Science.gov

Sample records for alkane degrading geobacillus

  1. Alkane inducible proteins in Geobacillus thermoleovorans B23

    PubMed Central

    2009-01-01

    Background Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution. Results An extremely thermophilic and alkane degrading Geobacillus thermoleovorans B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21) and superoxide dismutase (P24) whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane. Conclusion We first suggested that peroxisomal β-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes. PMID:19320977

  2. Characteristics of Newly Isolated Geobacillus sp. ZY-10 Degrading Hydrocarbons in Crude Oil.

    PubMed

    Sun, Yumei; Ning, Zhanguo; Yang, Fan; Li, Xianzhen

    2015-01-01

    An obligately thermophilic strain ZY-10 was isolated from the crude oil in a high-temperature oilfield, which was capable of degrading heavy crude oil. Phenotypic and phylogenetic analysis demonstrated that the isolate should be grouped in the genus Geobacillus, which shared thd highest similarity (99%) of the 16S rDNA sequence to Geobacillus stearothermophilus. However, the major cellular fatty acid iso-15:0 (28.55%), iso-16:0 (24.93%), iso-17:0 (23.53%) and the characteristics including indole production, tolerance to NaN3 and carbohydrate fermentation showed some difference from the recognized species in the genus Geobacillus. The isolate could use tridecane, hexadecane, octacosane and hexatridecane as sole carbon source for cell growth, and the digesting rate of long-chain alkane was lower than that of short-chain alkane. When the isolate was cultured in the heavy crude oil supplement with inorganic salts and trace yeast extract, the concentration of short-chain alkane was significantly increased and the content of long-chain alkane was decreased, suggesting that the larger hydrocarbon components in crude oil were degraded into shorter-chain alkane. Strain ZY-10 would be useful for improving the mobility of crude oil and upgrading heavy crude oil in situ. PMID:26638533

  3. Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes.

    PubMed

    Wang, Lei; Tang, Yun; Wang, Shuo; Liu, Ru-Lin; Liu, Mu-Zhi; Zhang, Yan; Liang, Feng-Lai; Feng, Lu

    2006-08-01

    A thermophilic Bacillus strain NG80-2 growing within the temperature range of 45-73 degrees C (optimum at 65 degrees C) was isolated from a deep subterranean oil-reservoir in northern China. The strain was able to utilize crude oil and liquid paraffin as the sole carbon sources for growth, and the growth with crude oil was accompanied by the production of an unknown emulsifying agent. Further examination showed that NG80-2 degraded and utilized only long-chain (C15-C36) n-alkanes, but not short-chain (C8-C14) n-alkanes and those longer than C40. Based on phenotypic and phylogenic analyses, NG80-2 was identified as Geobacillus thermodenitrificans. The strain NG80-2 may be potentially used for oily-waste treatment at elevated temperature, a condition which greatly accelerates the biodegradation rate, and for microbial enhancing oil recovery process. PMID:16604274

  4. Enzymes and genes involved in aerobic alkane degradation

    PubMed Central

    Wang, Wanpeng; Shao, Zongze

    2013-01-01

    Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes, transport across cell membrane of alkanes, the regulation of alkane degradation gene and initial oxidation. PMID:23755043

  5. Genomic analysis of six new Geobacillus strains reveals highly conserved carbohydrate degradation architectures and strategies.

    PubMed

    Brumm, Phillip J; De Maayer, Pieter; Mead, David A; Cowan, Don A

    2015-01-01

    In this work we report the whole genome sequences of six new Geobacillus xylanolytic strains along with the genomic analysis of their capability to degrade carbohydrates. The six sequenced Geobacillus strains described here have a range of GC contents from 43.9% to 52.5% and clade with named Geobacillus species throughout the entire genus. We have identified a ~200 kb unique super-cluster in all six strains, containing five to eight distinct carbohydrate degradation clusters in a single genomic region, a feature not seen in other genera. The Geobacillus strains rely on a small number of secreted enzymes located within distinct clusters for carbohydrate utilization, in contrast to most biomass-degrading organisms which contain numerous secreted enzymes located randomly throughout the genomes. All six strains are able to utilize fructose, arabinose, xylose, mannitol, gluconate, xylan, and α-1,6-glucosides. The gene clusters for utilization of these seven substrates have identical organization and the individual proteins have a high percent identity to their homologs. The strains show significant differences in their ability to utilize inositol, sucrose, lactose, α-mannosides, α-1,4-glucosides and arabinan. PMID:26029180

  6. Genomic analysis of six new Geobacillus strains reveals highly conserved carbohydrate degradation architectures and strategies

    PubMed Central

    Brumm, Phillip J.; De Maayer, Pieter; Mead, David A.; Cowan, Don A.

    2015-01-01

    In this work we report the whole genome sequences of six new Geobacillus xylanolytic strains along with the genomic analysis of their capability to degrade carbohydrates. The six sequenced Geobacillus strains described here have a range of GC contents from 43.9% to 52.5% and clade with named Geobacillus species throughout the entire genus. We have identified a ~200 kb unique super-cluster in all six strains, containing five to eight distinct carbohydrate degradation clusters in a single genomic region, a feature not seen in other genera. The Geobacillus strains rely on a small number of secreted enzymes located within distinct clusters for carbohydrate utilization, in contrast to most biomass-degrading organisms which contain numerous secreted enzymes located randomly throughout the genomes. All six strains are able to utilize fructose, arabinose, xylose, mannitol, gluconate, xylan, and α-1,6-glucosides. The gene clusters for utilization of these seven substrates have identical organization and the individual proteins have a high percent identity to their homologs. The strains show significant differences in their ability to utilize inositol, sucrose, lactose, α-mannosides, α-1,4-glucosides and arabinan. PMID:26029180

  7. Polysaccharide-degrading thermophiles generated by heterologous gene expression in Geobacillus kaustophilus HTA426.

    PubMed

    Suzuki, Hirokazu; Yoshida, Ken-ichi; Ohshima, Toshihisa

    2013-09-01

    Thermophiles have important advantages over mesophiles as host organisms for high-temperature bioprocesses, functional production of thermostable enzymes, and efficient expression of enzymatic activities in vivo. To capitalize on these advantages of thermophiles, we describe here a new inducible gene expression system in the thermophile Geobacillus kaustophilus HTA426. Six promoter regions in the HTA426 genome were identified and analyzed for expression profiles using β-galactosidase reporter assay. This analysis identified a promoter region upstream of a putative amylose-metabolizing gene cluster that directed high-level expression of the reporter gene. The expression was >280-fold that without a promoter and was further enhanced 12-fold by maltose addition. In association with a multicopy plasmid, this promoter region was used to express heterologous genes. Several genes, including a gene whose product was insoluble when expressed in Escherichia coli, were successfully expressed as soluble proteins, with yields of 0.16 to 59 mg/liter, and conferred new functions to G. kaustophilus strains. Remarkably, cellulase and α-amylase genes conferred the ability to degrade cellulose paper and insoluble starch at high temperatures, respectively, generating thermophiles with the potential to degrade plant biomass. Our results demonstrate that this novel expression system expands the potential applications of G. kaustophilus. PMID:23793634

  8. Polysaccharide-Degrading Thermophiles Generated by Heterologous Gene Expression in Geobacillus kaustophilus HTA426

    PubMed Central

    Yoshida, Ken-ichi; Ohshima, Toshihisa

    2013-01-01

    Thermophiles have important advantages over mesophiles as host organisms for high-temperature bioprocesses, functional production of thermostable enzymes, and efficient expression of enzymatic activities in vivo. To capitalize on these advantages of thermophiles, we describe here a new inducible gene expression system in the thermophile Geobacillus kaustophilus HTA426. Six promoter regions in the HTA426 genome were identified and analyzed for expression profiles using β-galactosidase reporter assay. This analysis identified a promoter region upstream of a putative amylose-metabolizing gene cluster that directed high-level expression of the reporter gene. The expression was >280-fold that without a promoter and was further enhanced 12-fold by maltose addition. In association with a multicopy plasmid, this promoter region was used to express heterologous genes. Several genes, including a gene whose product was insoluble when expressed in Escherichia coli, were successfully expressed as soluble proteins, with yields of 0.16 to 59 mg/liter, and conferred new functions to G. kaustophilus strains. Remarkably, cellulase and α-amylase genes conferred the ability to degrade cellulose paper and insoluble starch at high temperatures, respectively, generating thermophiles with the potential to degrade plant biomass. Our results demonstrate that this novel expression system expands the potential applications of G. kaustophilus. PMID:23793634

  9. Draft Genome Sequence of Gordonia sihwensis Strain 9, a Branched Alkane-Degrading Bacterium

    PubMed Central

    Brown, Lisa M.; Gunasekera, Thusitha S.; Striebich, Richard C.

    2016-01-01

    Gordonia sihwensis strain 9 is a Gram-positive bacterium capable of efficient aerobic degradation of branched and normal alkanes. The draft genome of G. sihwensis S9 is 4.16 Mb in size, with 3,686 coding sequences and 68.1% G+C content. Alkane monooxygenase and P-450 cytochrome genes required for alkane degradation are predicted in G. sihwensis S9. PMID:27340079

  10. Complete genome sequence of the crude oil-degrading thermophilic bacterium Geobacillus sp. JS12.

    PubMed

    Jeon, Sung-Jong; Park, Ae Kyung; Kim, Bum-Keun; Park, Hyun; Lee, Jun Hyuck; Kim, Han-Woo; Shin, Seung Chul

    2016-07-20

    Here, we report the complete genome sequence of Geobacillus sp. JS12, isolated from composts located in Namhae, Korea, which shows extracellular lipolytic activities at high temperatures. An array of genes related to the utilization of lipids was identified by whole genome analysis. The genome sequence of the strain JS12 provides basic information for wider exploitation of thermostable industrial lipases. PMID:27184431

  11. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park

    DOE PAGESBeta

    Brumm, Phillip; Land, Miriam L.; Hauser, Loren J.; Jeffries, Cynthia D.; Chang, Yun-Juan; Mead, David A.

    2015-10-19

    Geobacillus sp. Y412MC52 was isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. The genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G+C content of 52 % and one circular plasmid of 45,057 bp andmore » an average G+C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Lastly, transport and utilization clusters are also present for other carbohydrates including starch, cellobiose, and α- and β-galactooligosaccharides.« less

  12. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park

    SciTech Connect

    Brumm, Phillip; Land, Miriam L.; Hauser, Loren J.; Jeffries, Cynthia D.; Chang, Yun-Juan; Mead, David A.

    2015-10-19

    Geobacillus sp. Y412MC52 was isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. The genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G+C content of 52 % and one circular plasmid of 45,057 bp and an average G+C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Lastly, transport and utilization clusters are also present for other carbohydrates including starch, cellobiose, and α- and β-galactooligosaccharides.

  13. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park.

    PubMed

    Brumm, Phillip; Land, Miriam L; Hauser, Loren J; Jeffries, Cynthia D; Chang, Yun-Juan; Mead, David A

    2015-01-01

    Geobacillus sp. Y412MC52 was isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. The genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid of 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Transport and utilization clusters are also present for other carbohydrates including starch, cellobiose, and α- and β-galactooligosaccharides. PMID:26500717

  14. Enrichment and Characterization of a Psychrotolerant Consortium Degrading Crude Oil Alkanes Under Methanogenic Conditions.

    PubMed

    Ding, Chen; Ma, Tingting; Hu, Anyi; Dai, Lirong; He, Qiao; Cheng, Lei; Zhang, Hui

    2015-08-01

    Anaerobic alkane degradation via methanogenesis has been intensively studied under mesophilic and thermophilic conditions. While there is a paucity of information on the ability and composition of anaerobic alkane-degrading microbial communities under low temperature conditions. In this study, we investigated the ability of consortium Y15, enriched from Shengli oilfield, to degrade hydrocarbons under different temperature conditions (5-35 °C). The consortium could use hexadecane over a low temperature range (15-30 °C). No growth was detected below 10 °C and above 35 °C, indicating the presence of cold-tolerant species capable of alkane degradation. The preferential degradation of short chain n-alkanes from crude oil was observed by this consortium. The structure and dynamics of the microbial communities were examined using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting and Sanger sequencing of 16S rRNA genes. The core archaeal communities were mainly composed of aceticlastic Methanosaeta spp. Syntrophaceae-related microorganisms were always detected during consecutive transfers and dominated the bacterial communities, sharing 94-96 % sequence similarity with Smithella propionica strain LYP(T). Phylogenetic analysis of Syntrophaceae-related clones in diverse methanogenic alkane-degrading cultures revealed that most of them were clustered into three sublineages. Syntrophaceae clones retrieved from this study were mainly clustered into sublineage I, which may represent psychrotolerant, syntrophic alkane degraders. These results indicate the wide geographic distribution and ecological function of syntrophic alkane degraders. PMID:25783218

  15. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes

    PubMed Central

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-01-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. PMID:21914097

  16. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments.

    PubMed

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R; Jørgensen, Bo B; Kjeldsen, Kasper U

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  17. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments

    PubMed Central

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R.; Jørgensen, Bo B.; Kjeldsen, Kasper U.

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  18. The anaerobic degradation of gaseous, nonmethane alkanes — From in situ processes to microorganisms

    PubMed Central

    Musat, Florin

    2015-01-01

    The short chain, gaseous alkanes ethane, propane, n- and iso-butane are released in significant amounts into the atmosphere, where they contribute to tropospheric chemistry and ozone formation. Biodegradation of gaseous alkanes by aerobic microorganisms, mostly bacteria and fungi isolated from terrestrial environments, has been known for several decades. The first indications for short chain alkane anaerobic degradation were provided by geochemical studies of deep-sea environments around hydrocarbon seeps, and included the uncoupling of the sulfate-reduction and anaerobic oxidation of methane rates, the consumption of gaseous alkanes in anoxic sediments, or the enrichment in 13C of gases in interstitial water vs. the source gas. Microorganisms able to degrade gaseous alkanes were recently obtained from deep-sea and terrestrial sediments around hydrocarbon seeps. Up to date, only sulfate-reducing pure or enriched cultures with ethane, propane and n-butane have been reported. The only pure culture presently available, strain BuS5, is affiliated to the Desulfosarcina–Desulfococcus cluster of the Deltaproteobacteria. Other phylotypes involved in gaseous alkane degradation have been identified based on stable-isotope labeling and whole-cell hybridization. Under anoxic conditions, propane and n-butane are activated similar to the higher alkanes, by homolytic cleavage of the C—H bond of a subterminal carbon atom, and addition of the ensuing radical to fumarate, yielding methylalkylsuccinates. An additional mechanism of activation at the terminal carbon atoms was demonstrated for propane, which could in principle be employed also for the activation of ethane. PMID:25904994

  19. Isolation and characterization of a potential paraffin-wax degrading thermophilic bacterial strain Geobacillus kaustophilus TERI NSM for application in oil wells with paraffin deposition problems.

    PubMed

    Sood, Nitu; Lal, Banwari

    2008-02-01

    Paraffin deposition problems, that have plagued the oil industry, are currently remediated by mechanical and chemical means. However, since these methods are problematic, a microbiological approach has been considered. The bacteria, required for the mitigation of paraffin deposition problems, should be able to survive the high temperatures of oil wells and degrade the paraffins under low oxygen and nutrient conditions while sparing the low carbon chain paraffins. In this study, a thermophilic paraffinic wax degrading bacterial strain was isolated from a soil sample contaminated with paraffinic crude oil. The selected strain, Geobacillus TERI NSM, could degrade 600mg of paraffinic wax as the sole carbon source in 1000ml minimal salts medium in 7d at 55 degrees C. This strain was identified as Geobacillus kaustophilus by fatty acid methyl esters analysis and 16S rRNA full gene sequencing. G. kaustophilus TERI NSM showed 97% degradation of eicosane, 85% degradation of pentacosane and 77% degradation of triacontane in 10d when used as the carbon source. The strain TERI NSM could also degrade the paraffins of crude oil collected from oil wells that had a history of paraffin deposition problems. PMID:17942139

  20. Characterization of the Medium- and Long-Chain n-Alkanes Degrading Pseudomonas aeruginosa Strain SJTD-1 and Its Alkane Hydroxylase Genes

    PubMed Central

    Liu, Huan; Xu, Jing; Liang, Rubing; Liu, Jianhua

    2014-01-01

    A gram-negative aliphatic hydrocarbon-degrading bacterium SJTD-1 isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa by comparative analyses of the 16S rRNA sequence, phenotype, and physiological features. SJTD-1 could efficiently mineralize medium- and long-chain n-alkanes (C12-C30) as its sole carbon source within seven days, showing the most optimal growth on n-hexadecane, followed by n-octadecane, and n-eicosane. In 36 h, 500 mg/L of tetradecane, hexadecane, and octadecane were transformed completely; and 2 g/L n-hexadecane was degraded to undetectable levels within 72 h. Two putative alkane-degrading genes (gene 3623 and gene 4712) were characterized and our results indicated that their gene products were rate-limiting enzymes involved in the synergetic catabolism of C12–C16 alkanes. On the basis of bioinformatics and transcriptional analysis, two P450 monooxygenases, along with a putative AlmA-like oxygenase, were examined. Genetically defective mutants lacking the characteristic alkane hydroxylase failed to degrade n-octadecane, thereby suggesting a different catalytic mechanism for the microbial transformation of alkanes with chain lengths over C18. PMID:25165808

  1. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  2. Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments.

    PubMed

    Guibert, Lilian M; Loviso, Claudia L; Borglin, Sharon; Jansson, Janet K; Dionisi, Hebe M; Lozada, Mariana

    2016-01-01

    We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlated with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes. PMID:26547568

  3. Regulation of the Alkane Hydroxylase CYP153 Gene in a Gram-Positive Alkane-Degrading Bacterium, Dietzia sp. Strain DQ12-45-1b

    PubMed Central

    Liang, Jie-Liang; JiangYang, Jing-Hong

    2015-01-01

    CYP153, one of the most common medium-chain n-alkane hydroxylases belonging to the cytochrome P450 superfamily, is widely expressed in n-alkane-degrading bacteria. CYP153 is also thought to cooperate with AlkB in degrading various n-alkanes. However, the mechanisms regulating the expression of the protein remain largely unknown. In this paper, we studied CYP153 gene transcription regulation by the potential AraC family regulator (CypR) located upstream of the CYP153 gene cluster in a broad-spectrum n-alkane-degrading Gram-positive bacterium, Dietzia sp. strain DQ12-45-1b. We first identified the transcriptional start site and the promoter of the CYP153 gene cluster. Sequence alignment of upstream regions of CYP153 gene clusters revealed high conservation in the −10 and −35 regions in Actinobacteria. Further analysis of the β-galactosidase activity in the CYP153 gene promoter-lacZ fusion cell indicated that the CYP153 gene promoter was induced by n-alkanes comprised of 8 to 14 carbon atoms, but not by derived decanol and decanic acid. Moreover, we constructed a cypR mutant strain and found that the CYP153 gene promoter activities and CYP153 gene transcriptional levels in the mutant strain were depressed compared with those in the wild-type strain in the presence of n-alkanes, suggesting that CypR served as an activator for the CYP153 gene promoter. By comparing CYP153 gene arrangements in Actinobacteria and Proteobacteria, we found that the AraC family regulator is ubiquitously located upstream of the CYP153 gene, suggesting its universal regulatory role in CYP153 gene transcription. We further hypothesize that the observed mode of CYP153 gene regulation is shared by many Actinobacteria. PMID:26567302

  4. Involvement of an Alkane Hydroxylase System of Gordonia sp. Strain SoCg in Degradation of Solid n-Alkanes▿

    PubMed Central

    Lo Piccolo, Luca; De Pasquale, Claudio; Fodale, Roberta; Puglia, Anna Maria; Quatrini, Paola

    2011-01-01

    Enzymes involved in oxidation of long-chain n-alkanes are still not well known, especially those in Gram-positive bacteria. This work describes the alkane degradation system of the n-alkane degrader actinobacterium Gordonia sp. strain SoCg, which is able to grow on n-alkanes from dodecane (C12) to hexatriacontane (C36) as the sole C source. SoCg harbors in its chromosome a single alk locus carrying six open reading frames (ORFs), which shows 78 to 79% identity with the alkane hydroxylase (AH)-encoding systems of other alkane-degrading actinobacteria. Quantitative reverse transcription-PCR showed that the genes encoding AlkB (alkane 1-monooxygenase), RubA3 (rubredoxin), RubA4 (rubredoxin), and RubB (rubredoxin reductase) were induced by both n-hexadecane and n-triacontane, which were chosen as representative long-chain liquid and solid n-alkane molecules, respectively. Biotransformation of n-hexadecane into the corresponding 1-hexadecanol was detected by solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME/GC-MS) analysis. The Gordonia SoCg alkB was heterologously expressed in Escherichia coli BL21 and in Streptomyces coelicolor M145, and both hosts acquired the ability to transform n-hexadecane into 1-hexadecanol, but the corresponding long-chain alcohol was never detected on n-triacontane. However, the recombinant S. coelicolor M145-AH, expressing the Gordonia alkB gene, was able to grow on n-triacontane as the sole C source. A SoCg alkB disruption mutant that is completely unable to grow on n-triacontane was obtained, demonstrating the role of an AlkB-type AH system in degradation of solid n-alkanes. PMID:21183636

  5. Release of alkanes from sedimentary organic matter via sequential degradation involving catalytic hydropyrolysis

    SciTech Connect

    Love, G.D.; McAulay, A.; Snape, C.E.

    1996-12-31

    Fixed-bed pyrolysis of petroleum source rocks (type I and II kerogens) and high-volatile coals (type III ketogens) at high hydrogen pressures (> 10 MN, hydropyrolysis) in the presence of a dispersed sulphided molydenum catalyst gives rise to extremely high oil (dichloromethane-soluble) yields (>60%) with overall conversions of the organic matter being greater than 90%. The yields and conformations of the hopanes and steranes released from a selection of petroleum source rocks and coals by sequential dichloromethane and pyridine extraction, catalytic hydrogenation and hydropyrolysis will be presented, together with the influence of hydrogen pressure and heating rate on alkane yields and sterochemistry. The aim of the hydrogenation step (conducted at 300{degrees}C cf. 520{degrees}C for hydropyrolysis) in this sequential degradation scheme is to cleave only the weaker covalent bonds. The findings have demonstrated the unique ability of hydropyrolysis to mainline the yields of covalently-bound alkanes while maintaining the biologically-inherited 17{beta}(H), 21{beta}(H) stereochemistries of the hopanes, largely intact, even for coals. The total alkane yields from hydropyrolysis represented ca 30% w/w of the organic matter remaining in immature type I kerogens with yields of the C{sub 29}-C{sub 35} 17{beta}(H), 21{beta}(H) hopanes being much higher than from both normal pyrolysis and the hydrogenation step.

  6. Identification of Novel Genes Involved in Long-Chain n-Alkane Degradation by Acinetobacter sp. Strain DSM 17874▿

    PubMed Central

    Throne-Holst, Mimmi; Wentzel, Alexander; Ellingsen, Trond E.; Kotlar, Hans-Kristian; Zotchev, Sergey B.

    2007-01-01

    Acinetobacter sp. strain DSM 17874 is capable of utilizing n-alkanes with chain lengths ranging from that of decane (C10H22) to that of tetracontane (C40H82) as a sole carbon source. Two genes encoding AlkB-type alkane hydroxylase homologues, designated alkMa and alkMb, have been shown to be involved in the degradation of n-alkanes with chain lengths of from 10 to 20 C atoms in this strain. Here, we describe a novel high-throughput screening method and the screening of a transposon mutant library to identify genes involved in the degradation of n-alkanes with C chain lengths longer than 20, which are solid at 30°C, the optimal growth temperature for Acinetobacter sp. strain DSM 17874. A library consisting of approximately 6,800 Acinetobacter sp. strain DSM 17874 transposon mutants was constructed and screened for mutants unable to grow on dotriacontane (C32H66) while simultaneously showing wild-type growth characteristics on shorter-chain n-alkanes. For 23 such mutants isolated, the genes inactivated by transposon insertion were identified. Targeted inactivation and complementation studies of one of these genes, designated almA and encoding a putative flavin-binding monooxygenase, confirmed its involvement in the strain's metabolism of long-chain n-alkanes. To our knowledge, almA represents the first cloned gene shown to be involved in the bacterial degradation of long-chain n-alkanes of 32 C's and longer. Genes encoding AlmA homologues were also identified in other long-chain n-alkane-degrading Acinetobacter strains. PMID:17400787

  7. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation.

    PubMed

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-07-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'. PMID:25535940

  8. The genus Geobacillus and their biotechnological potential.

    PubMed

    Hussein, Ali H; Lisowska, Beata K; Leak, David J

    2015-01-01

    The genus Geobacillus comprises a group of Gram-positive thermophilic bacteria, including obligate aerobes, denitrifiers, and facultative anaerobes that can grow over a range of 45-75°C. Originally classified as group five Bacillus spp., strains of Bacillus stearothermophilus came to prominence as contaminants of canned food and soon became the organism of choice for comparative studies of metabolism and enzymology between mesophiles and thermophiles. More recently, their catabolic versatility, particularly in the degradation of hemicellulose and starch, and rapid growth rates have raised their profile as organisms with potential for second-generation (lignocellulosic) biorefineries for biofuel or chemical production. The continued development of genetic tools to facilitate both fundamental investigation and metabolic engineering is now helping to realize this potential, for both metabolite production and optimized catabolism. In addition, this catabolic versatility provides a range of useful thermostable enzymes for industrial application. A number of genome-sequencing projects have been completed or are underway allowing comparative studies. These reveal a significant amount of genome rearrangement within the genus, the presence of large genomic islands encompassing all the hemicellulose utilization genes and a genomic island incorporating a set of long chain alkane monooxygenase genes. With G+C contents of 45-55%, thermostability appears to derive in part from the ability to synthesize protamine and spermine, which can condense DNA and raise its Tm. PMID:26003932

  9. Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions

    PubMed Central

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, “Shengli Cluster” and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes. PMID:25409013

  10. The Use of a Combination of alkB Primers to Better Characterize the Distribution of Alkane-Degrading Bacteria

    PubMed Central

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Peixoto, Raquel; Rosado, Alexandre S.; Seldin, Lucy

    2013-01-01

    The alkane monooxygenase AlkB, which is encoded by the alkB gene, is a key enzyme involved in bacterial alkane degradation. To study the alkB gene within bacterial communities, researchers need to be aware of the variations in alkB nucleotide sequences; a failure to consider the sequence variations results in the low representation of the diversity and richness of alkane-degrading bacteria. To minimize this shortcoming, the use of a combination of three alkB-targeting primers to enhance the detection of the alkB gene in previously isolated alkane-degrading bacteria was proposed. Using this approach, alkB-related PCR products were detected in 79% of the strains tested. Furthermore, the chosen set of primers was used to study alkB richness and diversity in different soils sampled in Carmópolis, Brazil and King George Island, Antarctica. The DNA extracted from the different soils was PCR amplified with each set of alkB-targeting primers, and clone libraries were constructed, sequenced and analyzed. A total of 255 alkB phylotypes were detected. Venn diagram analyses revealed that only low numbers of alkB phylotypes were shared among the different libraries derived from each primer pair. Therefore, the combination of three alkB-targeting primers enhanced the richness of alkB phylotypes detected in the different soils by 45% to 139%, when compared to the use of a single alkB-targeting primer. In addition, a dendrogram analysis and beta diversity comparison of the alkB composition showed that each of the sampling sites studied had a particular set of alkane-degrading bacteria. The use of a combination of alkB primers was an efficient strategy for enhancing the detection of the alkB gene in cultivable bacteria and for better characterizing the distribution of alkane-degrading bacteria in different soil environments. PMID:23825163

  11. Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park.

    PubMed

    Brumm, Phillip J; Land, Miriam L; Mead, David A

    2015-01-01

    Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). The genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G + C content of 43.93 %. G. thermoglucosidasius C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. This cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. One plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins. PMID:26442136

  12. Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park

    SciTech Connect

    Brumm, Phillip J.; Land, Miriam L.; Mead, David A.

    2015-10-05

    Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). The genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G + C content of 43.93 %. G. thermoglucosidasius C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. This cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. Ultimately, one plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins.

  13. Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park

    DOE PAGESBeta

    Brumm, Phillip J.; Land, Miriam L.; Mead, David A.

    2015-10-05

    Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). The genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G + C content of 43.93 %. G. thermoglucosidasiusmore » C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. This cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. Ultimately, one plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins.« less

  14. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps

    PubMed Central

    Kleindienst, Sara; Herbst, Florian-Alexander; Stagars, Marion; von Netzer, Frederick; von Bergen, Martin; Seifert, Jana; Peplies, Jörg; Amann, Rudolf; Musat, Florin; Lueders, Tillmann; Knittel, Katrin

    2014-01-01

    Biogeochemical and microbiological data indicate that the anaerobic oxidation of non-methane hydrocarbons by sulfate-reducing bacteria (SRB) has an important role in carbon and sulfur cycling at marine seeps. Yet, little is known about the bacterial hydrocarbon degraders active in situ. Here, we provide the link between previous biogeochemical measurements and the cultivation of degraders by direct identification of SRB responsible for butane and dodecane degradation in complex on-site microbiota. Two contrasting seep sediments from Mediterranean Amon mud volcano and Guaymas Basin (Gulf of California) were incubated with 13C-labeled butane or dodecane under sulfate-reducing conditions and analyzed via complementary stable isotope probing (SIP) techniques. Using DNA- and rRNA-SIP, we identified four specialized clades of alkane oxidizers within Desulfobacteraceae to be distinctively active in oxidation of short- and long-chain alkanes. All clades belong to the Desulfosarcina/Desulfococcus (DSS) clade, substantiating the crucial role of these bacteria in anaerobic hydrocarbon degradation at marine seeps. The identification of key enzymes of anaerobic alkane degradation, subsequent β-oxidation and the reverse Wood–Ljungdahl pathway for complete substrate oxidation by protein-SIP further corroborated the importance of the DSS clade and indicated that biochemical pathways, analog to those discovered in the laboratory, are of great relevance for natural settings. The high diversity within identified subclades together with their capability to initiate alkane degradation and growth within days to weeks after substrate amendment suggest an overlooked potential of marine benthic microbiota to react to natural changes in seepage, as well as to massive hydrocarbon input, for example, as encountered during anthropogenic oil spills. PMID:24722631

  15. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps.

    PubMed

    Kleindienst, Sara; Herbst, Florian-Alexander; Stagars, Marion; von Netzer, Frederick; von Bergen, Martin; Seifert, Jana; Peplies, Jörg; Amann, Rudolf; Musat, Florin; Lueders, Tillmann; Knittel, Katrin

    2014-10-01

    Biogeochemical and microbiological data indicate that the anaerobic oxidation of non-methane hydrocarbons by sulfate-reducing bacteria (SRB) has an important role in carbon and sulfur cycling at marine seeps. Yet, little is known about the bacterial hydrocarbon degraders active in situ. Here, we provide the link between previous biogeochemical measurements and the cultivation of degraders by direct identification of SRB responsible for butane and dodecane degradation in complex on-site microbiota. Two contrasting seep sediments from Mediterranean Amon mud volcano and Guaymas Basin (Gulf of California) were incubated with (13)C-labeled butane or dodecane under sulfate-reducing conditions and analyzed via complementary stable isotope probing (SIP) techniques. Using DNA- and rRNA-SIP, we identified four specialized clades of alkane oxidizers within Desulfobacteraceae to be distinctively active in oxidation of short- and long-chain alkanes. All clades belong to the Desulfosarcina/Desulfococcus (DSS) clade, substantiating the crucial role of these bacteria in anaerobic hydrocarbon degradation at marine seeps. The identification of key enzymes of anaerobic alkane degradation, subsequent β-oxidation and the reverse Wood-Ljungdahl pathway for complete substrate oxidation by protein-SIP further corroborated the importance of the DSS clade and indicated that biochemical pathways, analog to those discovered in the laboratory, are of great relevance for natural settings. The high diversity within identified subclades together with their capability to initiate alkane degradation and growth within days to weeks after substrate amendment suggest an overlooked potential of marine benthic microbiota to react to natural changes in seepage, as well as to massive hydrocarbon input, for example, as encountered during anthropogenic oil spills. PMID:24722631

  16. Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water.

