Sample records for alkane monolayers studied

  1. Nanoscale Trapping and Squeeze-Out of Confined Alkane Monolayers.

    PubMed

    Gosvami, N N; O'Shea, S J

    2015-12-01

    We present combined force curve and conduction atomic force microscopy (AFM) data for the linear alkanes CnH2n+2 (n = 10, 12, 14, 16) confined between a gold-coated AFM tip and a graphite surface. Solvation layering is observed in the force curves for all liquids, and conduction AFM is used to study in detail the removal of the confined (mono)layer closest to the graphite surface. The squeeze-out behavior of the monolayer can be very different depending upon the temperature. Below the monolayer melting transition temperatures the molecules are in an ordered state on the graphite surface, and fast and complete removal of the confined molecules is observed. However, above the melting transition temperature the molecules are in a disordered state, and even at large applied pressure a few liquid molecules are trapped within the tip-sample contact zone. These findings are similar to a previous study for branched alkanes [ Gosvami Phys. Rev. Lett. 2008, 100, 076101 ], but the observation for the linear alkane homologue series demonstrates clearly the dependence of the squeeze-out and trapping on the state of the confined material.

  2. On the inclusion of alkanes into the monolayer of aliphatic alcohols at the water/alkane vapor interface: a quantum chemical approach.

    PubMed

    Vysotsky, Yuri B; Fomina, Elena S; Belyaeva, Elena A; Fainerman, Valentin B; Vollhardt, Dieter

    2013-02-14

    In the framework of the quantum chemical semiempirical PM3 method thermodynamic and structural parameters of the formation and clusterization of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K at the water/alkane vapor C(n)H(2n+2), (n(CH(3)) = 6-16) interface were calculated. The dependencies of enthalpy, entropy and Gibbs' energy of clusterization per one monomer molecule of 2D films on the alkyl chain length of corresponding alcohols and alkanes, the molar fraction of alkanes in the monolayers and the immersion degree of alcohol molecules into the water phase were shown to be linear or stepwise. The threshold of spontaneous clusterization of aliphatic alcohols at the water/alkane vapor interface was 10-11 carbon atoms at 298 K which is in line with experimental data at the air/water interface. It is shown that the presence of alkane vapor does not influence the process of alcohol monolayer formation. The structure of these monolayers is analogous to those obtained at the air/water interface in agreement with experimental data. The inclusion of alkane molecules into the amphiphilic monolayer at the water/alkane vapor interface is possible for amphiphiles with the spontaneous clusterization threshold at the air/water interface (n(s)(0)) of at least 16 methylene units in the alkyl chain, and it does not depend on the molar fraction of alkanes in the corresponding monolayer. The inclusion of alkanes from the vapor phase into the amphiphilic monolayer also requires that the difference between the alkyl chain lengths of alcohols and alkanes is not larger than n(s)(0) - 15 and n(s)(0) - 14 for the 2D film 1 and 2D film 2, respectively.

  3. Structural and electric properties of two semifluorinated alkane monolayers compressed on top of a controlled hydrophobic monolayer substrate

    NASA Astrophysics Data System (ADS)

    El Abed, Abdel-Illah; Ionov, Radoslav; Goldmann, Michel

    2007-10-01

    We investigate the dynamic behavior upon lateral compression of two mixed films made with one of the two semifluorinated alkanes F(CF2)8(CH2)18H and F(CF2)10(CH2)10H and the natural α -helix alamethicin peptide. Surface pressure, surface potential versus molecular area isotherms, and grazing-incidence x-ray diffraction were applied to characterize this system. We show that both mixed films demix vertically to form two asymmetric flat bilayers where the lower layer is made of alamethicin and the upper layer is made of semifluorinated molecules. The structure matching of the semifluorinated alkanes (where the hydrophilic group is missing) with a suitable organization of the underlying alamethicin monolayer allows for a continuous compression of the upper semifluorinated layers while the density of the lower alamethicin monolayer remains constant. Comparing data of the two studied mixed films enables us to evaluate the effect of chain length on the in-plane organization of the molecules and on the electric properties of the upper layers.

  4. Fabrication and characterization of graphene/molecule/graphene vertical junctions with aryl alkane monolayers

    NASA Astrophysics Data System (ADS)

    Jeong, Inho; Song, Hyunwook

    2017-11-01

    In this study, we fabricated and characterized graphene/molecule/graphene (GMG) vertical junctions with aryl alkane monolayers. The constituent molecules were chemically self-assembled via electrophilic diazonium reactions into a monolayer on the graphene bottom electrode, while the other end physically contacted the graphene top electrode. A full understanding of the transport properties of molecular junctions is a key step in the realization of molecular-scale electronic devices and requires detailed microscopic characterization of the junction's active region. Using a multiprobe approach combining a variety of transport techniques, we elucidated the transport mechanisms and electronic structure of the GMG junctions, including temperature- and length-variable transport measurements, and transition voltage spectroscopy. These results provide criteria to establish a valid molecular junction and to determine the most probable transport characteristics of the GMG junctions.

  5. Assembling and compressing a semifluorinated alkane monolayer on a hydrophobic surface: Structural and dielectric properties

    NASA Astrophysics Data System (ADS)

    El Abed, Abdel I.; Ionov, Radoslav; Daoud, Mohamed; Abillon, Olivier

    2004-11-01

    We investigate the dynamic behavior upon lateral compression of a semifluorinated alkane F(CF2)8(CH2)18H (denoted F8H18 ), spread on the hydrophobic top of a suitable amphiphilic monolayer: namely, a natural α -helix alamethicin peptide (alam). We show, in particular, the formation of an asymmetric flat bilayer by compressing at the air-water interface a mixed Langmuir film made of F8H18 and alam. The particular chemical structure of F8H18 , the suitable structure of the underlying alam monolayer and its collapse properties, allow for a continuous compression of the upper F8H18 monolayer while the density of the lower alam monolayer remains constant. Combining grazing incidence x-ray reflectivity, surface potential, and atomic force microscopy data allow for the determination of the orientation and dielectric constant of the upper F8H18 monolayer.

  6. Structure and phase transitions of monolayers of intermediate-length n-alkanes on graphite studied by neutron diffraction and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Diama, A.; Matthies, B.; Herwig, K. W.; Hansen, F. Y.; Criswell, L.; Mo, H.; Bai, M.; Taub, H.

    2009-08-01

    We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C24H50 denoted as C24) and dotriacontane (n-C32H66 denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 Å=√3 ag, where ag=2.46 Å is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a "smectic" phase in which the inter-row spacing within a lamella expands by ˜10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.

  7. Structure and phase transitions of monolayers of intermediate-length n-alkanes on graphite studied by neutron diffraction and molecular dynamics simulation.

    PubMed

    Diama, A; Matthies, B; Herwig, K W; Hansen, F Y; Criswell, L; Mo, H; Bai, M; Taub, H

    2009-08-28

    We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C(24)H(50) denoted as C24) and dotriacontane (n-C(32)H(66) denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 A=sqrt[3a(g)], where a(g)=2.46 A is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a "smectic" phase in which the inter-row spacing within a lamella expands by approximately 10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.

  8. Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.

    PubMed

    Devi, J Meena

    2017-06-01

    The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Theoretical study of the rhenium–alkane interaction in transition metal–alkane σ-complexes

    PubMed Central

    Cobar, Erika A.; Khaliullin, Rustam Z.; Bergman, Robert G.; Head-Gordon, Martin

    2007-01-01

    Metal–alkane binding energies have been calculated for [CpRe(CO)2](alkane) and [(CO)2M(C5H4)CC(C5H4)M(CO)2](alkane), where M = Re or Mn. Calculated binding energies were found to increase with the number of metal–alkane interaction sites. In all cases examined, the manganese–alkane binding energies were predicted to be significantly lower than those for the analogous rhenium–alkane complexes. The metal (Mn or Re)–alkane interaction was predicted to be primarily one of charge transfer, both from the alkane to the metal complex (70–80% of total charge transfer) and from the metal complex to the alkane (20–30% of the total charge transfer). PMID:17442751

  10. Temperature-Tuned Faceting and Shape Changes in Liquid Alkane Droplets

    DOE PAGES

    Guttman, Shani; Sapir, Zvi; Ocko, Benjamin M.; ...

    2017-01-09

    Recent extensive studies reveal that surfactant-stabilized spherical alkane emulsion droplets spontaneously adopt polyhedral shapes upon cooling below a temperature T d while remaining liquid. Further cooling induces the growth of tails and spontaneous droplet splitting. Two mechanisms were offered to account for these intriguing effects. One assigns the effects to the formation of an intradroplet frame of tubules consisting of crystalline rotator phases with cylindrically curved lattice planes. The second assigns the sphere-to-polyhedron transition to the buckling of defects in a crystalline interfacial monolayer, known to form in these systems at some T s > T d. The buckling reducesmore » the extensional energy of the crystalline monolayer’s defects, unavoidably formed when wrapping a spherical droplet by a hexagonally packed interfacial monolayer. The tail growth, shape changes, and droplet splitting were assigned to the decrease and vanishing of surface tension, γ. Here we present temperature-dependent γ(T), optical microscopy measurements, and interfacial entropy determinations for several alkane/surfactant combinations. We demonstrate the advantages and accuracy of the in situ γ(T) measurements made simultaneously with the microscopy measurements on the same droplet. The in situ and coinciding ex situ Wilhelmy plate γ(T) measurements confirm the low interfacial tension, ≲0.1 mN/m, observed at T d. Here, our results provide strong quantitative support validating the crystalline monolayer buckling mechanism.« less

  11. Influence of alkane and perfluorocarbon vapors on adsorbed surface layers and spread insoluble monolayers of surfactants, proteins and lipids.

    PubMed

    Fainerman, V B; Aksenenko, E V; Miller, R

    2017-06-01

    The influence of hexane vapor in the air atmosphere on the surface tension of water and solutions of C 10 EO 8 , C n TAB and proteins are presented. For dry air, a fast and strong decrease of surface tension of water was observed. In humid air, the process is slower and the surface tension higher. There are differences between the results obtained by the maximum bubble pressure, pendant drop and emerging bubble methods, which are discussed in terms of depletion and initial surface load. The surface tension of aqueous solutions of β-сasein (BCS), β-lactoglobulin (BLG) and human serum albumin (HSA) at the interfaces with air and air-saturated hexane vapor were measured. The results indicate that the equilibrium surface tension in the hexane vapor atmosphere is considerably lower (at 13-20mN/m) as compared to the values at the interface with pure air. A reorientation model is proposed assuming several states of adsorbed molecules with different molar area values. The newly developed theoretical model is used to describe the effect of alkane vapor in the gas phase on the surface tension. This model assumes that the first layer is composed of surfactant (or protein) molecules mixed with alkane, and the second layer is formed by alkane molecules only. The processing of the experimental data for the equilibrium surface tension for the C 10 EO 8 and BCS solutions results in a perfect agreement between the observed and calculated values. The co-adsorption mechanism of dipalmitoyl phosphatidyl choline (DPPC) and the fluorocarbon molecules leads to remarkable differences in the surface pressure term of cohesion Π coh . This in turn leads to a very efficient fluidization of the monolayer. It was found that the adsorption equilibrium constant for dioctanoyl phosphatidyl choline is increased in the presence of perfluorohexane, and the intermolecular interaction of the components is strong. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Structural investigation of Langmuir and Langmuir-Blodgett monolayers of semifluorinated alkanes.

    PubMed

    Dynarowicz Łatka, Patrycja; Pérez-Morales, Marta; Muñoz, Eulogia; Broniatowski, Marcin; Martín-Romero, María T; Camacho, Luis

    2006-03-30

    The behavior of a semi-fluorinated alkane (C(10)F(21)C(19)H(39)) has been studied at the air-water interface by using surface pressure and surface potential-area isotherms as well as infrared spectroscopy for the Langmuir-Blodgett films. In addition, based on the quantum chemical PM3 semiempirical approach, the dimer structure was investigated, and the double helix was found to be the most stable conformation of the dimer. The obtained results allow us to imply that the phase transition observed in the course of the surface pressure/area isotherm is due to a conformational change originating from the double helix to a vertical, single helix configuration.

  13. Quantum chemical analysis of thermodynamics of 2D cluster formation of alkanes at the water/vapor interface in the presence of aliphatic alcohols.

    PubMed

    Vysotsky, Yu B; Kartashynska, E S; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Miller, R

    2015-11-21

    Using the quantum chemical semi-empirical PM3 method it is shown that aliphatic alcohols favor the spontaneous clusterization of vaporous alkanes at the water surface due to the change of adsorption from the barrier to non-barrier mechanism. A theoretical model of the non-barrier mechanism for monolayer formation is developed. In the framework of this model alcohols (or any other surfactants) act as 'floats', which interact with alkane molecules of the vapor phase using their hydrophobic part, whereas the hydrophilic part is immersed into the water phase. This results in a significant increase of contact effectiveness of alkanes with the interface during the adsorption and film formation. The obtained results are in good agreement with the existing experimental data. To test the model the thermodynamic and structural parameters of formation and clusterization are calculated for vaporous alkanes C(n)H(2n+2) (n(CH3) = 6-16) at the water surface in the presence of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K. It is shown that the values of clusterization enthalpy, entropy and Gibbs' energy per one monomer of the cluster depend on the chain lengths of corresponding alcohols and alkanes, the alcohol molar fraction in the monolayers formed, and the shift of the alkane molecules with respect to the alcohol molecules Δn. Two possible competitive structures of mixed 2D film alkane-alcohol are considered: 2D films 1 with single alcohol molecules enclosed by alkane molecules (the alcohols do not form domains) and 2D films 2 that contain alcohol domains enclosed by alkane molecules. The formation of the alkane films of the first type is nearly independent of the surfactant type present at the interface, but depends on their molar fraction in the monolayer formed and the chain length of the compounds participating in the clusterization, whereas for the formation of the films of the second type the interaction between the hydrophilic parts of the surfactant is

  14. Experimental validation of the Helmoltz equation for the surface potential of Langmuir monolayers

    NASA Astrophysics Data System (ADS)

    El Abed, Abdel I.

    2009-10-01

    We show in this paper that monolayers of the nonhydrophilic F8H18 semifluorinated n -alkane constitute when spread on the hydrophobic top of an alamethicin Langmuir monolayer, a very good experimental system in order to check the validity of Helmoltz equation. This system allows for a good agreement between measured and calculated surface potentials of unionized Langmuir monolayers. We show also that the relative dielectric constant of the F8H18 monolayer does not vary upon compression of the monolayer, the measured 2.9 value is in a very good agreement with literature data. We attribute this behavior to the self-aggregation of F8H18 molecules in nanosized circular domains whose size remains constant upon compression as shown by atomic force microscopy.

  15. Rectification of current responds to incorporation of fullerenes into mixed-monolayers of alkanethiolates in tunneling junctions.

    PubMed

    Qiu, Li; Zhang, Yanxi; Krijger, Theodorus L; Qiu, Xinkai; Hof, Patrick Van't; Hummelen, Jan C; Chiechi, Ryan C

    2017-03-01

    This paper describes the rectification of current through molecular junctions comprising self-assembled monolayers of decanethiolate through the incorporation of C 60 fullerene moieties bearing undecanethiol groups in junctions using eutectic Ga-In (EGaIn) and Au conducting probe AFM (CP-AFM) top-contacts. The degree of rectification increases with increasing exposure of the decanethiolate monolayers to the fullerene moieties, going through a maximum after 24 h. We ascribe this observation to the resulting mixed-monolayer achieving an optimal packing density of fullerene cages sitting above the alkane monolayer. Thus, the degree of rectification is controlled by the amount of fullerene present in the mixed-monolayer. The voltage dependence of R varies with the composition of the top-contact and the force applied to the junction and the energy of the lowest unoccupied π-state determined from photoelectron spectroscopy is consistent with the direction of rectification. The maximum value of rectification R = | J (+)/ J (-)| = 940 at ±1 V or 617 at ±0.95 V is in agreement with previous studies on pure monolayers relating the degree of rectification to the volume of the head-group on which the frontier orbitals are localized.

  16. Variation in n-Alkane Distributions of Modern Plants: Questioning Applications of n-Alkanes in Chemotaxonomy and Paleoecology

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; McInerney, F. A.

