously to quantitatively simulate the dynamics of 90Sr in the soil-groundwater environment under such dynamic and wide-ranging conditions. A computational code, the Hydrologic Utility Model for Demonstrating Integrated Nuclear Geochemical Environmental Responses (HUMDINGER), was composed to describe the changing equilibria of 90Sr in soil based on its causative chemical reactions including soil buffering, pH-dependent cation-exchange capacity, cation selectivity, and the precipitation/dissolution of calcium carbonate, calcium hydroxide, and magnesium hydroxide in response to leaching groundwater characteristics including pH, acid-neutralizing capacity, dissolved cations, and inorganic carbonate species. The code includes a simulation of one-dimensional transport of 90Sr through a soil column as a series of soil mixing cells where the equilibrium soluble output from one cell is applied to the next cell. Unamended soil leaching and highly alkaline soil treatments, including potassium hydroxide, sodium silicate, and sodium aluminate, were simulated and compared with experimental findings using large (10 kg) soil columns that were leached with 90Sr-contaminated groundwater after treatment. HUMDINGER's simulations were in good agreement with dynamic experimental observations of soil exchange capacity

  1. Determination of calcium, magnesium and zinc in lubricating oils by flame atomic absorption spectrometry using a three-component solution.

    PubMed

    Zmozinski, Ariane V; de Jesus, Alexandre; Vale, Maria G R; Silva, Márcia M

    2010-12-15

    Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g(-1), 0.052 μg g(-1) and 0.41 μg g(-1), respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Effects of calcium and magnesium hardness on the fertilization and hatching success of channel X blue hybrid catfish eggs

    USDA-ARS?s Scientific Manuscript database

    The aquifer used for hybrid catfish hatcheries is less than 10 mg/L of calcium hardness and 1- 25 mg/L of magnesium hardness. Embryonic development is deemed to be the most sensitive stage in the life cycle of a teleost. As egg development takes outside the fish’s body, water hardness is one abioti...

  3. Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients.

    PubMed

    D'Haese, P C; Couttenye, M M; Lamberts, L V; Elseviers, M M; Goodman, W G; Schrooten, I; Cabrera, W E; De Broe, M E

    1999-09-01

    Little is known about trace metal alterations in the bones of dialysis patients or whether particular types of renal osteodystrophy are associated with either increased or decreased skeletal concentrations of trace elements. Because these patients are at risk for alterations of trace elements as well as for morbidity from skeletal disorders, we measured trace elements in bone of patients with end-stage renal disease. We analyzed bone biopsies of 100 end-stage renal failure patients enrolled in a hemodialysis program. The trace metal contents of bone biopsies with histological features of either osteomalacia, adynamic bone disease, mixed lesion, normal histology, or hyperparathyroidism were compared with each other and with the trace metal contents of bone of subjects with normal renal function. Trace metals were measured by atomic absorption spectrometry. The concentrations of aluminum, chromium, and cadmium were increased in bone of end-stage renal failure patients. Comparing the trace metal/calcium ratio, significantly higher values were found for the bone chromium/calcium, aluminum/calcium, zinc/calcium, magnesium/calcium, and strontium/calcium ratios. Among types of renal osteodystrophy, increased bone aluminum, lead, and strontium concentrations and strontium/calcium and aluminum/calcium ratios were found in dialysis patients with osteomalacia vs the other types of renal osteodystrophy considered as one group. Moreover, the concentrations of several trace elements in bone were significantly correlated with each other. Bone aluminum was correlated with the time on dialysis, whereas bone iron, aluminum, magnesium, and strontium tended to be associated with patient age. Bone trace metal concentrations did not depend on vitamin D intake nor on the patients' gender. The concentration of several trace elements in bone of end-stage renal failure patients is disturbed, and some of the trace metals under study might share pathways of absorption, distribution, and

  4. CaSR-mediated interactions between calcium and magnesium homeostasis in mice.

    PubMed

    Quinn, Stephen J; Thomsen, Alex R B; Egbuna, Ogo; Pang, Jian; Baxi, Khanjan; Goltzman, David; Pollak, Martin; Brown, Edward M

    2013-04-01

    Calcium (Ca) and magnesium (Mg) homeostasis are interrelated and share common regulatory hormones, including parathyroid hormone (PTH) and vitamin D. However, the role of the calcium-sensing receptor (CaSR) in Mg homeostasis in vivo is not well understood. We sought to investigate the interactions between Mg and Ca homeostasis using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR) (double knockout, DKO). Serum Mg is lower in PTH KO and DKO mice than in WT mice on standard chow, whereas supplemental dietary Ca leads to equivalent Mg levels for all three genotypes. Mg loading increases serum Mg in all genotypes; however, the increase in serum Mg is most pronounced in the DKO mice. Serum Ca is increased with Mg loading in the PTH KO and DKO mice but not in the WT mice. Here, too, the hypercalcemia is much greater in the DKO mice. Serum and especially urinary phosphate are reduced during Mg loading, which is likely due to intestinal chelation of phosphate by Mg. Mg loading decreases serum PTH in WT mice and increases serum calcitonin in both WT and PTH KO mice but not DKO mice. Furthermore, Mg loading elevates serum 1,25-dihydroxyvitamin D in all genotypes, with greater effects in PTH KO and DKO mice, possibly due to reduced levels of serum phosphorus and FGF23. These hormonal responses to Mg loading and the CaSR's role in regulating renal function may help to explain changes in serum Mg and Ca found during Mg loading.

  5. Evaluation of calcium acetate/magnesium carbonate as a phosphate binder compared with sevelamer hydrochloride in haemodialysis patients: a controlled randomized study (CALMAG study) assessing efficacy and tolerability.

    PubMed

    de Francisco, Angel L M; Leidig, Michael; Covic, Adrian C; Ketteler, Markus; Benedyk-Lorens, Ewa; Mircescu, Gabriel M; Scholz, Caecilia; Ponce, Pedro; Passlick-Deetjen, Jutta

    2010-11-01

    Phosphate binders are required to control serum phosphorus in dialysis patients. A phosphate binder combining calcium and magnesium offers an interesting therapeutic option. This controlled randomized, investigator-masked, multicentre trial investigated the effect of calcium acetate/magnesium carbonate (CaMg) on serum phosphorus levels compared with sevelamer hydrochloride (HCl). The study aim was to show non-inferiority of CaMg in lowering serum phosphorus levels into Kidney Disease Outcome Quality Initiative (K/DOQI) target level range after 24 weeks. Three hundred and twenty-six patients from five European countries were included. After a phosphate binder washout period, 255 patients were randomized in a 1:1 fashion. Two hundred and four patients completed the study per protocol (CaMg, N = 105; dropouts N = 18; sevelamer-HCl, N = 99; dropouts N = 34). Patient baseline characteristics were similar in both groups. Serum phosphorus levels had decreased significantly with both drugs at week 25, and the study hypothesis of CaMg not being inferior to sevelamer-HCl was confirmed. The area under the curve for serum phosphorus (P = 0.0042) and the number of visits above K/DOQI (≤1.78 mmol/L, P = 0.0198) and Kidney disease: Improving global outcomes (KDIGO) targets (≤1.45 mmol/L, P = 0.0067) were significantly lower with CaMg. Ionized serum calcium did not differ between groups; total serum calcium increased in the CaMg group (treatment difference 0.0477 mmol/L; P = 0.0032) but was not associated with a higher risk of hypercalcaemia. An asymptomatic increase in serum magnesium occurred in CaMg-treated patients (treatment difference 0.2597 mmol/L, P < 0.0001). There was no difference in the number of patients with adverse events. CaMg was non-inferior to the comparator at controlling serum phosphorus levels at Week 25. There was no change in ionized calcium; there was minimal increase in total serum calcium and a small increase in serum magnesium. It had a good

  6. The Role of Calcium in Ameliorating the Oxidative Stress of Fluoride in Rats.

    PubMed

    Mohamed, N E

    2016-03-01

    The present study was carried out to investigate the effects of fluoride toxicity on some biochemical, hormonal, and histological parameters of female rats and the protective role of calcium against such effects. Adult female albino rats were divided into five groups; control group received distilled water for 60 days, calcium group received calcium carbonate with dose of 50 mg/kg three times per week for 60 days, fluoride group received sodium fluoride with dose of 20 mg/kg three times per week for 60 days, calcium + fluoride group received calcium carbonate (50 mg/kg) then after 2 h received sodium fluoride (20 mg/kg) three times per week for 60 days, and fluoride + calcium group received sodium fluoride (20 mg/kg) three times per week for 30 days then received calcium carbonate (50 mg/kg) three times per week for another 30 days. The results showed that the levels of thiobarbituric acid reactive substances, urea, creatinine, alkaline phosphatase, triiodothyronine, thyroxine, parathormone, phosphorous, magnesium, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and gamma glutamyl transferase were significantly increased in rats treated with fluoride while serum estradiol, calcium, and organ glutathione were significantly decreased. The histological examination of the femur bone revealed that fluoride treatment induced thinning of bone trabeculae with wilding of marrow space, demineralization, and loss of trabeculae interconnections. Also, the histological examination of hepatic and renal tissues of fluoride-treated rats showed some damages in these tissues while administration of calcium carbonate for 30 or 60 days during fluoride treatment minimized such damages. It could be concluded that administration of calcium to female rats can ameliorate the hazardous effects of fluoride observed in the biochemical, hormonal, and histological parameters.

  7. Supplement use contributes to meeting recommended dietary intakes for calcium, magnesium, and vitamin C in four ethnicities of middle-aged and older Americans: the Multi-Ethnic Study of Atherosclerosis.

    PubMed

    Burnett-Hartman, Andrea N; Fitzpatrick, Annette L; Gao, Kun; Jackson, Sharon A; Schreiner, Pamela J

    2009-03-01

    Low intake of nutrients is associated with poor health outcomes. We examined the contribution of dietary supplementation to meeting recommended dietary intakes of calcium, magnesium, potassium, and vitamin C in participants of the Multi-Ethnic Study of Atherosclerosis, a cohort of white, African-American, Hispanic, and Chinese-American participants ages 45 to 84 years. We also assessed the prevalence of intakes above Tolerable Upper Intake Levels (ULs). At the baseline exam in 2000-2001, 2,938 men and 3,299 women completed food frequency questionnaires and provided information about dietary supplementation. We used relative risk regression to estimate the probability of meeting Recommended Dietary Allowances (RDAs) or Adequate Intakes (AIs) in supplement users vs nonusers and Fisher's exact tests to compare the proportion of those exceeding ULs between the two groups. RDAs, AIs, and ULs were defined by the National Academy of Sciences Food and Nutrition Board's Dietary Reference Intakes (DRIs). After adjustment for age and education, the relative risk of meeting RDAs or AIs in supplement-users vs nonusers ranged from 1.9 (1.6, 2.3) in white men to 5.7 (4.1, 8.0) in African-American women for calcium, from 2.5 (1.9, 3.3) in Hispanic men to 5.2 (2.4, 11.2) in Chinese men for magnesium, and from 1.4 (1.3, 1.5) in African-American women to 2.0 (1.7, 2.2) in Chinese men for vitamin C. The relative risks for meeting RDAs for calcium differed significantly by ethnicity (P<0.001) and sex (P<0.001), and by ethnicity for magnesium (P=0.01). The relative risk for each sex/ethnicity strata was close to 1 and did not reach statistical significance at alpha=.05 for potassium. For calcium, 15% of high-dose supplement users exceeded the UL compared with only 2.1% of nonusers. For vitamin C, the percentages were 6.6% and 0%, and for magnesium, 35.3% and 0% (P<0.001 for all). Although supplement use is associated with meeting DRI guidelines for calcium, vitamin C and magnesium, many

  8. Should acidification of urine be performed before the analysis of calcium, phosphate and magnesium in the presence of crystals?

    PubMed

    Pratumvinit, Busadee; Reesukumal, Kanit; Wongkrajang, Preechaya; Khejonnit, Varanya; Klinbua, Cherdsak; Dangneawnoi, Weerapol

    2013-11-15

    Acidification of urine has been recommended before testing for calcium, phosphate, and magnesium. We investigated the necessity of pre-analytical acidification in both crystallized and non-crystallized urine samples. From 130 urine samples obtained via routine urine analysis, 65 (50%) samples were classified as non-crystallized. All samples were divided into three groups: untreated samples, acidified samples with HCl, and acidified samples after 1h room-temperature incubation. Urine samples were measured for calcium, phosphate, magnesium, and creatinine using Modular P800 and were examined for crystals using light microscopy. In crystallized samples, acidified samples with 1h incubation had significantly higher Ca/Cr, P/Cr, and Mg/Cr than did untreated samples with mean differences of 0.04, 0.03, and 0.01 mg/mg, respectively (P<0.001). In acidified samples that were analyzed immediately, crystallized samples had lower calcium concentrations than those of acidified samples with 1h incubation and a mean difference of 0.21 mg/dl (P = 0.025). None of the sample differences which exceeded the critical difference of urinary Ca, P and Mg was observed. Acidification of urine should be performed before the measurement of Ca, P, and Mg in the presence of urinary crystals. However, the lack of an acidification process does not result in a clinically significant change. © 2013.

  9. Assessing ocean alkalinity for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many

  10. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    NASA Technical Reports Server (NTRS)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  11. Calcium-magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.

  12. Calcium, Magnesium, and Phosphorus Metabolism, and Parathyroid- Calcitonin Function during Prolonged Exposure to Elevated CO2 Concentrations on Submarines

    DTIC Science & Technology

    1975-12-01

    renal regulation, determine acid- base balance. calcitonin activity calcium excretion chronic hypercapnia magnesium parathyroid phosphorus...Mg increased. An important aspect of acid- base and electrolyte balance is the renal handling of an acid load. Figure 2 presents data on urine...E. SCHAEFER Navat Submarine Medical Research Laboratory, Naval Submarine Base , Groton, CT 06340 Messier, A. A., E. Heyder, W. R. Braithwaite, C

  13. Impurities Removal in Seawater to Optimize the Magnesium Extraction

    NASA Astrophysics Data System (ADS)

    Natasha, N. C.; Firdiyono, F.; Sulistiyono, E.

    2017-02-01

    Magnesium extraction from seawater is promising way because magnesium is the second abundant element in seawater and Indonesia has the second longest coastline in the world. To optimize the magnesium extraction, the impurities in seawater need to be eliminated. Evaporation and dissolving process were used in this research to remove the impurities especially calcium in seawater. Seawater which has been evaporated from 100 ml to 50 ml was dissolved with variations solution such as oxalic acid and ammonium bicarbonate. The solution concentration is 100 g/l and it variations are 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml and 50 ml. This step will produce precipitate and filtrate then it will be analysed to find out the result of this process. The precipitate was analysed by X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) but the filtrate was analysed by Inductively Coupled Plasma (ICP). XRD analysis shows that calcium oxalate and calcium carbonate were formed and ICP analysis shows that the remaining calcium in seawater using oxalic acid is about 0.01% and sodium 0.14% but when using ammonium bicarbonate the remaining calcium is 2.5% and sodium still more than 90%. The results show that both oxalic acid and ammonium bicarbonate can remove the impurities but when using oxalic acid, not only the impurities but also magnesium was precipitated. The conclusion of this research is the best solution to remove the impurities in seawater without precipitate the magnesium is using ammonium bicarbonate.

  14. The Effects of High Level Magnesium Dialysis/Substitution Fluid on Magnesium Homeostasis under Regional Citrate Anticoagulation in Critically Ill

    PubMed Central

    Los, Ferdinand; Brodska, Helena

    2016-01-01

    Background The requirements for magnesium (Mg) supplementation increase under regional citrate anticoagulation (RCA) because citrate acts by chelation of bivalent cations within the blood circuit. The level of magnesium in commercially available fluids for continuous renal replacement therapy (CRRT) may not be sufficient to prevent hypomagnesemia. Methods Patients (n = 45) on CRRT (2,000 ml/h, blood flow (Qb) 100 ml/min) with RCA modality (4% trisodium citrate) using calcium free fluid with 0.75 mmol/l of Mg with additional magnesium substitution were observed after switch to the calcium-free fluid with magnesium concentration of 1.50 mmol/l (n = 42) and no extra magnesium replenishment. All patients had renal indications for CRRT, were treated with the same devices, filters and the same postfilter ionized calcium endpoint (<0.4 mmol/l) of prefilter citrate dosage. Under the high level Mg fluid the Qb, dosages of citrate and CRRT were consequently escalated in 9h steps to test various settings. Results Median balance of Mg was -0.91 (-1.18 to -0.53) mmol/h with Mg 0.75 mmol/l and 0.2 (0.06–0.35) mmol/h when fluid with Mg 1.50 mmol/l was used. It was close to zero (0.02 (-0.12–0.18) mmol/h) with higher blood flow and dosage of citrate, increased again to 0.15 (-0.11–0.25) mmol/h with 3,000 ml/h of high magnesium containing fluid (p<0.001). The arterial levels of Mg were mildly increased after the change for high level magnesium containing fluid (p<0.01). Conclusions Compared to ordinary dialysis fluid the mildly hypermagnesemic fluid provided even balances and adequate levels within ordinary configurations of CRRT with RCA and without a need for extra magnesium replenishment. Trial Registration ClinicalTrials.gov Identifier: NCT01361581 PMID:27391902

  15. The Charge-Balancing Role of Calcium and Alkali Ions in Per-Alkaline Aluminosilicate Glasses.

    PubMed

    Thomsen, René M; Skibsted, Jørgen; Yue, Yuanzheng

    2018-03-29

    The structural arrangement of alkali-modified calcium aluminosilicate glasses has implications for important properties of these glasses in a wide range of industrial applications. The roles of sodium and potassium and their competition with calcium as network modifiers in peralkaline aluminosilicate glasses have been investigated by 27 Al and 29 Si MAS NMR spectroscopy. The 29 Si MAS NMR spectra are simulated using two models for distributing Al in the silicate glass network. One model assumes a hierarchical, quasi-heterogeneous aluminosilicate network, whereas the other is based on differences in relative lattice energies between Si-O-Si, Al-O-Al, and Si-O-Al linkages. A systematic divergence between these simulations and the experimental 29 Si NMR spectra is observed as a function of the sodium content exceeding that required for stoichiometric charge-balancing of the negatively charged AlO 4 tetrahedra. Similar correlations between simulations and experimental 29 Si NMR spectra cannot be made for the excess calcium content. Moreover, systematic variations in the 27 Al isotropic chemical shifts and the second-order quadrupole effect parameters, derived from the 27 Al MAS NMR spectra, are reported as a function of the SiO 2 content. These observations strongly suggest that alkali ions preferentially charge-balance AlO 4 3- as compared to alkaline earth (calcium) ions. In contrast, calcium dominates over the alkali ions in the formation of nonbridging oxygens associated with the SiO 4 tetrahedra.

  16. Atmospheric parameters and magnesium and calcium NLTE abundances for a sample of 16 ultra metal-poor stars

    NASA Astrophysics Data System (ADS)

    Sitnova, Tatyana; Mashonkina, Lyudmila; Ezzeddine, Rana; Frebel, Anna

    2018-06-01

    The most metal-poor stars provide important observational clues to the astrophysical objects that enriched the primordial gas with heavy elements. Accurate atmospheric parameters is a prerequisite of determination of accurate abundances. We present atmospheric parameters and abundances of calcium and magnesium for a sample of 16 ultra-metal poor (UMP) stars. In spectra of UMP stars, iron is represented only by lines of Fe I, while calcium is represented with lines of Ca I and Ca II, which can be used for determination/checking of effective temperature and surface gravity. Accurate calculations of synthetic spectra of UMP stars require non-local thermodynamic equilibrium (NLTE) treatment of line formation, since deviations from LTE grow with metallicity decreasing. The method of atmospheric parameter determination is based on NLTE analysis of lines of Ca I and Ca II, multi-band photometry, and isochrones. The method was tested in advance with the ultra metal-poor giant CD-38 245, where, in addition, trigonometric parallax measurements from Gaia DR1 and lines of Fe I and Fe II are available. Using photometric Teff = 4900 K and distance based log g = 2.0 for CD-38 245, we derived consistent within error bars NLTE abundances from Fe I and Fe II and Ca I and Ca II, while LTE leads to a discrepancy of 0.6 dex between Ca I and Ca II. We determined NLTE and LTE abundances of magnesium and calcium in 16 stars of the sample. For the majority of stars, as expected, [Ca/Mg] NLTE abundance ratios are close to 0, while LTE leads to systematically higher [Ca/Mg], by up to 0.3 dex, and larger spread of [Ca/Mg] for different stars. Three stars of our sample are strongly enhanced in magnesium, with [Mg/Ca] of 1.3 dex. It is worth noting that, for these three stars, we got very similar [Mg/Ca] of 1.30, 1.45, and 1.29, in contrast to the data from the literature, where, for the same stars, [Mg/Ca] vary from 0.7 to 1.4. Very similar [Mg/Ca] abundance ratios of these stars argue that

  17. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism.

    PubMed

    Zhang, Jing; Ma, Xiaoyu; Lin, Dan; Shi, Hengsong; Yuan, Yuan; Tang, Wei; Zhou, Huanjun; Guo, Han; Qian, Jiangchao; Liu, Changsheng

    2015-06-01

    The chemical composition, structure and surface characteristics of biomaterials/scaffold can affect the adsorption of proteins, and this in turn influences the subsequent cellular response and tissue regeneration. With magnesium/calcium phosphate cements (MCPC) as model, the effects of magnesium (Mg) on the initial adhesion and osteogenic differentiation of bone marrow stromal cells (BMSCs) as well as the underlying mechanism were investigated. A series of MCPCs with different magnesium phosphate cement (MPC) content (0∼20%) in calcium phosphate cement (CPC) were synthesized. MCPCs with moderate proportion of MPC (5% and 10%, referred to as 5MCPC and 10MCPC) were found to effectively modulate the orientation of the adsorbed fibronectin (Fn) to exhibit enhanced receptor binding affinity, and to up-regulate integrin α5β1 expression of BMSCs, especially for 5MCPC. As a result, the attachment, morphology, focal adhesion formation, actin filaments assembly and osteogenic differentiation of BMSCs on 5MCPC were strongly enhanced. Further in vivo experiments confirmed that 5MCPC induced promoted osteogenesis in comparison to ot her CPC/MCPCs. Our results also suggested that the Mg on the underlying substrates but not the dissolved Mg ions was the main contributor to the above positive effects. Based on these results, it can be inferred that the specific interaction of Fn and integrin α5β1 had predominant effect on the MCPC-induced enhanced cellular response of BMSCs. These results provide a new strategy to regulate BMSCs adhesion and osteogenic differentiation by adjusting the Mg/Ca content and distribution in CPC, guiding the development of osteoinductive scaffolds for bone tissue regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Relative influences of solution composition and presence of intracrystalline proteins on magnesium incorporation in calcium carbonate minerals: Insight into vital effects

    NASA Astrophysics Data System (ADS)

    Hermans, Julie; André, Luc; Navez, Jacques; Pernet, Philippe; Dubois, Philippe

    2011-03-01

    Biogenic calcites may contain considerable magnesium concentrations, significantly higher than those observed in inorganic calcites. Control of ion concentrations in the calcifying space by transport systems and properties of the organic matrix of mineralization are probably involved in the incorporation of high magnesium quantities in biogenic calcites, but their relative effects have never been quantified. In vitro precipitation experiments performed at different Mg/Ca ratios in the solution and in the presence of soluble organic matrix macromolecules (SOM) extracted from sea urchin tests and spines showed that, at a constant temperature, magnesium incorporation in the precipitated minerals was mainly dependent on the Mg/Ca ratio of the solution. However, a significant increase in magnesium incorporation was observed in the presence of SOM compared with control experiments. Furthermore, this effect was more pronounced with SOM extracted from the test, which was richer in magnesium than the spines. According to SEM observations, amorphous calcium carbonate was precipitated at high Mg/Casolution. The observed predominant effect of Mg/Casolution, probably mediated in vivo by ion transport to and from the calcifying space, was suggested to induce and stabilize a transient magnesium-rich amorphous phase essential to the formation of high magnesium calcites. Aspartic acid rich proteins, shown to be more abundant in the test than in the spine matrix, further stabilize this amorphous phase. The involvement of the organic matrix in this process can explain the observation that sympatric organisms or even different skeletal elements of the same individual present different skeletal magnesium concentrations.

  19. Bone mineral density, serum albumin and serum magnesium.

    PubMed

    Saito, Noboru; Tabata, Naoto; Saito, Saburou; Andou, Yoshihisa; Onaga, Yukiko; Iwamitsu, Akihiro; Sakamoto, Morihide; Hori, Tuyoshi; Sayama, Harumi; Kawakita, Toshiko

    2004-12-01

    This study explores clinical and laboratory abnormalities that contribute to the prevalence of bone fractures in frail and control elderly patients, to ascertain factors that relate to bone strength and fragility. Patients were selected as free from renal failure and not taking supplements or medications that affect their magnesium status, and categorized according to their underlying diseases, sex and age, and evaluated by tests of bone strength. Findings, differentiating elderly patients on the basis of their magnesium, calcium, serum albumin, body mass, bone mineral density and their fracture occurrence were tabulated. Evidence is presented of low magnesium and albumin serum levels, especially in women with low bone density, as well as of low calcium and trace minerals.

  20. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Visscher, Alex; Vanderdeelen, Jan; Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO{sub 3} types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO{sub 3}{center_dot} H{sub 2}O), the hexahydrate ikaite (CaCO{sub 3}{center_dot}6H{submore » 2}O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.« less

  1. Atomic hydrogen in. gamma. -irradiated hydroxides of alkaline-earth elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spitsyn, V.I.; Yurik, T.K.; Barsova, L.I.

    1982-04-01

    Atomic hydrogen is an important intermediate product formed in the radiolysis of compounds containing X-H bonds. H atoms have been detected in irradiated matrices of H/sub 2/ and inert gases at 4/sup 0/K, in irradiated ice and frozen solutions of acids in irradiated salts and in other systems. Here results are presented from a study of the ESR spectra of H atoms generated in polycrystalline hydroxides of alkaline-earth elements that have been ..gamma..-irradiated at 77/sup 0/K, after preliminary treatment at various temperatures. For the first time stabilization of atomic hydrogen in ..gamma..-irradiated polycrystalline alkaline-earth element hydroxides has been detected. Dependingmore » on the degree of dehydroxylation, several types of hydrogen atoms may be stabilized in the hydroxides, these hydrogen atoms having different radiospectroscopic parameters. In the magnesium-calcium-strontium-barium hydroxide series, a regular decrease has been found in the hfi constants for H atoms with the cations in the immediate surroundings. A direct proportionality has been found between the parameters ..delta..A/A/sub 0/ and the polarizability of the cation.« less

  2. A Novel Acidic Matrix Protein, PfN44, Stabilizes Magnesium Calcite to Inhibit the Crystallization of Aragonite*

    PubMed Central

    Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2014-01-01

    Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium. PMID:24302723

  3. [Nutritive value of daily food rations prepared in different regions of the country. III. The levels of calcium, phosphorus, magnesium, iron and potassium].

    PubMed

    Rutkowska, U; Iwanow, K; Wojtasik, A; Kunachowicz, H

    1991-01-01

    Studies on the content of macrominerals in daily diets reconstructed in 1988 on the basis of the analysis of family budgets in 1986 carried out by the Central Statistical Bureau were carried on. Two social groups i.e. manual and mental workers with medium income were considered. The diets were prepared for 5 regions (Warszawa, Lublin, Olsztyn, Poznań, Wrocław). According to the studies the requirements for calcium and magnesium were met in about 70% and those for iron in about 84%. The content of potassium in the diets was in the range of recommended allowances while the phosphorus exceeded the allowances by about 20-30%. The comparison of the presently studied diets with the ones from 1973, 1980, 1981 showed a lower degree of realization of the recommended intake of calcium and magnesium in 1986. The content of studied minerals in the diets was usually similar in all five regions.

  4. Experimental (FT-IR, FT-Raman, 1H NMR) and theoretical study of magnesium, calcium, strontium, and barium picolinates.

    PubMed

    Swiderski, G; Kalinowska, M; Wojtulewski, S; Lewandowski, W

    2006-05-01

    The experimental IR, Raman, and 1H NMR spectra of picolinic acid, as well as magnesium, calcium, strontium, and barium picolinates were registered, assigned and studied. Characteristic changes in the spectra of metal picolinates in comparison with the spectrum of ligand were observed, which lead to the conclusion that perturbation of the aromatic system of picolinates increases along with the series Mg-->Ca-->Sr-->Ba. Theoretical structures of beryllium and magnesium picolinates, as well as theoretical IR spectrum of magnesium picolinate were calculated in B3PW91/6-311++G(d, p) level. On the basis of calculated bond lengths in pyridine ring geometric, aromaticity indexes HOMA were calculated. The idea of these indexes is based on the fact that the essential factor in aromatic stabilization is the pi delocalization manifested in: planar geometry, equalization of the bond lengths and angles, and symmetry. The decidedly lower value of HOMA for magnesium picolinate (i.e. 0.545; 0.539) than that for beryllium picolinate (i.e. 0.998; 0.998) indicate higher aromatic properties of Be picolinate than of Mg picolinate. The comparison of theoretical and literature experimental structures of magnesium picolinate was done. The experimental structure contains two water molecules, so the calculations for hydrated magnesium picolinate were carried on, and the influence of coordinated water molecule on the structure of picolinates was discussed. The HOMAs for hydrated experimental and calculated Mg picolinate amount to 0.870; 0.743, and 0.900; 0.890, respectively, whereas for anhydrous structure, it is as described above, i.e. 0.545; 0.539. Thus, the calculations clearly showed that water molecules coordinated to the central atom weakens the effect of metal on the electronic system of ligand.

  5. Experimental (FT-IR, FT-Raman, 1H NMR) and theoretical study of magnesium, calcium, strontium, and barium picolinates

    NASA Astrophysics Data System (ADS)

    Świderski, G.; Kalinowska, M.; Wojtulewski, S.; Lewandowski, W.

    2006-05-01

    The experimental IR, Raman, and 1H NMR spectra of picolinic acid, as well as magnesium, calcium, strontium, and barium picolinates were registered, assigned and studied. Characteristic changes in the spectra of metal picolinates in comparison with the spectrum of ligand were observed, which lead to the conclusion that perturbation of the aromatic system of picolinates increases along with the series Mg → Ca → Sr → Ba. Theoretical structures of beryllium and magnesium picolinates, as well as theoretical IR spectrum of magnesium picolinate were calculated in B3PW91/6-311++G(d, p) level. On the basis of calculated bond lengths in pyridine ring geometric, aromaticity indexes HOMA were calculated. The idea of these indexes is based on the fact that the essential factor in aromatic stabilization is the π delocalization manifested in: planar geometry, equalization of the bond lengths and angles, and symmetry. The decidedly lower value of HOMA for magnesium picolinate (i.e. 0.545; 0.539) than that for beryllium picolinate (i.e. 0.998; 0.998) indicate higher aromatic properties of Be picolinate than of Mg picolinate. The comparison of theoretical and literature experimental structures of magnesium picolinate was done. The experimental structure contains two water molecules, so the calculations for hydrated magnesium picolinate were carried on, and the influence of coordinated water molecule on the structure of picolinates was discussed. The HOMAs for hydrated experimental and calculated Mg picolinate amount to 0.870; 0.743, and 0.900; 0.890, respectively, whereas for anhydrous structure, it is as described above, i.e. 0.545; 0.539. Thus, the calculations clearly showed that water molecules coordinated to the central atom weakens the effect of metal on the electronic system of ligand.

  6. Identifying calcium sources at an acid deposition-impacted spruce forest: a strontium isotope, alkaline earth element multi-tracer approach

    Treesearch

    Thomas D. Bullen; Scott W. Bailey

    2005-01-01

    Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources. but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration...

  7. EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc.

    PubMed

    Waters, R S; Bryden, N A; Patterson, K Y; Veillon, C; Anderson, R A

    2001-12-01

    The efficacy of a chelating agent in binding a given metal in a biological system depends on the binding constants of the chelator for the particular metals in the system, the concentration of the metals, and the presence and concentrations of other ligands competing for the metals in question. In this study, we make a comparison of the in vitro binding constants for the chelator, ethylenediaminetetraacetic acid, with the quantitative urinary excretion of the metals measured before and after EDTA infusion in 16 patients. There were significant increases in lead, zinc, cadmium, and calcium, and these increases roughly corresponded to the expected relative increases predicted by the EDTA-metal-binding constants as measured in vitro. There were no significant increases in urinary cobalt, chromium, or copper as a result of EDTA infusion. The actual increase in cobalt could be entirely attributed to the cobalt content of the cyanocobalamin that was added to the infusion. Although copper did increase in the post-EDTA specimens, the increase was not statistically significant. In the case of magnesium, there was a net retention of approximately 85% following chelation. These data demonstrate that EDTA chelation therapy results in significantly increased urinary losses of lead, zinc, cadmium, and calcium following EDTA chelation therapy. There were no significant changes in cobalt, chromium, or copper and a retention of magnesium. These effects are likely to have significant effects on nutrient concentrations and interactions and partially explain the clinical improvements seen in patients undergoing EDTA chelation therapy.

  8. Contribution of magnesium and micronutrients to bone metabolism in post menopausal women consuming a fixed amount of calcium and vitamin d: an exploratory study

    USDA-ARS?s Scientific Manuscript database

    Most research relating diet to bone health and osteoporosis has involved the roles of calcium, vitamin D,and their synergistic activity; however, other nutrients have been shown to also play pivotal roles. In the present study, associations between magnesium and other micronutrients on bone metaboli...

  9. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    NASA Astrophysics Data System (ADS)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. Ca-Al precursor (C3A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO4 LDH product. Ca-Al-CrO4 LDH phase occurred preferentially to Ca-Al-MCl2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist.

  10. Calcium, magnesium, and whole-milk intakes and high-aggressive prostate cancer in the North Carolina-Louisiana Prostate Cancer Project (PCaP).

    PubMed

    Steck, Susan E; Omofuma, Omonefe O; Su, L Joseph; Maise, Amanda A; Woloszynska-Read, Anna; Johnson, Candace S; Zhang, Hongmei; Bensen, Jeannette T; Fontham, Elizabeth T H; Mohler, James L; Arab, Lenore

    2018-05-01

    Calcium and dairy product intakes have been positively associated with prostate cancer risk. An imbalance in concentrations of calcium and magnesium has been associated with multiple chronic diseases, although few studies have examined the relation with prostate cancer aggressiveness. The goal of this study was to examine the association between dietary intakes of calcium and magnesium, the calcium-to-magnesium ratio (Ca:Mg), and dairy products and prostate cancer aggressiveness. Dietary intake was assessed with the use of an interviewer-administered modified National Cancer Institute Diet History Questionnaire in 996 African American and 1064 European American men with a recent histologically confirmed diagnosis of prostate cancer from the North Carolina-Louisiana Prostate Cancer Project (PCaP). High-aggressive disease was defined as Gleason sum ≥8, or prostate-specific antigen (PSA) >20 ng/mL, or Gleason score ≥7 and clinical stage T3-T4. The comparison group was all other prostate cancer cases. Logistic regression was used to determine the adjusted ORs and 95% CIs for high-aggressive prostate cancer by tertile of diet and supplement exposures. There was a positive association across tertiles of dietary Ca:Mg intake, with odds of high-aggressive prostate cancer in the upper tertiles as follows-OR for tertile 2 compared with tertile 1: 1.38 (95% CI: 1.01, 1.88); OR for tertile 3 compared with tertile 1: 1.46 (95% CI: 1.06, 2.02). When stratified by race, the positive association was more pronounced in African American men (OR for tertile 3 compared with tertile 2: 1.62; 95% CI: 1.04, 2.53). Men who reported the highest daily consumption of whole-fat milk had a 74% increased odds of high-aggressive prostate cancer compared with non-whole-fat milk drinkers, which was attenuated after adjustment for potential mediating factors, such as saturated fat and Ca:Mg intake. Among both African American and European American men diagnosed with prostate cancer, a higher Ca

  11. Nanostructured magnesium increases bone cell density.

    PubMed

    Weng, Lucy; Webster, Thomas J

    2012-12-07

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH(-) which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  12. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems.

  13. Effect of Sn4+ Additives on the Microstructure and Corrosion Resistance of Anodic Coating Formed on AZ31 Magnesium Alloy in Alkaline Solution

    NASA Astrophysics Data System (ADS)

    Salman, S. A.; Kuroda, K.; Saito, N.; Okido, M.

    Magnesium is the lightest structural metal with high specific strength and good mechanical properties. However, poor corrosion resistance limits its widespread use in many applications. Magnesium is usually treated with Chromate conversion coatings. However, due to changing environmental regulations and pollution prevention requirements, a significant push exists to find new, alternative for poisonous Cr6+. Therefore, we aim to improve corrosion resistance of anodic coatings on AZ31 alloys using low cost non-chromate electrolyte. Anodizing was carried out in alkaline solutions with tin additives. The effect of tin additives on the coating film was characterized by SEM and XRD. The corrosion resistance was evaluated using anodic and cathodic polarizations and electrochemical impedance spectroscopy (EIS). Corrosion resistance property was improved with tin additives and the best anti-corrosion property was obtained with addition of 0.03 M Na2SnO3.3H2O to anodizing solution.

  14. Potentiostatic pulse-deposition of calcium phosphate on magnesium alloy for temporary implant applications--an in vitro corrosion study.

    PubMed

    Kannan, M Bobby; Wallipa, O

    2013-03-01

    In this study, a magnesium alloy (AZ91) was coated with calcium phosphate using potentiostatic pulse-potential and constant-potential methods and the in vitro corrosion behaviour of the coated samples was compared with the bare metal. In vitro corrosion studies were carried out using electrochemical impedance spectroscopy and potentiodynamic polarization in simulated body fluid (SBF) at 37 °C. Calcium phosphate coatings enhanced the corrosion resistance of the alloy, however, the pulse-potential coating performed better than the constant-potential coating. The pulse-potential coating exhibited ~3 times higher polarization resistance than that of the constant-potential coating. The corrosion current density obtained from the potentiodynamic polarization curves was significantly less (~60%) for the pulse-deposition coating as compared to the constant-potential coating. Post-corrosion analysis revealed only slight corrosion on the pulse-potential coating, whereas the constant-potential coating exhibited a large number of corrosion particles attached to the coating. The better in vitro corrosion performance of the pulse-potential coating can be attributed to the closely packed calcium phosphate particles. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Magnesium-containing mixed coatings on zirconia for dental implants: mechanical characterization and in vitro behavior.

    PubMed

    Pardun, Karoline; Treccani, Laura; Volkmann, Eike; Streckbein, Philipp; Heiss, Christian; Gerlach, Juergen W; Maendl, Stephan; Rezwan, Kurosch

    2015-07-01

    An important challenge in the field of dental and orthopedic implantology is the preparation of implant coatings with bioactive functions that feature a high mechanical stability and at the same time mimic structural and compositional properties of native bone for a better bone ingrowth. This study investigates the influence of magnesium addition to zirconia-calcium phosphate coatings. The mixed coatings were prepared with varying additions of either magnesium oxide or magnesium fluoride to yttria-stabilized zirconia and hydroxyapatite. The coatings were deposited on zirconia discs and screw implants by wet powder spraying. Microstructure studies confirm a porous coating with similar roughness and firm adhesion not hampered by the coating composition. The coating morphology, mechanical flexural strength and calcium dissolution showed a magnesium content-dependent effect. Moreover, the in vitro results obtained with human osteoblasts reveal an improved biological performance caused by the presence of Mg(2+) ions. The magnesium-containing coatings exhibited better cell proliferation and differentiation in comparison to pure zirconia-calcium phosphate coatings. In conclusion, these results demonstrate that magnesium addition increases the bioactivity potential of zirconia-calcium phosphate coatings and is thus a highly suitable candidate for bone implant coatings. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. The Role of Magnesium in Post-thyroidectomy Hypocalcemia.

    PubMed

    Cherian, Anish Jacob; Gowri, Mahasampath; Ramakant, Pooja; Paul, Thomas V; Abraham, Deepak Thomas; Paul, Mazhuvanchary Jacob

    2016-04-01

    The purpose of this study was to determine the prevalence of hypomagnesemia in patients undergoing thyroidectomy and evaluate the relationship of hypomagnesemia with transient and severe hypocalcemia. This was a prospective observational study of 50 patients undergoing thyroidectomy. Blood samples were collected pre- and postoperatively for calcium, albumin, magnesium, phosphorous and parathormone (PTH). Signs, symptoms of hypocalcemia and volume of intravenous fluids used perioperatively were documented. The statistical analysis was performed using STATA I/C 10.1. Preoperatively, twelve patients (24 %) had hypomagnesemia and one (2 %) hypocalcemia. On the first postoperative day, hypomagnesemia was seen in 70 % and hypocalcemia in 30 %. A similar trend was observed in the fall and rise of postoperative calcium and magnesium values (p = 0.41). Severe hypocalcemia was present in three patients (6 %). All three patients had a very low postoperative PTH (<2 pg/ml). Among them, two patients (66 %) had hypomagnesemia and their hypocalcemia responded to intravenous magnesium correction. Significant risk factors for postoperative hypocalcemia include a higher volume of fluid used perioperatively and low postoperative PTH (<8 pg/ml) (p = 0.01 and 0.03, respectively). Preoperative hypomagnesemia (24 %) was prevalent in this cohort of patients. Postoperative hypomagnesemia is a common event (70 %) following total thyroidectomy, and magnesium levels tend to mimic the calcium levels postoperatively. The cause of hypocalcemia post-thyroidectomy in this study is mainly a factor of parathyroid function and fluid status. Severe hypocalcemia is a rare event, and hypomagnesemia is associated in the majority of these patients. The role of magnesium correction to alleviate severe hypocalcemia needs to be further studied.

  17. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibilitymore » issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].« less

  18. Physicochemical action of potassium-magnesium citrate in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pak, C. Y.; Koenig, K.; Khan, R.; Haynes, S.; Padalino, P.

    1992-01-01

    Effect of potassium-magnesium citrate on urinary biochemistry and crystallization of stone-forming salts was compared with that of potassium citrate at same dose of potassium in five normal subjects and five patients with calcium nephrolithiasis. Compared to the placebo phase, urinary pH rose significantly from 6.06 +/- 0.27 to 6.48 +/- 0.36 (mean +/- SD, p less than 0.0167) during treatment with potassium citrate (50 mEq/day for 7 days) and to 6.68 +/- 0.31 during therapy with potassium-magnesium citrate (containing 49 mEq K, 24.5 mEq Mg, and 73.5 mEq citrate per day). Urinary pH was significantly higher during potassium-magnesium citrate than during potassium citrate therapy. Thus, the amount of undissociated uric acid declined from 118 +/- 61 mg/day during the placebo phase to 68 +/- 54 mg/day during potassium citrate treatment and, more prominently, to 41 +/- 46 mg/day during potassium-magnesium citrate therapy. Urinary magnesium rose significantly from 102 +/- 25 to 146 +/- 37 mg/day during potassium-magnesium citrate therapy but not during potassium citrate therapy. Urinary citrate rose more prominently during potassium-magnesium citrate therapy (to 1027 +/- 478 mg/day from 638 +/- 252 mg/day) than during potassium citrate treatment (to 932 +/- 297 mg/day). Consequently, urinary saturation (activity product) of calcium oxalate declined significantly (from 1.49 x 10(-8) to 1.03 x 10(-8) M2) during potassium-magnesium citrate therapy and marginally (to 1.14 x 10(-8) M2) during potassium citrate therapy.(ABSTRACT TRUNCATED AT 250 WORDS).

  19. Magnesium Counteracts Vascular Calcification: Passive Interference or Active Modulation?

    PubMed

    Ter Braake, Anique D; Shanahan, Catherine M; de Baaij, Jeroen H F

    2017-08-01

    Over the last decade, an increasing number of studies report a close relationship between serum magnesium concentration and cardiovascular disease risk in the general population. In end-stage renal disease, an association was found between serum magnesium and survival. Hypomagnesemia was identified as a strong predictor for cardiovascular disease in these patients. A substantial body of in vitro and in vivo studies has identified a protective role for magnesium in vascular calcification. However, the precise mechanisms and its contribution to cardiovascular protection remain unclear. There are currently 2 leading hypotheses: first, magnesium may bind phosphate and delay calcium phosphate crystal growth in the circulation, thereby passively interfering with calcium phosphate deposition in the vessel wall. Second, magnesium may regulate vascular smooth muscle cell transdifferentiation toward an osteogenic phenotype by active cellular modulation of factors associated with calcification. Here, the data supporting these major hypotheses are reviewed. The literature supports both a passive inorganic phosphate-buffering role reducing hydroxyapatite formation and an active cell-mediated role, directly targeting vascular smooth muscle transdifferentiation. However, current evidence relies on basic experimental designs that are often insufficient to delineate the underlying mechanisms. The field requires more advanced experimental design, including determination of intracellular magnesium concentrations and the identification of the molecular players that regulate magnesium concentrations in vascular smooth muscle cells. © 2017 American Heart Association, Inc.

  20. Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means.