    PubMed

    Viggor, Signe; Jõesaar, Merike; Vedler, Eve; Kiiker, Riinu; Pärnpuu, Liis; Heinaru, Ain

    2015-12-30

    Formation of specific oil degrading bacterial communities in diesel fuel, crude oil, heptane and hexadecane supplemented microcosms of the Baltic Sea surface water samples was revealed. The 475 sequences from constructed alkane hydroxylase alkB gene clone libraries were grouped into 30 OPFs. The two largest groups were most similar to Pedobacter sp. (245 from 475) and Limnobacter sp. (112 from 475) alkB gene sequences. From 56 alkane-degrading bacterial strains 41 belonged to the Pseudomonas spp. and 8 to the Rhodococcus spp. having redundant alkB genes. Together 68 alkB gene sequences were identified. These genes grouped into 20 OPFs, half of them being specific only to the isolated strains. Altogether 543 diverse alkB genes were characterized in the brackish Baltic Sea water; some of them representing novel lineages having very low sequence identities with corresponding genes of the reference strains. PMID:26541986

  17. High Diversity of Anaerobic Alkane-Degrading Microbial Communities in Marine Seep Sediments Based on (1-methylalkyl)succinate Synthase Genes

    PubMed Central

    Stagars, Marion H.; Ruff, S. Emil; Amann, Rudolf; Knittel, Katrin

    2016-01-01

    Alkanes comprise a substantial fraction of crude oil and are prevalent at marine seeps. These environments are typically anoxic and host diverse microbial communities that grow on alkanes. The most widely distributed mechanism of anaerobic alkane activation is the addition of alkanes to fumarate by (1-methylalkyl)succinate synthase (Mas). Here we studied the diversity of MasD, the catalytic subunit of the enzyme, in 12 marine sediments sampled at seven seeps. We aimed to identify cosmopolitan species as well as to identify factors structuring the alkane-degrading community. Using next generation sequencing we obtained a total of 420 MasD species-level operational taxonomic units (OTU0.96) at 96% amino acid identity. Diversity analysis shows a high richness and evenness of alkane-degrading bacteria. Sites with similar hydrocarbon composition harbored similar alkane-degrading communities based on MasD genes; the MasD community structure is clearly driven by the hydrocarbon source available at the various seeps. Two of the detected OTU0.96 were cosmopolitan and abundant while 75% were locally restricted, suggesting the presence of few abundant and globally distributed alkane degraders as well as specialized variants that have developed under specific conditions at the diverse seep environments. Of the three MasD clades identified, the most diverse was affiliated with Deltaproteobacteria. A second clade was affiliated with both Deltaproteobacteria and Firmicutes likely indicating lateral gene transfer events. The third clade was only distantly related to known alkane-degrading organisms and comprises new divergent lineages of MasD homologs, which might belong to an overlooked phylum of alkane-degrading bacteria. In addition, masD geneFISH allowed for the in situ identification and quantification of the target guild in alkane-degrading enrichment cultures. Altogether, these findings suggest an unexpectedly high number of yet unknown groups of anaerobic alkane degraders

  18. Draft Genome Sequence of the Versatile Alkane-Degrading Bacterium Aquabacterium sp. Strain NJ1

    PubMed Central

    Shiwa, Yuh; Yoshikawa, Hirofumi; Zylstra, Gerben J.

    2014-01-01

    The draft genome sequence of a soil bacterium, Aquabacterium sp. strain NJ1, capable of utilizing both liquid and solid alkanes, was deciphered. This is the first report of an Aquabacterium genome sequence. PMID:25477416

  19. Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community

    PubMed Central

    Embree, Mallory; Nagarajan, Harish; Movahedi, Narjes; Chitsaz, Hamidreza; Zengler, Karsten

    2014-01-01

    Microbial interactions have a key role in global geochemical cycles. Although we possess significant knowledge about the general biochemical processes occurring in microbial communities, we are often unable to decipher key functions of individual microorganisms within the environment in part owing to the inability to cultivate or study them in isolation. Here, we circumvent this shortcoming through the use of single-cell genome sequencing and a novel low-input metatranscriptomics protocol to reveal the intricate metabolic capabilities and microbial interactions of an alkane-degrading methanogenic community. This methanogenic consortium oxidizes saturated hydrocarbons under anoxic conditions through a thus-far-uncharacterized biochemical process. The genome sequence of a dominant bacterial member of this community, belonging to the genus Smithella, was sequenced and served as the basis for subsequent analysis through metabolic reconstruction. Metatranscriptomic data generated from less than 500 pg of mRNA highlighted metabolically active genes during anaerobic alkane oxidation in comparison with growth on fatty acids. These data sets suggest that Smithella is not activating hexadecane by fumarate addition. Differential expression assisted in the identification of hypothetical proteins with no known homology that may be involved in hexadecane activation. Additionally, the combination of 16S rDNA sequence and metatranscriptomic data enabled the study of other prevalent organisms within the consortium and their interactions with Smithella, thus yielding a comprehensive characterization of individual constituents at the genome scale during methanogenic alkane oxidation. PMID:24152715

  20. Draft Genome Sequence of Thermophilic Geobacillus sp. Strain Sah69, Isolated from Saharan Soil, Southeast Algeria.

    PubMed

    Bezuidt, Oliver K I; Makhalanyane, Thulani P; Gomri, Mohamed A; Kharroub, Karima; Cowan, Don A

    2015-01-01

    Geobacillus spp. are potential sources of novel enzymes, such as those involved in the degradation of recalcitrant polymers. Here, we report a Geobacillus genome that may help reveal genomic differences between this strain and publicly available representatives of the same genus from diverse niches. PMID:26679578

  1. Regulation of alkane degradation pathway by a TetR family repressor via an autoregulation positive feedback mechanism in a Gram-positive Dietzia bacterium.

    PubMed

    Liang, Jie-Liang; Nie, Yong; Wang, Miaoxiao; Xiong, Guangming; Wang, Yi-Ping; Maser, Edmund; Wu, Xiao-Lei

    2016-01-01

    n-Alkanes are ubiquitous in nature and serve as important carbon sources for both Gram-positive and Gram-negative bacteria. Hydroxylation of n-alkanes by alkane monooxygenases is the first and most critical step in n-alkane metabolism. However, regulation of alkane degradation genes in Gram-positive bacteria remains poorly characterized. We therefore explored the transcriptional regulation of an alkB-type alkane hydroxylase-rubredoxin fusion gene, alkW1, from Dietzia sp. DQ12-45-1b. The alkW1 promoter was characterized and so was the putative TetR family regulator, AlkX, located downstream of alkW1 gene. We further identified an unusually long 48 bp inverted repeat upstream of alkW1 and demonstrated the binding of AlkX to this operator. Analytical ultracentrifugation and microcalorimetric results indicated that AlkX formed stable dimers in solution and two dimers bound to one operator in a positive cooperative fashion characterized by a Hill coefficient of 1.64 (± 0.03) [k(D)  = 1.06 (± 0.16) μM, k(D) ' = 0.05 (± 0.01) μM]. However, the DNA-binding affinity was disrupted in the presence of long-chain fatty acids (C10-C24), suggesting that AlkX can sense the concentrations of n-alkane degradation metabolites. A model was therefore proposed where AlkX controls alkW1 expression in a metabolite-dependent manner. Bioinformatic analysis revealed that the alkane hydroxylase gene regulation mechanism may be common among Actinobacteria. PMID:26418273

  2. Metagenomic analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members.

    PubMed

    Tan, Boonfei; Dong, Xiaoli; Sensen, Christoph W; Foght, Julia

    2013-10-01

    A microbial community (short-chain alkane-degrading culture, SCADC) enriched from an oil sands tailings pond was shown to degrade C6-C10 alkanes under methanogenic conditions. Total genomic DNA from SCADC was subjected to 454 pyrosequencing, Illumina paired-end sequencing, and 16S rRNA amplicon pyrotag sequencing; the latter revealed 320 operational taxonomic units at 5% distance. Metagenomic sequences were subjected to in-house quality control and co-assembly, yielding 984 086 contigs, and annotation using MG-Rast and IMG. Substantial nucleotide and protein recruitment to Methanosaeta concilii, Syntrophus aciditrophicus, and Desulfobulbus propionicus reference genomes suggested the presence of closely related strains in SCADC; other genomes were not well mapped, reflecting the paucity of suitable reference sequences for such communities. Nonetheless, we detected numerous homologues of putative hydrocarbon succinate synthase genes (e.g., assA, bssA, and nmsA) implicated in anaerobic hydrocarbon degradation, suggesting the ability of the SCADC microbial community to initiate methanogenic alkane degradation by addition to fumarate. Annotation of a large contig revealed analogues of the ass operon 1 in the alkane-degrading sulphate-reducing bacterium Desulfatibacillum alkenivorans AK-01. Despite being enriched under methanogenic-fermentative conditions, additional metabolic functions inferred by COG profiling indicated multiple CO(2) fixation pathways, organic acid utilization, hydrogenase activity, and sulphate reduction. PMID:24237341

  3. Diversity and abundance of n-alkane degrading bacteria in the near surface soils of a Chinese onshore oil and gas field

    NASA Astrophysics Data System (ADS)

    Xu, K.; Tang, Y.; Ren, C.; Zhao, K.; Sun, Y.

    2012-10-01

    Alkane degrading bacteria have long been used as an important biological indicator for oil and gas prospecting, but their ecological characteristics in hydrocarbon microseep habitats are still poorly understood. In this study, the diversity and abundance of n-alkane degrading bacterial community in the near surface soils of a Chinese onshore oil and gas field were investigated using molecular techniques. Terminal restriction fragment length polymorphism (T-RFLP) analyses in combination with cloning and sequencing of alkB genes revealed that trace amount of volatile hydrocarbons migrated from oil and gas reservoirs caused a shift of the n-alkane degrading bacterial community from Gram-positive bacteria (Mycobacterium and Rhodococcus) to Gram-negative genotypes (Alcanivorax and Acinetobacter). Real-time PCR results furthermore showed that the abundance of alkB genes increased substantially in the surface soils underlying oil and gas reservoirs even though only low or undetectable concentrations of hydrocarbons were measured in these soils due to efficient microbial degradation. Our findings broadened the knowledge on the ecological characteristics of alkane degrading community in hydrocarbon microseeps and may provide a new approach for microbial prospecting for oil and gas (MPOG).

  4. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by 'Smithella' spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens.

    PubMed

    Wawrik, Boris; Marks, Christopher R; Davidova, Irene A; McInerney, Michael J; Pruitt, Shane; Duncan, Kathleen E; Suflita, Joseph M; Callaghan, Amy V

    2016-09-01

    Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as paraffins, presents unique metabolic challenges. To elucidate this process, a methanogenic consortium capable of mineralizing long-chain n-paraffins (C28 -C50 ) was enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%). Metagenomic sequencing allowed draft genome assembly of dominant uncultivated community members belonging to the bacterial genus Smithella and the archaeal genera Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic subunit of alkylsuccinate synthase (assA) were detected. Additionally, mRNA transcripts for these genes, including a homolog binned within the 'Smithella' sp. SDB genome scaffold, were detected via RT-PCR, implying that paraffins are activated via 'fumarate addition'. Metabolic reconstruction and comparison with genome scaffolds of uncultivated n-alkane degrading 'Smithella' spp. are consistent with the hypothesis that syntrophically growing 'Smithella' spp. may achieve reverse electron transfer by coupling the reoxidation of ETFred to a membrane-bound FeS oxidoreductase functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing energetic coupling to hydrogenotrophic methanogens such as Methanoculleus. Ultimately, these data provide fundamental insight into the energy conservation mechanisms that dictate interspecies interactions salient to methanogenic alkane mineralization. PMID:27198766

  5. Draft Genome Sequence of Alkane-Degrading Acinetobacter venetianus JKSF02, Isolated from Contaminated Sediment of the San Jacinto River in Houston, Texas

    PubMed Central

    Damania, Ashish

    2016-01-01

    Acinetobacter venetianus JKSF02 was isolated from contaminated sediment in eastern Houston, Texas along the San Jacinto River. This microorganism specializes in n-alkane degradation and is well suited for bioremediation of the petroleum hydrocarbon deposited throughout the region by shipping and industrial activity from the Houston Ship Channel. PMID:27081144

  6. Draft Genome Sequence of Alkane-Degrading Acinetobacter venetianus JKSF02, Isolated from Contaminated Sediment of the San Jacinto River in Houston, Texas.

    PubMed

    Iyer, Rupa; Damania, Ashish

    2016-01-01

    Acinetobacter venetianusJKSF02 was isolated from contaminated sediment in eastern Houston, Texas along the San Jacinto River. This microorganism specializes in n-alkane degradation and is well suited for bioremediation of the petroleum hydrocarbon deposited throughout the region by shipping and industrial activity from the Houston Ship Channel. PMID:27081144

  7. Monitoring the alkane monooxygenase gene alkB in different soil interfaces during plant litter degradation of C3 and C4 plants

    NASA Astrophysics Data System (ADS)

    Schulz, S.; Munch, J. C.; Schloter, M.

    2009-04-01

    Hydrocarbons like n-alkanes are ubiquitous in the environment as a result of anthropogenic contamination (e.g. oil spills) as well as a part of an ecosystem's biomass. For example n-alkanes become released during plant litter degradation; consequently they become a high abundant carbon source for microorganism. One possibility for the prokaryotic hydrocarbon metabolisation is an aerobic degradation pathway where the initial step is catalysed by the membrane bound alkane monooxygenase alkB. We analysed the influence of alkanes on the abundance of the alkB gene in different interfaces of the litter-soil system during the degradation of maize and pea litter. Therefore soil samples of a sandy and a loamy soil have been incubated with straw of maize and pea plants up to 30 weeks with constant soil moisture and temperature. Using quantitative real-time PCR we were able to monitor the changes of the abundance and the expression rates of alkB. In our experiments we focused on the straw layer, the litter/soil interface and the soil 1 cm below this interface (bulk soil). Our results clearly demonstrate time and space dependent abundance patterns of alkB genes and transcripts in the different layers studied, which are additionally shaped by the soil type used.

  8. Anaerobic 1-Alkene Metabolism by the Alkane- and Alkene-Degrading Sulfate Reducer Desulfatibacillum aliphaticivorans Strain CV2803T▿

    PubMed Central

    Grossi, Vincent; Cravo-Laureau, Cristiana; Méou, Alain; Raphel, Danielle; Garzino, Frédéric; Hirschler-Réa, Agnès

    2007-01-01

    The alkane- and alkene-degrading, marine sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, known to oxidize n-alkanes anaerobically by fumarate addition at C-2, was investigated for its 1-alkene metabolism. The total cellular fatty acids of this strain were predominantly C-(even number) (C-even) when it was grown on C-even 1-alkenes and predominantly C-(odd number) (C-odd) when it was grown on C-odd 1-alkenes. Detailed analyses of those fatty acids by gas chromatography-mass spectrometry after 6- to 10-week incubations allowed the identification of saturated 2- and 4-ethyl-, 2- and 4-methyl-, and monounsaturated 4-methyl-branched fatty acids with chain lengths that correlated with those of the 1-alkene. The growth of D. aliphaticivorans on (per)deuterated 1-alkenes provided direct evidence of the anaerobic transformation of these alkenes into the corresponding 1-alcohols and into linear as well as 10- and 4-methyl-branched fatty acids. Experiments performed with [13C]bicarbonate indicated that the initial activation of 1-alkene by the addition of inorganic carbon does not occur. These results demonstrate that D. aliphaticivorans metabolizes 1-alkene by the oxidation of the double bond at C-1 and by the subterminal addition of organic carbon at both ends of the molecule [C-2 and C-(ω-1)]. The detection of ethyl-branched fatty acids from unlabeled 1-alkenes further suggests that carbon addition also occurs at C-3. Alkylsuccinates were not observed as potential initial intermediates in alkene metabolism. Based on our observations, the first pathways for anaerobic 1-alkene metabolism in an anaerobic bacterium are proposed. Those pathways indicate that diverse initial reactions of 1-alkene activation can occur simultaneously in the same strain of sulfate-reducing bacterium. PMID:17965214

  9. Anaerobic 1-alkene metabolism by the alkane- and alkene-degrading sulfate reducer Desulfatibacillum aliphaticivorans strain CV2803T.

    PubMed

    Grossi, Vincent; Cravo-Laureau, Cristiana; Méou, Alain; Raphel, Danielle; Garzino, Frédéric; Hirschler-Réa, Agnès

    2007-12-01

    The alkane- and alkene-degrading, marine sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803(T), known to oxidize n-alkanes anaerobically by fumarate addition at C-2, was investigated for its 1-alkene metabolism. The total cellular fatty acids of this strain were predominantly C-(even number) (C-even) when it was grown on C-even 1-alkenes and predominantly C-(odd number) (C-odd) when it was grown on C-odd 1-alkenes. Detailed analyses of those fatty acids by gas chromatography-mass spectrometry after 6- to 10-week incubations allowed the identification of saturated 2- and 4-ethyl-, 2- and 4-methyl-, and monounsaturated 4-methyl-branched fatty acids with chain lengths that correlated with those of the 1-alkene. The growth of D. aliphaticivorans on (per)deuterated 1-alkenes provided direct evidence of the anaerobic transformation of these alkenes into the corresponding 1-alcohols and into linear as well as 10- and 4-methyl-branched fatty acids. Experiments performed with [(13)C]bicarbonate indicated that the initial activation of 1-alkene by the addition of inorganic carbon does not occur. These results demonstrate that D. aliphaticivorans metabolizes 1-alkene by the oxidation of the double bond at C-1 and by the subterminal addition of organic carbon at both ends of the molecule [C-2 and C-(omega-1)]. The detection of ethyl-branched fatty acids from unlabeled 1-alkenes further suggests that carbon addition also occurs at C-3. Alkylsuccinates were not observed as potential initial intermediates in alkene metabolism. Based on our observations, the first pathways for anaerobic 1-alkene metabolism in an anaerobic bacterium are proposed. Those pathways indicate that diverse initial reactions of 1-alkene activation can occur simultaneously in the same strain of sulfate-reducing bacterium. PMID:17965214

  10. Genetic engineering of Geobacillus spp.

    PubMed

    Kananavičiūtė, Rūta; Čitavičius, Donaldas

    2015-04-01

    Members of the genus Geobacillus are thermophiles that are of great biotechnological importance, since they are sources of many thermostable enzymes. Because of their metabolic versatility, geobacilli can be used as whole-cell catalysts in processes such as bioconversion and bioremediation. The effective employment of Geobacillus spp. requires the development of reliable methods for genetic engineering of these bacteria. Currently, genetic manipulation tools and protocols are under rapid development. However, there are several convenient cloning vectors, some of which replicate autonomously, while others are suitable for the genetic modification of chromosomal genes. Gene expression systems are also intensively studied. Combining these tools together with proper techniques for DNA transfer, some Geobacillus strains were shown to be valuable producers of recombinant proteins and industrially important biochemicals, such as ethanol or isobutanol. This review encompasses the progress made in the genetic engineering of Geobacillus spp. and surveys the vectors and transformation methods that are available for this genus. PMID:25659824

  11. Diversity and abundance of n-alkane-degrading bacteria in the near-surface soils of a Chinese onshore oil and gas field

    NASA Astrophysics Data System (ADS)

    Xu, K.; Tang, Y.; Ren, C.; Zhao, K.; Sun, Y.

    2013-03-01

    Alkane-degrading bacteria have long been used as an important biological indicator for oil and gas prospecting, but their ecological characteristics in hydrocarbon microseep habitats are still poorly understood. In this study, the diversity and abundance of n-alkane-degrading bacterial community in the near-surface soils of a Chinese onshore oil and gas field were investigated using molecular techniques. Terminal restriction fragment length polymorphism (T-RFLP) analyses in combination with cloning and sequencing of alkB genes revealed that Gram-negative genotypes (Alcanivorax and Acinetobacter) dominated n-alkane-degrading bacterial communities in the near-surface soils of oil and gas reservoirs, while the dominant microbial communities were Gram-positive bacteria (Mycobacterium and Rhodococcus) in background soil. Real-time quantitative polymerase chain reaction (PCR) results furthermore showed that the abundance of alkB genes increased substantially in the surface soils above oil and gas reservoirs even though only low or undetectable concentrations of hydrocarbons were measured in these soils. The results of this study implicate that trace amounts of volatile hydrocarbons migrate from oil and gas reservoirs, and likely result in the changes of microbial communities in the near-surface soil.

  12. Synthesis and characterization of anaerobic degradation biomarkers of n-alkanes via hydroxylation/carboxylation pathways.

    PubMed

    Zhou, Jing; Bian, Xin-Yu; Zhou, Lei; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong

    2016-01-01

    Metabolite profiling is a powerful method in research on anaerobic biodegradation of hydrocarbons. Hydroxylation and carboxylation are proposed pathways in anaerobic degradation but very little direct evidence is available about metabolites and signature biomarkers. 2-Acetylalkanoic acid is a potential signature metabolite because of its unique and specific structure among possible intermediates. A procedure for the synthesis of four homologues with various carbon chain lengths was proposed and the characteristics of 2-acetyl- alkanoic acid esters were investigated using four derivatization processes, namely methyl, ethyl, n-butyl and trimethylsilyl esterification. Four intermediate fragments observed were at m/z 73 + 14n, 87 + 14n, 102 + 14n (n = 1, 2 and 4 for methyl, ethyl and n-butyl ester, respectively) and [M - 42]+ for three of the derivatization methods. For silylation, characteristic ions were observed at m/z 73, 117, [M - 42](+) and [M - 55](+). These are basic and significant data for the future identification of potential intermediates of the hydroxylation and carboxylation pathways in hydrocarbon degradation. PMID:26863073

  13. Draft Genome Sequence of Geobacillus subterraneus Strain K, a Hydrocarbon-Oxidizing Thermophilic Bacterium Isolated from a Petroleum Reservoir in Kazakhstan

    PubMed Central

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Tourova, Tatiyana P.

    2016-01-01

    The draft genome sequence of Geobacillus subterraneus strain K, a thermophilic aerobic oil-oxidizing bacterium isolated from production water of the Uzen high-temperature oil field in Kazakhstan, is presented here. The genome is annotated for elucidation of the genomic and phenotypic diversity of thermophilic alkane-oxidizing bacteria. PMID:27491973

  14. Draft Genome Sequence of Geobacillus subterraneus Strain K, a Hydrocarbon-Oxidizing Thermophilic Bacterium Isolated from a Petroleum Reservoir in Kazakhstan.

    PubMed

    Poltaraus, Andrey B; Sokolova, Diyana S; Grouzdev, Denis S; Ivanov, Timophey M; Malakho, Sophia G; Korshunova, Alena V; Tourova, Tatiyana P; Nazina, Tamara N

    2016-01-01

    The draft genome sequence of Geobacillus subterraneus strain K, a thermophilic aerobic oil-oxidizing bacterium isolated from production water of the Uzen high-temperature oil field in Kazakhstan, is presented here. The genome is annotated for elucidation of the genomic and phenotypic diversity of thermophilic alkane-oxidizing bacteria. PMID:27491973

  15. On the effects of the dispersant Corexit 9500© during the degradation process of n-alkanes and PAHs in marine sediments.

    PubMed

    Macías-Zamora, J V; Meléndez-Sánchez, A L; Ramírez-Álvarez, N; Gutiérrez-Galindo, E A; Orozco-Borbón, M V

    2014-02-01

    In many coastal countries, oil spill contingency plans include several alternatives for removal of the spilled oil from the ocean. Frequently, these plans include dispersants. Because this process applies chemical substances that may add toxicity to oil that already contains toxic compounds, it is, at times, a controversial method to fight oil pollution. Additionally, local conditions may result in particular complications. We investigated the possible effects of the dispersant Corexit 9500© under conditions similar to those of subtropical oceans. We used fuel oil #6+ diesel as the test mixture. Under certain conditions, at least part of the dispersed oil may reach the sediment, particularly if the dispersant is applied in coastal waters. Nine experimental units were used in this experiment. Similar conditions of water temperature, salinity, air fluxes into the experimental units, and hydrocarbon concentrations in sediments were used. Two treatments and one control, each one with three replicates, were carried out. We concentrated our investigation on sediment, although measurements of water were also taken. Our results suggest that once the oil has penetrated the sediment, no significant differences exist between oil that contains dispersant and oil without dispersant. Noticeable degradation of aliphatic hydrocarbons occurred mainly in the low molecular weight aliphatic hydrocarbons and not in the others. Apparently, degradation of aromatics was easier than that of alkanes. However, some differences were noticed for the degradation of PAHs in the sediment, suggesting a faster degradation under particular conditions in aerobic environments such as under this experiment. PMID:24162369

  16. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes.

    PubMed

    van Beilen, J B; Panke, S; Lucchini, S; Franchini, A G; Röthlisberger, M; Witholt, B

    2001-06-01

    The Pseudomonas putida GPo1 (commonly known as Pseudomonas oleovorans GPo1) alkBFGHJKL and alkST gene clusters, which encode proteins involved in the conversion of n-alkanes to fatty acids, are located end to end on the OCT plasmid, separated by 9.7 kb of DNA. This DNA segment encodes, amongst others, a methyl-accepting transducer protein (AlkN) that may be involved in chemotaxis to alkanes. In P. putida P1, the alkBFGHJKL and alkST gene clusters are flanked by almost identical copies of the insertion sequence ISPpu4, constituting a class 1 transposon. Other insertion sequences flank and interrupt the alk genes in both strains. Apart from the coding regions of the GPo1 and P1 alk genes (80-92% sequence identity), only the alkB and alkS promoter regions are conserved. Competition experiments suggest that highly conserved inverted repeats in the alkB and alkS promoter regions bind ALKS: PMID:11390693

  17. Draft Genome Sequence of a Thermophilic Desulfurization Bacterium, Geobacillus thermoglucosidasius Strain W-2

    PubMed Central

    Zhu, Lin; Li, Mingchang; Guo, Shuyi

    2016-01-01

    Geobacillus thermoglucosidasius strain W-2 is a thermophilic bacterium isolated from a deep-subsurface oil reservoir in northern China, which is capable of degrading organosulfur compounds. Here, we report the draft genome sequence of G. thermoglucosidasius strain W-2, which may help to elucidate the genetic basis of biodegradation of organosulfur pollutants under heated conditions. PMID:27491977

  18. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes.

    PubMed

    Pérez-de-Mora, Alfredo; Engel, Marion; Schloter, Michael

    2011-11-01

    Unraveling functional genes related to biodegradation of organic compounds has profoundly improved our understanding of biological remediation processes, yet the ecology of such genes is only poorly understood. We used a culture-independent approach to assess the abundance and diversity of bacteria catalyzing the degradation of n-alkanes with a chain length between C(5) and C(16) at a forest site co-contaminated with mineral oil hydrocarbons and metals for nearly 60 years. The alkB gene coding for a rubredoxin-dependent alkane monooxygenase enzyme involved in the initial activation step of aerobic aliphatic hydrocarbon metabolism was used as biomarker. Within the area of study, four different zones were evaluated: one highly contaminated, two intermediately contaminated, and a noncontaminated zone. Contaminant concentrations, hydrocarbon profiles, and soil microbial respiration and biomass were studied. Abundance of n-alkane-degrading bacteria was quantified via real-time PCR of alkB, whereas genetic diversity was examined using molecular fingerprints (T-RFLP) and clone libraries. Along the contamination plume, hydrocarbon profiles and increased respiration rates suggested on-going natural attenuation at the site. Gene copy numbers of alkB were similar in contaminated and control areas. However, T-RFLP-based fingerprints suggested lower diversity and evenness of the n-alkane-degrading bacterial community in the highly contaminated zone compared to the other areas; both diversity and evenness were negatively correlated with metal and hydrocarbon concentrations. Phylogenetic analysis of alkB denoted a shift of the hydrocarbon-degrading bacterial community from Gram-positive bacteria in the control zone (most similar to Mycobacterium and Nocardia types) to Gram-negative genotypes in the contaminated zones (Acinetobacter and alkB sequences with little similarity to those of known bacteria). Our results underscore a qualitative rather than a quantitative response of

  19. Alcanivorax dieselolei, an alkane-degrading bacterium associated with the mucus of the zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa).

    PubMed

    Campos, F F; Garcia, J E; Luna-Finkler, C L; Davolos, C C; Lemos, M V F; Pérez, C D

    2015-05-01

    Analyses of 16S rDNA genes were used to identify the microbiota isolated from the mucus of the zoanthid Palythoa caribaeorum at Porto de Galinhas on the coast of Pernambuco State, Brazil. This study is important as the first report of this association, because of the potential biotechnological applications of the bacterium Alcanivorax dieselolei, and as evidence for the presence of a hydrocarbon degrading bacterium in a reef ecosystem such as Porto de Galinhas. PMID:26132028

  20. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases

    PubMed Central

    Ji, Yurui; Mao, Guannan; Wang, Yingying; Bartlam, Mark

    2013-01-01

    Environmental microbes utilize four degradation pathways for the oxidation of n-alkanes. Although the enzymes degrading n-alkanes in different microbes may vary, enzymes functioning in the first step in the aerobic degradation of alkanes all belong to the alkane hydroxylases. Alkane hydroxylases are a class of enzymes that insert oxygen atoms derived from molecular oxygen into different sites of the alkane terminus (or termini) depending on the type of enzymes. In this review, we summarize the different types of alkane hydroxylases, their degrading steps, and compare typical enzymes from various classes with regard to their three-dimensional structures, in order to provide insights into how the enzymes mediate their different roles in the degradation of n-alkanes and what determines their different substrate ranges. Through the above analyzes, the degrading mechanisms of enzymes can be elucidated and molecular biological methods can be utilized to expand their catalytic roles in the petrochemical industry or in bioremediation of oil-contaminated environments. PMID:23519435

  1. BIODEGRADATION AND GAS-EXCHANGE OF GASEOUS ALKANES IN MODEL ESTUARINE ECOSYSTEMS

    EPA Science Inventory

    Gas exchange-biodegradation experiments conducted in model estuarine ecosystems indicate that the ease of degradation of gaseious normal alkanes increases with chain length. The behavior of gaseous perhalogenated alkanes can be explained by gas exchange alone with no degradation....

  2. Transformation of chenodeoxycholic acid by thermophilic Geobacillus stearothermophilus.

    PubMed

    Afzal, Mohammad; Oommen, Sosamma; Al-Awadi, Samira

    2011-01-01

    We performed a series of experiments with Geobacillus stearothermophilus, a thermophile isolated from oil-contaminated soil in the Kuwaiti desert. The organism has a good potential for the transformation of a broad spectrum of organic molecules such as steroids, amino acids, and aromatic hydrocarbons. In the present study, we tested its potential for the transformation of a bile component, chenodeoxycholic acid (CDCA). Five transformed products, namely, cholic acid, methylcholate, methylchenodeoxycholate, 3α-hydroxy-7-oxo-5β-cholanic acid, and 7α-hydroxy-3-oxo-5β-cholanic acid, were the major transformation products catalyzed by G. stearothermophilus. Under aerobic conditions, no evidence of side chain degradation, ring cleavage, or dehydrogenation was found among the metabolites of CDCA. CDCA transformation by a thermophile is reported for the first time. PMID:21838799

  3. Stimulation of Lipase Production During Bacterial Growth on Alkanes

    PubMed Central

    Breuil, Colette; Shindler, D. B.; Sijher, J. S.; Kushner, D. J.

    1978-01-01

    Acinetobacter lwoffi strain O16, a facultative psychrophile, can grow on crude oil, hexadecane, octadecane, and most alkanes when tested at 20 but not at 30°C. Growth occurred on a few alkanes at 30°C but after a longer lag than at 20°C. Cells grown on alkanes as sole carbon sources had high levels of cell-bound lipase. In contrast, previous work has shown that those grown on complex medium produced cell-free lipase and those grown on defined medium without alkanes produced little or no lipase. Low concentrations of the detergent Triton X-100 caused the liberation of most of the lipase activity of alkane-grown cells and increased total lipase activity. When ethanol and hexadecane were both present in a mineral medium, diauxic growth occurred; until the ethanol was completely used up, hexadecane was not utilized, and the lipase activity was very low. When growth on hexadecane began, lipase activity increased, reaching a level 50- to 100-fold higher than that of cells growing on ethanol. A similar pattern of lipase formation and hexadecane utilization was observed with Pseudomonas aeruginosa. Whenever A. lwoffi and other bacteria degraded alkanes they exhibited substantial lipase activity. Not all bacteria that produced lipase, however, could attack alkanes. Bacteria that could not produce lipase did not attack alkanes. The results suggest that a correlation may exist between lipase formation and alkane utilization. PMID:627533

  4. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle

    PubMed Central

    Lea-Smith, David J.; Biller, Steven J.; Davey, Matthew P.; Cotton, Charles A. R.; Perez Sepulveda, Blanca M.; Turchyn, Alexandra V.; Scanlan, David J.; Smith, Alison G.; Chisholm, Sallie W.; Howe, Christopher J.