    2010-12-01

    Long chain n-alkanes (n-C21 to n-C37) are synthesized as part of the epicuticular leaf wax of terrestrial plants and are among the most recognizable and widely used plant biomarkers. n-Alkane distributions have been utilized in previous studies on modern plant chemotaxonomy, testing whether taxa can be identified based on characteristic n-alkane profiles. Dominant n-alkanes (e.g. n-C27 or n-C31) have also been ascribed to major plant groups (e.g. trees or grasses respectively) and have been used in paleoecology studies to reconstruct fluctuations in plant functional types. However, many of these studies have been based on relatively few modern plant data; with the wealth of modern n-alkane studies, a more comprehensive analysis of n-alkanes in modern plants is now possible and can inform the usefulness of n-alkane distributions as paleoecological indicators. The work presented here is a combination of measurements made using plant leaves collected from the Chicago Botanic Garden and a compilation of published literature data from six continents. We categorized plants by type: angiosperms, gymnosperms, woody plants, forbs, grasses, ferns and pteridophytes, and mosses. We then quantified n-alkane distribution parameters such as carbon preference index (CPI), average chain length (ACL), and dispersion (a measure of the spread of the profile over multiple chain lengths) and used these to compare plant groups. Among all plants, one of the emergent correlations is a decrease in dispersion with increasing CPI. Within and among plant groups, n-alkane distributions show a very large range of variation, and the results show little or no correspondence between broad plant groups and a single dominant n-alkane or a ratio of n-alkanes. These findings are true both when data from six continents are combined and when plants from a given region are compared (North America). We also compared the n-alkane distributions of woody angiosperms, woody gymnosperms, and grasses with one

  17. Self assembled monolayers on silicon for molecular electronics.

    PubMed

    Aswal, D K; Lenfant, S; Guerin, D; Yakhmi, J V; Vuillaume, D

    2006-05-24

    We present an overview of various aspects of the self-assembly of organic monolayers on silicon substrates for molecular electronics applications. Different chemical strategies employed for grafting the self-assembled monolayers (SAMs) of alkanes having different chain lengths on native oxide of Si or on bare Si have been reviewed. The utility of different characterization techniques in determination of the thickness, molecular ordering and orientation, surface coverage, growth kinetics and chemical composition of the SAMs has been discussed by choosing appropriate examples. The metal counterelectrodes are an integral part of SAMs for measuring their electrical properties as well as using them for molecular electronic devices. A brief discussion on the variety of options available for the deposition of metal counterelectrodes, that is, soft metal contacts, vapor deposition and soft lithography, has been presented. Various theoretical models, namely, tunneling (direct and Fowler-Nordheim), thermionic emission, Poole-Frenkel emission and hopping conduction, used for explaining the electronic transport in dielectric SAMs have been outlined and, some experimental data on alkane SAMs have been analyzed using these models. It has been found that short alkyl chains show excellent agreement with tunneling models; while more experimental data on long alkyl chains are required to understand their transport mechanism(s). Finally, the concepts and realization of various molecular electronic components, that is, diodes, resonant tunnel diodes, memories and transistors, based on appropriate architecture of SAMs comprising of alkyl chains (sigma- molecule) and conjugated molecules (pi-molecule) have been presented.

  18. Metathesis of alkanes and related reactions.

    PubMed

    Basset, Jean-Marie; Copéret, Christophe; Soulivong, Daravong; Taoufik, Mostafa; Cazat, Jean Thivolle

    2010-02-16

    The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, ([triple bond]SiO)(2)TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of alumina-supported tungsten hydride, W(H)(3)/Al(2)O(3), which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis

  19. Recognition tunneling measurement of the conductance of DNA bases embedded in self-assembled monolayers.

    PubMed

    Huang, Shuo; Chang, Shuai; He, Jin; Zhang, Peiming; Liang, Feng; Tuchband, Michael; Li, Shengqing; Lindsay, Stuart

    2010-12-09

    The DNA bases interact strongly with gold electrodes, complicating efforts to measure the tunneling conductance through hydrogen-bonded Watson Crick base pairs. When bases are embedded in a self-assembled alkane-thiol monolayer to minimize these interactions, new features appear in the tunneling data. These new features track the predictions of density-functional calculations quite well, suggesting that they reflect tunnel conductance through hydrogen-bonded base pairs.

  20. Self-assembly of (perfluoroalkyl)alkanes on a substrate surface from solutions in supercritical carbon dioxide.

    PubMed

    Gallyamov, Marat O; Mourran, Ahmed; Tartsch, Bernd; Vinokur, Rostislav A; Nikitin, Lev N; Khokhlov, Alexei R; Schaumburg, Kjeld; Möller, Martin

    2006-06-14

    Toroidal self-assembled structures of perfluorododecylnonadecane and perfluorotetradecyloctadecane have been deposited on mica and highly oriented pyrolytic graphite surfaces by exposure of the substrates to solutions of the (pefluoroalkyl)alkanes in supercritical carbon dioxide. Scanning force microscopy (SFM) images have displayed a high degree of regularity of these self-assembled nanoobjects regarding size, shape, and packing in a monolayer. Analysis of SFM images allowed us to estimate that each toroidal domain has an outer diameter of about 50 nm and consists of several thousands of molecules. We propose a simple model explaining the clustering of the molecules to objects with a finite size. The model based on the close-packing principles predicts formation of toroids, whose size is determined by the molecular geometry. Here, we consider the amphiphilic nature of the (perfluoroalkyl)alkane molecules in combination with incommensurable packing parameters of the alkyl- and the perfluoralkyl-segments to be a key factor for such a self-assembly.

  1. Recognition tunneling measurement of the conductance of DNA bases embedded in self-assembled monolayers

    PubMed Central

    Huang, Shuo; Chang, Shuai; He, Jin; Zhang, Peiming; Liang, Feng; Tuchband, Michael; Li, Shengqing; Lindsay, Stuart

    2010-01-01

    The DNA bases interact strongly with gold electrodes, complicating efforts to measure the tunneling conductance through hydrogen-bonded Watson Crick base pairs. When bases are embedded in a self-assembled alkane-thiol monolayer to minimize these interactions, new features appear in the tunneling data. These new features track the predictions of density-functional calculations quite well, suggesting that they reflect tunnel conductance through hydrogen-bonded base pairs. PMID:21197382

  2. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    PubMed

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Kinetics of the as Grown and Annealed Self-Assembled Monolayer Studied by Force Spectroscopy

    NASA Astrophysics Data System (ADS)

    Habib, Huma; Yasar, M.; Mehmood, S.; Rafique, Saima; Bhatti, A. S.; Naeem, Aisha

    The growth of biological systems like DNA, peptides and proteins are accredited to the self-assembly processes from the molecular level to the nanoscale. The flawless immobilization of DNA on any surface is quite an important step to the development of DNA-based biosensors. The present paper reports the use of atomic force microscopy to determine the mechanical properties of the as grown and annealed self-assembled monolayer (SAM) as well as the mutated DNA immobilized on the SAM. The SAM of alkane thiol (16-mercapto-1-hexadecanol) was developed on Au surface, which was then annealed and analyzed for its structural and mechanical properties. The surface coverage, height and monolayer’s order was studied as a function of incubation time and annealing time. Excessive annealing led to the defragmentation and desorption of SAM structures due to breaking of hydrocarbon bonds. AFM was employed to determine the detach separation, pull-off and work of adhesion of the as grown and annealed SAM.

  4. Square Wave Voltammetry of TNT at Gold Electrodes Modified with Self-Assembled Monolayers Containing Aromatic Structures

    PubMed Central

    Trammell, Scott A.; Zabetakis, Dan; Moore, Martin; Verbarg, Jasenka; Stenger, David A.

    2014-01-01

    Square wave voltammetry for the reduction of 2,4,6-trinitrotoluene (TNT) was measured in 100 mM potassium phosphate buffer (pH 8) at gold electrodes modified with self-assembled monolayers (SAMs) containing either an alkane thiol or aromatic ring thiol structures. At 15 Hz, the electrochemical sensitivity (µA/ppm) was similar for all SAMs tested. However, at 60 Hz, the SAMs containing aromatic structures had a greater sensitivity than the alkane thiol SAM. In fact, the alkane thiol SAM had a decrease in sensitivity at the higher frequency. When comparing the electrochemical response between simulations and experimental data, a general trend was observed in which most of the SAMs had similar heterogeneous rate constants within experimental error for the reduction of TNT. This most likely describes a rate limiting step for the reduction of TNT. However, in the case of the alkane SAM at higher frequency, the decrease in sensitivity suggests that the rate limiting step in this case may be electron tunneling through the SAM. Our results show that SAMs containing aromatic rings increased the sensitivity for the reduction of TNT when higher frequencies were employed and at the same time suppressed the electrochemical reduction of dissolved oxygen. PMID:25549081

  5. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex.

    PubMed

    Bernard, Amélie; Domergue, Frédéric; Pascal, Stéphanie; Jetter, Reinhard; Renne, Charlotte; Faure, Jean-Denis; Haslam, Richard P; Napier, Johnathan A; Lessire, René; Joubès, Jérôme

    2012-07-01

    In land plants, very-long-chain (VLC) alkanes are major components of cuticular waxes that cover aerial organs, mainly acting as a waterproof barrier to prevent nonstomatal water loss. Although thoroughly investigated, plant alkane synthesis remains largely undiscovered. The Arabidopsis thaliana ECERIFERUM1 (CER1) protein has been recognized as an essential element of wax alkane synthesis; nevertheless, its function remains elusive. In this study, a screen for CER1 physical interaction partners was performed. The screen revealed that CER1 interacts with the wax-associated protein ECERIFERUM3 (CER3) and endoplasmic reticulum-localized cytochrome b5 isoforms (CYTB5s). The functional relevance of these interactions was assayed through an iterative approach using yeast as a heterologous expression system. In a yeast strain manipulated to produce VLC acyl-CoAs, a strict CER1 and CER3 coexpression resulted in VLC alkane synthesis. The additional presence of CYTB5s was found to enhance CER1/CER3 alkane production. Site-directed mutagenesis showed that CER1 His clusters are essential for alkane synthesis, whereas those of CER3 are not, suggesting that CYTB5s are specific CER1 cofactors. Collectively, our study reports the identification of plant alkane synthesis enzymatic components and supports a new model for alkane production in which CER1 interacts with both CER3 and CYTB5 to catalyze the redox-dependent synthesis of VLC alkanes from VLC acyl-CoAs.

  6. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol. © 2014 Wiley Periodicals, Inc.

  7. Alkane hydroxylase genes in psychrophile genomes and the potential for cold active catalysis.

    PubMed

    Bowman, Jeff S; Deming, Jody W

    2014-12-16

    Psychrophiles are presumed to play a large role in the catabolism of alkanes and other components of crude oil in natural low temperature environments. In this study we analyzed the functional diversity of genes for alkane hydroxylases, the enzymes responsible for converting alkanes to more labile alcohols, as found in the genomes of nineteen psychrophiles for which alkane degradation has not been reported. To identify possible mechanisms of low temperature optimization we compared putative alkane hydroxylases from these psychrophiles with homologues from nineteen taxonomically related mesophilic strains. Seven of the analyzed psychrophile genomes contained a total of 27 candidate alkane hydroxylase genes, only two of which are currently annotated as alkane hydroxylase. These candidates were mostly related to the AlkB and cytochrome p450 alkane hydroxylases, but several homologues of the LadA and AlmA enzymes, significant for their ability to degrade long-chain alkanes, were also detected. These putative alkane hydroxylases showed significant differences in primary structure from their mesophile homologues, with preferences for specific amino acids and increased flexibility on loops, bends, and α-helices. A focused analysis on psychrophile genomes led to discovery of numerous candidate alkane hydroxylase genes not currently annotated as alkane hydroxylase. Gene products show signs of optimization to low temperature, including regions of increased flexibility and amino acid preferences typical of psychrophilic proteins. These findings are consistent with observations of microbial degradation of crude oil in cold environments and identify proteins that can be targeted in rate studies and in the design of molecular tools for low temperature bioremediation.

  8. Products of Chemistry: Alkanes: Abundant, Pervasive, Important, and Essential.

    ERIC Educational Resources Information Center

    Seymour, Raymond B.

    1989-01-01

    Discusses the history and commercialization of alkanes. Examines the nomenclature and uses of alkanes. Studies polymerization and several types of polyethylenes: low-density, high-density, low-molecular-weight, cross-linked, linear low-density, and ultrahigh-molecular-weight. Includes a glossary of hydrocarbon terms. (MVL)

  9. n-Alkane adsorption to polar silica surfaces.

    PubMed

    Brindza, Michael R; Ding, Feng; Fourkas, John T; Walker, Robert A

    2010-03-21

    The structures of medium-length n-alkane species (C(8)-C(11)) adsorbed to a hydrophilic silica/vapor interface were examined using vibrational sum frequency spectroscopy. Experiments sampling out-of-plane orientation show a clear pattern in vibrational band intensities that implies chains having primarily all-trans conformations lying flat along the interface. Further analysis shows that the methylene groups of the alkane chains have their local symmetry axes directed into and away from the surface. Spectra acquired under different polarization conditions interlock to reinforce this picture of interfacial structure and organization. Variation in signal intensities with chain length suggests that correlation between adsorbed monomers weakens with increasing chain length. This result stands in contrast with alkane behavior at neat liquid/vapor interfaces where longer length alkanes show considerably more surface induced ordering than short chain alkanes.

  10. Crystallization features of normal alkanes in confined geometry.

    PubMed

    Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin

    2014-01-21

    How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D

  11. Engineering transcription factors to improve tolerance against alkane biofuels in Saccharomyces cerevisiae.

    PubMed

    Ling, Hua; Pratomo Juwono, Nina Kurniasih; Teo, Wei Suong; Liu, Ruirui; Leong, Susanna Su Jan; Chang, Matthew Wook

    2015-01-01

    Biologically produced alkanes can be used as 'drop in' to existing transportation infrastructure as alkanes are important components of gasoline and jet fuels. Despite the reported microbial production of alkanes, the toxicity of alkanes to microbial hosts could pose a bottleneck for high productivity. In this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a model eukaryotic host of industrial significance, to alkane biofuels. To increase alkane tolerance in S. cerevisiae, we sought to exploit the pleiotropic drug resistance (Pdr) transcription factors Pdr1p and Pdr3p, which are master regulators of genes with pleiotropic drug resistance elements (PDREs)-containing upstream sequences. Wild-type and site-mutated Pdr1p and Pdr3p were expressed in S. cerevisiae BY4741 pdr1Δ pdr3Δ (BYL13). The point mutations of PDR1 (F815S) and PDR3 (Y276H) in BYL13 resulted in the highest tolerance to C10 alkane, and the expression of wild-type PDR3 in BYL13 led to the highest tolerance to C11 alkane. To identify and verify the correlation between the Pdr transcription factors and tolerance improvement, we analyzed the expression patterns of genes regulated by the Pdr transcription factors in the most tolerant strains against C10 and C11 alkanes. Quantitative PCR results showed that the Pdr transcription factors differentially regulated genes associated with multi-drug resistance, stress responses, and membrane modifications, suggesting different extents of intracellular alkane levels, reactive oxygen species (ROS) production and membrane integrity. We further showed that (i) the expression of Pdr1mt1 + Pdr3mt reduced intracellular C10 alkane by 67 % and ROS by 53 %, and significantly alleviated membrane damage; and (ii) the expression of the Pdr3wt reduced intracellular C11 alkane by 72 % and ROS by 21 %. Alkane transport assays also revealed that the reduction of alkane accumulation was due to higher export (C10 and C11 alkanes) and lower import (C11

  12. Plant n-alkane production from litterfall altered the diversity and community structure of alkane degrading bacteria in litter layer in lowland subtropical rainforest in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Tung-Yi; Hsu, Bing-Mu; Chao, Wei-Chun; Fan, Cheng-Wei

    2018-03-01

    n-Alkane and alkane-degrading bacteria have long been used as crucial biological indicators of paleoecology, petroleum pollution, and oil and gas prospecting. However, the relationship between n-alkane and alkane-degrading bacteria in natural forests is still poorly understood. In this study, long-chain n-alkane (C14-C35) concentrations in litterfall, litter layer, and topsoil as well as the diversity and abundance of n-alkane-degrading bacterial communities in litter layers were investigated in three habitats across a lowland subtropical rainforest in southern Taiwan: ravine, windward, and leeward habitats in Nanjenshan. Our results demonstrate that the litterfall yield and productivity of long-chain n-alkane were highest in the ravine habitats. However, long-chain n-alkane concentrations in all habitats were decreased drastically to a similar low level from the litterfall to the bulk soil, suggesting a higher rate of long-chain n-alkane degradation in the ravine habitat. Operational taxonomic unit (OTU) analysis using next-generation sequencing data revealed that the relative abundances of microbial communities in the windward and leeward habitats were similar and different from that in the ravine habitat. Data mining of community amplicon sequencing using the NCBI database revealed that alkB-gene-associated bacteria (95 % DNA sequence similarity to alkB-containing bacteria) were most abundant in the ravine habitat. Empirical testing of litter layer samples using semi-quantitative polymerase chain reaction for determining alkB gene levels confirmed that the ravine habitat had higher alkB gene levels than the windward and leeward habitats. Heat map analysis revealed parallels in pattern color between the plant and microbial species compositions of the habitats, suggesting a causal relationship between the plant n-alkane production and microbial community diversity. This finding indicates that the diversity and relative abundance of microbial communities in the

  13. Raman study of local ordering processes of solid n-alkanes

    NASA Astrophysics Data System (ADS)

    Hacura, A.; Zimnicka, B.; Wrzalik, R.