    PubMed

    Douglas, Timothy E L; Krawczyk, Grzegorz; Pamula, Elzbieta; Declercq, Heidi A; Schaubroeck, David; Bucko, Miroslaw M; Balcaen, Lieve; Van Der Voort, Pascal; Bliznuk, Vitaliy; van den Vreken, Natasja M F; Dash, Mamoni; Detsch, Rainer; Boccaccini, Aldo R; Vanhaecke, Frank; Cornelissen, Maria; Dubruel, Peter

    2016-11-01

    Mineralization of hydrogels, desirable for bone regeneration applications, may be achieved enzymatically by incorporation of alkaline phosphatase (ALP). ALP-loaded gellan gum (GG) hydrogels were mineralized by incubation in mineralization media containing calcium and/or magnesium glycerophosphate (CaGP, MgGP). Mineralization media with CaGP:MgGP concentrations 0.1:0, 0.075:0.025, 0.05:0.05, 0.025:0.075 and 0:0.1 (all values mol/dm 3 , denoted A, B, C, D and E, respectively) were compared. Mineral formation was confirmed by IR and Raman, SEM, ICP-OES, XRD, TEM, SAED, TGA and increases in the the mass fraction of the hydrogel not consisting of water. Ca was incorporated into mineral to a greater extent than Mg in samples mineralized in media A-D. Mg content and amorphicity of mineral formed increased in the order A < B < C < D. Mineral formed in media A and B was calcium-deficient hydroxyapatite (CDHA). Mineral formed in medium C was a combination of CDHA and an amorphous phase. Mineral formed in medium D was an amorphous phase. Mineral formed in medium E was a combination of crystalline and amorphous MgP. Young's moduli and storage moduli decreased in dependence of mineralization medium in the order A > B > C > D, but were significantly higher for samples mineralized in medium E. The attachment and vitality of osteoblastic MC3T3-E1 cells were higher on samples mineralized in media B-E (containing Mg) than in those mineralized in medium A (not containing Mg). All samples underwent degradation and supported the adhesion of RAW 264.7 monocytic cells, and samples mineralized in media A and B supported osteoclast-like cell formation. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  1. DISTILLATION OF CALCIUM

    DOEpatents

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  2. Magnesium based degradable biomaterials: A review

    NASA Astrophysics Data System (ADS)

    Gu, Xue-Nan; Li, Shuang-Shuang; Li, Xiao-Ming; Fan, Yu-Bo

    2014-09-01

    Magnesium has been suggested as a revolutionary biodegradable metal for biomedical applications. The corrosion of magnesium, however, is too rapid to match the rates of tissue healing and, additionally, exhibits the localized corrosion mechanism. Thus it is necessary to control the corrosion behaviors of magnesium for their practical use. This paper comprehensively reviews the research progress on the development of representative magnesium based alloys, including Mg-Ca, Mg-Sr, Mg-Zn and Mg-REE alloy systems as well as the bulk metallic glass. The influence of alloying element on their microstructures, mechanical properties and corrosion behaviors is summarized. The mechanical and corrosion properties of wrought magnesium alloys are also discussed in comparison with those of cast alloys. Furthermore, this review also covers research carried out in the field of the degradable coatings on magnesium alloys for biomedical applications. Calcium phosphate and biodegradable polymer coatings are discussed based on different preparation techniques used. We also compare the effect of different coatings on the corrosion behaviors of magnesium alloys substrate.

  3. Magnesium and anaesthesia.

    PubMed

    Soave, P M; Conti, G; Costa, R; Arcangeli, A

    2009-08-01

    to review current knowledge concerning the use of magnesium in anesthesiology, the role of hypomagnesemia and hypermagnesemia in perioperative period, analyzing the cardiologic problems related to blood serum concentration changes of magnesium that can interesting in primis the anaesthesist in perioperative period. References were obtained from Pubmed (1995 to 2009). All categories of articles were selected, such as reviews, meta-analyses, s, clinical trials etc). Magnesium is a bivalent ion, like calcium, the fourth most common cation in the body, and the second most common intracellular cation after potassium. Magnesium deficiency has been demonstrated in 7-11% of the hospitalized patients and it has been found to coexist with other electrolyte disorders, particulary hypokalaemia or hypophosphatemia and, to a less extent, hyponatraemia and hypocalcaemia, in more than 40% of patients. Hypomagnesemia needs to be detected and corrected to prevent increased morbidity and mortality. Historically, magnesium sulphate has been proposed as a general anaesthetic. Magnesium reduces the catecholamine release during the stressful manouvres like intubation. Magnesium has also anti-nociceptive effects in animal and human models of pain by blocking the N-methyl-D-aspartate receptor and the associated ion channels and thus preventing central sensitization caused by peripheral nociceptive stimulation. So for some authors it reduces the need for intraoperative anesthetics and relaxant drugs and reduces the amount of morphine for the treatment of pospoperative pain. The use of magnesium is extended not only to general anaesthesia but also in loco-regional anaesthesia. The role of magnesium has been extensively studied in cardiology especially during myocardial infarction, arrhythmia and cardiac surgery. Recent studies show the important of magnesium to prevent the postoperative neurocognitive impairment during carotid endoarterectomy and its utility in treatment of severe asthma

  4. The calcium content of human erythrocytes

    PubMed Central

    Harrison, D. G.; Long, C.

    1968-01-01

    1. The calcium content of human erythrocytes, after removal of the buffy coat and washing free from plasma with isotonic sodium chloride, has been determined by atomic absorption spectrophotometry. The mean value found for normal subjects was 0·634 μg/ml. of packed erythrocytes (0·0158 μg-atom/ml.). The corresponding values for magnesium and zinc were 79·7 and 20·1 μg/ml., respectively. 2. The calcium is considered to be mostly and perhaps exclusively located in the erythrocyte membrane, since, after osmotic haemolysis, the same amount was found in the ghost cells as was present in the erythrocytes from which they were prepared. By contrast, magnesium and zinc, which are essentially intracellular, were lost to the extent of about 96 and 92%, respectively. 3. About 90% of the calcium was removed from erythrocytes by washing with isotonic sodium chloride containing 5 mM ethylenediaminetetraacetate (EDTA), or other complexing agents of high stability constant for calcium. A small fraction of the magnesium but none of the zinc was removed by this treatment. 4. Other complexing agents of lower stability constant removed somewhat less calcium from the erythrocytes. Citrate was totally ineffective. 5. The buffy coat had a high calcium content, but this could not be removed by washing with EDTA. 6. Calcium was also determined in trichloroacetic acid extracts of ghost cells after ashing and treatment with bis-(o-hydroxyphenylimino)-ethane and measuring the red complex spectrophotometrically. The values obtained confirmed the atomic absorption measurements. PMID:4972779

  5. Influence of injected caffeine on the metabolism of calcium and the retention and excretion of sodium, potassium, phosphorus, magnesium, zinc and copper in rats.

    PubMed

    Yeh, J K; Aloia, J F; Semla, H M; Chen, S Y

    1986-02-01

    Mineral metabolism was studied by the metabolic balance technique in rats with and without administration of caffeine. Caffeine was injected subcutaneously each day at either 2.5 mg or 10 mg/100 g body weight for 2 wk before the balance studies. Urinary volume excretion was higher in the group given caffeine than in the control group, but the creatinine clearance was not different. Urinary excretion of potassium, sodium, inorganic phosphate, magnesium and calcium, but not of zinc and copper, was also higher in the rats given caffeine. The rank order of the difference was the same as the percent of ingested mineral excreted in urine in the absence of caffeine. Caffeine caused a negative balance of potassium, sodium and inorganic phosphate. There was no significant difference from the control levels and in the apparent metabolic balance of calcium and magnesium. The urinary and fecal excretion of zinc and copper were found to be unaffected by caffeine. It is suggested that chronic administration of caffeine may lead to a tendency toward deficiency of those minerals that are excreted primarily in urine.

  6. A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium.

    PubMed

    Zhang, Yufen; Feyerabend, Frank; Tang, Shawei; Hu, Jin; Lu, Xiaopeng; Blawert, Carsten; Lin, Tiegui

    2017-09-01

    Calcium stearate based super-hydrophobic coating was deposited on plasma electrolytic oxidation (PEO) pre-treated magnesium substrate. The pre-treated magnesium and super-hydrophobic coating covered sample were characterized by scanning electron microscopy, X-ray diffraction and electrochemical corrosion measurements. The cytocompatibility and degradation resistance of magnesium, pre-treated magnesium and super-hydrophobic coating were analysed in terms of cell adhesion and osteoblast differentiation. The results indicate that the calcium stearate top coating shows super-hydrophobicity and that the surface is composed of micro/nanostructure. The super-hydrophobic coating covered sample shows higher barrier properties compared with the PEO pre-treated magnesium and bare magnesium. Human osteoblast proliferation, but not differentiation is enhanced by the PEO coating. Contrary, the super-hydrophobic coating reduces proliferation, but enhances differentiation of osteoblast, observable by the formation of hydroxyapatite. The combination of corrosion protection and cell reaction indicates that this system could be interesting for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Lithium-aluminum-magnesium electrode composition

    DOEpatents

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  8. Effects of a magnesium-free dialysate on magnesium metabolism during continuous ambulatory peritoneal dialysis.

    PubMed

    Shah, G M; Winer, R L; Cutler, R E; Arieff, A I; Goodman, W G; Lacher, J W; Schoenfeld, P Y; Coburn, J W; Horowitz, A M

    1987-10-01

    While the use of magnesium-containing compounds is usually contraindicated in dialysis patients, the risk of toxicity from hypermagnesemia can be reduced by lowering the magnesium concentration in dialysate. We examined the effects of a magnesium-free dialysate on both serum magnesium level and the peritoneal removal rate of magnesium over 12 weeks in 25 stable patients undergoing continuous ambulatory peritoneal dialysis (CAPD). After 2 weeks, the serum magnesium level decreased from 2.2 to 1.9 mg/dL (0.9 to 0.8 mmol/L) (P less than .02) and the peritoneal removal rate increased from 66 to 83 mg/d (2.8 to 3.5 mmol/d) (P less than .05), with both values remaining stable thereafter. There was a strong association between these parameters (r = -0.62, P less than .05), suggesting that the serum magnesium level decreased as a result of the initial increased peritoneal removal rate. For an additional 4-week period, a subgroup of nine patients received magnesium-containing, phosphate binding agents instead of those containing only aluminum. During this phase, serum inorganic phosphorus was well controlled. The serum magnesium level increased only from 1.8 to 2.5 mg/dL (0.7 to 1.0 mmol/L) (P less than .05), due in great part to the concomitant 41% rise in peritoneal magnesium removal from 91 to 128 mg/d (3.8 to 5.3 mmol/d) (P less than .05). No toxicity was noted during the entire 16-week study period, nor did serum calcium change. Thus, serum magnesium levels remained within an acceptable range as magnesium-containing phosphate binders were given through the use of magnesium-free peritoneal dialysate.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Obsidian hydration profiles measured by sputter-induced optical emission.

    PubMed

    Tsong, I S; Houser, C A; Yusef, N A; Messier, R F; White, W B; Michels, J W

    1978-07-28

    The variation of concentrations of hydrogen, sodium, potassium, lithium, calcium, magnesium, silicon, and aluminum as a function of depth in the hydration layer of obsidian artifacts has been determined by sputter-induced optical emission. The surface hydration is accompanied by dealkalization, and there is a buildup of alkaline earths, calcium and magnesium in the outermost layers. These results have clarified the phenomena underlying the obsidian hydration dating technique.

  10. Calcium and nitrogen balance, experiment M007

    NASA Technical Reports Server (NTRS)

    Whedon, G. D.; Lutwak, L.; Neuman, W. F.; Lachance, P. A.

    1971-01-01

    The collection of data on the response of the skeletal and muscular systems to 14-day space flights was evaluated for loss of calcium, nitrogen, and other metabolically related elements. Considerable interindividual variability was demonstrated in all experimental factors that were measured. Calcium balance became less positive and urinary phosphate excretion increased substantially in flight despite a reduction in phosphate intake. Patterns of excretion of magnesium, sodium, potassium, and chloride were different for each subject, and, in part, could be correlated with changes in adrenocortical steroid production. The principal hormonal change was a striking decrease during flight in the urinary excretion of 17-hydroxycortocosteroids. Dermal losses of calcium, magnesium, sulfate, and phosphate were insignificant during all three phases.

  11. Magnesium and zinc borate enhance osteoblastic differentiation of stem cells from human exfoliated deciduous teeth in vitro.

    PubMed

    Liu, Yao-Jen; Su, Wen-Ta; Chen, Po-Hung

    2018-01-01

    Various biocompatible and biodegradable scaffolds blended with biochemical signal molecules with adequate osteoinductive and osteoconductive properties have attracted significant interest in hard tissue engineering regeneration. We evaluated the distinct effects of magnesium borate, zinc borate, and boric acid blended into chitosan scaffold for osteogenic differentiation of stem cells from exfoliated deciduous teeth. Stem cells from exfoliated deciduous teeth cells are a potential source of functional osteoblasts for applications in bone tissue engineering, but the efficiency of osteoblastic differentiation is low, thereby significantly limiting their clinical applications. Divalent metal borates have potential function in bone remodeling because they can simulate bone formation and decrease bone resorption. These magnesium, zinc, and B ions can gradually be released into the culture medium from the scaffold and induce advanced osteoblastic differentiation from stem cells from exfoliated deciduous teeth. Stem cells from exfoliated deciduous teeth with magnesium borate or zinc borate as inducer demonstrated more osteoblastic differentiation after 21 days of culture. Differentiated cells exhibited activity of alkaline phosphatase, bone-related gene expression of collagen type I, runt-related transcription factor 2, osteopontin, osteocalcin, vascular endothelial growth factor, and angiopoietin-1, as noted via real-time polymerase chain reaction analysis, as well as significant deposits of calcium minerals. Divalent mental magnesium and zinc and nonmetal boron can be an effective inducer of osteogenesis for stem cells from exfoliated deciduous teeth. This experiment might provide useful inducers for osteoblastic differentiation of stem cells from exfoliated deciduous teeth for tissue engineering and bone repair.

  12. Understanding growth mechanisms and tribocorrosion behaviour of porous TiO2 anodic films containing calcium, phosphorous and magnesium

    NASA Astrophysics Data System (ADS)

    Oliveira, Fernando G.; Ribeiro, Ana R.; Perez, Geronimo; Archanjo, Bráulio S.; Gouvea, Cristol P.; Araújo, Joyce R.; Campos, Andrea P. C.; Kuznetsov, Alexei; Almeida, Clara M.; Maru, Márcia M.; Achete, Carlos A.; Ponthiaux, Pierre; Celis, Jean-Pierre; Rocha, Luis A.

    2015-06-01

    The growth of the dental implant market increases the concern regarding the quality, efficiency, and lifetime of dental implants. Titanium and its alloys are dominant materials in this field thanks to their high biocompatibility and corrosion resistance, but they possess a very low wear resistance. Besides problems related to osteointegration and bacterial infections, tribocorrosion phenomena being the simultaneous action between corrosion and wear, are likely to occur during the lifetime of the implant. Therefore, tribocorrosion resistant surfaces are needed to guarantee the preservation of dental implants. This work focused on the incorporation of magnesium, together with calcium and phosphorous, in the structure of titanium oxide films produced by micro-arc oxidation (MAO). The characterization of morphology, chemical composition, and crystalline structure of the surfaces provided important insights leading to (1) a better understanding of the oxide film growth mechanisms during the MAO treatment; and (2) a better awareness on the degradation process during tribocorrosion tests. The addition of magnesium was shown to support the formation of rutile which improves the tribocorrosion properties of the surfaces.

  13. Bioavailability of iodine and hardness (magnesium and calcium salt) in drinking water in the etiology of endemic goitre in Sundarban delta of West Bengal (India).

    PubMed

    Chandra, Amar K; Tripathy, Smritiratan; Debnath, Arijit; Ghosh, Dishari

    2007-04-01

    Endemic goitre has been reported from the ecologically diverse Sundarban delta of West Bengal (India). To study the etiological factors for the persistence of endemic goitre, bioavailability of iodine and hardness of water used for drinking in the region were evaluated because these common environmental factors are inversely and directly related with goitre prevalence in several geographical regions. For the present study from 19 Community Development Blocks of Sundarban delta, 19 areas were selected at random. From each area at least 8 drinking water samples were collected and analyzed for iodine and the hardness (calcium and magnesium salt content). Iodine content in the drinking water samples was found in the range from 21 to 119 mg/L and total hardness of drinking water was found to range from 50 to 480 ppm. Presence of magnesium salt was found higher than the calcium salts in most of the samples. These findings suggest that the entire delta region is environmentally iodine sufficient but water is relatively hard and thus possibility of hardness of water for the persistence of endemic goitre may not be ruled out.

  14. Electrodeposited inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Carson, W. N., Jr.; Consiglio, J. A.; Mc Quade, J. M.

    1970-01-01

    Coating electrodes of silver-cadmium cells with thermostable electrodeposits of calcium hydroxide or magnesium hydroxide reduces silver migration and increases cell life. Absence of organic matter enables assembled cells to be sterilized without oxidation of the material of the separators.

  15. Enhanced NO2 abatement by alkaline-earth modified g-C3N4 nanocomposites for efficient air purification

    NASA Astrophysics Data System (ADS)

    Papailias, Ilias; Todorova, Nadia; Giannakopoulou, Tatiana; Karapati, Sofia; Boukos, Nikos; Dimotikali, Dimitra; Trapalis, Christos

    2018-02-01

    The emission of nitrogen dioxide (NO2) is a major problem encountered in photocatalytic NOx removal for air purification. Although the oxidation of nitric oxide (NO) has been extensively studied, the elimination of NO2 byproduct is still in preliminary stage. In this work, alkaline-earth modified graphitic carbon nitride (g-C3N4) is proposed for efficient NOx removal by minimizing the emission of NO2 during the NO oxidation process. The novel photocatalysts were synthesized by annealing mixtures of melamine and various alkaline-earth acetates (magnesium, calcium and barium acetate) at 550 °C for 3 h. The specific surface area of the photocatalysts varied between 4.65 and 11.81 m2/g. The formation of MgO, CaCO3 and BaCO3 was demonstrated by XPS and FT-IR analyses. The initial concentration of each alkaline-earth precursor was 5 and 10 wt%, while the final metal concentration in the nanocomposites was in the range of 7.19-22.39 wt%. The modified photocatalysts showed slightly reduced NO oxidation ability. However, the overall air quality was significantly improved by restraining the NO2 emission. The results were related to the basic character of the nanocomposites due to the presence of alkaline-earths and their enhanced NO2 adsorption capability.

  16. A Study on Factors Affecting the Degradation of Magnesium and a Magnesium-Yttrium Alloy for Biomedical Applications

    PubMed Central

    Johnson, Ian; Liu, Huinan

    2013-01-01

    Controlling degradation of magnesium or its alloys in physiological saline solutions is essential for their potential applications in clinically viable implants. Rapid degradation of magnesium-based materials reduces the mechanical properties of implants prematurely and severely increases alkalinity of the local environment. Therefore, the objective of this study is to investigate the effects of three interactive factors on magnesium degradation, specifically, the addition of yttrium to form a magnesium-yttrium alloy versus pure magnesium, the metallic versus oxide surfaces, and the presence versus absence of physiological salt ions in the immersion solution. In the immersion solution of phosphate buffered saline (PBS), the magnesium-yttrium alloy with metallic surface degraded the slowest, followed by pure magnesium with metallic or oxide surfaces, and the magnesium-yttrium alloy with oxide surface degraded the fastest. However, in deionized (DI) water, the degradation rate showed a different trend. Specifically, pure magnesium with metallic or oxide surfaces degraded the slowest, followed by the magnesium-yttrium alloy with oxide surface, and the magnesium-yttrium alloy with metallic surface degraded the fastest. Interestingly, only magnesium-yttrium alloy with metallic surface degraded slower in PBS than in DI water, while all the other samples degraded faster in PBS than in DI water. Clearly, the results showed that the alloy composition, presence or absence of surface oxide layer, and presence or absence of physiological salt ions in the immersion solution all influenced the degradation rate and mode. Moreover, these three factors showed statistically significant interactions. This study revealed the complex interrelationships among these factors and their respective contributions to degradation for the first time. The results of this study not only improved our understanding of magnesium degradation in physiological environment, but also presented the key

  17. Investigating aquifer contamination and groundwater quality in eastern Terai region of Nepal.

    PubMed

    Mahato, Sanjay; Mahato, Asmita; Karna, Pankaj Kumar; Balmiki, Nisha

    2018-05-21

    This study aims at assessing the groundwater quality of the three districts of Eastern Terai region of Nepal viz. Morang, Jhapa, Sunsari using physicochemical characteristics and statistical approach so that possible contamination of water reservoir can be understood. pH, temperature, conductivity, turbidity, color, total dissolved solids, fluorides, ammonia, nitrates, chloride, total hardness, calcium hardness, calcium, magnesium, total alkalinity, iron, manganese, arsenic have to be analyzed to know the present status of groundwater quality. Results revealed that the value of analyzed parameters were within the acceptable limits for drinking water recommended by World Health Organization except for pH, turbidity, ammonia and iron. As per Nepal Drinking Water Quality Standards, fluoride and manganese too were not complying with the permissible limit. Electrical conductivity, total dissolved solids, chloride, total hardness, calcium hardness, manganese, and total alkalinity show good positive correlation with major water quality parameters. Calcium, magnesium, total hardness, calcium hardness and total alkalinity greatly influences total dissolved solids and electrical conductivity. ANOVA, Tukey, and clustering highlight the significance of three districts. Groundwater can be considered safe, but there is always a chance of contamination through chemical wastes in the heavily industrialized area of Morang and Sunsari Industrial corridor.

  18. Regulation of the reserve carbohydrate metabolism by alkaline pH and calcium in Neurospora crassa reveals a possible cross-regulation of both signaling pathways.

    PubMed

    Virgilio, Stela; Cupertino, Fernanda Barbosa; Ambrosio, Daniela Luz; Bertolini, Maria Célia

    2017-06-09

    Glycogen and trehalose are storage carbohydrates and their levels in microorganisms vary according to environmental conditions. In Neurospora crassa, alkaline pH stress highly influences glycogen levels, and in Saccharomyces cerevisiae, the response to pH stress also involves the calcineurin signaling pathway mediated by the Crz1 transcription factor. Recently, in yeast, pH stress response genes were identified as targets of Crz1 including genes involved in glycogen and trehalose metabolism. In this work, we present evidence that in N. crassa the glycogen and trehalose metabolism is modulated by alkaline pH and calcium stresses. We demonstrated that the pH signaling pathway in N. crassa controls the accumulation of the reserve carbohydrates glycogen and trehalose via the PAC-3 transcription factor, which is the central regulator of the signaling pathway. The protein binds to the promoters of most of the genes encoding enzymes of glycogen and trehalose metabolism and regulates their expression. We also demonstrated that the reserve carbohydrate levels and gene expression are both modulated under calcium stress and that the response to calcium stress may involve the concerted action of PAC-3. Calcium activates growth of the Δpac-3 strain and influences its glycogen and trehalose accumulation. In addition, calcium stress differently regulates glycogen and trehalose metabolism in the mutant strain compared to the wild-type strain. While glycogen levels are decreased in both strains, the trehalose levels are significantly increased in the wild-type strain and not affected by calcium in the mutant strain when compared to mycelium not exposed to calcium. We previously reported the role of PAC-3 as a transcription factor involved in glycogen metabolism regulation by controlling the expression of the gsn gene, which encodes an enzyme of glycogen synthesis. In this work, we extended the investigation by studying in greater detail the effects of pH on the metabolism of the

  19. NMR studies of intracellular free calcium, free magnesium and sodium in the guinea pig reticulocyte and mature red cell.

    PubMed

    Jelicks, L A; Weaver, J; Pollack, S; Gupta, R K

    1989-08-15

    During the maturation process reticulocytes lose their intracellular organelles and undergo changes in membrane lipid composition and ion transport properties. While several reports indicate differences in the levels of magnesium, sodium and calcium in reticulocytes and erythrocytes, controversy remains concerning the actual magnitude and direction of ionic alterations during reticulocyte maturation. One problem with all of these studies is that the techniques used are invasive and are limited to measuring only the total cell ion content. We have used 31P, 23Na and 19F nuclear magnetic resonance (NMR) spectroscopy to compare the intracellular free ion and phosphometabolite levels in guinea pig reticulocytes and mature red blood cells. In contrast to a sharply decreased concentration of ATP in erythrocytes in comparison to reticulocytes, the intracellular free magnesium, measured using 31P-NMR, was increased by about 65% upon maturation (150 mumol/l cell water in reticulocytes in comparison to 250 mumol/l cell water in erythrocytes). Sizeable but opposite changes in intracellular sodium (5.5 mumol/ml cells in reticulocytes vs. 8.5 mumol/ml cells in erythrocytes) and intracellular free calcium (99 nM vs. 31 nM in reticulocytes and mature red cells, respectively) were also observed, suggesting that alterations in the kinetics of membrane ion transport systems, accompanying changes in phospholipid and cholesterol content, occur during the process of red cell maturation. However, in contrast to dog red blood cells, there was no evidence for the presence of a Na+/Ca2+ exchanger in guinea pig reticulocytes or erythrocytes.

  20. Increased water hardness and magnesium levels may increase occurrence of urolithiasis in cows from the Burdur region (Turkey).

    PubMed

    Sahinduran, S; Buyukoglu, T; Gulay, M S; Tasci, F

    2007-08-01

    Objectives of the study were to measure water hardness in Burdur, and to establish its possible association with urolithiasis in cattle. Water samples were obtained from different stables (n = 15). Water hardness and the concentrations of potassium, calcium, magnesium, sodium, iron, zinc, manganese and copper ions were calculated from these water samples. Total hardness of the samples (mean 285 ppm) exceeded the standards and the water was characterized by high content of magnesium ions. Kidneys (n = 500) were collected randomly from slaughterhouses and examined for urolithiasis. Urolithiasis was observed in 102 kidneys (20.4%). The weights of the stones were between 0.02 and 237.44 g and the colour varied from white to brown. The calculi collected had various shapes and composed of calcium apatite (42.45%), struvite (20.15%), magnesium carbonate (15.15%), calcium carbonate (12.12%), and calcium phosphate cystine (10.13%). It was concluded that high water hardness with high magnesium ion concentrations in water may contribute to urolithiasis and needs to be investigated further in future studies.

  1. Aspects of calcium oxalate crystallization: theory, in vitro studies, and in vivo implementation.

    PubMed

    Rodgers, A

    1999-11-01

    There are three main approaches to urolithiasis research: theory, basic science, and clinical implementation. Although each approach has yielded meaningful results, there does not appear to be complete synergy between them. This article examines these approaches as they pertain to urinary calcium oxalate crystallization processes. Theoretical calculations were performed to examine the role of oxalate concentration on calcium oxalate supersaturation. The effects of magnesium, citrate, and combinations thereof on calcium oxalate crystallization kinetics were examined in a mixed suspension, mixed product removal crystallizer. Finally, male volunteers were given supplements of calcium alone and binary combinations of calcium, magnesium, and citrate to investigate their effects on the urinary supersaturation of calcium oxalate. Calculations showed that oxalate is 23 times more potent than calcium in its effect on the supersaturation of calcium oxalate. In the in vitro experiments, magnesium and citrate reduced the growth and nucleation kinetics as well as the supersaturation. In combination, these two components were more effective than the individual components in reducing the growth rate and the supersaturation. All of the supplements favorably altered the kinetic and thermodynamic risk factors. Calcium was the most effective in reducing the urinary excretion of oxalate. Articulation of these three approaches is essential for the meaningful investigation and understanding of urolithiasis.

  2. Calcium nephrolithiasis: effect of water hardness on urinary electrolytes.

    PubMed

    Schwartz, Bradley F; Schenkman, Noah S; Bruce, Jeremy E; Leslie, Stephen W; Stoller, Marshall L

    2002-07-01

    To analyze the impact of water hardness from public water supplies on calcium stone incidence and 24-hour urine chemistries in patients with known calcium urinary stone formation. Patients are frequently concerned that their public water supply may contribute to urinary stone disease. Investigators have documented an inverse relationship between water hardness and calcium lithogenesis. Others have found no such association. Patients who form calcium stones (n = 4833) were identified geographically by their zip code. Water hardness information from distinct geographic public water supplies was obtained, and patient 24-hour urine chemistries were evaluated. Drinking water hardness was divided into decile rankings on the basis of the public water supply information obtained from the Environmental Protection Agency. These data were compared with patient questionnaires and 24-hour urine chemistries. The calcium and magnesium levels in the drinking water were analyzed as independent variables. The number of total lifetime stone episodes was similar between patients residing in areas with soft public water and hard public water. Patients consuming the softest water decile formed 3.4 lifetime stones and those who consumed the hardest water developed 3.0 lifetime stones (P = 0.0017). The 24-hour urine calcium, magnesium, and citrate levels increased directly with drinking water hardness, and no significant change was found in urinary oxalate, uric acid, pH, or volume. The impact of water hardness on urinary stone formation remains unclear, despite a weak correlation between water hardness and urinary calcium, magnesium, and citrate excretion. Tap water, however, can change urinary electrolytes in patients who form calcium stones.

  3. Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods.

    PubMed

    Potumarthi, Ravichandra; Subhakar, Ch; Pavani, A; Jetty, Annapurna

    2008-04-01

    Calcium-alginate immobilization method for the production of alkaline protease by Bacillus licheniformis NCIM-2042 was optimized statistically. Four variables, such as sodium-alginate concentration, calcium chloride concentration, inoculum size and agitation speed were optimized by 2(4) full factorial central composite design and subsequent analysis and model validation by a second-order regression equation. Eleven carbon, 11 organic nitrogen and seven inorganic nitrogen sources were screened by two-level Plackett-Burman design for maximum alkaline protease production by using optimized immobilized conditions. The levels of four variables, such as Na-alginate 2.78%; CaCl(2), 2.15%; inoculum size, 8.10% and agitation, 139 rpm were found to be optimum for maximal production of protease. Glucose, soybean meal and ammonium sulfate were resulted in maximum protease production at 644 U/ml, 720 U/ml, and 806 U/ml when screened for carbon, organic nitrogen and inorganic nitrogen sources, respectively, using optimized immobilization conditions. Repeated fed batch mode of operation, using optimized immobilized conditions, resulted in continuous operation for 12 cycles without disintegration of beads. Cross-sectional scanning electron microscope images have shown the growth pattern of B. licheniformis in Ca-alginate immobilized beads.

  4. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration

    PubMed Central

    Mushahary, Dolly; Sravanthi, Ragamouni; Li, Yuncang; Kumar, Mahesh J; Harishankar, Nemani; Hodgson, Peter D; Wen, Cuie; Pande, Gopal

    2013-01-01

    Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants. PMID:23976848

  5. Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition.

    PubMed

    Cui, W; Beniash, E; Gawalt, E; Xu, Z; Sfeir, C

    2013-11-01

    Degradable metals have been suggested as biomaterials with revolutionary potential for bone-related therapies. Of these candidate metals, magnesium alloys appear to be particularly attractive candidates because of their non-toxicity and outstanding mechanical properties. Despite their having been widely studied as orthopedic implants for bone replacement/regeneration, their undesirably rapid corrosion rate under physiological conditions has limited their actual clinical application. This study reports the use of a novel biomimetic peptide coating for Mg alloys to improve the alloy corrosion resistance. A 3DSS biomimetic peptide is designed based on the highly acidic, bioactive bone and dentin extracellular matrix protein, phosphophoryn. Surface characterization techniques (scanning electron microscopy, energy dispersive X-ray spectroscopy and diffuse-reflectance infrared spectroscopy) confirmed the feasibility of coating the biomimetic 3DSS peptide onto Mg alloy AZ31B. The 3DSS peptide was also used as a template for calcium phosphate deposition on the surface of the alloy. The 3DSS biomimetic peptide coating presented a protective role of AZ31B in both hydrogen evolution and electrochemical corrosion tests. Copyright © 2013. Published by Elsevier Ltd.

  6. Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement via macrophage immunomodulation.

    PubMed

    Wang, Meng; Yu, Yuanman; Dai, Kai; Ma, Zhengyu; Liu, Yang; Wang, Jing; Liu, Changsheng

    2016-10-18

    Immune responses are vital for bone regeneration and play an essential role in the fate of biomaterials after implantation. As a kind of plastic cell, macrophages are central regulators of the immune response during the infection and wound healing process including osteogenesis and angiogenesis. Magnesium-calcium phosphate cement (MCPC) has been reported as a promising candidate for bone repair with promoted osteogenesis both in vitro and in vivo. However, relatively little is known about the effects of MCPC on immune response and the following outcome. In this study, we investigated the interactions between macrophages and MCPC. Here we found that the pro-inflammatory cytokines including TNF-α and IL-6 were less expressed and the bone repair related cytokine of TGF-β1 was up-regulated by macrophages in MCPC extract. Furthermore, the enhanced osteogenic capacity of BMSCs and angiogenic potential of HUVECs were acquired in vitro by the MCPC-induced immune microenvironment. These findings suggest that MCPC is able to facilitate bone healing by endowing favorable osteoimmunomodulatory properties and influencing crosstalk behavior between immune cells and osteogenesis-related cells.

  7. 77 FR 33165 - Pure Magnesium in Granular Form From the People's Republic of China: Final Results of Expedited...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Department is aware used to make such excluded reagents are: lime, calcium metal, calcium silicon, calcium.../mischmetal, cryolite, silica/fly ash, magnesium oxide, periclase, ferroalloys, dolomitic lime, and colemanite...

  8. Effect of increased magnesium intake on plasma cholesterol, triglyceride and oxidative stress in alloxan-diabetic rats.

    PubMed

    Olatunji, L A; Soladoye, A O

    2007-06-01

    Cardiovascular disorders are the primary causes of morbidity and mortality in patients with diabetes mellitus (DM). Agents that improve lipid profile and reduce oxidative stress have been shown to reduce the ensuing risk factors. In the present study, we investigated whether increased magnesium intake could improve hyperglycaemia, dyslipidaemia, and reduce oxidative stress in alloxan-induced diabetic rats. Male Wistar rats were divided into non-diabetic (ND), diabetic (DM) and diabetic fed on a high magnesium diet (DM-Mg) groups. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) were used as markers of oxidative stress. Plasma levels of ascorbic acid, magnesium and calcium were also determined. Diabetes was induced by injecting alloxan (100 mg/kg B.W). The fasting blood glucose levels were significantly lower in the DM-Mg rats than in the DM rats. Plasma total cholesterol, triglyceride, TBARS levels were significantly higher while plasma HDL-cholesterol, HDL-cholesterol/total cholesterol ratio, ascorbic acid levels were significantly lowered in DM rats compared with the ND rats. Increased intake of magnesium significantly abrogated these alterations. There were no significant differences in the plasma levels of magnesium and calcium between the DM and ND groups. However, plasma levels of magnesium but not calcium were significantly elevated in DM-Mg rats when compared with other groups. In conclusion, these results suggest that diet rich in magnesium could exert cardioprotective effect through reduced plasma total cholesterol, triglyceride, oxidative stress and ameliorated HDL-cholesterol/total cholesterol ratio as well as increased plasma ascorbic acid and magnesium in diabetic rats.

  9. Probing the limit of magnesium uptake by β-tricalcium phosphate in biphasic mixtures formed from calcium deficient apatites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, P. Nandha; Mishra, Sandeep K.; Kannan, S., E-mail: para_kanna@yahoo.com

    2015-11-15

    A series of magnesium doped non-stoichiometric calcium deficient apatites were synthesized through an aqueous precipitation route. The resultant structural changes during heat treatment were investigated by X-ray diffraction, Raman and FT-IR spectroscopy and Rietveld refinement. The results confirmed the formation of biphasic mixtures comprising Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} and β-Ca{sub 3}(PO{sub 4}){sub 2} after heat treatment at 1000 °C with the preferential occupancy of Mg{sup 2+} at the crystal lattice of β-Ca{sub 3}(PO{sub 4}){sub 2}. The concentration of Mg{sup 2+} uptake in β-Ca{sub 3}(PO{sub 4}){sub 2} is limited till reaching the stoichiometric ratio of (Ca+Mg)/P=1.67 and beyond this stoichiometricmore » value [(Ca+Mg)/P>1.67], Mg{sup 2+} precipitates as Mg(OH){sub 2} and thereafter gets converted to MgO during heat treatment. Any kind of Mg{sup 2+} uptake in the crystal lattice of Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} is discarded from the investigation. - Highlights: • Aqueous co-precipitation of calcium deficient apatites with excess magnesium (Mg{sup 2+}) additions. • Heat treatments beyond 800 °C results in the formation of biphasic apatite mixtures. • Mg{sup 2+} gets accommodated at the β-Ca{sub 3}(PO{sub 4}){sub 2} lattice of biphasic mixtures. • Mg{sup 2+} additions exceeding stoichiometric value (Ca/P>1.67) results in its formation as MgO. • Mg{sup 2+} occupancy at β-Ca{sub 3}(PO{sub 4}){sub 2} lattice delays its allotropic conversion α-Ca{sub 3}(PO{sub 4}){sub 2} till 1350 °C.« less

  10. Determination of the Effects of Magnesium on the Structural Order of Amorphous Calcium Phosphate

    NASA Astrophysics Data System (ADS)

    Hoeher, A.; Michel, F. M.; Rakovan, J. F.; Borkiewicz, O.; Klysubun, W.

    2016-12-01

    Determining the pathways and mechanisms of calcium phosphate formation is important for understanding bone mineralization and advancing potential biological applications such as coatings on internal prosthetics. Studies show that amorphous calcium phosphate (ACP) is a precursor phase in the low temperature crystallization of hydroxylapatite, the primary mineral component found in bone and teeth of most modern vertebrates. ACP has been shown to have a structural order out to about 1 nm. Our recent extended x-ray absorption fine structure (EXAFS) spectroscopy analysis of synthetic ACP showed that the local structure of calcium in ACP differed from that in hydroxylapatite. Phosphorus EXAFS, however, indicated that the local structure in ACP is similar to hydroxylapatite (i.e., tetrahedrally coordinated with oxygen). EXAFS results were limited to only the first and second nearest neighbors in these samples, so the intermediate range order in ACP is yet unexplored. Furthermore, it remains unclear how ACP structure varies as a function of initial solution chemistry, how common impurities such as Mg are incorporated, and what role they play in determining the structural and physical characteristics of the final crystalline solid. We are using synchrotron x-ray total scattering for pair distribution function (PDF) analysis to investigate the influence of initial solution chemistry and Mg content on the structure of ACP. Magnesium is commonly used to stabilize the amorphous nature of the material, preventing crystallization. Ex situ samples synthesized at pH 10, with Ca:Mg ratios of 2:1, and freeze-dried are structurally similar to hydroxylapatite. Samples synthesized in identical conditions without Mg are structurally similar to another calcium phosphate mineral, brushite. In situ PDF measurements done at similar conditions in a custom mixed-flow reactor reveal that the short range order of ACP after 10 minutes of reacting is structurally different from ACP formed ex situ

  11. Electrochemical cell with calcium anode

    DOEpatents

    Cooper, John F.; Hosmer, Pamela K.; Kelly, Benjamin E.

    1979-01-01

    An electrochemical cell comprising a calcium anode and a suitable cathode in an alkaline electrolyte consisting essentially of an aqueous solution of an hydroxide and a chloride. Specifically disclosed is a mechanically rechargeable calcium/air fuel cell with an aqueous NaOH/NaCl electrolyte.

  12. Alkaline phosphatase as a screening test for osteomalacia.

    PubMed

    Chinoy, Muhammad Amin; Javed, Muhammad Imran; Khan, Alamzeb; Sadruddin, Nooruddin

    2011-01-01

    Vitamin D deficiency remains common in children and adults in Pakistan despite adequate sunlight exposure. Diagnosis in adults is usually delayed and is made following pathological fractures that result in significant morbidity. The objective of this study was to see whether Serum Alkaline Phosphatase levels could be used as a screening test for osteomalacia. The Study was conducted at Fatima Hospital, Baqai Medical University, Gadap, Karachi, between July 2002 and June 2005. Serum calcium levels are commonly used to screen patients suspected of osteomalacia, and raised serum alkaline phosphatase (SALP) is considered a diagnostic finding. We used SALP to screen patients who presented with back or non-specific aches and pain of more than six months duration. Three hundred thirty-four (334) patients were screened of which 116 (35%) had raised SALP. Osteomalacia was diagnosed in 92 (79.3%) of these 116 either by plain radiographs, bone biopsy or isotope bone scan. Fifty-four (53.4%) of the 101 cases had a normal level of serum calcium. Osteomalacia is likely to be missed if only serum calcium is used to screen patients. Serum Alkaline Phosphate should be used as the preferred method for screening these patients.

  13. Dissolved strontium and calcium levels in the tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Steiner, Zvi; Sarkar, Amit; Turchyn, Alexandra

    2017-04-01

    Measurements of seawater alkalinity and dissolved calcium concentrations along oceanic transects are often used to calculate calcium carbonate precipitation and dissolution rates. Given that the distribution coefficient of strontium in CaCO3 varies greatly between different groups of organisms, adding precise measurements of dissolved strontium concentrations provides opportunities to also track relative contributions of these different groups to the regional CaCO3 cycle. However, there are several obstacles to this approach. These obstacles include unresolved systematic discrepancies between seawater calcium and alkalinity data, very large analytical noise around the calcium concentration measurements and the unconstrained role of acantharia (radiolarian precipitating SrSO4 skeletons) in the marine strontium cycle. During the first cruise of the second International Indian Ocean Expedition (IIOE-2) water samples were collected along 67°E from 9°N to 5°S to explore the dissolution rate of calcium carbonate in the water. The dissolution rate can be calculated by combining measurements of water column potential alkalinity with calcium and strontium concentrations measured by ICP-OES and calcium concentration measurements using isotope dilution thermal ionization mass spectrometry (ID-TIMS). CaCO3 mineral saturation state calculated using pH and total alkalinity suggests that along 67°E, the aragonite saturation horizon lays at depth of 500 m on both sides of the equator. Across the cruise transect, dissolved strontium concentrations increase by 2-3% along the thermocline suggesting rapid recycling of strontium rich phases. This is particularly evident just below the thermocline at 8-9°N and below 1000 m water depth, south of the equator. The deep, southern enrichment in strontium does not involve a change in the Sr/Ca ratio, suggesting that this strontium enrichment is related to CaCO3 dissolution. In contrast, in the intermediate waters of the northern part of

  14. Plating and stripping calcium in an organic electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Da; Gao, Xiangwen; Chen, Yuhui; Jin, Liyu; Kuss, Christian; Bruce, Peter G.

    2018-01-01

    There is considerable interest in multivalent cation batteries, such as those based on magnesium, calcium or aluminium. Most attention has focused on magnesium. In all cases the metal anode represents a significant challenge. Recent work has shown that calcium can be plated and stripped, but only at elevated temperatures, 75 to 100 °C, with small capacities, typically 0.165 mAh cm-2, and accompanied by significant side reactions. Here we demonstrate that calcium can be plated and stripped at room temperature with capacities of 1 mAh cm-2 at a rate of 1 mA cm-2, with low polarization (~100 mV) and in excess of 50 cycles. The dominant product is calcium, accompanied by a small amount of CaH2 that forms by reaction between the deposited calcium and the electrolyte, Ca(BH4)2 in tetrahydrofuran (THF). This occurs in preference to the reactions which take place in most electrolyte solutions forming CaCO3, Ca(OH)2 and calcium alkoxides, and normally terminate the electrochemistry. The CaH2 protects the calcium metal at open circuit. Although this work does not solve all the problems of calcium as an anode in calcium-ion batteries, it does demonstrate that significant quantities of calcium can be plated and stripped at room temperature with low polarization.

  15. Synthesis, characterization, and in-vitro cytocompatibility of amorphous β-tri-calcium magnesium phosphate ceramics.

    PubMed

    Singh, Satish S; Roy, Abhijit; Lee, Boeun; Banerjee, Ipsita; Kumta, Prashant N

    2016-10-01

    Biphasic mixtures of crystalline β-tricalcium magnesium phosphate (β-TCMP) and an amorphous calcium magnesium phosphate have been synthesized and reported to support enhanced hMSC differentiation in comparison to β-tricalcium phosphate (β-TCP) due to the release of increased amounts of bioactive ions. In the current study, completely amorphous β-TCMP has been synthesized which is capable of releasing increased amounts of Mg(2+) and PO4(3-) ions, rather than a biphasic mixture as earlier reported. The amorphous phase formed was observed to crystallize between temperatures of 400-600°C. The scaffolds prepared with amorphous β-TCMP were capable of supporting enhanced hMSC proliferation and differentiation in comparison to commercially available β-TCP. However, a similar gene expression of mature osteoblast markers, OCN and COL-1, in comparison to biphasic β-TCMP was observed. To further study the role of Mg(2+) and PO4(3-) ions in regulating hMSC osteogenic differentiation, the capability of hMSCs to mineralize in growth media supplemented with Mg(2+) and PO4(3-) ions was studied. Interestingly, 5mM PO4(3-) supported mineralization while the addition of 5mM Mg(2+) to 5mM PO4(3-) inhibited mineralization. It was therefore concluded that the release of Ca(2+) ions from β-TCMP scaffolds also plays a role in regulating osteogenic differentiation on these scaffolds and it is noted that further work is required to more accurately determine the exact role of Mg(2+) in regulating hMSC osteogenic differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Alkaline phosphatase, 5'-nucleotidase and magnesium-dependent adenosine triphosphatase activities in the transitional epithelium of the rat urinary bladder.