    2015-01-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2–540 pg alkanes per mL per day, which translates into a global ocean yield of ∼308–771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities. PMID:26438854

  5. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle.

    PubMed

    Lea-Smith, David J; Biller, Steven J; Davey, Matthew P; Cotton, Charles A R; Perez Sepulveda, Blanca M; Turchyn, Alexandra V; Scanlan, David J; Smith, Alison G; Chisholm, Sallie W; Howe, Christopher J

    2015-11-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2-540 pg alkanes per mL per day, which translates into a global ocean yield of ∼ 308-771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities. PMID:26438854

  6. Photocatalytic degradation of 1,10-dichlorodecane in aqueous suspensions of TiO{sub 2}: A reaction of adsorbed chlorinated alkane with surface hydroxyl radicals

    SciTech Connect

    El-Morsi, T.M.; Bubakowski, W.R.; Abd-El-Aziz, A.S.; Friesen, K.J.

    2000-03-15

    1,10-Dichlorodecane (D{sub 2}C{sub 10}) is shown to be effectively photodegraded in aqueous suspensions of TiO{sub 2} using a photoreactor equipped with 300 nm lamps. Solutions exposed to UV light intensities of 3.6 x 10{sup {minus}5} Ein L{sup {minus}1} min{sup {minus}1}, established by ferrioxalate actinometry, showed negligible direct photolysis in the absence of TiO{sub 2} and a D{sub 2}C{sub 10} concentration approaching its solubility limit. Kinetics of photodegradation followed a Langmuir-Hinshelwood model suggesting that the reaction occurred on the surface of the photocatalyst. The presence of h{sup +}{sub vb} and OH{sm_bullet} radical scavengers, including methanol and iodide, inhibited the degradation supporting a photooxidation reaction. Electron scavengers (Ag{sup +}, Cu{sup 2+}, and Fe{sup 3+}) had small effects on the degradation rate. The lack of transformation of D{sub 2}C{sub 10} in acetonitrile as solvent indicated that the major oxidants were OH{sm_bullet} radicals. The presence of tetranitromethane, effectively eliminating the formation of free OH{sm_bullet} radicals, did not affect the degradation rates significantly. This result, combined with observed increases in photolysis rates with the degree of adsorption of D{sub 2}C{sub 10} onto the surface of the photocatalyst, confirmed that the reaction involved adsorbed 1,10-dichlorodecane and surface bound OH{sm_bullet} radicals.

  7. Draft Genome Sequence of Geobacillus thermopakistaniensis Strain MAS1

    PubMed Central

    Rashid, Naeem; Ayyampalayam, Saravanaraj

    2014-01-01

    Geobacillus thermopakistaniensis strain MAS1 was isolated from a hot spring located in the Northern Areas of Pakistan. The draft genome sequence was 3.5 Mb and identified a number of genes of potential industrial importance, including genes encoding glycoside hydrolases, pullulanase, amylopullulanase, glycosidase, and alcohol dehydrogenases. PMID:24903880

  8. Draft Genome Sequence of Geobacillus thermopakistaniensis Strain MAS1.

    PubMed

    Siddiqui, Masood Ahmed; Rashid, Naeem; Ayyampalayam, Saravanaraj; Whitman, William B

    2014-01-01

    Geobacillus thermopakistaniensis strain MAS1 was isolated from a hot spring located in the Northern Areas of Pakistan. The draft genome sequence was 3.5 Mb and identified a number of genes of potential industrial importance, including genes encoding glycoside hydrolases, pullulanase, amylopullulanase, glycosidase, and alcohol dehydrogenases. PMID:24903880

  9. Geobacillus sp., a thermophilic soil bacterium producing volatile antibiotics.

    PubMed

    Ren, Yuhao; Strobel, Gary; Sears, Joe; Park, Melina

    2010-07-01

    Geobacillus, a bacterial genus, is represented by over 25 species of Gram-positive isolates from various man-made and natural thermophilic areas around the world. An isolate of this genus (M-7) has been acquired from a thermal area near Yellowstone National Park, MT and partially characterized. The cells of this organism are globose (ca. 0.5 mu diameter), and they are covered in a matrix capsule which gives rise to elongate multicelled bacilliform structures (ranging from 3 to 12 mum) as seen by light and atomic force microscopy, respectively. The organism produces unique petal-shaped colonies (undulating margins) on nutrient agar, and it has an optimum pH of 7.0 and an optimum temperature range of 55-65 degrees C. The partial 16S rRNA sequence of this organism has 97% similarity with Geobacillus stearothermophilus, one of its closest relatives genetically. However, uniquely among all members of this genus, Geobacillus sp. (M-7) produces volatile organic substances (VOCs) that possess potent antibiotic activities. Some of the more notable components of the VOCs are benzaldehyde, acetic acid, butanal, 3-methyl-butanoic acid, 2-methyl-butanoic acid, propanoic acid, 2-methyl-, and benzeneacetaldehyde. An exposure of test organisms such as Aspergillus fumigatus, Botrytis cinerea, Verticillium dahliae, and Geotrichum candidum produced total inhibition of growth on a 48-h exposure to Geobacillus sp.(M-7) cells (ca.10(7)) and killing at a 72-h exposure at higher bacterial cell concentrations. A synthetic mixture of those available volatile compounds, at the ratios occurring in Geobacillus sp. (M-7), mimicked the bioactivity of this organism. PMID:20091406

  10. Abyssivirga alkaniphila gen. nov., sp. nov., an alkane-degrading, anaerobic bacterium from a deep-sea hydrothermal vent system, and emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica.

    PubMed

    Schouw, Anders; Leiknes Eide, Tove; Stokke, Runar; Birger Pedersen, Rolf; Helene Steen, Ida; Bødtker, Gunhild

    2016-04-01

    A strictly anaerobic, mesophilic, syntrophic, alkane-degrading strain, L81T, was isolated from a biofilm sampled from a black smoker chimney at the Loki's Castle vent field. Cells were straight, rod-shaped, Gram-positive-staining and motile. Growth was observed at pH 6.2-9.5, 14-42 °C and 0.5-6 % (w/w) NaCl, with optima at pH 7.0-8.2, 37 °C and 3% (w/w) NaCl. Proteinaceous substrates, sugars, organic acids and hydrocarbons were utilized for growth. Thiosulfate was used as an external electron acceptor during growth on crude oil. Strain L81T was capable of syntrophic hydrocarbon degradation when co-cultured with a methanogenic archaeon, designated strain LG6, isolated from the same enrichment. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain L81T is affiliated with the family Lachnospiraceae, and is most closely related to the type strains of Natranaerovirga pectinivora (92 % sequence similarity) and Natranaerovirga hydrolytica (90%). The major cellular fatty acids of strain L81T were C15 : 0, anteiso-C15 : 0 and C16 : 0, and the profile was distinct from those of the species of the genus Natranaerovirga. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol, three unidentified phospholipids, four unidentified glycolipids and two unidentified phosphoglycolipids. The G+C content of genomic DNA was determined to be 31.7 mol%. Based on our phenotypic, phylogenetic and chemotaxonomic results, strain L81T is considered to represent a novel species of a new genus of the family Lachnospiraceae, for which we propose the name Abyssivirga alkaniphila gen. nov., sp. nov. The type strain of Abyssivirga alkaniphila is L81T (=DSM 29592T=JCM 30920T). We also provide emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica. PMID:26822139

  11. Novel enzymatic activity of cell free extract from thermophilic Geobacillus sp. UZO 3 catalyzes reductive cleavage of diaryl ether bonds of 2,7-dichlorodibenzo-p-dioxin.

    PubMed

    Suzuki, Yuzoh; Nakamura, Masaya; Otsuka, Yuichiro; Suzuki, Nao; Ohyama, Keisuke; Kawakami, Takeshi; Sato, Kanna; Kajita, Shinya; Hishiyama, Shojiro; Fujii, Takeo; Takahashi, Atsushi; Katayama, Yoshihiro

    2011-04-01

    We characterized the ability of the cell free extract from polychlorinated dibenzo-p-dioxins degrading bacterium Geobacillus sp. UZO 3 to reduce even highly chlorinated dibenzo-p-dioxins such as octachlorodibenzo-p-dioxins in incineration fly ash. The degradation of 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) as a model dioxin catalyzed by the cell free extract from this strain implicates that the ether bonds of 2,7-DCDD molecule undergo reductive cleavage, since 4',5-dichloro-2-hydroxydiphenyl ether and 4-chlorophenol were detected as intermediate products of 2,7-DCDD degradation. PMID:21435685

  12. Isolation and characterization of N-acylhomoserine lactonase from the thermophilic bacterium, Geobacillus caldoxylosilyticus YS-8.

    PubMed

    Seo, Myung-Ji; Lee, Beom-Seon; Pyun, Yu-Ryang; Park, Hoon

    2011-01-01

    Geobacillus caldoxylosilyticus YS-8, which was isolated from volcanic soil in Indonesia, was found to degrade various N-acylhomoserine lactones (AHLs) with different lengths and acyl side-chain substitutions over a wide temperature range of 30-70 °C. The purified AHL-degrading enzyme showed a single band of 32 kDa, and its N-terminal amino acid sequence was determined to be ANVIKARPKLYVMDN, tentatively suggesting that the AHL-degrading enzyme was AHL lactonase. The AHL-degrading activity of the purified enzyme was maximized at pH 7.5 and 50 °C, and it retained about 50% of its activity even after a heat treatment at 60 °C for 3 h, exhibiting properties consistent with a thermostable enzyme. The mass spectrometric analysis demonstrated that the AHL-degrading enzyme catalyzed lactone ring opening of N-3-oxohexanoyl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone by hydrolyzing the lactones and working as an AHL lactonase. PMID:21897031

  13. Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition.

    PubMed

    Tan, BoonFei; Semple, Kathleen; Foght, Julia

    2015-05-01

    A methanogenic short-chain alkane-degrading culture (SCADC) was enriched from oil sands tailings and transferred several times with a mixture of C6, C7, C8 and C10 n-alkanes as the predominant organic carbon source, plus 2-methylpentane, 3-methylpentane and methylcyclopentane as minor components. Cultures produced ∼40% of the maximum theoretical methane during 18 months incubation while depleting the n-alkanes, 2-methylpentane and methylcyclopentane. Substrate depletion correlated with detection of metabolites characteristic of fumarate activation of 2-methylpentane and methylcyclopentane, but not n-alkane metabolites. During active methanogenesis with the mixed alkanes, reverse-transcription PCR confirmed the expression of functional genes (assA and bssA) associated with hydrocarbon addition to fumarate. Pyrosequencing of 16S rRNA genes amplified during active alkane degradation revealed enrichment of Clostridia (particularly Peptococcaceae) and methanogenic Archaea (Methanosaetaceae and Methanomicrobiaceae). Methanogenic cultures transferred into medium containing sulphate produced sulphide, depleted n-alkanes and produced the corresponding succinylated alkane metabolites, but were slow to degrade 2-methylpentane and methylcyclopentane; these cultures were enriched in Deltaproteobacteria rather than Clostridia. 3-Methylpentane was not degraded by any cultures. Thus, nominally methanogenic oil sands tailings harbour dynamic and versatile hydrocarbon-degrading fermentative syntrophs and sulphate reducers capable of degrading n-, iso- and cyclo-alkanes by addition to fumarate. PMID:25873461

  14. Isolation and complete genome sequence of the thermophilic Geobacillus sp. 12AMOR1 from an Arctic deep-sea hydrothermal vent site.

    PubMed

    Wissuwa, Juliane; Stokke, Runar; Fedøy, Anita-Elin; Lian, Kjersti; Smalås, Arne Oskar; Steen, Ida Helene

    2016-01-01

    Members of the genus Geobacillus have been isolated from a wide variety of habitats worldwide and are the subject for targeted enzyme utilization in various industrial applications. Here we report the isolation and complete genome sequence of the thermophilic starch-degrading Geobacillus sp. 12AMOR1. The strain 12AMOR1 was isolated from deep-sea hot sediment at the Jan Mayen hydrothermal Vent Site. Geobacillus sp. 12AMOR1 consists of a 3,410,035 bp circular chromosome and a 32,689 bp plasmid with a G + C content of 52 % and 47 %, respectively. The genome comprises 3323 protein-coding genes, 88 tRNA species and 10 rRNA operons. The isolate grows on a suite of sugars, complex polysaccharides and proteinous carbon sources. Accordingly, a versatility of genes encoding carbohydrate-active enzymes (CAZy) and peptidases were identified in the genome. Expression, purification and characterization of an enzyme of the glycoside hydrolase family 13 revealed a starch-degrading capacity and high thermal stability with a melting temperature of 76.4 °C. Altogether, the data obtained point to a new isolate from a marine hydrothermal vent with a large bioprospecting potential. PMID:26913091

  15. Diverse alkane hydroxylase genes in microorganisms and environments

    PubMed Central

    Nie, Yong; Chi, Chang-Qiao; Fang, Hui; Liang, Jie-Liang; Lu, She-Lian; Lai, Guo-Li; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-01-01

    AlkB and CYP153 are important alkane hydroxylases responsible for aerobic alkane degradation in bioremediation of oil-polluted environments and microbial enhanced oil recovery. Since their distribution in nature is not clear, we made the investigation among thus-far sequenced 3,979 microbial genomes and 137 metagenomes from terrestrial, freshwater, and marine environments. Hundreds of diverse alkB and CYP153 genes including many novel ones were found in bacterial genomes, whereas none were found in archaeal genomes. Moreover, these genes were detected with different distributional patterns in the terrestrial, freshwater, and marine metagenomes. Hints for horizontal gene transfer, gene duplication, and gene fusion were found, which together are likely responsible for diversifying the alkB and CYP153 genes adapt to the ubiquitous distribution of different alkanes in nature. In addition, different distributions of these genes between bacterial genomes and metagenomes suggested the potentially important roles of unknown or less common alkane degraders in nature. PMID:24829093

  16. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation.

    PubMed

    Liang, Bo; Wang, Li-Ying; Mbadinga, Serge Maurice; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-12-01

    The methanogenic alkanes-degrading enrichment culture which had been incubated for over 1,300 days amended with n-alkanes (C15-C20) was investigated through clone libraries of bacteria, archaea and assA, mcrA functional genes. These enrichment cultures were obtained from oily sludge after an initial incubation of the oily sludge without any carbon source and then an enrichment transfer with n-alkanes (C15-C20) for acclimation. Activation of alkanes, methane precursor generation and methanogenic pathways are considered as three pivotal stages for the continuous methanogenesis from degradation of alkanes. The presence of functional genes encoding the alkylsuccinate synthase α-subunit indicated that fumarate addition is most likely the one of initial activation step for degradation of n-alkanes. Degradation intermediates of n-alkanes were octadecanoate, hexadecanoate, butyrate, isobutyrate, acetate and propionate, which could provide the appropriate substrates for acetate formation. Both methyl coenzyme M reductase gene and 16S rRNA gene analysis showed that microorganisms of Methanoseata were the most dominant methanogens, capable of using acetate as the electron donor to produce methane. Bacterial clone libraries showed organisms of Anaerolineaceae (within the phylum of Chloroflexi) were predominant (45.5%), indicating syntrophically cooperation with Methanosaeta archaea was likely involved in the process of methanogenic degradation of alkanes. Alkanes may initially be activated via fumarate addition and degraded to fatty acids, then converted to acetate, which was further converted to methane and carbon dioxide by methanogens. PMID:26080793

  17. Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions.

    PubMed

    Hasinger, Marion; Scherr, Kerstin E; Lundaa, Tserennyam; Bräuer, Leopold; Zach, Clemens; Loibner, Andreas Paul

    2012-02-20

    Crude oil consists of a large number of hydrocarbons with different susceptibility to microbial degradation. The influence of hydrocarbon structure and molecular weight on hydrocarbon biodegradation under anaerobic conditions is not fully explored. In this study oxygen, nitrate and sulphate served as terminal electron acceptors (TEAs) for the microbial degradation of a paraffin-rich crude oil in a freshly contaminated soil. During 185 days of incubation, alkanes from n-C11 to n-C39, three n- to iso-alkane ratios commonly used as weathering indicators and the unresolved complex mixture (UCM) were quantified and statistically analyzed. The use of different TEAs for hydrocarbon degradation resulted in dissimilar degradative patterns for n- and iso-alkanes. While n-alkane biodegradation followed well-established patterns under aerobic conditions, lower molecular weight alkanes were found to be more recalcitrant than mid- to high-molecular weight alkanes under nitrate-reducing conditions. Biodegradation with sulphate as the TEA was most pronounced for long-chain (n-C32 to n-C39) alkanes. The observation of increasing ratios of n-C17 to pristane and of n-C18 to phytane provides first evidence of the preferential degradation of branched over normal alkanes under sulphate reducing conditions. The formation of distinctly different n- and iso-alkane biodegradation fingerprints under different electron accepting conditions may be used to assess the occurrence of specific degradation processes at a contaminated site. The use of n- to iso-alkane ratios for this purpose may require adjustment if applied for anaerobic sites. PMID:22001845

  18. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    PubMed

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  19. Liquid-liquid interfaces of semifluorinated alkane diblock copolymers with water, alkanes, and perfluorinated alkanes.

    SciTech Connect

    Perahia, Dvora, Dr.; Pierce, Flint; Tsige, Mesfin; Grest, Gary Stephen, Dr.

    2008-08-01

    The liquid-liquid interface between semifluorinated alkane diblock copolymers of the form F3C(CF2)n-1-(CH2)m-1CH3 and water, protonated alkanes, and perfluorinated alkanes are studied by fully atomistic molecular dynamics simulations. A modified version of the OPLS-AA (Optimized Parameter for Liquid Simulation All-Atom) force field of Jorgensen et al. has been used to study the interfacial behavior of semifluorinated diblocks. Aqueous interfaces are found to be sharp, with correspondingly large values of the interfacial tension. Due to the reduced hydrophobicity of the protonated block compared to the fluorinated block, hydrogen enhancement is observed at the interface. Water dipoles in the interfacial region are found to be oriented nearly parallel to the liquid-liquid interface. A number of protonated alkanes and perfluorinated alkanes are found to be mutually miscible with the semifluorinated diblocks. For these liquids, interdiffusion follows the expected Fickian behavior, and concentration-dependent diffusivities are determined.

  20. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    EPA Science Inventory

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  1. Structure-Specificity Relationships of an Intracellular Xylanase from Geobacillus stearothermophilus

    SciTech Connect

    Solomon,V.; Teplitsky, A.; Shulami, S.; Zolotnitsky, G.; Shoham, Y.; Shoham, G.

    2007-01-01

    Geobacillus stearothermophilus T-6 is a thermophilic Gram-positive bacterium that produces two selective family 10 xylanases which both take part in the complete degradation and utilization of the xylan polymer. The two xylanases exhibit significantly different substrate specificities. While the extracellular xylanase (XT6; MW 43.8 kDa) hydrolyzes the long and branched native xylan polymer, the intracellular xylanase (IXT6; MW 38.6 kDa) preferentially hydrolyzes only short xylo-oligosaccharides. In this study, the detailed three-dimensional structure of IXT6 is reported, as determined by X-ray crystallography. It was initially solved by molecular replacement and then refined at 1.45 {angstrom} resolution to a final R factor of 15.0% and an R{sub free} of 19.0%. As expected, the structure forms the classical ({alpha}/{beta}){sub 8} fold, in which the two catalytic residues (Glu134 and Glu241) are located on the inner surface of the central cavity. The structure of IXT6 was compared with the highly homologous extracellular xylanase XT6, revealing a number of structural differences between the active sites of the two enzymes. In particular, structural differences derived from the unique subdomain in the carboxy-terminal region of XT6, which is completely absent in IXT6. These structural modifications may account for the significant differences in the substrate specificities of these otherwise very similar enzymes.

  2. Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothermophilus.

    PubMed

    Solomon, V; Teplitsky, A; Shulami, S; Zolotnitsky, G; Shoham, Y; Shoham, G

    2007-08-01

    Geobacillus stearothermophilus T-6 is a thermophilic Gram-positive bacterium that produces two selective family 10 xylanases which both take part in the complete degradation and utilization of the xylan polymer. The two xylanases exhibit significantly different substrate specificities. While the extracellular xylanase (XT6; MW 43.8 kDa) hydrolyzes the long and branched native xylan polymer, the intracellular xylanase (IXT6; MW 38.6 kDa) preferentially hydrolyzes only short xylo-oligosaccharides. In this study, the detailed three-dimensional structure of IXT6 is reported, as determined by X-ray crystallography. It was initially solved by molecular replacement and then refined at 1.45 A resolution to a final R factor of 15.0% and an R(free) of 19.0%. As expected, the structure forms the classical (alpha/beta)(8) fold, in which the two catalytic residues (Glu134 and Glu241) are located on the inner surface of the central cavity. The structure of IXT6 was compared with the highly homologous extracellular xylanase XT6, revealing a number of structural differences between the active sites of the two enzymes. In particular, structural differences derived from the unique subdomain in the carboxy-terminal region of XT6, which is completely absent in IXT6. These structural modifications may account for the significant differences in the substrate specificities of these otherwise very similar enzymes. PMID:17642511

  3. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments

    PubMed Central

    Bose, Arpita; Rogers, Daniel R.; Adams, Melissa M.; Joye, Samantha B.; Girguis, Peter R.

    2013-01-01

    Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2–C5) and longer alkanes. C2–C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico (GoM) were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1–C4) then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist). Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4 and 4.5‰, respectively). The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC) implies a transfer of carbon from the alkane to the DIC pool (−3.5 and −6.7‰ for C3 and C4 incubations, respectively). Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1–C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3–C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates (SRRs) in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial

  4. Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus.

    PubMed

    Lee, Dong-Woo; Kim, Dooil; Lee, Yong-Jik; Kim, Jung-Ae; Choi, Ji Young; Kang, Sunghyun; Pan, Jae-Gu

    2013-08-01

    Recent analysis of prokaryotic N(ε)-lysine-acetylated proteins highlights the posttranslational regulation of a broad spectrum of cellular proteins. However, the exact role of acetylation remains unclear due to a lack of acetylated proteome data in prokaryotes. Here, we present the N(ε)-lysine-acetylated proteome of gram-positive thermophilic Geobacillus kaustophilus. Affinity enrichment using acetyl-lysine-specific antibodies followed by LC-MS/MS analysis revealed 253 acetylated peptides representing 114 proteins. These acetylated proteins include not only common orthologs from mesophilic Bacillus counterparts, but also unique G. kaustophilus proteins, indicating that lysine acetylation is pronounced in thermophilic bacteria. These data complement current knowledge of the bacterial acetylproteome and provide an expanded platform for better understanding of the function of acetylation in cellular metabolism. PMID:23696451

  5. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia

    PubMed Central

    Rahman, Raja Noor Zaliha Raja Abd; Leow, Thean Chor; Salleh, Abu Bakar; Basri, Mahiran

    2007-01-01

    Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0) as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%). Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T) and Geobacillus kaustophilus (DSM 7263T). Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T). Conclusion Strain T1T was able to secrete extracellular thermostable lipase into

  6. Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8.

    PubMed

    Hamamura, N; Yeager, C M; Arp, D J

    2001-11-01

    Alkane monooxygenases in Nocardioides sp. strain CF8 were examined at the physiological and genetic levels. Strain CF8 can utilize alkanes ranging in chain length from C(2) to C(16). Butane degradation by butane-grown cells was strongly inhibited by allylthiourea, a copper-selective chelator, while hexane-, octane-, and decane-grown cells showed detectable butane degradation activity in the presence of allylthiourea. Growth on butane and hexane was strongly inhibited by 1-hexyne, while 1-hexyne did not affect growth on octane or decane. A specific 30-kDa acetylene-binding polypeptide was observed for butane-, hexane-, octane-, and decane-grown cells but was absent from cells grown with octane or decane in the presence of 1-hexyne. These results suggest the presence of two monooxygenases in strain CF8. Degenerate primers designed for PCR amplification of genes related to the binuclear-iron-containing alkane hydroxylase from Pseudomonas oleovorans were used to clone a related gene from strain CF8. Reverse transcription-PCR and Northern blot analysis showed that this gene encoding a binuclear-iron-containing alkane hydroxylase was expressed in cells grown on alkanes above C(6). These results indicate the presence of two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8. PMID:11679317

  7. Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism

    PubMed Central

    2014-01-01

    Rhodococcus opacus R7 is a Gram-positive bacterium isolated from a polycyclic aromatic hydrocarbon contaminated soil for its versatile metabolism; indeed the strain is able to grow on naphthalene, o-xylene, and several long- and medium-chain n-alkanes. In this work we determined the degradation of n-alkanes in Rhodococcus opacus R7 in presence of n-dodecane (C12), n-hexadecane (C16), n-eicosane (C20), n-tetracosane (C24) and the metabolic pathway in presence of C12. The consumption rate of C12 was 88%, of C16 was 69%, of C20 was 51% and of C24 it was 78%. The decrement of the degradation rate seems to be correlated to the length of the aliphatic chain of these hydrocarbons. On the basis of the metabolic intermediates determined by the R7 growth on C12, our data indicated that R. opacus R7 metabolizes medium-chain n-alkanes by the primary alcohol formation. This represents a difference in comparison with other Rhodococcus strains, in which a mixture of the two alcohols was observed. By GC-MSD analysis we also identified the monocarboxylic acid, confirming the terminal oxidation. Moreover, the alkB gene cluster from R. opacus R7 was isolated and its involvement in the n-alkane degradation system was investigated by the cloning of this genomic region into a shuttle-vector E. coli-Rhodococcus to evaluate the alkane hydroxylase activity. Our results showed an increased biodegradation of C12 in the recombinant strain R. erythropolis AP (pTipQT1-alkR7) in comparison with the wild type strain R. erythropolis AP. These data supported the involvement of the alkB gene cluster in the n-alkane degradation in the R7 strain. PMID:25401074

  8. Catalytic conversion of light alkanes

    SciTech Connect

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  9. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp.

    SciTech Connect

    Whyte, L.G.; Hawari, J.; Zhou, E.; Bourbonniere, L.; Greer, C.W.; Inniss, W.E.

    1998-07-01

    The psychrotroph Rhodococcus sp. strain Q15 was examined for its ability to degrade individual n-alkanes and diesel fuel at low temperatures, and its alkane catabolic pathway was investigated by biochemical and genetic techniques. At 0 and 5 C, Q15 mineralized the short-chain alkanes dodecane and hexadecane to a greater extent than that observed for the long-chain alkanes octacosane and dotriacontane. Q15 utilized a broad range of aliphatics (C{sub 10} to C{sub 21} alkanes, branched alkanes, and a substituted cyclohexane) present in diesel fuel at 5 C. Mineralization of hexadecane at 5 C was significantly greater in both hydrocarbon-contaminated and pristine soil microcosms seeded with Q15 cells than in uninoculated control soil microcosms. The detection of hexadecane and dodecane metabolic intermediates (1-hexadecanol and 2-hexadecanol and 1-do-decanol and 2-dodecanone, respectively) by solid-phase microextraction-gas chromatography-mass spectrometry and the utilization of potential metabolic intermediates indicated that Q15 oxidizes alkanes by both the terminal oxidation pathway and the subterminal oxidation pathway. Genetic characterization by PCR and nucleotide sequence analysis indicated that Q15 possesses an aliphatic aldehyde dehydrogenase gene highly homologous to the Rhodococcus erythropolis thcA gene. Rhodococcus sp. strain Q15 possessed two large plasmids of approximately 90 and 115 kb (shown to mediate Cd resistance) which were not required for alkane mineralization, although the 90-kb plasmid enhanced mineralization of some alkanes and growth on diesel oil at both 5 and 25 C.

  10. Three novel halotolerant and thermophilic Geobacillus strains from shallow marine vents.

    PubMed

    Maugeri, Teresa L; Gugliandolo, Concetta; Caccamo, Daniela; Stackebrandt, Erko

    2002-10-01

    During a polyphasic taxonomic analysis performed on isolates from shallow marine hydrothermal vents of Eolian Islands (Italy), three thermophilic, halotolerant bacilli, designated as strain 1bw, strain 5-2 and strain 10-1, could not be affiliated to any described species. Physiological and biochemical characteristics, membrane lipids composition, mol % G+C content, and phylogenetic relationships determined on the basis of the 16S rRNA gene sequence analysis, placed these strains within the genus Geobacillus. The three strains were only moderately related to species of Geobacillus and their relatives, members of Saccharococcus. Determination of the relatedness among each other at a higher taxonomic level by DNA-DNA reassociation experiments demonstrated the three isolates to represent three different novel Geobacillus genomospecies. The taxonomic novelty of these three marine strains was substantiated by their physiological properties and by fatty acid patterns that did not match closely those of any Geobacillus type strain. These three novel strains could be of interest to biotechnology because of their ability to produce exopolysaccharides and to adhere on polystirene, characteristics undescribed so far for other Geobacillus species. They are also able to utilise hydrocarbons such as gas oil, kerosene and mineral lubricating oil. Strain 5-2 is tolerant to zinc. PMID:12421083

  11. Complete genome sequences of Geobacillus sp. WCH70, a thermophilic strain isolated from wood compost.

    PubMed

    Brumm, Phillip J; Land, Miriam L; Mead, David A

    2016-01-01

    Geobacillus sp. WCH70 was one of several thermophilic organisms isolated from hot composts in the Middleton, WI area. Comparison of 16 S rRNA sequences showed the strain may be a new species, and is most closely related to G. galactosidasius and G. toebii. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2009 (CP001638). The genome of Geobacillus species WCH70 consists of one circular chromosome of 3,893,306 bp with an average G + C content of 43 %, and two circular plasmids of 33,899 and 10,287 bp with an average G + C content of 40 %. Among sequenced organisms, Geobacillus sp. WCH70 shares highest Average Nucleotide Identity (86 %) with G. thermoglucosidasius strains, as well as similar genome organization. Geobacillus sp. WCH70 appears to be a highly adaptable organism, with an exceptionally high 125 annotated transposons in the genome. The organism also possesses four predicted restriction-modification systems not found in other Geobacillus species. PMID:27123157

  12. The Geobacillus Pan-Genome: Implications for the Evolution of the Genus

    PubMed Central

    Bezuidt, Oliver K.; Pierneef, Rian; Gomri, Amin M.; Adesioye, Fiyin; Makhalanyane, Thulani P.; Kharroub, Karima; Cowan, Don A.