    2016-02-01

    The microphase separation of n-alkanes with different chain length was investigated by Raman spectroscopy for binary mixture rapidly quenched from the melt. The process was observed as a function of time. The first several minutes after solidification were crucial for the demixing process. For a few weeks old sample the orientational order parameters and were calculated based on the analysis of polarized spectra recorded in the area of the formed domains. The measured values are significantly greater than zero (from 0.17 to 0.32), which indicates the mutual parallel arrangement of the molecules in the domains composed of n-alkanes of the same chain length.

  14. Alkane inducible proteins in Geobacillus thermoleovorans B23

    PubMed Central

    2009-01-01

    Background Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution. Results An extremely thermophilic and alkane degrading Geobacillus thermoleovorans B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21) and superoxide dismutase (P24) whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane. Conclusion We first suggested that peroxisomal β-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes. PMID:19320977

  15. Reflectance spectroscopy of organic compounds: 1. Alkanes

    NASA Astrophysics Data System (ADS)

    Clark, Roger N.; Curchin, John M.; Hoefen, Todd M.; Swayze, Gregg A.

    2009-03-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 μm. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  16. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  17. Identity and mechanisms of alkane-oxidizing metalloenzymes from deep-sea hydrothermal vents

    PubMed Central

    Bertrand, Erin M.; Keddis, Ramaydalis; Groves, John T.; Vetriani, Costantino; Austin, Rachel Narehood

    2013-01-01

    Six aerobic alkanotrophs (organism that can metabolize alkanes as their sole carbon source) isolated from deep-sea hydrothermal vents were characterized using the radical clock substrate norcarane to determine the metalloenzyme and reaction mechanism used to oxidize alkanes. The organisms studied were Alcanivorax sp. strains EPR7 and MAR14, Marinobacter sp. strain EPR21, Nocardioides sp. strains EPR26w, EPR28w, and Parvibaculum hydrocarbonoclasticum strain EPR92. Each organism was able to grow on n-alkanes as the sole carbon source and therefore must express genes encoding an alkane-oxidizing enzyme. Results from the oxidation of the radical-clock diagnostic substrate norcarane demonstrated that five of the six organisms (EPR7, MAR14, EPR21, EPR26w, and EPR28w) used an alkane hydroxylase functionally similar to AlkB to catalyze the oxidation of medium-chain alkanes, while the sixth organism (EPR92) used an alkane-oxidizing cytochrome P450 (CYP)-like protein to catalyze the oxidation. DNA sequencing indicated that EPR7 and EPR21 possess genes encoding AlkB proteins, while sequencing results from EPR92 confirmed the presence of a gene encoding CYP-like alkane hydroxylase, consistent with the results from the norcarane experiments. PMID:23825470

  18. Equivalent Aqueous Phase Modulation of Domain Segregation in Myelin Monolayers and Bilayer Vesicles

    PubMed Central

    Oliveira, Rafael G.; Schneck, Emanuel; Funari, Sergio S.; Tanaka, Motomu; Maggio, Bruno

    2010-01-01

    Purified myelin can be spread as monomolecular films at the air/aqueous interface. These films were visualized by fluorescence and Brewster angle microscopy, showing phase coexistence at low and medium surface pressures (<20–30 mN/m). Beyond this threshold, the film becomes homogeneous or not, depending on the aqueous subphase composition. Pure water as well as sucrose, glycerol, dimethylsulfoxide, and dimethylformamide solutions (20% in water) produced monolayers that become homogeneous at high surface pressures; on the other hand, the presence of salts (NaCl, CaCl2) in Ringer's and physiological solution leads to phase domain microheterogeneity over the whole compression isotherm. These results show that surface heterogeneity is favored by the ionic milieu. The modulation of the phase-mixing behavior in monolayers is paralleled by the behavior of multilamellar vesicles as determined by small-angle and wide-angle x-ray scattering. The correspondence of the behavior of monolayers and multilayers is achieved only at high surface pressures near the equilibrium adsorption surface pressure; at lower surface pressures, the correspondence breaks down. The equilibrium surface tension on all subphases corresponds to that of the air/alkane interface (27 mN/m), independently on the surface tension of the clean subphase. PMID:20816062

  19. Epitaxially Self-Assembled Alkane Layers for Graphene Electronics.

    PubMed

    Yu, Young-Jun; Lee, Gwan-Hyoung; Choi, Ji Il; Shim, Yoon Su; Lee, Chul-Ho; Kang, Seok Ju; Lee, Sunwoo; Rim, Kwang Taeg; Flynn, George W; Hone, James; Kim, Yong-Hoon; Kim, Philip; Nuckolls, Colin; Ahn, Seokhoon

    2017-02-01

    The epitaxially grown alkane layers on graphene are prepared by a simple drop-casting method and greatly reduce the environmentally driven doping and charge impurities in graphene. Multiscale simulation studies show that this enhancement of charge homogeneity in graphene originates from the lifting of graphene from the SiO 2 surface toward the well-ordered and rigid alkane self-assembled layers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Selective methylative homologation: an alternate route to alkane upgrading.

    PubMed

    Bercaw, John E; Hazari, Nilay; Labinger, Jay A; Scott, Valerie J; Sunley, Glenn J

    2008-09-10

    InI3 catalyzes the reaction of branched alkanes with methanol to produce heavier and more highly branched alkanes, which are more valuable fuels. The reaction of 2,3-dimethylbutane with methanol in the presence of InI3 at 180-200 degrees C affords the maximally branched C7 alkane, 2,2,3-trimethylbutane (triptane). With the addition of catalytic amounts of adamantane the selectivity of this transformation can be increased up to 60%. The lighter branched alkanes isobutane and isopentane also react with methanol to generate triptane, while 2-methylpentane is converted into 2,3-dimethylpentane and other more highly branched species. Observations implicate a chain mechanism in which InI3 activates branched alkanes to produce tertiary carbocations which are in equilibrium with olefins. The latter react with a methylating species generated from methanol and InI3 to give the next-higher carbocation, which accepts a hydride from the starting alkane to form the homologated alkane and regenerate the original carbocation. Adamantane functions as a hydride transfer agent and thus helps to minimize competing side reactions, such as isomerization and cracking, that are detrimental to selectivity.

  1. MIR and NIR group spectra of n-alkanes and 1-chloroalkanes.

    PubMed

    Kwaśniewicz, Michał; Czarnecki, Mirosław A

    2015-05-15

    Numerous attempts were undertaken to resolve the absorption originating from different parts of alkanes. The separation of the contributions from the terminal and midchain methylene units was observed only in the spectra of solid alkanes at low temperatures. On the other hand, for liquid alkanes this effect was not reported as yet. In this study, ATR-IR, Raman and NIR spectra of eight n-alkanes and seven 1-chloroalkanes in the liquid phase were measured from 1000 to 12,000cm(-1). The spectra were analyzed by using two-dimensional (2D) correlation approach and chemometrics methods. It was shown that in 2D asynchronous contour plots, constructed from the spectra of n-alkanes and 1-chloroalkanes, the methylene band was resolved into two components. These two components were assigned to the terminal and midchain methylene groups. For the first time, the contributions from these two molecular fragments were resolved in the spectra of liquid n-alkanes and 1-chloroalkanes. MCR-ALS resolved these spectra into two components that were assigned to the ethyl and midchain methylene groups. These components represent the group spectra that can be used for assignment, spectral analysis and prediction of unknown spectra. The spectral prediction based on the group spectra provides very good results for n-alkanes, especially in the first and second overtone regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Alkanes in fungal spores.

    PubMed

    Oró, J; Laseter, J L; Weber, D

    1966-10-21

    The chlamydospores of Ustilago maydis, U. nuda, and Sphacelotheca reiliana were analyzed by gas chromatography and mass spectrometry for their hydrocarbon contents. For the first time we observed that they contain paraffinic hydrocarbons; the average contents were 42, 58, and 146 parts per million, respectively. n-Alkanes having odd numbers of carbon atoms predom-inate, with carbon-chain lengths ranging from C(14) to C(37). The major alkanes are n-C(27) in U. maydis, n-C(27) and n-C(35) in U. nuda, and n-C(29) in S. reiliana. Each type of spore carried a distinctly characteristic population of hydrocarbons.

  3. Surface vibrational structure at alkane liquid/vapor interfaces

    NASA Astrophysics Data System (ADS)

    Esenturk, Okan; Walker, Robert A.

    2006-11-01

    Broadband vibrational sum frequency spectroscopy (VSFS) has been used to examine the surface structure of alkane liquid/vapor interfaces. The alkanes range in length from n-nonane (C9H20) to n-heptadecane (C17H36), and all liquids except heptadecane are studied at temperatures well above their bulk (and surface) freezing temperatures. Intensities of vibrational bands in the CH stretching region acquired under different polarization conditions show systematic, chain length dependent changes. Data provide clear evidence of methyl group segregation at the liquid/vapor interface, but two different models of alkane chain structure can predict chain length dependent changes in band intensities. Each model leads to a different interpretation of the extent to which different chain segments contribute to the anisotropic interfacial region. One model postulates that changes in vibrational band intensities arise solely from a reduced surface coverage of methyl groups as alkane chain length increases. The additional methylene groups at the surface must be randomly distributed and make no net contribution to the observed VSF spectra. The second model considers a simple statistical distribution of methyl and methylene groups populating a three dimensional, interfacial lattice. This statistical picture implies that the VSF signal arises from a region extending several functional groups into the bulk liquid, and that the growing fraction of methylene groups in longer chain alkanes bears responsibility for the observed spectral changes. The data and resulting interpretations provide clear benchmarks for emerging theories of molecular structure and organization at liquid surfaces, especially for liquids lacking strong polar ordering.

  4. Study of iridium silicide monolayers using density functional theory

    NASA Astrophysics Data System (ADS)

    Popis, Minh D.; Popis, Sylvester V.; Oncel, Nuri; Hoffmann, Mark R.; ćakır, Deniz

    2018-02-01

    In this study, we investigated physical and electronic properties of possible two-dimensional structures formed by Si (silicon) and Ir (iridium). To this end, different plausible structures were modeled by using density functional theory and the cohesive energies calculated for the geometry of optimized structures, with the lowest equilibrium lattice constants. Among several candidate structures, we identified three mechanically (via elastic constants and Young's modulus), dynamically (via phonon calculations), and thermodynamically stable iridium silicide monolayer structures. The lowest energy structure has a chemical formula of Ir2Si4 (called r-IrSi2), with a rectangular lattice (Pmmn space group). Its cohesive energy was calculated to be -0.248 eV (per IrSi2 unit) with respect to bulk Ir and bulk Si. The band structure indicates that the Ir2Si4 monolayer exhibits metallic properties. Other stable structures have hexagonal (P-3m1) and tetragonal (P4/nmm) cell structures with 0.12 and 0.20 eV/f.u. higher cohesive energies, respectively. Our calculations showed that Ir-Si monolayers are reactive. Although O2 molecules exothermically dissociate on the surface of the free-standing iridium silicide monolayers with large binding energies, H2O molecules bind to the monolayers with a rather weak interaction.

  5. Stable Organic Monolayers on Oxide-Free Silicon/Germanium in a Supercritical Medium: A New Route to Molecular Electronics.

    PubMed

    Puniredd, Sreenivasa Reddy; Jayaraman, Sundaramurthy; Yeong, Sai Hooi; Troadec, Cedric; Srinivasan, M P

    2013-05-02

    Oxide-free Si and Ge surfaces have been passivated and modified with organic molecules by forming covalent bonds between the surfaces and reactive end groups of linear alkanes and aromatic species using single-step deposition in supercritical carbon dioxide (SCCO2). The process is suitable for large-scale manufacturing due to short processing times, simplicity, and high resistance to oxidation. It also allows the formation of monolayers with varying reactive terminal groups, thus enabling formation of nanostructures engineered at the molecular level. Ballistic electron emission microscopy (BEEM) spectra performed on the organic monolayer on oxide-free silicon capped by a thin gold layer reveals for the first time an increase in transmission of the ballistic current through the interface of up to three times compared to a control device, in contrast to similar studies reported in the literature suggestive of oxide-free passivation in SCCO2. The SCCO2 process combined with the preliminary BEEM results opens up new avenues for interface engineering, leading to molecular electronic devices.

  6. Process for converting light alkanes to higher hydrocarbons

    DOEpatents

    Noceti, Richard P.; Taylor, Charles E.

    1988-01-01

    A process is disclosed for the production of aromatic-rich, gasoline boiling range hydrocarbons from the lower alkanes, particularly from methane. The process is carried out in two stages. In the first, alkane is reacted with oxygen and hydrogen chloride over an oxyhydrochlorination catalyst such as copper chloride with minor proportions of potassium chloride and rare earth chloride. This produces an intermediate gaseous mixture containing water and chlorinated alkanes. The chlorinated alkanes are contacted with a crystalline aluminosilicate catalyst in the hydrogen or metal promoted form to produce gasoline range hydrocarbons with a high proportion of aromatics and a small percentage of light hydrocarbons (C.sub.2 -C.sub.4). The light hydrocarbons can be recycled for further processing over the oxyhydrochlorination catalyst.

  7. Ultrafast shock compression of self-assembled monolayers: a molecular picture.

    PubMed

    Patterson, James E; Dlott, Dana D

    2005-03-24

    Simulations of self-assembled monolayers (SAMs) are performed to interpret experimental measurements of ultrafast approximately 1 GPa (volume compression deltaV approximately 0.1) planar shock compression dynamics probed by vibrational sum-frequency generation (SFG) spectroscopy (Lagutchev, A. S.; Patterson, J. E.; Huang, W.; Dlott, D. D. J. Phys. Chem. B 2005, 109, XXXX). The SAMs investigated are octadecanethiol (ODT) and pentadecanethiol (PDT) on Au(111) and Ag(111) substrates, and benzyl mercaptan (BMT) on Au(111). In the alkane SAMs, SFG is sensitive to the instantaneous orientation of the terminal methyl; in BMT it is sensitive to the phenyl orientation. Computed structures of alkane SAMs are in good agreement with experiment. In alkanes, the energies of gauche defects increase with increasing number and depth below the methyl plane, with the exception of ODT/Au where both single and double gauche defects at the two uppermost dihedrals have similar energies. Simulations of isothermal uniaxial compression of SAM lattices show that chain and methyl tilting is predominant in PDT/Au, ODT/Ag and PDT/Ag, whereas single and double gauche defect formation is predominant in ODT/Au. Time-resolved shock data showing transient SFG signal loss of ODT/Au and PDT/Au are fit by calculations of the terminal group orientations as a function of deltaV and their contributions to the SFG hyperpolarizability. The highly elastic response of PDT/Au results from shock-generated methyl and chain tilting. The viscoelastic response of ODT/Au results from shock generation of single and double gauche defects. Isothermal compression simulations help explain and fit the time dependence of shock spectra but generally underestimate the magnitude of SFG signal loss because they do not include effects of high-strain-rate dynamics and shock front and surface irregularities.

  8. Biochemistry of Short-Chain Alkanes (Tissue-Specific Biosynthesis of n-Heptane in Pinus jeffreyi).

    PubMed Central

    Savage, T. J.; Hamilton, B. S.; Croteau, R.

    1996-01-01

    Short-chain (C7-C11) alkanes accumulate as the volatile component of oleoresin (pitch) in several pine species native to western North America. To establish the tissue most amenable for use in detailed studies of short-chain alkane biosynthesis, we examined the tissue specificity of alkane accumulation and biosynthesis in Pinus jeffreyi Grev. & Balf. Short-chain alkane accumulation was highly tissue specific in both 2-year-old saplings and mature trees; heart-wood xylem accumulated alkanes up to 7.1 mg g-1 dry weight, whereas needles and other young green tissue contained oleoresin with monoterpenoid, rather than paraffinic, volatiles. These tissue-specific differences in oleoresin composition appear to be a result of tissue-specific rates of alkane and monoterpene biosynthesis; incubation of xylem tissue with [14C]sucrose resulted in accumulation of radiolabel in alkanes but not monoterpenes, whereas incubation of foliar tissue with 14CO2 resulted in the accumulation of radiolabel in monoterpenes but not alkanes. Furthermore, incubation of xylem sections with [14C]acetate resulted in incorporation of radiolabel into alkanes at rates up to 1.7 nmol h-1 g-1 fresh weight, a rate that exceeds most biosynthetic rates reported with other plant systems for the incorporation of this basic precursor into natural products. This suggests that P. jeffreyi may provide a suitable model for elucidating the enzymology and molecular biology of short-chain alkane biosynthesis. PMID:12226177

  9. Electrochemical Hydroxylation of C3-C12 n-Alkanes by Recombinant Alkane Hydroxylase (AlkB) and Rubredoxin-2 (AlkG) from Pseudomonas putida GPo1.