    PubMed

    Zhang, S X; Kobayashi, T; Okada, T; García del Saz, E; Seguchi, H

    1991-07-01

    The cerium-based method was used to demonstrate cytochemically the ultrastructural localization of alkaline phosphatase (ALPase), 5'-nucleotidase (5'-Nase) and magnesium-dependent adenosine triphosphatase (Mg-ATPase) on the transitional epithelium of the rat urinary bladder. The reaction product for ALPase was found on the plasma membrane of all epithelial cells, except the luminal surface of superficial cells. The activity of 5'-Nase appeared on the plasma membrane of all bladder transitional epithelial cells, including the free surface of superficial cells. The Mg-ATPase reaction product was seen on the plasma membrane of superficial, intermediate and basal cells, but never on the luminal surface of superficial cells and it was only occasionally seen on the basal surface. The possible functions of these phosphatases have been discussed, and it was emphasized that the 5'-Nase activity present on the luminal surface of superficial cells may play a special role in the membrane movement of these cells in the transitional epithelium.

  17. Magnesium degradation products: effects on tissue and human metabolism.

    PubMed

    Seitz, J-M; Eifler, R; Bach, Fr-W; Maier, H J

    2014-10-01

    Owing to their mechanical properties, metallic materials present a promising solution in the field of resorbable implants. The magnesium metabolism in humans differs depending on its introduction. The natural, oral administration of magnesium via, for example, food, essentially leads to an intracellular enrichment of Mg(2+) . In contrast, introducing magnesium-rich substances or implants into the tissue results in a different decomposition behavior. Here, exposing magnesium to artificial body electrolytes resulted in the formation of the following products: magnesium hydroxide, magnesium oxide, and magnesium chloride, as well as calcium and magnesium apatites. Moreover, it can be assumed that Mg(2+) , OH(-) ions, and gaseous hydrogen are also present and result from the reaction for magnesium in an aqueous environment. With the aid of physiological metabolic processes, the organism succeeds in either excreting the above mentioned products or integrating them into the natural metabolic process. Only a burst release of these products is to be considered a problem. A multitude of general tissue effects and responses from the Mg's degradation products is considered within this review, which is not targeting specific implant classes. Furthermore, common alloying elements of magnesium and their hazardous potential in vivo are taken into account. © 2013 Wiley Periodicals, Inc.

  18. Climate Change Increasing Calcium and Magnesium Leaching from Granitic Alpine Catchments.

    PubMed

    Kopáček, Jiří; Kaňa, Jiří; Bičárová, Svetlana; Fernandez, Ivan J; Hejzlar, Josef; Kahounová, Marie; Norton, Stephen A; Stuchlík, Evžen

    2017-01-03

    Climate change can reverse trends of decreasing calcium and magnesium [Ca + Mg] leaching to surface waters in granitic alpine regions recovering from acidification. Despite decreasing concentrations of strong acid anions (-1.4 μeq L -1 yr -1 ) during 2004-2016 in nonacidic alpine lakes in the Tatra Mountains (Central Europe), the average [Ca + Mg] concentrations increased (2.5 μeq L -1 yr -1 ), together with elevated terrestrial export of bicarbonate (HCO 3 - ; 3.6 μeq L -1 yr -1 ). The percent increase in [Ca + Mg] concentrations in nonacidic lakes (0.3-3.2% yr -1 ) was significantly and positively correlated with scree proportion in the catchment area and negatively correlated with the extent of soil cover. Leaching experiments with freshly crushed granodiorite, the dominant bedrock, showed that accessory calcite and (to a lesser extent) apatite were important sources of Ca. We hypothesize that elevated terrestrial export of [Ca + Mg] and HCO 3 - resulted from increased weathering caused by accelerated physical erosion of rocks due to elevated climate-related mechanical forces (an increasing frequency of days with high precipitation amounts and air temperatures fluctuating around 0 °C) during the last 2-3 decades. These climatic effects on water chemistry are especially strong in catchments where fragmented rocks are more exposed to weathering, and their position is less stable than in soil.

  19. Magnesium sulphate for preventing preterm birth in threatened preterm labour.

    PubMed

    Crowther, Caroline A; Brown, Julie; McKinlay, Christopher J D; Middleton, Philippa

    2014-08-15

    Magnesium sulphate has been used in some settings as a tocolytic agent to inhibit uterine activity in women in preterm labour with the aim of preventing preterm birth. To assess the effects of magnesium sulphate therapy given to women in threatened preterm labour with the aim of preventing preterm birth and its sequelae. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (last searched 31 January 2014). Randomised controlled trials of magnesium sulphate as the only tocolytic, administered by any route, compared with either placebo, no treatment or alternative tocolytic therapy (not magnesium sulphate) to women considered to be in preterm labour. At least two review authors assessed trial eligibility and risk of bias and undertook data extraction independently. The 37 included trials (total of 3571 women and over 3600 babies) were generally of moderate to high risk of bias. Antenatal magnesium sulphate was compared with either placebo, no treatment, or a range of alternative tocolytic agents.For the primary outcome of giving birth within 48 hours after trial entry, no significant differences were seen between women who received magnesium sulphate and women who did not (whether placebo/no alternative tocolytic drug, betamimetics, calcium channel blockers, cox inhibitors, prostaglandin inhibitors, or human chorionic gonadotropin) (19 trials, 1913 women). Similarly for the primary outcome of serious infant outcome, there were no significant differences between the infants exposed to magnesium sulphate and those not (whether placebo/no alternative tocolytic drug, betamimetics, calcium channel blockers, cox inhibitors, prostaglandin inhibitors, human chorionic gonadotropin or various tocolytic drugs) (18 trials; 2187 babies). No trials reported the outcome of extremely preterm birth. In the seven trials that reported serious maternal outcomes, no events were recorded.In the group treated with magnesium sulphate compared with women receiving

  20. Calcium biofortification of crops

    USDA-ARS?s Scientific Manuscript database

    More than half of the world's population is deficient in calcium (Ca), iron (Fe), iodine (I), magnesium (Mg), selenium (Se), or zinc (Zn). The consumption of plants, directly or via livestock, containing inadequate concentrations of particular minerals causes these deficiencies. Agronomic and geneti...

  1. Long-term evolution of highly alkaline steel slag drainage waters.

    PubMed

    Riley, Alex L; Mayes, William M

    2015-07-01

    The disposal of slag generated by the steel industry can have negative consequences upon the surrounding aquatic environment by the generation of high pH waters, leaching of potentially problematic trace metals, and rapid rates of calcite precipitation which smother benthic habitats. A 36-year dataset was collated from the long-term ambient monitoring of physicochemical parameters and elemental concentrations of samples from two steel slag leachate-affected watercourses in northern England. Waters were typified by elevated pH (>10), high alkalinity, and were rich in dissolved metals (e.g. calcium (Ca), aluminium (Al), and zinc (Zn)). Long-term trend analysis was performed upon pH, alkalinity, and Ca concentration which, in addition to Ca flux calculations, were used to highlight the longevity of pollution arising as a result of the dumping and subsequent leaching of steel slags. Declines in calcium and alkalinity have been modest over the monitoring period and not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50-80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible.

  2. Why Calcium? How Calcium Became the Best Communicator*

    PubMed Central

    Carafoli, Ernesto; Krebs, Joachim

    2016-01-01

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these “calcium sensors” are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. PMID:27462077

  3. Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing.

    PubMed

    Salahshoor, M; Li, C; Liu, Z Y; Fang, X Y; Guo, Y B

    2018-02-01

    Biodegradable magnesium-calcium (MgCa) alloy is a very attractive orthopedic biomaterial compared to permanent metallic alloys. However, the critical issue is that MgCa alloy corrodes too fast in the human organism. Compared to dry cutting, the synergistic dry cutting-finish burnishing can significantly improve corrosion performance of MgCa0.8 (wt%) alloy by producing a superior surface integrity including good surface finish, high compressive hook-shaped residual stress profile, extended strain hardening in subsurface, and little change of grain size. A FEA model was developed to understand the plastic deformation of MgCa materials during burnishing process. The measured polarization curves, surface micrographs, and element distributions of the corroded surfaces by burnishing show an increasing and uniform corrosion resistance to simulated body fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Intradermal administration of magnesium sulphate and magnesium chloride produces hypesthesia to mechanical but hyperalgesia to heat stimuli in humans

    PubMed Central

    Ushida, Takahiro; Iwatsu, Osamu; Shimo, Kazuhiro; Tetsunaga, Tomoko; Ikeuchi, Masahiko; Ikemoto, Tatsunori; Arai, Young-Chang P; Suetomi, Katsutoshi; Nishihara, Makoto

    2009-01-01

    Background Although magnesium ions (Mg2+) are known to display many similar features to other 2+ charged cations, they seem to have quite an important and unique role in biological settings, such as NMDA blocking effect. However, the role of Mg2+ in the neural transmission system has not been studied as sufficiently as calcium ions (Ca2+). To clarify the sensory effects of Mg2+ in peripheral nervous systems, sensory changes after intradermal injection of Mg2+ were studied in humans. Methods Magnesium sulphate, magnesium chloride and saline were injected into the skin of the anterior region of forearms in healthy volunteers and injection-induced irritating pain ("irritating pain", for short), tactile sensation, tactile pressure thresholds, pinch-pain changes and intolerable heat pain thresholds of the lesion were monitored. Results Flare formation was observed immediately after magnesium sulphate or magnesium chloride injection. We found that intradermal injections of magnesium sulphate and magnesium chloride transiently caused irritating pain, hypesthesia to noxious and innocuous mechanical stimulations, whereas secondary hyperalgesia due to mechanical stimuli was not observed. In contrast to mechanical stimuli, intolerable heat pain-evoking temperature was significantly decreased at the injection site. In addition to these results, spontaneous pain was immediately attenuated by local cooling. Conclusion Membrane-stabilizing effect and peripheral NMDA-blocking effect possibly produced magnesium-induced mechanical hypesthesia, and extracellular cation-induced sensitization of TRPV1 channels was thought to be the primary mechanism of magnesium-induced heat hyperalgesia. PMID:19715604

  5. The formation of an organic coat and the release of corrosion microparticles from metallic magnesium implants.

    PubMed

    Badar, Muhammad; Lünsdorf, Heinrich; Evertz, Florian; Rahim, Muhammad Imran; Glasmacher, Birgit; Hauser, Hansjörg; Mueller, Peter P

    2013-07-01

    Magnesium alloys have been proposed as prospective degradable implant materials. To elucidate the complex interactions between the corroding implants and the tissue, magnesium implants were analyzed in a mouse model and the response was compared to that induced by Ti and by the resorbable polymer polyglactin, respectively. One month after implantation, distinct traces of corrosion were apparent but the magnesium implants were still intact, whereas resorbable polymeric wound suture implants were already fragmented. Analysis of magnesium implants 2weeks after implantation by energy-dispersive X-ray spectroscopy indicated that magnesium, oxygen, calcium and phosphate were present at the implant surface. One month after implantation, the element composition of the outermost layer of the implant was indicative of tissue without detectable levels of magnesium, indicating a protective barrier function of this organic layer. In agreement with this notion, gene expression patterns in the surrounding tissue were highly similar for all implant materials investigated. However, high-resolution imaging using energy-filtered transmission electron microscopy revealed magnesium-containing microparticles in the tissue in the proximity of the implant. The release of such corrosion particles may contribute to the accumulation of calcium phosphate in the nearby tissue and to bone conductive activities of magnesium implants. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. 75 FR 65450 - Magnesium Metal From the People's Republic of China: Final Results of the 2008-2009 Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... certain non-magnesium granular materials to make magnesium-based reagent mixtures, including lime, calcium..., dolomite lime, and colemanite.\\7\\ \\6\\ The material is already covered by existing antidumping orders. See...

  7. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition.

    PubMed

    Qiu, Xun; Wan, Peng; Tan, Lili; Fan, Xinmin; Yang, Ke

    2014-03-01

    A silicon doped calcium phosphate coating was obtained successfully on AZ31 alloy substrate via pulse electrodeposition. A novel dual-layer structure was observed with a porous lamellar-like and outer block-like apatite layer. In vitro immersion tests were adopted in simulated body fluid within 28 days of immersion. Slow degradation rate obtained from weight loss was observed for the Si-doped Ca-P coating, which was also consistent with the results of electrochemical experiments showing an enhanced corrosion resistance for the coating. Further formation of an apatite-like layer on the surface after immersion proved better integrity and biomineralization performance of the coating. Biological characterization was carried out for viability, proliferation and differentiation of MG63 osteoblast-like cells. The coating showed a good cell growth and an enhanced cell proliferation. Moreover, an increased activity of osteogenic marker ALP was found. All the results demonstrated that the Si-doped calcium phosphate was perspective to be used as a coating for magnesium alloy implants to control the degradation rate and enhance the bioactivity, which would facilitate the rapidity of bone tissue repair. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A Novel Injectable Magnesium/Calcium Sulfate Hemihydrate Composite Cement for Bone Regeneration

    PubMed Central

    2015-01-01

    Objective. A novel injectable magnesium/calcium sulfate hemihydrate (Mg/CSH) composite with improved properties was reported here. Methods. Composition, setting time, injectability, compressive strength, and bioactivity in simulated body fluid (SBF) of the Mg/CSH composite were evaluated. Furthermore, the cellular responses of canine bone marrow stromal cells (cBMSCs) and bone formation capacity after the implantation of Mg/CSH in tibia defects of canine were investigated. Results. Mg/CSH possessed a prolonged setting time and markedly improved injectability and mechanical property (p < 0.05). Mg/CSH samples showed better degradability than CSH in SBF after 21 days of soaking (p < 0.05). Moreover, the degrees of cell attachment, proliferation, and capability of osteogenic differentiation on the Mg/CSH specimens were higher than those on CSH, without significant cytotoxicity and with the increased proliferation index, ALP activity, and expression levels of integrin β1 and Coll I in cBMSCs (p < 0.05). Mg/CSH enhanced the efficiency of new bone formation at the tibia defect area, including the significantly elevated bone mineral density, bone area fraction, and Coll I expression level (p < 0.05). Conclusions. The results implied that this new injectable bone scaffold exhibited promising prospects for bone repair and had a great potential in bone tissue engineering. PMID:26114102

  9. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    DOEpatents

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  10. Magnesium sulfate provides neuroprotection in lipopolysaccharide-activated primary microglia by inhibiting NF-κB pathway.

    PubMed

    Gao, Feng; Ding, Baozhong; Zhou, Longan; Gao, Xueshan; Guo, Huiguang; Xu, Hong

    2013-10-01

    Magnesium sulfate has been used as an anticonvulsant in severe preeclamptic or eclamptic women prior to surgical trauma, but its effects on neuroinflammation is not well defined. In the present study, we investigated the neuroprotective effects of magnesium sulfate in lipopolysaccharide (LPS)-induced microglia and explored the underlying mechanism. Microglia was incubated with LPS in the presence or absence of various concentrations of magnesium sulfate, or L-type calcium channel activator BAY-K8644. The levels of inflammatory mediators, such as nitric oxide, prostaglandin E2, interleukin 1β, and tumor necrosis factor α, were measured using enzyme-linked immunosorbent assay. The expression of inducible nitric oxide synthase mRNA was detected by reverse-transcription polymerase chain reaction. Nuclear factor κB (NF-κB) activity in the nuclear extract of microglia was detected by NF-κB p50/p65 transcription factor assay kit. Magnesium sulfate at 5 and 10 mmol/L significantly inhibited the release of nitric oxide, prostaglandin E2, interleukin 1β, and tumor necrosis factor α, and the expression of inducible nitric oxide synthase mRNA in LPS-activated microglia. Furthermore, magnesium sulfate inhibited the translocation of NF-κB from the cytoplasm to the nucleus in a dose-dependent manner. Notably, these effects were significantly reversed by L-type calcium channel activator BAY-K8644. Magnesium sulfate protects microglia against LPS-induced release of inflammatory mediators, and these effects may be mediated by inhibiting L-type calcium channels and NF-κB signaling. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  11. Children's Bone Health and Calcium

    MedlinePlus

    ... 2005–2006: Usual nutrient intakes from food and water compared to 1997 dietary reference intakes for vitamin D, calcium, phosphorus, and magnesium . U.S. Department of Agriculture, Agricultural Research Service. Retrieved April 21, 2012, from http://www. ...

  12. Thermodynamic criteria for the removal of impurities from end-of-life magnesium alloys by evaporation and flux treatment

    NASA Astrophysics Data System (ADS)

    Hiraki, Takehito; Takeda, Osamu; Nakajima, Kenichi; Matsubae, Kazuyo; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2011-06-01

    In this paper, the possibility of removing impurities during magnesium recycling with pyrometallurgical techniques has been evaluated by using a thermodynamic analysis. For 25 different elements that are likely to be contained in industrial magnesium alloys, the equilibrium distribution ratios between the metal, slag and gas phases in the magnesium remelting process were calculated assuming binary systems of magnesium and an impurity element. It was found that calcium, gadolinium, lithium, ytterbium and yttrium can be removed from the remelted end-of-life (EoL) magnesium products by oxidization. Calcium, cerium, gadolinium, lanthanum, lithium, plutonium, sodium, strontium and yttrium can be removed by chlorination with a salt flux. However, the other elements contained in magnesium alloy scrap are scarcely removed and this may contribute toward future contamination problems. The third technological option for the recycling of EoL magnesium products is magnesium recovery by a distillation process. Based on thermodynamic considerations, it is predicted that high-purity magnesium can be recovered through distillation because of its high vapor pressure, yet there is a limit on recoverability that depends on the equilibrium vapor pressure of the alloying elements and the large energy consumption. Therefore, the sustainable recycling of EoL magnesium products should be an important consideration in the design of advanced magnesium alloys or the development of new refining processes.

  13. Thermodynamic criteria for the removal of impurities from end-of-life magnesium alloys by evaporation and flux treatment

    PubMed Central

    Hiraki, Takehito; Takeda, Osamu; Nakajima, Kenichi; Matsubae, Kazuyo; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2011-01-01

    In this paper, the possibility of removing impurities during magnesium recycling with pyrometallurgical techniques has been evaluated by using a thermodynamic analysis. For 25 different elements that are likely to be contained in industrial magnesium alloys, the equilibrium distribution ratios between the metal, slag and gas phases in the magnesium remelting process were calculated assuming binary systems of magnesium and an impurity element. It was found that calcium, gadolinium, lithium, ytterbium and yttrium can be removed from the remelted end-of-life (EoL) magnesium products by oxidization. Calcium, cerium, gadolinium, lanthanum, lithium, plutonium, sodium, strontium and yttrium can be removed by chlorination with a salt flux. However, the other elements contained in magnesium alloy scrap are scarcely removed and this may contribute toward future contamination problems. The third technological option for the recycling of EoL magnesium products is magnesium recovery by a distillation process. Based on thermodynamic considerations, it is predicted that high-purity magnesium can be recovered through distillation because of its high vapor pressure, yet there is a limit on recoverability that depends on the equilibrium vapor pressure of the alloying elements and the large energy consumption. Therefore, the sustainable recycling of EoL magnesium products should be an important consideration in the design of advanced magnesium alloys or the development of new refining processes. PMID:27877407

  14. The Importance of Magnesium in the Human Body: A Systematic Literature Review.

    PubMed

    Glasdam, Sidsel-Marie; Glasdam, Stinne; Peters, Günther H

    2016-01-01

    Magnesium, the second and fourth most abundant cation in the intracellular compartment and whole body, respectively, is of great physiologic importance. Magnesium exists as bound and free ionized forms depending on temperature, pH, ionic strength, and competing ions. Free magnesium participates in many biochemical processes and is most commonly measured by ion-selective electrode. This analytical approach is problematic because complete selectivity is not possible due to competition with other ions, i.e., calcium, and pH interference. Unfortunately, many studies have focused on measurement of total magnesium rather than its free bioactive form making it difficult to correlate to disease states. This systematic literature review presents current analytical challenges in obtaining accurate and reproducible test results for magnesium. © 2016 Elsevier Inc. All rights reserved.

  15. Linear relationships between shoot magnesium and calcium concentrations among angiosperm species are associated with cell wall chemistry.

    PubMed

    White, Philip J; Broadley, Martin R; El-Serehy, Hamed A; George, Timothy S; Neugebauer, Konrad

    2018-05-02

    Linear relationships are commonly observed between shoot magnesium ([Mg]shoot) and shoot calcium ([Ca]shoot) concentrations among angiosperm species growing in the same environment. This article argues that, in plants that do not exhibit 'luxury' accumulation of Mg or Ca, (1) distinct stoichiometric relationships between [Mg]shoot and [Ca]shoot are exhibited by at least three groups of angiosperm species, namely commelinid monocots, eudicots excluding Caryophyllales, and Caryophyllales species; (2) these relationships are determined by cell wall chemistry and the Mg/Ca mass quotients in their cell walls; (3) differences between species in [Mg]shoot and [Ca]shoot within each group are associated with differences in the cation exchange capacity (CEC) of the cell walls of different species; and (4) Caryophyllales constitutively accumulate more Mg in their vacuoles than other angiosperm species when grown without a supra-sufficient Mg supply.

  16. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lihua; He, Xiaoman; Qu, Jun

    Al(OH){sub 3} and Ca(OH){sub 2} powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kineticsmore » with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C{sub 3}A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C{sub 3}A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO{sub 4} LDH product. Ca-Al-CrO{sub 4} LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.« less

  17. A Prospective, Placebo-Controlled Pilot Evaluation of the Effect of Omeprazole on Serum Calcium, Magnesium, Cobalamin, Gastrin Concentrations, and Bone in Cats.

    PubMed

    Gould, E; Clements, C; Reed, A; Giori, L; Steiner, J M; Lidbury, J A; Suchodolski, J S; Brand, M; Moyers, T; Emery, L; Tolbert, M K

    2016-05-01

    Chronic proton pump inhibitor administration has been associated with electrolyte and cobalamin deficiency, disrupted bone homeostasis, hypergastrinemia, and rebound acid hypersecretion in humans. It is unknown if this occurs in cats. Prolonged oral omeprazole results in altered bone mineral density or content, serum calcium, magnesium, cobalamin, and gastrin concentrations in healthy cats. Six healthy adult DSH cats. In a within subjects, before and after design, cats received placebo followed by omeprazole (0.83-1.6 mg/kg PO q12h) for 60 days each. Analysis of serum calcium, magnesium, cobalamin, and gastrin concentrations was performed on days 0, 30, and 60. Bone density and content were evaluated on days 0 and 60 of each intervention. Continuous data were analyzed using a two-way ANOVA (α = 0.006). On day 60 of omeprazole administration, continuous intragastric pH monitoring was performed in 2 cats to evaluate the effects of abrupt withdrawal of omeprazole. No significant changes were detected between treatments for any variables, except serum gastrin, which was significantly higher during omeprazole treatment in comparison to placebo (P = 0.002). Evidence of gastric hyperacidity was seen in both cats in which intragastric pH monitoring was performed following cessation of omeprazole. Although further studies with larger populations of cats will be needed to draw any definitive conclusions, these preliminary results suggest that prolonged PPI treatment results in hypergastrinemia and abrupt PPI withdrawal might result in RAH in cats. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  18. Properties of a novel polysiloxane-guttapercha calcium silicate-bioglass-containing root canal sealer.

    PubMed

    Gandolfi, M G; Siboni, F; Prati, C

    2016-05-01

    Root canal filling sealers based on polymethyl hydrogensiloxane or polymethyl hydrogensiloxane-guttapercha--introduced to improve the quality of conventional guttapercha-based and resin-based systems--showed advantages in handiness and clinical application. The aim of the study was to evaluate the chemical-physical properties of a novel polysiloxane-guttapercha calcium silicate-containing root canal sealer (GuttaFlow bioseal). GuttaFlow bioseal was examined and compared with GuttaFlow2, RoekoSeal and MTA Fillapex sealers. Setting times, open and impervious porosity and apparent porosity, water sorption, weight loss, calcium release, and alkalinizing activity were evaluated. ESEM-EDX-Raman analyses of fresh materials and after soaking in simulated body fluid were also performed. Marked differences were obtained among the materials. GuttaFlow bioseal showed low solubility and porosity, high water sorption, moderate calcium release and good alkalinizing activity. MTA Fillapex showed the highest calcium release, alkalinizing activity and solubility, RoekoSeal the lowest calcium release, no alkalinizing activity, very low solubility and water sorption. Only GuttaFlow bioseal showed apatite forming ability. GuttaFlow bioseal showed alkalinizing activity together with negligible solubility and slight calcium release. Therefore, the notable nucleation of apatite and apatite precursors can be related to the co-operation of CaSi particles (SiOH groups) with polysiloxane (SiOSi groups). The incorporation of a calcium silicate component into polydimethyl polymethylhydrogensiloxane guttapercha sealers may represent an attractive strategy to obtain a bioactive biointeractive flowable guttapercha sealer for moist/bleeding apices with bone defects in endodontic therapy. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate.

    PubMed

    Kaabi Falahieh Asl, Sara; Nemeth, Sandor; Tan, Ming Jen

    2016-11-01

    Ceramic type coatings on metallic implants, such as calcium phosphate (Ca-P), are generally stiff and brittle, potentially leading to the early failure of the bone-implant interface. To reduce material brittleness, polyacrylic acid and carboxymethyl cellulose were used in this study to deposit two types of novel Ca-P/polymer composite coatings on AZ31 magnesium alloy using a one-step hydrothermal process. X-ray diffraction and scanning electron microscopy showed that the deposited Ca-P crystal phase and morphology could be controlled by the type and concentration of polymer used. Incorporation of polymer in the Ca-P coatings reduced the coating elastic modulus bringing it close to that of magnesium and that of human bone. Nanoindentation test results revealed significantly decreased cracking tendency with the incorporation of polymer in the Ca-P coating. Apart from mechanical improvements, the protective composite layers had also enhanced the corrosion resistance of the substrate by a factor of 1000 which is sufficient for implant application. Cell proliferation studies indicated that the composite coatings induced better cell attachment compared with the purely inorganic Ca-P coating, confirming that the obtained composite materials could be promising candidates for surface protection of magnesium for implant application with the multiple functions of corrosion protection, interfacial stress reduction, and cell attachment/cell growth promotion. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1643-1657, 2016. © 2015 Wiley Periodicals, Inc.

  20. Demonstration of elastic fibres with reagents for detection of magnesium.

    PubMed Central

    Müller, W; Firsching, R

    1991-01-01

    Investigation of elastic fibres in various human and animal tissues with the reagents quinalizarin, magneson II, and titan yellow for the detection of magnesium revealed striking positive results. After pretreatment of skin and ligamentum flavum with elastase the tests were negative. The results support the supposition that the amount of magnesium in elastic fibres is sufficient for histochemical detection. It is speculated that the marked chelate-forming property of magnesium, or its antagonistic function to calcium, is associated with the elastic property of the fibres. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:1711022

  1. The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation

    PubMed Central

    Goffredo, Stefano; Vergni, Patrizia; Reggi, Michela; Caroselli, Erik; Sparla, Francesca; Levy, Oren; Dubinsky, Zvy; Falini, Giuseppe

    2011-01-01

    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions. PMID:21799830

  2. MESSENGER observations of Mercury's exosphere: detection of magnesium and distribution of constituents.

    PubMed

    McClintock, William E; Vervack, Ronald J; Bradley, E Todd; Killen, Rosemary M; Mouawad, Nelly; Sprague, Ann L; Burger, Matthew H; Solomon, Sean C; Izenberg, Noam R

    2009-05-01

    Mercury is surrounded by a tenuous exosphere that is supplied primarily by the planet's surface materials and is known to contain sodium, potassium, and calcium. Observations by the Mercury Atmospheric and Surface Composition Spectrometer during MESSENGER's second Mercury flyby revealed the presence of neutral magnesium in the tail (anti-sunward) region of the exosphere, as well as differing spatial distributions of magnesium, calcium, and sodium atoms in both the tail and the nightside, near-planet exosphere. Analysis of these observations, supplemented by observations during the first Mercury flyby, as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

  3. Why Calcium? How Calcium Became the Best Communicator.

    PubMed

    Carafoli, Ernesto; Krebs, Joachim

    2016-09-30

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these "calcium sensors" are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  6. Growth of calcium phosphates on magnesium substrates for corrosion control in biomedical applications via immersion techniques.

    PubMed

    Shadanbaz, Shaylin; Walker, Jemimah; Staiger, Mark P; Dias, George J; Pietak, Alexis

    2013-01-01

    Magnesium (Mg) has been suggested as a revolutionary biodegradable replacement for current permanent metals used in orthopedic applications. Current investigations concentrate on the control of the corrosion rate to match bone healing. Calcium phosphate coatings have been a recent focus of these investigations through various coating protocols. Within this investigation, an in situ crystallization technique was utilized as an inexpensive and relatively simple method to produce a brushite and monetite coating on pure Mg. Coatings were characterized using energy dispersive spectroscopy, glancing angle X-ray diffraction and field emission scanning electron microscopy. Corrosion protection properties of the coatings were assessed in physiological buffers, Earles balanced salt solution, minimum essential media, and minimum essential media containing serum albumin, over a 4-week period. Using this novel coating protocol, our findings indicate brushite and monetite coated Mg to have significant corrosive protective effects when compared with its uncoated counterpart whilst maintaining high coating substrate adhesion, homogeneity, and reproducibility. Copyright © 2012 Wiley Periodicals, Inc.

  7. Calcium-aluminum-rich inclusions with fractionation and unidentified nuclear effects (FUN CAIs): II. Heterogeneities of magnesium isotopes and 26Al in the early Solar System inferred from in situ high-precision magnesium-isotope measurements

    NASA Astrophysics Data System (ADS)

    Park, Changkun; Nagashima, Kazuhide; Krot, Alexander N.; Huss, Gary R.; Davis, Andrew M.; Bizzarro, Martin

    2017-03-01

    Calcium-aluminum-rich inclusions with isotopic mass fractionation effects and unidentified nuclear isotopic anomalies (FUN CAIs) have been studied for more than 40 years, but their origins remain enigmatic. Here we report in situ high precision measurements of aluminum-magnesium isotope systematics of FUN CAIs by secondary ion mass spectrometry (SIMS). Individual minerals were analyzed in six FUN CAIs from the oxidized CV3 carbonaceous chondrites Axtell (compact Type A CAI Axtell 2271) and Allende (Type B CAIs C1 and EK1-4-1, and forsterite-bearing Type B CAIs BG82DH8, CG-14, and TE). Most of these CAIs show evidence for excess 26Mg due to the decay of 26Al. The inferred initial 26Al/27Al ratios [(26Al/27Al)0] and the initial magnesium isotopic compositions (δ26Mg0) calculated using an exponential law with an exponent β of 0.5128 are (3.1 ± 1.6) × 10-6 and 0.60 ± 0.10‰ (Axtell 2271), (3.7 ± 1.5) × 10-6 and -0.20 ± 0.05‰ (BG82DH8), (2.2 ± 1.1) × 10-6 and -0.18 ± 0.05‰ (C1), (2.3 ± 2.4) × 10-5 and -2.23 ± 0.37‰ (EK1-4-1), (1.5 ± 1.1) × 10-5 and -0.42 ± 0.08‰ (CG-14), and (5.3 ± 0.9) × 10-5 and -0.05 ± 0.08‰ (TE) with 2σ uncertainties. We infer that FUN CAIs recorded heterogeneities of magnesium isotopes and 26Al in the CAI-forming region(s). Comparison of 26Al-26Mg systematics, stable isotope (oxygen, magnesium, calcium, and titanium) and trace element studies of FUN and non-FUN igneous CAIs indicates that there is a continuum among these CAI types. Based on these observations and evaporation experiments on CAI-like melts, we propose a generic scenario for the origin of igneous (FUN and non-FUN) CAIs: (i) condensation of isotopically normal solids in an 16O-rich gas of approximately solar composition; (ii) formation of CAI precursors by aggregation of these solids together with variable abundances of isotopically anomalous grains-possible carriers of unidentified nuclear (UN) effects; and (iii) melt evaporation of these precursors

  8. Knockdown of SLC41A1 magnesium transporter promotes mineralization and attenuates magnesium inhibition during osteogenesis of mesenchymal stromal cells.

    PubMed

    Tsao, Yu-Tzu; Shih, Ya-Yi; Liu, Yu-An; Liu, Yi-Shiuan; Lee, Oscar K

    2017-02-21

    Magnesium is essential for numerous physiological functions. Magnesium exists mostly in bone and the amount is dynamically regulated by skeletal remodeling. Accelerating bone mass loss occurs when magnesium intake is insufficient; whereas high magnesium could lead to mineralization defects. However, the underlying magnesium regulatory mechanisms remain elusive. In the present study, we investigated the effects of high extracellular magnesium concentration on osteogenic differentiation of mesenchymal stromal/stem cells (MSCs) and the role of magnesium transporter SLC41A1 in the mineralization process. Murine MSCs derived from the bone marrow of BALB/c mouse or commercially purchased human MSCs were treated with osteogenic induction medium containing 5.8 mM magnesium chloride and the osteogenic differentiation efficiency was compared with that of MSCs in normal differentiation medium containing 0.8 mM magnesium chloride by cell morphology, gene expression profile of osteogenic markers, and Alizarin Red staining. Slc41a1 gene knockdown in MSCs was performed by siRNA transfection using Lipofectamine RNAiMAX, and the differentiation efficiency of siRNA-treated MSCs was also assessed. High concentration of extracellular magnesium ion inhibited mineralization during osteogenic differentiation of MSCs. Early osteogenic marker genes including osterix, alkaline phosphatase, and type I collagen were significantly downregulated in MSCs under high concentration of magnesium, whereas late marker genes such as osteopontin, osteocalcin, and bone morphogenetic protein 2 were upregulated with statistical significance compared with those in normal differentiation medium containing 0.8 mM magnesium. siRNA treatment targeting SLC41A1 magnesium transporter, a member of the solute carrier family with a predominant Mg 2+ efflux system, accelerated the mineralization process and ameliorated the inhibition of mineralization caused by high concentration of magnesium. High concentration of

  9. Proton pump inhibitor use for 12 months is not associated with changes in serum magnesium levels: a prospective open label comparative study.

    PubMed

    Bahtiri, Elton; Islami, Hilmi; Hoxha, Rexhep; Gashi, Afrim; Thaçi, Kujtim; Karakulak, Çağla; Thaçi, Shpetim; Qorraj Bytyqi, Hasime

    2017-03-01

    Proton pump inhibitors (PPIs) are a widely used class of drugs because of a generally acceptable safety profile. Among recently raised safety issues of the long-term use of PPIs is the increased risk of developing hypomagnesemia. As there have been very few prospective studies measuring serum magnesium levels before and after PPI therapy, we aimed to prospectively assess the potential association between PPI therapy for 12 months and the risk of hypomagnesemia as well as the incidence of new-onset hypomagnesemia during the study. In addition, the association of PPI therapy with the risk of hypocalcemia was assessed. The study included 250 patients with normal serum magnesium and total calcium levels, who underwent a long-term PPI treatment. Serum magnesium, total calcium, and parathormone (PTH) levels were measured at baseline and after 12 months. Of the 250 study participants, 209 completed 12 months of treatment and were included in the statistical analysis. The Wilcoxon signed rank test showed no statistically significant differences in serum magnesium levels between measurements at two different time points. However, there were statistically significant differences in serum total calcium and PTH levels in PPI users. Stable serum magnesium levels were demonstrated after 12 months and no association between PPI use and risk of hypomagnesemia was shown in the general population. Significant reductions of serum total calcium levels were demonstrated among PPI users; nevertheless, further research is required before recommending any serum calcium and PTH level monitoring in patients initiated on long-term PPI therapy.

  10. Microwave assisted synthesis and characterization of magnesium substituted calcium phosphate bioceramics.

    PubMed

    Khan, Nida Iqbal; Ijaz, Kashif; Zahid, Muniza; Khan, Abdul S; Abdul Kadir, Mohammed Rafiq; Hussain, Rafaqat; Anis-Ur-Rehman; Darr, Jawwad A; Ihtesham-Ur-Rehman; Chaudhry, Aqif A

    2015-11-01

    Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900°C for 1h) reduced twelve folds (to 2h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1h) at 900°C. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A Double-Blind Randomized Placebo Controlled Trial of Magnesium Oxide for Alleviation of Chronic Low Back Pain

    DTIC Science & Technology

    1999-10-01

    analgesics has also been extensively researched. Miranda and Paeile (1989) reported a minireview of the interactions between calcium channel blockers and...1990). Interactions between analgesics and calcium channel blockers. General Pharmacology, 21, 171-174. Peikert, A., Wilimzig, C., & Kohne-Volland, R...important actions of magnesium that relates to this study is the regulation of calcium access into the cell and the actions of calcium inside the cell

  12. Magnesium prevents phosphate-induced vascular calcification via TRPM7 and Pit-1 in an aortic tissue culture model.

    PubMed

    Sonou, Tomohiro; Ohya, Masaki; Yashiro, Mitsuru; Masumoto, Asuka; Nakashima, Yuri; Ito, Teppei; Mima, Toru; Negi, Shigeo; Kimura-Suda, Hiromi; Shigematsu, Takashi

    2017-06-01

    Previous clinical and experimental studies have indicated that magnesium may prevent vascular calcification (VC), but mechanistic characterization has not been reported. This study investigated the influence of increasing magnesium concentrations on VC in a rat aortic tissue culture model. Aortic segments from male Sprague-Dawley rats were incubated in serum-supplemented high-phosphate medium for 10 days. The magnesium concentration in this medium was increased to demonstrate its role in preventing VC, which was assessed by imaging and spectroscopy. The mineral composition of the calcification was analyzed using Fourier transform infrared (FTIR) spectroscopic imaging, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) mapping. Magnesium supplementation of high-phosphate medium dose-dependently suppressed VC (quantified as aortic calcium content), and almost ablated it at 2.4 mm magnesium. The FTIR images and SEM-EDX maps indicated that the distribution of phosphate (as hydroxyapatite), phosphorus and Mg corresponded with calcium content in the aortic ring and VC. The inhibitory effect of magnesium supplementation on VC was partially reduced by 2-aminoethoxy-diphenylborate, an inhibitor of TRPM7. Furthermore, phosphate transporter-1 (Pit-1) protein expression was increased in tissues cultured in HP medium and was gradually-and dose dependently-decreased by magnesium. We conclude that a mechanism involving TRPM7 and Pit-1 underpins the magnesium-mediated reversal of high-phosphate-associated VC.

  13. [Effect of calcium and magnesium ions on the interaction of corticosterone with the cytosol receptor(s) in the rat brain].

    PubMed

    Ueda, M

    1981-01-01

    The effects of calcium and magnesium ions on the corticosterone binding to rat brain cytosol receptor protein(s) were investigated. The increasing amounts of CaCl2 or MgCl2 up to 5.0 mM were added, the specific [3H] corticosterone binding increased 1.3-fold and 1.5 respectively. The addition of MnCl2 and KCl did not affect this binding. The binding of corticosterone with rat brain cytosol receptor(s) were decreased by increasing amounts of EDTA and complete inhibition was observed at concentration equal to and greater than 2.5 mM. Inhibition of this binding by EDTA was less than by EGTA. Either theophylline or dibutyryl cyclic AMP had no effect on this binding.

  14. Elevated dietary magnesium during pregnancy and postnatal life prevents ectopic mineralization in Enpp1asj mice, a model for generalized arterial calcification of infancy

    PubMed Central

    Kingman, Joshua; Uitto, Jouni; Li, Qiaoli

    2017-01-01

    Generalized arterial calcification of infancy (GACI) is an autosomal recessive disorder caused by mutations in the ENPP1 gene. It is characterized by mineralization of the arterial blood vessels, often diagnosed prenatally, and associated with death in early childhood. There is no effective treatment for this devastating disorder. We previously characterized the Enpp1asjmutant mouse as a model of GACI, and we have now explored the effect of elevated dietary magnesium (five-fold) in pregnant mothers and continuing for the first 14 weeks of postnatal life. The mothers were kept on either control diet or experimental diet supplemented with magnesium. Upon weaning at 4 weeks of age the pups were placed either on control diet or high magnesium diet. The degree of mineralization was assessed at 14 weeks of age by histopathology and a chemical calcium assay in muzzle skin, kidney and aorta. Mice placed on high magnesium diet showed little, if any, evidence of mineralization when their corresponding mothers were also placed on diet enriched with magnesium during pregnancy and nursing. The reduced ectopic mineralization in these mice was accompanied by increased calcium and magnesium content in the urine, suggesting that magnesium competes calcium-phosphate binding thereby preventing the mineral deposition. These results have implications for dietary management of pregnancies in which the fetus is suspected of having GACI. Moreover, augmenting a diet with high magnesium may be beneficial for other ectopic mineralization diseases, including nephrocalcinosis. PMID:28402956

  15. Elevated dietary magnesium during pregnancy and postnatal life prevents ectopic mineralization in Enpp1asj mice, a model for generalized arterial calcification of infancy.

    PubMed

    Kingman, Joshua; Uitto, Jouni; Li, Qiaoli

    2017-06-13

    Generalized arterial calcification of infancy (GACI) is an autosomal recessive disorder caused by mutations in the ENPP1 gene. It is characterized by mineralization of the arterial blood vessels, often diagnosed prenatally, and associated with death in early childhood. There is no effective treatment for this devastating disorder. We previously characterized the Enpp1asjmutant mouse as a model of GACI, and we have now explored the effect of elevated dietary magnesium (five-fold) in pregnant mothers and continuing for the first 14 weeks of postnatal life. The mothers were kept on either control diet or experimental diet supplemented with magnesium. Upon weaning at 4 weeks of age the pups were placed either on control diet or high magnesium diet. The degree of mineralization was assessed at 14 weeks of age by histopathology and a chemical calcium assay in muzzle skin, kidney and aorta. Mice placed on high magnesium diet showed little, if any, evidence of mineralization when their corresponding mothers were also placed on diet enriched with magnesium during pregnancy and nursing. The reduced ectopic mineralization in these mice was accompanied by increased calcium and magnesium content in the urine, suggesting that magnesium competes calcium-phosphate binding thereby preventing the mineral deposition. These results have implications for dietary management of pregnancies in which the fetus is suspected of having GACI. Moreover, augmenting a diet with high magnesium may be beneficial for other ectopic mineralization diseases, including nephrocalcinosis.

  16. Elasticity of Calcium-Alkaline Amphiboles: Revised Properties for Crustal Seismic Models

    NASA Astrophysics Data System (ADS)

    Straughan, K. B.; Castle, N. R.; Brown, J.

    2009-12-01

    Amphiboles are dominant mineral constituents of both the oceanic and continental crust. Efforts to model crustal seismic structure and anisotropy have been limited by sparse and uncertain data for the elasticity of common rock-forming amphiboles. A single paper from 1961 reports properties of two “hornblendes” of unreported composition. We have undertaken a study of the calcium-alkaline amphiboles (minerals in this range include hornblende, tremolite, edenite, pargasite, tschermaktite and others) to explore elastic properties as a function of composition. Velocities as a function of propagation direction were measured using Impulsively Stimulated Light Scattering. All thirteen monoclinic elastic constants were determined for nine amphiboles spanning this common rock-forming compositional space. Amphiboles exhibit a wide range of elemental compositions and site occupancies. Measured trends of elastic constants with composition cannot be reduced to a single variable. Broad correlations are apparent in both (Mg+Fe) and Al concentrations. Among these samples, the isotropic average bulk modulus ranges from 85 to 98 GPa and the shear modulus ranges from 51 to 62. Poisson’s ratio varies from .23 to .27. The compressional velocity anisotropy (fast direction along the c axis and slow direction along the a-axis) varies with composition from 23% to 33%. Velocities along the c-axis are as fast as 9.0 km/s and along the a-axis are as slow as 5.8 km/s. These results exhibit far greater anisotropy and higher velocities than previously assumed based on the earlier data.

  17. Magnesium in drinking water - a case for prevention?

    PubMed

    Rylander, Ragnar

    2014-03-01

    Studies in many countries have demonstrated a relationship between drinking water mineral content and the risk of death in cardiovascular disease (CVD). Particularly strong relationships have been found for magnesium and it has been suggested that magnesium be added to drinking water. The aim of this article is to evaluate the validity of this suggestion by reviewing information on possible causative agents. Major epidemiological studies on the drinking water content of calcium, magnesium, and hardness were analysed regarding exposure specificity, confounding factors, dose-response relationships and biological plausibility. Intervention experiments were analysed. The risk of death in CVD was related to the content of Ca, Mg and HCO(3-). The data demonstrate that Ca and Mg need to be considered together, and that HCO(3-) could play a role by intervening with the body acid load. There is no evidence to justify the addition of magnesium only to drinking water for preventive purposes. The data suggest that Ca and Mg could be administered together but no data are available regarding the relative proportions for an optimal effect.

  18. Threshold to N-methyl-D-aspartate-induced seizures in mice undergoing chronic nutritional magnesium deprivation is lowered in a way partly responsive to acute magnesium and antioxidant administrations.