    2016-01-01

    The genus Geobacillus is comprised of a diverse group of spore-forming Gram-positive thermophilic bacterial species and is well known for both its ecological diversity and as a source of novel thermostable enzymes. Although the mechanisms underlying the thermophilicity of the organism and the thermostability of its macromolecules are reasonably well understood, relatively little is known of the evolutionary mechanisms, which underlie the structural and functional properties of members of this genus. In this study, we have compared 29 Geobacillus genomes, with a specific focus on the elements, which comprise the conserved core and flexible genomes. Based on comparisons of conserved core and flexible genomes, we present evidence of habitat delineation with specific Geobacillus genomes linked to specific niches. Our analysis revealed that Geobacillus and Anoxybacillus share a high proportion of genes. Moreover, the results strongly suggest that horizontal gene transfer is a major factor deriving the evolution of Geobacillus from Bacillus, with genetic contributions from other phylogenetically distant taxa. PMID:27252683

  13. Complete genome sequences of Geobacillus sp. WCH70, a thermophilic strain isolated from wood compost

    DOE PAGESBeta

    Brumm, Phillip; Land, Miriam L.; Mead, David

    2016-04-27

    Geobacillus sp. WCH70 was one of several thermophilic organisms isolated from hot composts in the Middleton, WI area. Comparison of 16 S rRNA sequences showed the strain may be a new species, and is most closely related to G. galactosidasius and G. toebii. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2009 (CP001638). The genome of Geobacillus species WCH70 consists of one circular chromosome of 3,893,306 bp with an average G + C content of 43 %, and two circular plasmids of 33,899 and 10,287 bp with anmore » average G + C content of 40 %. Among sequenced organisms, Geobacillus sp. WCH70 shares highest Average Nucleotide Identity (86 %) with G. thermoglucosidasius strains, as well as similar genome organization. Geobacillus sp. WCH70 appears to be a highly adaptable organism, with an exceptionally high 125 annotated transposons in the genome. The organism also possesses four predicted restriction-modification systems not found in other Geobacillus species.« less

  14. Alkane biohydroxylation: Interests, constraints and future developments.

    PubMed

    Soussan, Laurence; Pen, Nakry; Belleville, Marie-Pierre; Marcano, José Sanchez; Paolucci-Jeanjean, Delphine

    2016-03-20

    Alkanes constitute one of the vastest reserves of raw materials for the production of fine chemicals. This paper focuses on recent advances in alkane biohydroxylation, i.e. the bioactivation of alkanes into their corresponding alcohols. Enzyme and whole-cell biocatalysts have been reviewed. Process considerations to implement such biocatalysts in bioreactors at large scale by coupling the bioconversion with cofactor regeneration and product removal are also discussed. PMID:26853477

  15. Biodegradation of C7 and C8 iso-alkanes under methanogenic conditions.

    PubMed

    Abu Laban, Nidal; Dao, Anh; Semple, Kathleen; Foght, Julia

    2015-12-01

    Iso-alkanes comprise a substantial proportion of petroleum and refined products that impact the environment, but their fate is cryptic under methanogenic conditions. We investigated methanogenic biodegradation of C7 and C8 iso-alkanes found in naphtha, specifically 2-methylhexane, 3-methylhexane, 2-methylheptane, 4-methylheptane and 3-ethylhexane. These were incubated as a mixture or individually with enrichment cultures derived from oil sands tailings ponds that generate methane from naphtha components; substrate depletion and methane production were monitored for up to 663 days. 3-Methylhexane and 4-methylheptane were degraded both singly and in the mixture, whereas 2-methylhexane and 2-methylheptane resisted degradation as single substrates but were depleted in the iso-alkane mixture, suggesting co-metabolism. 3-Ethylhexane was degraded neither singly nor with co-substrates. Putative metabolites consistent with succinylated C7 and C8 were detected, suggesting activation by addition of iso-alkanes to fumarate and corresponding to detection of alkylsuccinate synthase-like genes. 454 pyrotag sequencing, cloning and terminal restriction fragment length polymorphism of 16S rRNA genes revealed predominance of a novel member of the family Peptococcaceae (order Clostridiales) and Archaea affiliated with Methanoregula and Methanosaeta. We report here isomer-specific metabolism of C7 -C8 iso-alkanes under methanogenic conditions and propose their activation by a novel Peptococcaceae via addition to fumarate. PMID:25331365

  16. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains.

    PubMed

    Lopes Ferreira, Nicolas; Mathis, Hugues; Labbé, Diane; Monot, Frédéric; Greer, Charles W; Fayolle-Guichard, Françoise

    2007-06-01

    Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism. PMID:17347817

  17. A thiostrepton resistance gene and its mutants serve as selectable markers in Geobacillus kaustophilus HTA426.

    PubMed

    Wada, Keisuke; Kobayashi, Jyumpei; Furukawa, Megumi; Doi, Katsumi; Ohshiro, Takashi; Suzuki, Hirokazu

    2016-01-01

    Effective utilization of microbes often requires complex genetic modification using multiple antibiotic resistance markers. Because a few markers have been used in Geobacillus spp., the present study was designed to identify a new marker for these thermophiles. We explored antibiotic resistance genes functional in Geobacillus kaustophilus HTA426 and identified a thiostrepton resistance gene (tsr) effective at 50 °C. The tsr gene was further used to generate the mutant tsr(H258Y) functional at 55 °C. Higher functional temperature of the mutant was attributable to the increase in thermostability of the gene product because recombinant protein produced from tsr(H258Y) was more thermostable than that from tsr. In fact, the tsr(H258Y) gene served as a selectable marker for plasmid transformation of G. kaustophilus. This new marker could facilitate complex genetic modification of G. kaustophilus and potentially other Geobacillus spp. PMID:26333661

  18. Genotypic and phenotypic characterization of foodborne Geobacillus stearothermophilus.

    PubMed

    Durand, Loïc; Planchon, Stella; Guinebretiere, Marie-Hélène; Carlin, Frédéric; Remize, Fabienne

    2015-02-01

    Geobacillus stearothermophilus is the main thermophilic spore former involved in flat sour spoilage of canned foods. Three typing methods were tested and applied to differentiate strains at intra-species level: panC sequence analysis, REP-PCR and M13-PCR. panC gene was highly conserved within the studied strains, suggesting a low intra-specific diversity. This was supported by REP-PCR primary assays and M13-PCR results. M13-PCR profile analysis succeeded in differentiating six closely related groups (at 79% threshold similarity) among 127 strains from a range of spoiled canned food products and from different canneries. Phenotypic traits were investigated among 20 selected strains representing groups and origins. Ranges of growth under different temperatures (from 40 °C to 70 °C), pH (from 5.0 to 6.5), NaCl concentrations (from 1 to 5%) and sporulation conditions poorly differed between strains, but wet heat resistance of spores showed a 20-fold variation between strains. Furthermore, in this study, strains that belonged to the same M13-PCR genetic group did not share phenotypic characteristics or common origin. The work emphasizes a low diversity within the G. stearothermophilus species but data from this study may contribute to a better control of G. stearothermophilus spoilage in canned food. PMID:25481066

  19. Engineering resistance to phage GVE3 in Geobacillus thermoglucosidasius.

    PubMed

    van Zyl, Leonardo Joaquim; Taylor, Mark Paul; Trindade, Marla

    2016-02-01

    Geobacillus thermoglucosidasius is a promising platform organism for the production of biofuels and other metabolites of interest. G. thermoglucosidasius fermentations could be subject to bacteriophage-related failure and financial loss. We develop two strains resistant to a recently described G. thermoglucosidasius-infecting phage GVE3. The phage-encoded immunity gene, imm, was overexpressed in the host leading to phage resistance. A phage-resistant mutant was isolated following expression of a putative anti-repressor-like protein and phage challenge. A point mutation was identified in the polysaccharide pyruvyl transferase, csaB. A double crossover knockout mutation of csaB confirmed its role in the phage resistance phenotype. These resistance mechanisms appear to prevent phage DNA injection and/or lysogenic conversion rather than just reducing efficiency of plating, as no phage DNA could be detected in resistant bacteria challenged with GVE3 and no plaques observed even at high phage titers. Not only do the strains developed here shed light on the biological relationship between the GVE3 phage and its host, they could be employed by those looking to make use of this organism for metabolite production, with reduced occurrence of GVE3-related failure. PMID:26536875

  20. Reaction pathway for alkane dehydrocyclization

    SciTech Connect

    Shi, Buchang; Davis, B.H.

    1996-08-01

    Naphtha reforming to produce high octane gasoline is an important process. Many reaction mechanisms are involved in this process. For example, the study of the fundamentals of this process led to the concept of bi- or poly-functional catalysis. The results of this study provide additional mechanistic information about the dehydrocyclization of an n-alkane to produce aromatics. The reaction coordinate diagram advanced to account for the observation of irreversible adsorption should be modified to account for the present results. 32 refs., 1 fig.

  1. The synergetic effect of starch and alpha amylase on the biodegradation of n-alkanes.

    PubMed

    Karimi, M; Biria, D

    2016-06-01

    The impact of adding soluble starch on biodegradation of n-alkanes (C10-C14) by Bacillus subtilis TB1 was investigated. Gas chromatography was employed to measure the residual hydrocarbons in the system. It was observed that the efficiency of biodegradation improved with the presence of starch and the obtained residual hydrocarbons in the system were 53% less than the samples without starch. The produced bacterial enzymes were studied through electrophoresis and reverse zymography for explaining the observations. The results indicated that the produced amylase by the bacteria can degrade hydrocarbons and the same was obtained by the application of a commercial alpha amylase sample. In addition, in silico docking of alpha-amylase with n-alkanes with different molecular weights was studied by Molegro virtual docker which showed high negative binding energies and further substantiated the experimental observations. Overall, the findings confirmed the catalytic effect of alpha amylase on n-alkanes degradation. PMID:26971168

  2. Alkane-Based Urethane Potting Compounds

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1986-01-01

    New low viscosity urethanes easily mixed, molded, and outgassed. Alkane-based urethanes resist hydrolysis and oxidation and have excellent dielectric properties. Low-viscosity alkane-based urethane prepolymer prepared by one-step reaction of either isophorone diisocyanate or methyl-bis (4-cyclohexyl isocyanate) with hydrogenated, hydroxy-terminated polybutadiene (HTPBD).

  3. Evolutionary engineering of Geobacillus thermoglucosidasius for improved ethanol production.

    PubMed

    Zhou, Jiewen; Wu, Kang; Rao, Christopher V

    2016-10-01

    The ability to grow at high temperatures makes thermophiles attractive for many fermentation processes. In this work, we used evolutionary engineering to increase ethanol production in the thermophile Geobacillus thermoglucosidasius. This bacterium is a facultative anaerobe, grows at an optimal temperature of 60°C, and can ferment diverse carbohydrates. However, it natively performs mixed-acid fermentation. To improve ethanol productivity, we first eliminated lactate and formate production in two strains of G. thermoglucosidasius, 95A1 and C56-YS93. These deletion strains were generated by selection on spectinomycin, which represents, to the best of our knowledge, the first time this antibiotic has been shown to work with thermophiles. Both knockout strains, however, were unable to grow under microaerobic conditions. We were able to recover growth in G. thermoglucosidasius 95A1 by serial adaptation in the presence of acetic acid. The evolved 95A1 strain was able to efficiently produce ethanol during growth on glucose or cellobiose. Genome sequencing identified loss-of-function mutations in adenine phosphoribosyltransferase (aprt) and the stage III sporulation protein AA (spoIIIAA). Disruption of both genes improved ethanol production in the unadapted strains: however, the increase was significant only when aprt was deleted. In conclusion, we were able to engineer a strain of G. thermoglucosidasius to efficiently produce ethanol from glucose and cellobiose using a combination of metabolic engineering and evolutionary strategies. This work further establishes this thermophile as a platform organism for fuel and chemical production. Biotechnol. Bioeng. 2016;113: 2156-2167. © 2016 Wiley Periodicals, Inc. PMID:27002479

  4. A thermoalkaliphilic lipase of Geobacillus sp. T1.

    PubMed

    Leow, Thean Chor; Rahman, Raja Noor Zaliha Raja Abd; Basri, Mahiran; Salleh, Abu Bakar

    2007-05-01

    A thermoalkaliphilic T1 lipase gene of Geobacillus sp. strain T1 was overexpressed in pGEX vector in the prokaryotic system. Removal of the signal peptide improved protein solubility and promoted the binding of GST moiety to the glutathione-Sepharose column. High-yield purification of T1 lipase was achieved through two-step affinity chromatography with a final specific activity and yield of 958.2 U/mg and 51.5%, respectively. The molecular mass of T1 lipase was determined to be approximately 43 kDa by gel filtration chromatography. T1 lipase had an optimum temperature and pH of 70 degrees C and pH 9, respectively. It was stable up to 65 degrees C with a half-life of 5 h 15 min at pH 9. It was stable in the presence of 1 mM metal ions Na(+), Ca(2+), Mn(2+), K(+) and Mg(2+ ), but inhibited by Cu(2+), Fe(3+) and Zn(2+). Tween 80 significantly enhanced T1 lipase activity. T1 lipase was active towards medium to long chain triacylglycerols (C10-C14) and various natural oils with a marked preference for trilaurin (C12) (triacylglycerol) and sunflower oil (natural oil). Serine and aspartate residues were involved in catalysis, as its activity was strongly inhibited by 5 mM PMSF and 1 mM Pepstatin. The T(m) for T1 lipase was around 72.2 degrees C, as revealed by denatured protein analysis of CD spectra. PMID:17426920

  5. Draft Genome Sequences of Three Strains of Geobacillus stearothermophilus Isolated from a Milk Powder Manufacturing Plant

    PubMed Central

    Burgess, Sara A.; Cox, Murray P.; Flint, Steve H.; Lindsay, Denise

    2015-01-01

    Three strains of Geobacillus stearothermophilus (designated A1, P3, and D1) were isolated from a New Zealand milk powder manufacturing plant. Here, we describe their draft genome sequences. This information provided the first genomic insights into the nature of G. stearothermophilus strains present in the milk powder manufacturing environment. PMID:26472822

  6. PURIFICATION AND CHARACTERIZATION OF A HIGHLY THERMOSTABLE ALPHA-L-ARABINOFURANOSIDASE FROM GEOBACILLUS CALDOXYLOLYTICUS TK4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene encoding an alpha-L-arabinofuranosidase from Geobacillus caldoxylolyticus TK4, AbfATK4, was isolated, cloned, and sequenced. The deduced protein had a molecular mass of about 58 kDa, and analysis of its amino acid sequence revealed significant homology and conservation of different catalyt...

  7. A method of increasing test range and accuracy of bioindicators: Geobacillus stearothermophilus spores.

    PubMed

    Lundahl, Gunnel

    2003-01-01

    Spores of Geobacillus stearothermophilus are very sensitive to changes in temperature. When validating sterilizing processes, the most common bioindicator (BI) is spores of Geobacillus stearothermophilus ATCC12980 and ATCC7953 with about 10(6) spores /BI and a D121-value of about 2 minutes in water. Because these spores of Geobacillus stearothermophilus do not survive at a F0-value above 12 minutes, it has not been possible to evaluate the agreement between the biological F-value (F(BIO)) and physical measurements (time and temperature) when the physical F0-value exceeds that limit. However, it has been proven that glycerin substantially increases the heat resistance of the spores, and it is possible to utilize that property when manufacturing BIs suitable to use in processes with longer sterilization time or high temperature (above 121 degrees C). By the method described, it is possible to make use of the sensitivity and durability of Geobacillus stearothermophilus' spores when glycerin has increased both test range and accuracy. Experience from years of development and validation work with the use of the highly sensitive glycerin-water-spore-suspension sensor (GWS-sensor) is reported. Validation of the steam sterilization process at high temperature has been possible with the use of GWS-sensors. It has also been shown that the spores in suspension keep their characteristics for a period of 19 months when stored cold (8 degrees C). PMID:14558699

  8. Draft Genome Sequences of Three Strains of Geobacillus stearothermophilus Isolated from a Milk Powder Manufacturing Plant.

    PubMed

    Burgess, Sara A; Cox, Murray P; Flint, Steve H; Lindsay, Denise; Biggs, Patrick J

    2015-01-01

    Three strains of Geobacillus stearothermophilus (designated A1, P3, and D1) were isolated from a New Zealand milk powder manufacturing plant. Here, we describe their draft genome sequences. This information provided the first genomic insights into the nature of G. stearothermophilus strains present in the milk powder manufacturing environment. PMID:26472822

  9. Structural basis for thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobacillus stearothermophilus

    SciTech Connect

    Hawwa, Renda; Aikens, John; Turner, Robert J.; Santarsiero, Bernard D.; Mescar, Andrew D.

    2009-08-31

    A new enzyme homologous to phosphotriesterase was identified from the bacterium Geobacillus stearothermophilus (GsP). This enzyme belongs to the amidohydrolase family and possesses the ability to hydrolyze both lactone and organophosphate (OP) compounds, making it a phosphotriesterase-like lactonase (PLL). GsP possesses higher OP-degrading activity than recently characterized PLLs, and it is extremely thermostable. GsP is active up to 100 C with an energy of activation of 8.0 kcal/mol towards ethyl paraoxon, and it can withstand an incubation temperature of 60 C for two days. In an attempt to understand the thermostability of PLLs, the X-ray structure of GsP was determined and compared to those of existing PLLs. Based upon a comparative analysis, a new thermal advantage score and plot was developed and reveals that a number of different factors contribute to the thermostability of PLLs.

  10. Anaerobic n-Alkane Metabolism by a Sulfate-Reducing Bacterium, Desulfatibacillum aliphaticivorans Strain CV2803T

    PubMed Central

    Cravo-Laureau, Cristiana; Grossi, Vincent; Raphel, Danielle; Matheron, Robert; Hirschler-Réa, Agnès

    2005-01-01

    The alkane-degrading, sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, recently isolated from marine sediments, was investigated for n-alkane metabolism. The total cellular fatty acids of this strain had predominantly odd numbers of carbon atoms (C odd) when the strain was grown on a C-odd alkane (pentadecane) and even numbers of carbon atoms (C even) when it was grown on a C-even alkane (hexadecane). Detailed analyses of those fatty acids by gas chromatography/mass spectrometry allowed us to identify saturated 2-, 4-, 6-, and 8-methyl- and monounsaturated 6-methyl-branched fatty acids, with chain lengths that specifically correlated with those of the alkane. Growth of D. aliphaticivorans on perdeuterated hexadecane demonstrated that those methyl-branched fatty acids were directly derived from the substrate. In addition, cultures on pentadecane and hexadecane produced (1-methyltetradecyl)succinate and (1-methylpentadecyl)succinate, respectively. These results indicate that D. aliphaticivorans strain CV2803T oxidizes n-alkanes into fatty acids anaerobically, via the addition of fumarate at C-2. Based on our observations and on literature data, a pathway for anaerobic n-alkane metabolism by D. aliphaticivorans is proposed. This involves the transformation of the initial alkylsuccinate into a 4-methyl-branched fatty acid which, in addition to catabolic reactions, can alternatively undergo chain elongation and desaturation to form storage fatty acids. PMID:16000749

  11. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    EPA Science Inventory

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  12. Supported organoiridium catalysts for alkane dehydrogenation

    DOEpatents

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  13. Cloning and sequence analysis of the heat-stable acrylamidase from a newly isolated thermophilic bacterium, Geobacillus thermoglucosidasius AUT-01.

    PubMed

    Cha, Minseok; Chambliss, Glenn H

    2013-02-01

    A thermophilic bacterium capable of degrading acrylamide, AUT-01, was isolated from soil collected from a hot spring area in Montana, USA. The thermophilic strain grew with 0.2 % glucose as the sole carbon source and 1.4 mM acrylamide as the sole nitrogen source. The isolate AUT-01 was identified as Geobacillus thermoglucosidasius based on 16S rDNA sequence. An enzyme from the strain capable of transforming acrylamide to acrylic acid was purified by a series of chromatographic columns. The molecular weight of the enzyme was estimated to be 38 kDa by SDS-PAGE. The enzyme activity had pH and temperature optima of 6.2 and 70 ºC, respectively. The influence of different metals and amino acids on the ability of the purified protein to transform acrylamide to acrylic acid was evaluated. The gene from G. thermoglucosidasius encoding the acrylamidase was cloned, sequenced, and compared to aliphatic amidases from other bacterial strains. The G. thermoglucosidasius gene, amiE, encoded a 38 kDa, monomeric, heat-stable amidase that catalysed the cleavage of carbon-nitrogen bonds in acrylamide. Comparison of the amino acid sequence to other bacterial amidases revealed 99 and 82 % similarity to the amino acid sequences of Bacillus stearothermophilus and Pseudomonas aeruginosa, respectively. PMID:22639115

  14. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds.

    PubMed

    Shahimin, Mohd Faidz Mohamad; Foght, Julia M; Siddique, Tariq

    2016-05-15

    Oil sands tailings ponds harbor diverse anaerobic microbial communities capable of methanogenic biodegradation of solvent hydrocarbons entrained in the tailings. Mature fine tailings (MFT) from two operators (Albian and CNRL) that use different extraction solvents were incubated with mixtures of either two (n-pentane and n-hexane) or four (n-pentane, n-hexane, n-octane and n-decane) n-alkanes under methanogenic conditions for ~600 d. Microbes in Albian MFT began methane production by ~80 d, achieving complete depletion of n-pentane and n-hexane in the two-alkane mixture and their preferential biodegradation in the four-alkane mixture. Microbes in CNRL MFT preferentially metabolized n-octane and n-decane in the four-alkane mixture after a ~80 d lag but exhibited a lag of ~360 d before commencing biodegradation of n-pentane and n-hexane in the two-alkane mixture. 16S rRNA gene pyrosequencing revealed Peptococcaceae members as key bacterial n-alkane degraders in all treatments except CNRL MFT amended with the four-alkane mixture, in which Anaerolineaceae, Desulfobacteraceae (Desulfobacterium) and Syntrophaceae (Smithella) dominated during n-octane and n-decane biodegradation. Anaerolineaceae sequences increased only in cultures amended with the four-alkane mixture and only during n-octane and n-decane biodegradation. The dominant methanogens were acetoclastic Methanosaetaceae. These results highlight preferential n-alkane biodegradation by microbes in oil sands tailings from different producers, with implications for tailings management and reclamation. PMID:26925736

  15. Evidence that crude oil alkane activation proceeds by different mechanisms under sulfate-reducing and methanogenic conditions

    NASA Astrophysics Data System (ADS)

    Aitken, C. M.; Jones, D. M.; Maguire, M. J.; Gray, N. D.; Sherry, A.; Bowler, B. F. J.; Ditchfield, A. K.; Larter, S. R.; Head, I. M.

    2013-05-01

    Fumarate addition has been widely proposed as an initial step in the anaerobic oxidation of both aromatic and aliphatic hydrocarbons. Alkyl and aryl succinates have been reported as metabolites of hydrocarbon degradation in laboratory studies with both pure and enrichment cultures of sulfate-, nitrate-, and iron-reducing bacteria. In addition these compounds have been reported in samples from environments such as hydrocarbon contaminated aquifers where, in addition to the above redox processes, hydrocarbon degradation linked to methanogenesis was observed. Here we report data from anaerobic crude oil degrading microcosms which revealed significant differences between the acid metabolite profiles of crude oil degraded under sulfate-reducing or methanogenic conditions. Under sulfate-reducing conditions fumarate addition and the formation of alkylsuccinate metabolites was the principal mechanism for the anaerobic degradation of n-alkanes and branched chain alkanes. Other than alkyl succinates that represent indigenous metabolites in the sediment inoculum, alkyl succinate metabolites were never detected in sediment microcosms where methane generation was quantitatively linked to n-alkane degradation. This indicates that alternative mechanisms of alkane activation may operate under methanogenic conditions.

  16. Solar photothermochemical alkane reverse combustion.

    PubMed

    Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H; MacDonnell, Frederick M

    2016-03-01

    A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180-200 °C) and pressures (1-6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical-thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions. PMID:26903631

  17. Solar photothermochemical alkane reverse combustion

    PubMed Central

    Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H.; MacDonnell, Frederick M.

    2016-01-01

    A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical–thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions. PMID:26903631

  18. Metathesis of alkanes and related reactions.

    PubMed

    Basset, Jean-Marie; Copéret, Christophe; Soulivong, Daravong; Taoufik, Mostafa; Cazat, Jean Thivolle

    2010-02-16

    The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, ([triple bond]SiO)(2)TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of alumina-supported tungsten hydride, W(H)(3)/Al(2)O(3), which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis

  19. Isolation of Glucocardiolipins from Geobacillus stearothermophilus NRS 2004/3a

    PubMed Central

    Schäffer, Christina; Beckedorf, Anke I.; Scheberl, Andrea; Zayni, Sonja; Peter-Katalinić, Jasna; Messner, Paul

    2002-01-01

    Glucose-substituted cardiolipins account for about 4 mol% of total phospholipid extracted from exponentially grown cells of Geobacillus stearothermophilus NRS 2004/3a. Individual glucocardiolipin species exhibited differences in fatty acid substitution, with iso-C15:0 and anteiso-C17:0 prevailing. The compounds were purified to homogeneity by a novel protocol and precharacterized by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PMID:12426359

  20. Evaluation of arabinofuranosidase and xylanase activities of Geobacillus spp. isolated from some hot springs in Turkey.

    PubMed

    Canakci, Sabriye; Inan, Kadriye; Kacagan, Murat; Belduz, Ali Osman

    2007-08-01

    Some hot springs located in the west of Turkey were investigated with respect to the presence of thermophilic microorganisms. Based on phenotyping characteristics and 16S rRNA gene sequence analysis, 16 of the isolates belonged to the genus Geobacillus and grew optimally at about 60 degrees C on nutrient agar. 16S rRNA gene sequence analysis showed that these isolates resembled Geobacillus species by > or = 97%, but SDS-PAGE profiles of these 16 isolates differ from some of the other species of the genus Geobacillus. However, it is also known that analysis of 16S rRNA gene sequences may be insufficient to distinguish between some species. It is proposed that recN sequence comparisons could accurately measure genome similarities for the Geobacillus genus. Based on recN sequence analysis, isolates 11, IT3, and 12 are strains of G stearothermophilus; isolate 14.3 is a strain of G thermodenitrificans; isolates 9.1, IT4.1, and 4.5 are uncertain and it is required to make further analysis. The presence of xylanase and arabinofuranosidase activities, and their optimum temperature and pH were also investigated. These results showed that 7 of the strains have both xylanase and arabinofuranosidase activities, 4 of them has only xylanase, and the remaning 5 strains have neither of these activities. The isolates 9.1, 7.1, and 3.3 have the highest temperature optima (80 degrees C), and 7.2, 9.1, AO4, 9.2, and AO17 have the highest pH optima (pH 8) of xylanase. Isolates 7.2, AO4, AC15, and 12 have optimum arabinofuranosidase activities at 75 degrees C, and only isolate AC 15 has the lowest pH of 5.5. PMID:18051594

  1. Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gene encoding a GH10 endo-xylanase from Geobacillus sp. WSUCF1 was cloned and expressed in Escherichia coli. Recombinant endo-xylanase (37 kDa) exhibited high specific activity of 461.0 U/ mg of protein. Endo-xylanase was optimally active on birchwood xylan at 70°C and pH 6.5. Zn2+ and Ca2+ ions i...

  2. A ternary conjugation system for the construction of DNA libraries for Geobacillus kaustophilus HTA426.

    PubMed

    Suzuki, Hirokazu; Wada, Keisuke; Furukawa, Megumi; Doi, Katsumi; Ohshima, Toshihisa

    2013-01-01

    This report describes efficient plasmid uptake by the thermophile Geobacillus kaustophilus HTA426 by means of a ternary conjugation system, which was used to construct thermophile DNA libraries for G. kaustophilus and to identify the genes for orotidine-5'-phosphate decarboxylase by in vivo functional screening. The results indicate that the conjugation system is useful in constructing G. kaustophilus libraries, which are practical in identifying thermophile genes. PMID:24200788

  3. Catalytic Biomineralization of Fluorescent Calcite by the Thermophilic Bacterium Geobacillus thermoglucosidasius▿

    PubMed Central

    Yoshida, Naoto; Higashimura, Eiji; Saeki, Yuichi

    2010-01-01

    The thermophilic Geobacillus bacterium catalyzed the formation of 100-μm hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate. PMID:20851984

  4. Insights into the Anaerobic Biodegradation Pathway of n-Alkanes in Oil Reservoirs by Detection of Signature Metabolites

    PubMed Central

    Bian, Xin-Yu; Maurice Mbadinga, Serge; Liu, Yi-Fan; Yang, Shi-Zhong; Liu, Jin-Feng; Ye, Ru-Qiang; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Anaerobic degradation of alkanes in hydrocarbon-rich environments has been documented and different degradation strategies proposed, of which the most encountered one is fumarate addition mechanism, generating alkylsuccinates as specific biomarkers. However, little is known about the mechanisms of anaerobic degradation of alkanes in oil reservoirs, due to low concentrations of signature metabolites and lack of mass spectral characteristics to allow identification. In this work, we used a multidisciplinary approach combining metabolite profiling and selective gene assays to establish the biodegradation mechanism of alkanes in oil reservoirs. A total of twelve production fluids from three different oil reservoirs were collected and treated with alkali; organic acids were extracted, derivatized with ethanol to form ethyl esters and determined using GC-MS analysis. Collectively, signature metabolite alkylsuccinates of parent compounds from C1 to C8 together with their (putative) downstream metabolites were detected from these samples. Additionally, metabolites indicative of the anaerobic degradation of mono- and poly-aromatic hydrocarbons (2-benzylsuccinate, naphthoate, 5,6,7,8-tetrahydro-naphthoate) were also observed. The detection of alkylsuccinates and genes encoding for alkylsuccinate synthase shows that anaerobic degradation of alkanes via fumarate addition occurs in oil reservoirs. This work provides strong evidence on the in situ anaerobic biodegradation mechanisms of hydrocarbons by fumarate addition. PMID:25966798

  5. Insights into the Anaerobic Biodegradation Pathway of n-Alkanes in Oil Reservoirs by Detection of Signature Metabolites.

    PubMed

    Bian, Xin-Yu; Mbadinga, Serge Maurice; Liu, Yi-Fan; Yang, Shi-Zhong; Liu, Jin-Feng; Ye, Ru-Qiang; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Anaerobic degradation of alkanes in hydrocarbon-rich environments has been documented and different degradation strategies proposed, of which the most encountered one is fumarate addition mechanism, generating alkylsuccinates as specific biomarkers. However, little is known about the mechanisms of anaerobic degradation of alkanes in oil reservoirs, due to low concentrations of signature metabolites and lack of mass spectral characteristics to allow identification. In this work, we used a multidisciplinary approach combining metabolite profiling and selective gene assays to establish the biodegradation mechanism of alkanes in oil reservoirs. A total of twelve production fluids from three different oil reservoirs were collected and treated with alkali; organic acids were extracted, derivatized with ethanol to form ethyl esters and determined using GC-MS analysis. Collectively, signature metabolite alkylsuccinates of parent compounds from C1 to C8 together with their (putative) downstream metabolites were detected from these samples. Additionally, metabolites indicative of the anaerobic degradation of mono- and poly-aromatic hydrocarbons (2-benzylsuccinate, naphthoate, 5,6,7,8-tetrahydro-naphthoate) were also observed. The detection of alkylsuccinates and genes encoding for alkylsuccinate synthase shows that anaerobic degradation of alkanes via fumarate addition occurs in oil reservoirs. This work provides strong evidence on the in situ anaerobic biodegradation mechanisms of hydrocarbons by fumarate addition. PMID:25966798

  6. Cadmium Ion Biosorption by the Thermophilic Bacteria Geobacillus stearothermophilus and G. thermocatenulatus

    PubMed Central

    Hetzer, Adrian; Daughney, Christopher J.; Morgan, Hugh W.

    2006-01-01

    This study reports surface complexation models (SCMs) for quantifying metal ion adsorption by thermophilic microorganisms. In initial cadmium ion toxicity tests, members of the genus Geobacillus displayed the highest tolerance to CdCl2 (as high as 400 to 3,200 μM). The thermophilic, gram-positive bacteria Geobacillus stearothermophilus and G. thermocatenulatus were selected for further electrophoretic mobility, potentiometric titration, and Cd2+ adsorption experiments to characterize Cd2+ complexation by functional groups within and on the cell wall. Distinct one-site SCMs described the extent of cadmium ion adsorption by both studied Geobacillus sp. strains over a range of pH values and metal/bacteria concentration ratios. The results indicate that a functional group with a deprotonation constant pK value of approximately 3.8 accounts for 66% and 80% of all titratable sites for G. thermocatenulatus and G. stearothermophilus, respectively, and is dominant in Cd2+ adsorption reactions. The results suggest a different type of functional group may be involved in cadmium biosorption for both thermophilic strains investigated here, compared to previous reports for mesophilic bacteria. PMID:16751511

  7. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy

    NASA Astrophysics Data System (ADS)

    Bush, Rosemary T.; McInerney, Francesca A.

    2013-09-01

    Long chain (C21 to C37) n-alkanes are among the most long-lived and widely utilized terrestrial plant biomarkers. Dozens of studies have examined the range and variation of n-alkane chain-length abundances in modern plants from around the world, and n-alkane distributions have been used for a variety of purposes in paleoclimatology and paleoecology as well as chemotaxonomy. However, most of the paleoecological applications of n-alkane distributions have been based on a narrow set of modern data that cannot address intra- and inter-plant variability. Here, we present the results of a study using trees from near Chicago, IL, USA, as well as a meta-analysis of published data on modern plant n-alkane distributions. First, we test the conformity of n-alkane distributions in mature leaves across the canopy of 38 individual plants from 24 species as well as across a single growing season and find no significant differences for either canopy position or time of leaf collection. Second, we compile 2093 observations from 86 sources, including the new data here, to examine the generalities of n-alkane parameters such as carbon preference index (CPI), average chain length (ACL), and chain-length ratios for different plant groups. We show that angiosperms generally produce more n-alkanes than do gymnosperms, supporting previous observations, and furthermore that CPI values show such variation in modern plants that it is prudent to discard the use of CPI as a quantitative indicator of n-alkane degradation in sediments. We also test the hypotheses that certain n-alkane chain lengths predominate in and therefore can be representative of particular plant groups, namely, C23 and C25 in Sphagnum mosses, C27 and C29 in woody plants, and C31 in graminoids (grasses). We find that chain-length distributions are highly variable within plant groups, such that chemotaxonomic distinctions between grasses and woody plants are difficult to make based on n-alkane abundances. In contrast

  8. The hydrodeoxygenation of bioderived furans into alkanes

    NASA Astrophysics Data System (ADS)

    Sutton, Andrew D.; Waldie, Fraser D.; Wu, Ruilian; Schlaf, Marcel; ‘Pete' Silks, Louis A.; Gordon, John C.