    PubMed

    Tsai, Yi-Fang; Luo, Wen-I; Chang, Jen-Lin; Chang, Chun-Wei; Chuang, Huai-Chun; Ramu, Ravirala; Wei, Guor-Tzo; Zen, Jyh-Myng; Yu, Steve S-F

    2017-08-21

    An unprecedented method for the efficient conversion of C 3 -C 12 linear alkanes to their corresponding primary alcohols mediated by the membrane-bound alkane hydroxylase (AlkB) from Pseudomonas putida GPo1 is demonstrated. The X-ray absorption spectroscopy (XAS) studies support that electrons can be transferred from the reduced AlkG (rubredoxin-2, the redox partner of AlkB) to AlkB in a two-phase manner. Based on this observation, an approach for the electrocatalytic conversion from alkanes to alcohols mediated by AlkB using an AlkG immobilized screen-printed carbon electrode (SPCE) is developed. The framework distortion of AlkB-AlkG adduct on SPCE surface might create promiscuity toward gaseous substrates. Hence, small alkanes including propane and n-butane can be accommodated in the hydrophobic pocket of AlkB for C-H bond activation. The proof of concept herein advances the development of artificial C-H bond activation catalysts.

  10. Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake.

    PubMed Central

    Ito, S; Inoue, S

    1982-01-01

    Torulopsis bombicola produces extracellular sophorolipids when it is grown on water-insoluble alkanes. Sophorolipids and related model compounds, which were not themselves used for growth, were found to stimulate markedly the growth of T. bombicola on alkanes. This stimulatory effect was restricted to growth on C10 to C20 alkanes, whereas no significantly influence was observed for growth on fatty alcohols, fatty acids, glucose, or glycerol. The nonionic methyl ester of the glycolipid supported the greatest cell yield. However, a number of synthetic nonionic surfactants were unable to replace the glycolipid. When organisms were grown on hexadecane, stimulation of growth by sophorolipids was observed almost exclusively with strains of Torulopsis yeasts. In contrast, the growth of other typical alkane-utilizing yeasts, such as candida and Pichia strains, was inhibited or not affected. It appears that sophorolipids are involved in alkane dissimilation by T. bombicola through an undetermined mechanism. PMID:7201782

  11. Expanding the product profile of a microbial alkane biosynthetic pathway.

    PubMed

    Harger, Matthew; Zheng, Lei; Moon, Austin; Ager, Casey; An, Ju Hye; Choe, Chris; Lai, Yi-Ling; Mo, Benjamin; Zong, David; Smith, Matthew D; Egbert, Robert G; Mills, Jeremy H; Baker, David; Pultz, Ingrid Swanson; Siegel, Justin B

    2013-01-18

    Microbially produced alkanes are a new class of biofuels that closely match the chemical composition of petroleum-based fuels. Alkanes can be generated from the fatty acid biosynthetic pathway by the reduction of acyl-ACPs followed by decarbonylation of the resulting aldehydes. A current limitation of this pathway is the restricted product profile, which consists of n-alkanes of 13, 15, and 17 carbons in length. To expand the product profile, we incorporated a new part, FabH2 from Bacillus subtilis , an enzyme known to have a broader specificity profile for fatty acid initiation than the native FabH of Escherichia coli . When provided with the appropriate substrate, the addition of FabH2 resulted in an altered alkane product profile in which significant levels of n-alkanes of 14 and 16 carbons in length are produced. The production of even chain length alkanes represents initial steps toward the expansion of this recently discovered microbial alkane production pathway to synthesize complex fuels. This work was conceived and performed as part of the 2011 University of Washington international Genetically Engineered Machines (iGEM) project.

  12. Infrared Spectroscopic Investigation on CH Bond Acidity in Cationic Alkanes

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka

    2016-06-01

    We have demonstrated large enhancements of CH bond acidities in alcohol, ether, and amine cations through infrared predissociation spectroscopy based on the vacuum ultraviolet photoionization detection. In this study, we investigate for the cationic alkanes (pentane, hexane, and heptane) with different alkyl chain lengths. The σ electrons are ejected in the ionization of alkanes, while nonbonding electrons are ejected in ionization of alcohols, ethers, and amines. Nevertheless, the acidity enhancements of CH in these cationic alkanes have also been demonstrated by infrared spectroscopy. The correlations of their CH bond acidities with the alkyl chain lengths as well as the mechanisms of their acidity enhancements will be discussed by comparison of infrared spectra and theoretical calculations.

  13. Optimization of linear and branched alkane interactions with water to simulate hydrophobic hydration

    NASA Astrophysics Data System (ADS)

    Ashbaugh, Henry S.; Liu, Lixin; Surampudi, Lalitanand N.

    2011-08-01

    Previous studies of simple gas hydration have demonstrated that the accuracy of molecular simulations at capturing the thermodynamic signatures of hydrophobic hydration is linked both to the fidelity of the water model at replicating the experimental liquid density at ambient pressure and an accounting of polarization interactions between the solute and water. We extend those studies to examine alkane hydration using the transferable potentials for phase equilibria united-atom model for linear and branched alkanes, developed to reproduce alkane phase behavior, and the TIP4P/2005 model for water, which provides one of the best descriptions of liquid water for the available fixed-point charge models. Alkane site/water oxygen Lennard-Jones cross interactions were optimized to reproduce the experimental alkane hydration free energies over a range of temperatures. The optimized model reproduces the hydration free energies of the fitted alkanes with a root mean square difference between simulation and experiment of 0.06 kcal/mol over a wide temperature range, compared to 0.44 kcal/mol for the parent model. The optimized model accurately reproduces the temperature dependence of hydrophobic hydration, as characterized by the hydration enthalpies, entropies, and heat capacities, as well as the pressure response, as characterized by partial molar volumes.

  14. Alkanes as Components of Soil Hydrocarbon Status: Behavior and Indication Significance

    NASA Astrophysics Data System (ADS)

    Gennadiev, A. N.; Zavgorodnyaya, Yu. A.; Pikovskii, Yu. I.; Smirnova, M. A.

    2018-01-01

    Studies of soils on three key plots with different climatic conditions and technogenic impacts in Volgograd, Moscow, and Arkhangelsk oblasts have showed that alkanes in the soil exchange complex have some indication potential for the identification of soil processes. The following combinations of soil-forming factors and processes have been studied: (a) self-purification of soil after oil pollution; (b) accumulation of hydrocarbons coming from the atmosphere to soils of different land use patterns; and (c) changes in the soil hydrocarbon complex beyond the zone of technogenic impact due to the input of free hydrocarbon-containing gases. At the injection input of hydrocarbon pollutants, changes in the composition and proportions of alkanes allow tracing the degradation trend of pollutants in the soil from their initial content to the final stage of soil self-purification, when the background concentrations of hydrocarbons are reached. Upon atmospheric deposition of hydrocarbons onto the soil, from the composition and mass distribution of alkanes, conclusions can be drawn about the effect of toxicants on biogeochemical processes in the soil, including their manifestation under different land uses. Composition analysis of soil alkanes in natural landscapes can reveal signs of hydrocarbon emanation fluxes in soils. The indication potentials of alkanes in combination with polycyclic aromatic hydrocarbons and other components of soil hydrocarbon complex can also be used for the solution of other soil-geochemical problems.

  15. Formation and fate of alkyl nitrates from chlorine-initiated oxidation of alkanes

    NASA Astrophysics Data System (ADS)

    Wang, D. S.; Hildebrandt Ruiz, L.

    2017-12-01

    Alkanes are a main source of anthropogenic volatile organic compounds (VOCs). Studies suggest that large alkanes, despite having high carbon mass, often do not significantly contribute to secondary organic aerosol (SOA) formation due to their low reactivity towards hydroxyl radicals. Chlorine radicals react much more quickly with alkanes; for example, the reaction of Cl with n-decane is about 50 times faster than the reaction of OH with n-decane. High reactive chlorine concentrations have been reported within continental regions as well as near coastal regions. The rapid oxidation of alkanes by chlorine radicals can therefore be a potentially significant, and overlooked source of alkylperoxy radicals and SOA formation. We present results from environmental chamber experiments on chlorine-initiated oxidation of C8, C10, and C12 linear and branched alkanes. Experiments were conducted under high NOx conditions to simulate highly polluted industrial environments. Formation of multigenerational gas-phase oxidation products were monitored using a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (CIMS). High SOA formation was observed using an Aerosol Chemical Speciation Monitor (ACSM). Aerosol volatility was determined using a thermodenuder and a kinetic aerosol evaporation model. Particle-phase composition was investigated using a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to the CIMS, where dimer and oligomer formation were observed. Results from this study can be used to more accurately represent the fate of anthropogenic alkanes and SOA loadings in the atmosphere.

  16. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments.

    PubMed

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R; Jørgensen, Bo B; Kjeldsen, Kasper U

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  17. Chemical and physical passivation of type II strained-layer superlattice devices by means of thiolated self-assembled monolayers and polymer encapsulates

    NASA Astrophysics Data System (ADS)

    Henry, Nathan C.; Knorr, Daniel B.; Williams, Kristen S.; Baril, Neil; Nallon, Eric; Lenhart, Joseph L.; Andzelm, Jan W.; Pellegrino, Joseph; Tidrow, Meimei; Cleveland, Erin; Bandara, Sumith

    2015-05-01

    The efficacy of solution deposition of thiolated self-assembled monolayers (SAMs) has been explored for the purpose of passivating III-V type II superlattice (T2SL) photodetectors, more specifically a p-type heterojunction device. Sulfur passivation has previously been achieved on T2SL devices. However, degradation over time, temperature sensitivity and inconsistent reproducibility necessitate a physical encapsulate that can chemically bond to the chemical passivant. Thus, this research investigates two passivation methods, surface passivation with a thiol monolayer and passivation with a polymer encapsulant with a view toward future combination of these techniques. Analysis of the physical and chemical condition of the surface prior to deposition assisted in the development of ideal processes for optimized film quality. Successful deposition was facilitated by in situ oxide removal. Various commercially available functional (cysteamine) and non-functional (alkane) thiolated monolayers were investigated. Dark current was reduced by 3 orders of magnitude and achieved negligible surface leakage at low bias levels. The lowest dark current result, 7.69 × 10-6 A/cm2 at 50 mV, was achieved through passivation with cysteamine.

  18. DITERMINAL OXIDATION OF LONG-CHAIN ALKANES BY BACTERIA1

    PubMed Central

    Kester, A. S.; Foster, J. W.

    1963-01-01

    Kester, A. S. (The University of Texas, Austin) and J. W. Foster. Diterminal oxidation of long-chain alkanes by bacteria. J. Bacteriol. 85:859–869. 1963.—A corynebacterial organism capable of growing in mineral salts with individual pure alkanes as carbon sources produces a series of acids from the C10-C14 alkanes. They have been isolated in pure form and identified as monoic, ω-hydroxy monoic, and dioic acids containing the same number of carbon atoms as the substrate alkane. Oxidation took place at both terminal methyl groups—“diterminal oxidation.” Appropriate labeling experiments indicate that omega oxidation of fatty acids occurs in this organism and that an oxygenation with O2 occurs. Images PMID:14044955

  19. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    PubMed

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  20. n-alkane profiles of engine lubricating oil and particulate matter by molecular sieve extraction.

    PubMed

    Caravaggio, Gianni A; Charland, Jean-Pierre; Macdonald, Penny; Graham, Lisa

    2007-05-15

    As part of the Canadian Atmospheric Fine Particle Research Program to obtain reliable primary source emission profiles, a molecular sieve method was developed to reliably determine n-alkanes in lubricating oils, vehicle emissions, and mobile source dominated ambient particulate matter (PM). This work was also initiated to better calculate carbon preference index values (CPI: the ratio of the sums of odd over even n-alkanes), a parameter for estimating anthropogenic versus biogenic contributions in PM. n-Alkanes in lubricating oil and mobile source dominated PM are difficult to identify and quantify by gas chromatography due to the presence of similar components that cannot be fully resolved. This results in a hump, the unresolved complex mixture (UCM) that leads to incorrect n-alkane concentrations and CPI values. The sieve method yielded better chromatography, unambiguous identification of n-alkanes and allowed examination of differences between n-alkane profiles in light (LDV) and heavy duty vehicle (HDV) lubricating oils that would have been otherwise difficult. These profile differences made it possible to relate the LDV profile to that of the PM samples collected during a tunnel study in August 2001 near Vancouver (British Columbia, Canada). The n-alkane PM data revealed that longer sampling times result in a negative artifact, i.e., the desorption of the more volatile n-alkanes from the filters. Furthermore, the sieve procedure yielded n-alkane data that allowed calculation of accurate CPI values for lubricating oils and PM samples. Finally, this method may prove helpful in estimating the respective diesel and gasoline contributions to ambient PM.

  1. Exploring Ag(111) Substrate for Epitaxially Growing Monolayer Stanene: A First-Principles Study

    PubMed Central

    Gao, Junfeng; Zhang, Gang; Zhang, Yong-Wei

    2016-01-01

    Stanene, a two-dimensional topological insulator composed of Sn atoms in a hexagonal lattice, is a promising contender to Si in nanoelectronics. Currently it is still a significant challenge to achieve large-area, high-quality monolayer stanene. We explore the potential of Ag(111) surface as an ideal substrate for the epitaxial growth of monolayer stanene. Using first-principles calculations, we study the stability of the structure of stanene in different epitaxial relations with respect to Ag(111) surface, and also the diffusion behavior of Sn adatom on Ag(111) surface. Our study reveals that: (1) the hexagonal structure of stanene monolayer is well reserved on Ag(111) surface; (2) the height of epitaxial stanene monolayer is comparable to the step height of the substrate, enabling the growth to cross the surface step and achieve a large-area stanene; (3) the perfect lattice structure of free-standing stanene can be achieved once the epitaxial stanene monolayer is detached from Ag(111) surface; and finally (4) the diffusion barrier of Sn adatom on Ag(111) surface is found to be only 0.041 eV, allowing the epitaxial growth of stanene monolayer even at low temperatures. Our above revelations strongly suggest that Ag(111) surface is an ideal candidate for growing large-area, high-quality monolayer stanene. PMID:27373464

  2. Photocatalytic acceptorless alkane dehydrogenation: scope, mechanism, and conquering deactivation with carbon dioxide.

    PubMed

    Chowdhury, Abhishek Dutta; Julis, Jennifer; Grabow, Kathleen; Hannebauer, Bernd; Bentrup, Ursula; Adam, Martin; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2015-01-01

    Alkane dehydrogenation is of special interest for basic science but also offers interesting opportunities for industry. The existing dehydrogenation methodologies make use of heterogeneous catalysts, which suffer from harsh reaction conditions and a lack of selectivity, whereas homogeneous methodologies rely mostly on unsolicited waste generation from hydrogen acceptors. Conversely, acceptorless photochemical alkane dehydrogenation in the presence of trans-Rh(PMe3 )2 (CO)Cl can be regarded as a more benign and atom efficient alternative. However, this methodology suffers from catalyst deactivation over time. Herein, we provide a detailed investigation of the trans-Rh(PMe3 )2 (CO)Cl-photocatalyzed alkane dehydrogenation using spectroscopic and theoretical investigations. These studies inspired us to utilize CO2 to prevent catalyst deactivation, which leads eventually to improved catalyst turnover numbers in the dehydrogenation of alkanes that include liquid organic hydrogen carriers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cool-flame Extinction During N-Alkane Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2014-01-01

    Recent droplet combustion experiments onboard the International Space Station (ISS) have revealed that large n-alkane droplets can continue to burn quasi-steadily following radiative extinction in a low-temperature regime, characterized by negative-temperaturecoefficient (NTC) chemistry. In this study we report experimental observations of n-heptane, n-octane, and n-decane droplets of varying initial sizes burning in oxygen/nitrogen/carbon dioxide and oxygen/helium/nitrogen environments at 1.0, 0.7, and 0.5 atmospheric pressures. The oxygen concentration in these tests varied in the range of 14% to 25% by volume. Large n-alkane droplets exhibited quasi-steady low-temperature burning and extinction following radiative extinction of the visible flame while smaller droplets burned to completion or disruptively extinguished. A vapor-cloud formed in most cases slightly prior to or following the "cool flame" extinction. Results for droplet burning rates in both the hot-flame and cool-flame regimes as well as droplet extinction diameters at the end of each stage are presented. Time histories of radiant emission from the droplet captured using broadband radiometers are also presented. Remarkably the "cool flame" extinction diameters for all the three n-alkanes follow a trend reminiscent of the ignition delay times observed in previous studies. The similarities and differences among the n-alkanes during "cool flame" combustion are discussed using simplified theoretical models of the phenomenon

  4. Compression-Induced Conformation and Orientation Changes in an n-Alkane Monolayer on a Au(111) Surface.

    PubMed

    Endo, Osamu; Nakamura, Masashi; Amemiya, Kenta; Ozaki, Hiroyuki

    2017-04-25

    The influence of the preparation method and adsorbed amount of n-tetratetracontane (n-C 44 H 90 ) on its orientation in a monolayer on the Au(111) surface is studied by near carbon K-edge X-ray absorption fine structure spectroscopy (C K-NEXAFS), scanning tunneling microscopy (STM) under ultrahigh vacuum, and infrared reflection-absorption spectroscopy (IRAS) at the electrochemical interface in sulfuric acid solution. The n-C 44 H 90 molecules form self-assembled lamellar structures with the chain axis parallel to the surface, as observed by STM. For small amounts adsorbed, the carbon plane is parallel to the surface (flat-on orientation). An increase in the adsorbed amount by ∼10-20% induces compression of the lamellar structure either along the lamellar axis or alkyl chain axis. The compressed molecular arrangement is observed by STM, and induced conformation and orientation changes are confirmed by in situ IRAS and C K-NEXAFS.