    PubMed

    Maurois, Pierre; Pages, Nicole; Bac, Pierre; German-Fattal, Michèle; Agnani, Geneviève; Delplanque, Bernadette; Durlach, Jean; Poupaert, Jacques; Vamecq, Joseph

    2009-02-01

    Magnesium deficiency may be induced by a diet impoverished in magnesium. This nutritional deficit promotes chronic inflammatory and oxidative stresses, hyperexcitability and, in mice, susceptibility to audiogenic seizures. Potentiation by low-magnesium concentrations of the opening of N-methyl-D-aspartate (NMDA) receptor/calcium channel in in vitro and ex vivo studies, and responsiveness to magnesium of in vivo brain injury states are now well established. By contrast, little or no specific attention has been, however, paid to the in vivo NMDA receptor function/excitability in magnesium deficiency. The present work reports for the first time that, in mice undergoing chronic nutritional deprivation in magnesium (35 v. 930 parts per million for 27 d in OF1 mice), NMDA-induced seizure threshold is significantly decreased (38 % of normal values). The attenuation in the drop of NMDA seizure threshold (percentage of reversal) was 58 and 20 % upon acute intraperitoneal administrations of magnesium chloride hexahydrate (28 mg magnesium/kg) and the antioxidant ebselen (20 mg/kg), respectively. In nutritionally magnesium-deprived animals, audiogenic seizures are completely prevented by these compound doses. Taken as a whole, our data emphasise that chronic magnesium deprivation in mice is a nutritional in vivo model for a lowered NMDA receptor activation threshold. This nutritional model responds remarkably to acute magnesium supply and moderately to acute antioxidant administration.

  19. Effect of low additives of calcium on corrosion resistance of alloys of the Mg - Al - Zn - Mn system

    NASA Astrophysics Data System (ADS)

    Koltygin, A. V.; Bazlova, T. A.

    2012-03-01

    The effect of calcium (0.2 - 0.5 wt.%) on the resistance of a liquid and solid magnesium alloy to oxidation is investigated. It is shown that calcium may be used as a microalloying additive raising the corrosion resistance of magnesium alloys not only at a high temperature but also at the operating temperature of parts produced from them for both cast and heat treated conditions.

  20. [Magnesium sulphate in the treatment of ischemic-hypoxic neonatal encephalopathy].

    PubMed

    Kornacka, M K

    2001-01-01

    Hypoxic-ischaemic encephalopathy (HIE) remains one of the most important neurological complications in full and near full term newborns. During HIE glutamate and other excitatory neurotransmitters are released and progressive energy failure in brain is observed. Toxicity of glutamate plays the main role in brain injury. Glutamate activates the specific receptors that, in turn, mediate an overwhelming influx of calcium into the postsynaptic neuron. The pathological changes are located particularly in hippocampus. Magnesium sulfate has been used safely for years to treat preclampsia. The animal experimental evidence support a neuroprotective role for magnesium in HIE.

  1. Aluminum hydroxide, calcium carbonate and calcium acetate in chronic intermittent hemodialysis patients.

    PubMed

    Janssen, M J; van der Kuy, A; ter Wee, P M; van Boven, W P

    1996-02-01

    Prevention of secondary hyperparathyroidism in uremia necessitates correction of hyperphosphatemia and hypocalcemia. In order to avoid aluminum toxicity, calcium containing phosphate binders are used increasingly, instead of aluminium hydroxide. Recent studies have shown that calcium acetate has many characteristics of an ideal phosphate binder. It is, for instance, a more readily soluble salt compared with calcium carbonate. This advantage might, however, disappear if calcium carbonate is taken on an empty stomach, a few minutes before meals. We examined the efficacy of three different phosphate binding agents in a randomized prospective study of 53 patients on regular hemodialysis. Bicarbonate dialyses were performed with a dialysate calcium concentration of 1.75 mmol/l. After a three-week wash-out period, patients received either aluminum hydroxide (control group), calcium acetate, or calcium carbonate as their phosphate binder. Patients were instructed to take the calcium salts a few minutes before meals on an empty stomach, and aluminum hydroxide during meals. Serum calcium, phosphate, intact parathormone, and alkaline phosphatase levels were determined every month. Patient compliance was estimated every month by asking the patients which phosphate binder and what daily dose they had used. Aluminum hydroxide tended to be the most effective phosphate binder. The mean +/- SEM required daily dose of calcium acetate at 12 months was 5.04 +/- 0.60 g, corresponding to 10.1 +/- 1.20 tablets of 500 mg. Co-medication with aluminum hydroxide, however, was needed (1.29 +/- 0.54 g per day, corresponding to 2.6 +/- 1.08 tablets of 500 mg). The required daily calcium carbonate dose appeared to be 2.71 +/- 0.48 g, corresponding to 5.4 +/- 0.95 capsules of 500 mg, with an adjuvant daily aluminum hydroxide dose of 0.69 +/- 0.27 g, corresponding to 1.4 +/- 0.55 tablets of 500 mg (p = 0.0055). Thus, the mean daily doses of elemental calcium were comparable between the calcium

  2. Comparison of sodium, potassium, calcium, magnesium, zinc, copper and iron concentrations of elements in 24-h urine and spot urine in hypertensive patients with healthy renal function.

    PubMed

    Zhang, Tianjing; Chang, Xiaoyu; Liu, Wanlu; Li, Xiaoxia; Wang, Faxuan; Huang, Liping; Liao, Sha; Liu, Xiuying; Zhang, Yuhong; Zhao, Yi

    2017-12-01

    Sodium, potassium, calcium, magnesium, zinc, copper and iron are associated with the sequela of hypertension. The most reliable method for testing those elements is by collecting 24-h urine samples. However, this is cumbersome and collection of spot urine is more convenient in some circumstance. The aim of this study was to compare the concentrations of different elements in 24-h urine and spot urine. Data was collected from a sub-study of China Salt Substitute and Stroke Study. 240 participants were recruited randomly from 12 villages in two counties in Ningxia, China. Both spot and 24-h urine specimens were collected from each patient. Routine urine test was conducted, and concentration of elements was measured using microwave digestion and Inductively Coupled Plasma-Optical Emission Spectrometry. Partial correlation analysis and Spearman correlation analysis were used to investigate the concentration of different elements and the relationship between 24- h urine and spot urine. A partial correlation in sodium, potassium, calcium, magnesium and iron was found between paired 24-h urine and spot urine samples except copper and zinc: 0.430, 0.426, 0.550, 0.221 and 0.191 respectively. Spot urine can replace 24-h urine for estimating some of the elements in hypertensive patients with normal renal function. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia L.; Zhu, Dongming

    2013-01-01

    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  4. Central nervous system magnesium deficiency.

    PubMed

    Langley, W F; Mann, D

    1991-03-01

    The central nervous system concentration of magnesium (Mg++) appears to have a critical level below which neurologic dysfunction occurs. Observations presented suggest that the interchange of the Mg++ ion between the cerebrospinal fluid, extracellular fluid, and bone is more rapid and dynamic than is usually believed. This is especially so when the hypertrophied parathyroid gland is associated with significant skeletal depletion of Mg++ as judged by history rather than serum level. Magnesium, much like calcium, has a large presence in bone and has a negative feedback relationship with the parathyroid gland. A decline in central nervous system Mg++ may occur when the skeletal buffer system orchestrated largely by the parathyroid glands is activated by an increase in serum calcium. Observations in veterinary medicine and obstetrics suggest that the transfer of Mg++ from the extracellular fluid into bone during mineralization processes may be extensive. If the inhibition of the hypertrophied parathyroid gland is prolonged and the skeletal depletion of Mg++ extreme, serious neurologic symptoms, including seizures, coma, and death, may occur. Noise, excitement, and bodily contact appear to precipitate neurologic symptoms in Mg+(+)-deficient human subjects as it has been documented to occur in Mg+(+)-deficient experimental animals. The similarity of the acute central nervous system demyelinating syndromes with reactive central nervous system Mg++ deficiency is reviewed.

  5. Structural characterization of rondorfite, calcium silica chlorine mineral containing magnesium in tetrahedral position [MgO4]6-, with the aid of the vibrational spectroscopies and fluorescence.

    PubMed

    Dulski, M; Bulou, A; Marzec, K M; Galuskin, E V; Wrzalik, R

    2013-01-15

    Raman and infrared spectra of rondorfite Ca8Mg(SiO4)4Cl2, a calcium chlorosilica mineral containing magnesium in tetrahedral position, has been studied in terms of spectra-structure relations. Raman spectra have been measured at different excited laser lines: 780 nm, 532 nm, 488 nm and 457 nm. This mineral is characterized by a single sharp intense Raman band at 863 cm(-1) assigned to the ν1 [SiO4]4- (Ag) symmetric stretching mode in the magnesiosilicate pentamer. Due to symmetry restriction the other Raman bands have a small intensity. Two Raman bands observed at 564 cm(-1) and 526 cm(-1) are associated simultaneously with ν4 [MgO4]6- and ν4 [SiO4]4- symmetric and antisymmetric modes where magnesium occurs in the tetrahedral configuration. The weak bands at 422 cm(-1) and 386 cm(-1) are associated with the ν2 bending mode of CaO6 in octahedral configuration, respectively. Moreover the infrared spectrum shows very weak bands associated with the hydroxyl group and/or water molecule. Additionally, the strong fluorescence phenomenon was observed and related to the presence of chlorine atoms, magnesium Mg2+ ions in atypical configuration or point defects. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  7. Ground-water quality atlas of Wisconsin

    USGS Publications Warehouse

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  8. Strong and tough magnesium wire reinforced phosphate cement composites for load-bearing bone replacement.

    PubMed

    Krüger, Reinhard; Seitz, Jan-Marten; Ewald, Andrea; Bach, Friedrich-Wilhelm; Groll, Jürgen

    2013-04-01

    Calcium phosphate cements are brittle biomaterials of low bending strength. One promising approach to improve their mechanical properties is reinforcement with fibers. State of the art degradable reinforced composites contain fibers made of polymers, resorbable glass or whiskers of calcium minerals. We introduce a new class of composite that is reinforced with degradable magnesium alloy wires. Bending strength and ductility of the composites increased with aspect ratio and volume content of the reinforcements up to a maximal bending strength of 139±41MPa. Hybrid reinforcement with metal and polymer fibers (PLA) further improved the qualitative fracture behavior and gave indication of enhanced strength and ductility. Immersion tests of composites in SBF for seven weeks showed high corrosion stability of ZEK100 wires and slow degradation of the magnesium calcium phosphate cement by struvite dissolution. Finally, in vitro tests with the osteoblast-like cell line MG63 demonstrate cytocompatibility of the composite materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Increased river alkalinization in the Eastern U.S.

    PubMed

    Kaushal, Sujay S; Likens, Gene E; Utz, Ryan M; Pace, Michael L; Grese, Melissa; Yepsen, Metthea

    2013-09-17

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km(2). We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These three variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the Eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  10. Association between blood pressure and magnesium and uric acid levels in indigenous Argentinean children at high altitude.

    PubMed

    Hirschler, Valeria; González, Claudio; Maccallini, Gustavo; Molinari, Claudia; Castano, Luis

    2017-07-08

    To determine the association between nontraditional risk factors such as magnesium and uric acid with blood pressure (BP) in Indigenous children. A total of 263 school-aged indigenous children living at high altitude were enrolled in a cross-sectional study in November 2011. Prehypertension (preHTN) and hypertension (HTN) were defined by systolic and/or diastolic BP ≥ 90th to <95th percentile or ≥95th percentile respectively, according to age, sex, and height. The prevalence of preHTN and HTN was 13.7 and 8.3%, respectively. Low magnesium levels were identified in 21.7% (57/263): 28.1% (16/57) of the children with low magnesium levels had preHTN versus 9.7% (20/206) with normal magnesium values. Furthermore, 21.8% (12/57) of the children with low magnesium levels had HTN versus 4.5% (20/206) with normal magnesium values. There was a significant association between mean arterial pressure and magnesium (r = -026), uric acid (r = 0.20), phosphorus (r = -0.17), z-BMI (r = 0.22), potassium (r = -0.10), HOMA-IR (r = 0.17), calcium (r = -0.10), and sodium (r = -0.13). Multiple linear regression analysis showed that mean arterial pressure was associated significantly and directly with BMI, age, gender, and uric acid; and inversely with magnesium, adjusted for sodium, calcium, phosphorus, potassium, and HOMA-IR (R 2  = 0.43). Furthermore, multiple logistic regression analyses showed that magnesium (OR = 0.015) and uric acid (OR = 2.95) were significantly associated with preHTN. Similar results were obtained when preHTN was replaced by HTN. Our results indicate that HTN was associated inversely with magnesium and positively with uric acid in indigenous school children. © 2017 Wiley Periodicals, Inc.

  11. [Effects of atracurium pretreatment with magnesium on speed of onset, duration, and recovery of neuromuscular blockade].

    PubMed

    Wu, Hong-Liang; Ye, Tie-Hu; Sun, Li

    2009-02-01

    To determine the effects of atracurium pretreatment with magnesium on speed of onset, duration, and recovery of neuromuscular block. Thirty patients who were undergoing elective gynecologic laparoscopic examination and treatments under general anesthesia were randomized into magnesium group (n = 15) and control group (n = 15). Before induction of general anesthesia, patients in magnesium group intravenously received MgSO4 30 mg/kg in saline within 5 minutes, and patients in control group received the same volume of saline without MgSO4. In both groups, the train-of-four (TOF) responses to stimuli of the ulnar nerve were measured at intervals of 12 seconds. Anesthesia was induced with Fentanyl and Propofol through target controlled infusion (TCI), and tracheal intubation was performed with 0.5 mg/kg atracurium after stabilization of the electromyography recording. The onset time of muscle relaxation, clinical duration of action, recovery index, and recovery time were recorded. To determine serum magnesium and calcium levels, blood samples were collected before MgSO4/saline infusion and at the end of operation. Haemodynamic changes and other responses during induction were also recorded. The onset time from the end of injection to maximum neuromuscular blockade was significantly shorter in magnesium group than in control group (P < 0.01). Duration of relaxant action, recovery index, and recovery time in magnesium group were significantly prolonged than in control group (P < 0.01). Serum magnesium level significantly decreased after management (P < 0.01), and there was also a decrease trend in magnesium group. No change of serum calcium levels in both groups was observed. No adverse event was reported. Prior administration of magnesium sulphate can increase the onset speed of atracurium and prolong the duration of atracurium-induced neuromuscular blockade.

  12. Identifying calcium sources at an acid deposition-impacted spruce forest: A strontium isotope, alkaline earth element multi-tracer approach

    USGS Publications Warehouse

    Bullen, T.D.; Bailey, S.W.

    2005-01-01

    Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources, but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration ratios of trees and soils to discern the record of Ca sources for red spruce at a base-poor, acid deposition-impacted watershed. We measured 87Sr/86Sr and chemical compositions of cross-sectional stemwood cores of red spruce, other spruce tissues and sequential extracts of co-located soil samples. 87Sr/86Sr and Sr/Ba ratios together provide a tracer of alkaline earth element sources that distinguishes the plant-available fraction of the shallow organic soils from those of deeper organic and mineral soils. Ca/Sr ratios proved less diagnostic, due to within-tree processes that fractionate these elements from each other. Over the growth period from 1870 to 1960, 87Sr/86Sr and Sr/Ba ratios of stemwood samples became progressively more variable and on average trended toward values that considered together are characteristic of the uppermost forest floor. In detail the stemwood chemistry revealed an episode of simultaneous enhanced uptake of all alkaline earth elements during the growth period from 1930 to 1960, coincident with reported local and regional increases in atmospheric inputs of inorganic acidity. We attribute the temporal trends in stemwood chemistry to progressive shallowing of the effective depth of alkaline earth element uptake by fine roots over this growth period, due to preferential concentration of fine roots in the upper forest floor coupled with reduced nutrient uptake by roots in the lower organic and upper mineral soils in response to acid-induced aluminum toxicity. Although both increased atmospheric deposition and selective weathering of Ca-rich minerals such as apatite provide possible

  13. Differential magnesium implant corrosion coat formation and contribution to bone bonding.

    PubMed

    Rahim, Muhammad Imran; Weizbauer, Andreas; Evertz, Florian; Hoffmann, Andrea; Rohde, Manfred; Glasmacher, Birgit; Windhagen, Henning; Gross, Gerhard; Seitz, Jan-Marten; Mueller, Peter P

    2017-03-01

    Magnesium alloys are presently under investigation as promising biodegradable implant materials with osteoconductive properties. To study the molecular mechanisms involved, the potential contribution of soluble magnesium corrosion products to the stimulation of osteoblastic cell differentiation was examined. However, no evidence for the stimulation of osteoblast differentiation could be obtained when cultured mesenchymal precursor cells were differentiated in the presence of metallic magnesium or in cell culture medium containing elevated magnesium ion levels. Similarly, in soft tissue no bone induction by metallic magnesium or by the corrosion product magnesium hydroxide could be observed in a mouse model. Motivated by the comparatively rapid accumulation solid corrosion products physicochemical processes were examined as an alternative mechanism to explain the stimulation of bone growth by magnesium-based implants. During exposure to physiological solutions a structured corrosion coat formed on magnesium whereby the elements calcium and phosphate were enriched in the outermost layer which could play a role in the established biocompatible behavior of magnesium implants. When magnesium pins were inserted into avital bones, corrosion lead to increases in the pull out force, suggesting that the expanding corrosion layer was interlocking with the surrounding bone. Since mechanical stress is a well-established inducer of bone growth, volume increases caused by the rapid accumulation of corrosion products and the resulting force development could be a key mechanism and provide an explanation for the observed stimulatory effects of magnesium-based implants in hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 697-709, 2017. © 2016 Wiley Periodicals, Inc.

  14. Magnesium carbonate-containing phosphate binder prevents connective tissue mineralization in Abcc6(-/-) mice-potential for treatment of pseudoxanthoma elasticum.

    PubMed

    Li, Qiaoli; Larusso, Jennifer; Grand-Pierre, Alix E; Uitto, Jouni

    2009-12-01

    Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by ectopic mineralization of connective tissues primarily in the skin, eyes, and the cardiovascular system. PXE is caused by mutations in the ABCC6 gene. While PXE is associated with considerable morbidity and mortality, there is currently no effective or specific treatment. In this study, we tested oral phosphate binders for treatment of a mouse model of PXE which we have developed by targeted ablation of the corresponding mouse gene (Abcc6(-/-)). This "knock-out" (KO) mouse model recapitulates features of PXE and demonstrates mineralization of a number of tissues, including the connective tissue capsule surrounding vibrissae in the muzzle skin which serves as an early biomarker of the mineralization process. Treatment of these mice with a magnesium carbonate-enriched diet (magnesium concentration being 5-fold higher than in the control diet) completely prevented mineralization of the vibrissae up to 6 months of age, as demonstrated by computerized morphometric analysis of histopathology as well as by calcium and phosphate chemical assays. The magnesium carbonate-enriched diet also prevented the progression of mineralization when the mice were placed on that experimental diet at 3 months of age and followed up to 6 months of age. Treatment with magnesium carbonate was associated with a slight increase in the serum concentration of magnesium, with no effect on serum calcium and phosphorus levels. In contrast, concentration of calcium in the urine was increased over 10-fold while the concentration of phosphorus was markedly decreased, being essentially undetectable after long-term (> 4 month) treatment. No significant changes were noted in the serum parathyroid hormone levels. Computerized axial tomography scan of bones in mice placed on magnesium carbonate-enriched diet showed no differences in the bone density compared to mice on the control diet, and chemical assays showed a small increase in

  15. Probing the limit of magnesium uptake by β-tricalcium phosphate in biphasic mixtures formed from calcium deficient apatites

    NASA Astrophysics Data System (ADS)

    Kumar, P. Nandha; Mishra, Sandeep K.; Kannan, S.

    2015-11-01

    A series of magnesium doped non-stoichiometric calcium deficient apatites were synthesized through an aqueous precipitation route. The resultant structural changes during heat treatment were investigated by X-ray diffraction, Raman and FT-IR spectroscopy and Rietveld refinement. The results confirmed the formation of biphasic mixtures comprising Ca10(PO4)6(OH)2 and β-Ca3(PO4)2 after heat treatment at 1000 °C with the preferential occupancy of Mg2+ at the crystal lattice of β-Ca3(PO4)2. The concentration of Mg2+ uptake in β-Ca3(PO4)2 is limited till reaching the stoichiometric ratio of (Ca+Mg)/P=1.67 and beyond this stoichiometric value [(Ca+Mg)/P>1.67], Mg2+ precipitates as Mg(OH)2 and thereafter gets converted to MgO during heat treatment. Any kind of Mg2+ uptake in the crystal lattice of Ca10(PO4)6(OH)2 is discarded from the investigation.

  16. The flame photometric determination of calcium in phosphate, carbonate, and silicate rocks

    USGS Publications Warehouse

    Kramer, H.

    1957-01-01

    A flame photometric method of determining calcium in phosphate, carbonate, and silicate locks has been developed Aluminum and phosphate interference was overcome by the addition of a large excess of magnesium. The method is rapid and suitable for routine analysis Results obtained are within ?? 2% of the calcium oxide content. ?? 1957.

  17. Groundwater quality assessment in the village of Lutfullapur Nawada, Loni, District Ghaziabad, Uttar Pradesh, India.

    PubMed

    Singh, Vinod K; Bikundia, Devendra Singh; Sarswat, Ankur; Mohan, Dinesh

    2012-07-01

    The groundwater quality for drinking, domestic and irrigation in the village Lutfullapur Nawada, Loni, district Ghaziabad, U.P., India, has been assessed. Groundwater samples were collected, processed and analyzed for temperature, pH, conductivity, salinity, total alkalinity, carbonate alkalinity, bicarbonate alkalinity, total hardness, calcium hardness, magnesium hardness, total solids, total dissolved solids, total suspended solids, nitrate-nitrogen, chloride, fluoride, sulfate, phosphate, silica, sodium, potassium, calcium, magnesium, total chromium, cadmium, copper, iron, nickel, lead and zinc. A number of groundwater samples showed levels of electrical conductivity (EC), alkalinity, chloride, calcium, sodium, potassium and iron exceeding their permissible limits. Except iron, the other metals (Cr, Cd, Cu, Ni, Pb, and Zn) were analyzed below the permissible limits. The correlation matrices for 28 variables were performed. EC, salinity, TS and TDS had significant positive correlations among themselves and also with NO (3) (-) , Cl(-), alkalinity, Na(+), K(+), and Ca(2+). Fluoride was not significantly correlated with any of the parameters. NO (3) (-) was significantly positively correlated with Cl(-), alkalinity, Na(+), K(+) and Ca(2+). Chloride also correlated significantly with alkalinity, Na(+), K(+) and Ca(2+). Sodium showed a strong and positive correlation with K(+) and Ca(2+). pH was negatively correlated with most of the physicochemical parameters. This groundwater is classified as a normal sulfate and chloride type. Base-exchange indices classified 73% of the groundwater sources as the Na(+)-SO (4) (2-) type. The meteoric genesis indices demonstrated that 67% of groundwater sources belong to a deep meteoric water percolation type. Hydrochemical groundwater evaluations revealed that most of the groundwaters belong to the Na(+)-K(+)-Cl(-)-SO (4) (2-) type followed by Na(+)-K(+)-HCO (3) (-) type. Salinity, chlorinity and SAR indices indicated that majority

  18. Calcium binding to Procambarus clarkii sarcoplasmic calcium binding protein splice variants.

    PubMed

    Rohrback, Suzanne E; Wheatly, Michele G; Gillen, Christopher M

    2015-01-01

    Sarcoplasmic calcium binding protein (SCP) is a high-affinity calcium buffering protein expressed in muscle of crayfish and other invertebrates. In previous work, we identified three splice variants of Procambarus clarkii SCP (pcSCP1a, pcSCP1b, and pcSCP1c) that differ in a 37 amino acid region that lies mainly between the 2nd and 3ed EF-hand calcium binding domain. To evaluate the function of the proteins encoded by the pcSCP1 transcripts, we produced recombinant pcSCP1 and used tryptophan fluorescence to characterize calcium binding. Tryptophan fluorescence of pcSCP1a decreased in response to increased calcium, while tryptophan fluorescence of the pcSCP1b and pcSCP1c variants increased. We estimated calcium binding constants and Hill coefficients with two different equations: the standard Hill equation and a modified Hill equation that accounts for contributions from two different tryptophans. The approaches gave similar results. Steady-state calcium binding constants (Kd) ranged from 2.7±0.7×10(-8)M to 5.6±0.1×10(-7)M, consistent with previous work. Variants displayed significantly different apparent calcium affinities, which were decreased in the presence of magnesium. Calcium Kd was lowest for pcSCP1a and highest for pcSCP1c. Site-directed mutagenesis of pcSCP1c residues to the amino acids of pcSCP1b decreased the calcium Kd, identifying residues outside the EF-hand domains that contribute to calcium binding in crayfish SCP. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Effect of diuretics on renal tubular transport of calcium and magnesium.

    PubMed

    Alexander, R Todd; Dimke, Henrik

    2017-06-01

    Calcium (Ca 2+ ) and Magnesium (Mg 2+ ) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca 2+ and Mg 2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca 2+ and Mg 2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca 2+ and Mg 2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na + ) transport, but also indirectly affect renal Ca 2+ and Mg 2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca 2+ and Mg 2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca 2+ and Mg 2+ transport. Acetazolamide, osmotic diuretics, Na + /H + exchanger (NHE3) inhibitors, and antidiabetic Na + /glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca 2+ transport predominates. Loop diuretics and renal outer medullary K + (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca 2+ and Mg 2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na + transport at distal sites, can also affect divalent cation transport. Copyright © 2017 the American Physiological Society.

  20. The determination of calcium in phosphate, carbonate, and silicate rocks by flame photometer

    USGS Publications Warehouse

    Kramer, Henry

    1956-01-01

    A method has been developed for the determination of calcium in phosphate, carbonate, and silicate rocks using the Beckman flame photometer, with photomultiplier attachement. The sample is dissolved in hydrofluoric, nitric, and perchloric acids, the hydrofluoric and nitric acids are expelled, a radiation buffer consisting of aluminum, magnesium, iron, sodium, potassium, phosphoric acid, and nitric acid is added, and the solution is atomized in an oxy-hydrogen flame with an instrument setting of 554 mµ. Measurements are made by comparison against calcium standards, prepared in the same manner, in the 0 to 50 ppm range. The suppression of calcium emission by aluminum and phosphate was overcome by the addition of a large excess of magnesium. This addition almost completely restores the standard curve obtained from a solution of calcium nitrate. Interference was noted when the iron concentration in the aspirated solution (including the iron from the buffer) exceeded 100 ppm iron. Other common rock-forming elements did not interfere. The results obtained by this procedure are within ± 2 percent of the calcium oxide values obtained by other methods in the range 1 to 95 percent calcium oxide. In the 0 to 1 percent calcium oxide range the method compares favorably with standard methods.

  1. The effect of calcium hydroxide, alkali dilution and calcium concentration in mitigating the alkali silica reaction using palm oil fuel ash

    NASA Astrophysics Data System (ADS)

    Asrah, Hidayati; Mirasa, Abdul Karim; Bolong, Nurmin

    2018-02-01

    This study investigated the mechanism of how POFA mitigated the ASR expansion. Two types of POFA; the UPOFA and GPOFA with different fineness were used to replace the cement at 20% and 40% and their effects on the mortar bar expansion, calcium hydroxide, alkali dilution, and calcium concentration were investigated. The results showed that UPOFA has a significant ability to mitigate the ASR, even at a lower level of replacement (20%) compared to GPOFA. The mechanism of UPOFA in mitigating the ASR expansion was through a reduction in the calcium hydroxide content, which produced low calcium concentration within the mortar pore solution. Low pore solution alkalinity signified that UPOFA had good alkali dilution effect. Meanwhile, a higher dosage of GPOFA was required to mitigate the ASR expansion. An increase in the pore solution alkalinity of GPOFA mortar indicated higher penetration of alkalis from the NaOH solution, which reduced the alkali dilution effect. However, this was compensated by the increase in the cement dilution effect at higher GPOFA replacement, which controlled the mortar bar expansion below the ASTM limit.

  2. Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity.

    PubMed

    Pastrana-Martínez, L M; López-Ramón, M V; Fontecha-Cámara, M A; Moreno-Castilla, C

    2010-02-01

    There has been little research into the effects of the water hardness and alkalinity of surface waters on the adsorption of herbicides on activated carbons. The aim of this study was to determine the influence of these water characteristics on fluroxypyr adsorption on different activated carbons. At low fluroxypyr surface concentrations, the amount adsorbed from distilled water was related to the surface hydrophobicity. Surface area of carbons covered by fluroxypyr molecules ranged from 60 to 65%. Variations in fluroxypyr solubility with water hardness and alkalinity showed a salting-in effect. Calcium, magnesium and bicarbonate ions were adsorbed to a varied extent on the activated carbons. The presence of fluroxypyr in solution decreased their adsorption due to a competition effect. K(F) from the Freundlich equation linearly increased with water hardness due to salt-screened electrostatic repulsions between charged fluroxypyr molecules. The amount adsorbed from distilled water was largest at high fluroxypyr solution concentrations, because there was no competition between inorganic ions and fluroxypyr molecules. The column breakthrough volume and the amount adsorbed at breakthrough were smaller in tap versus distilled water. Carbon consumption was lower with activated carbon cloth than with the use of granular activated carbon. (c) 2009 Elsevier Ltd. All rights reserved.

  3. Regeneration of sulfated metal oxides and carbonates

    DOEpatents

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  4. In vivo corrosion of four magnesium alloys and the associated bone response.

    PubMed

    Witte, F; Kaese, V; Haferkamp, H; Switzer, E; Meyer-Lindenberg, A; Wirth, C J; Windhagen, H

    2005-06-01

    Degrading metal alloys are a new class of implant materials suitable for bone surgery. The aim of this study was to investigate the degradation mechanism at the bone-implant interface of different degrading magnesium alloys in bone and to determine their effect on the surrounding bone. Sample rods of four different magnesium alloys and a degradable polymer as a control were implanted intramedullary into the femora of guinea pigs. After 6 and 18 weeks, uncalcified sections were generated for histomorphologic analysis. The bone-implant interface was characterized in uncalcified sections by scanning electron microscopy (SEM), element mapping and X-ray diffraction. Results showed that metallic implants made of magnesium alloys degrade in vivo depending on the composition of the alloying elements. While the corrosion layer of all magnesium alloys accumulated with biological calcium phosphates, the corrosion layer was in direct contact with the surrounding bone. The results further showed high mineral apposition rates and an increased bone mass around the magnesium rods, while no bone was induced in the surrounding soft tissue. From the results of this study, there is a strong rationale that in this research model, high magnesium ion concentration could lead to bone cell activation.

  5. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

  6. Calcium Carbonate Nucleation in an Alkaline Lake Surface Water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.

    2012-01-01

    Calcium concentration and calcite supersaturation (??) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has ?? values of 10-16. Notwithstanding high ??, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean ?? at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water ??. Calcium concentration and ?? regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower ?? than filtered samples. Calcium concentration and ?? at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (??) + B. The best fit rate equation "Rate (?? mM/?? min) = -0.0026 ?? + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, ?? at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors. ?? 2011 U.S. Government.

  7. Effects of impurities on the biodegradation behavior of pure magnesium

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Young; Han, Gilsoo; Kim, Yu-Chan; Byun, Ji-Young; Jang, Jae-il; Seok, Hyun-Kwang; Yang, Seok-Jo

    2009-12-01

    The corrosion behavior of pure magnesium that has different content ratio of impurities (such as Fe/Mn ratio) in Hanks' solution was investigated in order to tailor the lifetime of biodegradable implant made of pure magnesium. Two distinct stages of corrosion were observed: a slow corrosion rate stage and a subsequent fast corrosion rate stage. The first stage was characterized by uniform corrosion that produced magnesium hydroxide and calcium phosphate film on a magnesium surface, resulting in a slow corrosion rate. The second stage with an abrupt increase in the corrosion rate was induced by Fe precipitates and was stimulated by an increase in the Fe/Mn ratio. This corrosion was developed to a preferred crystallographic pitting corrosion where the pits propagated along the preferred crystallographic plane and several layers of Mg planes with narrow interplanar space remained uncorroded. From this study, it is expected that the lifetime of the biodegradable implant made of pure Mg can be tailored by controlling the amount and ratio of the impurities.

  8. Calcium homeostasis in diabetes mellitus.

    PubMed

    Ahn, Changhwan; Kang, Ji-Houn; Jeung, Eui-Bae

    2017-09-30

    Diabetes mellitus (DM) is becoming a lifestyle-related pandemic disease. Diabetic patients frequently develop electrolyte disorders, especially diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar syndrome. Such patients show characteristic potassium, magnesium, phosphate, and calcium depletion. In this review, we discuss a homeostatic mechanism that links calcium and DM. We also provide a synthesis of the evidence in favor or against this linking mechanism by presenting recent clinical indications, mainly from veterinary research. There are consistent results supporting the use of calcium and vitamin D supplementation to reduce the risk of DM. Clinical trials support a marginal reduction in circulating lipids, and some meta-analyses support an increase in insulin sensitivity, following vitamin D supplementation. This review provides an overview of the calcium and vitamin D disturbances occurring in DM and describes the underlying mechanisms. Such elucidation will help indicate potential pathophysiology-based precautionary and therapeutic approaches and contribute to lowering the incidence of DM.

  9. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins.

    PubMed

    Viviano, Jeffrey; Krishnan, Anuradha; Wu, Hao; Venkataraman, Venkat

    2016-02-01

    In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study.

    PubMed

    Harari, Florencia; Åkesson, Agneta; Casimiro, Esperanza; Lu, Ying; Vahter, Marie

    2016-05-01

    There is increasing evidence of adverse health effects due to elevated lithium exposure through drinking water but the impact on calcium homeostasis is unknown. This study aimed at elucidating if lithium exposure through drinking water during pregnancy may impair the maternal calcium homeostasis. In a population-based mother-child cohort in the Argentinean Andes (n=178), with elevated lithium concentrations in the drinking water (5-1660μg/L), blood lithium concentrations (correlating significantly with lithium in water, urine and plasma) were measured repeatedly during pregnancy by inductively coupled plasma mass spectrometry and used as exposure biomarker. Markers of calcium homeostasis included: plasma 25-hydroxyvitamin D3, serum parathyroid hormone (PTH), and calcium, phosphorus and magnesium concentrations in serum and urine. The median maternal blood lithium concentration was 25μg/L (range 1.9-145). In multivariable-adjusted mixed-effects linear regression models, blood lithium was inversely associated with 25-hydroxyvitamin D3 (-6.1nmol/L [95%CI -9.5; -2.6] for a 25μg/L increment in blood lithium). The estimate increased markedly with increasing percentiles of 25-hydroxyvitamin D3. In multivariable-adjusted mixed-effects logistic regression models, the odds ratio of having 25-hydroxyvitamin D3<30nmol/L (19% of the women) was 4.6 (95%CI 1.1; 19.3) for a 25μg/L increment in blood lithium. Blood lithium was also positively associated with serum magnesium, but not with serum calcium and PTH, and inversely associated with urinary calcium and magnesium. In conclusion, our study suggests that lithium exposure through drinking water during pregnancy may impair the calcium homeostasis, particularly vitamin D. The results reinforce the need for better control of lithium in drinking water, including bottled water. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. The Biocompatibility of Degradable Magnesium Interference Screws: An Experimental Study with Sheep

    PubMed Central

    Thormann, Ulrich; Alt, Volker; Heimann, Lydia; Gasquere, Cyrille; Heiss, Christian; Szalay, Gabor; Franke, Jörg; Schnettler, Reinhard; Lips, Katrin Susanne

    2015-01-01

    Screws for ligament reconstruction are nowadays mostly made of poly-L-lactide (PLLA). However, magnesium-based biomaterials are gathering increased interest in this research field because of their good mechanical property and osteoanabolic influence on bone metabolism. The aim of this pilot study was to evaluate the biocompatibility of an interference screw for ligament reconstruction made of magnesium alloy W4 by diecasting and milling and using different PEO-coatings with calcium phosphates. PLLA and titanium screws were used as control samples. The screws were implanted in the femur condyle of the hind leg of a merino sheep. The observation period was six and twelve weeks and one year. Histomorphometric, immunohistochemical, immunofluorescence, and molecular biological evaluation were conducted. Further TEM analysis was done. In all magnesium screws a clinically relevant gas formation in the vicinity of the biomaterial was observed. Except for the PLLA and titanium control samples, no screw was fully integrated in the surrounding bone tissue. Regarding the fabrication process, milling seems to produce less gas liberation and has a better influence on bone metabolism than diecasting. Coating by PEO with calcium phosphates could not reduce the initial gas liberation but rather reduced the bone metabolism in the vicinity of the biomaterial. PMID:25717474

  12. Calcium content of different compositions of gallstones and pathogenesis of calcium carbonate gallstones.

    PubMed

    Yu, Ji-Kuen; Pan, Huichin; Huang, Shing-Moo; Huang, Nan-Lan; Yao, Chung-Chin; Hsiao, Kuang-Ming; Wu, Chew-Wun

    2013-01-01

    Our aim was to investigate the calcium content of different gallstone compositions and the pathogenic mechanisms of calcium carbonate gallstones. Between August 2001 and July 2007, gallstones from 481 patients, including 68 calcium carbonate gallstones, were analyzed for total calcium content. Gallbladder bile samples from 33 cases and six controls were analyzed for pH, carbonate anion level, free-ionized calcium concentration and saturation index for calcium carbonate. Total calcium content averaged 75.6 %, 11.8 %, and 4.2 % for calcium carbonate, calcium bilirubinate and cholesterol gallstones. In 29.4 % of patients, chronic and/or intermittent cystic duct obstructions were caused by polypoid lesions in the neck region and 70.6 % were caused by stones. A total of 82 % of patients had chronic low-grade inflammation of the gallbladder wall and 18.0 % had acute inflammatory exacerbations. In the bile, we found the mean pH, mean carbonate anion, free-ionized calcium concentrations, and mean saturation index for calcium carbonate to be elevated in comparison to controls. From our study, we found chronic and/or intermittent cystic duct obstructions and low-grade GB wall inflammation lead to GB epithelium hydrogen secretion dysfunction. Increased calcium ion efflux into the GB lumen combined with increased carbonate anion presence increases SI_CaCO(3) from 1 to 22.4. Thus, in an alkaline milieu with pH 7.8, calcium carbonate begins to aggregate and precipitate. Copyright © 2012. Published by Elsevier B.V.

  13. Syntheses and structures of alkaline earth metal bis(diphenylamides).

    PubMed

    Gärtner, Martin; Fischer, Reinald; Langer, Jens; Görls, Helmar; Walther, Dirk; Westerhausen, Matthias

    2007-06-11

    Various preparative procedures are employed in order to synthesize alkaline earth metal bis(diphenylamides) such as (i) metalation of HNPh2 with the alkaline earth metal M, (ii) metalation of HNPh2 with MPh2, (iii) metathesis reaction of MI2 with KNPh2, (iv) metalation of HNPh2 with PhMI in THF, and (v) metathesis reaction of PhMI with KNPh2 followed by a dismutation reaction yielding MPh2 and M(NPh2)2. The magnesium compounds [(diox)MgPh2]infinity (1) and (thf)2Mg(NPh2)2 (2) show tetracoordinate metal atoms, whereas in (dme)2Ca(NPh2)2 (3), (thf)4Sr(NPh2)2 (4), and (thf)4Ba(NPh2)2 (5) the metals are 6-fold coordinated. Additional agostic interactions between an ipso-carbon of one of the phenyl groups of the amide ligand and the alkaline earth metal atom lead to unsymmetric coordination of the NPh2 anions with two strongly different M-N-C angles in 3-5.

  14. Proteomic analysis of a rare urinary stone composed of calcium carbonate and calcium oxalate dihydrate: a case report.

    PubMed

    Kaneko, Kiyoko; Matsuta, Yosuke; Moriyama, Manabu; Yasuda, Makoto; Chishima, Noriharu; Yamaoka, Noriko; Fukuuchi, Tomoko; Miyazawa, Katsuhito; Suzuki, Koji

    2014-03-01

    The objective of the present study was to investigate the matrix protein of a rare urinary stone that contained calcium carbonate. A urinary stone was extracted from a 34-year-old male patient with metabolic alkalosis. After X-ray diffractometry and infrared analysis of the stone, proteomic analysis was carried out. The resulting mass spectra were evaluated with protein search software, and matrix proteins were identified. X-ray diffraction and infrared analysis confirmed that the stone contained calcium carbonate and calcium oxalate dihydrate. Of the identified 53 proteins, 24 have not been previously reported from calcium oxalate- or calcium phosphate-containing stones. The protease inhibitors and several proteins related to cell adhesion or the cytoskeleton were identified for the first time. We analyzed in detail a rare urinary stone composed of calcium carbonate and calcium oxalate dihydrate. Considering the formation of a calcium carbonate stone, the new identified proteins should play an important role on the urolithiasis process in alkaline condition. © 2013 The Japanese Urological Association.

  15. Macroscopic and microscopic variation in recovered magnesium phosphate materials: implications for phosphorus removal processes and product re-use.

    PubMed

    Massey, Michael S; Ippolito, James A; Davis, Jessica G; Sheffield, Ron E

    2010-02-01

    Phosphorus (P) recovery and re-use will become increasingly important for water quality protection and sustainable nutrient cycling as environmental regulations become stricter and global P reserves decline. The objective of this study was to examine and characterize several magnesium phosphates recovered from actual wastewater under field conditions. Three types of particles were examined including crystalline magnesium ammonium phosphate hexahydrate (struvite) recovered from dairy wastewater, crystalline magnesium ammonium phosphate hydrate (dittmarite) recovered from a food processing facility, and a heterogeneous product also recovered from dairy wastewater. The particles were analyzed using "wet" chemical techniques, powder X-ray diffraction (XRD), and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy (SEM-EDS). The struvite crystals had regular and consistent shape, size, and structure, and SEM-EDS analysis clearly showed the struvite crystals as a surface precipitate on calcium phosphate seed material. In contrast, the dittmarite crystals showed no evidence of seed material, and were not regular in size or shape. The XRD analysis identified no crystalline magnesium phosphates in the heterogeneous product and indicated the presence of sand particles. However, magnesium phosphate precipitates on calcium phosphate seed material were observed in this product under SEM-EDS examination. These substantial variations in the macroscopic and microscopic characteristics of magnesium phosphates recovered under field conditions could affect their potential for beneficial re-use and underscore the need to develop recovery processes that result in a uniform, consistent product.

  16. Crystallization efficiencies of inorganic polyphosphate oligomers reacted with magnesium and calcium cations using anion-exchange chromatography with particulate formation-laser scattering detector.

    PubMed

    Ando, Masaki; Imadzu, Sakiyo; Kitagawa, Shinya; Ohtani, Hajime

    2010-08-06

    A particulate formation-laser scattering detector (PFLSD) was developed and used for evaluating the crystallization efficiency of inorganic polyphosphates (PPs) that reacted with either magnesium or calcium cations. As the solutions for reactive crystallization, 0.5 M ammonium buffer (pH 9.6) containing either 0.15 M MgCl(2) or 0.15 M CaCl(2) (MAP: magnesium ammonium phosphate and HAP: hydroxyapatite solution) were used. In the case of mono- and diphosphate (P1 and P2), the significant dependences of the particulate formation efficiency on various types of both P1/P2 and MAP/HAP reaction solutions were observed with the direct sample injection mode. The PFLSD was hyphenated with the anion-exchange chromatography and the dependence of the particulate formation efficiency on the polymerization degree (n(p)) of PP oligomers, separated chromatographically, was evaluated sequentially. The significant suppression of the particulate formation for PP oligomers was clearly confirmed, i.e., the MAP and HAP reaction solutions did not produce the particulates of the PP oligomers having an n(p) value of more than 3 and 5, respectively. As the overall tendency, the particulate formation efficiency in the case of the HAP solution was superior to that in the case of the MAP solution. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Calcium and magnesium ions modulate the oligomeric state and function of mitochondrial 2-Cys peroxiredoxins in Leishmania parasites.

    PubMed

    Morais, Mariana A B; Giuseppe, Priscila O; Souza, Tatiana A C B; Castro, Helena; Honorato, Rodrigo V; Oliveira, Paulo S L; Netto, Luis E S; Tomas, Ana M; Murakami, Mario T

    2017-04-28

    Leishmania parasites have evolved a number of strategies to cope with the harsh environmental changes during mammalian infection. One of these mechanisms involves the functional gain that allows mitochondrial 2-Cys peroxiredoxins to act as molecular chaperones when forming decamers. This function is critical for parasite infectivity in mammals, and its activation has been considered to be controlled exclusively by the enzyme redox state under physiological conditions. Herein, we have revealed that magnesium and calcium ions play a major role in modulating the ability of these enzymes to act as molecular chaperones, surpassing the redox effect. These ions are directly involved in mitochondrial metabolism and participate in a novel mechanism to stabilize the decameric form of 2-Cys peroxiredoxins in Leishmania mitochondria. Moreover, we have demonstrated that a constitutively dimeric Prx1m mutant impairs the survival of Leishmania under heat stress, supporting the central role of the chaperone function of Prx1m for Leishmania parasites during the transition from insect to mammalian hosts. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  19. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  20. Intra- and extracellular magnesium levels and atheromatosis in haemodialysis patients.