    2013-05-01

    The conversion of biomass into fuels and chemical feedstocks is one part of a drive to reduce the world's dependence on crude oil. For transportation fuels in particular, wholesale replacement of a fuel is logistically problematic, not least because of the infrastructure that is already in place. Here, we describe the catalytic defunctionalization of a series of biomass-derived molecules to provide linear alkanes suitable for use as transportation fuels. These biomass-derived molecules contain a variety of functional groups, including olefins, furan rings and carbonyl groups. We describe the removal of these in either a stepwise process or a one-pot process using common reagents and catalysts under mild reaction conditions to provide n-alkanes in good yields and with high selectivities. Our general synthetic approach is applicable to a range of precursors with different carbon content (chain length). This allows the selective generation of linear alkanes with carbon chain lengths between eight and sixteen carbons.

  9. The hydrodeoxygenation of bioderived furans into alkanes.

    PubMed

    Sutton, Andrew D; Waldie, Fraser D; Wu, Ruilian; Schlaf, Marcel; Silks, Louis A Pete; Gordon, John C

    2013-05-01

    The conversion of biomass into fuels and chemical feedstocks is one part of a drive to reduce the world's dependence on crude oil. For transportation fuels in particular, wholesale replacement of a fuel is logistically problematic, not least because of the infrastructure that is already in place. Here, we describe the catalytic defunctionalization of a series of biomass-derived molecules to provide linear alkanes suitable for use as transportation fuels. These biomass-derived molecules contain a variety of functional groups, including olefins, furan rings and carbonyl groups. We describe the removal of these in either a stepwise process or a one-pot process using common reagents and catalysts under mild reaction conditions to provide n-alkanes in good yields and with high selectivities. Our general synthetic approach is applicable to a range of precursors with different carbon content (chain length). This allows the selective generation of linear alkanes with carbon chain lengths between eight and sixteen carbons. PMID:23609095

  10. Methyl ketones in high altitude Ecuadorian Andosols confirm excellent conservation of plant-specific n-alkane patterns

    NASA Astrophysics Data System (ADS)

    Jansen, B.; Nierop, K. G. J.

    2009-04-01

    Montane forest composition and specifically the position of the upper forest line (UFL) is very sensitive to climate change and human interference. As a consequence, reconstructions of past altitudinal UFL dynamics and forest species composition are crucial instruments to infer relationships between climate change and vegetation dynamics, and assess the impact of (pre)historic human settlement. One of the most detailed methods available to date to reconstruct past vegetation dynamics is the analysis of fossil pollen. Unfortunately, fossil pollen analysis does not distinguish beyond family or generic level in most cases, while its spatial resolution is limited amongst others by windblown dispersal of pollen, affecting the accuracy of pollen based reconstructions of UFL positions. To overcome these limitations, we developed a new method based on the analysis of plant-specific groups of biomarkers preserved in suitable archives, such as peat deposits, that are unravelled into the plant species of origin by the newly developed VERHIB model. In a study of UFL positions in the Northern Ecuadorian Andes we found longer chain-length n-alkanes, (C19-C35) to occur in plant-specific patterns in the dominant vegetation in the area as well as preliminary soil and peat samples. A crucial factor in determining the applicability of these n-alkanes as biomarkers for past vegetation is their preservation in soils and peat deposits. Therefore, we investigated the preservation of C19-C35 n-alkanes in a peat core and in five excavations along an altitudinal transect (3500-3860 m.a.s.l) in the study area. We were able to establish that n-methyl ketones are the main degradation product of the n-alkanes in question, while the degradation of the n-alkanes was the main source of the n-methyl ketones. This allowed us to use the relationship between the concentrations and carbon chain length patterns of n-alkanes and n-methyl ketones to assess possible (selective) degradation of the n-alkanes

  11. Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes

    SciTech Connect

    Zhang, Y.; Miller, R.M.

    1995-06-01

    A study to quantify the effect of rhamnolipid biosurfactant structure on the degradation of alkanes by a variety of Pseudomonas isolates was conducted. Two dirhamnolipids were studied, a methyl ester form (dR-Me) and an acid form (dR-A). These rhamnolipids have different properties with respect to interfacial tension, solubility, and charge. For example, the interfacial tension between hexadecane and water was decreased to <0.1 dyne/cm by the dR-Me but was only decreased to 5 dyne/cm by the dR-A. Solubilization and biodegradation of two alkanes in different physical states, liquid and solid, were determined at dirhamnolipid concentrations ranging from 0.01 to 0.1 mM (7 to 70 mg/liter). The dR-Me markedly enhanced hexadecane (liquid) and octadecane (solid) degradation by seven different Pseudomonas strains. For an eighth strain tested, which exhibited extremely high cell surface hydrophobicity, hexadecane degradation was enhanced but octadecane degradation was inhibited. The dR-A also enhanced hexadecane degradation by all degraders but did so more modestly than the dR-Me. For octadecane, the dR-A only enhanced degradation by strains with low cell surface hydrophobicity. 19 refs., 5 figs., 2 tabs.

  12. Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus

    PubMed Central

    Khelifi, Nadia; Amin Ali, Oulfat; Roche, Philippe; Grossi, Vincent; Brochier-Armanet, Céline; Valette, Odile; Ollivier, Bernard; Dolla, Alain; Hirschler-Réa, Agnès

    2014-01-01

    The thermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain VC-16 (DSM 4304), which is known to oxidize fatty acids and n-alkenes, was shown to oxidize saturated hydrocarbons (n-alkanes in the range C10–C21) with thiosulfate or sulfate as a terminal electron acceptor. The amount of n-hexadecane degradation observed was in stoichiometric agreement with the theoretically expected amount of thiosulfate reduction. One of the pathways used by anaerobic microorganisms to activate alkanes is addition to fumarate that involves alkylsuccinate synthase as a key enzyme. A search for genes encoding homologous enzymes in A. fulgidus identified the pflD gene (locus-tag AF1449) that was previously annotated as a pyruvate formate lyase. A phylogenetic analysis revealed that this gene is of bacterial origin and was likely acquired by A. fulgidus from a bacterial donor through a horizontal gene transfer. Based on three-dimensional modeling of the corresponding protein and molecular dynamic simulations, we hypothesize an alkylsuccinate synthase activity for this gene product. The pflD gene expression was upregulated during the growth of A. fulgidus on an n-alkane (C16) compared with growth on a fatty acid. Our results suggest that anaerobic alkane degradation in A. fulgidus may involve the gene pflD in alkane activation through addition to fumarate. These findings highlight the possible importance of hydrocarbon oxidation at high temperatures by A. fulgidus in hydrothermal vents and the deep biosphere. PMID:24763368

  13. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil.

    PubMed

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-06-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. PMID:26995451

  14. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes.

    PubMed

    Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-07-01

    Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering. PMID:25971893

  15. In situ detection of anaerobic alkane metabolites in subsurface environments

    PubMed Central

    Agrawal, Akhil; Gieg, Lisa M.

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments. PMID:23761789

  16. 40 CFR 721.10163 - Chloro fluoro alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chloro fluoro alkane (generic). 721... Substances § 721.10163 Chloro fluoro alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as chloro fluoro alkane (PMN...

  17. 40 CFR 721.10163 - Chloro fluoro alkane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chloro fluoro alkane (generic). 721... Substances § 721.10163 Chloro fluoro alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as chloro fluoro alkane (PMN...

  18. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  19. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  20. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  1. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  2. Preliminary crystallographic analysis of Xyn52B2, a GH52 β-D-xylosidase from Geobacillus stearothermophilus T6.

    PubMed

    Dann, Roie; Lansky, Shifra; Lavid, Noa; Zehavi, Arie; Belakhov, Valery; Baasov, Timor; Dvir, Hay; Manjasetty, Babu; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil

    2014-12-01

    Geobacillus stearothermophilus T6 is a thermophilic bacterium that possesses an extensive hemicellulolytic system, including over 40 specific genes that are dedicated to this purpose. For the utilization of xylan, the bacterium uses an extracellular xylanase which degrades xylan to decorated xylo-oligomers that are imported into the cell. These oligomers are hydrolyzed by side-chain-cleaving enzymes such as arabinofuranosidases, acetylesterases and a glucuronidase, and finally by an intracellular xylanase and a number of β-xylosidases. One of these β-xylosidases is Xyn52B2, a GH52 enzyme that has already proved to be useful for various glycosynthesis applications. In addition to its demonstrated glycosynthase properties, interest in the structural aspects of Xyn52B2 stems from its special glycoside hydrolase family, GH52, the structures and mechanisms of which are only starting to be resolved. Here, the cloning, overexpression, purification and crystallization of Xyn52B2 are reported. The most suitable crystal form that has been obtained belonged to the orthorhombic P212121 space group, with average unit-cell parameters a = 97.7, b = 119.1, c = 242.3 Å. Several X-ray diffraction data sets have been collected from flash-cooled crystals of this form, including the wild-type enzyme (3.70 Å resolution), the E335G catalytic mutant (2.95 Å resolution), a potential mercury derivative (2.15 Å resolution) and a selenomethionine derivative (3.90 Å resolution). These data are currently being used for detailed three-dimensional structure determination of the Xyn52B2 protein. PMID:25484225

  3. Crystallization and preliminary crystallographic analysis of Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus.

    PubMed

    Lansky, Shifra; Salama, Rachel; Solomon, Vered H; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil

    2013-06-01

    Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that possesses an extensive system for the utilization of hemicellulose. The bacterium produces a small number of endo-acting extracellular enzymes that cleave high-molecular-weight hemicellulolytic polymers into short decorated oligosaccharides, which are further hydrolysed into the respective sugar monomers by a battery of intracellular glycoside hydrolases. One of these intracellular processing enzymes is β-L-arabinopyranosidase (Abp), which is capable of removing β-L-arabinopyranose residues from naturally occurring arabino-polysaccharides. As arabino-polymers constitute a significant part of the hemicellulolytic content of plant biomass, their efficient enzymatic degradation presents an important challenge for many potential biotechnological applications. This aspect has led to an increasing interest in the biochemical characterization and structural analysis of this and related hemicellulases. Abp from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory, as part of its complete structure-function study. The best crystals obtained for this enzyme belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with average unit-cell parameters a = 107.7, b = 202.2, c = 287.3 Å. Full diffraction data sets to 2.3 Å resolution have been collected for both the wild-type enzyme and its D197A catalytic mutant from flash-cooled crystals at 100 K, using synchrotron radiation. These data are currently being used for a high-resolution three-dimensional structure determination of Abp. PMID:23722857

  4. Biosurfactant-mediated biodegradation of straight and methyl-branched alkanes by Pseudomonas aeruginosa ATCC 55925

    PubMed Central

    2011-01-01

    Accidental oil spills and waste disposal are important sources for environmental pollution. We investigated the biodegradation of alkanes by Pseudomonas aeruginosa ATCC 55925 in relation to a rhamnolipid surfactant produced by the same bacterial strain. Results showed that the linear C11-C21 compounds in a heating oil sample degraded from 6% to 100%, whereas the iso-alkanes tended to be recalcitrant unless they were exposed to the biosurfactant; under such condition total biodegradation was achieved. Only the biodegradation of the commercial C12-C19 alkanes could be demonstrated, ranging from 23% to 100%, depending on the experimental conditions. Pristane (a C19 branched alkane) only biodegraded when present alone with the biosurfactant and when included in an artificial mixture even without the biosurfactant. In all cases the biosurfactant significantly enhanced biodegradation. The electron scanning microscopy showed that cells depicted several adaptations to growth on hydrocarbons, such as biopolymeric spheres with embedded cells distributed over different layers on the spherical surfaces and cells linked to each other by extracellular appendages. Electron transmission microscopy revealed transparent inclusions, which were associated with hydrocarbon based-culture cells. These patterns of hydrocarbon biodegradation and cell adaptations depended on the substrate bioavailability, type and length of hydrocarbon. PMID:21906343

  5. Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions

    SciTech Connect

    Caldwell, M.E.; Suflita, J.M.; Garrett, R.M.; Prince, R.C.

    1998-07-15

    The ability of anaerobic microorganisms to degrade a wide variety of crude oil components was investigated using chronically hydrocarbon-contaminated marine sediments as the source of inoculum. When sulfate reduction was the predominant electron-accepting process, gas chromatographic analysis revealed almost complete n-alkane removal (C{sub 15}-C{sub 34}) from a weathered oil within 201 d of incubation. No alteration of the oil was detected in sterile control incubations or when nitrate served as an alternate electron acceptor. The amount of sulfate reduced in the oil-amended nonsterile incubations was more than enough to account for the complete mineralization of the n-alkane fraction of the oil; no loss of this anion was observed in sterile control incubations. The mineralization of the alkanes was confirmed using {sup 14}C-14,15-octacosane (C{sub 28}H{sub 58}), with 97% of the radioactivity recovered as {sup 14}CO{sub 2}. These findings extend the range of hydrocarbons known to be amenable to anaerobic biodegradation. Moreover, the rapid and extensive alteration in the n-alkanes can no longer be considered a defining characteristic of aerobic oil biodegradation processes alone.

  6. Changes in Sodium, Calcium, and Magnesium Ion Concentrations That Inhibit Geobacillus Biofilms Have No Effect on Anoxybacillus flavithermus Biofilms

    PubMed Central

    Somerton, B.; Lindsay, D.; Palmer, J.; Brooks, J.

    2015-01-01

    This study investigated the effects of varied sodium, calcium, and magnesium concentrations in specialty milk formulations on biofilm formation by Geobacillus spp. and Anoxybacillus flavithermus. The numbers of attached viable cells (log CFU per square centimeter) after 6 to 18 h of biofilm formation by three dairy-derived strains of Geobacillus and three dairy-derived strains of A. flavithermus were compared in two commercial milk formulations. Milk formulation B had relatively high sodium and low calcium and magnesium concentrations compared with those of milk formulation A, but the two formulations had comparable fat, protein, and lactose concentrations. Biofilm formation by the three Geobacillus isolates was up to 4 log CFU cm−2 lower in milk formulation B than in milk formulation A after 6 to 18 h, and the difference was often significant (P ≤ 0.05). However, no significant differences (P ≤ 0.05) were found when biofilm formations by the three A. flavithermus isolates were compared in milk formulations A and B. Supplementation of milk formulation A with 100 mM NaCl significantly decreased (P ≤ 0.05) Geobacillus biofilm formation after 6 to 10 h. Furthermore, supplementation of milk formulation B with 2 mM CaCl2 or 2 mM MgCl2 significantly increased (P ≤ 0.05) Geobacillus biofilm formation after 10 to 18 h. It was concluded that relatively high free Na+ and low free Ca2+ and Mg2+ concentrations in milk formulations are collectively required to inhibit biofilm formation by Geobacillus spp., whereas biofilm formation by A. flavithermus is not impacted by typical cation concentration differences of milk formulations. PMID:26002898

  7. Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus tepidamans sp. nov.

    PubMed

    Schäffer, Christina; Franck, William L; Scheberl, Andrea; Kosma, Paul; McDermott, Timothy R; Messner, Paul

    2004-11-01

    Two moderately thermophilic, Gram-positive, spore-forming bacteria were isolated from different geographical locations and sources; strain GS5-97(T) from a beet sugar factory in Leopoldsdorf, Lower Austria, and strain YNP10 from a geothermally heated soil, Yellowstone National Park, USA. The sequences of their 16S rRNA genes were found to be 99.8% identical, and DNA-DNA hybridization experiments revealed that strains GS5-97(T) and YNP10 share 89.9 mol% similarity to each other, but only 34.3 and 39.2 mol% similarity, respectively, to Geobacillus caldoxylosilyticus DSM 12041(T), which is their closest related type strain. A polyphasic analysis showed that these two isolates were more similar to each other than to other characterized geobacilli. Their DNA G+C content was 43.2 and 42.4 mol%, respectively, and they were identical with respect to many phenotypic features (e.g. T(opt) 55 degrees C; pH(opt) 7.0). Both strains clearly displayed best growth when cultured aerobically. They differed slightly in their cellular fatty acid profiles and polar lipid pattern, and genotypically they could also be distinguished based on randomly amplified polymorphic DNA fingerprints and internal transcribed spacer analysis. Freeze-etching experiments revealed oblique surface layer (S-layer) lattices in both strains, and biochemical analyses of the purified S-layer proteins indicated the occurrence of glycosylation. Based on the properties of these organisms relative to those currently documented for the genus Geobacillus and for the various sister genera in the Bacillus radiation, a novel species is proposed, Geobacillus tepidamans sp. nov., with GS5-97(T) (=ATCC BAA-942(T)=DSM 16325(T)) as the type strain. Strain YNP10 has been deposited in the American Type Culture Collection as ATCC BAA-943. PMID:15545484

  8. Evaluating the potential of long chain n-alkanes and n-carboxylic acids as biomarkers for past vegetation

    NASA Astrophysics Data System (ADS)

    Lanny, Verena; Zech, Roland; Eglinton, Timothy

    2014-05-01

    Leaf waxes, such as long chain n-alkanes and n-carboxylic acids, may have a great potential for the reconstruction of past environmental and climate conditions (e.g. (Zech R. et al., 2013). While n-C27 and n-C29 alkanes often predominantly occur in trees and shrubs, n-C31 and n-C33 are more abundant in grasses and herbs. However, little is known about chain-length distributions of n-carboxylic acids, and very few studies have systematically investigated leaf waxes in top soils. We analyzed n-alkanes and n-carboxylic acids in ~100 litter and topsoil samples from Southern Germany to Sweden. Our results show that sites under deciduous trees often contain a lot of C27 n-alkanes and C28 n-carboxylic acids. Coniferous sites are characterized by dominance in n-alkanes C29 and C31 and have relatively high concentrations of n-carboxylic acids C22 and C24. Grass sites show a Cmax at C31 for n-alkanes and at C24 or C26 for n-carboxylic acids. Differences in homologue patterns are most pronounced in the litter samples, but are well preserved also in the topsoils (0-3 cm depth, a little less in the lower topsoils from 3-10 cm). Our results illustrate the potential of combining n-alkane and n-carboxylic acid analyses for paleo-vegetation reconstructions, yet indicate that the degree of degradation may have to be taken into consideration (Zech M. et al., 2013). References: Zech, M. et al. (2013) Quat. Int. 296, 108-116. Zech, R. et al. (2013) Palaeo3, 387, 165-175.

  9. GC-{sup 13}C IRMS characterisation of extractable and covalently bound alkanes in petroleum source rocks to reveal compositional fractionation effects

    SciTech Connect

    Love, G.D.; Fallick, A.E.; Taylor, C.

    1995-12-31

    The application of a sequential extraction/degradation scheme to differentiate between molecular alkanes (both easily extractable and physically-trapped) and covalently-bound alkyl moieties to a number of vitrinite concentrates and petroleum source rocks has been reported previously. Gas chromatography-isotope ratio mass spectrometry GC-s{sup 13}C IRMS has now been applied to the different awe fractions to probe compositional fractionation effects that might occur from the different initial biological inputs. For a Turkish oil shale (Goynuk - Type I kerogen), inputs from diverse sources, including phytoplanktron, higher plants and bacteria were implied from analysis of solvent-extractable alkanes. However, the much larger quantities of covalently-bound alkanes had an isotopic signature typical of eukarytoic (freshwater) algae. The isotopic uniformity of alkanes/alkenes released from sequential hydropyrolysis of a torbanite (Duunet shale) confirmed that this sample was largely derived from the selective preservation of resistant aliphatic biopolymers found in Botryococcus cell walls.

  10. Density Functional Steric Analysis of Linear and Branched Alkanes

    SciTech Connect

    Ess, Daniel H.; Liu, Shubin; De Proft, Frank

    2010-11-18

    Branched alkane hydrocarbons are thermodynamically more stable than straight-chain linear alkanes. This thermodynamic stability is also manifest in alkane bond separation energies. To understand the physical differences between branched and linear alkanes, we have utilized a novel density functional theory (DFT) definition of steric energy based on the Weizäcker kinetic energy. Using the M06-2X functional, the total DFT energy was partitioned into a steric energy term (Ee[[ρ]), an electrostatic energy term (Ee[ρ]), and a fermionic quantum energy term (Eq[[ρ]). This analysis revealed that branched alkanes have less (destabilizing) DFT steric energy than linear alkanes. The lower steric energy of branched alkanes is mitigated by an equal and opposite quantum energy term that contains the Pauli component of the kinetic energy and exchange-correlation energy. Because the steric and quantum energy terms cancel, this leaves the electrostatic energy term that favors alkane branching. Electrostatic effects, combined with correlation energy, explains why branched alkanes are more stable than linear alkanes.

  11. Density functional steric analysis of linear and branched alkanes.

    PubMed

    Ess, Daniel H; Liu, Shubin; De Proft, Frank

    2010-12-16

    Branched alkane hydrocarbons are thermodynamically more stable than straight-chain linear alkanes. This thermodynamic stability is also manifest in alkane bond separation energies. To understand the physical differences between branched and linear alkanes, we have utilized a novel density functional theory (DFT) definition of steric energy based on the Weizäcker kinetic energy. Using the M06-2X functional, the total DFT energy was partitioned into a steric energy term (E(s)[ρ]), an electrostatic energy term (E(e)[ρ]), and a fermionic quantum energy term (E(q)[ρ]). This analysis revealed that branched alkanes have less (destabilizing) DFT steric energy than linear alkanes. The lower steric energy of branched alkanes is mitigated by an equal and opposite quantum energy term that contains the Pauli component of the kinetic energy and exchange-correlation energy. Because the steric and quantum energy terms cancel, this leaves the electrostatic energy term that favors alkane branching. Electrostatic effects, combined with correlation energy, explains why branched alkanes are more stable than linear alkanes. PMID:21086970

  12. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, Harold H.; Chaar, Mohamed A.

    1988-01-01

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M.sub.3 (VO.sub.4).sub.2 and MV.sub.2 O.sub.6, M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  13. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, H.H.; Chaar, M.A.

    1988-10-11

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  14. Purex diluent degradation

    SciTech Connect

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-02-01

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO/sub 3/ system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO/sub 2/) molecule, not HNO/sub 3/ as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO/sub 3/ concentration and the temperature. The rate was decreased by argon sparging to remove NO/sub 2/ and by the addition of butanol, which probably acts as a NO/sub 2/ scavenger. 13 references, 11 figures.

  15. Long-Term Incubation Reveals Methanogenic Biodegradation of C5 and C6 iso-Alkanes in Oil Sands Tailings.

    PubMed

    Siddique, Tariq; Mohamad Shahimin, Mohd Faidz; Zamir, Saima; Semple, Kathleen; Li, Carmen; Foght, Julia M

    2015-12-15

    iso-Alkanes are major components of petroleum and have been considered recalcitrant to biodegradation under methanogenic conditions. However, indigenous microbes in oil sands tailings ponds exposed to solvents rich in 2-methylbutane, 2-methylpentane, 3-methylpentane, n-pentane, and n-hexane produce methane in situ. We incubated defined mixtures of iso- or n-alkanes with mature fine tailings from two tailings ponds of different ages historically exposed to different solvents: one, ~10 years old, receiving C5-C6 paraffins and the other, ~35 years old, receiving naphtha. A lengthy incubation (>6 years) revealed iso-alkane biodegradation after lag phases of 900-1800 and ~280 days, respectively, before the onset of methanogenesis, although lag phases were shorter with n-alkanes (~650-1675 and ~170 days, respectively). 2-Methylpentane and both n-alkanes were completely depleted during ~2400 days of incubation, whereas 2-methylbutane and 3-methylpentane were partially depleted only during active degradation of 2-methylpentane, suggesting co-metabolism. In both cases, pyrotag sequencing of 16S rRNA genes showed codominance of Peptococcaceae with acetoclastic (Methanosaeta) and hydrogenotrophic (Methanoregula and Methanolinea) methanogens. These observations are important for predicting long-term greenhouse-gas emissions from oil sands tailings ponds and extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments. PMID:26571341

  16. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus.

    PubMed

    Solomon, Hodaya V; Tabachnikov, Orly; Lansky, Shifra; Salama, Rachel; Feinberg, Hadar; Shoham, Yuval; Shoham, Gil

    2015-12-01

    Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a battery of degrading enzymes for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. A 9.4 kb gene cluster has recently been characterized in G. stearothermophilus that encodes a number of galactan-utilization elements. A key enzyme of this degradation system is Gan42B, an intracellular GH42 β-galactosidase capable of hydrolyzing short β-1,4-galactosaccharides into galactose units, making it of high potential for various biotechnological applications. The Gan42B monomer is made up of 686 amino acids, and based on sequence homology it was suggested that Glu323 is the catalytic nucleophile and Glu159 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Gan42B (at 2.45 Å resolution) and its catalytic mutant E323A (at 2.50 Å resolution), as determined by X-ray crystallography, are reported. These structures demonstrate that the three-dimensional structure of the Gan42B monomer generally correlates with the overall fold observed for GH42 proteins, consisting of three main domains: an N-terminal TIM-barrel domain, a smaller mixed α/β domain, and the smallest all-β domain at the C-terminus. The two catalytic residues are located in the TIM-barrel domain in a pocket-like active site such that their carboxylic functional groups are about 5.3 Å from each other, consistent with a retaining mechanism. The crystal structure demonstrates that Gan42B is a homotrimer, resembling a flowerpot in general shape, in which each monomer interacts with the other two to form a cone-shaped tunnel cavity in the centre. The cavity is ∼35 Å at the wide opening and ∼5 Å at the small opening and ∼40 Å in length. The active sites are situated at the interfaces between the monomers, so that every two neighbouring monomers participate in the formation of each of the three active

  17. Comparison of Mechanisms of Alkane Metabolism under Sulfate-Reducing Conditions among Two Bacterial Isolates and a Bacterial Consortium

    PubMed Central

    Callaghan, Amy V.; Gieg, Lisa M.; Kropp, Kevin G.; Suflita, Joseph M.; Young, Lily Y.

    2006-01-01

    Recent studies have demonstrated that fumarate addition and carboxylation are two possible mechanisms of anaerobic alkane degradation. In the present study, we surveyed metabolites formed during growth on hexadecane by the sulfate-reducing isolates AK-01 and Hxd3 and by a mixed sulfate-reducing consortium. The cultures were incubated with either protonated or fully deuterated hexadecane; the sulfate-reducing consortium was also incubated with [1,2-13C2]hexadecane. All cultures were extracted, silylated, and analyzed by gas chromatography-mass spectrometry. We detected a suite of metabolites that support a fumarate addition mechanism for hexadecane degradation by AK-01, including methylpentadecylsuccinic acid, 4-methyloctadecanoic acid, 4-methyloctadec-2,3-enoic acid, 2-methylhexadecanoic acid, and tetradecanoic acid. By using d34-hexadecane, mass spectral evidence strongly supporting a carbon skeleton rearrangement of the first intermediate, methylpentadecylsuccinic acid, was demonstrated for AK-01. Evidence indicating hexadecane carboxylation was not found in AK-01 extracts but was observed in Hxd3 extracts. In the mixed sulfate-reducing culture, however, metabolites consistent with both fumarate addition and carboxylation mechanisms of hexadecane degradation were detected, which demonstrates that multiple alkane degradation pathways can occur simultaneously within distinct anaerobic communities. Collectively, these findings underscore that fumarate addition and carboxylation are important alkane degradation mechanisms that may be widespread among phylogenetically and/or physiologically distinct microorganisms. PMID:16751542

  18. Thermostable hemicellulases of a bacterium, Geobacillus sp. DC3, isolated from the former Homestake Gold Mine in Lead, South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A thermophilic strain, Geobacillus sp. DC3, capable of producing hemicellulolytic enzymes was isolated from the 1.5-km depth of the former Homestake gold mine in Lead, South Dakota. The DC3 strain expressed a high level of extracellular endoxylanase at 39.5 U/mg protein with additional hemicellulase...

  19. Draft Genome Sequence of Geobacillus sp. Isolate T6, a Thermophilic Bacterium Collected from a Thermal Spring in Argentina

    PubMed Central

    Ortiz, Elio M.; Berretta, Marcelo F.; Benintende, Graciela B.; Amadio, Ariel F.; Zandomeni, Rubén O.

    2015-01-01

    Geobacillus sp. isolate T6 was collected from a thermal spring in Salta, Argentina. The draft genome sequence (3,767,773 bp) of this isolate is represented by one major scaffold of 3,46 Mbp, a second one of 207 kbp, and 20 scaffolds of <13 kbp. The assembled sequences revealed 3,919 protein-coding genes. PMID:26184933

  20. Biochemical and Mutational Characterization of N-Succinyl-Amino Acid Racemase from Geobacillus stearothermophilus CECT49.

    PubMed

    Soriano-Maldonado, Pablo; Andújar-Sánchez, Montserrat; Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier; Martínez-Rodríguez, Sergio

    2015-05-01

    N-Succinyl-amino acid racemase (NSAAR), long referred to as N-acyl- or N-acetyl-amino acid racemase, is an enolase superfamily member whose biotechnological potential was discovered decades ago, due to its use in the industrial dynamic kinetic resolution methodology first known as "Acylase Process". In previous works, an extended and enhanced substrate spectrum of the NSAAR from Geobacillus kaustophilus CECT4264 toward different N-substituted amino acids was reported. In this work, we describe the cloning, purification, and characterization of the NSAAR from Geobacillus stearothermophilus CECT49 (GstNSAAR). The enzyme has been extensively characterized, showing a higher preference toward N-formyl-amino acids than to N-acetyl-amino acids, thus confirming that the use of the former substrates is more appropriate for a biotechnological application of the enzyme. The enzyme showed an apparent thermal denaturation midpoint of 77.0 ± 0.1 °C and an apparent molecular mass of 184 ± 5 kDa, suggesting a tetrameric species. Optimal parameters for the enzyme activity were pH 8.0 and 55-65 °C, with Co(2+) as the most effective cofactor. Mutagenesis and binding experiments confirmed K166, D191, E216, D241, and K265 as key residues in the activity of GstNSAAR, but not indispensable for substrate binding. PMID:25875730

  1. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1.