  5. Selenium capped monolayer NbSe 2 for two-dimensional superconductivity studies

    DOE PAGES

    Onishi, Seita; Ugeda, Miguel M.; Zhang, Yi; ...

    2016-08-01

    Superconductivity in monolayer niobium diselenide (NbSe 2) on bilayer graphene is studied by electrical transport. Monolayer NbSe 2 is grown on bilayer graphene by molecular beam epitaxy and capped with a selenium film to avoid degradation in air. The selenium capped samples have T C = 1.9 K. In situ measurements down to 4 K in ultrahigh vacuum show that the effect of the selenium layer on the transport is negligible. Lastly, the superconducting transition and upper critical fields in air exposed and selenium capped samples are compared. Schematic of monolayer NbSe 2/bilayer graphene with selenium capping layer and electricalmore » contacts.« less

  6. A search for microorganisms producing medium-chain alkanes from aldehydes.

    PubMed

    Ito, Masakazu; Kambe, Hiromi; Kishino, Shigenobu; Muramatsu, Masayoshi; Ogawa, Jun

    2018-01-01

    Microorganisms with medium-chain alkane-producing activity are promising for the bio-production of drop-in fuel. In this study, we screened for microorganisms producing tridecane from tetradecanal. The activity of aldehyde decarbonylation was found in a wide range of microbes. In particular, the genus Klebsiella in the Enterobacteriaceae family was found to have a high ability to produce alkanes from aldehydes via enzyme catalyzed reaction. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Determining and quantifying specific sources of light alkane

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.

    2015-12-01

    Determining and quantifying specific sources of emission of methane (an important greenhouse gas) and light alkanes from abandoned gas and oil wells, hydraulic fracturing or associated with CO2 sequestration are a challenge in determining their contribution to the atmospheric greenhouse gas budget or to identify source of groundwater contamination. Here, we review organic biogeochemistry proprieties and isotopic fingerprinting of C1-C5 alkanes to address this problem. For instance, the concentration ratios of CH4 to C2-C5 alkanes can be used to distinguish between thermogenic and microbial generated CH4. Together C and H isotopes of CH4 are used to differentiate bacterial generated sources and thermogenic CH4 and may also identify processes such as alteration and source mixing. Carbon isotope ratios pattern of C1-C5 alkanes highlight sources and oxidation processes in the gas reservoirs. Stable carbon isotope measurements are a viable tool for monitoring the degradation progress of methane and light hydrocarbons. The carbon isotope ratios of the reactants and products are independent of the concentration and only depend on the relative progress of the particular reaction. Oxidation/degradation of light alkanes are typically associated with increasing ð13C values. Isotopic mass balances offer the possibility to independently determine the fractions coming from microbial versus thermogenic and would also permit differentiation of the isotope fractionations associated with degradation. Unlike conventional concentration measurements, this approach is constrained by the different isotopic signatures of various sources and sinks.

  8. Melting of the Dipalmitoylphosphatidylcholine Monolayer.

    PubMed

    Xu, Lu; Bosiljevac, Gordon; Yu, Kyle; Zuo, Yi Y

    2018-04-17

    Langmuir monolayer self-assembled at the air-water interface represents an excellent model for studying phase transition and lipid polymorphism in two dimensions. Compared with numerous studies of phospholipid phase transitions induced by isothermal compression, there are very scarce reports on two-dimensional phase transitions induced by isobaric heating. This is mainly due to technical difficulties of continuously regulating temperature variations while maintaining a constant surface pressure in a classical Langmuir-type film balance. Here, with technological advances in constrained drop surfactometry and closed-loop axisymmetric drop shape analysis, we studied the isobaric heating process of the dipalmitoylphosphatidylcholine (DPPC) monolayer. It is found that temperature and surface pressure are two equally important intensive properties that jointly determine the phase behavior of the phospholipid monolayer. We have determined a critical point of the DPPC monolayer at a temperature of 44 °C and a surface pressure of 57 mN/m. Beyond this critical point, no phase transition can exist in the DPPC monolayer, either by isothermal compression or by isobaric heating. The melting process of the DPPC monolayer studied here provides novel insights into the understanding of a wide range of physicochemical and biophysical phenomena, such as surface thermodynamics, critical phenomena, and biophysical study of pulmonary surfactants.

  9. Experimental study of thermal rectification in suspended monolayer graphene

    PubMed Central

    Wang, Haidong; Hu, Shiqian; Takahashi, Koji; Zhang, Xing; Takamatsu, Hiroshi; Chen, Jie

    2017-01-01

    Thermal rectification is a fundamental phenomenon for active heat flow control. Significant thermal rectification is expected to exist in the asymmetric nanostructures, such as nanowires and thin films. As a one-atom-thick membrane, graphene has attracted much attention for realizing thermal rectification as shown by many molecular dynamics simulations. Here, we experimentally demonstrate thermal rectification in various asymmetric monolayer graphene nanostructures. A large thermal rectification factor of 26% is achieved in a defect-engineered monolayer graphene with nanopores on one side. A thermal rectification factor of 10% is achieved in a pristine monolayer graphene with nanoparticles deposited on one side or with a tapered width. The results indicate that the monolayer graphene has great potential to be used for designing high-performance thermal rectifiers for heat flow control and energy harvesting. PMID:28607493

  10. Experimental study of thermal rectification in suspended monolayer graphene.

    PubMed

    Wang, Haidong; Hu, Shiqian; Takahashi, Koji; Zhang, Xing; Takamatsu, Hiroshi; Chen, Jie

    2017-06-13

    Thermal rectification is a fundamental phenomenon for active heat flow control. Significant thermal rectification is expected to exist in the asymmetric nanostructures, such as nanowires and thin films. As a one-atom-thick membrane, graphene has attracted much attention for realizing thermal rectification as shown by many molecular dynamics simulations. Here, we experimentally demonstrate thermal rectification in various asymmetric monolayer graphene nanostructures. A large thermal rectification factor of 26% is achieved in a defect-engineered monolayer graphene with nanopores on one side. A thermal rectification factor of 10% is achieved in a pristine monolayer graphene with nanoparticles deposited on one side or with a tapered width. The results indicate that the monolayer graphene has great potential to be used for designing high-performance thermal rectifiers for heat flow control and energy harvesting.

  11. Formation of protein molecular imprints within Langmuir monolayers: A quartz crystal microbalance study

    PubMed Central

    Turner, Nicholas W.; Wright, Bryon E.; Hlady, Vladimir; Britt, David W.

    2008-01-01

    Protein imprinting leading to enhanced rebinding of ferritin to ternary lipid monolayers is demonstrated using a quartz crystal microbalance. Monolayers consisting of cationic dioctadecyldimethylammonium bromide, non-ionic methyl stearate, and poly(ethylene glycol) bearing phospholipids were imprinted with ferritin at the air/water interface of a Langmuir-Blodgett trough and transferred hydrated to hydrophobic substrates for study. This immobilization was shown by fluorescence correlation spectroscopy to significantly hinder any further diffusion of lipids, while rebinding studies demonstrated up to a six-fold increase in ferritin adsorption to imprinted versus control monolayers. A diminished rebinding of ferritin to its imprint was observed through pH reduction to below the protein isoelectric point, demonstrating the electrostatic nature of the interaction. Rebinding to films where imprint pockets remained occupied by the template protein was also minimal. Studies with a smaller acidic protein revealed the importance of the steric influence of poly(ethylene glycol) in forming the protein binding pockets, as albumin-imprinted monolayers showed low binding of ferritin, while ferritin-imprinted monolayers readily accommodated albumin. The controllable structure-function relationship and limitations of this system are discussed with respect to the application of protein imprinting in sensor development as well as fundamental studies of proteins at dynamic interfaces. PMID:17204279

  12. Thermodynamics of the adsorption of organic molecules on graphitized carbon black modified with a monolayer of 5-hydroxy-6-methyluracil

    NASA Astrophysics Data System (ADS)

    Gus'kov, V. Yu.; Ivanov, S. P.; Shaikhitdinova, Yu. F.; Kudasheva, F. Kh.

    2016-10-01

    Thermodynamic characteristics of the adsorption of alkanes, alcohols, arenes, and esters on graphitized carbon black with a deposited monolayer (0.17%) of 5-hydroxy-6-methyluracil are studied by means of inverse gas chromatography at infinite dilution. It is established that size effects (violation of the additivity of molar changes in internal energy and the entropy of adsorption for pairs of molecules of one homologous series that differ by one methyl group) are observed when organic molecules are adsorbed on the surface of the resulting adsorbent. The size effects are similar to those observed when 1% 5-hydroxy-6-methyluracil is deposited on graphitized carbon black. It is concluded that the observed violation of additivity is associated with cavities in the supramolecular structure.

  13. Synthesis of Renewable Lubricant Alkanes from Biomass-Derived Platform Chemicals.

    PubMed

    Gu, Mengyuan; Xia, Qineng; Liu, Xiaohui; Guo, Yong; Wang, Yanqin

    2017-10-23

    The catalytic synthesis of liquid alkanes from renewable biomass has received tremendous attention in recent years. However, bio-based platform chemicals have not to date been exploited for the synthesis of highly branched lubricant alkanes, which are currently produced by hydrocracking and hydroisomerization of long-chain n-paraffins. A selective catalytic synthetic route has been developed for the production of highly branched C 23 alkanes as lubricant base oil components from biomass-derived furfural and acetone through a sequential four-step process, including aldol condensation of furfural with acetone to produce a C 13 double adduct, selective hydrogenation of the adduct to a C 13 ketone, followed by a second condensation of the C 13 ketone with furfural to generate a C 23 aldol adduct, and finally hydrodeoxygenation to give highly branched C 23 alkanes in 50.6 % overall yield from furfural. This work opens a general strategy for the synthesis of high-quality lubricant alkanes from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy

    NASA Astrophysics Data System (ADS)

    Bush, Rosemary T.; McInerney, Francesca A.

    2013-09-01

    Long chain (C21 to C37) n-alkanes are among the most long-lived and widely utilized terrestrial plant biomarkers. Dozens of studies have examined the range and variation of n-alkane chain-length abundances in modern plants from around the world, and n-alkane distributions have been used for a variety of purposes in paleoclimatology and paleoecology as well as chemotaxonomy. However, most of the paleoecological applications of n-alkane distributions have been based on a narrow set of modern data that cannot address intra- and inter-plant variability. Here, we present the results of a study using trees from near Chicago, IL, USA, as well as a meta-analysis of published data on modern plant n-alkane distributions. First, we test the conformity of n-alkane distributions in mature leaves across the canopy of 38 individual plants from 24 species as well as across a single growing season and find no significant differences for either canopy position or time of leaf collection. Second, we compile 2093 observations from 86 sources, including the new data here, to examine the generalities of n-alkane parameters such as carbon preference index (CPI), average chain length (ACL), and chain-length ratios for different plant groups. We show that angiosperms generally produce more n-alkanes than do gymnosperms, supporting previous observations, and furthermore that CPI values show such variation in modern plants that it is prudent to discard the use of CPI as a quantitative indicator of n-alkane degradation in sediments. We also test the hypotheses that certain n-alkane chain lengths predominate in and therefore can be representative of particular plant groups, namely, C23 and C25 in Sphagnum mosses, C27 and C29 in woody plants, and C31 in graminoids (grasses). We find that chain-length distributions are highly variable within plant groups, such that chemotaxonomic distinctions between grasses and woody plants are difficult to make based on n-alkane abundances. In contrast

  15. Cometabolism of Methyl tertiary Butyl Ether and Gaseous n-Alkanes by Pseudomonas mendocina KR-1 Grown on C5 to C8 n-Alkanes

    PubMed Central

    Smith, Christy A.; O'Reilly, Kirk T.; Hyman, Michael R.

    2003-01-01

    Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1° alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2° alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 μmol) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1° alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 ± 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 μM) and n-butane (Ki = 16 μM) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism. PMID:14660389

  16. MD simulation study of the diffusion and local structure of n-alkanes in liquid and supercritical methanol at infinite dilution.

    PubMed

    Feng, Huajie; Gao, Wei; Su, Li; Sun, Zhenfan; Chen, Liuping

    2017-06-01

    The diffusion coefficients of 14 n-alkanes (ranging from methane to n-tetradecane) in liquid and supercritical methanol at infinite dilution (at a pressure of 10.5 MPa and at temperatures of 299 K and 515 K) were deduced via molecular dynamics simulations. Values for the radial distribution function, coordination number, and number of hydrogen bonds were then calculated to explore the local structure of each fluid. The flexibility of the n-alkane (as characterized by the computed dihedral distribution, end-to-end distance, and radius of gyration) was found to be a major influence and hydrogen bonding to be a minor influence on the local structure. Hydrogen bonding reduces the flexibility of the n-alkane, whereas increasing the temperature enhances its flexibility, with temperature having a greater effect than hydrogen bonding on flexibility. Graphical abstract The flexibility of the alkane is a major influence and the hydrogen bonding is a minor influence on the first solvation shell; the coordination numbers of long-chain n-alkanes in the first solvation shell are rather low.

  17. The hydrodeoxygenation of bioderived furans into alkanes.

    PubMed

    Sutton, Andrew D; Waldie, Fraser D; Wu, Ruilian; Schlaf, Marcel; Silks, Louis A Pete; Gordon, John C

    2013-05-01

    The conversion of biomass into fuels and chemical feedstocks is one part of a drive to reduce the world's dependence on crude oil. For transportation fuels in particular, wholesale replacement of a fuel is logistically problematic, not least because of the infrastructure that is already in place. Here, we describe the catalytic defunctionalization of a series of biomass-derived molecules to provide linear alkanes suitable for use as transportation fuels. These biomass-derived molecules contain a variety of functional groups, including olefins, furan rings and carbonyl groups. We describe the removal of these in either a stepwise process or a one-pot process using common reagents and catalysts under mild reaction conditions to provide n-alkanes in good yields and with high selectivities. Our general synthetic approach is applicable to a range of precursors with different carbon content (chain length). This allows the selective generation of linear alkanes with carbon chain lengths between eight and sixteen carbons.

  18. The hydrodeoxygenation of bioderived furans into alkanes

    NASA Astrophysics Data System (ADS)

    Sutton, Andrew D.; Waldie, Fraser D.; Wu, Ruilian; Schlaf, Marcel; ‘Pete' Silks, Louis A.; Gordon, John C.

    2013-05-01

    The conversion of biomass into fuels and chemical feedstocks is one part of a drive to reduce the world's dependence on crude oil. For transportation fuels in particular, wholesale replacement of a fuel is logistically problematic, not least because of the infrastructure that is already in place. Here, we describe the catalytic defunctionalization of a series of biomass-derived molecules to provide linear alkanes suitable for use as transportation fuels. These biomass-derived molecules contain a variety of functional groups, including olefins, furan rings and carbonyl groups. We describe the removal of these in either a stepwise process or a one-pot process using common reagents and catalysts under mild reaction conditions to provide n-alkanes in good yields and with high selectivities. Our general synthetic approach is applicable to a range of precursors with different carbon content (chain length). This allows the selective generation of linear alkanes with carbon chain lengths between eight and sixteen carbons.

  19. The influence of fatty acid supply and aldehyde reductase deletion on cyanobacteria alkane generating pathway in Escherichia coli.

    PubMed

    Wang, Juli; Yu, Haiying; Song, Xuejiao; Zhu, Kun

    2018-05-01

    Cyanobacteria alkane synthetic pathway has been heterologously constructed in many microbial hosts. It is by far the most studied and reliable alkane generating pathway. Aldehyde deformylating oxygenase (i.e., ADO, key enzyme in this pathway) obtained from different cyanobacteria species showed diverse catalytic abilities. This work indicated that single aldehyde reductase deletions were beneficial to Nostoc punctiforme ADO-depended alkane production in Escherichia coli even better than double deletions. Fatty acid metabolism regulator (FadR) overexpression and low temperature increased C18:1 fatty acid supply, and in turn stimulated C18:1-derived heptadecene production, suggesting that supplying ADO with preferred substrate was important to overall alkane yield improvement. Using combinational methods, 1 g/L alkane was obtained in fed-batch fermentation with heptadecene accounting for nearly 84% of total alkane.