    PubMed

    Tzanakis, Ioannis; Virvidakis, Kyriakos; Tsomi, Aggeliki; Mantakas, Emmanouel; Girousis, Nikolaos; Karefyllakis, Nektarios; Papadaki, Antonia; Kallivretakis, Nikolaos; Mountokalakis, Theodoros

    2004-06-01

    Traditional risk factors do not adequately explain the high prevalence of cardiovascular disease in patients with chronic renal insufficiency. Currently, there is a lot of evidence that hypomagnesaemia may play a significant role in the pathogenesis of cardiovascular diseases in general population. The aim of this study was to test the hypothesis that magnesium status in haemodialysis patients is related to the degree of atheromatosis of carotid arteries, as assessed by B-mode ultrasound. Intima-media thickness of both common carotids was assessed by B-mode ultrasound in 93 stable chronic haemodialysis patients and in 182 age- and sex-matched healthy controls. Intracellular magnesium as well as serum magnesium levels were obtained in the haemodialysis patients. Intracellular magnesium was estimated by determination of this ion in isolated peripheral lymphocytes. Haemodialysis patients had also a significantly higher mean common carotid intima-media thickness than controls (0.87+/-0.16 vs 0.76+/-0.13 mm, p < 0.001). Multivariate analysis revealed that in haemodialysis patients both serum magnesium and intracellular magnesium were negatively associated with common carotid intima-media thickness (p = 0.001 and p = 0.003 respectively). Significant associations between the age of the haemodialysis patients, the existence of diabetes mellitus as well as the serum calcium x serum phosphate product with common carotid intima-media thickness of haemodialysis patients were also observed. A strong negative association of both extracellular and intracellular magnesium with common carotid intima-media thickness exists in haemodialysis patients. The above finding suggests that magnesium may play an important protective role in the development and/or acceleration of arterial atherosclerosis in patients with chronic renal insufficiency.

  1. [Long-term HRV analysis shows stress reduction by magnesium intake].

    PubMed

    Wienecke, Elmar; Nolden, Claudia

    2016-12-01

    Mental pressure and stress represent an ever-increasing socio-political challenge. The heart rate variability (HRV) measurement, which has its origin in the cardiac function diagnosis, gives information on the neurovegetative activity. A low HRV shows an imbalance of the sympathetic and parasympathetic efferents and thus is an indicator of stress. A randomized, controlled, two-armed parallel study with 100 participants and a period of 90 days was performed. Main object of investigation was to what extent the mineral magnesium, which is also a high-quality natural calcium antagonist in cardiology, can influence the sympathovagal balance, when given in combination with a strength-endurance training. The effect on intracellular magnesium concentration was investigated as an additional parameter. In the group with daily supplementation of 400 mg of magnesium, HRV parameters clearly increased: pNN50 - an indicator of parasympathetic activity - increased. LF-HF ratio as well as stress index - low values for each represent a good balance of the vegetative nervous system - decreased. In the control group no positive changes in HRV parameters could be shown. Vagus activity, and thus the adaptive and regenerative capacity of the body, veritably increased by magnesium supplementation. No effect on the intracellular magnesium concentration could be shown in the study. The results of this study point out that persons with mental and physical stress can benefit from a daily intake of magnesium. This might lead to an improved physiological regulation of the sympathetic and parasympathetic efferents and, furthermore, prevent magnesium deficiency and diseases such as, for example, restlessness, irritability, lack of concentration, sleep disorder or depression.

  2. Acidic Fluids Across Mars: Detections of Magnesium-Nickel Sulfates

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Ming, D. W.; Gellert, R.; Mittlefehldt, D. W.; Rampe, E. B.; Vaniman, D. T.; Thompson, L. M.; Morris, R. V.; Clark, B. C.; VanBommel, S. J.

    2017-01-01

    Calcium, magnesium and ferric iron sulfates have been detected by the instrument suites on the Mars rovers. A subset of the magnesium sulfates show clear associations with nickel. These associations indicate Ni(2+) co-precipitation with or substitution for Mg(2+) from sulfate-saturated solutions. Nickel is ex-tracted from primary rocks almost exclusively at pH values less than 6, constraining the formation of these Mg-Ni sulfates to mildly to strongly acidic conditions. There is clear evidence for aqueous alteration at the rim of Endeavour Crater (Meridiani Planum), in the Murray formation mudstone (Gale Crater), and near Home Plate (Gusev Crater). The discovery of Mg-Ni sulfates at these locations indicates a history of fluid-rock interactions at low pH.

  3. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  4. Mannitol improves absorption and retention of calcium and magnesium in growing rats.

    PubMed

    Xiao, Jin; Li, Xiao; Min, Xiao; Sakaguchi, Ei

    2013-01-01

    Resistant sugars, which have several desirable properties, are often used in food production and the pharmaceutical industry. We evaluated the effects of mannitol on the absorption and retention of calcium (Ca) and magnesium (Mg) in growing rats. In experiment 1, 4-wk-old growing male Wistar rats were given a control diet (C) or mannitol diets containing 2%, 4%, 6%, or 8% mannitol (2M, 4M, 6M, or 8M, respectively) for 28 d to measure the absorption and retention of Ca and Mg. In the last 7 d of the feeding trial, the non-absorbable marker chromium-mordant cellulose was added to the experimental diets to estimate Ca and Mg absorbability in the intestinal segments. In experiment 2, 9-wk-old growing male Wistar rats were fed for 7 d with the experimental diets (C, 4M, or 8M) to observe cecal parameters. Apparent Ca absorption and retention in bone were significantly increased by 6M and 8M. Apparent Mg absorption was significantly increased by 4M, 6M, and 8M, whereas Mg retention in bone was significantly increased by 8M. The Ca/Cr and Mg/Cr in cecal digesta were similar in all groups. Fecal Ca/Cr was significantly decreased by 6M and 8M and Mg/Cr was significantly decreased by 4M, 6M, and 8M. In experiment 2, cecal weight and tissue weight were significantly increased by 8M. A significant decrease in pH was concomitant with a significant change in cecal organic acid concentrations after mannitol consumption. Absorption and retention of Ca and Mg are promoted by mannitol feeding through the fermentation of mannitol in the cecum. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Calcium and magnesium in drinking-water and risk of death from lung cancer in women.

    PubMed

    Cheng, Meng-Hsuan; Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Chih-Cheng; Yang, Chun-Yuh

    2012-01-01

    The possible association between the risk of lung cancer in women and the levels of calcium (Ca) and magnesium (Mg) in drinking-water from municipal supplies was investigated in a matched, case-control study in Taiwan. All eligible female lung cancer deaths (3,532 cases) of Taiwan residents, from 2000 through to 2008, were compared with deaths from other causes (3,532 controls), and the levels of Ca and Mg in drinking-water of these residents were determined. Data on Ca and Mg levels in drinking-water throughout Taiwan were obtained from the Taiwan Water Supply Corporation (TWSC). The control group consisted of people who died from other causes, and the controls were pair-matched to the cases by sex, year of birth, and year of death. The adjusted odd ratios were not statistically significant for the relationship between Ca levels in drinking-water and lung cancer in women. The adjusted odd ratios for female lung cancer deaths for those with higher Mg levels in their drinking-water, as compared to the lowest tertile, were 0.82 (95% CI = 0.72-0.93) and 0.80 (95% CI = 0.69-0.93), respectively. The results of the present study show that there is a significant trend toward a decreased risk of lung cancer in women with increasing Mg levels in drinking-water.

  6. Calcium plus vitamin D supplementation and lung cancer incidence among postmenopausal women in the Women's Health Initiative.

    PubMed

    Tao, Meng-Hua; Dai, Qi; Chen, Shande; Freudenheim, Jo L; Rohan, Thomas; Wakelee, Heather; Datta, Mridul; Wactawski-Wende, Jean

    2017-08-01

    Magnesium and calcium are antagonistic in many physiologic processes. However, few studies have investigated the associations of supplemental calcium with lung cancer risk taking this antagonism into account. We evaluated the effect of calcium and vitamin D supplementation on lung cancer incidence and explored whether the ratio of baseline calcium to magnesium (Ca:Mg) intake modifies the association in the Women's Health Initiative (WHI) calcium plus vitamin D supplementation (CaD) trial. The intervention phase of the WHI CaD was a double-blinded, randomized, placebo-controlled trial in 36,382 postmenopausal women aged 50-79 years, recruited at 40U.S. centers. Post-intervention follow-up continued among 29,862 (86%) of the surviving participants. Risk of lung cancer in association with CaD supplementation was evaluated using proportional hazard regression models. After 11 years' cumulative follow-up, there were 207 lung cancers (incidence 0.11% per year) in the supplement arm and 241 (0.12%) in the placebo arm (hazard ratio (HR) for the intervention, 0.91; 95% confidence interval (CI), 0.71-1.17). Subgroup analyses suggested that the HR for lung cancer varied by baseline Ca:Mg intake ratio among women who were current smokers at enrollment (p=0.04 for interaction). Over the entire follow-up period, calcium and vitamin D supplementation did not reduce lung cancer incidence among postmenopausal women. In exploratory analyses, an interaction was found for the baseline Ca:Mg intake ratio on lung cancer among current smokers at the trial entry. This findings need to be further studied for the role of calcium with magnesium in lung carcinogenesis in current smokers. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. [The functions of calcium-sensing receptor in regulating mineral metabolism.

    PubMed

    Kinoshita, Yuka

    Calcium-sensing receptor(CaSR)which belongs to a G protein-coupled receptor family is one of the key elements in regulating calcium homeostasis. CaSR has been identified as a receptor to control parathyroid hormone(PTH)secretion in parathyroid glands according to serum calcium ion(Ca2+)levels. It has also been shown that CaSR controls reabsorption of water and several cations including Ca2+and magnesium ion(Mg2+)in renal tubular cells. This review summarizes the functions and roles of CaSR in mineral metabolism that are exerted in parathyroid glands, kidney, and intestine.

  8. A Calcium Enterolith in a Patient with Crohn's Disease and Its In Vitro Dissolubility in Citric Acid

    PubMed Central

    Urata, Haruo; Ohmori, Masayasu; Kondo, Yoshitaka; Kawahara, Yoshiro; Okada, Hiroyuki

    2017-01-01

    The microstructure and dissolubility of a calcified enterolith and enterolith pieces removed from a 26-year-old Japanese woman with Crohn's disease were analyzed using scanning electron microscopy and energy dispersive X-ray spectroscopy. The enterolith showed a multilayered structure with fatty acid calcium and magnesium phosphate. The amount of calcium, magnesium, and phosphate decreased after they were immersed in a citric acid solution, suggesting a potential contribution of acidic aqueous solution to elute inorganic substances contained in calcified enteroliths. This is the first study to investigate the in vitro dissolubility of calcified enteroliths induced by citric acid solution. PMID:29082049

  9. Alkali and alkaline earth metal salts of tetrazolone: structurally interesting and excellently thermostable.

    PubMed

    He, Piao; Wu, Le; Wu, Jin-Ting; Yin, Xin; Gozin, Michael; Zhang, Jian-Guo

    2017-07-04

    Tetrazolone (5-oxotetrazole) was synthesized by a moderate strategy through three steps (addition, cyclization and catalytic hydrogenation) avoiding the unstable intermediate diazonium, as reported during the previous preparation. Alkali and alkaline earth metal salts with lithium (1), sodium (2), potassium (3), rubidium (4) caesium (5), magnesium (6), calcium (7), strontium (8) and barium (9) were prepared and fully characterized using elemental analysis, IR and NMR spectroscopy, DSC and TG analysis. All metal salts were characterized via single-crystal X-ray diffraction. They crystallize in common space groups with high densities ranging from 1.479 (1) to 3.060 g cm -3 (5). Furthermore, the crystal structures of 7, 8 and 9 reveal interesting porous energetic coordination polymers with strong hydrogen bond interactions. All new salts have good thermal stabilities with decomposition temperature between 215.0 °C (4) and 328.2 °C (7), significantly higher than that of the reported nitrogen-rich salt neutral tetrazolone. The sensitivities towards impact and friction were tested using standard methods, and all the tetrazolone-based compounds investigated can be classified into insensitive. The flame test of these metal salts supports their potential use as perchlorate-free pyrotechnics or eco-friendly insensitive energetic materials.

  10. Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function

    PubMed Central

    Wang, Guifang; Li, Jinhua; Zhang, Wenjie; Xu, Lianyi; Pan, Hongya; Wen, Jin; Wu, Qianju; She, Wenjun; Jiao, Ting; Liu, Xuanyong; Jiang, Xinquan

    2014-01-01

    As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 60 minutes (Mg60) were used as test groups. The surface morphology, chemical properties, and amount of magnesium ions released were evaluated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy, and inductively coupled plasma-optical emission spectrometry. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used to evaluate cell responses, including proliferation, spreading, and osteogenic differentiation on the surface of the material or in their medium extraction. Greater increases in the spreading and proliferation ability of rBMMSCs were observed on the surfaces of magnesium-implanted micro/nanostructures compared with the control plates. Furthermore, the osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) genes were upregulated on both surfaces and in their medium extractions. The enhanced cell responses were correlated with increasing concentrations of magnesium ions, indicating that the osteoblastic differentiation of rBMMSCs was stimulated through the magnesium ion function. The magnesium ion-implanted micro/nanostructured titanium surfaces could enhance the proliferation, spreading, and osteogenic differentiation activity of rBMMSCs, suggesting they have potential application in improving bone-titanium integration. PMID:24940056

  11. Magnesium Carbonate‐Containing Phosphate Binder Prevents Connective Tissue Mineralization in Abcc6 −/− Mice–Potential for Treatment of Pseudoxanthoma Elasticum

    PubMed Central

    Li, Qiaoli; LaRusso, Jennifer; Grand‐Pierre, Alix E.; Uitto, Jouni

    2009-01-01

    Abstract Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by ectopic mineralization of connective tissues primarily in the skin, eyes, and the cardiovascular system. PXE is caused by mutations in the ABCC6 gene. While PXE is associated with considerable morbidity and mortality, there is currently no effective or specific treatment. In this study, we tested oral phosphate binders for treatment of a mouse model of PXE which we have developed by targeted ablation of the corresponding mouse gene (Abcc6 −/−). This “knock‐out” (KO) mouse model recapitulates features of PXE and demonstrates mineralization of a number of tissues, including the connective tissue capsule surrounding vibrissae in the muzzle skin which serves as an early biomarker of the mineralization process. Treatment of these mice with a magnesium carbonate‐enriched diet (magnesium concentration being 5‐fold higher than in the control diet) completely prevented mineralization of the vibrissae up to 6 months of age, as demonstrated by computerized morphometric analysis of histopathology as well as by calcium and phosphate chemical assays. The magnesium carbonate‐enriched diet also prevented the progression of mineralization when the mice were placed on that experimental diet at 3 months of age and followed up to 6 months of age. Treatment with magnesium carbonate was associated with a slight increase in the serum concentration of magnesium, with no effect on serum calcium and phosphorus levels. In contrast, concentration of calcium in the urine was increased over 10‐fold while the concentration of phosphorus was markedly decreased, being essentially undetectable after long‐term (>4 month) treatment. No significant changes were noted in the serum parathyroid hormone levels. Computerized axial tomography scan of bones in mice placed on magnesium carbonate‐enriched diet showed no differences in the bone density compared to mice on the control diet, and chemical assays

  12. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  13. The Role of Magnesium Ion Substituted Biphasic Calcium Phosphate Spherical Micro-Scaffolds in Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    PubMed

    Kim, Dong-Hyun; Shin, Keun-Koo; Jung, Jin Sup; Chun, Ho Hwan; Park, Seong Soo; Lee, Jong Kook; Park, Hong-Chae; Yoon, Seog-Young

    2015-08-01

    This study was investigated the role of magnesium (Mg2+) ion substituted biphasic calcium phosphate (Mg-BCP) spherical micro-scaffolds in osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). Mg-BCP micro-scaffolds with spherical morphology were successfully prepared using in situ co-precipitation and spray drying atomization process. The in vitro cell proliferation and differentiation of hAT-MSCs were determined up to day 14. After in vitro biological tests, Mg-BCP micro-scaffolds with hAT-MSCs showed more enhanced osteogenicity than pure hAT-MSCs as control group by unique biodegradation of TCP phase and influence of substituted Mg2+ ion in biphasic nanostructure. Therefore, these results suggest that Mg-BCP micro-scaffolds promote osteogenic differentiation of hAT-MSCs.

  14. Patterns of calcium oxalate monohydrate crystallization in complex biological systems

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Korol'kov, V. V.; Kuimova, M. V.

    2017-01-01

    The paper presents the features of calcium oxalate crystallization in the presence of additives revealed through experimental modeling. The patterns of phase formation are shown for the Ca2+ - C2O4 2- - H2O and Ca2+ - C2O4 2- - PO4 3- - H2O systems with the components and pH of the saline varying over a wide concentrations range. The effect of additives on crystallization of calcium oxalate monohydrate was investigated. It was found that the ionic strength and magnesium ions are inhibitors, and calcium oxalate and hydroxyapatite crystals are catalysts of calcium oxalate monohydrate crystallization. The basic calcium phosphate (apatite) was found to be most thermodynamically stable, which indicates its special role in kidney stone formation since it is found in virtually all stones.

  15. Behavior of Osteoblast-Like Cells on a β-Tricalcium Phosphate Synthetic Scaffold Coated With Calcium Phosphate and Magnesium.

    PubMed

    Park, Ki-Deog; Jung, Young-Suk; Lee, Kyung-Ku; Park, Hong-Ju

    2016-06-01

    Tricalcium phosphate (TCP) is one of the most useful synthetic scaffolds for bone grafts and has several advantages. However, the rapid degradation of TCP makes it less osteoconductive than the other candidates, and represents a major shortcoming. To overcome this problem, the authors investigated magnesium (Mg) and/or hydroxyapatite (HA) coating on a β-TCP substrate using a sputtering technique. Biocompatibility tests were carried out on β-TCP discs that were either uncoated (TCP), coated with HA by radio frequency magnetron sputtering (HA-TCP), coated with Mg by DC sputtering (Mg-TCP), or multicoated with Mg and HA by DC and radio frequency magnetron sputtering (MgHA-TCP). Cells showed similar morphology in all 4 groups, and were widely spread, had flattened elongated shapes, and were connected to adjacent cells by pseudopods. An MTT assay revealed higher cell proliferation on HA-TCP, Mg-TCP, and MgHA-TCP compared with TCP at 3 and 5 days. MgHA-TCP also showed significantly higher alkaline phosphatase activity levels compared with TCP, HA-TCP, and Mg-TCP (P < 0.05). Results suggest that Mg-coated β-TCP could have great potential as a bone graft material for future applications in hard tissue regeneration.

  16. Ionized and total magnesium concentrations in blood from dogs with naturally acquired parvoviral enteritis.

    PubMed

    Mann, F A; Boon, G D; Wagner-Mann, C C; Ruben, D S; Harrington, D P

    1998-05-01

    To determine whether pretreatment total and ionized blood magnesium concentrations were associated with outcome for dogs with parvoviral enteritis and whether ionized magnesium concentration was related to total magnesium concentration or other laboratory values. Prospective cohort study. 61 healthy dogs and 72 dogs with parvoviral enteritis. Total, ionized, and pH-normalized ionized magnesium concentrations, ionized and pH-normalized ionized calcium concentrations, pH, sodium and potassium concentrations, and Hct were measured prior to treatment. chi 2 Analyses were used to test for associations between outcome and age and between outcome and treatment with antiendotoxin antibody. Pearson's correlation coefficients were calculated to determine whether ionized magnesium concentration was linearly associated with other laboratory values. Total and ionized magnesium concentrations were not significantly different between healthy dogs and dogs with parvoviral enteritis or between dogs surviving and those not surviving parvoviral enteritis. The only laboratory value strongly correlated with ionized magnesium concentration was pH-normalized ionized magnesium concentration. Of the factors tested, none were significantly associated with outcome, except that dogs 16 weeks old or less treated with antiendotoxin antibody were significantly more likely to die than were dogs 16 weeks old or less that were not treated with antiendotoxin antibody. Total and ionized blood magnesium concentrations cannot be used to consistently predict outcome for dogs with parvoviral enteritis. Antiendotoxin antibody should be used with caution in dogs 16 weeks old or less.

  17. Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist.

    PubMed

    Zhang, Chen; Zhang, Tuo; Zou, Juan; Miller, Cassandra Lynn; Gorkhali, Rakshya; Yang, Jeong-Yeh; Schilmiller, Anthony; Wang, Shuo; Huang, Kenneth; Brown, Edward M; Moremen, Kelley W; Hu, Jian; Yang, Jenny J

    2016-05-01

    Ca(2+)-sensing receptors (CaSRs) modulate calcium and magnesium homeostasis and many (patho)physiological processes by responding to extracellular stimuli, including divalent cations and amino acids. We report the first crystal structure of the extracellular domain (ECD) of human CaSR bound with Mg(2+) and a tryptophan derivative ligand at 2.1 Å. The structure reveals key determinants for cooperative activation by metal ions and aromatic amino acids. The unexpected tryptophan derivative was bound in the hinge region between two globular ECD subdomains, and represents a novel high-affinity co-agonist of CaSR. The dissection of structure-function relations by mutagenesis, biochemical, and functional studies provides insights into the molecular basis of human diseases arising from CaSR mutations. The data also provide a novel paradigm for understanding the mechanism of CaSR-mediated signaling that is likely shared by the other family C GPCR [G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor] members and can facilitate the development of novel CaSR-based therapeutics.

  18. Dietary calcium requirements do not differ between Mexican-American boys and girls.

    PubMed

    Palacios, Cristina; Martin, Berdine R; McCabe, George P; McCabe, Linda; Peacock, Munro; Weaver, Connie M

    2014-08-01

    Mexican Americans are an understudied ethnic group for determinants of bone health, although the risk of age-related osteoporosis is high in this rapidly growing sector of the U.S. population. Thus, the objective of the present study was to establish the dietary calcium requirements for bone health in Mexican-American adolescents by measuring calcium retention calculated from balance in response to a range of dietary calcium intakes and to determine predictors of skeletal calcium retention. Adolescents aged 12-15 y were studied twice on paired calcium intakes ranging from 600 to 2300 mg/d using randomized-order, crossover 3-wk balance studies. Skeletal calcium retention was calculated as dietary calcium intake minus calcium excreted in feces and urine over the last 2 wk of balance. A linear model was developed to explain the variation in calcium retention. Boys (n = 20) were taller and had higher lean mass, usual dietary calcium intake, bone mineral content, and serum alkaline phosphatase compared with girls, whereas girls (n = 20) had higher Tanner scores and greater fat mass. Calcium retention increased with calcium intake (P < 0.0001) and did not differ by sex (P = 0.66). In boys and girls considered together, calcium intake explained 33% of the variation in calcium retention. Serum alkaline phosphatase explained an additional 11% of the variation in calcium retention. Other variables measured, including the urine N-telopeptide of type I collagen/creatinine ratio, Tanner score, serum parathyroid hormone and 25-hydroxyvitamin D, weight, height, and body mass index, did not contribute to the variance in calcium retention. In adolescence, calcium retention in both Mexican-American boys and girls was higher than determined previously in adolescent nonHispanic white girls. This trial was registered at clinicaltrials.gov as NCT01277185. © 2014 American Society for Nutrition.

  19. Intravenous magnesium sulfate with and without EDTA as a magnesium load test-is magnesium deficiency widespread?

    PubMed

    Waters, Robert S; Fernholz, Karen; Bryden, Noella A; Anderson, Richard A

    2008-09-01

    Serum/plasma measurements do not reflect magnesium deficits in clinical situations, and magnesium load tests are used as a more accurate method to identify magnesium deficiency in a variety of disease states as well as in subclinical conditions. The objective of this study was to determine if people are indeed magnesium deficient or if the apparent magnesium deficiency is due to the composition of the infusate used in the load test. Magnesium load tests were performed on seven patients using three different Mg solution infusions-a Mg-EDTA (ethylene diamine tetraacetic acid)-nutrient cocktail used in EDTA chelation therapy containing several components including vitamins and minerals, and the same cocktail without EDTA and an infusion of an identical amount of magnesium in normal saline solution. There was no significant difference in the amount of magnesium retained in the 24 h after infusion among the three infusates. All infusates resulted in very high magnesium retention compared to previous published magnesium load studies. Magnesium deficiency may be widespread, and the relationship of Mg deficiency to related diseases requires further study.

  20. Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica

    NASA Astrophysics Data System (ADS)

    Nehrke, Gernot; Poigner, Harald; Wilhelms-Dick, Dorothee; Brey, Thomas; Abele, Doris

    2012-05-01

    We analyzed shell cuts of five individuals of the Antarctic bivalve Laternula elliptica from three locations along the Antarctic Peninsula by means of Confocal Raman Microscopy (CRM) as well as Electron Microprobe (EMP). The shell of L. elliptica has been previously described as being composed of aragonite exclusively. Now, CRM mapping reveals that three polymorphs of calcium carbonate - aragonite, calcite, and vaterite - are present in the chondrophore region of the examined individuals. Annual shell growth layers continue through aragonite and vaterite, suggesting simultaneous mineralization of both polymorphs. Spatially congruent EMP scans showed that the calcium carbonate polymorph affects the distribution of magnesium and strontium within the chondrophore. This is, to our knowledge, the first report of the coexistence of these three calcium carbonate polymorphs within the mineralized structures of a marine calcifying organism. Particularly the presence of vaterite is unexpected, but shows striking similarities to some fish otoliths. The strong effect of the calcium carbonate polymorph on trace element incorporation restrict the suitability of magnesium and strontium based proxies for the chondrophore area of L. elliptica.

  1. When can ocean acidification impacts be detected from decadal alkalinity measurements?

    NASA Astrophysics Data System (ADS)

    Carter, B. R.; Frölicher, T. L.; Dunne, J. P.; Rodgers, K. B.; Slater, R. D.; Sarmiento, J. L.

    2016-04-01

    We use a large initial condition suite of simulations (30 runs) with an Earth system model to assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity distribution from decadally repeated hydrographic measurements such as those produced by the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated by the model. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts are detectable later at depth despite lower variability due to smaller rates of change and consistent measurement uncertainty.

  2. Development of a new biodegradable operative clip made of a magnesium alloy: Evaluation of its safety and tolerability for canine cholecystectomy.

    PubMed

    Yoshida, Toshihiko; Fukumoto, Takumi; Urade, Takeshi; Kido, Masahiro; Toyama, Hirochika; Asari, Sadaki; Ajiki, Tetsuo; Ikeo, Naoko; Mukai, Toshiji; Ku, Yonson

    2017-06-01

    Operative clips used to ligate vessels in abdominal operation usually are made of titanium. They remain in the body permanently and form metallic artifacts in computed tomography images, which impair accurate diagnosis. Although biodegradable magnesium instruments have been developed in other fields, the physical properties necessary for operative clips differ from those of other instruments. We developed a biodegradable magnesium-zinc-calcium alloy clip with good biologic compatibility and enough clamping capability as an operative clip. In this study, we verified the safety and tolerability of this clip for use in canine cholecystectomy. Nine female beagles were used. We performed cholecystectomy and ligated the cystic duct by magnesium alloy or titanium clips. The chronologic change of clips and artifact formation were compared at 1, 4, 12, 18, and 24 weeks postoperative by computed tomography. The animals were killed at the end of the observation period, and the clips were removed to evaluate their biodegradability. We also evaluated their effect on the living body by blood biochemistry data. The magnesium alloy clip formed much fewer artifacts than the titanium clip, and it was almost absorbed at 6 months postoperative. There were no postoperative complications and no elevation of constituent elements such as magnesium, calcium, and zinc during the observation period in both groups. The novel magnesium alloy clip demonstrated sufficient sealing capability for the cystic duct and proper biodegradability in canine models. The magnesium alloy clip revealed much fewer metallic artifacts in CT than the conventional titanium clip. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Magnesium Intake Is Inversely Associated With Coronary Artery Calcification

    PubMed Central

    Hruby, Adela; O'Donnell, Christopher J.; Jacques, Paul F.; Meigs, James B.; Hoffmann, Udo; McKeown, Nicola M.

    2014-01-01

    OBJECTIVES The aim of this study was to examine whether magnesium intake is associated with coronary artery calcification (CAC) and abdominal aortic calcification (AAC). BACKGROUND Animal and cell studies suggest that magnesium may prevent calcification within atherosclerotic plaques underlying cardiovascular disease. Little is known about the association of magnesium intake and atherosclerotic calcification in humans. METHODS We examined cross-sectional associations of self-reported total (dietary and supplemental) magnesium intake estimated by food frequency questionnaire with CAC and AAC in participants of the Framingham Heart Study who were free of cardiovascular disease and underwent Multi-Detector Computed Tomography (MDCT) of the heart and abdomen (n = 2,695; age: 53 ± 11 years), using multivariate-adjusted Tobit regression. CAC and AAC were quantified using modified Agatston scores (AS). Models were adjusted for age, sex, body mass index, smoking status, systolic blood pressure, fasting insulin, total-to-high-density lipoprotein cholesterol ratio, use of hormone replacement therapy (women only), menopausal status (women only), treatment for hyperlipidemia, hypertension, cardiovascular disease prevention, or diabetes, as well as self-reported intake of calcium, vitamins D and K, saturated fat, fiber, alcohol, and energy. Secondary analyses included logistic regressions of CAC and AAC outcomes as cut-points (AS >0 and AS ≥90th percentile for age and sex), as well as sex-stratified analyses. RESULTS In fully adjusted models, a 50-mg/day increment in self-reported total magnesium intake was associated with 22% lower CAC (p < 0.001) and 12% lower AAC (p = 0.07). Consistent with these observations, the odds of having any CAC were 58% lower (p trend: <0.001) and any AAC were 34% lower (p trend: 0.01), in those with the highest compared to those with the lowest magnesium intake. Stronger inverse associations were observed in women than in men. CONCLUSIONS In

  4. Acute, 28days sub acute and genotoxic profiling of Quercetin-Magnesium complex in Swiss albino mice.

    PubMed

    Ghosh, Nilanjan; Sandur, Rajendra; Ghosh, Deepanwita; Roy, Souvik; Janadri, Suresh

    2017-02-01

    Quercetin-Magnesium complex is one of the youngest alkaline rare earth metal (Magnesium) complexes with flavonoids (Quercetin) in organo-metalic family. Earlier studies describe the details of the complex formation, characterization and antioxidant study of the complex but toxicity profile is still under darkness. The present study was taken up to investigate the oral acute toxicity, 28days repeated oral sub-acute toxicity study and genotoxicity study of Quercetin-Magnesium complex in Swiss albino mice. Quercetin-Magnesium complex showed mortality at a dose of 185mg/kg in the Swiss albino mice. In 28days repeated oral toxicity study, Quercetin-Magnesium complex was administered to both sex of Swiss albino mice at dose levels of 150, 130 and 100mg/kg body weight respectively. Where 150mg/kg dose shows increased levels of white blood cells and changes in total protein, serum creatinine and blood urea nitrogen. Histopathological study of Quercetin-Magnesium complex shows minor structural alteration in kidney at 150mg/kg dose. No observed toxic level found in 130mg/kg or below doses. No genotoxic effect found in any doses of the complex. Therefore 130mg/kg or below dose level could be better for further study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Novel injectable, self-gelling hydrogel-microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles.

    PubMed

    Douglas, Timothy E L; Łapa, Agata; Reczyńska, Katarzyna; Krok-Borkowicz, Małgorzata; Pietryga, Krzysztof; Samal, Sangram Keshari; Declercq, Heidi A; Schaubroeck, David; Boone, Marijn; Van der Voort, Pascal; De Schamphelaere, Karel; Stevens, Christian V; Bliznuk, Vitaliy; Balcaen, Lieve; Parakhonskiy, Bogdan V; Vanhaecke, Frank; Cnudde, Veerle; Pamuła, Elżbieta; Skirtach, Andre G

    2016-11-21

    The suitability of hydrogel biomaterials for bone regeneration can be improved by incorporation of an inorganic phase in particle form, thus maintaining hydrogel injectability. In this study, carbonate microparticles containing different amounts of calcium (Ca) and magnesium (Mg) were added to solutions of the anionic polysaccharide gellan gum (GG) to crosslink GG by release of Ca 2+ and Mg 2+ from microparticles and thereby induce formation of hydrogel-microparticle composites. It was hypothesized that increasing Mg content of microparticles would promote GG hydrogel formation. The effect of Mg incorporation on cytocompatibility and cell growth was also studied. Microparticles were formed by mixing Ca 2+ and Mg 2+ and [Formula: see text] ions in varying concentrations. Microparticles were characterized physiochemically and subsequently mixed with GG solution to form hydrogel-microparticle composites. The elemental Ca:Mg ratio in the mineral formed was similar to the Ca:Mg ratio of the ions added. In the absence of Mg, vaterite was formed. At low Mg content, magnesian calcite was formed. Increasing the Mg content further caused formation of amorphous mineral. Microparticles of vaterite and magnesium calcite did not induce GG hydrogel formation, but addition of Mg-richer amorphous microparticles induced gelation within 20 min. Microparticles were dispersed homogeneously in hydrogels. MG-63 osteoblast-like cells were cultured in eluate from hydrogel-microparticle composites and on the composites themselves. All composites were cytocompatible. Cell growth was highest on composites containing particles with an equimolar Ca:Mg ratio. In summary, carbonate microparticles containing a sufficient amount of Mg induced GG hydrogel formation, resulting in injectable, cytocompatible hydrogel-microparticle composites.

  6. Iron-Magnesium Hydroxycarbonate (Fermagate): A Novel Non-Calcium-Containing Phosphate Binder for the Treatment of Hyperphosphatemia in Chronic Hemodialysis Patients

    PubMed Central

    McIntyre, Christopher W.; Pai, Pearl; Warwick, Graham; Wilkie, Martin; Toft, Alex J.; Hutchison, Alastair J.

    2009-01-01

    Background and objectives: This phase II study tested the safety and efficacy of fermagate, a calcium-free iron and magnesium hydroxycarbonate binder, for treating hyperphosphatemia in hemodialysis patients. Design, setting, participants, & measurements: A randomized, double-blind, three-arm, parallel-group study compared two doses of fermagate (1 g three times daily or 2 g three times daily with placebo). Sixty-three patients who had been on a stable hemodialysis regimen for ≥3 mo were randomized to the treatment phase. Study medication was administered three times daily just before meals for 21 d. The primary endpoint was reduction in serum phosphate over this period. Results: In the intention-to-treat analysis, mean baseline serum phosphate was 2.16 mmol/L. The fermagate 1- and 2-g three-times-daily treatment arms were associated with statistical reductions in mean serum phosphate to 1.71 and 1.47 mmol/L, respectively. Adverse event (AE) incidence in the 1-g fermagate arm was statistically comparable to the placebo group. The 2-g arm was associated with a statistically higher number of patients reporting AEs than the 1-g arm, particularly gastrointestinal AEs, as well as a higher number of discontinuations, complicating interpretation of this dose's efficacy. Both doses were associated with elevations of prehemodialysis serum magnesium levels. Conclusions: The efficacy and tolerability of fermagate were dose dependent. Fermagate showed promising efficacy in the treatment of hyperphosphatemia in chronic hemodialysis patients as compared with placebo in this initial phase II study. The optimal balance between efficacy and tolerability needs to be determined from future dose-titration studies, or fixed-dose comparisons of more doses. PMID:19158369

  7. Releasing effects in flame photometry: Determination of calcium

    USGS Publications Warehouse

    Dinnin, J.I.

    1960-01-01

    Strontium, lanthanum, neodymium, samarium, and yttrium completely release the flame emission of calcium from the depressive effects of sulfate, phosphate, and aluminate. Magnesium, beryllium, barium, and scandium release most of the calcium emission. These cations, when present in high concentration, preferentially form compounds with the depressing anions when the solution is evaporated rapidly in the flame. The mechanism of the interference and releasing effects is explained on the basis of the chemical equilibria in the evaporating droplets of solution and is shown to depend upon the nature of the compounds present in the aqueous phase of the solution. The need for background correction techniques is stressed. The releasing effect is used in the determination of calcium in silicate rocks without the need for separations.

  8. Magnesium Gluconate

    MedlinePlus

    Magnesium gluconate is used to treat low blood magnesium. Low blood magnesium is caused by gastrointestinal disorders, prolonged vomiting or ... disease, or certain other conditions. Certain drugs lower magnesium levels as well.This medication is sometimes prescribed ...

  9. Effect of certain alkaline metals on Pr doped glasses to investigate spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Lenkennavar Susheela, K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Incorporation of different Alkaline earth metal like Barium, Calcium and strontium in sodium lead borate glass doped with Pr3+ is studied. Physical parameters such as density, molar volume, molar refractivity etc have been evaluated. Effect of different atomic size of alkaline metal using optical and physical parameters is analysed. XRD and FTIR were carried out to know the structural behaviour of the glasses. Absorption and Emission spectra are recorded at room temperature and the results were discussed.

  10. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  11. Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harari, Florencia; Åkesson, Agneta; Casimiro, Esperanza

    There is increasing evidence of adverse health effects due to elevated lithium exposure through drinking water but the impact on calcium homeostasis is unknown. This study aimed at elucidating if lithium exposure through drinking water during pregnancy may impair the maternal calcium homeostasis. In a population-based mother-child cohort in the Argentinean Andes (n=178), with elevated lithium concentrations in the drinking water (5–1660 μg/L), blood lithium concentrations (correlating significantly with lithium in water, urine and plasma) were measured repeatedly during pregnancy by inductively coupled plasma mass spectrometry and used as exposure biomarker. Markers of calcium homeostasis included: plasma 25-hydroxyvitamin D{sub 3},more » serum parathyroid hormone (PTH), and calcium, phosphorus and magnesium concentrations in serum and urine. The median maternal blood lithium concentration was 25 μg/L (range 1.9–145). In multivariable-adjusted mixed-effects linear regression models, blood lithium was inversely associated with 25-hydroxyvitamin D{sub 3} (−6.1 nmol/L [95%CI −9.5; −2.6] for a 25 μg/L increment in blood lithium). The estimate increased markedly with increasing percentiles of 25-hydroxyvitamin D{sub 3}. In multivariable-adjusted mixed-effects logistic regression models, the odds ratio of having 25-hydroxyvitamin D3<30 nmol/L (19% of the women) was 4.6 (95%CI 1.1; 19.3) for a 25 μg/L increment in blood lithium. Blood lithium was also positively associated with serum magnesium, but not with serum calcium and PTH, and inversely associated with urinary calcium and magnesium. In conclusion, our study suggests that lithium exposure through drinking water during pregnancy may impair the calcium homeostasis, particularly vitamin D. The results reinforce the need for better control of lithium in drinking water, including bottled water. - Highlights: • Elevated drinking water lithium (Li) concentrations are increasingly reported. • We studied

  12. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate.

    PubMed

    Gu, X N; Zheng, W; Cheng, Y; Zheng, Y F

    2009-09-01

    To reduce the biocorrosion rate by surface modification, Mg-Ca alloy (1.4wt.% Ca content) was soaked in three alkaline solutions (Na(2)HPO(4), Na(2)CO(3) and NaHCO(3)) for 24h, respectively, and subsequently heat treated at 773K for 12h. Scanning electron microscopy and energy-dispersive spectroscopy results revealed that magnesium oxide layers with the thickness of about 13, 9 and 26microm were formed on the surfaces of Mg-Ca alloy after the above different alkaline heat treatments. Atomic force microscopy showed that the surfaces of Mg-Ca alloy samples became rough after three alkaline heat treatments. The in vitro corrosion tests in simulated body fluid indicated that the corrosion rates of Mg-Ca alloy were effectively decreased after alkaline heat treatments, with the following sequence: NaHCO(3) heatedalkaline heat treated Mg-Ca alloy samples induced toxicity to L-929 cells during 7days culture.

  13. Osteoblast Differentiation on Collagen Scaffold with Immobilized Alkaline Phosphatase.

    PubMed

    Jafary, F; Hanachi, P; Gorjipour, K

    2017-01-01

    In tissue engineering, scaffold characteristics play an important role in the biological interactions between cells and the scaffold. Cell adhesion, proliferation, and activation depend on material properties used for the fabrication of scaffolds. In the present investigation, we used collagen with proper characteristics including mechanically stability, biodegradability and low antigenicity. Optimization of the scaffold was done by immobilization of alkaline phosphatase on the collagen surface via cross-linking method, because this enzyme is one of the most important markers of osteoblast, which increases inorganic phosphate concentration and promote mineralization of bone formation. Alkaline phosphatase was immobilized on a collagen surface by 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride, as a reagent. Then, rat mesenchymal stem cells were cultured in osteogenic medium in control and treated groups. The osteogenesis-related genes were compared between treatments (differentiated cells with immobilized alkaline phosphatase/collagen scaffold) and control groups (differentiated cells on collagen surface without alkaline phosphatase) on days 3 and 7 by quantitative real-time PCR (QIAGEN software). Several genes, including alkaline phosphatase, collagen type I and osteocalcine associated with calcium binding and mineralization, showed upregulation in expression during the first 3 days, whereas tumor necrosis factor-α, acting as an inhibitor of differentiation, was down-regulated during osteogenesis. Collagen scaffold with immobilized alkaline phosphatase can be utilized as a good candidate for enhancing the differentiation of osteoblasts from mesenchymal stem cells.

  14. In vitro calcium availability in bakery products fortified with tuna bone powder as a natural calcium source.

    PubMed

    Nemati, Mahnaz; Kamilah, Hanisah; Huda, Nurul; Ariffin, Fazilah

    2015-08-01

    Avoidance of dairy products due to lactose intolerance can lead to insufficiency of calcium (Ca) in the body. In an approach to address this problem, tuna bone powder (TBP) was formulated as a calcium supplement to fortify bakery products. In a study, TBP recovered by alkaline treatment contained 38.16 g/100 g of calcium and 23.31 g/100 g of phosphorus. The ratio of Ca:P that was close to 2:1 was hence comparable to that in human bones. The availability of calcium in TBP was 53.93%, which was significantly higher than most calcium salts, tricalcium phosphate (TCP) being the exception. In vitro availability of calcium in TBP-fortified cookies or TCP-fortified cookies were comparable at 38.9% and 39.5%, respectively. These values were higher than the readings from TBP-fortified bread (36.7%) or TCP-fortified bread (37.4%). Sensory evaluation of bakery products containing TBP or TCP elicited comparable scores for the two additives from test panels. Hence, TBP could be used in the production of high calcium bakery products that would enjoy consumer acceptance.

  15. Fluoride and calcium-phosphate coated sponges of the magnesium alloy AX30 as bone grafts: a comparative study in rabbits.

    PubMed

    Lalk, Mareike; Reifenrath, Janin; Angrisani, Nina; Bondarenko, Alexandr; Seitz, Jan-Marten; Mueller, Peter P; Meyer-Lindenberg, Andrea

    2013-02-01

    Biocompatibility and degradation of magnesium sponges (alloy AX30) with a fluoride (MgF(2) sponge, n = 24, porosity 63 ± 6 %, pore size 394 ± 26 μm) and with a fluoride and additional calcium-phosphate coating (CaP sponge, n = 24, porosity 6 ± 4 %, pore size 109 ± 37 μm) were evaluated over 6, 12 and 24 weeks in rabbit femurs. Empty drill holes (n = 12) served as controls. Clinical and radiological examinations, in vivo and ex vivo μ-computed tomographies and histological examinations were performed. Clinically both sponge types were tolerated well. Radiographs and XtremeCT evaluations showed bone changes comparable to controls and mild gas formation. The μCT80 depicted a higher and more inhomogeneous degradation of the CaP sponges. Histomorphometrically, the MgF(2) sponges resulted in the highest bone and osteoid fractions and were integrated superiorly into the bone. Histologically, the CaP sponges showed more inflammation and lower vascularization. MgF(2) sponges turned out to be better biocompatible and promising, biodegradable bone replacements.

  16. Alkali-resistant calcium iron phosphate glass fibers for concrete reinforcement

    DOT National Transportation Integrated Search

    2008-02-01

    The physical properties and alkaline corrosion resistant properties of calcium-ironphosphate glasses were studied. Iron addition decreases the thermal expansion coefficient and increases the Youngs modulus in comparison with the addition of calciu...

  17. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  18. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  19. Mercury's Exosphere During MESSENGER's Second Flyby: Detection of Magnesium and Distinct Distributions of Neutral Species

    NASA Technical Reports Server (NTRS)

    McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Killen, Rosemary M.; Mouawad, Nelly; Sprague, Ann L.; Burger, Matthew H.; Solomon, Sean C.; Izenberg, Noam R.

    2009-01-01

    During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

  20. Stable dimeric magnesium(I) compounds: from chemical landmarks to versatile reagents.

    PubMed

    Stasch, Andreas; Jones, Cameron

    2011-06-07

    The chemistry of the s-block metals is dominated by the +1 oxidation state for the Alkali metals (group 1) and the +2 oxidation state for the Alkaline Earth metals (group 2). In recent years, a series of stable dimeric magnesium(I) compounds has been prepared and their chemistry has started to develop. These complexes feature "deformable" Mg-Mg single bonds and are stabilised by sterically demanding and chelating anionic N-ligands that prevent their disproportionation. They have rapidly proven useful in organic and organometallic/inorganic reduction reactions as hydrocarbon soluble, stoichiometric, selective and safe reducing agents. The scope of this perspective focuses on stable molecular compounds of the general type LMgMgL and describes their synthesis, structures, theoretical and spectroscopic studies as well as their further chemistry. Also, comparisons are drawn with related complexes including magnesium(II) hydrides and dimeric zinc(I) compounds.

  1. Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?