    PubMed

    Jia, Xianbo; Chen, Jichen; Lin, Chenqiang; Lin, Xinjian

    2016-01-01

    Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and K m of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications. PMID:27579320

  2. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1

    PubMed Central

    2016-01-01

    Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and Km of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications. PMID:27579320

  3. Purification and Characterization of a Thermostable Lipase from Geobacillus thermodenitrificans IBRL-nra

    PubMed Central

    Balan, Anuradha; Ibrahim, Darah; Abdul Rahim, Rashidah; Ahmad Rashid, Fatimah Azzahra

    2012-01-01

    Thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was purified and characterized. The production of thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was carried out in a shake-flask system at 65°C in cultivation medium containing; glucose 1.0% (w/v); yeast extract 1.25% (w/v); NaCl 0.45% (w/v) olive oil 0.1% (v/v) with agitation of 200 rpm for 24 hours. The extracted extracellular crude thermostable lipase was purified to homogeneity by using ultrafiltration, Heparin-affinity chromatography, and Sephadex G-100 gel-filtration chromatography by 34 times with a final yield of 9%. The molecular weight of the purified enzyme was estimated to be 30 kDa after SDS-PAGE analysis. The optimal temperature for thermostable lipase was 65°C and it retained its initial activity for 3 hours. Thermostable lipase activity was highest at pH 7.0 and stable for 16 hours at this pH at 65°C. Thermostable lipase showed elevated activity when pretreated with BaCl2, CaCl2, and KCl with 112%, 108%, and 106%, respectively. Lipase hydrolyzed tripalmitin (C16) and olive oil with optimal activity (100%) compared to other substrates. PMID:23198138

  4. Highly Thermostable Xylanase Production from A Thermophilic Geobacillus sp. Strain WSUCF1 Utilizing Lignocellulosic Biomass

    PubMed Central

    Bhalla, Aditya; Bischoff, Kenneth M.; Sani, Rajesh Kumar

    2015-01-01

    Efficient enzymatic hydrolysis of lignocellulose to fermentable sugars requires a complete repertoire of biomass deconstruction enzymes. Hemicellulases play an important role in hydrolyzing hemicellulose component of lignocellulose to xylooligosaccharides and xylose. Thermostable xylanases have been a focus of attention as industrially important enzymes due to their long shelf life at high temperatures. Geobacillus sp. strain WSUCF1 produced thermostable xylanase activity (crude xylanase cocktail) when grown on xylan or various inexpensive untreated and pretreated lignocellulosic biomasses such as prairie cord grass and corn stover. The optimum pH and temperature for the crude xylanase cocktail were 6.5 and 70°C, respectively. The WSUCF1 crude xylanase was found to be highly thermostable with half-lives of 18 and 12 days at 60 and 70°C, respectively. At 70°C, rates of xylan hydrolysis were also found to be better with the WSUCF1 secretome than those with commercial enzymes, i.e., for WSUCF1 crude xylanase, Cellic-HTec2, and AccelleraseXY, the percent xylan conversions were 68.9, 49.4, and 28.92, respectively. To the best of our knowledge, WSUCF1 crude xylanase cocktail is among the most thermostable xylanases produced by thermophilic Geobacillus spp. and other thermophilic microbes (optimum growth temperature ≤70°C). High thermostability, activity over wide range of temperatures, and better xylan hydrolysis than commercial enzymes make WSUCF1 crude xylanase suitable for thermophilic lignocellulose bioconversion processes. PMID:26137456

  5. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.

    PubMed

    Haibach, Michael C; Kundu, Sabuj; Brookhart, Maurice; Goldman, Alan S

    2012-06-19

    Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of synthesis gas including biomass and nonconventional fossil carbon sources. The major desired products of Fischer-Tropsch catalysis are n-alkanes that contain 9-19 carbons; they comprise a clean-burning and high combustion quality diesel, jet, and marine fuel. However, Fischer-Tropsch catalysis also results in significant yields of the much less valuable C(3) to C(8)n-alkanes; these are also present in large quantities in oil and gas reserves (natural gas liquids) and can be produced from the direct reduction of carbohydrates. Therefore, methods that could disproportionate medium-weight (C(3)-C(8)) n-alkanes into heavy and light n-alkanes offer great potential value as global demand for fuel increases and petroleum reserves decrease. This Account describes systems that we have developed for alkane metathesis based on the tandem operation of catalysts for alkane dehydrogenation and olefin metathesis. As dehydrogenation catalysts, we used pincer-ligated iridium complexes, and we initially investigated Schrock-type Mo or W alkylidene complexes as olefin metathesis catalysts. The interoperability of the catalysts typically represents a major challenge in tandem catalysis. In our systems, the rate of alkane dehydrogenation generally limits the overall reaction rate, whereas the lifetime of the alkylidene complexes at the relatively high temperatures required to obtain practical dehydrogenation rates (ca. 125 -200 °C) limits the total turnover numbers. Accordingly, we have focused on the development and use of more active dehydrogenation catalysts and more stable olefin-metathesis catalysts. We have used thermally

  6. Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus

    PubMed Central

    Berendsen, Erwin M.; Wells-Bennik, Marjon H. J.; Krawczyk, Antonina O.; de Jong, Anne; van Heel, Auke; Holsappel, Siger; Eijlander, Robyn T.

    2016-01-01

    Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria. PMID:27151781

  7. Three-dimensional structure of a variant `Termamyl-like' Geobacillus stearothermophilus α-amylase at 1.9 Å resolution.

    PubMed

    Offen, Wendy A; Viksoe-Nielsen, Anders; Borchert, Torben V; Wilson, Keith S; Davies, Gideon J

    2015-01-01

    The enzyme-catalysed degradation of starch is central to many industrial processes, including sugar manufacture and first-generation biofuels. Classical biotechnological platforms involve steam explosion of starch followed by the action of endo-acting glycoside hydrolases termed α-amylases and then exo-acting α-glucosidases (glucoamylases) to yield glucose, which is subsequently processed. A key enzymatic player in this pipeline is the `Termamyl' class of bacterial α-amylases and designed/evolved variants thereof. Here, the three-dimensional structure of one such Termamyl α-amylase variant based upon the parent Geobacillus stearothermophilus α-amylase is presented. The structure has been solved at 1.9 Å resolution, revealing the classical three-domain fold stabilized by Ca2+ and a Ca2+-Na+-Ca2+ triad. As expected, the structure is similar to the G. stearothermophilus α-amylase but with main-chain deviations of up to 3 Å in some regions, reflecting both the mutations and differing crystal-packing environments. PMID:25615972

  8. Conformation of liquid N-alkanes.

    PubMed Central

    Goodsaid-Zalduondo, F; Engelman, D M

    1981-01-01

    The conformations of liquid n-alkanes have been studied using neutron scattering techniques to better understand the conformational forces present in membrane lipid interiors. We have studied hydrocarbon chains having lengths comparable to those found for esterified membrane lipid fatty acids, and find that the steric constraints of packing in the liquid state do not change the conformational distributions of hydrocarbon chains from those imposed by the intrachain forces present in the gas phase. It follows that the central region of membranes containing lipids in the disordered state should contain hydrocarbon chain conformations determined primarily by intrachain forces. PMID:7272453

  9. Keratinous waste decomposition and peptide production by keratinase from Geobacillus stearothermophilus AD-11.

    PubMed

    Gegeckas, Audrius; Gudiukaitė, Renata; Debski, Janusz; Citavicius, Donaldas

    2015-04-01

    A keratinolytic proteinase was cloned from thermophilic bacterium Geobacillus stearothermophilus AD-11 and was expressed in Escherichia coli BL21(DE3). Recombinant keratinolytic proteinase (RecGEOker) with an estimated molecular weight of 57 kDa was purified and keratinase activity was measured. RecGEOker showed optimal activity at pH 9 and 60 °C. Recombinant keratinolytic proteinase showed the highest substrate specificity toward keratin from wool > collagen > sodium caseinate > gelatin > and BSA in descending order. RecGEOker is applicable for efficient keratin waste biodegradation and can replace conventional non-biological hydrolysis processes. High-value small peptides obtained from enzymatic biodegradation by RecGEOker are suitable for industrial application in white and/or green biotechnology for use as major additives in various products. PMID:25625783

  10. Development of a Quantitative PCR Assay for Thermophilic Spore-Forming Geobacillus stearothermophilus in Canned Food.

    PubMed

    Nakano, Miyo

    2015-01-01

    The thermophilic spore forming bacteria Geobacillus stearothermophilus is recognized as a major cause of spoilage in canned food. A quantitative real-time PCR assay was developed to specifically detect and quantify the species G. stearothermophilus in samples from canned food. The selected primer pairs amplified a 163-bp fragment of the 16S rRNA gene in a specific PCR assay with a detection limit of 12.5 fg of pure culture DNA, corresponding to DNA extracted from approximately 0.7 CFU/mL of G. stearothermophilus. Analysis showed that the bacterial species G. stearothermophilus was not detected in any canned food sample. Our approach presented here will be useful for tracking or quantifying species G. stearotethermophilus in canned food and ingredients. PMID:26412704

  11. Production and characterization of thermostable alpha-amylase by thermophilic Geobacillus stearothermophilus.

    PubMed

    Al-Qodah, Zakaria

    2006-01-01

    Studies on the alpha-amylase-producing thermophilic bacterium isolated and identified from a hot spring in Jordan and designated as Geobacillus stearothermophilus JT2 were carried out. The optimum conditions for growth and enzyme production were pH 7 and 55 degrees C. The study of the kinetics of cellular growth indicated a mu(max) of 0.22/h, a K(s) of 1.2 g/L, a tau(d) of 3.15 h and a Y(x/s) of 0.43 g cell/g starch. In addition, the activation energy for growth and death were estimated and found to be 30.5 and 210 J/mol, respectively. The effect of different carbon and nitrogen sources on the cellular growth was tested. PMID:16927263

  12. Sporicidal Activity of the KMT reagent in its vapor phase against Geobacillus stearothermophilus Spores.

    PubMed

    Kida, Nori; Mochizuki, Yasushi; Taguchi, Fumiaki

    2007-01-01

    In an investigation of the sporicidal activity of the KMT reagent, a vapor phase study was performed using five kinds of carriers contaminated with Geobacillus stearothermophilus spores. When 25 ml of the KMT reagent was vaporized in a chamber (capacity; approximately 95 liters), the 2-step heating method (vaporization by a combination of low temperature and high temperature) showed the most effective sporicidal activity in comparison with the 1-step heating method (rapid vaporization). The 2-step heating method appeared to be related to the sporicidal activity of vaporized KMT reagent, i.e., ethanol and iodine, which vaporized mainly when heated at a low temperature such as 55 C, and acidic water, which vaporized mainly when heated at a high temperature such as 300 C. We proposed that the KMT reagent can be used as a new disinfectant not only in the liquid phase but also in the vapor phase in the same way as peracetic acid and hydrogen peroxide. PMID:17237604

  13. Thermal adaptation of dihydrofolate reductase from the moderate thermophile Geobacillus stearothermophilus.

    PubMed

    Guo, Jiannan; Luk, Louis Y P; Loveridge, E Joel; Allemann, Rudolf K

    2014-05-01

    The thermal melting temperature of dihydrofolate reductase from Geobacillus stearothermophilus (BsDHFR) is ~30 °C higher than that of its homologue from the psychrophile Moritella profunda. Additional proline residues in the loop regions of BsDHFR have been proposed to enhance the thermostability of BsDHFR, but site-directed mutagenesis studies reveal that these proline residues contribute only minimally. Instead, the high thermal stability of BsDHFR is partly due to removal of water-accessible thermolabile residues such as glutamine and methionine, which are prone to hydrolysis or oxidation at high temperatures. The extra thermostability of BsDHFR can be obtained by ligand binding, or in the presence of salts or cosolvents such as glycerol and sucrose. The sum of all these incremental factors allows BsDHFR to function efficiently in the natural habitat of G. stearothermophilus, which is characterized by temperatures that can reach 75 °C. PMID:24730604

  14. Effects of humidity on sterilization of Geobacillus stearothermophilus spores with plasma-excited neutral gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-06-01

    We investigate the effects of relative humidity on the sterilization process using a plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals were separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas is nitrogen mixed with 0.1% oxygen, and the relative humidity in the source gas is controlled by changing the mixing ratio of water vapor. The relative humidity near the sample in the reactor chamber is controlled by changing the sample temperature. As a result, the relative humidity near the sample should be kept in the range from 60 to 90% for the sterilization of Geobacillus stearothermophilus spores. When the relative humidity in the source gas increases from 30 to 90%, the sterilization effect is enhanced by the same degree.

  15. Investigation of Sterilization Mechanism for Geobacillus stearothermophilus Spores with Plasma-Excited Neutral Gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-09-01

    We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.

  16. Development of a versatile shuttle vector for gene expression in Geobacillus spp.

    PubMed

    Taylor, Mark P; Esteban, Carlos D; Leak, David J

    2008-07-01

    An improved, versatile shuttle vector has been created for the metabolic engineering of Geobacillus spp. As kanamycin is the most thermo-tolerant of commonly used antibiotics, the gene encoding a thermostable kanamycin nucleotidyltransferase, together with the origin of replication from the G. stearothermophilus plasmid pBST1 were cloned into the Escherichia coli cloning vector pUC18. The resulting vector, named pUCG18, replicated in both organisms and could be transformed with an efficiency of 1 x 10(4) transformants per microg of DNA in G. thermoglucosidasius and was stable up to 68 degrees C with antibiotic selection. It was used to demonstrate expression of the pyruvate decarboxylase (pdc) gene from Zymomonas palmae in G. thermoglucosidasius at 45 degrees C. Sequence analysis of the pBST1 derived origin of replication revealed homology with a family of theta replicons that have previously only been found in strains of Bacillus megaterium. PMID:18501964

  17. Thermal Adaptation of Dihydrofolate Reductase from the Moderate Thermophile Geobacillus stearothermophilus

    PubMed Central

    2014-01-01

    The thermal melting temperature of dihydrofolate reductase from Geobacillus stearothermophilus (BsDHFR) is ∼30 °C higher than that of its homologue from the psychrophile Moritella profunda. Additional proline residues in the loop regions of BsDHFR have been proposed to enhance the thermostability of BsDHFR, but site-directed mutagenesis studies reveal that these proline residues contribute only minimally. Instead, the high thermal stability of BsDHFR is partly due to removal of water-accessible thermolabile residues such as glutamine and methionine, which are prone to hydrolysis or oxidation at high temperatures. The extra thermostability of BsDHFR can be obtained by ligand binding, or in the presence of salts or cosolvents such as glycerol and sucrose. The sum of all these incremental factors allows BsDHFR to function efficiently in the natural habitat of G. stearothermophilus, which is characterized by temperatures that can reach 75 °C. PMID:24730604

  18. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkane (PMN P-01-433) is...

  19. 40 CFR 721.536 - Halogenated phenyl alkane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.536 Halogenated phenyl alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated phenyl alkane (PMN P-89-867)...

  20. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkane (PMN P-01-433) is...

  1. Products of Chemistry: Alkanes: Abundant, Pervasive, Important, and Essential.

    ERIC Educational Resources Information Center

    Seymour, Raymond B.

    1989-01-01

    Discusses the history and commercialization of alkanes. Examines the nomenclature and uses of alkanes. Studies polymerization and several types of polyethylenes: low-density, high-density, low-molecular-weight, cross-linked, linear low-density, and ultrahigh-molecular-weight. Includes a glossary of hydrocarbon terms. (MVL)

  2. Thomas Reiche Kuhn populations in alkanes

    NASA Astrophysics Data System (ADS)

    Lazzeretti, P.; Caputo, M. C.; Ferraro, M. B.

    1999-07-01

    Atomic populations in a molecule have been defined via the Thomas-Reiche-Kuhn sum rule for oscillator strengths written within the acceleration gauge. These atomic populations are related to nuclear electric shieldings, i.e., to geometrical derivatives of electric dipole moment, and can therefore be connected with observable infrared intensities. A number of relationships can be considered to test a priori the quality of calculated electronic charges and to assess their physical meaning. It is shown via extended numerical tests on the first members of the alkane series that the Thomas-Reiche-Kuhn populations are consistent with a (small) polarity C +-H - of carbon-hydrogen bond in methane, for which a bond dipole moment can be exactly defined. Although the idea of bond dipole cannot be extended to the C-H fragments belonging to other alkane molecules in the absence of local C3 v symmetry, the calculations prove that the same electron charge polarization should characterize the whole homologous series.

  3. Alkanes in benthic organisms from the Buccaneer oil field

    SciTech Connect

    Middleditch, B.S.; Basile, B.

    1980-06-01

    About 200 g per day of alkanes are present in brine discharged from each of two production platforms in the Buccaneer oil field in the NW Gulf of Mexico. These alkanes disperse rapidly in the water column, so that seawater concentrations of petroleum alkanes in this region are generally very low. They can be taken up to some extent by plankton, fish, and barnacles, but the petroleum alkane concentrations in these organisms are also relatively low. The largest pool of petroleum alkanes is in the surficial sediments, where concentrations of up to 25 ppM are observed, with concentration gradients extending more than 20 m from the production platforms. Organisms are examined which are exposed to these sediments and, for comparison, other specimens from control sites around structures from which there are no discharges.

  4. Utilization of n-Alkanes by Cladosporium resinae

    PubMed Central

    Teh, J. S.; Lee, K. H.

    1973-01-01

    Four different isolates of Cladosporium resinae from Australian soils were tested for their ability to utilize liquid n-alkanes ranging from n-hexane to n-octadecane under standard conditions. The isolates were unable to make use of n-hexane, n-heptane, and n-octane for growth. In fact, these hydrocarbons, particularly n-hexane, exerted an inhibitory effect on spore germination and mycelial growth. All higher n-alkanes from n-nonane to n-octadecane were assimilated by the fungus, although only limited growth occurred on n-nonane and n-decane. The long chain n-alkanes (C14 to C18) supported good growth of all isolates, but there was no obvious correlation between cell yields and chain lengths of these n-alkanes. Variation in growth responses to individual n-alkane among the different isolates was also observed. The cause of this variation is unknown. PMID:4735447

  5. Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake.

    PubMed Central

    Ito, S; Inoue, S

    1982-01-01

    Torulopsis bombicola produces extracellular sophorolipids when it is grown on water-insoluble alkanes. Sophorolipids and related model compounds, which were not themselves used for growth, were found to stimulate markedly the growth of T. bombicola on alkanes. This stimulatory effect was restricted to growth on C10 to C20 alkanes, whereas no significantly influence was observed for growth on fatty alcohols, fatty acids, glucose, or glycerol. The nonionic methyl ester of the glycolipid supported the greatest cell yield. However, a number of synthetic nonionic surfactants were unable to replace the glycolipid. When organisms were grown on hexadecane, stimulation of growth by sophorolipids was observed almost exclusively with strains of Torulopsis yeasts. In contrast, the growth of other typical alkane-utilizing yeasts, such as candida and Pichia strains, was inhibited or not affected. It appears that sophorolipids are involved in alkane dissimilation by T. bombicola through an undetermined mechanism. PMID:7201782

  6. [Eco-environmental evolution inferred from n-alkanes and delta13C records in the sediments of Shijiu Lake].

    PubMed

    Ou, Jie; Wang, Yan-Hua; Yang, Hao; Hu, Jian-Fang; Chen, Xia; Zou, Jun; Xie, Yun

    2013-02-01

    The study of global changes has focused on the reconstruction of paleovegetation and paleoclimate by n-alkanes and delta13C. 210Pb contents were measured for dating. The distribution characteristics of n-alkanes and delta13C were used to indicate the source of the organic matter in the sediments of Shijiu Lake. The relationship between modern eco-environmental evolution and human behaviors was discussed in this paper. The combination characteristics of n-alkanes showed a significant odd-even predominance in high-carbon number and main peak at C29, suggesting that the organic matter in the sediments were mainly derived from macrophytes and terrestrial higher plants. The delta13C contents of C27, C29 and C31 n-alkanes were analyzed. Results indicated that C3 plants are the dominant species. The distribution characteristics of n-alkanes and delta13C in different periods revealed the impact of human behaviors on Shijiu Lake. From 1862 to 1970, the low relative content of TOC, TN, C17-C25 and the light delta13C25-31 values showed that there were less human behaviors effects on Shijiu Lake and the eco-environment around the lake was stable. From 1970 to 1983, the relative content of TOC, TN and C17-C25 increased significantly, the delta13C25-31 values became weight. In this period, large areas of Shijiu Lake turned into farmland; pollution by fertilizers and pesticides was serious; large amounts of industrial and domestic wastewater were discharged into the lake. All these human behaviors resulted in the degradation of terrestrial higher plants around the lake. Meanwhile, the eutrophication levels were significantly increased. From 1983 to 2010, the relative contents of TOC, TN and C17-C25 were still in high-value ranges, the problem of eutrophication was not effectively controlled and the eco-environment of Shijiu Lake was relatively degradated. PMID:23668113

  7. Spectroscopy of the tilde A state of NO-alkane complexes (alkane = methane, ethane, propane, and n-butane)

    NASA Astrophysics Data System (ADS)

    Tamé-Reyes, Victor M.; Gardner, Adrian M.; Harris, Joe P.; McDaniel, Jodie; Wright, Timothy G.

    2012-12-01

    We have recorded (1+1) resonance-enhanced multiphoton ionization spectra of complexes formed between NO and the alkanes: CH4, C2H6, C3H8, and n-C4H10. The spectra correspond to the tilde A ← tilde X transition, which is a NO-localized 3s ← 2pπ* transition. In line with previous work, the spectrum for NO-CH4 has well-defined structure, but this is only partially resolved for the other complexes. The spectra recorded in the NO+-alkane mass channels all show a slowly rising onset, followed by a sharp offset, which is associated with dissociation of NO-alkane, from which binding energies in the tilde X and tilde A states are deduced. Beyond this sharp offset, there is a further rise in signal, which is attributed to fragmentation of higher complexes, NO-(alkane)n. Analysis of these features allows binding energies for (NO-alkane) ... alkane to be estimated, and these suggest that in the NO-(alkane)2 complexes, the second alkane molecule is bound to the first, rather than to NO. Calculated structures for the 1:1 complexes are reported, as well as binding energies.

  8. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons.

    PubMed

    Guermouche M'rassi, A; Bensalah, F; Gury, J; Duran, R

    2015-10-01

    Crude oil is a common environmental pollutant composed of a large number of both aromatic and aliphatic hydrocarbons. Biodegradation is carried out by microbial communities that are important in determining the fate of pollutants in the environment. The intrinsic biodegradability of the hydrocarbons and the distribution in the environment of competent degrading microorganisms are crucial information for the implementation of bioremediation processes. In the present study, the biodegradation capacities of various bacteria toward aliphatic and aromatic hydrocarbons were determined. The purpose of the study was to isolate and characterize hydrocarbon-degrading bacteria from contaminated soil of a refinery in Arzew, Algeria. A collection of 150 bacterial strains was obtained; the bacterial isolates were identified by 16S rRNA gene sequencing and their ability to degrade hydrocarbon compounds characterized. The isolated strains were mainly affiliated to the Gamma-Proteobacteria class. Among them, Pseudomonas spp. had the ability to metabolize high molecular weight hydrocarbon compounds such as pristane (C19) at 35.11 % by strain LGM22 and benzo[a] pyrene (C20) at 33.93 % by strain LGM11. Some strains were able to grow on all the hydrocarbons tested including octadecane, squalene, phenanthrene, and pyrene. Some strains were specialized degrading only few substrates. In contrast, the strain LGM2 designated as Pseudomonas sp. was found able to degrade both linear and branched alkanes as well as low and high poly-aromatic hydrocarbons (PAHs). The alkB gene involved in alkane degradation was detected in LGM2 and other Pseudomonas-related isolates. The capabilities of the isolated bacterial strains to degrade alkanes and PAHs should be of great practical significance in bioremediation of oil-contaminated environments. PMID:25813636

  9. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of DHNA synthetase from Geobacillus kaustophilus

    SciTech Connect

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki; Jeyakanthan, Jeyaraman; Baba, Seiki; Kuroishi, Chizu; Ebihara, Akio; Shinkai, Akeo; Kuramitsu, Seiki; Shiro, Yoshitsugu; Sekar, Kanagaraj; Yokoyama, Shigeyuki

    2007-02-01

    DHNA synthetase from G. kaustophilus has been cloned, expressed, purified and crystallized. The aerobic Gram-positive bacterium Geobacillus kaustophilus is a bacillus species that was isolated from deep-sea sediment from the Mariana Trench. 1,4-Dihydroxy-2-naphthoate (DHNA) synthetase plays a vital role in the biosynthesis of menaquinone (vitamin K{sub 2}) in this bacterium. DHNA synthetase from Geobacillus kaustophilus was crystallized in the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 77.01, b = 130.66, c = 131.69 Å. The crystal diffracted to a resolution of 2.2 Å. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit.

  10. Characteristic Features in the Structure and Collagen-Binding Ability of a Thermophilic Collagenolytic Protease from the Thermophile Geobacillus collagenovorans MO-1

    PubMed Central

    Itoi, Yuichi; Horinaka, Mano; Tsujimoto, Yoshiyuki; Matsui, Hiroshi; Watanabe, Kunihiko

    2006-01-01

    A collagen-degrading thermophile, Geobacillus collagenovorans MO-1, extracellularly produces a collagenolytic protease with a large molecular mass. Complete nucleotide sequencing of this gene after gene cloning revealed that the collagenolytic protease is a member of the subtilisin family of serine proteases and consists of a signal sequence for secretion, a prosequence for maturation, a catalytic region, 14 direct repeats of 20 amino acids at the C terminus, and a region with unknown function intervening between the catalytic region and the numerous repeats. Since the unusual repeats are most likely to be cleaved in the secreted form of the enzyme, the intervening region was investigated to determine whether it participates in collagen binding to facilitate collagen degradation. It was found that the mature collagenolytic protease containing the intervening region at the C terminus bound collagen but not the other insoluble proteins, elastin and keratin. Furthermore, the intervening region fused with glutathione S-transferase showed a collagen-binding ability comparable to that of the mature collagenolytic protease. The collagen-binding ability was finally attributed to two-thirds of the intervening region which is rich in β-strands and is approximately 35 kDa in molecular mass. In the collagenolytic protease from strain MO-1, hydrogen bonds most likely predominate over the hydrophobic interaction for collagen binding, since a higher concentration of NaCl released collagen from the enzyme surface but a nonionic detergent could not. To the best of our knowledge, this is the first report of a thermophilic collagenolytic protease containing the collagen-binding segment. PMID:16952949

  11. Characterization of a Novel Thermostable Carboxylesterase from Geobacillus kaustophilus HTA426 Shows the Existence of a New Carboxylesterase Family▿

    PubMed Central

    Montoro-García, Silvia; Martínez-Martínez, Irene; Navarro-Fernández, José; Takami, Hideto; García-Carmona, Francisco; Sánchez-Ferrer, Álvaro

    2009-01-01

    The gene GK3045 (741 bp) from Geobacillus kaustophilus HTA426 was cloned, sequenced, and overexpressed into Escherichia coli Rosetta (DE3). The deduced protein was a 30-kDa monomeric esterase with high homology to carboxylesterases from Geobacillus thermoleovorans NY (99% identity) and Geobacillus stearothermophilus (97% identity). This protein suffered a proteolytic cut in E. coli, and the problem was overcome by introducing a mutation in the gene (K212R) without affecting the activity. The resulting Est30 showed remarkable thermostability at 65°C, above the optimum growth temperature of G. kaustophilus HTA426. The optimum pH of the enzyme was 8.0. In addition, the purified enzyme exhibited stability against denaturing agents, like organic solvents, detergents, and urea. The protein catalyzed the hydrolysis of p-nitrophenyl esters of different acyl chain lengths, confirming the esterase activity. The sequence analysis showed that the protein contains a catalytic triad formed by Ser93, Asp192, and His222, and the Ser of the active site is located in the conserved motif Gly91-X-Ser93-X-Gly95 included in most esterases and lipases. However, this carboxylesterase showed no more than 17% sequence identity with the closest members in the eight families of microbial carboxylesterases. The three-dimensional structure was modeled by sequence alignment and compared with others carboxylesterases. The topological differences suggested the classification of this enzyme and other Geobacillus-related carboxylesterases in a new α/β hydrolase family different from IV and VI. PMID:19304850

  12. Hypervariable pili and flagella genes provide suitable new targets for DNA high-resolution melt-based genotyping of dairy Geobacillus spp.

    PubMed

    Chauhan, Kanika; Seale, R Brent; Deeth, Hilton C; Turner, Mark S

    2014-10-01

    Although nonpathogenic in nature, spores of Geobacillus are able to attach to surfaces, germinate, and form biofilms, allowing rapid multiplication and persistence within milk powder processing plants, causing final product contamination, and eventually leading to a loss of revenue in terms of downgraded product quality. As a result, Geobacillus spp. have been found to be common contaminants of milk powder worldwide. Genotyping methods can help in gaining insight into the ecology and transmission of these thermophilic bacteria within and between dairy processing plants. The objective of this study was to use the assembled draft genomes of two Geobacillus spp. to identify and test new hypervariable genotyping targets for differentiating closely related dairy Geobacillus isolates. The two Geobacillus spp. strains obtained from high spore count powders were obtained in 2010 (isolate 7E) and in 1995 (isolate 126) and were previously shown to be of same genotype based on a variable number tandem repeat genotyping method. Significant nucleotide sequence variation was found in genes encoding pili and flagella, which were further investigated as suitable loci for a new high-resolution melt analysis (HRMA)-based genotyping method. Three genes encoding pulG (containing prepilin-type N-terminal cleavage domain), pilT (pili retraction protein), and fliW (flagellar assembly protein) were selected as targets for the new pili/flagella gene (PilFla) HRMA genotyping method. The three-gene-based PilFla-HRMA genotyping method differentiated 35 milk powder Geobacillus spp. isolates into 19 different genotype groups (D = 0.93), which compared favorably to the previous method (which used four variable number tandem repeat loci) that generated 16 different genotype groups (D = 0.90). In conclusion, through comparative genomics of two closely related dairy Geobacillus strains, we have identified new hypervariable regions that prove to be useful targets for highly discriminatory genotyping

  13. Cloning and characterization of a new manganese superoxide dismutase from deep-sea thermophile Geobacillus sp. EPT3.

    PubMed

    Zhu, Yanbing; Wang, Guohong; Ni, Hui; Xiao, Anfeng; Cai, Huinong

    2014-04-01

    A new gene encoding a superoxide dismutase (SOD) was identified from a thermophile Geobacillus sp. EPT3 isolated from a deep-sea hydrothermal field in east Pacific. The open reading frame of this gene encoded 437 amino acid residues. It was cloned, overexpressed in Escherichia coli (DE3), and the recombinant protein was purified to homogeneity. Geobacillus sp. EPT3 SOD was of the manganese-containing SOD type, as judged by the insensitivity of the recombinant enzyme to both KCN and H₂O₂, and the activity analysis of Fe or Mn reconstituted SODs by polyacrylamide gel electrophoresis. The recombinant SOD was determined to be a homodimer with monomeric molecular mass of 59.0 kDa. In comparison with other Mn-SODs, the manganese-binding sites are conserved in the sequence (His260, His308, Asp392, His396). The recombinant enzyme had high thermostability at 50 °C. It retained 57 % residual activity after incubation at 90 °C for 1 h, which indicated that this SOD was thermostable. The enzyme also showed striking stability over a wide range of pH 5.0-11.0. At tested conditions, the recombinant SOD from Geobacillus sp. EPT3 showed a relatively good tolerance to some inhibitors, detergents, and denaturants, such as β-mercaptoethanol, dithiothreitol, phenylmethylsulfonyl fluoride, Chaps, Triton X-100, urea, and guanidine hydrochloride. PMID:24242973

  14. Kinetic study of asphaltene dissolution in amphiphile/alkane solutions

    SciTech Connect

    Permsukarome, P.; Chang, C.; Fogler, H.S.

    1997-09-01

    The kinetics of dissolution of pentane-insoluble solid asphaltene precipitates by amphiphile/alkane solutions were investigated using a differential reactor flow system. Two amphiphiles, dodecylbenzenesulfonic acid and nonylphenol, and five alkane solvents, ranging from hexane to hexadecane, were used. Results showed that the rate of asphaltene dissolution in amphiphile/alkane fluids could be approximated with a first-order kinetics with respect to the undissolved asphaltene mass in solution. The specific dissolution rate constant, k, varied with the concentration of amphiphiles, the type of alkane solvents, the temperature, and the fluid flow rate. The rate of asphaltene dissolution displayed a Langmuir-Hinshelwood kinetics with respect to the concentration of amphiphiles. Increasing the temperature of amphiphile/alkane fluids also enhanced the rate of asphaltene dissolution. The apparent activation energy for asphaltene dissolution was approximated to be 4--7 kcal/mol. The rate of asphaltene dissolution was also greater in amphiphile solutions containing lighter alkanes, such as hexane, with lower viscosities. These trends suggest that both surface reaction and mass transfer processes are important to the rate of asphaltene dissolution in amphiphile/alkane fluids.

  15. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol. PMID:25545362

  16. Comparison of bulk and n-alkane PETM carbon isotope trends from the Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Baczynski, A. A.; McInerney, F. A.; Kraus, M. J.; Wing, S.