  20. Conversion of alkanes to organoseleniums and organotelluriums

    DOEpatents

    Periana, Roy A.; Konnick, Michael M.; Hashiguchi, Brian G.

    2016-11-29

    The invention provides processes and materials for the efficient and costeffective functionalization of alkanes and heteroalkanes, comprising contacting the alkane or heteroalkane and a soft oxidizing electrophile comprising Se(VI) or Te(VI), in an acidic medium, optionally further comprising an aprotic medium, which can be carried out at a temperature of less than 300 C. Isolation of the alkylselenium or alkyltellurium intermediate allows the subsequent conversion to products not necessarily compatible with the initial reaction conditions, such as amines, stannanes, organosulfur compounds, acyls, halocarbons, and olefins.

  1. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle

    PubMed Central

    Lea-Smith, David J.; Biller, Steven J.; Davey, Matthew P.; Cotton, Charles A. R.; Perez Sepulveda, Blanca M.; Turchyn, Alexandra V.; Scanlan, David J.; Smith, Alison G.; Chisholm, Sallie W.; Howe, Christopher J.

    2015-01-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2–540 pg alkanes per mL per day, which translates into a global ocean yield of ∼308–771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities. PMID:26438854

  2. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acryloxy alkanoic alkane derivative... Significant New Uses for Specific Chemical Substances § 721.10148 Acryloxy alkanoic alkane derivative with...) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed metal...

  3. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1988-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  4. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1988-02-16

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  5. Electrostatic and induction effects in the solubility of water in alkanes

    NASA Astrophysics Data System (ADS)

    Asthagiri, D.; Valiya Parambathu, Arjun; Ballal, Deepti; Chapman, Walter G.

    2017-08-01

    Experiments show that at 298 K and 1 atm pressure, the transfer free energy, μex, of water from its vapor to liquid normal alkanes CnH2n+2 (n =5 …12 ) is negative. Earlier it was found that with the united-atom TraPPE model for alkanes and the SPC/E model for water, one had to artificially enhance the attractive alkane-water cross interaction to capture this behavior. Here we revisit the calculation of μex using the polarizable AMOEBA and the non-polarizable Charmm General (CGenFF) forcefields. We test both the AMOEBA03 and AMOEBA14 water models; the former has been validated with the AMOEBA alkane model while the latter is a revision of AMOEBA03 to better describe liquid water. We calculate μex using the test particle method. With CGenFF, μex is positive and the error relative to experiments is about 1.5 kBT. With AMOEBA, μex is negative and deviations relative to experiments are between 0.25 kBT (AMOEBA14) and 0.5 kBT (AMOEBA03). Quantum chemical calculations in a continuum solvent suggest that zero point effects may account for some of the deviation. Forcefield limitations notwithstanding, electrostatic and induction effects, commonly ignored in consideration of water-alkane interactions, appear to be decisive in the solubility of water in alkanes.

  6. Modeling the SOA Forming Potential of Substituted Dihydrofurans from Alkane + OH Reactions in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Griffin, R. J.; Lim, Y. B.; Ziemann, P. J.; Atkinson, R.; Arey, J.

    2005-12-01

    Recent laboratory studies show that δ-hydroxycarbonyls formed in the atmosphere via OH-initiated reactions with alkanes can cyclize then dehydrate to form substituted dihydrofurans. These dihydrofurans are highly reactive, with lifetimes in the atmosphere of 1.3 h (OH), 24 s (NO3), and 7 min (O3). The ability of the δ-hydroxycarbonyls to cyclize and dehydrate has been shown to increase with increasing carbon number. Recent laboratory results show that the secondary organic aerosol (SOA) yields from alkanes also increase with carbon number reaching ~53% for C15. The reaction mechanism proposed based on the chamber results is the basis of the modeling study presented here. We have incorporated this proposed mechanism into the Caltech Atmospheric Chemistry Mechanism (CACM). For computational reasons, similar compounds are lumped together and represented by a single suitable compound. In the present case, alkanes are lumped into 3 groups: short chains (≤C6), medium chains (C7 - C12), and long chains (≥C13). SOA yields obtained in chamber studies increase dramatically from 0.5% for C8 to 25% for C12. The most dramatic increase is observed from C11 (8%) to C13 (~50%). This is attributed to the low volatility of first generation products contributing to the SOA from longer chain alkanes. Here we have studied OH reactions with the substituted dihydrofurans for medium (represented by C10) and long (represented by C16) chain alkanes using CACM along with the aerosol partitioning module MPMPO (Model to Predict the Multi-phase Partitioning of Organics). We will present the results of this modeling study, characterizing the influence of substituted dihydrofurans on the SOA forming potential of alkanes.

  7. Molecular-dynamics simulations of self-assembled monolayers (SAM) on parallel computers

    NASA Astrophysics Data System (ADS)

    Vemparala, Satyavani

    The purpose of this dissertation is to investigate the properties of self-assembled monolayers, particularly alkanethiols and Poly (ethylene glycol) terminated alkanethiols. These simulations are based on realistic interatomic potentials and require scalable and portable multiresolution algorithms implemented on parallel computers. Large-scale molecular dynamics simulations of self-assembled alkanethiol monolayer systems have been carried out using an all-atom model involving a million atoms to investigate their structural properties as a function of temperature, lattice spacing and molecular chain-length. Results show that the alkanethiol chains tilt from the surface normal by a collective angle of 25° along next-nearest neighbor direction at 300K. At 350K the system transforms to a disordered phase characterized by small tilt angle, flexible tilt direction, and random distribution of backbone planes. With increasing lattice spacing, a, the tilt angle increases rapidly from a nearly zero value at a = 4.7A to as high as 34° at a = 5.3A at 300K. We also studied the effect of end groups on the tilt structure of SAM films. We characterized the system with respect to temperature, the alkane chain length, lattice spacing, and the length of the end group. We found that the gauche defects were predominant only in the tails, and the gauche defects increased with the temperature and number of EG units. Effect of electric field on the structure of poly (ethylene glycol) (PEG) terminated alkanethiol self assembled monolayer (SAM) on gold has been studied using parallel molecular dynamics method. An applied electric field triggers a conformational transition from all-trans to a mostly gauche conformation. The polarity of the electric field has a significant effect on the surface structure of PEG leading to a profound effect on the hydrophilicity of the surface. The electric field applied anti-parallel to the surface normal causes a reversible transition to an ordered state

  8. Pronounced Environmental Effects on Injection Currents in EGaIn Tunneling Junctions Comprising Self-Assembled Monolayers.

    PubMed

    Carlotti, Marco; Degen, Maarten; Zhang, Yanxi; Chiechi, Ryan C

    2016-09-15

    Large-area tunneling junctions using eutectic Ga-In (EGaIn) as a top contact have proven to be a robust, reproducible, and technologically relevant platform for molecular electronics. Thus far, the majority of studies have focused on saturated molecules with backbones consisting mainly of alkanes in which the frontier orbitals are either highly localized or energetically inaccessible. We show that self-assembled monolayers of wire-like oligophenyleneethynylenes (OPEs), which are fully conjugated, only exhibit length-dependent tunneling behavior in a low-O 2 environment. We attribute this unexpected behavior to the sensitivity of injection current on environment. We conclude that, contrary to previous reports, the self-limiting layer of Ga 2 O 3 strongly influences transport properties and that the effect is related to the wetting behavior of the electrode. This result sheds light on the nature of the electrode-molecule interface and suggests that adhesive forces play a significant role in tunneling charge-transport in large-area molecular junctions.

  9. Pronounced Environmental Effects on Injection Currents in EGaIn Tunneling Junctions Comprising Self-Assembled Monolayers

    PubMed Central

    2016-01-01

    Large-area tunneling junctions using eutectic Ga–In (EGaIn) as a top contact have proven to be a robust, reproducible, and technologically relevant platform for molecular electronics. Thus far, the majority of studies have focused on saturated molecules with backbones consisting mainly of alkanes in which the frontier orbitals are either highly localized or energetically inaccessible. We show that self-assembled monolayers of wire-like oligophenyleneethynylenes (OPEs), which are fully conjugated, only exhibit length-dependent tunneling behavior in a low-O2 environment. We attribute this unexpected behavior to the sensitivity of injection current on environment. We conclude that, contrary to previous reports, the self-limiting layer of Ga2O3 strongly influences transport properties and that the effect is related to the wetting behavior of the electrode. This result sheds light on the nature of the electrode–molecule interface and suggests that adhesive forces play a significant role in tunneling charge-transport in large-area molecular junctions. PMID:27738488

  10. Interplay of bonding and geometry of the adsorption complexes of light alkanes within cationic faujasites. Combined spectroscopic and computational study.

    PubMed

    Pidko, Evgeny A; Xu, Jiang; Mojet, Barbara L; Lefferts, Leon; Subbotina, Irina R; Kazansky, Vladimir B; van Santen, Rutger A

    2006-11-16

    A FT-IR spectroscopic study of methane, ethane, and propane adsorption on magnesium and calcium forms of zeolite Y reveals different vibrational properties of the adsorbed molecules depending on the exchanged cation. This is attributed to different adsorption conformations of the hydrocarbons. Two-fold eta(2) coordination of light alkanes is realized for MgY, whereas in case of CaY zeolite quite different adsorption modes are found, involving more C-H bonds in the interaction with the cation. The topological analysis of the electron density distribution function of the adsorption complexes shows that when a hydrocarbon coordinates to the exchanged Mg(2+) ions, van der Waals bonds between H atoms of the alkane and basic zeolitic oxygens significantly contribute to the overall adsorption energy, whereas in case of CaY zeolite such interactions play only an indirect role. It is found that, due to the much smaller ionic radius of the Mg(2+) ion as compared to that of Ca(2+), the former ions are significantly shielded with the surrounding oxygens of the zeolitic cation site. This results in a small electrostatic contribution to the stabilization of the adsorbed molecules. In contrast, for CaY zeolite the stabilization of alkanes in the electrostatic field of the partially shielded Ca(2+) cation significantly contributes to the adsorption energy. This is in agreement with the experimentally observed lower overall absorption of C-H stretching vibrations of alkanes loaded to MgY as compared to those for CaY zeolite. The preferred conformation of the adsorbed alkanes is controlled by the bonding within the adsorption complexes that, in turn, strongly depends on the size and location of the cations in the zeolite cavity.

  11. The Roles of Microbial Communities in n-Alkane Distribution of The Nanjenshan Lowland Subtropical Rainforest in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Huang, T. Y.; Fan, C. W.; Chao, W. C.; Yang, T. N.; Huang, C. P.; Hsu, B. M.

    2016-12-01

    Analysis of total organic carbon in Nanjenshan, a lowland subtropical rainforest in southern Taiwan, revealed that the carbon storage of litter-layer was about 35% lower in ravine area than in windward and leeward areas, while the soil storage in these areas were similar. In this one year follow-up study, we aimed to investigate the kinetic changes of n-alkane (C14-C35) concentration from litter fall, litter-layer, surface soil, soil in -10 cm depth, and soil in -30 cm depth by a GC-FID method. The n-alkane distribution and n-alkane flux of these areas were also analyzed. Next generation sequencing was carried out to examine the metagenomics of uncultured microbial community in litter-layer of these areas. Our results showed that the net weight of one year-litter fall in ravine area was 30% higher than the others. The average concentration of n-alkane in leaves in ravine was 90% and 50% higher than in windward area and leeward area, respectively. Although the n-alkane flux in ravine area was twice higher than the other areas, the n-alkane concentrations in litter-layer and soils of different layers were similar among all areas, suggesting a rapid degradation of n-alkane in liter layer in ravine area. Interestingly, the character of odd over even predominance of n-alkane was gradually lost in soil layer in ravine area. Metagenomic data have showed that the structure of microbial abundance in ravine area was different from windward and leeward areas. In ravine area, the numbers in phyla of Bacteroidetes, Actinobacteria, and Proteobacteria, were higher than the other areas, while in phyla of Acidobacteria and Planctomycetes were lower. Our data provided evidence that microbial communities may not only play a role on n-alkane degradation but also change the profile in abundance of high-chain length n-alkanes.

  12. Modular and selective biosynthesis of gasoline-range alkanes.

    PubMed

    Sheppard, Micah J; Kunjapur, Aditya M; Prather, Kristala L J

    2016-01-01

    Typical renewable liquid fuel alternatives to gasoline are not entirely compatible with current infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain-length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad-specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity obtained by different module pairings provides a foundation for tuning alkane product distribution for desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed alkane titer. However, even in an engineered host strain that significantly reduces endogenous conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential opportunities for pathway improvement. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Diffusion of dioxygen in 1-alkenes and biphenyl in perfluoro- n-alkanes

    NASA Astrophysics Data System (ADS)

    Kowert, Bruce A.; Sobush, Kurtis T.; Dang, Nhan C.; Seele, Louis G., III; Fuqua, Chantel F.; Mapes, Courtney L.

    2002-02-01

    The translational diffusion constant, D, has been measured for O 2 in the even 1-alkenes 1-C 6H 12 to 1-C 16H 32 and biphenyl in n-C 6F 14 and n-C 9F 20. Deviations from the Stokes-Einstein relation were found; the use of D/ T= A/ ηp gave p=0.560±0.017 for O 2 in the 1-alkenes, the same (within experimental error) as found previously for O 2 in the n-alkanes. The charge transfer (CT) transition used to detect O 2 in the 1-alkenes is at 220 nm. The D values for biphenyl in the perfluoro- n-alkanes (PFAs) are consistent with those in the n-alkanes, where p=0.718±0.004. These results suggest that O 2 has similar solute-solvent interactions in both the 1-alkenes and n-alkanes as does biphenyl in the n-alkanes and PFAs.

  14. Isolation and characterization of Pseudomonas aeruginosa strain SJTD-2 for degrading long-chain n-alkanes and crude oil.

    PubMed

    Xu, Jing; Liu, Huan; Liu, Jianhua; Liang, Rubing

    2015-06-04

    Oil pollution poses a severe threat to ecosystems, and bioremediation is considered as a safe and efficient alternative to physicochemical. for eliminating this contaminant. In this study, a gram-negative bacteria strain SJTD-2 isolated from oil-contaminated soil was found capable of utilizing n-alkanes and crude oil as sole energy sources. The efficiency of this strain in degrading these pollutants was analyzed. Strain SJTD-2 was identified on the basis of its phenotype, its physiological features, and a comparative genetic analysis using 16S rRNA sequence. Growth of strain SJTD-2 with different carbon sources (n-alkanes of different lengths and crude oil) was assessed, and the gas chromatography-mass spectrometry method was used to analyze the degradation efficiency of strain SJTD-2 for n-alkanes and petroleum by detecting the residual n-alkane concentrations. Strain SJTD-2 was identified as Pseudomonas aeruginosa based on the phenotype, physiological features, and 16S rRNA sequence analysis. This strain can efficiently decompose medium-chain and long-chain n-alkanes (C10-C26), and petroleum as its sole carbon sources. It preferred the long-chain n-alkanes (C18-C22), and n-docosane was considered as the best carbon source for its growth. In 48 h, 500 mg/L n-docosane could be degraded completely, and 2 g/L n-docosane was decomposed to undetectable levels within 72 h. Moreover, strain SJTD-2 could utilize about 88% of 2 g/L crude oil in 7days. Compared with other alkane-utilizing strains, strain SJTD-2 showed outstanding degradation efficiency for long-chain n-alkanes and high tolerance to petroleum at elevated concentrations. The isolation and characterization of strain SJTD-2 would help researchers study the mechanisms underlying the biodegradation of n-alkanes, and this strain could be used as a potential strain for environmental governance and soil bioremediation.

  15. Alkanes in shrimp from the Buccaneer Oil Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleditch, B.S.; Basile, B.; Chang, E.S.

    1982-07-01

    A total of 36 samples of shrimp were examined from the region of the Buccaneer oil field, eighteen of which were representatives of the commercial species Penaeus aztecus and the rest were various other species: Penaeus duorarum (pink shrimp), Trachypenaeus duorarum (sugar shrimp), Squilla empusa (mantis shrimp), and Sicyonia dorsalis (chevron shrimp). The alkanes and deuteriated alkanes were completely separated by GC, so a mass spectrometer was not required for their detection and quantitation. To confirm the identities of individual compounds, however, some samples were examined by combined gas chromatography-mass spectrometry. Results show that only thirteen of the forty shrimpmore » collected from the region of the Buccaneer oil field contained petroleum alkanes, and the majority of these were obtained from trawls immediately adjacent to the production platforms. It appears that shrimp caught in the region of the Buccaneer oil field are not appreciably tainted with hydrocarbons discharged from the production platforms. (JMT)« less

  16. Development of Coarse Grained Models for Long Chain Alkanes

    NASA Astrophysics Data System (ADS)

    Gyawali, Gaurav; Sternfield, Samuel; Hwang, In Chul; Rick, Steven; Kumar, Revati; Rick Group Team; Kumar Group Team

    Modeling aggregation in aqueous solution is a challenge for molecular simulations as it involves long time scales, a range of length scales, and the correct balance of hydrophobic and hydrophilic interactions. We have developed a coarse-grained model fast enough for the rapid testing of molecular structures for their aggregation properties. This model, using the Stillinger-Weber potential, achieves efficiency through a reduction in the number of interaction sites and the use of short-ranged interactions. The model can be two to three orders of magnitude more efficient than conventional all atom simulations, yet through a careful parameterization process and the use of many-body interactions can be remarkably accurate. We have developed models for long chain alkanes in water that reproduce the thermodynamics and structure of water-alkane and liquid alkane systems.