    PubMed

    Uysal, Nazan; Kizildag, Servet; Yuce, Zeynep; Guvendi, Guven; Kandis, Sevim; Koc, Basar; Karakilic, Aslı; Camsari, Ulas M; Ates, Mehmet

    2018-04-21

    Magnesium is an element of great importance functioning because of its association with many cellular physiological functions. The magnesium content of foods is gradually decreasing due to food processing, and magnesium supplementation for healthy living has become increasingly popular. However, data is very limited on the bioavailability of various magnesium preparations. The aim of this study is to investigate the bioavailability of five different magnesium compounds (magnesium sulfate, magnesium oxide, magnesium acetyl taurate, magnesium citrate, and magnesium malate) in different tissues. Following a single dose 400 mg/70 kg magnesium administration to Sprague Dawley rats, bioavailability was evaluated by examining time-dependent absorption, tissue penetration, and the effects on the behavior of the animals. Pharmacokinetically, the area under the curve calculation is highest in the magnesium malate. The magnesium acetyl taurate was found to have the second highest area under the curve calculation. Magnesium acetyl taurate was rapidly absorbed, able to pass through to the brain easily, had the highest tissue concentration level in the brain, and was found to be associated with decreased anxiety indicators. Magnesium malate levels remained high for an extended period of time in the serum. The commonly prescribed dietary supplements magnesium oxide and magnesium citrate had the lowest bioavailability when compared to our control group. More research is needed to investigate the bioavailability of magnesium malate and acetyl taurate compounds and their effects in specific tissues and on behavior.

  2. Immobilization of Bacillus amyloliquefaciens SP1 and its alkaline protease in various matrices for effective hydrolysis of casein.

    PubMed

    Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, C K

    2016-12-01

    An extracellular alkaline protease producing B. amyloliquefaciens SP1 was isolated from apple rhizosphere having multifarious plant growth-promoting activities. B. amyloliquefaciens SP1 protease was immobilized using various concentrations of calcium alginate, agar and polyacrylamide to determine the optimum concentration for formation of the beads. Enzyme activity before immobilization (at 60 °C, pH 8.0 for 5 min) was 3580 µg/ml/min. The results of immobilization with various matrices revealed that 3 % calcium alginate (2829.92 µg/ml/min), 2 % agar (2600 µg/ml/min) and 10 % polyacrylamide (5698.99 µg/ml/min) were optimum concentrations for stable bead formation. Immobilized enzyme reusability results indicated that calcium alginate, agar and polyacrylamide beads retained 25.63, 22.05 and 34.04 % activity in their fifth repeated cycle, respectively. In cell immobilization technique, the free movement of microorganisms is restricted in the process, and a semi-continuous system of fermentation can be used. In the present work, this technique has been used for alkaline protease production using different matrices. Polyacrylamide (10 %) was found with the highest total alkaline protease titer, i.e., 24,847 µg/ml/min semi-continuously for 18 days as compared to agar (total enzyme titer: 5800 in 10 days) and calcium alginate (total enzyme titer: 13,010 in 15 days). This present study reported that polyacrylamide (10 %) among different matrices has maximum potential of immobilization of B. amyloliquefaciens SP1 and its detergent stable alkaline protease with effective application in bloodstain removal.

  3. A Kirkwood-Buff derived force field for alkaline earth halide salts

    NASA Astrophysics Data System (ADS)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  4. A Kirkwood-Buff derived force field for alkaline earth halide salts.

    PubMed

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E

    2018-06-14

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX 2 ), where M = Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ and X = Cl - , Br - , I - , which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  5. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem.

    PubMed

    Guimarães, Bruno Martini; Prati, Carlo; Duarte, Marco Antonio Hungaro; Bramante, Clovis Monteiro; Gandolfi, Maria Giovanna

    2018-04-05

    This study aimed to analyze the following physicochemical properties: radiopacity, final setting time, calcium release, pH change, solubility, water sorption, porosity, surface morphology, and apatite-forming ability of two calcium silicate-based materials. We tested MTA Repair HP and MTA Vitalcem in comparison with conventional MTA, analyzing radiopacity and final setting time. Water absorption, interconnected pores and apparent porosity were measured after 24-h immersion in deionized water at 37°C. Calcium and pH were tested up to 28 d in deionized water. We analyzed data using two-way ANOVA with Student-Newman-Keuls tests (p<0.05). We performed morphological and chemical analyses of the material surfaces using ESEM/EDX after 28 d in HBSS. MTA Repair HP showed similar radiopacity to that of conventional MTA. All materials showed a marked alkalinizing activity within 3 h, which continued for 28 d. MTA Repair HP showed the highest calcium release at 28 d (p<0.05). MTA Vitalcem showed statistically higher water sorption and solubility values (p<0.05). All materials showed the ability to nucleate calcium phosphate on their surface after 28 d in HBSS. MTA Repair HP and MTA Vitalcem had extended alkalinizing activity and calcium release that favored calcium phosphate nucleation. The presence of the plasticizer in MTA HP might increase its solubility and porosity. The radiopacifier calcium tungstate can be used to replace bismuth oxide.

  6. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem

    PubMed Central

    Guimarães, Bruno Martini; Prati, Carlo; Duarte, Marco Antonio Hungaro; Bramante, Clovis Monteiro; Gandolfi, Maria Giovanna

    2018-01-01

    Abstract Objective This study aimed to analyze the following physicochemical properties: radiopacity, final setting time, calcium release, pH change, solubility, water sorption, porosity, surface morphology, and apatite-forming ability of two calcium silicate-based materials. Material and methods We tested MTA Repair HP and MTA Vitalcem in comparison with conventional MTA, analyzing radiopacity and final setting time. Water absorption, interconnected pores and apparent porosity were measured after 24-h immersion in deionized water at 37°C. Calcium and pH were tested up to 28 d in deionized water. We analyzed data using two-way ANOVA with Student-Newman-Keuls tests (p<0.05). We performed morphological and chemical analyses of the material surfaces using ESEM/EDX after 28 d in HBSS. Results MTA Repair HP showed similar radiopacity to that of conventional MTA. All materials showed a marked alkalinizing activity within 3 h, which continued for 28 d. MTA Repair HP showed the highest calcium release at 28 d (p<0.05). MTA Vitalcem showed statistically higher water sorption and solubility values (p<0.05). All materials showed the ability to nucleate calcium phosphate on their surface after 28 d in HBSS. Conclusions MTA Repair HP and MTA Vitalcem had extended alkalinizing activity and calcium release that favored calcium phosphate nucleation. The presence of the plasticizer in MTA HP might increase its solubility and porosity. The radiopacifier calcium tungstate can be used to replace bismuth oxide. PMID:29641748

  7. Calcium and magnesium content in hard tissues of rats under condition of subchronic lead intoxication.

    PubMed

    Todorovic, Tatjana; Vujanovic, Dragana; Dozic, Ivan; Petkovic-Curcin, Aleksandra

    2008-03-01

    Lead manifests toxic effects in almost all organs and tissues, especially in: the nervous system, hematopoietic system, kidney and liver. This metal has a special affinity for deposition in hard tissue, i.e., bones and teeth. It is generally believed that the main mechanism of its toxicity relies on its interaction with bioelements, especially with Ca and Mg. This article analyses the influence of Pb poisoning on Ca and Mg content in hard tissues, (mandible, femur, teeth and skull) of female and young rats. Experiments were carried out on 60 female rats, AO breed, and on 80 of their young rats (offspring). Female rats were divided into three groups: the first one was a control group, the second one received 100 mg/kg Pb2+ kg b.wt. per day in drinking water, the third one received 30 mg/kg Pb(2+) kg b.wt. per day in drinking water. Young rats (offspring) were divided into the same respective three groups. Lead, calcium and magnesium content in hard tissues (mandible, femur, teeth-incisors and skull) was determined by flame atomic absorption spectrophotometry in mineralized samples. There was a statistically significant Pb deposition in all analyzed female and young rat hard tissues. Ca and Mg contents were significantly reduced in all female and young rat hard tissues. These results show that Pb poisoning causes a significant reduction in Ca and Mg content in animal hard tissues, which is probably the consequence of competitive antagonism between Pb and Ca and Mg.

  8. Water-quality data for two surface coal mines reclaimed with alkaline waste or urban sewage sludge, Clarion County, Pennsylvania, May 1983 through November 1989

    USGS Publications Warehouse

    Dugas, D.L.; Cravotta, C.A.; Saad, D.A.

    1993-01-01

    Water-quality and other hydrologic data for two surface coal mines in Clarion County, Pa., were collected during 1983-89 as part of studies conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Resources. Water samples were collected from streams, seeps, monitor wells, and lysimeters on a monthly basis to evaluate changes in water quality resulting from the addition of alkaline waste or urban sewage sludge to the reclaimed mine-spoil surface. The mines are about 3.5 miles apart and were mined for bituminous coal of the upper and lower Clarion seams of the Allegheny Group of Pennsylvanian age. The coal had high sulfur (greater than 2 weight percent) concentrations. Acidic mine drainage is present at both mines. At one mine, about 8 years after mining was completed, large quantities (greater than 400 tons per acre) of alkaline waste consisting of limestone and lime-kiln flue dust were applied on two 2.5-acre plots within the 65-acre mine area. Water-quality data for the alkaline-addition plots and surrounding area were collected for 1 year before and 3 years after application of the alkaline additives (May 1983-July 1987). Data collected for the alkaline-addition study include ground-water level, surface-water discharge rate, temperature, specific conductance, pH, and concentrations of alkalinity, acidity, sulfate, iron (total and ferrous), manganese, aluminum, calcium, and magnesium. At the other mine, about 3.5 years after mining was completed, urban sewage sludge was applied over 60 acres within the 150-acre mine area. Waterquality data for the sludge-addition study were collected for 3.5 years after the application of the sludge (June 1986-December 1989). Data collected for the sludge-addition study include the above constituents plus dissolved oxygen, redox potential (Eh), and concentrations of dissolved solids, phosphorus, nitrogen species, sulfide, chloride, silica, sodium, potassium, cyanide, arsenic, barium

  9. Loss on drying, calcium concentration and pH of fluoride dentifrices

    PubMed Central

    Brito, Arella Cristina Muniz; Dantas, Lívia Rocha; De Brito, André Luiz Fiquene; Muniz, Ana Cristina Silva; Ramos, Ianny Alves; Cardoso, Andreia Medeiros Rodrigues; Xavier, Alidianne Fábia Cabral; Cavalcanti, Alessandro Leite

    2015-01-01

    Introduction: Fluoride dentifrices containing calcium carbonate have advantages such as control of dental plaque and progression of dental caries, also contributing to oral hygiene, represent most dentifrices marketed in Brazil. Aim: To evaluate the physicochemical properties of seven fluoride dentifrices containing calcium carbonate in relation to hydrogen potential (pH), loss on drying and calcium concentration. Materials and Methods: Data collection was performed using the potentiometric method for pH ranges, gravimetric analysis for loss on drying and atomic absorption spectrometry for the concentration of calcium ions. All tests were performed in triplicate and the analysis was performed entirely at random according to one-way analysis of variance at 5% significance level. Results: The pH values were alkaline and ranged from 8.67 (Oral-B 123®) to 10.03 (Colgate Máxima Proteção Anticáries®). The results of loss on drying ranged from 33.81% (Oral-B 123®) to 61.13% (Close Up®), with significant differences between brands tested. In relation to the calcium content, the highest and lowest concentrations were found in dentifrices Even® (155.55 g/kg) and Colgate Ultra Branco® (129 g/kg), respectively, with significant difference (P < 0.05). Conclusion: Fluoride dentifrices analyzed showed alkaline pH and high levels of loss on drying and calcium concentration. However, these physicochemical characteristics differed according to the different brands tested. PMID:25821380

  10. Serum tumour necrosis factor alpha in osteopenic and osteoporotic postmenopausal females: A cross-sectional study in Pakistan.

    PubMed

    Murad, Rafat; Shezad, Zahra; Ahmed, Saara; Ashraf, Mussarat; Qadir, Murad; Rehman, Rehana

    2018-03-01

    To compare biochemical parameters serum tumour necrosis factor alpha, calcium, magnesium, bone-specific alkaline phosphatase and vitamin D in postmenopausal women. This cross-sectional study was carried out from June 2015 to July 2016 at Jinnah Medical and Dental College, Karachi, and comprised postmenopausal women. Bone mineral density done by dual energy X-ray absorptiometryscan categorised subjects by World Health Organisation classification into normal (T score > -1) osteopenic (T score between -1 and -2.5) and osteoporotic (T score < -2.5). Biochemical parameters like tumour necrosis alpha, calcium, magnesium, bone-specific alkaline phosphatase and vitamin D were measured by solid phase enzyme amplified sensitivity immunoassay method. SPSS 16 was used to analyse the data. Of the 146 women, 34(23%) were normal, 93(67%) were osteopenic and 19(13%) were osteoporotic. There was significant difference in mean body mass index, serum tumour necrosis factor alpha and calcium in all the three groups (p<0.01). Significant mean difference was observed in serum calcium levels between normal and osteopenic, and between normal and osteoporotic group (p<0.05 each) without any significant mean difference between osteopenic and osteoporotic groups (p>0.05). A significant difference was observed for mean tumour necrosis factor alpha values between normal and osteoporotic groups (p<0.05). Tumour necrosis factor alpha showed negative correlation with bone mineral density in osteopenic and osteoporotic groups (p>0.05). Increased bone turnover in postmenopausal osteopenic women can be predicted by increased serum cytokine.

  11. Improving the packing density of calcium phosphate coating on a magnesium alloy for enhanced degradation resistance.

    PubMed

    Kannan, M Bobby

    2013-05-01

    In this study, an attempt was made to improve the packing density of calcium phosphate (CaP) coating on a magnesium alloy by tailoring the coating solution for enhanced degradation resistance of the alloy for implant applications. An organic solvent, ethanol, was added to the coating solution to decrease the conductivity of the coating solution so that hydrogen bubble formation/bursting reduces during the CaP coating process. Experimental results confirmed that ethanol addition to the coating solution reduces the conductivity of the solution and also decreases the hydrogen evolution/bubble bursting. In vitro electrochemical experiments, that is, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization showed that CaP coating produced in 30% (v/v) ethanol containing coating solution (3E) exhibits significantly higher degradation resistance (i.e., ~50% higher polarization resistance and ~60% lower corrosion current) than the aqueous solution coating. Scanning electron microscope (SEM) analysis of the coatings revealed that the packing of 3E coating was denser than that of aqueous coating, which can be attributed to the lower hydrogen evolution in the former than in the latter. Further increase in the ethanol content in the coating solution was not beneficial; in fact, the coating produced in 70% (v/v) ethanol containing solution (7E) showed degradation resistance much inferior to that of the aqueous coating, which is due to low thickness of 7E coating. Copyright © 2012 Wiley Periodicals, Inc.

  12. Sphagnum establishment in alkaline fens: Importance of weather and water chemistry.

    PubMed

    Vicherová, Eliška; Hájek, Michal; Šmilauer, Petr; Hájek, Tomáš

    2017-02-15

    Sphagnum expansion to alkaline fens has accelerated during the last decades in Europe, leading to changes in diversity, habitat distributions and carbon storage. The causes are still not clearly understood and involve an interplay between climate change, hydrology, nutrient supply and Sphagnum physiology. We conducted a 4-year field experiment in eight fens in Central European highlands and assessed survival and establishment of individual apical shoot fragments of S. flexuosum, S. warnstorfii and S. squarrosum transplanted along the microtopographical gradient. In a laboratory experiment, we tested combined effects of desiccation and high calcium bicarbonate concentration on Sphagnum survival. We found that in unflooded positions, living shoots of Sphagnum and brown mosses lowered [Ca 2+ ] and pH in their capillary water, in contrast to dead fragments; yet without differences between species. Survival and expansion of Sphagnum fragments, which did not die of acute calcium toxicity during first weeks/months, was negatively affected by dry weather and alkaline water chemistry, reflecting Sphagnum intolerance to desiccation and to combined high [Ca 2+ ] and pH. Shoot fragments expanded to patches only when precipitation was high. Interestingly, non-toxic concentration of calcium bicarbonate reduced desiccation damage in Sphagnum, probably through protection of membranes or other cell components. This mechanism would facilitate Sphagnum survival in elevated, frequently desiccated microhabitats of calcareous fens such as brown-moss hummocks. However, since water-retaining capacity of few Sphagnum shoots is insufficient to change water chemistry in its surroundings, surface acidification may occur only once the environment (e.g. sufficient humidity) enabled expansion to larger mats. Then, the retained rainwater together with hardly decomposable Sphagnum litter would separate mire surface from groundwater, speeding up successional shift towards poor fens. Sphagnum

  13. Distribution of calcium (Ca) and magnesium (Mg) in the leaves of Brassica rapa under varying exogenous Ca and Mg supply.

    PubMed

    Rios, Juan Jose; Lochlainn, Seosamh O; Devonshire, Jean; Graham, Neil S; Hammond, John P; King, Graham J; White, Philip J; Kurup, Smita; Broadley, Martin R

    2012-05-01

    Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Brassica rapa ssp. trilocularis 'R-o-18' was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.

  14. Risk of calcium oxalate nephrolithiasis in postmenopausal women supplemented with calcium or combined calcium and estrogen.

    PubMed

    Domrongkitchaiporn, Somnuek; Ongphiphadhanakul, Boonsong; Stitchantrakul, Wasana; Chansirikarn, Sirinthorn; Puavilai, Gobchai; Rajatanavin, Rajata

    2002-02-26

    Recent studies showed that postmenopausal women lost less bone mass when supplemented with calcium or estrogen therapy. However, the safety of the treatments in terms of the risk of calcium oxalate stone formation is unknown. We therefore conducted this study to determine the alteration in calcium oxalate supersaturation after calcium supplement or after combined calcium and estrogen therapy in postmenopausal osteoporotic women. Fifty-six postmenopausal women were enrolled in this study. All subjects were more than 10 years postmenopausal with vertebral or femoral osteoporosis by bone mineral density criteria. They were randomly allocated to receive either 625 mg of calcium carbonate (250 mg of elemental calcium) at the end of a meal three times a day (group A, n=26) or calcium carbonate in the same manner plus 0.625 mg/day of conjugated equine estrogen and 5 mg medrogestone acetate from day 1-12 each month (group B, n=30). The age (mean +/- S.E.M.) was 66.3 +/- 1.2 and 65.1 +/- 1.1 years, weight 54.1 +/- 1.2 and 55.3 +/- 2.1 kg, in group A and group B, respectively. Urine specimens (24-h) were collected at baseline and 3 months after treatment for the determination of calcium oxalate saturation by using Tiselius's index (AP(CaOx)) and calcium/citrate ratio. After 3 months of treatment, there was no significant alteration from baseline for urinary excretion of calcium, citrate and oxalate. Urinary phosphate excretion was significantly reduced (6.3 +/- 0.7 vs. 5.1 +/- 0.7 mmol/day for group A and 8.2 +/- 0.9 vs. 5.8 +/- 0.7 mmol/day for group B, P<0.05), whereas net alkaline absorption was significantly elevated (10.1 +/- 3.6 vs. 20.1 +/- 4.4 meq/day for group A and 4.8 +/- 3.2 vs. 19.9 +/- 3.6 meq/day for group B, P<0.05). Calcium/citrate ratio and AP(CaOx) determined at baseline were not different from the corresponding values after treatment in both groups; calcium/citrate: 10.1 +/- 3.1 vs. 10.1 +/- 2.5 for group A and 9.3 +/- 1.8 vs. 11.9 +/- 2.5 for group B and

  15. Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?

    PubMed

    Jones, Jonathan M; Sweet, Julia; Brzezinski, Mark A; McNair, Heather M; Passow, Uta

    2016-01-01

    Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote, difficult-to-access locations. The ability to autonomously measure the carbonate system in situ relieves many of the logistical challenges; however, it is not always possible to measure the two required carbonate parameters autonomously. Observed relationships between sea surface salinity and total alkalinity can frequently provide a second carbonate parameter thus allowing for the calculation of the entire carbonate system. Here, we assessed the rigor of estimating total alkalinity from salinity at a depth <15 m by routinely sampling water from a pier in southern California for several carbonate system parameters. Carbonate system parameters based on measured values were compared with those based on estimated TA values. Total alkalinity was not predictable from salinity or from a combination of salinity and temperature at this site. However, dissolved inorganic carbon and the calcium carbonate saturation state of these nearshore surface waters could both be estimated within on average 5% of measured values using measured pH and salinity-derived or regionally averaged total alkalinity. Thus we find that the autonomous measurement of pH and salinity can be used to monitor trends in coastal changes in DIC and saturation state and be a useful method for high-frequency, long-term monitoring of ocean acidification.

  16. Final report of the safety assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as used in cosmetics.

    PubMed

    Elmore, Amy R

    2005-01-01

    L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate function in cosmetic formulations primarily as antioxidants. Ascorbic Acid is commonly called Vitamin C. Ascorbic Acid is used as an antioxidant and pH adjuster in a large variety of cosmetic formulations, over 3/4 of which were hair dyes and colors at concentrations between 0.3% and 0.6%. For other uses, the reported concentrations were either very low (<0.01%) or in the 5% to 10% range. Calcium Ascorbate and Magnesium Ascorbate are described as antioxidants and skin conditioning agents--miscellaneous for use in cosmetics, but are not currently used. Sodium Ascorbyl Phosphate functions as an antioxidant in cosmetic products and is used at concentrations ranging from 0.01% to 3%. Magnesium Ascorbyl Phosphate functions as an antioxidant in cosmetics and was reported being used at concentrations from 0.001% to 3%. Sodium Ascorbate also functions as an antioxidant in cosmetics at concentrations from 0.0003% to 0.3%. Related ingredients (Ascorbyl Palmitate, Ascorbyl Dipalmitate, Ascorbyl Stearate, Erythorbic Acid, and Sodium Erythorbate) have been previously reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel and found "to be safe for use as cosmetic ingredients in the present practices of good use." Ascorbic Acid is a generally recognized as safe (GRAS) substance for use as a chemical preservative in foods and as a nutrient and/or dietary supplement. Calcium Ascorbate and Sodium Ascorbate are listed as GRAS substances for use as chemical preservatives. L-Ascorbic Acid is readily and reversibly oxidized to L-dehydroascorbic acid and both forms exist in equilibrium in the body. Permeation rates of Ascorbic Acid through whole and stripped mouse skin were 3.43 +/- 0.74 microg/cm(2)/h and 33.2 +/- 5.2 microg/cm(2)/h. Acute oral and parenteral studies in mice, rats, rabbits, guinea pigs, dogs, and cats demonstrated little toxicity

  17. Magnesium and extinction of dinosaurs. Was magnesium deficit a major cause?

    PubMed

    Durlach, J

    1991-01-01

    Chinese researchers have recently demonstrated that, before the extinction of dinosaurs, there was an impressive lowering in the magnesium concentration of fossil dinosaur eggshell. The structural and functional importance of eggshell magnesium--mainly in the cone layer--for embryonic viability and hatchability of oviparous species supports the hypothesis that magnesium deficit may have had a direct role in dinosaur extinction. Conversely this low magnesium concentration seems a questionable marker of magnesium deficit. The natural forces involved in the extinction of dinosaurs are more likely to induce magnesium depletion than magnesium deficiency. These very interesting preliminary data call for further research.

  18. Impact of postoperative magnesium levels on early hypocalcemia and permanent hypoparathyroidism after thyroidectomy.

    PubMed

    Garrahy, Aoife; Murphy, Matthew S; Sheahan, Patrick

    2016-04-01

    Postoperative hypocalcemia is a common complication of thyroidectomy. Magnesium is known to modulate serum calcium levels and hypomagnesemia may impede correction of hypocalcemia. The purpose of this study was to investigate whether hypomagnesemia after thyroidectomy has any impact on early hypocalcemia and/or permanent hypoparathyroidism. We conducted a retrospective review of prospectively maintained databases. Inclusion criteria were total or completion total thyroidectomy with postoperative magnesium levels available. The incidence of postoperative hypocalcemia was correlated with postoperative hypomagnesemia and other risk factors. Two hundred one cases were included. Twenty-six patients (13%) developed postoperative hypomagnesemia. Hypomagnesemia (p = .002), cancer diagnosis (p = .01), central neck dissection (p = .02), and inadvertent parathyroid resection (p = .02) were significantly associated with hypocalcemia. On multivariate analysis, only hypomagnesemia (p = .005) remained significant. Hypomagnesemia was also a significant predictor of permanent hypoparathyroidism (p = .0004). Hypomagnesemia is significantly associated with early hypocalcemia and permanent hypoparathyroidism after thyroidectomy. Magnesium levels should be closely monitored in patients with postthyroidectomy hypocalcemia. © 2015 Wiley Periodicals, Inc.

  19. Influence of Magnesium Ion Substitution on Structural and Thermal Behavior of Nanodimensional Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Batra, Uma; Kapoor, Seema; Sharma, Sonia

    2013-06-01

    Hydroxyapatite (HA), incorporating small amount of magnesium, shows attractive biological performance in terms of improved bone metabolism, osteoblast and osteoclast activity, and bone in-growth. This article reports a systematic investigation on the influence of magnesium (Mg) substitution on structural and thermal behavior of nanodimensional HA. HA and Mg-substituted HA nanopowders were synthesized through sol-gel route. The morphology and size of nanopowders were characterized by transmission electron microscopy. The BET surface area was evaluated from N2 adsorption isotherms. Structural analysis and thermal behavior were investigated by means of Fourier transform infrared spectroscopy, x-ray diffraction, thermogravimetry, and differential thermal analysis. As-synthesized powders consisted of flake-like agglomerates of HA and calcium-deficient HA. The incorporation of magnesium in HA resulted in decrease of crystallite size, crystallinity, and lattice parameters a and c and increase in BET surface area. β-tricalcium phosphate formation occured at lower calcination temperature in Mg-substituted HA than HA.

  20. Mg- and Zn-modified calcium phosphates prepared by biomimetic precipitation and subsequent treatment at high temperature.

    PubMed

    Rabadjieva, D; Tepavitcharova, S; Gergulova, R; Sezanova, K; Titorenkova, R; Petrov, O; Dyulgerova, E

    2011-10-01

    Powders of magnesium-modified as well as zinc-modified calcium phosphates (Me-β-TCP and HA) with a (Ca(2+)+Mg(2+)+Zn(2+)+Na(+)+K(+))/P ratio of 1.3-1.4 and various Me(2+)/(Me(2+)+Ca(2+)) ratios (from 0.005 to 0.16) were prepared in biomimetic electrolyte systems at pH 8, mother liquid maturation and further syntering at 600-1000°C. Some differences in zinc and magnesium modifications have been prognosed on the basis of thermodynamic modeling of the studied systems and explained by the Mg(2+) and Zn(2+) ion chemical behaviour. The temperature as well as the degree of Zn(2+) and Mg(2+) ions substitutions were found to stabilize the β-TCP structure and this effect was more prononced for zinc. Thus, zinc-modified β-TCP powders consisting of idiomorphic crystals were obtained through sintering of Zn(2+) ion substituted calcium phosphates precursors at 800-1000°C. The Mg(2+) ion substitution leads to obtaining magnesium-modified β-TCP with spherical grains.

  1. Daily magnesium intake and serum magnesium concentration among Japanese people.

    PubMed

    Akizawa, Yoriko; Koizumi, Sadayuki; Itokawa, Yoshinori; Ojima, Toshiyuki; Nakamura, Yosikazu; Tamura, Tarou; Kusaka, Yukinori

    2008-01-01

    The vitamins and minerals that are deficient in the daily diet of a normal adult remain unknown. To answer this question, we conducted a population survey focusing on the relationship between dietary magnesium intake and serum magnesium level. The subjects were 62 individuals from Fukui Prefecture who participated in the 1998 National Nutrition Survey. The survey investigated the physical status, nutritional status, and dietary data of the subjects. Holidays and special occasions were avoided, and a day when people are most likely to be on an ordinary diet was selected as the survey date. The mean (+/-standard deviation) daily magnesium intake was 322 (+/-132), 323 (+/-163), and 322 (+/-147) mg/day for men, women, and the entire group, respectively. The mean (+/-standard deviation) serum magnesium concentration was 20.69 (+/-2.83), 20.69 (+/-2.88), and 20.69 (+/-2.83) ppm for men, women, and the entire group, respectively. The distribution of serum magnesium concentration was normal. Dietary magnesium intake showed a log-normal distribution, which was then transformed by logarithmic conversion for examining the regression coefficients. The slope of the regression line between the serum magnesium concentration (Y ppm) and daily magnesium intake (X mg) was determined using the formula Y = 4.93 (log(10)X) + 8.49. The coefficient of correlation (r) was 0.29. A regression line (Y = 14.65X + 19.31) was observed between the daily intake of magnesium (Y mg) and serum magnesium concentration (X ppm). The coefficient of correlation was 0.28. The daily magnesium intake correlated with serum magnesium concentration, and a linear regression model between them was proposed.

  2. Calcium absorption is not increased by caseinophosphopeptides.

    PubMed

    Teucher, Birgit; Majsak-Newman, Gosia; Dainty, Jack R; McDonagh, David; FitzGerald, Richard J; Fairweather-Tait, Susan J

    2006-07-01

    One of the suggested health benefits of caseinophosphopeptides (CPPs) is their ability to enhance calcium absorption. This possibility is based on the assumption that they resist proteolysis in the upper gastrointestinal tract and maintain calcium in a soluble form at alkaline pH in the distal ileum. The effects of CPP-enriched preparations (containing candidate functional food ingredients) on calcium absorption from a calcium lactate drink were tested. A randomized crossover trial was undertaken in 15 adults in whom we measured the absorption of calcium from a calcium lactate drink (drink A: 400 mg Ca as lactate) and 2 preparations enriched with forms of CPP (1.7 g each; drinks B and C). Both drinks B and C contained 400 mg Ca as calcium lactate plus approximately 100 mg CPP-derived calcium). Each volunteer received the 3 drinks in random order. Absorption was measured by the dual-label calcium stable-isotope technique. The quantity of calcium absorbed was significantly lower from drink A (103 mg) than from drink B (117 mg; P = 0.012) or drink C (121 mg; P = 0.002), which indicated a positive effect of the CPPs. However, because the CPP preparations contributed additional calcium besides that found in the calcium lactate (drink A), fractional absorption of calcium from drink B (23%) was slightly but significantly (P = 0.015) lower than that from drink A (26%). The differences in calcium absorption are unlikely to have any biological significance. CPPs are unsuitable as candidate ingredients for functional foods that are designed to deliver improved calcium nutrition.

  3. Magnesium Based Materials and their Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Robinson, Duane Allan

    The overall goals of this body of work were to characterize the antimicrobial properties of magnesium (Mg) metal and nano-magnesium oxide (nMgO) in vitro, to evaluate the in vitro cytotoxicity of Mg metal, and to incorporate MgO nanoparticles into a polymeric implant coating and evaluate its in vitro antimicrobial properties. In the course of this work it was found that Mg metal, Mg-mesh, and nMgO have in vitro antimicrobial properties that are similar to a bactericidal antibiotic. For Mg metal, the mechanism of this activity appears to be related to an increase in pH (i.e. a more alkaline environment) and not an increase in Mg2+. Given that Mg-mesh is a Mg metal powder, the assumption is that it has the same mechanism of activity as Mg metal. The mechanism of activity for nMgO remains to be elucidated and may be related to a combination of interaction of the nanoparticles with the bacteria and the alkaline pH. It was further demonstrated that supernatants from suspensions of Mg-mesh and nMgO had the same antimicrobial effect as was noted when the particles were used. The supernatant from Mg-mesh and nMgO was also noted to prevent biofilm formation for two Staphylococcus strains. Finally, poly-epsilon-caprolactone (PCL) composites of Mg-mesh (PCL+Mg-mesh) and nMgO (PCL+nMgO) were produced. Coatings applied to screws inhibited growth of Escherichia coli and Pseudomonas aeruginosa and in thin disc format inhibited the growth of Staphylococcus aureus in addition to the E. coli and P. aeruginosa. Pure Mg metal was noted to have some cytotoxic effect on murine fibroblast and osteoblast cell lines, although this effect needs to be characterized further. To address the need for an in vivo model for evaluating implant associated infections, a new closed fracture osteomyelitis model in the femur of the rat was developed. Magnesium, a readily available and inexpensive metal was shown to have antimicrobial properties that appear to be related to its corrosion products and

  4. Extracellular Ca2(+)-dependent inducible alkaline phosphatase from extremely halophilic archaebacterium Haloarcula marismortui.

    PubMed Central

    Goldman, S; Hecht, K; Eisenberg, H; Mevarech, M

    1990-01-01

    When starved of inorganic phosphate, the extremely halophilic archaebacterium Haloarcula marismortui produces the enzyme alkaline phosphatase and secretes it to the medium. This inducible extracellular enzyme is a glycoprotein whose subunit molecular mass is 160 kDa, as estimated by sodium dodecyl sulfate-gel electrophoresis. The native form of the enzyme is heterogeneous and composed of multiple oligomeric forms. The enzymatic activity of the halophilic alkaline phosphatase is maximal at pH 8.5, and the enzyme is inhibited by phosphate. Unlike most alkaline phosphatases, the halobacterial enzyme requires Ca2+ and not Zn2+ ions for its activity. Both calcium ions (in the millimolar range) and NaCl (in the molar range) are required for the stability of the enzyme. Images PMID:2123861

  5. Alkaline resistant phosphate glasses and method of preparation and use thereof

    DOEpatents

    Brow, Richard K.; Reis, Signo T.; Velez, Mariano; Day, Delbert E.

    2010-01-26

    A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.

  6. Daily Magnesium Intake and Serum Magnesium Concentration among Japanese People

    PubMed Central

    Akizawa, Yoriko; Koizumi, Sadayuki; Itokawa, Yoshinori; Ojima, Toshiyuki; Nakamura, Yosikazu; Tamura, Tarou; Kusaka, Yukinori

    2008-01-01

    Background The vitamins and minerals that are deficient in the daily diet of a normal adult remain unknown. To answer this question, we conducted a population survey focusing on the relationship between dietary magnesium intake and serum magnesium level. Methods The subjects were 62 individuals from Fukui Prefecture who participated in the 1998 National Nutrition Survey. The survey investigated the physical status, nutritional status, and dietary data of the subjects. Holidays and special occasions were avoided, and a day when people are most likely to be on an ordinary diet was selected as the survey date. Results The mean (±standard deviation) daily magnesium intake was 322 (±132), 323 (±163), and 322 (±147) mg/day for men, women, and the entire group, respectively. The mean (±standard deviation) serum magnesium concentration was 20.69 (±2.83), 20.69 (±2.88), and 20.69 (±2.83) ppm for men, women, and the entire group, respectively. The distribution of serum magnesium concentration was normal. Dietary magnesium intake showed a log-normal distribution, which was then transformed by logarithmic conversion for examining the regression coefficients. The slope of the regression line between the serum magnesium concentration (Y ppm) and daily magnesium intake (X mg) was determined using the formula Y = 4.93 (log10X) + 8.49. The coefficient of correlation (r) was 0.29. A regression line (Y = 14.65X + 19.31) was observed between the daily intake of magnesium (Y mg) and serum magnesium concentration (X ppm). The coefficient of correlation was 0.28. Conclusion The daily magnesium intake correlated with serum magnesium concentration, and a linear regression model between them was proposed. PMID:18635902

  7. A novel and simple fluorescence probe for detecting main group magnesium ion in HeLa cells and Arabidopsis.

    PubMed

    Yu, Tingting; Sun, Ping; Hu, Yijie; Ji, Yinggang; Zhou, Hongping; Zhang, Baowei; Tian, Yupeng; Wu, Jieying

    2016-12-15

    A simple-molecule fluorescence probe L has been designed, synthesized and characterized, which shows high selectivity and sensitivity for the main group magnesium ion through fluorescence "turn-on" response in ethanol solution, and no interference from calcium ion in particular. Detection limit of probe L is 1.47×10(-6) M and the rapid response could reach about 15-20s. The recognition mechanism has been established by fluorescence spectra, (1)H NMR study. Moreover, probe L presents a great photostability, low toxicity and cellular permeability, then we have carried out fluorescent bio-imaging of the probe L for magnesium ions in HeLa cells, which showed that probe L could be utilized to detect the intracellular magnesium ion. Furthermore, it is successfully used as a magnesium ion developer in plant tissues, which shows that it not only can be well tracking the transport of magnesium ion but also make a corresponding fluorescence response to different concentrations magnesium ion. These results would make this probe a great potential application for detecting Mg(2+) in biological system. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Active Calcium and Strontium Transport in Human Erythrocyte Ghosts

    PubMed Central

    Olson, Erik J.; Cazort, Ralph J.

    1969-01-01

    Both calcium and strontium could be transported actively from erythrocytes if adenosine triphosphate, guanosine triphosphate, or inosine triphosphate were included in the hypotonic medium used to infuse calcium or strontium into the cells. Acetyl phosphate and pyrophosphate were not energy sources for the transport of either ion. Neither calcium nor strontium transport was accompanied by magnesium exchange, and the addition of Mg++ to the reaction medium in a final concentration of 3.0 mmoles/liter did not promote the transport of either ion. In the absence of nucleotide triphosphates, the addition of 1.5 mmoles/liter of Sr++ to the reaction solution did not bring about active calcium transport and similarly 1.5 mmoles/liter of Ca++ did not bring about active strontium transport. The inclusion of 1.5 mmoles/liter of Ca++ or Sr++ in the reaction medium did not interfere with the transport of the other ion when the erythrocytes were infused with adenosine triphosphate. PMID:4304202

  9. Mineral textures in Serpentine-hosted Alkaline Springs from the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Bach, Wolfgang; Garrido, Carlos J.; Los, Karin; Fussmann, Dario; Monien, Monien

    2017-04-01

    Meteoric water infiltration in ultramafic rocks leads to serpentinization and the formation of subaerial, low temperature, hydrothermal alkaline springs. Here, we present a detailed investigation of the mineral precipitation mechanisms and textural features of mineral precipitates, along as the geochemical and hydrological characterization, of two alkaline spring systems in the Semail ophiolite (Nasif and Khafifah sites, Wadi Tayin massif). The main aim of the study is to provide new insights into mineral and textural variations in active, on-land, alkaline vents of the Oman ophiolite. Discharge of circulating fluids forms small-scale, localized hydrological catchments consisting in unevenly interconnected ponds. Three different types of waters can be distinguished within the pond systems: i) Mg-type; alkaline (7.9 < pH < 9.5), Mg-HCO3-rich waters; ii) Ca-type; hyper-alkaline (pH > 11.6), Ca-OH-rich waters; and iii) Mix-type waters arising from the mixing of Mg-type and Ca-type waters (9.6 < pH < 11.5). Phreeqc geochemical speciation software was used to determine the saturation state and the relationship between the theoretical supersaturation (S) and rate of supersaturation (S˚ ) of solid phases. Simple mixing models using Phreeqc MIX_code revealed good mixing correlation (R2 ≥0.93) between measured and predicted values for K, Na, Cl, Mg and sulphate. Al, Ca, Si, Ba, Sr and TIC showed poorer correlations. Mineral and textural characterization from different types of water and individual ponds were carried out by X-ray diffraction (XRD), Raman spectroscopy and field-emission scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Aragonite and calcite are the dominant minerals (95 vol.%) of the total mineralogical index in all sites. Mg-type waters host hydrated magnesium carbonates (nesquehonite) and magnesium hydroxycarbonate hydrates (artinite) due to evaporation. Brucite, hydromagnesite and dypingite presence in Mix-type waters

  10. Fabrication and cytocompatibility of spherical magnesium ammonium phosphate granules.

    PubMed

    Christel, Theresa; Geffers, Martha; Klammert, Uwe; Nies, Berthold; Höß, Andreas; Groll, Jürgen; Kübler, Alexander C; Gbureck, Uwe

    2014-09-01

    Magnesium phosphate compounds, as for example struvite (MgNH4PO4·6H2O), have comparable characteristics to calcium phosphate bone substitutes, but degrade faster under physiological conditions. In the present work, we used a struvite forming calcium doped magnesium phosphate cement with the formulation Ca0.75Mg2.25(PO4)2 and an ammonium phosphate containing aqueous solution to produce round-shaped granules. For the fabrication of spherical granules, the cement paste was dispersed in a lipophilic liquid and stabilized by surfactants. The granules were characterized with respect to morphology, size distribution, phase composition, compressive strength, biocompatibility and solubility. In general, it was seen that small granules can hardly be produced by means of emulsification, when the raw material is a hydraulic paste, because long setting times promote coalescence of initially small unhardened cement droplets. Here, this problem was solved by using an aqueous solution containing both the secondary (NH4)2HPO4 and primary ammonium phosphates NH4H2PO4 to accelerate the setting reaction. This resulted in granules with 97 wt.% having a size in the range between 200 and 1,000 μm. The novel solution composition doubled the compressive strength of the cement to 37 ± 5 MPa without affecting either the conversion to struvite or the cytocompatibility using human fetal osteoblasts. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Lunar sample 14425 - Characterization and resemblance to high-magnesium microtektites

    NASA Technical Reports Server (NTRS)

    Berliner, L.; Fujii, H.

    1985-01-01

    Measurements by energy-dispersive X-ray analysis of the surface of lunar sample 14425, a large glass bead, yield a noritic composition enriched in aluminum and magnesium and, as compared with other norites, depleted in iron and especially calcium. The sample is close in composition to the most basic microtektites. Spherical inclusions of nickel-iron, flattened where they protrude, are found to be enriched in sulfur and phosphorus, at least at the surface. The inclusions form approximately 1 percent of the volume.

  12. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification

    USGS Publications Warehouse

    Stets, Edward G.; Kelly, Valerie J.; Crawford, Charles G.

    2014-01-01

    Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate + sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen–Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate + sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state.

  13. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification.

    PubMed

    Stets, E G; Kelly, V J; Crawford, C G

    2014-08-01

    Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate+sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen-Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate+sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state. Published by Elsevier B.V.

  14. Dietary magnesium and potassium intakes and circulating magnesium are associated with heel bone ultrasound attenuation and osteoporotic fracture risk in the EPIC-Norfolk cohort study.

    PubMed

    Hayhoe, Richard P G; Lentjes, Marleen A H; Luben, Robert N; Khaw, Kay-Tee; Welch, Ailsa A

    2015-08-01

    In our aging population, maintenance of bone health is critical to reduce the risk of osteoporosis and potentially debilitating consequences of fractures in older individuals. Among modifiable lifestyle and dietary factors, dietary magnesium and potassium intakes are postulated to influence bone quality and osteoporosis, principally via calcium-dependent alteration of bone structure and turnover. We investigated the influence of dietary magnesium and potassium intakes, as well as circulating magnesium, on bone density status and fracture risk in an adult population in the United Kingdom. A random subset of 4000 individuals from the European Prospective Investigation into Cancer and Nutrition-Norfolk cohort of 25,639 men and women with baseline data was used for bone density cross-sectional analyses and combined with fracture cases (n = 1502) for fracture case-cohort longitudinal analyses (mean follow-up 13.4 y). Relevant biological, lifestyle, and dietary covariates were used in multivariate regression analyses to determine associations between dietary magnesium and potassium intakes and calcaneal broadband ultrasound attenuation (BUA), as well as in Prentice-weighted Cox regression to determine associated risk of fracture. Separate analyses, excluding dietary covariates, investigated associations of BUA and fractures with serum magnesium concentration. Statistically significant positive trends in calcaneal BUA for women (n = 1360) but not men (n = 968) were apparent across increasing quintiles of magnesium plus potassium (Mg+K) z score intake (P = 0.03) or potassium intake alone (P = 0.04). Reduced hip fracture risk in both men (n = 1958) and women (n = 2755) was evident for individuals in specific Mg+K z score intake quintiles compared with the lowest. Statistically significant trends in fracture risk in men across serum magnesium concentration groups were apparent for spine fractures (P = 0.02) and total hip, spine, and wrist fractures (P = 0.02). None of these

  15. Potentiometric and spectrophotometric study of the stability of magnesium carbonate and bicarbonate ion pairs to 150 °C and aqueous inorganic carbon speciation and magnesite solubility

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques

    2014-08-01

    The formation constants of magnesium bicarbonate and carbonate ion pairs have been experimentally determined in dilute hydrothermal solutions to 150 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using two pH indicators, 2-naphthol and 4-nitrophenol, at 25 and 80-150 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for MgHCO3+(aq) (KMgHCO3+) and MgCO3(aq) (KMgCO3) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The formation constants of MgHCO3+(aq) and MgCO3(aq) ion pairs increased significantly with increasing temperature, with values of logKMgHCO3+ = 1.14 and 1.75 and of logKMgCO3 = 2.86 and 3.48 at 10 °C and 100 °C, respectively. These ion pairs are important aqueous species under neutral to alkaline conditions in moderately dilute to concentrated Mg-containing solutions, with MgCO3(aq) predominating over CO32-(aq) in solutions at pH >8. The predominance of magnesium carbonate over carbonate is dependent on the concentration of dissolved magnesium and the ratio of magnesium over carbonate. With increasing temperature and at alkaline pH, brucite solubility further reduced the magnesium concentration to levels below 1 mmol kg-1, thus limiting availability of Mg2+(aq) for magnesite precipitation.

  16. The degree of resistance of erythrocyte membrane cytoskeletal proteins to supra-physiologic concentrations of calcium: an in vitro study.