    2010-12-01

    The Paleocene-Eocene Thermal Maximum (PETM), a period of abrupt, short-term, and large-scale global warming fueled by a large release of isotopically light carbon, is recorded in terrestrial and marine carbonates and organic carbon as a prominent negative carbon isotope excursion (CIE). Here we present a composite stable carbon isotope record from n-alkanes and four bulk organic carbon records from individual sections spanning the PETM interval in the Cabin Fork area of the southeastern Bighorn Basin, Wyoming. The n-alkane curve shows an abrupt, negative shift in δ13C values, an extended CIE body, and a rapid recovery to pre-PETM δ13C values. While the bulk organic carbon records show similarly abrupt negative shifts in δ13C values, the CIE appears to be compressed as well as smaller in magnitude, and the return to more positive δ13C values is often more gradual. Furthermore, the stratigraphic thickness of the most negative CIE values and the pattern of the recovery phase are not consistent among the four bulk organic carbon records. The discrepancy between the bulk organic matter and n-alkane CIE may arise because of changes in soil organic matter cycling during the PETM. Bulk soil organic matter δ13C values are influenced by degradation and selective preservation whereas n-alkanes are resistant to diagenesis. Variations in sediment accumulation rates across the basin may be responsible for the differences between the four bulk organic carbon δ13C records. Sites with extended CIE bodies likely present more complete isotope records with greater time resolution and less time averaging than those with reduced CIEs. The shape of the high-resolution n-alkane curve presented here is similar to the newest 3He-based timescale for the PETM using data from Walvis Ridge, IODP site 1266 (Murphy et al., 2010). The most significant difference between this revised PETM timescale and previously published age models is the allocation of time within the PETM event. Murphy et

  17. Alkanes-filled photonic crystal fibers as sensor transducers

    NASA Astrophysics Data System (ADS)

    Marć, P.; Przybysz, N.; Stasiewicz, K.; Jaroszewicz, L. R.

    2015-09-01

    In this paper we propose alkanes-filled PCFs as the new class of transducers for optical fiber sensors. We investigated experimentally thermo-optic properties of a commercially available LMA8 partially filled with different alkanes with a higher number of carbon atoms. A partially filled PCF spliced with standard SMFs constitutes one of the newest type transducer. We have selected a group of eight alkanes which have melting points in different temperatures. An analysis of temperature spectral characteristics of these samples will allow to design an optical fiber sensor with different temperature thresholds at specific wavelengths.

  18. Abnormal carbon and hydrogen isotopes of alkane gases from the Qingshen gas field, Songliao Basin, China, suggesting abiogenic alkanes?

    NASA Astrophysics Data System (ADS)

    Liu, Quanyou; Dai, Jinxing; Jin, Zhijun; Li, Jian; Wu, Xiaoqi; Meng, Qingqiang; Yang, Chun; Zhou, Qinghua; Feng, Zihui; Zhu, Dongya

    2016-01-01

    It is great debate that the alkane gases of abiogenic origin would constitute a major portion of the commercial accumulation of the Qingshen gas field, Songliao Basin, China. In this study, abiogenic gases characterized by heavy δ13C1 values, reversal of the usual carbon isotopic trend of C1-C5 alkanes, very narrow variation in δ2HC1 values, and low CH4/3He ratios associated with high R/Ra values (>1) were identified. The hydrocarbon gas in the Qingshen gas field is a mixture of thermogenic alkanes derived from Cretaceous mudstone (type I kerogen) or Jurassic coal (type III kerogen) and abiogenic alkanes (mainly CH4) from mantle degassing. A quantitative estimation of abiogenic alkanes contribution to the Qingshen gas field is made based on a δ13C1 vs. δ13C2 plot: about 30-40% of alkane gases in the Qingshen gas field, along with its helium, are estimated to be derived from the mantle via magmatic activity. Particularly, the abiogenic formation of CH4 generated from the reduction of CO2 by hydrothermal activity may contribute. Our study suggests that abiogenic alkane gases in certain geological settings could be more widespread than previously thought, and may accumulate into economic reservoirs.

  19. Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain

    PubMed Central

    2012-01-01

    Background Acetoin and 2,3-butanediol are two important biorefinery platform chemicals. They are currently fermented below 40°C using mesophilic strains, but the processes often suffer from bacterial contamination. Results This work reports the isolation and identification of a novel aerobic Geobacillus strain XT15 capable of producing both of these chemicals under elevated temperatures, thus reducing the risk of bacterial contamination. The optimum growth temperature was found to be between 45 and 55°C and the medium initial pH to be 8.0. In addition to glucose, galactose, mannitol, arabionose, and xylose were all acceptable substrates, enabling the potential use of cellulosic biomass as the feedstock. XT15 preferred organic nitrogen sources including corn steep liquor powder, a cheap by-product from corn wet-milling. At 55°C, 7.7 g/L of acetoin and 14.5 g/L of 2,3-butanediol could be obtained using corn steep liquor powder as a nitrogen source. Thirteen volatile products from the cultivation broth of XT15 were identified by gas chromatography–mass spectrometry. Acetoin, 2,3-butanediol, and their derivatives including a novel metabolite 2,3-dihydroxy-3-methylheptan-4-one, accounted for a total of about 96% of all the volatile products. In contrast, organic acids and other products were minor by-products. α-Acetolactate decarboxylase and acetoin:2,6-dichlorophenolindophenol oxidoreductase in XT15, the two key enzymes in acetoin metabolic pathway, were found to be both moderately thermophilic with the identical optimum temperature of 45°C. Conclusions Geobacillus sp. XT15 is the first naturally occurring thermophile excreting acetoin and/or 2,3-butanediol. This work has demonstrated the attractive prospect of developing it as an industrial strain in the thermophilic fermentation of acetoin and 2,3-butanediol with improved anti-contamination performance. The novel metabolites and enzymes identified in XT15 also indicated its strong promise as a precious

  20. Process for converting light alkanes to higher hydrocarbons

    DOEpatents

    Noceti, Richard P.; Taylor, Charles E.

    1988-01-01

    A process is disclosed for the production of aromatic-rich, gasoline boiling range hydrocarbons from the lower alkanes, particularly from methane. The process is carried out in two stages. In the first, alkane is reacted with oxygen and hydrogen chloride over an oxyhydrochlorination catalyst such as copper chloride with minor proportions of potassium chloride and rare earth chloride. This produces an intermediate gaseous mixture containing water and chlorinated alkanes. The chlorinated alkanes are contacted with a crystalline aluminosilicate catalyst in the hydrogen or metal promoted form to produce gasoline range hydrocarbons with a high proportion of aromatics and a small percentage of light hydrocarbons (C.sub.2 -C.sub.4). The light hydrocarbons can be recycled for further processing over the oxyhydrochlorination catalyst.

  1. Volatile hydrocarbons inhibit methanogenic crude oil degradation

    PubMed Central

    Sherry, Angela; Grant, Russell J.; Aitken, Carolyn M.; Jones, D. Martin; Head, Ian M.; Gray, Neil D.

    2014-01-01

    Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5–nC10, methylcyclohexane, benzene, toluene, and xylenes) were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12–nC34) and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene) were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales) were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 μmol CH4/g sediment/day) with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12–nC34). For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 μmol CH4/g sediment/day). This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers. PMID:24765087

  2. Antimicrobial Protein Candidates from the Thermophilic Geobacillus sp. Strain ZGt-1: Production, Proteomics, and Bioinformatics Analysis.

    PubMed

    Alkhalili, Rawana N; Bernfur, Katja; Dishisha, Tarek; Mamo, Gashaw; Schelin, Jenny; Canbäck, Björn; Emanuelsson, Cecilia; Hatti-Kaul, Rajni

    2016-01-01

    A thermophilic bacterial strain, Geobacillus sp. ZGt-1, isolated from Zara hot spring in Jordan, was capable of inhibiting the growth of the thermophilic G. stearothermophilus and the mesophilic Bacillus subtilis and Salmonella typhimurium on a solid cultivation medium. Antibacterial activity was not observed when ZGt-1 was cultivated in a liquid medium; however, immobilization of the cells in agar beads that were subjected to sequential batch cultivation in the liquid medium at 60 °C showed increasing antibacterial activity up to 14 cycles. The antibacterial activity was lost on protease treatment of the culture supernatant. Concentration of the protein fraction by ammonium sulphate precipitation followed by denaturing polyacrylamide gel electrophoresis separation and analysis of the gel for antibacterial activity against G. stearothermophilus showed a distinct inhibition zone in 15-20 kDa range, suggesting that the active molecule(s) are resistant to denaturation by SDS. Mass spectrometric analysis of the protein bands around the active region resulted in identification of 22 proteins with molecular weight in the range of interest, three of which were new and are here proposed as potential antimicrobial protein candidates by in silico analysis of their amino acid sequences. Mass spectrometric analysis also indicated the presence of partial sequences of antimicrobial enzymes, amidase, and dd-carboxypeptidase. PMID:27548162

  3. Production of Thermoalkaliphilic Lipase from Geobacillus thermoleovorans DA2 and Application in Leather Industry

    PubMed Central

    Abol Fotouh, Deyaa M.; Bayoumi, Reda A.; Hassan, Mohamed A.

    2016-01-01

    Thermophilic and alkaliphilic lipases are meeting a growing global attention as their increased importance in several industrial fields. Over 23 bacterial strains, novel strain with high lipolytic activity was isolated from Southern Sinai, Egypt, and it was identified as Geobacillus thermoleovorans DA2 using 16S rRNA as well as morphological and biochemical features. The lipase was produced in presence of fatty restaurant wastes as an inducing substrate. The optimized conditions for lipase production were recorded to be temperature 60°C, pH 10, and incubation time for 48 hrs. Enzymatic production increased when the organism was grown in a medium containing galactose as carbon source and ammonium phosphate as nitrogen source at concentrations of 1 and 0.5% (w/v), respectively. Moreover, the optimum conditions for lipase production such as substrate concentration, inoculum size, and agitation rate were found to be 10% (w/v), 4% (v/v), and 120 rpm, respectively. The TA lipase with Triton X-100 had the best degreasing agent by lowering the total lipid content to 2.6% as compared to kerosene (7.5%) or the sole crude enzyme (8.9%). It can be concluded that the chemical leather process can be substituted with TA lipase for boosting the quality of leather and reducing the environmental hazards. PMID:26881066

  4. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  5. Geobacillus thermoglucosidasius endospores function as nuclei for the formation of single calcite crystals.

    PubMed

    Murai, Rie; Yoshida, Naoto

    2013-05-01

    Geobacillus thermoglucosidasius colonies were placed on an agar hydrogel containing acetate, calcium ions, and magnesium ions, resulting in the formation of single calcite crystals (calcites) within and peripheral to the plating area or parent colony. Microscopic observation of purified calcites placed on the surface of soybean casein digest (SCD) nutrient medium revealed interior crevices from which bacterial colonies originated. Calcites formed on the gel contained [1-(13)C]- and [2-(13)C]acetate, demonstrating that G. thermoglucosidasius utilizes carbon derived from acetate for calcite formation. During calcite formation, vegetative cells swam away from the parent colony in the hydrogel. Hard-agar hydrogel inhibited the formation of calcites peripheral to the parent colony. The calcite dissolved completely in 1 M HCl, with production of bubbles, and the remaining endospore-like particles were easily stained with Brilliant green dye. The presence of DNA and protein in calcites was demonstrated by electrophoresis. We propose that endospores initiate the nucleation of calcites. Endospores of G. thermoglucosidasius remain alive and encapsulated in calcites. PMID:23455343

  6. Partial purification and characterization of lipase from Geobacillus stearothermophilus AH22.

    PubMed

    Ekinci, Arife Pınar; Dinçer, Barbaros; Baltaş, Nimet; Adıgüzel, Ahmet

    2016-01-01

    The lipase was partially purified by ion exchange chromatography and gel filtration column chromatography, and was characterized from Geobacillus stearothermophilus AH22 strain. The lipase was purified 18.3-folds with 19.7% recovery. The lipase activity was determined by using p-nitrophenyl esters (C2-C12) as substrates. The Km values of the enzyme for these substrates were found as 0.16, 0.02, 0.19 and 0.55 mM, respectively, while Vmax values were 0.52, 1.03, 0.72 and 0.15 U mg(-1). The enzyme showed maximum activity at 50 °C and between pH 8.0 and 9.0. The enzyme was found to be quite stable at pH range of 4.0-10.0, and thermal stability between 50 and 60 °C. It was found that the best inhibitory effect of the enzyme activity was of Hg(2+). The inhibitory effect as orlistat, catechin, propyl paraben, p-coumaric acid, 3,4-dihydroxy hydro-cinnamic acid was examined. These results suggest that G. stearothermophilus AH22 lipase presents very suitable properties for industrial applications. PMID:25798692

  7. Production of Thermoalkaliphilic Lipase from Geobacillus thermoleovorans DA2 and Application in Leather Industry.

    PubMed

    Abol Fotouh, Deyaa M; Bayoumi, Reda A; Hassan, Mohamed A

    2016-01-01

    Thermophilic and alkaliphilic lipases are meeting a growing global attention as their increased importance in several industrial fields. Over 23 bacterial strains, novel strain with high lipolytic activity was isolated from Southern Sinai, Egypt, and it was identified as Geobacillus thermoleovorans DA2 using 16S rRNA as well as morphological and biochemical features. The lipase was produced in presence of fatty restaurant wastes as an inducing substrate. The optimized conditions for lipase production were recorded to be temperature 60°C, pH 10, and incubation time for 48 hrs. Enzymatic production increased when the organism was grown in a medium containing galactose as carbon source and ammonium phosphate as nitrogen source at concentrations of 1 and 0.5% (w/v), respectively. Moreover, the optimum conditions for lipase production such as substrate concentration, inoculum size, and agitation rate were found to be 10% (w/v), 4% (v/v), and 120 rpm, respectively. The TA lipase with Triton X-100 had the best degreasing agent by lowering the total lipid content to 2.6% as compared to kerosene (7.5%) or the sole crude enzyme (8.9%). It can be concluded that the chemical leather process can be substituted with TA lipase for boosting the quality of leather and reducing the environmental hazards. PMID:26881066

  8. Crystal structures and ligand binding of PurM proteins from Thermus thermophilus and Geobacillus kaustophilus.

    PubMed

    Kanagawa, Mayumi; Baba, Seiki; Watanabe, Yuzo; Nakagawa, Noriko; Ebihara, Akio; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Sampei, Gen-Ichi; Kawai, Gota

    2016-03-01

    Crystal structures of 5-aminoimidazole ribonucleotide (AIR) synthetase, also known as PurM, from Thermus thermophilus (Tt) and Geobacillus kaustophilus (Gk) were determined. For TtPurM, the maximum resolution was 2.2 Å and the space group was P21212 with four dimers in an asymmetric unit. For GkPurM, the maximum resolution was 2.2 Å and the space group was P21212 with one monomer in asymmetric unit. The biological unit is dimer for both TtPurM and GkPurM and the dimer structures were similar to previously determined structures of PurM in general. For TtPurM, ∼50 residues at the amino terminal were disordered in the crystal structure whereas, for GkPurM, the corresponding region covered the ATP-binding site forming an α helix in part, suggesting that the N-terminal region of PurM changes its conformation upon binding of ligands. FGAM binding site was predicted by the docking simulation followed by the MD simulation based on the SO4 (2-) binding site found in the crystal structure of TtPurM. PMID:26515187

  9. Properties of Geobacillus stearothermophilus levansucrase as potential biocatalyst for the synthesis of levan and fructooligosaccharides.

    PubMed

    Inthanavong, Lotthida; Tian, Feng; Khodadadi, Maryam; Karboune, Salwa

    2013-01-01

    The production of levansucrase (LS) by thermophilic Geobacillus stearothermophilus was investigated. LS production was more effective in the presence of sucrose (1%, w/v) than fructose, glucose, glycerol or raffinose. The results (Top 57°C; stable for 6 h at 47°C) indicate the high stability of the transfructosylation activity of G. stearothermophilus LS as compared with LSs from other microbial sources. Contrary to temperature, the pH had a significant effect on the selectivity of G. stearothermophilus LS-catalyzed reaction, favoring the transfructosylation reaction in the pH range of 6.0-6.5. The kinetic parameter study revealed that the catalytic efficiency of transfructosylation activity was higher as compared with the hydrolytic one. In addition to levan, G. stearothermophilus LS synthesized fructooligosaccharides in the presence of sucrose as the sole substrate. The results also demonstrated the wide acceptor specificity of G. stearothermophilus LS with maltose being the best fructosyl acceptor. This study is the first on the catalytic properties and the acceptor specificity of LS from G. stearothermophilus. PMID:23926090

  10. Structural basis of substrate binding in WsaF, a rhamnosyltransferase from Geobacillus stearothermophilus.

    PubMed

    Steiner, Kerstin; Hagelueken, Gregor; Messner, Paul; Schäffer, Christina; Naismith, James H

    2010-03-26

    Carbohydrate polymers are medically and industrially important. The S-layer of many Gram-positive organisms comprises protein and carbohydrate polymers and forms an almost paracrystalline array on the cell surface. Not only is this array important for the bacteria but it has potential application in the manufacture of commercially important polysaccharides and glycoconjugates as well. The S-layer glycoprotein glycan from Geobacillus stearothermophilus NRS 2004/3a is mainly composed of repeating units of three rhamnose sugars linked by alpha-1,3-, alpha-1,2-, and beta-1,2-linkages. The formation of the beta-1,2-linkage is catalysed by the enzyme WsaF. The rational use of this system is hampered by the fact that WsaF and other enzymes in the pathway share very little homology to other enzymes. We report the structural and biochemical characterisation of WsaF, the first such rhamnosyltransferase to be characterised. Structural work was aided by the surface entropy reduction method. The enzyme has two domains, the N-terminal domain, which binds the acceptor (the growing rhamnan chain), and the C-terminal domain, which binds the substrate (dTDP-beta-l-rhamnose). The structure of WsaF bound to dTDP and dTDP-beta-l-rhamnose coupled to biochemical analysis identifies the residues that underlie catalysis and substrate recognition. We have constructed and tested by site-directed mutagenesis a model for acceptor recognition. PMID:20097205

  11. Heterologous expression, secretion and characterization of the Geobacillus thermoleovorans US105 type I pullulanase.

    PubMed

    Zouari Ayadi, Dorra; Ben Ali, Mamdouh; Jemli, Sonia; Ben Mabrouk, Sameh; Mezghani, Monia; Ben Messaoud, Ezzedine; Bejar, Samir

    2008-03-01

    Pullulanase type I of Geobacillus thermoleovorans US105 strain (PUL US105) was produced and secreted efficiently in the E. coli periplasmic or extracellular fraction using two different signal peptides. Hence, the open reading frame was connected downstream of the lipase A signal peptide of Bacillus subtilis strain leading to an efficient secretion of an active form enzyme on the periplasmic fraction. In addition, pul US105 was fused to the alpha-amylase signal sequence of the Bacillus stearothermophilus US100 strain. The monitoring of the pullulanase activity and Western blot analysis for this last construction showed that the most activity was found in the supernatant culture, proving the efficient secretion of this natively cytoplasmic enzyme as an active form. The PUL US105 was purified to homogeneity from the periplasmic fraction, using heat treatment, size exclusion, and anion-exchange chromatography. The native pullulanase has a molecular mass of 160 kDa and is composed of two identical subunits of 80 kDa each. It was independent for metallic ions for its activity, while its thermostability was obviously improved in presence of only 0.1 mM CaCl2. PMID:18183386

  12. Evolved beta-galactosidases from Geobacillus stearothermophilus with improved transgalactosylation yield for galacto-oligosaccharide production.

    PubMed

    Placier, Gaël; Watzlawick, Hildegard; Rabiller, Claude; Mattes, Ralf

    2009-10-01

    A mutagenesis approach was applied to the beta-galactosidase BgaB from Geobacillus stearothermophilus KVE39 in order to improve its enzymatic transglycosylation of lactose into oligosaccharides. A simple screening strategy, which was based on the reduction of the hydrolysis of a potential transglycosylation product (lactosucrose), provided mutant enzymes possessing improved synthetic properties for the autocondensation product from nitrophenyl-galactoside and galacto-oligosaccharides (GOS) from lactose. The effects of the mutations on enzyme activity and kinetics were determined. An change of one arginine to lysine (R109K) increased the oligosaccharide yield compared to that for the wild-type BgaB. Subsequently, saturation mutagenesis at this position demonstrated that valine and tryptophan further increased the transglycosylation performance of BgaB. During the transglycosylation reaction with lactose of the evolved beta-galactosidases, a major trisaccharide was formed. Its structure was characterized as beta-D-galactopyranosyl-(1-->3)-beta-D-galactopyranosyl-(1-->4)-D-glucopyranoside (3'-galactosyl-lactose). At the lactose concentration of 18% (wt/vol), this trisaccharide was obtained in yields of 11.5% (wt/wt) with GP21 (BgaB R109K), 21% with GP637.2 (BgaB R109V), and only 2% with the wild-type BgaB enzyme. GP643.3 (BgaB R109W) was shown to be the most efficient mutant, with a 3'-galactosyl-lactose production of 23%. PMID:19666723

  13. The quorum-quenching lactonase from Geobacillus caldoxylosilyticus: purification, characterization, crystallization and crystallographic analysis.

    PubMed

    Bergonzi, Celine; Schwab, Michael; Elias, Mikael

    2016-09-01

    Lactonases are enzymes that are capable of hydrolyzing various lactones such as aliphatic lactones or acyl-homoserine lactones (AHLs), with the latter being used as chemical signaling molecules by numerous Gram-negative bacteria. Lactonases therefore have the ability to quench the chemical communication, also known as quorum sensing, of numerous bacteria, and in particular to inhibit behaviors that are regulated by this system, such as the expression of virulence factors or the production of biofilms. A novel representative from the metallo-β-lactamase superfamily, dubbed GcL, was isolated from the thermophilic bacterium Geobacillus caldoxylosilyticus. Because of its thermophilic origin, GcL may constitute an interesting candidate for the development of biocontrol agents. Here, we show that GcL is a thermostable enzyme with a half-life at 75°C of 152.5 ± 10 min. Remarkably, it is also shown that GcL is among the most active lactonases characterized to date, with catalytic efficiencies (kcat/Km) against AHLs of greater than 10(6) M(-1) s(-1). The structure of GcL is expected to shed light on the catalytic mechanism of the enzyme and the molecular determinants for the substrate specificity in this class of lactonases. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.6 Å resolution of GcL are reported. PMID:27599858

  14. Structure of a His170Tyr mutant of thermostable pNPPase from Geobacillus stearothermophilus

    PubMed Central

    Shen, Tiantian; Guo, Zheng; Ji, Chaoneng

    2014-01-01

    Using directed evolution based on random mutagenesis and heat-treated selection, a thermostable His170Tyr mutant of Geobacillus stearothermophilus thermostable p-nitrophenylphosphatase (TpNPPase) was obtained. The temperature at which the His170Tyr mutant lost 50% of its activity (T 1/2) was found to be 4.40 K higher than that of wild-type TpNPPase, and the melting temperature of the His170Tyr mutant increased by 2.39 K. The crystal structure of the His170Tyr mutant was then determined at 2.0 Å resolution in the presence of a sodium ion and a sulfate ion in the active site. The cap domain of chain B shows a half-closed conformation. The hydrophobic side chain of the mutated residue, the hydroxyphenyl group, forms a hydrophobic contact with the methyl group of Ala166. This hydrophobic interaction was found using the Protein Interactions Calculator (PIC) web server with an interaction distance of 4.6 Å, and might be a key factor in the thermostabilization of the His170Tyr mutant. This study potentially offers a molecular basis for both investigation of the catalytic mechanism and thermostable protein engineering. PMID:24915075

  15. Antimicrobial Protein Candidates from the Thermophilic Geobacillus sp. Strain ZGt-1: Production, Proteomics, and Bioinformatics Analysis

    PubMed Central

    Alkhalili, Rawana N.; Bernfur, Katja; Dishisha, Tarek; Mamo, Gashaw; Schelin, Jenny; Canbäck, Björn; Emanuelsson, Cecilia; Hatti-Kaul, Rajni

    2016-01-01

    A thermophilic bacterial strain, Geobacillus sp. ZGt-1, isolated from Zara hot spring in Jordan, was capable of inhibiting the growth of the thermophilic G. stearothermophilus and the mesophilic Bacillus subtilis and Salmonella typhimurium on a solid cultivation medium. Antibacterial activity was not observed when ZGt-1 was cultivated in a liquid medium; however, immobilization of the cells in agar beads that were subjected to sequential batch cultivation in the liquid medium at 60 °C showed increasing antibacterial activity up to 14 cycles. The antibacterial activity was lost on protease treatment of the culture supernatant. Concentration of the protein fraction by ammonium sulphate precipitation followed by denaturing polyacrylamide gel electrophoresis separation and analysis of the gel for antibacterial activity against G. stearothermophilus showed a distinct inhibition zone in 15–20 kDa range, suggesting that the active molecule(s) are resistant to denaturation by SDS. Mass spectrometric analysis of the protein bands around the active region resulted in identification of 22 proteins with molecular weight in the range of interest, three of which were new and are here proposed as potential antimicrobial protein candidates by in silico analysis of their amino acid sequences. Mass spectrometric analysis also indicated the presence of partial sequences of antimicrobial enzymes, amidase and dd-carboxypeptidase. PMID:27548162

  16. Characteristics of thermostable amylopullulanase of Geobacillus thermoleovorans and its truncated variants.

    PubMed

    Nisha, M; Satyanarayana, T

    2015-05-01

    The far-UV CD spectroscopic analysis of the secondary structure in the temperature range between 30 and 90°C revealed a compact and thermally stable structure of C-terminal truncated amylopullulanase of Geobacillus thermoleovorans NP33 (gt-apuΔC) with a higher melting temperature [58°C] than G. thermoleovorans NP33 amylopullulanase (gt-apu) [50°C] and the N-terminal truncated amylopullulanase from G. thermoleovorans NP33 (gt-apuΔN) [55°C]. A significant decline in random coils in gt-apuΔC and gt-apuΔN suggested an improvement in conformational stability, and thus, an enhancement in their thermal stability. The improvement in the thermostability of gt-apuΔC was corroborated by the thermodynamic parameters for enzyme inactivation. The Trp fluorescence emission (335 nm) and the acrylamide quenching constant (22.69 M(-1)) of gt-apuΔC indicated that the C-terminal truncation increases the conformational stability of the protein with the deeply buried tryptophan residues. The 8-Anilino Naphthalene Sulfonic acid (ANS) fluorescence experiments indicated the unfolding of gt-apu to expose its hydrophobic surface to a greater extent than the gt-apuΔC and gt-apuΔN. PMID:25748845

  17. Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment.

    PubMed

    Watanabe, Taisuke; Furukawa, Soichi; Hirata, Junichi; Koyama, Tetsuya; Ogihara, Hirokazu; Yamasaki, Makari

    2003-12-01

    High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35 degrees C, to high-hydrostatic-pressure treatment at 200 MPa and 65 degrees C, or to heat treatment at 0.1 MPa and 85 degrees C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95 degrees C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95 degrees C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95 degrees C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95 degrees C was more effective than treatment at 95 degrees C alone. PMID:14660357

  18. Inactivation of Geobacillus stearothermophilus Spores by High-Pressure Carbon Dioxide Treatment

    PubMed Central

    Watanabe, Taisuke; Furukawa, Soichi; Hirata, Junichi; Koyama, Tetsuya; Ogihara, Hirokazu; Yamasaki, Makari

    2003-01-01

    High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35°C, to high-hydrostatic-pressure treatment at 200 MPa and 65°C, or to heat treatment at 0.1 MPa and 85°C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95°C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95°C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95°C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95°C was more effective than treatment at 95°C alone. PMID:14660357

  19. In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure.

    PubMed

    Georget, Erika; Kapoor, Shobhna; Winter, Roland; Reineke, Kai; Song, Youye; Callanan, Michael; Ananta, Edwin; Heinz, Volker; Mathys, Alexander

    2014-08-01

    Bacterial spores are a major concern for food safety due to their high resistance to conventional preservation hurdles. Innovative hurdles can trigger bacterial spore germination or inactivate them. In this work, Geobacillus stearothermophilus spore high pressure (HP) germination and inactivation mechanisms were investigated by in situ infrared spectroscopy (FT-IR) and fluorometry. G. stearothermophilus spores' inner membrane (IM) was stained with Laurdan fluorescent dye. Time-dependent FT-IR and fluorescence spectra were recorded in situ under pressure at different temperatures. The Laurdan spectrum is affected by the lipid packing and level of hydration, and provided information on the IM state through the Laurdan generalized polarization. Changes in the -CH2 and -CH3 asymmetric stretching bands, characteristic of lipids, and in the amide I' band region, characteristic of proteins' secondary structure elements, enabled evaluation of the impact of HP on endospores lipid and protein structures. These studies were complemented by ex situ analyses (plate counts and microscopy). The methods applied showed high potential to identify germination mechanisms, particularly associated to the IM. Germination up to 3 log10 was achieved at 200 MPa and 55 °C. A molecular-level understanding of these mechanisms is important for the development and validation of multi-hurdle approaches to achieve commercial sterility. PMID:24750808

  20. Geobacillus thermoglucosidasius Endospores Function as Nuclei for the Formation of Single Calcite Crystals

    PubMed Central

    Murai, Rie

    2013-01-01

    Geobacillus thermoglucosidasius colonies were placed on an agar hydrogel containing acetate, calcium ions, and magnesium ions, resulting in the formation of single calcite crystals (calcites) within and peripheral to the plating area or parent colony. Microscopic observation of purified calcites placed on the surface of soybean casein digest (SCD) nutrient medium revealed interior crevices from which bacterial colonies originated. Calcites formed on the gel contained [1-13C]- and [2-13C]acetate, demonstrating that G. thermoglucosidasius utilizes carbon derived from acetate for calcite formation. During calcite formation, vegetative cells swam away from the parent colony in the hydrogel. Hard-agar hydrogel inhibited the formation of calcites peripheral to the parent colony. The calcite dissolved completely in 1 M HCl, with production of bubbles, and the remaining endospore-like particles were easily stained with Brilliant green dye. The presence of DNA and protein in calcites was demonstrated by electrophoresis. We propose that endospores initiate the nucleation of calcites. Endospores of G. thermoglucosidasius remain alive and encapsulated in calcites. PMID:23455343

  1. Selective hydroxylation of alkanes by an extracellular fungal peroxygenase.

    PubMed

    Peter, Sebastian; Kinne, Matthias; Wang, Xiaoshi; Ullrich, René; Kayser, Gernot; Groves, John T; Hofrichter, Martin

    2011-10-01

    Fungal peroxygenases are novel extracellular heme-thiolate biocatalysts that are capable of catalyzing the selective monooxygenation of diverse organic compounds, using only H(2)O(2) as a cosubstrate. Little is known about the physiological role or the catalytic mechanism of these enzymes. We have found that the peroxygenase secreted by Agrocybe aegerita catalyzes the H(2)O(2)-dependent hydroxylation of linear alkanes at the 2-position and 3-position with high efficiency, as well as the regioselective monooxygenation of branched and cyclic alkanes. Experiments with n-heptane and n-octane showed that the hydroxylation proceeded with complete stereoselectivity for the (R)-enantiomer of the corresponding 3-alcohol. Investigations with a number of model substrates provided information about the route of alkane hydroxylation: (a) the hydroxylation of cyclohexane mediated by H(2)(18)(2) resulted in complete incorporation of (18)O into the hydroxyl group of the product cyclohexanol; (b) the hydroxylation of n-hexane-1,1,1,2,2,3,3-D(7) showed a large intramolecular deuterium isotope effect [(k(H)/k(D))(obs)] of 16.0 ± 1.0 for 2-hexanol and 8.9 ± 0.9 for 3-hexanol; and (c) the hydroxylation of the radical clock norcarane led to an estimated radical lifetime of 9.4 ps and an oxygen rebound rate of 1.06 × 10(11) s(-1). These results point to a hydrogen abstraction and oxygen rebound mechanism for alkane hydroxylation. The peroxygenase appeared to lack activity on long-chain alkanes (> C(16)) and highly branched alkanes (e.g. tetramethylpentane), but otherwise exhibited a broad substrate range. It may accordingly have a role in the bioconversion of natural and anthropogenic alkane-containing structures (including alkyl chains of complex biomaterials) in soils, plant litter, and wood. PMID:21812933

  2. Variation in n-Alkane Distributions of Modern Plants: Questioning Applications of n-Alkanes in Chemotaxonomy and Paleoecology

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; McInerney, F. A.