  17. Langmuir-Gibbs Surface Phases and Transitions

    NASA Astrophysics Data System (ADS)

    Ocko, Benjamin; Sloutskin, Eli; Sapir, Zvi; Tamam, Lilach; Deutsch, Moshe; Bain, Colin

    2007-03-01

    Recent synchrotron x-ray measurements reveal surface ordering transitions in films of medium-length linear hydrocarbons (alkanes), spread on the water surface. Alkanes longer than hexane do not spread on the free surface of water. However, sub-mM concentrations of some anionic surfactants (e.g. CTAB) induce formation of thermodynamically stable alkane monolayers, through a ``pseudo-partial wetting'' phenomenon[1]. The monolayers, incorporating both water-insoluble alkanes (Langmuir) and water-soluble CTAB molecules (Gibbs) are called Langmuir-Gibbs (LG) films. The films formed by alkanes with n <=17 exhibit ordering transition upon cooling [2], below which the molecules are normal to the water surface and hexagonally packed, with CTAB molecules randomly mixed inside the quasi-2D crystal. Alkanes with n>17 can not form ordered LG monolayers, due to the repulsion from the n=16 tails of CTAB. This repulsion arises from the two chains' length mismatch. A demixing transition occurs upon ordering, with a pure alkane quasi-2D crystal forming on top of disordered alkyl tails of CTAB molecules. [1] K.M. Wilkinson et al., Chem. Phys. Phys. Chem. 6, 547 (2005). [2] E. Sloutskin, Z. Sapir, L. Tamam, B.M. Ocko, C.D. Bain, and M. Deutsch, Thin Solid Films, in press; K.M. Wilkinson, L. Qunfang, and C.D. Bain, Soft Matter 2, 66 (2006).

  18. Molecular beam studies of the growth and kinetics of self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Schwartz, Peter Vincent

    Low energy helium diffraction, a quantitative structural characterization tool, has been used to measure the growth kinetics of self-assembled monolayers (SAMs). Special attention was given to the growth of decanethiol monolayers deposited from a molecular beam onto the (111) face of gold single crystals especially at the initial stages of growth. The influence of changing impingement rate, substrate temperature, and annealing treatments was investigated. We also studied the structure and dynamics of physisorbed adlayers on top of the monolayers and structural variations in monolayers caused by changes in chemical composition such as the addition of phenyl groups, and hydroxyl groups. Experimental work involved renovations to the existing diffractometer. The apparatus was improved with respect to its signal to noise ratio; efficiency in sample preparation and data collection; and the reproducibility of obtaining clean crystal surfaces. The renovations greatly extended the range of experiments of which the diffraction machine is capable. The growth of n-decanethiol SAMs by gas deposition was identified as a multi-stage process where the initial "lying down" layer grows on the bare gold surface with a near unity sticking coefficient, while the subsequent, "standing-up" phase grows with a sticking coefficient of about 10sp{-3}. The ordering and chemisorption of a single "lying down" layer of decanethiol was investigated by annealing a single layer physisorbed on a 130 K Au(111) surface to incrementally higher temperatures. The molecules first align themselves with the underlying gold substrate, then orient themselves in the "head to head" two molecule unit mesh, then chemisorb at still higher temperatures. Overlayers of long chain molecules grown on top of monolayers on Au(111) are found to be more ordered than the underlying monolayers themselves. The energy of adsorption to the organic surface is found to be very close to that of the bulk value, even for a gold

  19. Characterizing the mechanics of cultured cell monolayers

    PubMed Central

    Peter, Loic; Bellis, Julien; Baum, Buzz; Kabla, Alexandre J.; Charras, Guillaume T.

    2012-01-01

    One-cell-thick monolayers are the simplest tissues in multicellular organisms, yet they fulfill critical roles in development and normal physiology. In early development, embryonic morphogenesis results largely from monolayer rearrangement and deformation due to internally generated forces. Later, monolayers act as physical barriers separating the internal environment from the exterior and must withstand externally applied forces. Though resisting and generating mechanical forces is an essential part of monolayer function, simple experimental methods to characterize monolayer mechanical properties are lacking. Here, we describe a system for tensile testing of freely suspended cultured monolayers that enables the examination of their mechanical behavior at multi-, uni-, and subcellular scales. Using this system, we provide measurements of monolayer elasticity and show that this is two orders of magnitude larger than the elasticity of their isolated cellular components. Monolayers could withstand more than a doubling in length before failing through rupture of intercellular junctions. Measurement of stress at fracture enabled a first estimation of the average force needed to separate cells within truly mature monolayers, approximately ninefold larger than measured in pairs of isolated cells. As in single cells, monolayer mechanical properties were strongly dependent on the integrity of the actin cytoskeleton, myosin, and intercellular adhesions interfacing adjacent cells. High magnification imaging revealed that keratin filaments became progressively stretched during extension, suggesting they participate in monolayer mechanics. This multiscale study of monolayer response to deformation enabled by our device provides the first quantitative investigation of the link between monolayer biology and mechanics. PMID:22991459

  20. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains.

    PubMed

    Lopes Ferreira, Nicolas; Mathis, Hugues; Labbé, Diane; Monot, Frédéric; Greer, Charles W; Fayolle-Guichard, Françoise

    2007-06-01

    Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.

  1. Study of the interaction of lactoferricin B with phospholipid monolayers and bilayers.

    PubMed

    Arseneault, Marjolaine; Bédard, Sarah; Boulet-Audet, Maxime; Pézolet, Michel

    2010-03-02

    Bovine lactoferricin (LfcinB) is an antimicrobial peptide obtained from the pepsin cleavage of lactoferrin. The activity of LfcinB has been extensively studied on diverse pathogens, but its mechanism of action still has to be elucidated. Because of its nonspecificity, its mode of action is assumed to be related to interactions with membranes. In this study, the interaction of LfcinB with a negatively charged monolayer of dipalmitoylphosphatidylglycerol has been investigated as a function of the surface pressure of the lipid film using in situ Brewster angle and polarization modulation infrared reflection absorption spectroscopy and on transferred monolayers by atomic force microscopy and polarized attenuated total reflection infrared spectroscopy. The data show clearly that LfcinB forms stable films at the air-water interface. They also reveal that the interaction of LfcinB with the lipid monolayer is modulated by the surface pressure. At low surface pressure, LfcinB inserts within the lipid film with its long molecular axis oriented mainly parallel to the acyl chains, while at high surface pressure, LfcinB is adsorbed under the lipid film, the hairpin being preferentially aligned parallel to the plane of the interface. The threshold for which the behavior changes is 20 mN/m. At this critical surface pressure, LfcinB interacts with the monolayer to form discoidal lipid-peptide assemblies. This structure may actually represent the mechanism of action of this peptide. The results obtained on monolayers are correlated by fluorescent probe release measurements of dye-containing vesicles made of lipids in different phases and support the important role of the lipid fluidity and packing on the activity of LfcinB.

  2. A DMPA Langmuir monolayer study: from gas to solid phase. An atomistic description by molecular dynamics Simulation.

    PubMed

    Giner-Casares, J J; Camacho, L; Martín-Romero, M T; Cascales, J J López

    2008-03-04

    In this work, a DMPA Langmuir monolayer at the air/water interface was studied by molecular dynamics simulations. Thus, an atomistic picture of a Langmuir monolayer was drawn from its expanded gas phase to its final solid condensed one. In this sense, some properties of monolayers that were traditionally poorly or even not reproduced in computer simulations, such as lipid domain formation or pressure-area per lipid isotherm, were properly reproduced in this work. Thus, the physical laws that control the lipid domain formation in the gas phase and the structure of lipid monolayers from the gas to solid condensed phase were studied. Thanks to the atomistic information provided by the molecular dynamics simulations, we were able to add valuable information to the experimental description of these processes and to access experimental data related to the lipid monolayers in their expanded phase, which is difficult or inaccessible to study by experimental techniques. In this sense, properties such as lipids head hydration and lipid structure were studied.

  3. Sensitive detection of n-alkanes using a mixed ionization mode proton-transfer-reaction mass spectrometer

    NASA Astrophysics Data System (ADS)

    Amador-Muñoz, Omar; Misztal, Pawel K.; Weber, Robin; Worton, David R.; Zhang, Haofei; Drozd, Greg; Goldstein, Allen H.

    2016-11-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a technique that is widely used to detect volatile organic compounds (VOCs) with proton affinities higher than water. However, n-alkanes generally have a lower proton affinity than water and therefore proton transfer (PT) by reaction with H3O+ is not an effective mechanism for their detection. In this study, we developed a method using a conventional PTR-MS to detect n-alkanes by optimizing ion source and drift tube conditions to vary the relative amounts of different primary ions (H3O+, O2+, NO+) in the reaction chamber (drift tube). There are very few studies on O2+ detection of alkanes and the mixed mode has never been proposed before. We determined the optimum conditions and the resulting reaction mechanisms, allowing detection of n-alkanes from n-pentane to n-tridecane. These compounds are mostly emitted by evaporative/combustion process from fossil fuel use. The charge transfer (CT) mechanism observed with O2+ was the main reaction channel for n-heptane and longer n-alkanes, while for n-pentane and n-hexane the main reaction channel was hydride abstraction (HA). Maximum sensitivities were obtained at low E / N ratios (83 Td), low water flow (2 sccm) and high O2+ / NO+ ratios (Uso = 180 V). Isotopic 13C contribution was taken into account by subtracting fractions of the preceding 12C ion signal based on the number of carbon atoms and the natural abundance of 13C (i.e., 5.6 % for n-pentane and 14.5 % for n-tridecane). After accounting for isotopic distributions, we found that PT cannot be observed for n-alkanes smaller than n-decane. Instead, protonated water clusters of n-alkanes (M ṡ H3O+) species were observed with higher abundance using lower O2+ and higher water cluster fractions. M ṡ H3O+ species are probably the source for the M + H+ species observed from n-decane to n-tridecane. Normalized sensitivities to O2+ or to the sum of O2++ NO+ were determined to be a good metric with which

  4. Fundamental Flame Velocities of Pure Hydrocarbons I : Alkanes, Alkenes, Alkynes Benzene, and Cyclohexane

    NASA Technical Reports Server (NTRS)

    Gerstein, Melvin; Levine, Oscar; Wong, Edgar L

    1950-01-01

    The flame velocities of 37 pure hydrocarbons including normal and branched alkanes, alkenes, and alkynes; as well as benzene and cyclohexane, together with the experimental technique employed are presented. The normal alkanes have about the same flame velocity from ethane through heptane with methane being about 16 percent lower. Unsaturation increases the flame velocity in the order of alkanes, alkenes, and alkynes. Branching reduces the flame velocity.

  5. Studying the influence of substrate conductivity on the optoelectronic properties of quantum dots langmuir monolayer

    NASA Astrophysics Data System (ADS)

    Al-Alwani, Ammar J.; Chumakov, A. S.; Begletsova, N. N.; Shinkarenko, O. A.; Markin, A. V.; Gorbachev, I. A.; Bratashov, D. N.; Gavrikov, M. V.; Venig, S. B.; Glukhovskoy, E. G.

    2018-04-01

    The formation of CdSe quantum dots (QDs) monolayers was studied by Langmuir Blodgett method. The fluorescence (PL) spectra of QD monolayers were investigated at different substrate type (glass, silicon and ITO glass) and the influence of graphene sheets layer (as a conductive surface) on the QDs properties has also been studied. The optoelectronic properties of QDs can be tuned by deposition of insulating nano-size layers of the liquid crystal between QDs and conductive substrate. The monolayer of QDs transferred on conductive surface (glass with ITO) has lowest intensity of PL spectra due to quenching effect. The PL intensity of QDs could be tuned by using various type of substrates or/and by transformed high conductive layer. Also the photooxidation processes of CdSe QDs monolayer on the solid surface can be controlled by selection of suitable substrate. The current-voltage (I–V) characteristics of QDs thin film on ITO surface was studied using scanning tunneling microscope (STM).

  6. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation

    NASA Astrophysics Data System (ADS)

    Jia, Xiangqing; Huang, Zheng

    2016-02-01

    The conversion of inexpensive, saturated hydrocarbon feedstocks into value-added speciality chemicals using regiospecific, catalytic functionalization of alkanes is a major goal of organometallic chemistry. Linear alkylsilanes represent one such speciality chemical—they have a wide range of applications, including release coatings, silicone rubbers and moulding products. Direct, selective, functionalization of alkanes at primary C-H bonds is difficult and, to date, methods for catalytically converting alkanes into linear alkylsilanes are unknown. Here, we report a well-defined, dual-catalyst system for one-pot, two-step alkane silylations. The system comprises a pincer-ligated Ir catalyst for alkane dehydrogenation and an Fe catalyst that effects a subsequent tandem olefin isomerization-hydrosilylation. This method exhibits exclusive regioselectivity for the production of terminally functionalized alkylsilanes. This dual-catalyst strategy has also been applied to regioselective alkane borylations to form linear alkylboronate esters.

  7. Miscibility of binary monolayers at the air-water interface and interaction of protein with immobilized monolayers by surface plasmon resonance technique.

    PubMed

    Wang, Yuchun; Du, Xuezhong

    2006-07-04

    The miscibility and stability of the binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA) at the air-water interface and the interaction of ferritin with the immobilized monolayers have been studied in detail using surface pressure-area isotherms and surface plasmon resonance technique, respectively. The surface pressure-area isotherms indicated that the binary monolayers of DPPC and DOMA at the air-water interface were miscible and more stable than the monolayers of the two individual components. The surface plasmon resonance studies indicated that ferritin binding to the immobilized monolayers was primarily driven by the electrostatic interaction and that the amount of adsorbed protein at saturation was closely related not only to the number of positive charges in the monolayers but also to the pattern of positive charges at a given mole fraction of DOMA. The protein adsorption kinetics was determined by the properties of the monolayers (i.e., the protein-monolayer interaction) and the structure of preadsorbed protein molecules (i.e., the protein-protein interaction).

  8. Revisiting Mt. Kilimanjaro: Do n-alkane biomarkers in soils reflect the δ2H isotopic composition of precipitation?

    NASA Astrophysics Data System (ADS)

    Zech, M.; Zech, R.; Rozanski, K.; Hemp, A.; Gleixner, G.; Zech, W.

    2014-06-01

    During the last decade compound-specific deuterium (δ2H) analysis of plant leaf wax-derived n-alkanes has become a promising and popular tool in paleoclimate research. This is based on the widely accepted assumption that n-alkanes in soils and sediments generally reflect δ2H of precipitation (δ2Hprec). Recently, several authors suggested that δ2H of n-alkanes (δ2H,sub>n-alkanes) can also be used as proxy in paleoaltimetry studies. Here we present results from a δ2H transect study (~1500 to 4000 m a.s.l.) carried out on precipitation and soil samples taken from the humid southern slopes of Mt. Kilimanjaro. Contrary to earlier suggestions, a distinct altitude effect in δ2Hprec is present above ~2000 m a.s.l., i.e. δ2Hprec values become more negative with increasing altitude. The compound-specific δ2H values of nC27 and nC29 do not confirm this altitudinal trend, but rather become more positive both in the O-layers (organic layers) and the Ah-horizons (mineral topsoils). Although our δ2Hn-alkane results are in agreement with previously published results from the southern slopes of Mt. Kilimanjaro (Peterse et al., 2009, BG, 6, 2799-2807), a major re-interpretation is required given that the δ2Hn-alkane results do not reflect the δ2Hprec results. The theoretical framework for this re-interpretation is based on the evaporative isotopic enrichment of leaf water associated with transpiration process. Modelling results show that relative humidity, decreasing considerably along the southern slopes of Mt. Kilimanjaro (from 78% at ~ 2000 m a.s.l. to 51% at 4000 m a.s.l.), strongly controls δ2Hleaf water. The modelled δ2H leaf water enrichment along the altitudinal transect matches well the measured 2H leaf water enrichment as assessed by using the δ2Hprec and δ2Hn-alkane results and biosynthetic fractionation during n-alkane biosynthesis in leaves. Given that our results clearly demonstrate that n-alkanes in soils do not simply reflect δ2Hprec but rather δ2

  9. Supported organoiridium catalysts for alkane dehydrogenation

    DOEpatents

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  10. Gibbs Energy Additivity Approaches in Estimation of Dynamic Viscosities of n-Alkane-1-ol

    NASA Astrophysics Data System (ADS)

    Phankosol, S.; Krisnangkura, K.