    PubMed

    Mostafavi, Ebrahim; Nargesi, Arash Aghajani; Ghazizadeh, Zaniar; Larry, Mehrdad; Farahani, Roya Horabad; Morteza, Afsaneh; Esteghamati, Alireza; Vigneron, Claude; Nakhjavani, Manouchehr

    2014-08-01

    Calcium is a key regulator of cell dynamics. Dysregulation of its cytosolic concentration is implicated in the pathophysiology of several diseases. This study aimed to assess the effects of calcium on the network of membrane cytoskeletal proteins. Erythrocyte membranes were obtained from eight healthy donors and incubated with 250 µM and 1.25 mM calcium solutions. Membrane cytoskeletal proteins were quantified using SDS-PAGE at baseline and after 3 and 5 days of incubation. Supra-physiologic concentrations of calcium (1.25 mM) induced a significant proteolysis in membrane cytoskeletal proteins, compared with magnesium (p < 0.001). Actin exhibited the highest sensitivity to calcium-induced proteolysis (6.8 ± 0.3 vs. 5.3 ± 0.6, p < 0.001), while spectrin (39.9 ± 1.0 vs. 40.3 ± 2.0, p = 0.393) and band-6 (6.3 ± 0.3 vs. 6.8 ± 0.8, p = 0.191) were more resistant to proteolysis after incubation with calcium in the range of endoplasmic reticulum concentrations (250 µM). Aggregation of membrane cytoskeletal proteins was determined after centrifugation and was significantly higher after incubation with calcium ions compared with control, EDTA and magnesium solutions (p < 0.001). In a supra-physiologic range of 1.25-10 mM of calcium ions, there was a nearly perfect linear relationship between calcium concentration and aggregation of erythrocyte membrane cytoskeletal proteins (R(2) = 0.971, p < 0.001). Our observation suggests a strong interaction between calcium ions and membrane cytoskeletal network. Cumulative effects of disrupted calcium homeostasis on cytoskeletal proteins need to be further investigated at extended periods of time in disease states.

  17. Magnesium

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of magnesium: U.S. Department of Agriculture's (USDA) National Nutrient Database Nutrient List for magnesium ( ...

  18. Extracellular calcium- and magnesium-mediated regulation of passive calcium transport across Caco-2 monolayers.

    PubMed

    Davies, Sarah L; Gibbons, Claire E; Steward, Martin C; Ward, Donald T

    2008-10-01

    The calcium-sensing receptor (CaR) is expressed on intestinal epithelial serosal membrane and in Caco-2 cells. In renal epithelium, CaR expressed on the basolateral membrane acts to limit excess tubular Ca2+ reabsorption. Therefore, here we investigated whether extracellular calcium (Ca(o)2+) can regulate active or passive 45Ca2+ transport across differentiated Caco-2 monolayers via CaR-dependent or CaR-independent mechanisms. Raising the Ca(o)2+ concentration from 0.8 to 1.6 mM increased transepithelial electrical resistance (TER) and decreased passive Ca2+ permeability but failed to alter active Ca2+ transport. The Ca(o)2+ effect on TER was rapid, sustained and concentration-dependent. Increasing basolateral Mg2+ concentration increased TER and inhibited both passive and active Ca2+ transport, whereas spermine and the CaR-selective calcimimetic NPS R-467 were without effect. We conclude that small increases in divalent cation concentration elicit CaR-independent increases in TER and inhibit passive Ca2+ transport across Caco-2 monolayers, most probably through a direct effect on tight junction permeability. Whilst it is known that the complete removal of Ca(o)2+ lowers TER, here we show that Ca(o)2+ addition actually increases TER in a concentration-dependent manner. Therefore, such Ca(o)2+-sensitivity could modulate intestinal solute transport including the limiting of excess Ca2+ absorption.

  19. Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?

    PubMed Central

    Sweet, Julia; Brzezinski, Mark A.; McNair, Heather M.; Passow, Uta

    2016-01-01

    Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote, difficult-to-access locations. The ability to autonomously measure the carbonate system in situ relieves many of the logistical challenges; however, it is not always possible to measure the two required carbonate parameters autonomously. Observed relationships between sea surface salinity and total alkalinity can frequently provide a second carbonate parameter thus allowing for the calculation of the entire carbonate system. Here, we assessed the rigor of estimating total alkalinity from salinity at a depth <15 m by routinely sampling water from a pier in southern California for several carbonate system parameters. Carbonate system parameters based on measured values were compared with those based on estimated TA values. Total alkalinity was not predictable from salinity or from a combination of salinity and temperature at this site. However, dissolved inorganic carbon and the calcium carbonate saturation state of these nearshore surface waters could both be estimated within on average 5% of measured values using measured pH and salinity-derived or regionally averaged total alkalinity. Thus we find that the autonomous measurement of pH and salinity can be used to monitor trends in coastal changes in DIC and saturation state and be a useful method for high-frequency, long-term monitoring of ocean acidification. PMID:27893739

  20. A Prospective Study on Role of Supplemental Oral Calcium and Vitamin D in Prevention of Postthyroidectomy Hypocalcemia

    PubMed Central

    Ravikumar, Krishnan; Sadacharan, Dhalapathy; Muthukumar, Sankaran; Sundarram, Thalavai; Periyasamy, Selladurai; Suresh, R. V.

    2017-01-01

    Background: Postoperative transient hypocalcemia is sequelae of total thyroidectomy (TT), which is observed in up to 50% of patients. Routine oral calcium and Vitamin D supplementation have been proposed to prevent symptomatic hypocalcemia preventing morbidity and facilitating early discharge. Patients and Methods: A total of 208 patients with nontoxic benign thyroid disorders, undergoing TT, were serially randomized into four groups: Group A (no supplements were given), Group B (oral calcium – 2 g/day given), Group C (calcium and calcitriol – 1 mcg/day are given), and Group D (calcium, calcitriol, and cholecalciferol – 60,000 IU/day are given). Patients were monitored for clinical and biochemical hypocalcemia (serum calcium, [Sr. Ca] <8 mg/dl), along with serum intact parathormone (Sr. PTH) and magnesium 6 h after surgery and Sr. Ca every 24 h. Intravenous (IV) calcium infusion was started, if any of the above four groups exhibit frank hypocalcemia. Patients are followed up with Sr. Ca and Sr. PTH at 3 and 6 months. Results: All groups were age and sex matched. Hypocalcemia was observed in 72/208 (34.61%) cases. Incidence of hypocalcemia was higher in Group A (57.69%) and Group B (50%) compared to Group C (15.38%) and Group D (15.38%). Hypocalcemia necessitating IV calcium occurred in 31/208 (14.90%) patients. IV calcium requirement exceeded in Group A (26.92%) and Group B (23.07%) compared to Group C (5.76%) and Group D (3.84%). There was no statistical difference in basal levels of serum Vitamin D, calcium, magnesium, intact PTH, and 6 h after surgery. Permanent hypoparathyroidism developed in five patients on follow-up. Conclusion: Routine postoperative supplementation of oral calcium and Vitamin D will help in the prevention of postthyroidectomy transient hypocalcemia significantly. Preoperative Vitamin D levels do not predict postoperative hypocalcemia. PMID:28670529

  1. A Prospective Study on Role of Supplemental Oral Calcium and Vitamin D in Prevention of Postthyroidectomy Hypocalcemia.

    PubMed

    Ravikumar, Krishnan; Sadacharan, Dhalapathy; Muthukumar, Sankaran; Sundarram, Thalavai; Periyasamy, Selladurai; Suresh, R V

    2017-01-01

    Postoperative transient hypocalcemia is sequelae of total thyroidectomy (TT), which is observed in up to 50% of patients. Routine oral calcium and Vitamin D supplementation have been proposed to prevent symptomatic hypocalcemia preventing morbidity and facilitating early discharge. A total of 208 patients with nontoxic benign thyroid disorders, undergoing TT, were serially randomized into four groups: Group A (no supplements were given), Group B (oral calcium - 2 g/day given), Group C (calcium and calcitriol - 1 mcg/day are given), and Group D (calcium, calcitriol, and cholecalciferol - 60,000 IU/day are given). Patients were monitored for clinical and biochemical hypocalcemia (serum calcium, [Sr. Ca] <8 mg/dl), along with serum intact parathormone (Sr. PTH) and magnesium 6 h after surgery and Sr. Ca every 24 h. Intravenous (IV) calcium infusion was started, if any of the above four groups exhibit frank hypocalcemia. Patients are followed up with Sr. Ca and Sr. PTH at 3 and 6 months. All groups were age and sex matched. Hypocalcemia was observed in 72/208 (34.61%) cases. Incidence of hypocalcemia was higher in Group A (57.69%) and Group B (50%) compared to Group C (15.38%) and Group D (15.38%). Hypocalcemia necessitating IV calcium occurred in 31/208 (14.90%) patients. IV calcium requirement exceeded in Group A (26.92%) and Group B (23.07%) compared to Group C (5.76%) and Group D (3.84%). There was no statistical difference in basal levels of serum Vitamin D, calcium, magnesium, intact PTH, and 6 h after surgery. Permanent hypoparathyroidism developed in five patients on follow-up. Routine postoperative supplementation of oral calcium and Vitamin D will help in the prevention of postthyroidectomy transient hypocalcemia significantly. Preoperative Vitamin D levels do not predict postoperative hypocalcemia.

  2. Magnesium Inhibits Wnt/β-Catenin Activity and Reverses the Osteogenic Transformation of Vascular Smooth Muscle Cells

    PubMed Central

    Montes de Oca, Addy; Guerrero, Fatima; Martinez-Moreno, Julio M.; Madueño, Juan A.; Herencia, Carmen; Peralta, Alan; Almaden, Yolanda; Lopez, Ignacio; Aguilera-Tejero, Escolastico; Gundlach, Kristina; Büchel, Janine; Peter, Mirjam E.; Passlick-Deetjen, Jutta; Rodriguez, Mariano; Muñoz-Castañeda, Juan R.

    2014-01-01

    Magnesium reduces vascular smooth muscle cell (VSMC) calcification in vitro but the mechanism has not been revealed so far. This work used only slightly increased magnesium levels and aimed at determining: a) whether inhibition of magnesium transport into the cell influences VSMC calcification, b) whether Wnt/β-catenin signaling, a key mediator of osteogenic differentiation, is modified by magnesium and c) whether magnesium can influence already established vascular calcification. Human VSMC incubated with high phosphate (3.3 mM) and moderately elevated magnesium (1.4 mM) significantly reduced VSMC calcification and expression of the osteogenic transcription factors Cbfa-1 and osterix, and up-regulated expression of the natural calcification inhibitors matrix Gla protein (MGP) and osteoprotegerin (OPG). The protective effects of magnesium on calcification and expression of osteogenic markers were no longer observed in VSMC cultured with an inhibitor of cellular magnesium transport (2-aminoethoxy-diphenylborate [2-APB]). High phosphate induced activation of Wnt/β-catenin pathway as demonstrated by the translocation of β-catenin into the nucleus, increased expression of the frizzled-3 gene, and downregulation of Dkk-1 gene, a specific antagonist of the Wnt/β-catenin signaling pathway. The addition of magnesium however inhibited phosphate-induced activation of Wnt/β-catenin signaling pathway. Furthermore, TRPM7 silencing using siRNA resulted in activation of Wnt/β-catenin signaling pathway. Additional experiments were performed to test the ability of magnesium to halt the progression of already established VSMC calcification in vitro. The delayed addition of magnesium decreased calcium content, down-regulated Cbfa-1 and osterix and up-regulated MGP and OPG, when compared with a control group. This effect was not observed when 2-APB was added. In conclusion, magnesium transport through the cell membrane is important to inhibit VSMC calcification in vitro

  3. Effects of "vitex agnus castus" extract and magnesium supplementation, alone and in combination, on osteogenic and angiogenic factors and fracture healing in women with long bone fracture.

    PubMed

    Eftekhari, Mohammad Hassan; Rostami, Zahra Hassanzadeh; Emami, Mohammad Jafar; Tabatabaee, Hamid Reza

    2014-01-01

    The purpose of this study was to investigate the effects of the combination of vitex agnus castus extract, as a source of phytoestrogens, plus magnesium supplementation on osteogenic and angiogenic factors and callus formation in women with long bone fracture. In a double-blind randomized placebo controlled trial, 64 women with long bone fracture, 20-45 years old, were randomly allocated to receive 1) one Agnugol tablet (4 mg dried fruit extract of vitex agnus castus) plus 250 mg magnesium oxide (VAC + Mg group (n = 10)), 2) one Agnugol tablet plus placebo (VAC group (n = 15)), 3) placebo plus 250 mg magnesium oxide (Mg group (n = 12)), or 4) placebo plus placebo (placebo group (n = 14)) per day for 8 weeks. At baseline and endpoint of the trial, serum alkaline phosphatase, osteocalcin, and vascular endothelial growth factor (VEGF) were measured together with radiological bone assessment. There were no significant differences in the characteristic aspects of concern between the four groups at baseline. Despite the increased level of alkaline phosphatase in the VAC group (188.33 ± 16.27 to 240.40 ± 21.49, P = 0.05), administration of VAC + Mg could not increase alkaline phosphatase activity. However, treatment with VAC + Mg significantly enhanced the osteocalcin level. The serum concentration of VEGF was increased in the VAC group (269.04 ± 116.63 to 640.03 ± 240.16, P < 0.05). Callus formation in the VAC + Mg group was higher than the other groups but the differences between the four groups were not significant (P = 0.39). No relevant side effect was observed in patients in each group. Our results suggest that administration of vitex agnus castus plus magnesium may promote fracture healing. However, more studies need to further explore the roles of vitex agnus castus in fracture repair processes.

  4. Mineral contents and their solubility on calcium carbonat calcite nanocrystals from cockle shell powder (Anadara granosa Linn)

    NASA Astrophysics Data System (ADS)

    Widyastuti, S.; Pramushinta, I. A.

    2018-03-01

    Prepared and characterized calcium carbonat calcite nanocrystals improves solubility. Calcium carbonat calcite nanocrystals were synthesized using precipitation method from the waste of blood clam cockle shells (Anadara granosa Linn). This study was conducted to analyze mineral composition of nanocrystals calcium carbonat calcite cockle (Anadara granosa) shell for calcium fortification of food applications and to evaluate the solubilities of Calsium and Phospor. The sample of nanocrystals from cockle shells was evaluated to determine the content of 11 macro-and micro-elements. These elements are Calcium (Ca), Magnesium (Mg), Sodium (Na), Phosphorus (P), Potassium (K), Ferrum (Fe), Copper (Cu), Nickel (Ni), Zink (Zn), Boron (B) and Silica (Si)). Cockleshell powders were found to contain toxic elements below detectable levels. The solubilities of Calcium and Phospor were p<0.05.

  5. Involvement of oxygen free radicals in the respiratory uncoupling induced by free calcium and ADP-magnesium in isolated cardiac mitochondria: comparing reoxygenation in cultured cardiomyocytes.

    PubMed

    Meynier, Alexandra; Razik, Hafida; Cordelet, Catherine; Grégoire, Stéphane; Demaison, Luc

    2003-01-01

    Recently, we have observed that the simultaneous application of free calcium (fCa) and ADP-magnesium (Mg) reduced the ADP:O ratio in isolated cardiac mitochondria. The uncoupling was prevented by cyclosporin A, an inhibitor of the permeability transition pore. The purpose of this study was to know if the generation of oxygen free radicals (OFR) is involved in this phenomenon and if it occurs during reoxygenation (Reox) of cultured cardiomyocytes. Cardiac mitochondria were harvested from male Wistar rats. Respiration was assessed in two media with different fCa concentrations (0 or 0.6 microM) with palmitoylcarnitine and ADP-Mg as respiration substrates. The production of Krebs cycle intermediates (KCI) was determined. Without fCa in the medium, the mitochondria displayed a large production of citrate + isocitrate + alpha-ketoglutarate. fCa drastically reduced these KCI and promoted the accumulation of succinate. To know if OFR are involved in the respiratory uncoupling, the effect of 4OH-TEMPO (250 microM), a hydrosoluble scavenger of OFR, was tested. 4OH-TEMPO completely abolished the fCa- and ADP-Mg-induced uncoupling. Conversely, vitamin E contributed to further decreasing the ADP:O ratio. Since no hydrosoluble electron acceptor was added in our experiment, the oxygen free radical-induced oxidized vitamin E was confined near the mitochondrial membranes, which should reduce the ADP:O ratio by opening the permeability transition pore. The generation of OFR could result from the matrix accumulation of succinate. Taken together, these results indicate that mitochondrial Ca uptake induces a slight increase in membrane permeability. Thereafter, Mg enters the matrix and, in combination with Ca, stimulates the isocitrate and/or alpha-ketoglutarate dehydrogenases. Matrix succinate favors oxygen free radical generation that further increases membrane permeability and allows respiratory uncoupling through proton leakage. To determine whether the phenomenon takes place

  6. Investigation on the thermo-chemical reaction mechanism between yttria-stabilized zirconia (YSZ) and calcium-magnesium-alumino-silicate (CMAS)

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Bo; Wang, Bin-Yi; Cao, Jian; Song, Guan-Yu; Liu, Juan-Bo

    2015-03-01

    Thermal barrier coatings (TBCs) with Y2O3-stabilized ZrO2 (YSZ) top coat play a very important role in advanced turbine blades by considerably increasing the engine efficiency and improving the performance of highly loaded blades. However, at high temperatures, environment factors result in the failure of TBCs. The influence of calcium-magnesium-alumino-silicate (CMAS) is one of environment factors. Although thermo-physical effect is being paid attention to, the thermo-chemical reaction becomes the hot-spot in the research area of TBCs affected by CMAS. In this paper, traditional twolayered structured TBCs were prepared by electron beam physical vapor deposition (EBPVD) as the object of study. TBCs coated with CMAS were heated at 1240°C for 3 h. Additionally, 15 wt.% simulated molten CMAS powder and YSZ powder were mixed and heated at 1240°C or 1350°C for 48 h. SEM and EDS were adopted to detect morphology and elements distribution. According to XRD and TEM results, it was revealed that CMAS react with YSZ at high temperature and form ZrSiO4, Ca0.2Zr0.8O1.8 and Ca0.15Zr0.85O1.85 after reaction, as a result, leading to the failure of TBCs and decreasing the TBC lifetime.

  7. Protective layer formation on magnesium in cell culture medium.

    PubMed

    Wagener, V; Virtanen, S

    2016-06-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO2). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37°C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous structures. The

  8. Magnesium in pregnancy.

    PubMed

    Dalton, Lynne M; Ní Fhloinn, Deirdre M; Gaydadzhieva, Gergana T; Mazurkiewicz, Ola M; Leeson, Heather; Wright, Ciara P

    2016-09-01

    Magnesium deficiency is prevalent in women of childbearing age in both developing and developed countries. The need for magnesium increases during pregnancy, and the majority of pregnant women likely do not meet this increased need. Magnesium deficiency or insufficiency during pregnancy may pose a health risk for both the mother and the newborn, with implications that may extend into adulthood of the offspring. The measurement of serum magnesium is the most widely used method for determining magnesium levels, but it has significant limitations that have both hindered the assessment of deficiency and affected the reliability of studies in pregnant women. Thus far, limited studies have suggested links between magnesium inadequacy and certain conditions in pregnancy associated with high mortality and morbidity, such as gestational diabetes, preterm labor, preeclampsia, and small for gestational age or intrauterine growth restriction. This review provides recommendations for further study and improved testing using measurement of red cell magnesium. Pregnant women should be counseled to increase their intake of magnesium-rich foods such as nuts, seeds, beans, and leafy greens and/or to supplement with magnesium at a safe level. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Increase in serum magnesium level in haemodialysis patients receiving sevelamer hydrochloride.

    PubMed

    Mitsopoulos, Efstathios; Griveas, Ioannis; Zanos, Stavros; Anagnostopoulos, Konstantinos; Giannakou, Anastasia; Pavlitou, Aikaterini; Sakellariou, Georgios

    2005-01-01

    Clinical studies have shown that sevelamer hydrochloride improves lipid profiles and attenuates the progression of the cardiovascular calcifications in haemodialysis patients. It is known that both of these properties are associated with increased magnesium levels. The effect of sevelamer on serum magnesium level is not well documented. The aim of this study was to determine the effects of sevelamer treatment on serum magnesium in haemodialysis patients and to assess the association of magnesium levels with lipid profiles and intact parathyroid hormone (iPTH). Phosphate binders were discontinued during a two week washout period. Forty-seven patients, whose serum phosphate was greater than 6.0 mg/dl at the end of washout, received sevelamer hydrochloride for eight weeks. The patients were then washed off sevelamer for another two weeks. Mean serum phosphorus concentration declined from 7.5 +/- 1.3 to 6.4 +/- 1.2 mg/dl (P < 0.001), mean serum magnesium levels increased from 2.75 +/- 0.35 to 2.90 +/- 0.41 mg/dl (P < 0.001) and median serum iPTH levels decreased from 297 to 213 pg/ml (P=0.001) during the eight weeks of sevelamer treatment. After the two week post-treatment washout phosphorus levels increased to 7.3 +/- 1.3 mg/dl (P < 0.001), magnesium levels were reduced to 2.77 +/- 0.39 mg/dl (P < 0.001) and iPTH levels increased to 240 pg/ml (P=0.012). No change was observed in serum calcium levels during the sevelamer treatment period and the subsequent washout period. The mean decline in total and low density lipoprotein (LDL) cholesterol during sevelamer treatment was 16.3 and 28.3 (P < 0.001), respectively. The mean increase in high density lipoprotein (HDL) cholesterol and in apolipoprotein A1 was 2.9 +/- 5.8 mg/dl (P=0.004) and 6.8 +/- 11.1 mg/dl (P=0.001), respectively. Multivariate analysis showed that the rise in serum magnesium concentration significantly correlated with reductions in iPTH levels (r=-0.40, P=0.016), but did not have any significant

  10. Calcium Solubility and Cation Exchange Properties in Zeoponic Soil

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, Raymond E.

    1999-01-01

    An important aspect of a regenerative life support system at a Lunar or Martian outpost is the ability to produce food. Essential plant nutrients, as well as a solid support substrate, can be provided by: (1) treated Lunar or Martian regolith; (2) a synthetic soil or (3) some combination of both. A synthetic soil composed of ammonium- and potassium-saturated chinoptlolite (a zeolite mineral) and apatite, can provide slow-release fertilization of plants via dissolution and ion-exchange reactions. Previous equilibrium studies (Beiersdorfer, 1997) on mixtures of synthetic hydroxyapatite and saturated-clinoptilolite indicate that the concentrations of macro-nutrients such as ammonium, phosphorous, potassium, magnesium, and calcium are a function of the ratio of chinoptilolite to apatite in the sample and to the ratio of potassium to ammonium on the exchange sites in the clinoptilolite. Potassium, ammonium, phosphorous, and magnesium are available to plants at sufficient levels. However, calcium is deficient, due to the high degree of calcium adsorption by the clinoptilolite. Based on a series of batch-equilibration experiments, this calcium deficiency can be reduced by (1) treating the clinoptilolite with CaNO3 or (2) adding a second Ca-bearing mineral (calcite, dolomite or wollastonite) to the soil. Treating the Cp with CaNO3 results in increased Ca in solution, decreased P in solution and decreased NH4 in solution. Concentrations of K were not effected by the CaNO3 treatment. Additions of Cal, Dol and Wol changed the concentrations of Ca and P in solution in a systematic fashion. Cal has the greatest effect, Dol the least and Wol is intermediate. The changes are consistent with changes expected for a common ion effect with Ca. Higher concentrations of Ca in solution with added Cal, Dol or Wol do not result in changes in K or NH4 concentrations.

  11. Calcium Metabolism in Newborn Infants THE INTERRELATIONSHIP OF PARATHYROID FUNCTION AND CALCIUM, MAGNESIUM, AND PHOSPHORUS METABOLISM IN NORMAL, “SICK,” AND HYPOCALCEMIC NEWBORNS

    PubMed Central

    David, Louis; Anast, Constantine S.

    1974-01-01

    Serum immunoreactive parathyroid hormone (iPTH) and plasma total calcium, ionized calcium, magnesium, and phosphorus levels were determined during the first 9 days of life in 137 normal term infants, 55 “sick” infants, and 43 hypocalcemic (Ca <7.5 mg/100 ml; Ca++<4.0 mg/100 ml) infants. In the cord blood, elevated levels of plasma Ca++ and Ca were observed, while levels of serum iPTH were either undetectable or low. In normal newborns during the first 48 h of life there was a decrease in plasma Ca and Ca++, while the serum iPTH level in most samples remained undetectable or low; after 48 h there were parallel increases in plasma Ca and Ca++ and serum iPTH levels. Plasma Mg and P levels increased progressively after birth in normal infants. In the sick infants, plasma Ca, Ca++ and P levels were significantly lower than in the normal newborns, while no significant differences were found in the plasma Mg levels. The general pattern of serum iPTH levels in the sick infants was similar to that observed in the normal group, though there was a tendency for the increase in serum iPTH to occur earlier and for the iPTH levels to be higher in the sick infants. In the hypocalcemic infants, plasma Mg levels were consistently lower than in the normal infants after 24 h of age, while no significant differences were found in the plasma P levels. Hyperphosphatemia was uncommon and did not appear to be a contributing factor in the pathogenesis of hypocalcemia in most infants. Most of the hypocalcemic infants, including those older than 48 h, had inappropriately low serum iPTH levels. Evidence obtained from these studies indicates that parathyroid secretion is normally low in the early new born period and impaired parathyroid function, characterized by undetectable or low serum iPTH, is present in most infants with neonatal hypocalcemia. Additional unknown factors appear to contribute to the lowering of plasma Ca in the neonatal period. The net effect of unknown plasma

  12. Effects of “vitex agnus castus” extract and magnesium supplementation, alone and in combination, on osteogenic and angiogenic factors and fracture healing in women with long bone fracture

    PubMed Central

    Eftekhari, Mohammad Hassan; Rostami, Zahra Hassanzadeh; Emami, Mohammad Jafar; Tabatabaee, Hamid Reza

    2014-01-01

    Background: The purpose of this study was to investigate the effects of the combination of vitex agnus castus extract, as a source of phytoestrogens, plus magnesium supplementation on osteogenic and angiogenic factors and callus formation in women with long bone fracture. Material and Methods: In a double-blind randomized placebo controlled trial, 64 women with long bone fracture, 20-45 years old, were randomly allocated to receive 1) one Agnugol tablet (4 mg dried fruit extract of vitex agnus castus) plus 250 mg magnesium oxide (VAC + Mg group (n = 10)), 2) one Agnugol tablet plus placebo (VAC group (n = 15)), 3) placebo plus 250 mg magnesium oxide (Mg group (n = 12)), or 4) placebo plus placebo (placebo group (n = 14)) per day for 8 weeks. At baseline and endpoint of the trial, serum alkaline phosphatase, osteocalcin, and vascular endothelial growth factor (VEGF) were measured together with radiological bone assessment. Results: There were no significant differences in the characteristic aspects of concern between the four groups at baseline. Despite the increased level of alkaline phosphatase in the VAC group (188.33 ± 16.27 to 240.40 ± 21.49, P = 0.05), administration of VAC + Mg could not increase alkaline phosphatase activity. However, treatment with VAC + Mg significantly enhanced the osteocalcin level. The serum concentration of VEGF was increased in the VAC group (269.04 ± 116.63 to 640.03 ± 240.16, P < 0.05). Callus formation in the VAC + Mg group was higher than the other groups but the differences between the four groups were not significant (P = 0.39). No relevant side effect was observed in patients in each group. Conclusion: Our results suggest that administration of vitex agnus castus plus magnesium may promote fracture healing. However, more studies need to further explore the roles of vitex agnus castus in fracture repair processes. PMID:24672557

  13. Physical limitations in meal preparation and consumption are associated with lower musculoskeletal nutrient (calcium, vitamin D, magnesium, and phosphorus) intakes in homebound older adults.

    PubMed

    Sharkey, J; Johnson, C M; Dean, W R

    2012-08-01

    Although homebound older adults are at increased risk for poor nutritional health and adverse nutrition-related outcomes, little attention has focused on the tasks involved in meal preparation and consumption and the influence of those tasks on dietary intake. We examined the self-reported dietary intake from 3, 24-h dietary recalls and physical limitations in meal preparation and consumption (LMPC) activities from a randomly recruited sample of 345 homebound older men and women. Ordered logistic regression was used to examine the correlation of demographic characteristics and 6 activities with relative intakes of key musculoskeletal nutrients (calcium, vitamin D, magnesium, and phosphorus). At least 70% reported not meeting ⅔ recommended intakes for calcium and vitamin D; 12.5% failed to achieve ⅔ recommended intakes in at least three of the four nutrients. More than 12% of the sample reported it was very difficult or they were unable to perform at least 3 LMPC tasks. Regression results indicated that reporting the greatest LMPC increased the odds for lower intake of musculoskeletal nutrients. Independent of sociodemographic characteristics, self-reported difficulty in meal preparation and consumption was associated with lower dietary intakes of musculoskeletal nutrients. These results suggest the need to assess difficulty in meal preparation and consumption for the growing population of homebound older adults who participate in supplemental nutrition programs. This brief, 6-item measure may help identify older adults at risk of poor nutritional health and declining function.

  14. Calcium Deficiency of Dark-grown Seedlings of Phaseolus vulgaris L.

    PubMed

    Helms, K

    1971-06-01

    Hypocotyl collapse in dark-grown seedlings of Phaseolus vulgaris cv. Pinto was due to calcium deficiency. There was no evidence of an associated pathogen. The number of seedlings with hypocotyl collapse decreased and the mean hypocotyl length increased when increasing levels of calcium (0-100 micrograms per gram) were supplied in an external nutrient solution to seedlings grown under sterile conditions.When seedlings were supplied with a complete nutrient solution, containing calcium at 100 micrograms per gram, but minus potassium, magnesium, sulfur, nitrogen, or phosphorus, occasional plants developed hypocotyl collapse symptoms; however, the lengths of hypocotyls varied little from those of controls grown in complete nutrient. When the calcium level in the deficient nutrient solutions was raised to 200 micrograms per gram, the number of plants with hypocotyl collapse was reduced markedly.With complete nutrient solution minus calcium, seedlings developed symptoms of calcium deficiency irrespective of seed size, i.e., irrespective of whether or not the seed contained a total calcium content that was low or relatively high.An increase in hypocotyl length in response to an external supply of calcium was obtained with five cultivars of Phaseolus vulgaris L. and with one of Soja max Piper. A similar response to calcium was obtained for epicotyl growth of a cultivar of Vicia faba L., but not for a cultivar of Pisum sativum L.

  15. Magnesium and Space Flight.

    PubMed

    Smith, Scott M; Zwart, Sara R

    2015-12-08

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions.

  16. Diffusion-controlled magnesium isotopic fractionation of a single crystal forsterite evaporated from the solid state

    NASA Technical Reports Server (NTRS)

    Wang, Jianhua; Davis, Andrew M.; Hashimoto, Akihiko; Clayton, Robert N.

    1993-01-01

    Though the origin of calcium- and aluminum-rich inclusions (CAI's) in carbonaceous chondrites is till a disputed issue, evaporation is no doubt one of the most important processes for the formation of CAI's in the early solar nebula. The mechanism for production of large isotopic mass fractionation effects in magnesium, silicon, oxygen, and chromium in CAI's can be better understood by examining isotopic fractionation during the evaporation of minerals. New evaporation experiments were performed on single-crystal forsterite. The magnesium isotopic distribution near the evaporating surfaces of the residues using a modified AEI IM-20 ion microprobe to obtain rastered beam depth profiles was measured. A theoretical model was used to explain the profiles and allowed determination of the diffusion coefficient of Mg(++) in forsterite at higher temperatures than previous measurements. The gas/solid isotopic fractionation factor for magnesium for evaporation from solid forsterite was also determined and found to be nearly the same as that for evaporation of liquid Mg2SiO4.

  17. Magnesium status and the effect of magnesium supplementation in feline hypertrophic cardiomyopathy.

    PubMed

    Freeman, L M; Brown, D J; Smith, F W; Rush, J E

    1997-07-01

    Magnesium deficiency has been associated with the development of cardiovascular disease in several species. Cats may be predisposed to alterations in magnesium status because of recent changes in the composition of commercial feline diets. The purposes of this study were 1) to examine the dietary history of cats with hypertrophic cardiomyopathy (HCM), 2) to study magnesium status of cats with HCM compared to normal cats, and 3) to determine the effects of magnesium supplementation in cats with HCM. In part 1 of the study, diets of 65 cats with HCM were examined retrospectively. Forty of the 45 cats for which diets could be determined (89%) ate a diet designed to be magnesium-restricted and/or to produce an acidic urine. In part 2 of the study, 10 cats with HCM were compared to 10 healthy control cats for serum creatinine and magnesium; urine creatinine and magnesium, urine specific gravity and pH, and fractional excretion of magnesium. Urine creatinine and specific gravity were higher in control cats than in cats with HCM. No other differences were found between the 2 groups. In part 3, cats with HCM were supplemented with either 210 mg magnesium chloride (n = 15) or 210 mg lactose (n = 15) for 12 wk. No differences between the 2 groups were found for changes in either magnesium status or echocardiographic parameters. However, the 30 cats with HCM, as a group, did show significant improvements in measures of cardiac hypertrophy over the 12-week period. This was likely the result of treatment with other medications, rather than the magnesium supplementation. The results of this study suggest that cats with HCM are likely to be fed magnesium-restricted diets, but that they do not appear to have altered magnesium status compared to healthy controls.

  18. Magnesium: Nutrition and Homoeostasis.

    PubMed

    Vormann, Jürgen

    2016-01-01

    The essential mineral magnesium is involved in numerous physiological processes. Recommended dietary intake is often not met and a low magnesium status increases the risk for various diseases. Magnesium status is regulated by several magnesium transport systems either in cellular or paracellular pathways. Numerous drugs either interfere with magnesium absorption in the intestines or the reabsorption from primary urine in the kidney. Low magnesium status has been identified as a significant risk factor for several diseases, including type-2 diabetes, cardiovascular diseases, arrhythmias, as well as general muscular and neurological problems. Therefore, an adequate magnesium supply would be of special benefit to our overall health.

  19. Myth or Reality-Transdermal Magnesium?

    PubMed

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus

    2017-07-28

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.

  20. Myth or Reality—Transdermal Magnesium?

    PubMed Central

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen

    2017-01-01

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract. PMID:28788060

  1. The Daily Consumption of Cola Can Determine Hypocalcemia: A Case Report of Postsurgical Hypoparathyroidism-Related Hypocalcemia Refractory to Supplemental Therapy with High Doses of Oral Calcium.

    PubMed

    Guarnotta, Valentina; Riela, Serena; Massaro, Marina; Bonventre, Sebastiano; Inviati, Angela; Ciresi, Alessandro; Pizzolanti, Giuseppe; Benvenga, Salvatore; Giordano, Carla

    2017-01-01

    The consumption of soft drinks is a crucial factor in determining persistent hypocalcemia. The aim of the study is to evaluate the biochemical mechanisms inducing hypocalcemia in a female patient with usual high consumption of cola drink and persistent hypocalcemia, who failed to respond to high doses of calcium and calcitriol supplementation. At baseline and after pentagastrin injection, gastric secretion (Gs) and duodenal secretion (Ds) samples were collected and calcium and total phosphorus (P tot ) concentrations were evaluated. At the same time, blood calcium, P tot , sodium, potassium, chloride, magnesium concentrations, and vitamin D were sampled. After intake of cola (1 L) over 180 min, Gs and Ds and blood were collected and characterized in order to analyze the amount of calcium and P tot or sodium, potassium, magnesium, and chloride ions, respectively. A strong pH decrease was observed after cola intake with an increase in phosphorus concentration. Consequently, a decrease in calcium concentration in Gs and Ds was observed. A decrease in calcium concentration was also observed in blood. In conclusion, we confirm that in patients with postsurgical hypoparathyroidism, the intake of large amounts of cola containing high amounts of phosphoric acid reduces calcium absorption efficiency despite the high doses of calcium therapy.

  2. Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide

    NASA Astrophysics Data System (ADS)

    Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.

    2017-06-01

    The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.

  3. Solubility of some alkali and alkaline earth chlorides in water at moderate temperatures

    USGS Publications Warehouse

    Clynne, M.A.; Potter, R.W.

    1979-01-01

    Solubilities for the binary systems, salt-H2O, of the chlorides of lithium, rubidium, cesium, magnesium, calcium, strontium, and barium from near 0??C to the saturated boiling point are reported. The experimental data and coefficients of an equation for a smoothed curve describing each system are listed in the tables. The data are improvements on those previously reported in the literature, having a precision on the average of ??0.09%.

  4. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    DOEpatents

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  5. Magnesium and Space Flight

    PubMed Central

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  6. Calcium sensitive ring-like oligomers formed by synaptotagmin

    PubMed Central

    Wang, Jing; Bello, Oscar; Auclair, Sarah M.; Wang, Jing; Coleman, Jeff; Pincet, Frederic; Krishnakumar, Shyam S.; Sindelar, Charles V.; Rothman, James E.

    2014-01-01

    The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18–43 nm, corresponding to 11–26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide–sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded. PMID:25201968

  7. Relationship between nutritional habits and hair calcium levels in young women.

    PubMed

    Jeruszka-Bielak, Marta; Brzozowska, Anna

    2011-12-01

    The present study was conducted to investigate whether hair calcium levels are related to nutritional habits, selected status parameters, and life-style factors in young women. Eighty-five healthy female students neither pregnant nor lactating, using no hair dyes or permanents were recruited for the study. Food consumption data, including fortified products and dietary supplements were collected with 4-day records. The calcium levels in hair and serum were analyzed by atomic absorption spectroscopy. Serum osteocalcin and the C-terminal telopeptide of type I collagen were assayed by ELISA. The women were divided into four groups according to their total vitamin D and calcium intakes and hair calcium levels. At adequate calcium intake and comparable serum bone biomarker levels, supplemental vitamin D increased the hair calcium levels. On the other hand, at lower than estimated adequate requirement of vitamin D intake the hair calcium levels were comparable in women with low calcium intakes but consuming high amounts of meat products or those whose diets were rich in dairy products, possibly due to homeostatic mechanisms. Elevated hair calcium was seen in 25% of subjects and could not be related to nutritional or life-style factors. The results show that the hair calcium levels were weakly related to the quality of diet, with some synergistic interactions between nutrients, especially vitamin D and magnesium.

  8. Low magnesium level

    MedlinePlus

    ... in the body that convert or use energy ( metabolism ). When the level of magnesium in the body drops below normal, symptoms of low magnesium may develop. Common causes of low magnesium include: Alcohol use Burns that affect a large area of ...

  9. Coordinate responses to alkaline pH stress in budding yeast

    PubMed Central

    Serra-Cardona, Albert; Canadell, David; Ariño, Joaquín

    2015-01-01

    Alkalinization of the medium represents a stress condition for the budding yeast Saccharomyces cerevisiae to which this organism responds with profound remodeling of gene expression. This is the result of the modulation of a substantial number of signaling pathways whose participation in the alkaline response has been elucidated within the last ten years. These regulatory inputs involve not only the conserved Rim101/PacC pathway, but also the calcium-activated phosphatase calcineurin, the Wsc1-Pkc1-Slt2 MAP kinase, the Snf1 and PKA kinases and oxidative stress-response pathways. The uptake of many nutrients is perturbed by alkalinization of the environment and, consequently, an impact on phosphate, iron/copper and glucose homeostatic mechanisms can also be observed. The analysis of available data highlights cases in which diverse signaling pathways are integrated in the gene promoter to shape the appropriate response pattern. Thus, the expression of different genes sharing the same signaling network can be coordinated, allowing functional coupling of their gene products. PMID:28357292

  10. Assessment of the quality of groundwater for drinking purposes in the Upper West and Northern regions of Ghana.

    PubMed

    Saana, Sixtus Bieranye Bayaa Martin; Fosu, Samuel Asiedu; Sebiawu, Godfred Etsey; Jackson, Napoleon; Karikari, Thomas

    2016-01-01

    Underground water is an important natural resource serving as a reliable source of drinking water for many people worldwide, especially in developing countries. Underground water quality needs to be given a primary research and quality control attention due to possible contamination. This study was therefore designed to determine the physico-chemical and bacteriological quality of borehole water in the Upper West and Northern regions of Ghana. The study was conducted in seven districts in Ghana (including six in the Upper West region and one in the Northern region). The bacterial load of the water samples was determined using standard microbiological methods. Physico-chemical properties including pH, total alkalinity, temperature, turbidity, true colour, total dissolved solids (TDS), electrical conductivity, total hardness, calcium hardness, magnesium hardness, total iron, calcium ion, magnesium ion, chloride ion, fluoride ion, aluminium ion, arsenic, ammonium ions, nitrate and nitrite concentrations were determined. The values obtained were compared with the World Health Organization (WHO) standards for drinking water. The recorded pH, total alkalinity and temperature ranges were 6.14-7.50, 48-240 mg/l and 28.8-32.8 °C, respectively. Furthermore, the mean concentrations of iron, calcium, magnesium, chloride, fluoride, aluminium, arsenic, ammonium, nitrate and nitrite were 0.06, 22.11, 29.84, 13.97, 0.00, 0.00, 0.00, 0.01, 2.09 and 0.26 mg/l, respectively. Turbidity, true colour, TDS and electrical conductivity of the water samples ranged from 0.13 to 105 NTU, 5 to 130 HU, 80.1 to 524 mg/l and 131 to 873 µS/cm, respectively. In addition, the mean total hardness value was found to be 178.07 mg/l whereas calcium hardness and magnesium hardness respectively were 55.28 and 122.79 mg/l. Only 14% of the water samples tested positive for faecal coliforms. The study revealed that only a few of the values for the bacteriological and physico-chemical parameters of

  11. Report on the Study of Radiation Damage in Calcium Fluoride and Magnesium Fluoride Crystals for use in Excimer Laser Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-10-04

    A study was performed to investigate the effects of radiation damage in calcium fluoride and magnesium fluoride crystals caused by gamma rays and UV photons from excimer lasers. The purpose was to study and correlate the damage caused by these two different mechanisms in various types of material used for fabricating optical elements in high power excimer lasers and lens systems of lithography tools. These optical systems are easily damaged by the laser itself, and it is necessary to use only the most radiation resistant materials for certain key elements. It was found that a clear correlation exists between the,more » radiation induced damage caused by high energy gamma rays and that produced by UV photons from the excimer laser. This correlation allows a simple procedure to be developed to select the most radiation resistant material at the ingot level, which would be later used to fabricate various components of the optical system. This avoids incurring the additional cost of fabricating actual optical elements with material that would later be damaged under prolonged use. The result of this screening procedure can result in a considerable savings in the overall cost of the lens and laser system.« less

  12. Antimicrobial properties and dentin bonding strength of magnesium phosphate cements.

    PubMed

    Mestres, G; Abdolhosseini, M; Bowles, W; Huang, S-H; Aparicio, C; Gorr, S-U; Ginebra, M-P

    2013-09-01

    The main objective of this work was to assess the antimicrobial properties and the dentin-bonding strength of novel magnesium phosphate cements (MPC). Three formulations of MPC, consisting of magnesium oxide and a phosphate salt, NH4H2PO4, NaH2PO4 or a mixture of both, were evaluated. As a result of the setting reaction, MPC transformed into either struvite (MgNH4PO4·6H2O) when NH4H2PO4 was used or an amorphous magnesium sodium phosphate when NaH2PO4 was used. The MPC had appropriate setting times for hard tissue applications, high early compressive strengths and higher strength of bonding to dentin than commercial mineral trioxide aggregate cement. Bacteriological studies were performed with fresh and aged cements against three bacterial strains, Escherichia coli, Pseudomonas aeruginosa (planktonic and in biofilm) and Aggregatibacter actinomycetemcomitans. These bacteria have been associated with infected implants, as well as other frequent hard tissue related infections. Extracts of different compositions of MPC had bactericidal or bacteriostatic properties against the three bacterial strains tested. This was associated mainly with a synergistic effect between the high osmolarity and alkaline pH of the MPC. These intrinsic antimicrobial properties make MPC preferential candidates for applications in dentistry, such as root fillers, pulp capping agents and cavity liners. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Calcium pyrophosphate dihydrate gout and other crystal deposition diseases.

    PubMed

    Reginato, A J

    1991-08-01

    The number of crystal or birefringent particles associated with arthritis is increasing, and a uniform taxonomy is needed. The term gout has been proposed as a generic term for these diseases based on historical, clinical, and crystallographic reasons. Calcium pyrophosphate dihydrate gout follows monosodium urate gout in frequency, and its spectrum of clinical manifestations continues to grow. Familial calcium pyrophosphate dihydrate gout was described for the first time in kindreds studied in England and Tunisia; new Jewish and Spanish kindreds were also reported. Type I collagen was shown to nucleate nativelike calcium pyrophosphate dihydrate crystals, and pyrophosphate elaboration was explored in cartilage explants in an attempt to reproduce the in vivo metabolic or endocrine disorders associated with calcium pyrophosphate dihydrate gout. The effect of pyrophosphatase and different cofactors such as magnesium in dissolving calcium pyrophosphate dihydrate crystals was investigated. High-resolution electron microscopy was used to study the interrelation between apatite and other basic calcium phosphate crystals in apatite gout. Raman microscopy was applied for the first time to identify crystals in biologic specimens. A simple and specific technique for basic calcium phosphate crystal identification is necessary to understand the relationship between different calcium phosphate crystals and osteoarthritis. Several reports about children and young patients with primary oxalate gout described the effect of oxalate on eyes, periodontal tissues, and bone. Multicenter studies showed poor results of renal transplantation, but favored combined liver and renal transplantation.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Magnesium modification up-regulates the bioactivity of bone morphogenetic protein-2 upon calcium phosphate cement via enhanced BMP receptor recognition and Smad signaling pathway.