    2010-12-01

    Long chain n-alkanes (n-C21 to n-C37) are synthesized as part of the epicuticular leaf wax of terrestrial plants and are among the most recognizable and widely used plant biomarkers. n-Alkane distributions have been utilized in previous studies on modern plant chemotaxonomy, testing whether taxa can be identified based on characteristic n-alkane profiles. Dominant n-alkanes (e.g. n-C27 or n-C31) have also been ascribed to major plant groups (e.g. trees or grasses respectively) and have been used in paleoecology studies to reconstruct fluctuations in plant functional types. However, many of these studies have been based on relatively few modern plant data; with the wealth of modern n-alkane studies, a more comprehensive analysis of n-alkanes in modern plants is now possible and can inform the usefulness of n-alkane distributions as paleoecological indicators. The work presented here is a combination of measurements made using plant leaves collected from the Chicago Botanic Garden and a compilation of published literature data from six continents. We categorized plants by type: angiosperms, gymnosperms, woody plants, forbs, grasses, ferns and pteridophytes, and mosses. We then quantified n-alkane distribution parameters such as carbon preference index (CPI), average chain length (ACL), and dispersion (a measure of the spread of the profile over multiple chain lengths) and used these to compare plant groups. Among all plants, one of the emergent correlations is a decrease in dispersion with increasing CPI. Within and among plant groups, n-alkane distributions show a very large range of variation, and the results show little or no correspondence between broad plant groups and a single dominant n-alkane or a ratio of n-alkanes. These findings are true both when data from six continents are combined and when plants from a given region are compared (North America). We also compared the n-alkane distributions of woody angiosperms, woody gymnosperms, and grasses with one

  3. Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52.

    PubMed

    Yang, Hai-Yan; Jia, Rui-Bao; Chen, Bin; Li, Li

    2014-09-01

    This study investigates the ability of Rhodococcus sp. strain p52, a dioxin degrader, to biodegrade petroleum hydrocarbons. Strain p52 can use linear alkanes (tetradecane, tetracosane, and dotriacontane), branched alkane (pristane), and aromatic hydrocarbons (naphthalene and phenanthrene) as sole carbon and energy sources. Specifically, the strain removes 85.7 % of tetradecane within 48 h at a degradation rate of 3.8 mg h(-1) g(-1) dry cells, and 79.4 % of tetracosane, 66.4 % of dotriacontane, and 63.9 % of pristane within 9-11 days at degradation rates of 20.5, 14.7, and 20.3 mg day(-1) g(-1) dry cells, respectively. Moreover, strain p52 consumes 100 % naphthalene and 55.3 % phenanthrene within 9-11 days at respective degradation rates of 16 and 12.9 mg day(-1) g(-1) dry cells. Metabolites of the petroleum hydrocarbons by strain p52 were analyzed. Genes encoding alkane-hydroxylating enzymes, including cytochrome P450 (CYP450) enzyme (CYP185) and two alkane-1-monooxygenases, were amplified by polymerase chain reaction. The transcriptional activities of these genes in the presence of petroleum hydrocarbons were detected by reverse transcription-polymerase chain reaction. The results revealed potential of strain p52 to degrade petroleum hydrocarbons. PMID:24859700

  4. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-12-15

    Detailed chemical kinetic models are needed to simulate the combustion of current and future transportation fuels. These models should represent the various chemical classes in these fuels. Conventional diesel fuels are composed of n-alkanes, iso-alkanes, cycloalkanes and aromatics (Farrell et al. 2007). For future fuels, there is a renewed interest in Fischer-Tropsch (F-T) processes which can be used to synthesize diesel and other transportation fuels from biomass, coal and natural gas. F-T diesel fuels are expected to be similar to F-T jet fuels which are commonly comprised of iso-alkanes with some n-alkanes (Smith and Bruno, 2008). Thus, n-alkanes and iso-alkanes are common chemical classes in these conventional and future fuels. This paper reports on the development of chemical kinetic models of large n-alkanes and iso-alkanes to represent these chemical classes in conventional and future fuels. Two large iso-alkanes are 2,2,4,4,6,8,8-heptamethylnonane, which is a primary reference fuel for diesel, and isooctane, a primary reference fuel for gasoline. Other iso-alkanes are branched alkanes with a single methyl side chain, typical of most F-T fuels. The chemical kinetic models are then used to predict the effect of these fuel components on ignition characteristics under conditions found in internal combustion engines.

  5. Diffusion of Benzene and Alkylbenzenes in n-Alkanes.

    PubMed

    Kowert, Bruce A; Register, Paul M

    2015-10-01

    The translational diffusion constants, D, of benzene and a series of alkylbenzenes have been determined in four n-alkanes at room temperature using capillary flow techniques. The alkylbenzenes are toluene, ethylbenzene, 1-phenylpropane, 1-phenylpentane, 1-phenyloctane, 1-phenylundecane, 1-phenyltetradecane, and 1-phenylheptadecane. The n-alkanes are n-nonane, n-decane, n-dodecane, and n-pentadecane. Ratios of the solutes' D values are independent of solvent and in general agreement with the predictions of diffusion models for cylinders and lollipops. For the latter, an alkylbenzene's phenyl ring is the lollipop's candy; the alkyl chain is its handle. A model that considers the solutes to be spheres with volumes determined by the van der Waals increments of their constituent atoms is not in agreement with experiment. The diffusion constants of 1-alkene and n-alkane solutes in n-alkane solvents also are compared with the cylinder model; reasonably good agreement is found. The n-alkanes are relatively extended, and this appears to be the case for the alkyl chains of the 1-alkenes and alkylbenzenes as well. PMID:26417941

  6. Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus.

    PubMed

    Iqbal, Irfana; Aftab, Muhammad Nauman; Afzal, Mohammed; Ur-Rehman, Asad; Aftab, Saima; Zafar, Asma; Ud-Din, Zia; Khuharo, Ateeque Rahman; Iqbal, Jawad; Ul-Haq, Ikram

    2015-02-01

    Thermostable alkaline serine protease gene of Geobacillus stearothermophilus B-1172 was cloned and expressed in Escherichia coli BL21 (DE3) using pET-22b(+), as an expression vector. The growth conditions were optimized for maximal production of the protease using variable fermentation parameters, i.e., pH, temperature, and addition of an inducer. Protease, thus produced, was purified by ammonium sulfate precipitation followed by ion exchange chromatography with 13.7-fold purification, with specific activity of 97.5 U mg(-1) , and a recovery of 23.6%. Molecular weight of the purified protease, 39 kDa, was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 90 °C at pH 9. The enzyme activity was steady in the presence of EDTA indicating that the protease was not a metalloprotease. No significant change in the activity of protease after addition of various metal ions further strengthened this fact. However, an addition of 1% Triton X-100 or SDS surfactants constrained the enzyme specific activity to 34 and 19%, respectively. Among organic solvents, an addition of 1-butanol (20%) augmented the enzyme activity by 29% of the original activity. With casein as a substrate, the enzyme activity under optimized conditions was found to be 73.8 U mg(-1) . The effect of protease expression on the host cells growth was also studied and found to negatively affect E. coli cells to certain extent. Catalytic domains of serine proteases from eight important thermostable organisms were analyzed through WebLogo and found to be conserved in all serine protease sequences suggesting that protease of G. stearothermophilus could be beneficially used as a biocontrol agent and in many industries including detergent industry. PMID:25224381

  7. Analysis of the tryptophanase expression in Symbiobacterium thermophilum in a coculture with Geobacillus stearothermophilus.

    PubMed

    Watsuji, Tomo-O; Takano, Hideaki; Yamabe, Tomoya; Tamazawa, Satoshi; Ikemura, Hiroka; Ohishi, Takanori; Matsuda, Tohyo; Shiratori-Takano, Hatsumi; Beppu, Teruhiko; Ueda, Kenji

    2014-12-01

    The tryptophanase-positive Symbiobacterium thermophilum is a free-living syntrophic bacterium that grows effectively in a coculture with Geobacillus stearothermophilus. Our studies have shown that S. thermophilum growth depends on the high CO2 and low O2 condition established by the precedent growth of G. stearothermophilus. The use of an anoxic atmosphere containing high CO2 allows S. thermophilum to grow independently of G. stearothermophilus, but the cellular yield is ten times lower than that achieved in the coculture. In this study, we characterized the coculture-dependent expression and activity of tryptophanase in S. thermophilum. S. thermophilum cells accumulated a marked amount of indole in a coculture with G. stearothermophilus, but not in the bacterium's pure culture irrespective of the addition of tryptophan. S. thermophilum cells accumulated indole in its pure culture consisting of conditioned medium (medium supplied with culture supernatant of G. stearothermophilus). Proteomic analysis identified the protein specifically produced in the S. thermophilum cells grown in conditioned medium, which was a tryptophanase encoded by tna2 (STH439). An attempt to isolate the tryptophanase-inducing component from the culture supernatant of G. stearothermophilus was unsuccessful, but we did discover that the indole accumulation occurs when 10 mM bicarbonate is added to the medium. RT-PCR analysis showed that the addition of bicarbonate stimulated transcription of tna2. The transcriptional start site, identified within the tna2 promoter, was preceded by the -24 and -12 consensus sequences specified by an alternative sigma factor, σ(54). The evidence suggests that the transcription of some genes involved in amino acid metabolism is σ(54)-dependent, and that a bacterial enhancer-binding protein containing a PAS domain controls the transcription under the presence of high levels of bicarbonate. PMID:25200839

  8. Cloning, overexpression, and characterization of a novel alkali-thermostable xylanase from Geobacillus sp. WBI.

    PubMed

    Mitra, Suranjita; Mukhopadhyay, Bidhan Chandra; Mandal, Anisur Rahaman; Arukha, Ananta Prasad; Chakrabarty, Kuheli; Das, Gourab Kanti; Chakrabartty, Pran Krishna; Biswas, Swadesh Ranjan

    2015-04-01

    An endo-β-1,4-xylanase gene xynA of a thermophilic Geobacillus sp. WBI from "hot" compost was isolated by PCR amplification. The gene encoding 407 residues were overexpressed in E. coli and purified by Ni-NTA chromatography. The purified enzyme (47 kDa) had a broad pH optimum of 6.0 to 9.0, and was active between 50 and 90 °C. The enzyme retained 100% of its activity when incubated at 65 °C for 1 h under alkaline condition (pH 10.0) and retained 75% activity at pH 11.0. The K(m) and V(max) of the enzyme were 0.9 mg ml(-1) and 0.8 µmol ml(-1) min(-1), respectively. In molecular dynamics simulation at 338 K (65 °C), the enzyme was found to be stable. At an elevated temperature (450 K) specific α-helix and β-turns of the proteins were most denatured. The denaturation was less in WBI compared with its highest homolog G. stearothermophilus T-6 xylanase with difference of six residues. The results predict that these regions are responsible for the improved thermostability observed over related enzymes. The present work encourages further experimental demonstration to understand how these regions contribute thermostability to WBI xylanase. The study noted that WBI produces a xylanase with unique characteristics, specifically alkali-thermostability. PMID:25404211

  9. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.

    PubMed

    Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet

    2015-11-01

    Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity. PMID:26026940

  10. Expression and Characterization of Geobacillus stearothermophilus SR74 Recombinant α-Amylase in Pichia pastoris.

    PubMed

    Gandhi, Sivasangkary; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Chor Leow, Thean; Oslan, Siti Nurbaya

    2015-01-01

    Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v) was the best medium and once optimized, the maximum recombinant α-amylase SR74 achieved in shake flask was 28.6 U mL(-1) at 120 h after induction. The recombinant 59 kDa α-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8 U mg(-1). The optimum pH of α-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0-8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t₁/₂) of 88 min at 60°C. In conclusion, thermostable α-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification. PMID:26090417

  11. Multiple regulatory mechanisms control the expression of the Geobacillus stearothermophilus gene for extracellular xylanase.

    PubMed

    Shulami, Smadar; Shenker, Ofer; Langut, Yael; Lavid, Noa; Gat, Orit; Zaide, Galia; Zehavi, Arie; Sonenshein, Abraham L; Shoham, Yuval

    2014-09-12

    Geobacillus stearothermophilus T-6 produces a single extracellular xylanase (Xyn10A) capable of producing short, decorated xylo-oligosaccharides from the naturally branched polysaccharide, xylan. Gel retardation assays indicated that the master negative regulator, XylR, binds specifically to xylR operators in the promoters of xylose and xylan-utilization genes. This binding is efficiently prevented in vitro by xylose, the most likely molecular inducer. Expression of the extracellular xylanase is repressed in medium containing either glucose or casamino acids, suggesting that carbon catabolite repression plays a role in regulating xynA. The global transcriptional regulator CodY was shown to bind specifically to the xynA promoter region in vitro, suggesting that CodY is a repressor of xynA. The xynA gene is located next to an uncharacterized gene, xynX, that has similarity to the NIF3 (Ngg1p interacting factor 3)-like protein family. XynX binds specifically to a 72-bp fragment in the promoter region of xynA, and the expression of xynA in a xynX null mutant appeared to be higher, indicating that XynX regulates xynA. The specific activity of the extracellular xylanase increases over 50-fold during early exponential growth, suggesting cell density regulation (quorum sensing). Addition of conditioned medium to fresh and low cell density cultures resulted in high expression of xynA, indicating that a diffusible extracellular xynA density factor is present in the medium. The xynA density factor is heat-stable, sensitive to proteases, and was partially purified using reverse phase liquid chromatography. Taken together, these results suggest that xynA is regulated by quorum-sensing at low cell densities. PMID:25070894

  12. Inactivation of Geobacillus stearothermophilus spores by alkaline hydrolysis applied to medical waste treatment.

    PubMed

    Pinho, Sílvia C; Nunes, Olga C; Lobo-da-Cunha, Alexandre; Almeida, Manuel F

    2015-09-15

    Although alkaline hydrolysis treatment emerges as an alternative disinfection/sterilization method for medical waste, information on its effects on the inactivation of biological indicators is scarce. The effects of alkaline treatment on the resistance of Geobacillus stearothermophilus spores were investigated and the influence of temperature (80 °C, 100 °C and 110 °C) and NaOH concentration was evaluated. In addition, spore inactivation in the presence of animal tissues and discarded medical components, used as surrogate of medical waste, was also assessed. The effectiveness of the alkaline treatment was carried out by determination of survival curves and D-values. No significant differences were seen in D-values obtained at 80 °C and 100 °C for NaOH concentrations of 0.5 M and 0.75 M. The D-values obtained at 110 °C (2.3-0.5 min) were approximately 3 times lower than those at 100 °C (8.8-1.6 min). Independent of the presence of animal tissues and discarded medical components, 6 log10 reduction times varied between 66 and 5 min at 100 °C-0.1 M NaOH and 110 °C-1 M NaOH, respectively. The alkaline treatment may be used in future as a disinfection or sterilization alternative method for contaminated waste. PMID:26150372

  13. Identification of novel thermostable taurine-pyruvate transaminase from Geobacillus thermodenitrificans for chiral amine synthesis.

    PubMed

    Chen, Yujie; Yi, Dong; Jiang, Shuiqin; Wei, Dongzhi

    2016-04-01

    ω-Transaminases (ω-TAs) are one of the most popular candidate enzymes in the biosynthesis of chiral amines. Determination of yet unidentified ω-TAs is important to broaden their potential for synthetic application. Taurine-pyruvate TA (TPTA, EC 2.6.1.77) is an ω-TA belonging to class III of TAs. In this study, we cloned a novel thermostable TPTA from Geobacillus thermodenitrificans (TPTAgth) and overexpressed it in Escherichia coli. The enzyme showed the highest activity at pH 9.0 and 65 °C, with remarkable thermostability and tolerance toward organic solvents. Its K M and v max values for taurine were 5.3 mM and 0.28 μmol s(-1) mg(-1), respectively. Determination of substrate tolerance indicated its broad donor and acceptor ranges for unnatural substrates. Notably, the enzyme showed relatively good activity toward ketoses, suggesting its potential for catalyzing the asymmetric synthesis of chiral amino alcohols. The active site of TPTAgth was identified by performing protein sequence alignment, three-dimensional structure simulation, and coenzyme pyridoxamine phosphate docking. The protein sequence and structure of TPTAgth were similar to those of TAs belonging to the 3N5M subfamily. Its active site was found to be its special large pocket and substrate tunnel. In addition, TPTAgth showed a unique mechanism of sulfonate/α-carboxylate recognition contributed by Arg163 and Gln160. We also determined the protein sequence fingerprint of TPTAs in the 3N5M subfamily, which involved Arg163 and Gln160 and seven additional residues from 413 to 419 and lacked Phe/Tyr22, Phe85, and Arg409. PMID:26577674

  14. Multiple Regulatory Mechanisms Control the Expression of the Geobacillus stearothermophilus Gene for Extracellular Xylanase*

    PubMed Central

    Shulami, Smadar; Shenker, Ofer; Langut, Yael; Lavid, Noa; Gat, Orit; Zaide, Galia; Zehavi, Arie; Sonenshein, Abraham L.; Shoham, Yuval

    2014-01-01

    Geobacillus stearothermophilus T-6 produces a single extracellular xylanase (Xyn10A) capable of producing short, decorated xylo-oligosaccharides from the naturally branched polysaccharide, xylan. Gel retardation assays indicated that the master negative regulator, XylR, binds specifically to xylR operators in the promoters of xylose and xylan-utilization genes. This binding is efficiently prevented in vitro by xylose, the most likely molecular inducer. Expression of the extracellular xylanase is repressed in medium containing either glucose or casamino acids, suggesting that carbon catabolite repression plays a role in regulating xynA. The global transcriptional regulator CodY was shown to bind specifically to the xynA promoter region in vitro, suggesting that CodY is a repressor of xynA. The xynA gene is located next to an uncharacterized gene, xynX, that has similarity to the NIF3 (Ngg1p interacting factor 3)-like protein family. XynX binds specifically to a 72-bp fragment in the promoter region of xynA, and the expression of xynA in a xynX null mutant appeared to be higher, indicating that XynX regulates xynA. The specific activity of the extracellular xylanase increases over 50-fold during early exponential growth, suggesting cell density regulation (quorum sensing). Addition of conditioned medium to fresh and low cell density cultures resulted in high expression of xynA, indicating that a diffusible extracellular xynA density factor is present in the medium. The xynA density factor is heat-stable, sensitive to proteases, and was partially purified using reverse phase liquid chromatography. Taken together, these results suggest that xynA is regulated by quorum-sensing at low cell densities. PMID:25070894

  15. Expression and Characterization of Geobacillus stearothermophilus SR74 Recombinant α-Amylase in Pichia pastoris

    PubMed Central

    Gandhi, Sivasangkary; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Chor Leow, Thean; Oslan, Siti Nurbaya

    2015-01-01

    Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v) was the best medium and once optimized, the maximum recombinant α-amylase SR74 achieved in shake flask was 28.6 U mL−1 at 120 h after induction. The recombinant 59 kDa α-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8 U mg−1. The optimum pH of α-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0–8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t1/2) of 88 min at 60°C. In conclusion, thermostable α-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification. PMID:26090417

  16. Structural elements of thermostability in the maltogenic amylase of Geobacillus thermoleovorans.

    PubMed

    Mehta, Deepika; Satyanarayana, T

    2015-08-01

    Maltogenic amylase of Geobacillus thermoleovorans (Gt-MamyIII), which has the highest thermostability among bacterial maltogenic amylases, has been used as a model enzyme to understand the role of networked salt bridges in thermoadaptation. The role of intra-chain cross-domain salt bridge networks in the thermostabilization of maltogenic amylase of G. thermoleovorans was confirmed by site-directed mutagenesis and CD analysis. The amino acid pairs in seven salt bridges have been mutated singly and pair-wise, and their free energy of thermal inactivation has been calculated. Among seven, single and double mutations in the amino acids corresponding to four salt bridges (lys306.glu336, arg403.asp65, arg497.glu523 and lys524.glu523) decrease T1/2 and Tm of Gt-MamyIII significantly. Moreover, glu523 forms networked salt bridges with arg497 and lys524. OE1 of glu523 forms electrostatic interactions with NH1 of arg497, NH2 of arg497 and NZ of lys524 at a distance of 2.33, 2.02 and 0.33Å, respectively. The mutations in three buried amino acids led to a decline in T1/2 and Tm. The buried as well as networked cross-domain salt bridges thus appear to play a significant role in the thermostabilization of Gt-MamyIII. The salt bridges lys306.glu336 and arg403.asp65, which are isolated and partially accessible, play a minor role in its thermostabilization. PMID:25881956

  17. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    SciTech Connect

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  18. Alkanes in shrimp from the Buccaneer Oil Field

    SciTech Connect

    Middleditch, B.S.; Basile, B.; Chang, E.S.

    1982-07-01

    A total of 36 samples of shrimp were examined from the region of the Buccaneer oil field, eighteen of which were representatives of the commercial species Penaeus aztecus and the rest were various other species: Penaeus duorarum (pink shrimp), Trachypenaeus duorarum (sugar shrimp), Squilla empusa (mantis shrimp), and Sicyonia dorsalis (chevron shrimp). The alkanes and deuteriated alkanes were completely separated by GC, so a mass spectrometer was not required for their detection and quantitation. To confirm the identities of individual compounds, however, some samples were examined by combined gas chromatography-mass spectrometry. Results show that only thirteen of the forty shrimp collected from the region of the Buccaneer oil field contained petroleum alkanes, and the majority of these were obtained from trawls immediately adjacent to the production platforms. It appears that shrimp caught in the region of the Buccaneer oil field are not appreciably tainted with hydrocarbons discharged from the production platforms. (JMT)

  19. Geobacillus thermodenitrificans YjbH recognizes the C-terminal end of Bacillus subtilis Spx to accelerate Spx proteolysis by ClpXP

    PubMed Central

    Chan, Chio Mui; Garg, Saurabh; Lin, Ann A.

    2012-01-01

    Proteolytic control can govern the levels of specific regulatory factors, such as Spx, a transcriptional regulator of the oxidative stress response in Gram-positive bacteria. Under oxidative stress, Spx concentration is elevated and upregulates transcription of genes that function in the stress response. When stress is alleviated, proteolysis of Spx catalysed by ClpXP reduces Spx concentration. Proteolysis is enhanced by the substrate recognition factor YjbH, which possesses a His–Cys-rich region at its N terminus. However, mutations that generate H12A, C13A, H14A, H16A and C31/34A residue substitutions in the N terminus of Bacillus subtilis YjbH (BsYjbH) do not affect functionality in Spx proteolytic control in vivo and in vitro. Because of difficulties in obtaining soluble BsYjbH, the Geobacillus thermodenitrificans yjbH gene was cloned, which yielded soluble GtYjbH protein. Despite its lack of a His–Cys-rich region, GtYjbH complements a B. subtilis yjbH null mutant, and shows high activity in vitro when combined with ClpXP and Spx in an approximately 30 : 1 (ClpXP/Spx : GtYjbH) molar ratio. In vitro interaction experiments showed that Spx and the protease-resistant SpxDD (in which the last two residues of Spx are replaced with two Asp residues) bind to GtYjbH, but deletion of 12 residues from the Spx C terminus (SpxΔC) significantly diminished interaction and proteolytic degradation, indicating that the C terminus of Spx is important for YjbH recognition. These experiments also showed that Spx, but not GtYjbH, interacts with ClpX. Kinetic measurements for Spx proteolysis by ClpXP in the presence and absence of GtYjbH suggest that YjbH overcomes non-productive Spx–ClpX interaction, resulting in rapid degradation. PMID:22343351

  20. Structural and functional characterization of the Geobacillus copper nitrite reductase: involvement of the unique N-terminal region in the interprotein electron transfer with its redox partner.

    PubMed

    Fukuda, Yohta; Koteishi, Hiroyasu; Yoneda, Ryohei; Tamada, Taro; Takami, Hideto; Inoue, Tsuyoshi; Nojiri, Masaki

    2014-03-01

    The crystal structures of copper-containing nitrite reductase (CuNiR) from the thermophilic Gram-positive bacterium Geobacillus kaustophilus HTA426 and the amino (N)-terminal 68 residue-deleted mutant were determined at resolutions of 1.3Å and 1.8Å, respectively. Both structures show a striking resemblance with the overall structure of the well-known CuNiRs composed of two Greek key β-barrel domains; however, a remarkable structural difference was found in the N-terminal region. The unique region has one β-strand and one α-helix extended to the northern surface of the type-1 copper site. The superposition of the Geobacillus CuNiR model on the electron-transfer complex structure of CuNiR with the redox partner cytochrome c551 in other denitrifier system led us to infer that this region contributes to the transient binding with the partner protein during the interprotein electron transfer reaction in the Geobacillus system. Furthermore, electron-transfer kinetics experiments using N-terminal residue-deleted mutant and the redox partner, Geobacillus cytochrome c551, were carried out. These structural and kinetics studies demonstrate that the region is directly involved in the specific partner recognition. PMID:24440558

  1. Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions

    PubMed Central

    Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner

    2015-01-01

    BACKGROUND Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. RESULTS A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3–l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L−1 optically pure (98%) L-lactic acid in 20 h from 50 g L−1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. CONCLUSIONS Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus. The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors.Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25937690

  2. Characterization of a thermostable raw-starch hydrolyzing α-amylase from deep-sea thermophile Geobacillus sp.

    PubMed

    Jiang, Tao; Cai, Menghao; Huang, Mengmeng; He, Hao; Lu, Jian; Zhou, Xiangshan; Zhang, Yuanxing

    2015-10-01

    A deep-sea thermophile, Geobacillus sp. 4j, was identified to grow on starch and produce thermostable amylase. N-terminally truncated form of Geobacillus sp. 4j α-amylase (Gs4j-amyA) was fused at its N-terminal end with the signal peptide of outer membrane protein A (OmpA) of Escherichia coli. The enzyme was over-expressed in E. coli BL21 with a maximum extracellular production of 130U/ml in shake flask. The yield of the transformant increased 22-fold as compared with that of the wild strain. The recombinant enzyme purified to apparent homogeneity by metal-affinity chromatography, exhibited a molecular mass of 62kDa. It displayed the maximal activity at 60-65°C and pH 5.5. Its half-life (t1/2) at 80°C was 4.25h with a temperature deactivation energy of 166.3kJ/mol. Compared to three commonly used commercial α-amylases, the Gs4j-amyA exhibited similar thermostable performance to BLA but better than BAA and BSA. It also showed a universally efficient raw starch hydrolysis performance superior to commercial α-amylases at an acidic pH approaching nature of starch slurry. As a new acidic-resistant thermostable α-amylase, it has the potential to bypass the industrial gelatinization step in raw starch hydrolysis. PMID:26073094

  3. [Consumption of hydrocarbons by psychrotolerant degrader strains].

    PubMed

    Andeeva, I S; Emel'ianova, E K; Ol'kin, S E; Reznikova, I K; Zagrebel'nyĭ, S N; Repin, V E

    2007-01-01

    Oil-oxidizing microorganisms have been sampled in various regions of Siberia and used in strain associations, which degrade n-alkanes of oil from various fields by 64-92% after 6 days of growth in a wide temperature range. These strains are salt-tolerant and psychrotolerant. They are compatible with aboriginal soil microflora. Promising results have been obtained in experiments on growing plants on oil-polluted soil purified with a biodegrader of this series. PMID:17476811

  4. A nonequilibrium molecular dynamics study of the rheology of alkanes

    SciTech Connect

    Gupta, S.A.; Cui, S.T.; Cummings, P.T.; Cochran, H.D. |

    1996-05-01

    We examine the rheological properties of four different alkanes: n-decane, n-hexadecane, n-tetracosane, and squalane. Simulations of Couette flow are performed for a range of shear rates with 100 molecules in each case using a replicated data version of our code. Number of interaction sites ranges from 1000 to 3000. We have performed extremely long simulations required to obtain acceptable statistics at low shear rates. The alkanes show a transition from non-Newtonian to Newtonian behavior as the shear rate decreases to low values. 1 tab, 1 fig, 17 refs.

  5. Modeling of alkane emissions from a wood stain

    SciTech Connect

    Chang, J.C.S.; Guo, Z.

    1993-01-01

    The article discusses full-scale residential house tests to evaluate the effects of organic emissions from a wood finishing product--wood stain--on indoor air quality (IAQ). The test house concentrations of three alkane species, nonane, decane, and undecane, were measured as a function of time after the application of the wood stain. It was found that the test house concentrations can be simulated by an integrated IAQ model which takes into consideration source, sink, and ventilation effects. The alkane emissions were controlled by an evaporation-like process.

  6. Catalytic, mild, and selective oxyfunctionalization of linear alkanes: current challenges.

    PubMed

    Bordeaux, Mélanie; Galarneau, Anne; Drone, Jullien

    2012-10-22

    Selective catalysts for sustainable oxidation of alkanes are highly demanded because of the abundance of these molecules in the environment, the possibility to transform them into higher-value compounds, such as chemicals or synthetic fuels, and the fact that, kinetically speaking, this is a difficult reaction. Numerous chemical and biological catalysts have been developed in the lasts decades for this purpose, rendering the overview over this field of chemistry difficult. After giving a definition of the ideal catalyst for alkane oxyfunctionalization, this review aims to present the catalysts available today that are closest to ideal. PMID:22996726

  7. Assimilation of chlorinated alkanes by hydrocarbon-utilizing fungi

    SciTech Connect

    Murphy, G.L.; Perry, J.J.

    1984-12-01

    The fatty acid compositions of two filamentous fungi (Cunninghamella elegans and Penicillium zonatum) and a yeast (Candida lipolytica) were determined after the organisms were grown on 1-chlorohexadecane or 1-chlorooctadecane. These organisms utilized the chlorinated alkanes as sole sources of carbon and energy. Analyses of the fatty acids present after growth on the chlorinated alkanes indicated that 60 to 70% of the total fatty acids in C. elegans were chlorinated. Approximately 50% of the fatty acids in C. lipolytica were also chlorinated. P. zonatum contained 20% 1-chlorohexadecanoic acid after growth on either substrate but did not incorporate C/sub 18/ chlorinated fatty acids.

  8. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  9. Two-Dimensional Stable Isotope Fractionation During Aerobic and Anaerobic Alkane Biodegradation and Implications for the Field

    NASA Astrophysics Data System (ADS)

    El Morris, Brandon; Suflita, Joseph M.; Richnow, Hans-Hermann

    2010-05-01

    Quantitatively, n-alkanes comprise a major portion of most crude oils. In petroliferous formations, it may be possible to relate the loss of these compounds to the levels of biodegradation occurring in situ [1]. Moreover, it is important to develop indicators of alkane degradation that may be used to monitor bioremediation of hydrocarbon-impacted environments. Desulfoglaeba alkanexedens and Pseudomonas putida GPo1 were used to determine if carbon and hydrogen stable isotope fractionation could differentiate between n-alkane degradation under anaerobic and aerobic conditions, respectively in the context of the Rayleigh equation model [2]. Bacterial cultures were sacrificed by acidification and headspace samples were analyzed for stable isotope composition using gas chromatography-isotope ratio mass spectrometry. Carbon enrichment factors (bulk) for anaerobic and aerobic biodegradation of hexane were -5.52 ± 0.2‰ and -4.34 ± 0.3‰, respectively. Hydrogen enrichment during hexane degradation was -43.14 ± 6.32‰ under sulfate-reducing conditions, and was too low for quantification during aerobiosis. Collectively, this indicates that the correlation between carbon and hydrogen stable isotope fractionation (may be used to help elucidate in situ microbial processes in oil reservoirs, and during intrinsic as well as engineered remediation efforts. References 1. Asif, M.; Grice, K.; Fazeelat, T., Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated hydrocarbon and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin, Pakistan. Organic Geochemistry 2009, 40, (3), 301-311. 2. Fischer, A.; Herklotz, I.; Herrmann, S.; Thullner, M.; Weelink, S. A. B.; Stams, A., J. M.; Schloemann, M.; Richnow, H.-H.; Vogt, C., Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ. Sci. Technol. 2008, 42, 4356-4363.

  10. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN.

    PubMed

    Andreoni, V; Bernasconi, S; Colombo, M; van Beilen, J B; Cavalca, L

    2000-10-01

    Rhodococcus sp. 1BN was isolated from a contaminated site and showed various biodegradative capabilities. Besides naphthalene, strain 1BN degraded medium- (C6) and long-chain alkanes (C16-C28), benzene and toluene, alone or when the hydrocarbons were mixed in equal proportions. The nucleotide sequence of an alk polymerase chain reaction (PCR) fragment revealed a 59% nucleotide homology to the Pseudomonas oleovorans alkB gene. The nar fragments were highly homologous to genes coding for large and small subunits of cis-naphthalene 1,2-dioxygenase (narAa and narAb) and to cis-naphthalene dihydrodiol dehydrogenase (narB) from other rhodococci. The oxidation of indene to cis-(1S,2R)-1,2-dihydroxyindan by toluene-induced cells allows to hypothesize that strain 1BN also carries a toluene dioxygenase-like system. PMID:11233165