    PubMed

    Ding, Sai; Zhang, Jing; Tian, Yu; Huang, Baolin; Yuan, Yuan; Liu, Changsheng

    2016-09-01

    Efficient presentation of growth factors is one of the great challenges in tissue engineering. In living systems, bioactive factors exist in soluble as well as in matrix-bound forms, both of which play an integral role in regulating cell behaviors. Herein, effect of magnesium on osteogenic bioactivity of recombinant human bone morphogenetic protein-2 (rhBMP-2) was investigated systematically with a series of Mg modified calcium phosphate cements (xMCPCs, x means the content of magnesium phosphate cement wt%) as matrix model. The results indicated that the MCPC, especially 5MCPC, could promote the rhBMP-2-induced in vitro osteogenic differentiation via Smad signaling of C2C12 cells. Further studies demonstrated that all MCPC substrates exhibited similar rhBMP-2 release rate and preserved comparable conformation and biological activity of the released rhBMP-2. Also, the ionic extracts of MCPC made little difference to the bioactivity of rhBMP-2, either in soluble or in matrix-bound forms. However, with the quartz crystal microbalance (QCM), we observed a noticeable enhancement of rhBMP-2 mass-uptake on 5MCPC as well as a better recognition of the bound rhBMP-2 to BMPR IA and BMPR II. In vivo results demonstrated a better bone regeneration capacity of 5MCPC/rhBMP-2. From the above, our results demonstrated that it was the Mg anchored on the underlying substrates that tailored the way of rhBMP-2 bound on MCPC, and thus facilitated the recognition of BMPRs to stimulate osteogenic differentiation. The study will guide the development of Mg-doped bioactive bone implants for tissue regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Texture evolution during thermomechanical processing in rare earth free magnesium alloys

    NASA Astrophysics Data System (ADS)

    Miller, Victoria Mayne

    The use of wrought magnesium alloys is highly desirable for a wide range of applications where low component weight is desirable due to the high specific strength and stiffness the alloys can achieve. However, the implementation of wrought magnesium has been hindered by the limited room temperature formability which typically results from deformation processing. This work identifies opportunities for texture modification during thermomechanical processing of conventional (rare earth free) magnesium alloys via a combination of experimental investigation and polycrystal plasticity simulations. During deformation, it is observed that a homogeneous distribution of coarse intermetallic particles efficiently weakens deformation texture at all strain levels, while a highly inhomogeneous particle distribution is only effective at high strains. The particle deformation effects are complemented by the addition of alkaline earth solute, which modifies the relative deformation mode activity. During recrystallization, grains with basal orientations recrystallize more readily than off-basal grains, despite similar levels of internal misorientation. Dislocation substructure investigations revealed that this is a result of enhanced nucleation in the basal grains due to the dominance of prismatic slip. This dissertation identifies avenues to enhance the potential formability of magnesium alloys during thermomechanical processing by minimizing the evolved texture strength. The following are the identified key aspects of microstructural control: -Maintaining a fine grain size, likely via Zener pinning, to favorably modify deformation mode activity and homogenize deformation. -Developing a coarse, homogeneously distributed population of coarse intermetallic particles to promote a diffuse deformation texture. -Minimizing the activity of prismatic slip to retard the recrystallization of grains with basal orientations, allowing the development of a more diffuse recrystallization texture.

  16. Demographic, dietary, and urinary factors and 24-h urinary calcium excretion.

    PubMed

    Taylor, Eric N; Curhan, Gary C

    2009-12-01

    Higher urinary calcium is a risk factor for nephrolithiasis. This study delineated associations between demographic, dietary, and urinary factors and 24-h urinary calcium. Cross-sectional studies were conducted of 2201 stone formers (SF) and 1167 nonstone formers (NSF) in the Health Professionals Follow-up Study (men) and Nurses' Health Studies I and II (older and younger women). Median urinary calcium was 182 mg/d in men, 182 mg/d in older women, and 192 mg/d in younger women. Compared with NSF, urinary calcium as a fraction of calcium intake was 33 to 38% higher in SF (P values < or =0.01). In regression analyses, participants were combined because associations with urinary calcium were similar in each cohort and in SF and NSF. After multivariate adjustment, participants in the highest quartile of calcium intake excreted 18 mg/d more urinary calcium than those in the lowest (P trend =0.01). Caffeine and family history of nephrolithiasis were positively associated, whereas urinary potassium, thiazides, gout, and age were inversely associated, with urinary calcium. After multivariate adjustment, participants in the highest quartiles of urinary magnesium, sodium, sulfate, citrate, phosphorus, and volume excreted 71 mg/d, 37 mg/d, 44 mg/d, 61 mg/d, 37 mg/d, and 24 mg/d more urinary calcium, respectively, than participants in the lowest (P values trend < or =0.01). Intestinal calcium absorption and/or negative calcium balance is greater in SF than NSF. Higher calcium intakes at levels typically observed in free-living individuals are associated with only small increases in urinary calcium.

  17. Effects of a single dose of menadione on the intestinal calcium absorption and associated variables.

    PubMed

    Marchionatti, Ana M; Díaz de Barboza, Gabriela E; Centeno, Viviana A; Alisio, Arturo E; Tolosa de Talamoni, Nori G

    2003-08-01

    The effect of a single large dose of menadione on intestinal calcium absorption and associated variables was investigated in chicks fed a normal diet. The data show that 2.5 micro mol of menadione/kg of b.w. causes inhibition of calcium transfer from lumen-to-blood within 30 min. This effect seems to be related to oxidative stress provoked by menadione as judged by glutathione depletion and an increment in the total carbonyl group content produced at the same time. Two enzymes presumably involved in calcium transcellular movement, such as alkaline phosphatase, located in the brush border membrane, and Ca(2+)- pump ATPase, which sits in the basolateral membrane, were also inhibited. The enzyme inhibition could be due to alterations caused by the appearance of free hydroxyl groups, which are triggered by glutathione depletion. Addition of glutathione monoester to the duodenal loop caused reversion of the menadione effect on both intestinal calcium absorption and alkaline phosphatase activity. In conclusion, menadione shifts the balance of oxidative and reductive processes in the enterocyte towards oxidation causing deleterious effects on intestinal Ca(2+) absorption and associated variables, which could be prevented by administration of oral glutathione monoester.

  18. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.

    PubMed

    Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R

    2014-07-05

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O 2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO 3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  19. Positron elastic scattering from alkaline earth targets

    NASA Astrophysics Data System (ADS)

    Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.

    2016-07-01

    A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y

  20. Magnesium replacement therapy.

    PubMed

    DiPalma, J R

    1990-07-01

    Magnesium is involved as a cofactor in many vital enzymatic reactions. It is also important in the maintenance of membrane electric potential. Diagnosis of magnesium disturbances must often be based on clinical judgment. Hypomagnesemia is frequently associated with hypokalemia and hypocalcemia; hypermagnesemia most often occurs in patients with acute or chronic renal failure. Hypomagnesemia presents as neuromuscular, central nervous system and cardiac abnormalities. Inadequate dietary intake of magnesium occurs in alcoholism, catabolic states and gastrointestinal diseases. Intravenous administration of magnesium can cause neuromuscular paralysis and cardiac arrhythmias.

  1. Calcium, essential for health

    PubMed

    Martínez de Victoria, Emilio

    2016-07-12

    Calcium (Ca) is the most abundant mineral element in our body. It accounts for about 2% of body weight. The functions of calcium are: a) functions skeletal and b) regulatory functions. Bone consists of a protein matrix that mineralizes mainly with calcium (the most abundant), phosphate and magnesium, for it is essential an adequate dietary intake of Ca, phosphorus and vitamin D. The ionic Ca (Ca2+) is essential to maintain and / or perform different specialized functions of, virtually, all body cells cellular. Because of its important functions Ca2+ must be closely regulated, keeping plasma concentrations within narrow ranges. For this reason there is an accurate response against hypocalcemia or hypercalcemia in which the parathormone, calcitriol, calcitonin and vitamin K are involved. Ca intakes in the Spanish population are low in a significant percentage of the older adult’s population, especially in women. The main source of Ca in the diet is milk and milk derivatives. Green leafy vegetables, fruits and legumes can be important sources of Ca in a Mediterranean dietary pattern. The bioavailability of dietary Ca depends on physiological and dietary factors. Physiological include age, physiological status (gestation and lactation) Ca and vitamin D status and disease. Several studies relate Ca intake in the diet and various diseases, such as osteoporosis, cancer, cardiovascular disease and obesity.

  2. Calcium carbonates: induced biomineralization with controlled macromorphology

    NASA Astrophysics Data System (ADS)

    Meier, Aileen; Kastner, Anne; Harries, Dennis; Wierzbicka-Wieczorek, Maria; Majzlan, Juraj; Büchel, Georg; Kothe, Erika

    2017-11-01

    Biomineralization of (magnesium) calcite and vaterite by bacterial isolates has been known for quite some time. However, the extracellular precipitation has hardly ever been linked to different morphologies of the minerals that are observed. Here, isolates from limestone-associated groundwater, rock and soil were shown to form calcite, magnesium calcite or vaterite. More than 92 % of isolates were indeed able to form carbonates, while abiotic controls failed to form minerals. The crystal morphologies varied, including rhombohedra, prisms and pyramid-like macromorphologies. Different conditions like varying temperature, pH or media components, but also cocultivation to test for collaborative effects of sympatric bacteria, were used to differentiate between mechanisms of calcium carbonate formation. Single crystallites were cemented with bacterial cells; these may have served as nucleation sites by providing a basic pH at short distance from the cells. A calculation of potential calcite formation of up to 2 g L-1 of solution made it possible to link the microbial activity to geological processes.

  3. Nondestructive spot test method for magnesium and magnesium alloys

    NASA Technical Reports Server (NTRS)

    Wilson, M. L. (Inventor)

    1973-01-01

    A method for spot test identification of magnesium and various magnesium alloys commonly used in aerospace applications is described. The spot test identification involves color codes obtained when several drops of 3 M hydrochloric acid are placed on the surface to be tested. After approximately thirty seconds, two drops of this reacted acid is transferred to each of two depressions in a spot plate for additions of other chemicals with subsequent color changes indicating magnesium or its alloy.

  4. Effect of Adding SiO2-Al2O3 Sol into Anodizing Bath on Corrosion Resistance of Oxidation Film on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Huicong; Zhu, Liqun; Li, Weiping

    Due to the widely use in automobile and construction field, AZ91D magnesium alloy need to be protected more effectively for its high chemical activity. In this paper, three kinds of films were formed on magnesium alloy. The first kind of film, named as anodic oxidation film, was prepared by anodic oxidation in the alkaline solution. The processes for preparing the second kind of film, named as multiple film, involved coating sol-gel on the samples and heat-treating before anodic oxidation. The third kind of film was prepared by anodic oxidation in the alkaline oxidation solution containning 5% (vol) SiO2-Al2O3 sol, named as modified oxidation film. The corrosion resistance of the three different films was investigated. The results showed that the modified oxidation film had the highest corrosion resistance due to the largest thickness and most dense surface morphology. Sol was discussed to react during the film forming process, which leaded to the difference between modified oxidation film and anodic oxidation film.

  5. [Fluorine removal efficiency of organic-calcium during coal combustion].

    PubMed

    Liu, Jing; Liu, Jian-Zhong; Zhou, Jun-Hu; Xiao, Hai-Ping; Cen, Ke-Fa

    2006-08-01

    Effectiveness of calcium magnesium acetate (CMA) and calcium acetate(CA) as feasible HF capture were studied by means of fixed bed tube furnaces. The effects of temperature, particle diameter and Ca/S molar ratio on the fluorine removal efficiency were studied. By contract with CaCO3 at the same condition, we find that the HF capture effectiveness of those sorbents is superior to CaCO3, especially at high temperature. At 1 000 - 1 100 degrees C, the efficiency of fluorine removal during coal combustion of CMA is 1.68 - 1.74 times as that of CaCO3; the efficiency of fluorine removal during coal combustion of CA is 1.28 - 1.37 times as that of CaCO3.

  6. Magnesium Hydroxide

    MedlinePlus

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  7. Research Progress in Plasma arc welding of Magnesium Alloys and Magnesium Matrix Composites

    NASA Astrophysics Data System (ADS)

    Hui, Li; Yang, Zou; Yongbo, Li; Lei, Jiao; Ruijun, Hou

    2017-11-01

    Magnesium alloys and magnesium matrix composites by means of its excellent performance have wide application prospect in electronics, automotive, biotechnology, aerospace field, and welding technology has become a key of restricting its application. This paper describes the welding characteristics of magnesium, the obvious advantages in the application and the domestic and foreign research advance technology of plasma arc welding of magnesium, and summarizes the existing problems and development trends of plasma arc welding technology of magnesium.

  8. Using Demonstrations Involving Combustion and Acid-Base Chemistry to Show Hydration of Carbon Dioxide, Sulfur Dioxide, and Magnesium Oxide and Their Relevance for Environmental Climate Science

    ERIC Educational Resources Information Center

    Shaw, C. Frank, III; Webb, James W.; Rothenberger, Otis

    2016-01-01

    The nature of acidic and basic (alkaline) oxides can be easily illustrated via a series of three straightforward classroom demonstrations for high school and general chemistry courses. Properties of carbon dioxide, sulfur dioxide, and magnesium oxide are revealed inexpensively and safely. Additionally, the very different kinetics of hydration of…

  9. [Content of fluoride and magnesium in permanent teeth of children and adolescents with constitutional delay of growth and development].

    PubMed

    Bandura, Marzena; Opalko, Krystyna

    2005-01-01

    The objective of this study was to determine the content of fluorides and magnesium in permanent teeth of children and adolescents with constitutional delay of growth and development (CDGD) and to correlate the findings with susceptibility to caries. Our study group consisting of 20 patients with CDGD, aged 11 to 20 years, was compared with an age-matched control group of 20 normal subjects. Dentition status was assessed according to the average DMFs score. Acid biopsy of enamel on the labial surface of incisors was done to measure the content of calcium, magnesium, and fluorides. CDGD patients demonstrated a higher average DFs value and less permanent teeth than their normal counterparts. Microanalyses of enamel showed that the depth of the acid biopsy was similar in all subjects. The content of fluorides and magnesium in enamel was lower in patients with CDGD.

  10. Corrosion resistant thermal barrier coating. [protecting gas turbines and other engine parts

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Miller, R. A.; Hodge, P. E. (Inventor)

    1981-01-01

    A thermal barrier coating system for protecting metal surfaces at high temperature in normally corrosive environments is described. The thermal barrier coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system further includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate. The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or combinations of these silicates.

  11. Releasing-addition method for the flame-photometric determination of calcium in thermal waters

    USGS Publications Warehouse

    Rowe, J.J.

    1963-01-01

    Study of the interferences of silica and sulfate in the flame-photometric determination of calcium in thermal waters has led to the development of a method requiring no prior chemical separations. The interference effects of silica, sulfate, potassium, sodium, aluminum, and phosphate are overcome by an addition technique coupled with the use of magnesium as a releasing agent. ?? 1963.

  12. Magnesium Metabolism and its Disorders

    PubMed Central

    Swaminathan, R

    2003-01-01

    Magnesium is the fourth most abundant cation in the body and plays an important physiological role in many of its functions. Magnesium balance is maintained by renal regulation of magnesium reabsorption. The exact mechanism of the renal regulation is not fully understood. Magnesium deficiency is a common problem in hospital patients, with a prevalence of about 10%. There are no readily available and easy methods to assess magnesium status. Serum magnesium and the magnesium tolerance test are the most widely used. Measurement of ionised magnesium may become more widely available with the availability of ion selective electrodes. Magnesium deficiency and hypomagnesaemia can result from a variety of causes including gastrointestinal and renal losses. Magnesium deficiency can cause a wide variety of features including hypocalcaemia, hypokalaemia and cardiac and neurological manifestations. Chronic low magnesium state has been associated with a number of chronic diseases including diabetes, hypertension, coronary heart disease, and osteoporosis. The use of magnesium as a therapeutic agent in asthma, myocardial infarction, and pre-eclampsia is also discussed. Hypermagnesaemia is less frequent than hypomagnesaemia and results from failure of excretion or increased intake. Hypermagnesaemia can lead to hypotension and other cardiovascular effects as well as neuromuscular manifestations. Causes and management of hypermagnesaemia are discussed. PMID:18568054

  13. Substantially Stabilized Superacid Incorporated SBA-15 with Calcium Bridging for Selective Esterification of Glycerol

    NASA Astrophysics Data System (ADS)

    Hoo, P. Y.; Abdullah, A. Z.; Shuit, S. H.; Teoh, Y. P.; Ng, Q. H.; Kunasundari, B.

    2018-03-01

    The exploitation of the super acidity of heteropolyacids incorporated heterogeneous catalysts was only feasible if the heterogeneity of these catalysts was assured. To maintain the catalyst heterogeneity in polar medium, a novel two-step modification method was proposed to synthesize the highly active, yet stable heterogeneous catalyst, catered for selective esterification of monoglyceride. The surficial, structural and acidity properties of the modified catalysts were investigated via crucial characterization methods (N2 BET, HRTEM, and FTIR). The collective evidences verified the predicted formation of calcium oxides (CaO) on the mesopores surfaces of the SBA-15 support after the first modification, and the successful subsequent 12-tungstophosphoric acid (HPW) functionalization. The superior stability of the synthesized catalysts (10wt%-HPW/CaSBA-15) was demonstrated (negligible change in both conversion – 75% and yield – 70%), without the need for catalyst regeneration. Such result was attributed to the strong interaction between HPW and SBA-15 via calcium bridging. Being alkaline in nature, calcium oxides in the inner pores readily reacted with highly acidic HPW introduced in the subsequent wetness incipient step, forming insoluble HPW acid sites on inner pore walls of SBA-15 via the calcium bridging. This modification deemed promising and other alkaline metals should be explored in the future.

  14. Method for production of magnesium

    DOEpatents

    Diaz, Alexander F.; Howard, Jack B.; Modestino, Anthony J.; Peters, William A.

    1998-01-01

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400.degree. C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products.

  15. Method for production of magnesium

    DOEpatents

    Diaz, A.F.; Howard, J.B.; Modestino, A.J.; Peters, W.A.

    1998-07-21

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400 C or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products. 12 figs.

  16. Summary of "Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium"

    NASA Astrophysics Data System (ADS)

    Cole, Gerald S.

    This paper summarizes the monograph, "Magnesium Vision 2020. A North American Automotive Strategic Vision for Magnesium"1 prepared under the auspices of the United States Automotive Materials Partnership The objective was to understand the infrastructural and technical challenge that can increase the use of magnesium in the automotive industry. One hundred sixty three (163) Research and Technology Development Themes (RTDTs), or RTD projects were developed that addressed issues of corrosion, fastening, and processing-other-than-high pressure die casting to produce automotive magnesium parts. A major problem identified in the study is the limited ability of the current magnesium industrial infrastructure to supply RTD and implementation-ready automotive magnesium components. One solution is to create a magnesium cyber center wrhere globally networked experts would be able to innovate in process and product development, model metalworking and non-HPDC foundry processes, and integrate theoretical predictions/models of metallurgical structure with component function.

  17. Clastic dikes of the Hatrurim basin (western flank of the Dead Sea) as natural analogues of alkaline concretes: Mineralogy, solution chemistry, and durability

    NASA Astrophysics Data System (ADS)

    Sokol, E. V.; Gaskova, O. L.; Kozmenko, O. A.; Kokh, S. N.; Vapnik, E. A.; Novikova, S. A.; Nigmatulina, E. N.

    2014-11-01

    This study shows that the mineral assemblages from clastic dikes in areas adjacent to the Dead Sea graben may be considered as natural analogues of alkaline concretes. The main infilling material of the clastic dikes is composed of well-sorted and well-rounded quartz sand. The cement of these hard rocks contains hydroxylapophyllite, tacharanite, calcium silicate hydrates, opal, calcite, and zeolite-like phases, which is indicative of a similarity of the natural cementation processes and industrial alkaline concrete production from quartz sands and industrial alkaline cements. The quartz grains exhibit a variety of reaction textures reflecting the interaction with alkaline solutions (opal and calcium hydrosilicate overgrowths; full replacement with apophyllite or thomsonite + apophyllite). The physicochemical analysis and reconstruction of the chemical composition of peralkaline Ca, Na, and K solutions that formed these assemblages reveal that the solutions evolved toward a more stable composition of zeolite-like phases, which are more resistant to long-term chemical weathering and atmospheric corrosion. The 40Ar/39Ar age of 6.2 ± 0.7 Ma obtained for apophyllite provides conclusive evidence for the high corrosion resistance of the assemblages consisting of apophyllite and zeolite-like phases.

  18. Magnesium Sulfate as a Key Mineral for the Detection of Organic Molecules on Mars Using Pyrolysis

    NASA Technical Reports Server (NTRS)

    Francois, P.; Szopa, C.; Buch, A.; Coll, P.; McAdam, A. C.; Mahaffy, P. R.; Freissinet, C.; Glavin, D. P.; Navarro-Gonzalez, R.; Cabane, M.

    2016-01-01

    Pyrolysis of soil or rock samples is the preferred preparation technique used on Mars to search for organic molecules up today. During pyrolysis, oxichlorines present in the soil of Mars release oxidant species that alter the organic molecules potentially contained in the samples collected by the space probes.This process can explain the difficulty experienced by in situ exploration probes to detect organic materials in Mars soil samples until recently. Within a few months, the Curiosity rover should reach and analyze for the first time soils rich in sulfates which could induce a different behavior of the organics during the pyrolysis compared with the types of soils analyzed up today. For this reason, we systematically studied the pyrolysis of organic molecules trapped in magnesium sulfate, in the presence or absence of calcium perchlorate. Our results show that organics trapped in magnesium sulfate can undergo some oxidation and sulfuration during the pyrolysis. But these sulfates are also shown to protect organics trapped inside the crystal lattice and/or present in fluid inclusions from the oxidation induced by the decomposition of calcium perchlorate and probably other oxychlorine phases currently detected on Mars. Trapped organics may also be protected from degradation processes induced by other minerals present in the sample, at least until these organics are released from the pyrolyzed sulfate mineral (700C in our experiment). Hence, we suggest magnesium sulfate as one of the minerals to target in priority for the search of organic molecules by the Curiosity and ExoMars 2018 rovers.

  19. Pre-operative serum alkaline phosphatase as a predictive indicator of post-operative hypocalcaemia in patients undergoing total thyroidectomy.

    PubMed

    Miah, M S; Mahendran, S; Mak, C; Leese, G; Smith, D

    2015-11-01

    This study aimed to evaluate whether a pre-operative elevated serum alkaline phosphatase level is a potential predictor of post-operative hypocalcaemia after total thyroidectomy. Data was retrospectively collected from the case notes of patients who had undergone total thyroidectomy. Patients were divided into Graves' disease and non-Graves' groups. Pre-operative and post-operative biochemical markers, including serum calcium, alkaline phosphatase and parathyroid hormone levels, were reviewed. A total of 225 patients met the inclusion criteria. Graves' disease was the most common indication (n = 134; 59.5 per cent) for thyroidectomy. Post-operative hypocalcaemia developed in 48 patients (21.3 per cent) and raised pre-operative serum alkaline phosphatase was noted in 94 patients (41.8 per cent). Raised pre-operative serum alkaline phosphatase was significantly associated with post-operative hypocalcaemia, particularly in Graves' disease patients (p < 0.05). Pre-operative serum alkaline phosphatase measurements help to predict post-thyroidectomy hypocalcaemia, especially in patients who do not develop hypoparathyroidism. Ascertaining the pre-operative serum alkaline phosphatase level in patients undergoing total thyroidectomy may help surgeons to identify at-risk patients.

  20. Demographic, Dietary, and Urinary Factors and 24-h Urinary Calcium Excretion

    PubMed Central

    Curhan, Gary C.

    2009-01-01

    Background and objectives: Higher urinary calcium is a risk factor for nephrolithiasis. This study delineated associations between demographic, dietary, and urinary factors and 24-h urinary calcium. Design, setting, participants, & measurements: Cross-sectional studies were conducted of 2201 stone formers (SF) and 1167 nonstone formers (NSF) in the Health Professionals Follow-up Study (men) and Nurses' Health Studies I and II (older and younger women). Results: Median urinary calcium was 182 mg/d in men, 182 mg/d in older women, and 192 mg/d in younger women. Compared with NSF, urinary calcium as a fraction of calcium intake was 33 to 38% higher in SF (P values ≤0.01). In regression analyses, participants were combined because associations with urinary calcium were similar in each cohort and in SF and NSF. After multivariate adjustment, participants in the highest quartile of calcium intake excreted 18 mg/d more urinary calcium than those in the lowest (P trend =0.01). Caffeine and family history of nephrolithiasis were positively associated, whereas urinary potassium, thiazides, gout, and age were inversely associated, with urinary calcium. After multivariate adjustment, participants in the highest quartiles of urinary magnesium, sodium, sulfate, citrate, phosphorus, and volume excreted 71 mg/d, 37 mg/d, 44 mg/d, 61 mg/d, 37 mg/d, and 24 mg/d more urinary calcium, respectively, than participants in the lowest (P values trend ≤0.01). Conclusions: Intestinal calcium absorption and/or negative calcium balance is greater in SF than NSF. Higher calcium intakes at levels typically observed in free-living individuals are associated with only small increases in urinary calcium. PMID:19820135

  1. Scanning electron microscopic and X-ray micro analysis on tooth enamel exposed to alkaline agents.

    PubMed

    Taubee, Fabian; Steiniger, Frank; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    The background of this study comprises two clinical cases, where patients exposed to aerosols of an alkaline and surface active cleaning agent developed loss of enamel substance on their teeth, further resulting in loss of teeth and partially destroyed soft tissues. The alkaline cleaning agent consisted of potassium hydroxide and various surfactants. The purpose of this study was to investigate possible changes in morphology and composition in human teeth enamel exposed to alkaline solutions, by means of X-ray micro analysis (XRMA), FTIR-spectroscopic analyses and scanning electron microscopy (SEM). Extracted premolars, exposed to potassium hydroxide solutions and alkaline cleaning solution,were analyzed by means of XRMA and SEM. Enamel powder, exposed to cleaning solution, was analyzed by means of FTIR. The SEM analysis revealed an increased porosity of the enamel surface and partially loss of enamel substance after exposure to alkaline solutions. The XRMA analyses revealed a decrease in carbon concentration while phosphorous and calcium showed no marked changes. The FTIR analyses showed no significant changes in peak heights or peak positions for phosphate, carbonate or hydroxide. It was concluded that human teeth enamel exposed to alkaline solutions showed loss of organic substance, marked pores in enamel surface and loss of substance in the enamel surface.

  2. Preparation and biological efficacy of haddock bone calcium tablets

    NASA Astrophysics Data System (ADS)

    Huo, Jiancong; Deng, Shanggui; Xie, Chao; Tong, Guozhong

    2010-03-01

    To investigate the possible use of waste products obtained after processing haddock, the present study prepared haddock bone calcium powder by NaOH and ethanol soaking (alkalinealcohol method) and prepared haddock bone calcium tablets using the powder in combination with appropriate excipients. The biological efficacy of the haddock bone calcium tablets was investigated using Wistar rats as an experiment model. Results show that the optimal parameters for the alkalinealcohol method are: NaOH concentration 1 mol/L, immersion time 30 h; ethanol concentration 60%, immersion time 15 h. A mixture of 2% polyvinylpyrrolidone in ethanol was used as an excipient at a ratio of 1:2 to full-cream milk powder, without the use of a disintegrating agent. This process provided satisfactory tablets in terms of rigidity and taste. Animal studies showed that the haddock bone calcium tablets at a dose of 2 g·kg-1·d-1 or 5g·kg-1·d-1 significantly increased blood calcium and phosphorus levels and bone calcium content in rats. Therefore, these tablets could be used for calcium supplementation and prevent osteoporosis. Although the reasons of high absorption in the rats fed with haddock bone calcium tablets are unclear, it is suggested that there are some factors, such as treatment with method of alkaline-alcohol or the added milk, may play positive roles in increasing absorption ratio.

  3. Determination of micro amounts of iron, aluminum, and alkaline earth metals in silicon carbide

    NASA Technical Reports Server (NTRS)

    Hirata, H.; Arai, M.

    1978-01-01

    A colorimetric method for analysis of micro components in silicon carbide used as the raw material for varistors is described. The microcomponents analyzed included iron soluble in hydrochloric acid, iron, aluminum, calcium and magnesium. Samples were analyzed by the method, and the results for iron and aluminum agreed well with the N.B.S. standard values and the values obtained by the other company. The method can therefore be applied to the analysis of actual samples.

  4. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    PubMed

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.

  5. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  6. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  7. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  8. Corrosion Behavior of PEO Coatings Formed on AZ31 Alloy in Phosphate-Based Electrolytes with Calcium Acetate Additive

    NASA Astrophysics Data System (ADS)

    Ziyaei, E.; Atapour, M.; Edris, H.; Hakimizad, A.

    2017-07-01

    The PEO coating started on magnesium AZ31 using a unipolar DC power source. The coating was generated in the electrolyte based on Na3PO4·12H2O and KOH with calcium acetate as additive. The x-ray diffraction method showed some phases containing calcium and phosphate, which was created in the presence of additive. Also, the EDS tests of the sample's surfaces proved the existence of calcium on the surface. Based on the electrochemical tests results, the most corrosion resistance belongs to the sample with calcium acetate additive. In fact, the results of the EIS tests showed the coating with calcium acetate has the highest resistance but the lowest capacitance. However, this state belongs to the surface morphology, the lower porosity, and surface chemical composition.

  9. Serum alkaline phosphatase negatively affects endothelium-dependent vasodilation in naïve hypertensive patients.

    PubMed

    Perticone, Francesco; Perticone, Maria; Maio, Raffaele; Sciacqua, Angela; Andreucci, Michele; Tripepi, Giovanni; Corrao, Salvatore; Mallamaci, Francesca; Sesti, Giorgio; Zoccali, Carmine

    2015-10-01

    Tissue nonspecific alkaline phosphatase, promoting arterial calcification in experimental models, is a powerful predictor of total and cardiovascular mortality in general population and in patients with renal or cardiovascular diseases. For this study, to evaluate a possible correlation between serum alkaline phosphatase levels and endothelial function, assessed by strain gauge plethysmography, we enrolled 500 naïve hypertensives divided into increasing tertiles of alkaline phosphatase. The maximal response to acetylcholine was inversely related to alkaline phosphatase (r=−0.55; P<0.001), and this association was independent (r=−0.61; P<0.001) of demographic and classical risk factors, body mass index, estimated glomerular filtration rate, serum phosphorus and calcium, C-reactive protein, and albuminuria. At multiple logistic regression analysis, the risk of endothelial dysfunction was ≈3-fold higher in patients in the third tertile than that of patients in the first tertile. We also tested the combined role of alkaline phosphatase and serum phosphorus on endothelial function. The steepness of the alkaline phosphatase/vasodilating response to acetylcholine relationship was substantially attenuated (P<0.001) in patients with serum phosphorus above the median value when compared with patients with serum phosphorus below the median (−5.0% versus −10.2% per alkaline phosphatase unit, respectively), and this interaction remained highly significant (P<0.001) after adjustment of all the previously mentioned risk factors. Our data support a strong and significant inverse relationship between alkaline phosphatase and endothelium-dependent vasodilation, which was attenuated by relatively higher serum phosphorus levels.

  10. Magnesium intake is inversely associated with coronary artery calcification: the Framingham Heart Study.

    PubMed

    Hruby, Adela; O'Donnell, Christopher J; Jacques, Paul F; Meigs, James B; Hoffmann, Udo; McKeown, Nicola M

    2014-01-01

    The aim of this study was to examine whether magnesium intake is associated with coronary artery calcification (CAC) and abdominal aortic calcification (AAC). Animal and cell studies suggest that magnesium may prevent calcification within atherosclerotic plaques underlying cardiovascular disease. Little is known about the association of magnesium intake and atherosclerotic calcification in humans. We examined cross-sectional associations of self-reported total (dietary and supplemental) magnesium intake estimated by food frequency questionnaire with CAC and AAC in participants of the Framingham Heart Study who were free of cardiovascular disease and underwent Multi-Detector Computed Tomography (MDCT) of the heart and abdomen (n = 2,695; age: 53 ± 11 years), using multivariate-adjusted Tobit regression. CAC and AAC were quantified using modified Agatston scores (AS). Models were adjusted for age, sex, body mass index, smoking status, systolic blood pressure, fasting insulin, total-to-high-density lipoprotein cholesterol ratio, use of hormone replacement therapy (women only), menopausal status (women only), treatment for hyperlipidemia, hypertension, cardiovascular disease prevention, or diabetes, as well as self-reported intake of calcium, vitamins D and K, saturated fat, fiber, alcohol, and energy. Secondary analyses included logistic regressions of CAC and AAC outcomes as cut-points (AS >0 and AS ≥90th percentile for age and sex), as well as sex-stratified analyses. In fully adjusted models, a 50-mg/day increment in self-reported total magnesium intake was associated with 22% lower CAC (p < 0.001) and 12% lower AAC (p = 0.07). Consistent with these observations, the odds of having any CAC were 58% lower (p trend: <0.001) and any AAC were 34% lower (p trend: 0.01), in those with the highest compared to those with the lowest magnesium intake. Stronger inverse associations were observed in women than in men. In community-dwelling participants free of

  11. Reformation of casein particles from alkaline-disrupted casein micelles.

    PubMed

    Huppertz, Thom; Vaia, Betsy; Smiddy, Mary A

    2008-02-01

    In this study, the properties of casein particles reformed from alkaline disrupted casein micelles were studied. For this purpose, micelles were disrupted completely by increasing milk pH to 10.0, and subsequently reformed by decreasing milk pH to 6.6. Reformed casein particles were smaller than native micelles and had a slightly lower zeta-potential. Levels of ionic and serum calcium, as well as rennet coagulation time did not differ between milk containing native micelles or reformed casein particles. Ethanol stability and heat stability, >pH 7.0, were lower for reformed casein particles than native micelles. Differences in heat stability, ethanol stability and zeta-potential can be explained in terms of the influence of increased concentrations of sodium and chloride ions in milk containing reformed casein particles. Hence, these results indicate that, if performed in a controlled manner, casein particles with properties closely similar to those of native micelles can be reformed from alkaline disrupted casein micelles.

  12. Magnesium for Crashworthy Components

    NASA Astrophysics Data System (ADS)

    Abbott, T.; Easton, M.; Schmidt, R.

    Most applications of magnesium in automobiles are for nonstructural components. However, the light weight properties of magnesium make it attractive in structural applications where energy absorption in a crash is critical. Because most deformation in a crash occurs as bending rather than simple tension or compression, the advantages of magnesium are greater than anticipated simply from tensile strength to weight ratios. The increased thickness possible with magnesium strongly influences bending behavior and theoretical calculations suggest almost an order of magnitude greater energy absorption with magnesium compared to the same weight of steel. The strain rate sensitivity of steel is of concern for energy absorption. Mild steels exhibit a distinct yield point which increases with strain rate. At strain rates typical of vehicle impact, this can result in strain localization and poor energy absorption. Magnesium alloys with relatively low aluminum contents exhibit strain rate sensitivity, however, this is manifest as an increase in work hardening and tensile / yield ratio. This behavior suggests that the performance of magnesium alloys in terms of energy absorption actually improves at high strain rates.

  13. Magnesium sulfate reduces formalin-induced orofacial pain in rats with normal magnesium serum levels.

    PubMed

    Srebro, Dragana P; Vučković, Sonja M; Dožić, Ivan S; Dožić, Branko S; Savić Vujović, Katarina R; Milovanović, Aleksandar P; Karadžić, Branislav V; Prostran, Milica Š

    2018-02-01

    In humans, orofacial pain has a high prevalence and is often difficult to treat. Magnesium is an essential element in biological a system which controls the activity of many ion channels, neurotransmitters and enzymes. Magnesium produces an antinociceptive effect in neuropathic pain, while in inflammatory pain results are not consistent. We examined the effects of magnesium sulfate using the rat orofacial formalin test, a model of trigeminal pain. Male Wistar rats were injected with 1.5% formalin into the perinasal area, and the total time spent in pain-related behavior (face rubbing) was quantified. We also spectrophotometrically determined the concentration of magnesium and creatine kinase activity in blood serum. Magnesium sulfate administered subcutaneously (0.005-45mg/kg) produced significant antinociception in the second phase of the orofacial formalin test in rats at physiological serum concentration of magnesium. The effect was not dose-dependent. The maximum antinociceptive effect of magnesium sulfate was about 50% and was achieved at doses of 15 and 45mg/kg. Magnesium did not affect increase the levels of serum creatine kinase activity. Preemptive systemic administration of magnesium sulfate as the only drug can be used to prevent inflammatory pain in the orofacial region. Its analgesic effect is not associated with magnesium deficiency. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  14. Nasal irrigation: From empiricism to evidence-based medicine. A review.

    PubMed

    Bastier, P-L; Lechot, A; Bordenave, L; Durand, M; de Gabory, L

    2015-11-01

    Nasal irrigation plays a non-negligible role in the treatment of numerous sinonasal pathologies and postoperative care. There is, however, a wide variety of protocols. The present review of the evidence-based literature sought objective arguments for optimization and efficacy. It emerged that large-volume low-pressure nasal douche optimizes the distribution and cleansing power of the irrigation solution in the nasal cavity. Ionic composition and pH also influence mucociliary clearance and epithelium trophicity. Seawater is less rich in sodium ions and richer in bicarbonates, potassium, calcium and magnesium than is isotonic normal saline, while alkaline pH and elevated calcium concentration optimized ciliary motility in vitro. Bicarbonates reduce secretion viscosity. Potassium and magnesium promote healing and limit local inflammation. These results show that the efficacy of nasal irrigation is multifactorial. Large-volume low-pressure nasal irrigation using undiluted seawater seems, in the present state of knowledge, to be the most effective protocol. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Effects of nonlethal sea lamprey attack on the blood chemistry of lake trout

    USGS Publications Warehouse

    Edsall, Carol Cotant; Swink, William D.

    2001-01-01

    A laboratory study examined changes in the blood chemistry of field-caught and hatchery-reared lake trout Salvelinus namaycush subjected to a nonlethal attack by sea lampreys Petromyzon marinus. We measured glucose, total protein, amylase, alkaline phosphatase (ALKP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase, calcium, magnesium, triglycerides, sodium, and potassium with a Kodak Ektachem DT60 Analyzer, Ektachem DTSC Module, and the DTE Module. Mean levels of total protein, AST, ALKP, hematocrit, calcium, magnesium, and sodium decreased significantly (Pa?? 0.05), and mean levels of ALT and potassium increased significantly (Pa?? 0.05) after sea lamprey feeding. Lake trout condition (K) and hematocrit levels also decreased significantly (Pa?? 0.05) after the sea lamprey attack. Frequency distributions of eight lake trout blood chemistry variables and the hematocrit were significantly different before and after a sea lamprey attack. A second study that used hatchery lake trout broodstock measured changes in hematocrit before and after a sea lamprey attack.

  16. PROCESS FOR PRODUCTION OF URANIUM

    DOEpatents

    Crawford, J.W.C.

    1959-09-29

    A process is described for the production of uranium by the autothermic reduction of an anhydrous uranium halide with an alkaline earth metal, preferably magnesium One feature is the initial reduction step which is brought about by locally bringing to reaction temperature a portion of a mixture of the reactants in an open reaction vessel having in contact with the mixture a lining of substantial thickness composed of calcium fluoride. The lining is prepared by coating the interior surface with a plastic mixture of calcium fluoride and water and subsequently heating the coating in situ until at last the exposed surface is substantially anhydrous.

  17. Effects of calcium, magnesium, and sodium on alleviating cadmium toxicity to Hyalella azteca

    USGS Publications Warehouse

    Jackson, B.P.; Lasier, P.J.; Miller, W.P.; Winger, P.V.

    2000-01-01

    Toxicity of trace metal ions to aquatic organisms, arising through either anthropogenic inputs or acidification of surface waters, continues to be both a regulatory and environmental problem. It is generally accepted that the free metal ion is the major toxic species (Florence et a1.,1992) and that inorganic or organic complexation renders the metal ion non-bioavailable (Meador, 1991, Galvez and Wood, 1997). However, water chemistry parameters such as alkalinity, hardness, dissolved organic carbon and pH influence metal ion toxicity either directly by lowering free metal ion concentration or indirectly through synergistic or antagonistic effects. Alkalinity and salinity can affect the speciation of metal ions by increasing ion-pair formation, thus decreasing free metal ion concentration. For example, Cu was found to be less toxic to rainbow trout in waters of high alkalinity (Miller and Mackay, 1980), due to formation of CuCO3 ion pair, and corresponding reduction in free Cu2+ concentration. The influence of salinity on the toxicity of cadmium to various organisms has been demonstrated in a number of studies (Bervoets et al., 1995, Hall et al., 1995, Lin and Dunson, 1993, Blust et al., 1992). In all these studies the apparent toxicity of cadmium was lowered as salinity was increased due to increased formation of CdC1+ and CDCl2 aqueous complexes that are non-toxic or of much lower toxicity than the free Cd2+ ion. Changes in pH exert both a biological and chemical effect on metal ion toxicity (Campbell and Stokes, 1985). Low pH favors greater metal ion solubility, and, in the absence of complexing ions, reduced speciation of the metal ion, which tends to increase toxicity compared to higher pH. However, Iow pH also enhances competition between H+ and metal ion for cell surface binding sites, which tends to decrease metal ion toxicity.

  18. Calcium - Magnesium imbalance implicated in benign prostatic hyperplasia and restoration by a phytotherapeutic drug - Croton membranaceus Müll.Arg.

    PubMed

    Asare, George Awuku; Ngala, Robert A; Afriyie, Daniel; Adjei, Samuel; Nyarko, Adriana; Anang-Quartey, Yvonne; Asiedu, Bernice; Doku, Derek; Amoah, Brodrick Y; Bentum, Kennedy; Musah, Iddi; Mossanda, Kensese

    2017-03-11

    Calcium (Ca)- magnesium (Mg) imbalance is implicated in prostate cancer. Ca/Mg ratio increases or decreases with proliferation or apoptosis, respectively. The study examined whether this Ca/Mg imbalance exists in BPH patients and the effect of a phytotherapeutic drug on the Ca/Mg ratio. Thirty (30) BPH patients who used the ethanolic root extract of Croton membranaceus (60 mg/day) for 3 months were examined for serum Ca, Mg, phosphate, parathyroid hormone (PTH), vitamin D, prostate specific antigen (PSA) levels and renal function tests (RFT) before (BT) and after treatment (AT) alongside thirty (30) controls. Twenty (20) trace element including Mg and Ca were determined in the drug by neutron activation analysis (NAA). RFT, PTH and vitamin D for BT, AT and controls (C) were normal. Mean PSA was 1.0 ± 0.64 (C), 27.9 ± 19.0 (BT) and 16.2 ± 11.8 ng/mL (AT) (p = 0.002). Mg, Ca/Mg ratio BT, AT and control were significantly different (p = 0.0001, respectively). After treatment, Mg and Ca/Mg ratio were not different from controls. The prevalence of Ca/Mg imbalance was 80% (BT), 13.3% (AT) and 3.3% (control group). Ca/Mg ratio imbalance is associated with BPH. This has previously not been demonstrated. The imbalance was significantly corrected after treatment with the phytotherapeutic drug.

  19. Air Plasma-Sprayed Yttria and Yttria-Stabilized Zirconia Thermal Barrier Coatings Subjected to Calcium-Magnesium-Alumino-Silicate (CMAS)

    NASA Astrophysics Data System (ADS)

    Li, Wenshuai; Zhao, Huayu; Zhong, Xinghua; Wang, Liang; Tao, Shunyan

    2014-08-01

    Yttria (Y2O3) and zirconia (ZrO2) stabilized by 8 and 20 wt.%Y2O3 thermal barrier coatings (TBCs) subjected to calcium-magnesium-alumino-silicate (CMAS) have been investigated. Free-standing Y2O3, 8 and 20 wt.%YSZ coatings covered with synthetic CMAS slurry were heated at 1300 °C in air for 24 h in order to assess the effect of Y2O3 on the corrosion resistance of the coatings subjected to CMAS. The microstructures and phase compositions of the coatings were characterized by SEM, EDS, XRD, RS, and TEM. TBCs with higher Y2O3 content exhibited better CMAS corrosion resistance. Phase transformation of ZrO2 from tetragonal (t) to monoclinic (m) occurred during the interaction of 8YSZ TBCs and CMAS, due to the depletion of Y2O3 in the coating. Some amounts of original c-ZrO2 still survived in 20YSZ TBCs along with a small amount of m-ZrO2 that appeared after reaction with CMAS. Furthermore, Y2O3 coating was found to be particularly highly effective in resisting the penetration of molten CMAS glass at high temperature (1300 °C). This may be ascribed to the formation of sealing layers composed of Y-apatite phase [based on Ca4Y6 (SiO4)6O and Y4.67(SiO4)3O] by the high-temperature chemical interactions of Y2O3 coating and CMAS glass.

  20. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O...