    2017-09-01

    Alcohols are solvents for organic and inorganic substances. Dynamic viscosity of liquid is important transport properties. In this study models for estimating n-alkan-1-ol dynamic viscosities are correlated to the Martin’s rule of free energy additivity. Data available in literatures are used to validate and support the proposed equations. The dynamic viscosities of n-alkan-1-ol can be easily estimated from its carbon numbers (nc) and temperatures (T). The bias, average absolute deviation and coefficient of determination (R2) in estimating of n-alkan-1-ol are -0.17%, 1.73% and 0.999, respectively. The dynamic viscosities outside temperature between 288.15 and 363.15 K may be possibly estimated by this model but accuracy may be lower.

  11. Copper-Catalyzed Alkoxycarbonylation of Alkanes with Alcohols.

    PubMed

    Li, Yahui; Wang, Changsheng; Zhu, Fengxiang; Wang, Zechao; Dixneuf, Pierre H; Wu, Xiao-Feng

    2017-04-10

    Esters are important chemicals widely used in various areas, and alkoxycarbonylation represents one of the most powerful tools for their synthesis. In this communication, a new copper-catalyzed carbonylative procedure for the synthesis of aliphatic esters from cycloalkanes and alcohols was developed. Through direct activation of the Csp3 -H bond of alkanes and with alcohols as the nucleophiles, the desired esters were prepared in moderate-to-good yields. Paraformaldehyde could also be applied for in situ alcohol generation by radical trapping, and moderate yields of the corresponding esters could be produced. Notably, this is the first report on copper-catalyzed alkoxycarbonylation of alkanes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting under...

  13. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting under...

  14. Doping effect on monolayer MoS2 for visible light dye degradation - A DFT study

    NASA Astrophysics Data System (ADS)

    Cheriyan, Silpa; Balamurgan, D.; Sriram, S.

    2018-04-01

    The electronic and optical properties of, Nitrogen (N), Cobalt (Co), and Co-N co-doped monolayers of MoS2 has been studied by using density functional theory (DFT) for visible light photocatalytic activity. From the calculations, it has been observed that the band gap of monolayer MoS2 has been reduced while doping. However, the band gaps of pristine and N doped MoS2 monolayers only falls in the visible region while for Co and Co-N co-doped systems, the band gap shifted to IR region. The optical calculation also confirms the results. The formation energy values of the doped system reaveal that MoS2 monolayer drops its stability while doping. To evaluate the photocatalytic response, band edge potentials of pristine and N-MoS2 are calculated, and the observed results show that compared to N-doped MoS2 monolayer, pure MoS2 is highly suitable for visible light photocatalytic dye degradation.

  15. Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations.

    PubMed

    Huarte-Bonnet, Carla; Paixão, Flávia R S; Ponce, Juan C; Santana, Marianela; Prieto, Eduardo D; Pedrini, Nicolás

    2018-06-01

    The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy. Additionally, the expression pattern of several genes associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to mycelial pellets described in other alkane-free fungi, which were able to produce viable conidia and to be pathogenic against larvae of the beetles Tenebrio molitor and Tribolium castaneum. Mycelial pellets were formed by hyphae cumulates with high peroxidase activity, exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown conidia appeared to be more hydrophobic and cell surfaces displayed different topography than glucose-grown cells. We also found a significant induction in several genes encoding for peroxins, catalases, superoxide dismutases, and hydrophobins. These results show that both morphological and metabolic changes are triggered in mycelial pellets derived from alkane-grown B. bassiana. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene.

    PubMed

    Hong, Hyo-Ki; Jo, Junhyeon; Hwang, Daeyeon; Lee, Jongyeong; Kim, Na Yeon; Son, Seungwoo; Kim, Jung Hwa; Jin, Mi-Jin; Jun, Young Chul; Erni, Rolf; Kwak, Sang Kyu; Yoo, Jung-Woo; Lee, Zonghoon

    2017-01-11

    Atomically thin semiconducting oxide on graphene carries a unique combination of wide band gap, high charge carrier mobility, and optical transparency, which can be widely applied for optoelectronics. However, study on the epitaxial formation and properties of oxide monolayer on graphene remains unexplored due to hydrophobic graphene surface and limits of conventional bulk deposition technique. Here, we report atomic scale study of heteroepitaxial growth and relationship of a single-atom-thick ZnO layer on graphene using atomic layer deposition. We demonstrate atom-by-atom growth of zinc and oxygen at the preferential zigzag edge of a ZnO monolayer on graphene through in situ observation. We experimentally determine that the thinnest ZnO monolayer has a wide band gap (up to 4.0 eV), due to quantum confinement and graphene-like structure, and high optical transparency. This study can lead to a new class of atomically thin two-dimensional heterostructures of semiconducting oxides formed by highly controlled epitaxial growth.

  17. Late Quaternary environmental changes inferred from n-alkane evidence in coastal area of southern Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Wang, Mengyuan; Zheng, Zhuo

    2016-04-01

    The studied core was a coastal core in Hainan Island, China. It is in length of 49.01m and divided into four Units (MIS 1~MIS 6) according to lithology description. The Optically Stimulated Luminescence (OSL) attributes the sediments from Unit 3 to the Oxygen Isotope Stage of MIS 5e (Unit 3b and 3c) and 5d (Unit 3a). To interpret the origination of organic carbons and to reconstruct paleovegetation changes, n-alkane, δ13C and TOC have been used in the present research. The result of n-alkanes distribution indicates a series of changes of sedimentary environment and terrestrial input. The shallow water facies at Unit 2, 3a and 4 is mainly characterized by short carbon chain n-alkanes and relatively low concentration. Contrasting with that of deep-water marine facies of MIS 5e (Unit 3b), the n-alkane pattern is typical bimodal and the main peaks are both in short and long carbon chains. During Unit 3b-1 (MIS 5e), more terrestrial original n-alkanes contribute to the concentration of TOC than oceanic. Organic matter source is mainly terrestrial origination. Total organic matter input mechanism of TLG-01 correlates with sediment grain size (average grain size). Total organic carbon input is enhanced with the increasing of fine grain size component. The variation of CPI (25-33) value in this study correlates with hydrological energy. The highest CPI (25-33) value is shown in the high sea level period of MIS 5e, comparing with that in MIS 5d and MIS 1. High CPI value corresponds to high TOC and average grain size (Φ) value. In the weak hydrological energy sedimentary environment, more terrestrial organic matter, together with TOC, deposit in the study area. ACL (25-33) index display higher values in the interglacial period (MIS 5 and MIS 1) than MIS 3 (sediments weathered during MIS 2) and MIS 6. Paq proxy, together with δ13C, estimates the mangrove growing depth in MIS 5e. The correlation between δ13C and each carbon chain alkane state stabilize and turbulence of

  18. Interactions of doxorubicin with self-assembled monolayer-modified electrodes: electrochemical, surface plasmon resonance (SPR), and gravimetric studies.

    PubMed

    Nieciecka, Dorota; Krysinski, Pawel

    2011-02-01

    We present the results on the partitioning of doxorubicin (DOX), a potent anticancer drug, through the model membrane system, self-assembled monolayers (SAMs) on gold electrodes. The monolayers were formed from alkanethiols of comparable length with different ω-terminal groups facing the aqueous electrolyte: the hydrophobic -CH(3) groups for the case of dodecanethiol SAMs or hydrophilic -OH groups of mercaptoundecanol SAMs. The electrochemical experiments combined with the surface plasmon resonance (SPR) and gravimetric studies show that doxorubicin is likely adsorbed onto the surface of hydrophilic monolayer, while for the case of the hydrophobic one the drug mostly penetrates the monolayer moiety. The adsorption of the drug hinders further penetration of doxorubicin into the monolayer moiety.

  19. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.

    PubMed

    Rodriguez, Gabriel M; Atsumi, Shota

    2014-09-01

    Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90-99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2-C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Characterization of a Novel Rieske-Type Alkane Monooxygenase System in Pusillimonas sp. Strain T7-7

    PubMed Central

    Li, Ping; Wang, Lei

    2013-01-01

    The cold-tolerant bacterium Pusillimonas sp. strain T7-7 is able to utilize diesel oils (C5 to C30 alkanes) as a sole carbon and energy source. In the present study, bioinformatics, proteomics, and real-time reverse transcriptase PCR approaches were used to identify the alkane hydroxylation system present in this bacterium. This system is composed of a Rieske-type monooxygenase, a ferredoxin, and an NADH-dependent reductase. The function of the monooxygenase, which consists of one large (46.711 kDa) and one small (15.355 kDa) subunit, was further studied using in vitro biochemical analysis and in vivo heterologous functional complementation tests. The purified large subunit of the monooxygenase was able to oxidize alkanes ranging from pentane (C5) to tetracosane (C24) using NADH as a cofactor, with greatest activity on the C15 substrate. The large subunit also showed activity on several alkane derivatives, including nitromethane and methane sulfonic acid, but it did not act on any aromatic hydrocarbons. The optimal reaction condition of the large subunit is pH 7.5 at 30°C. Fe2+ can enhance the activity of the enzyme evidently. This is the first time that an alkane monooxygenase system belonging to the Rieske non-heme iron oxygenase family has been identified in a bacterium. PMID:23417490

  1. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  2. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  3. n-Alkane distributions as indicators of novel ecosystem development in western boreal forest soils

    NASA Astrophysics Data System (ADS)

    Norris, Charlotte; Dungait, Jennifer; Quideau, Sylvie

    2013-04-01

    Novel ecosystem development is occurring within the western boreal forest of Canada due to land reclamation following surface mining in the Athabasca Oil Sands Region. Sphagnum peat is the primary organic matter amendment used to reconstruct soils in the novel ecosystems. We hypothesised that ecosystem recovery would be indicated by an increasing similarity in the biomolecular characteristics of novel reconstructed soil organic matter (SOM) derived from peat to those of natural boreal ecosystems. In this study, we evaluated the use of the homologous series of very long chain (>C20) n-alkanes with odd-over-even predominance as biomarker signatures to monitor the re-establishment of boreal forests on reconstructed soils. The lipids were extracted from dominant vegetation inputs and SOM from a series of natural and novel ecosystem reference plots. We observed unique very long n-alkane signatures of the source vegetation, e.g. Sphagnum sp. was dominated by C31 and aspen (Populus tremuloides Michx.) leaves by C25. Greater concentrations of very long chain n-alkanes were extracted from natural than novel ecosystem SOM (p<0.01), and their distribution differed between the two systems (p<0.001) and reflected the dominant vegetation input. Our results indicate that further research is required to clarify the influence of vegetation or disturbance on the signature of very long chain n-alkanes in SOM; however, the use of n-alkanes as biomarkers of ecosystem development is a promising method.

  4. Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills.

    PubMed

    Zhang, Dayi; He, Yi; Wang, Yun; Wang, Hui; Wu, Lin; Aries, Eric; Huang, Wei E

    2012-01-01

    Acinetobacter baylyi ADP1 was found to tolerate seawater and have a special ability of adhering to an oil-water interface of 10-80 µm emulsified mineral and crude oil droplets. These properties make ADP1 an ideal bacterial chassis for constructing bioreporters that are able to actively search and sense oil spill in water and soils. Acinetobacter baylyi bioreporter ADPWH_alk was developed and applied to the detection of alkanes and alkenes in water, seawater and soils. Bioreporter ADPWH_alk was able to detect a broad range of alkanes and alkenes with carbon chain length from C7 to C36. So far, ADPWH_alk is the only bioreporter that is able to detect alkane with carbon chain length greater than C18. This bioreporter responded to the alkanes in about 30 min and it was independent to the cell growth phase because of two point mutations in alkM promoter recognized by alkane regulatory protein ALKR. ADPWH_alk was applied to detect mineral oil, Brent, Chestnut and Sirri crude oils in water and seawater in the range 0.1-100 mg l(-1), showing that the bioreporter oil detection was semi-quantitative. This study demonstrates that ADPWH_alk is a rapid, sensitive and semi-quantitative bioreporter that can be useful for environmental monitoring and assessment of oil spills in seawater and soils. © 2011 The Authors. Microbial Biotechnology © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Growth factor controls on the distribution and carbon isotope composition of n-alkanes in leaf wax

    NASA Astrophysics Data System (ADS)

    Jia, C.; Xie, S.; Huang, X.

    2012-12-01

    Cuticular wax plays pivotal physiological and ecological roles in the interactions between plants and the environments in which they grow. Plant-derived long-chain alkanes are more resistant to decay than other biochemical polymers. n-Alkane distributions (Carbon Preference Index (CPI) values and Average Chain Length (ACL) values) and carbon isotopic values are used widely in palaeoenvironmental reconstruction. However, there is little information available on how growth stages of the plant might influence the abundance of n-alkanes in the natural environment. In this study, we analyzed n-alkane distributions and carbon isotope data from two tree species (Cinnamomum camphora (L.) Presl. and Liquidambar formosana Hance) collected monthly from 2009 to 2011 in Nanwang Shan, Wuhan, Hubei Province. CPI values for n-alkanes from C. camphora remained stable in autumn and winter but fluctuated dramatically during spring and autumn each year. Positive correlations between CPI values and the relative content of (C27+C29) were observed in both sun and shade leaves of C. camphora from April to July. In L. formosana, CPI values decreased gradually from April to December. A similar trend was observed in all three years suggesting that growth stages rather than temperature or relative humidity affected the CPI values on a seasonal timescale. In the samples of L. formosana ACL values were negatively correlated with CPI values in the growing season (from April to July) and positively correlated with CPI values in the other seasons. The δ13C values of C29 and C31 n-alkanes displayed more negative carbon isotopic values in autumn and winter compared with leaves sampled at the start of the growing season from both trees. The δ13C values of C29 and C31 n-alkanes of L. formosana decreased from April to December. These results demonstrate the importance of elucidating the growing factors that influence the distribution and δ13C values of alkanes in modern leaves prior to using CPI

  6. The effect of environmental factors on stable isotopic composition of n-alkanes in Mediterranean olive oils

    NASA Astrophysics Data System (ADS)

    Pedentchouk, Nikolai; Mihailova, Alina; Abbado, Dimitri

    2014-05-01

    Traceability of the geographic origin of olive oils is an important issue from both commercial and health perspectives. This study evaluates the impact of environmental factors on stable C and H isotope compositions of n-alkanes in extra virgin olive oils from Croatia, France, Greece, Italy, Morocco, Portugal, Slovenia, and Spain. The data are used to investigate the applicability of stable isotope methodology for olive oil regional classification in the Mediterranean region. Analysis of stable C isotope composition of n-C29 alkane showed that extra virgin olive oils from Portugal and Spain have the most positive n-C29 alkane delta13C values. Conversely, olive oils from Slovenia, northern and central Italy are characterized by the most negative values. Overall, the n-C29 alkane delta13C values show a positive correlation with the mean air temperature during August-December and a negative correlation with the mean relative humidity during these months. Analysis of stable H isotope composition of n-C29 alkane revealed that the deltaD values are the most positive in olive oils from Greece and Morocco and the most negative in oils from northern Italy. The deltaD values of oils show significant correlation with all the analyses geographical parameters: the mean air temperature and relative humidity during August-December, the total amount of rainfall (the same months) and the annual deltaD values of precipitation. As predictor variables in the Categorical Data Analysis, the n-C29 alkane deltaD values show the most significant discriminative power, followed by the n-C29 alkane delta13C values. Overall, 93.4% of olive oil samples have been classified correctly into one of the production regions. Our findings suggest that an integrated analysis of C and H isotope compositions of n-alkanes extracted from extra virgin olive oil could become a useful tool for geographical provenancing of this highly popular food commodity.

  7. Interactions of the Human Calcitonin Fragment 9–32 with Phospholipids: A Monolayer Study

    PubMed Central

    Wagner, Kerstin; Van Mau, Nicole; Boichot, Sylvie; Kajava, Andrey V.; Krauss, Ulrike; Le Grimellec, Christian; Beck-Sickinger, Annette; Heitz, Frédéric

    2004-01-01

    Human calcitonin and its C-terminal fragment 9–32 (hCT(9–32)) administered in a spray translocate into respiratory nasal epithelium with an effect similar to intravenous injection. hCT(9–32) is an efficient carrier to transfer the green fluorescent protein into excised bovine nasal mucosa. To understand the translocation of hCT(9–32) across plasma membranes, we investigated its interactions with phospholipids and its interfacial structure using model lipid monolayers. A combination of physicochemical methods was applied including surface tension measurements on adsorbed and spread monolayers at the air-water interface, Fourier transform infrared, circular dichroism, and atomic force microscopy on Langmuir-Blodgett monolayers. The results disclose that hCT(9–32) preferentially interacts with negatively charged phospholipids and does not insert spontaneously into lipid monolayers. This supports a nonreceptor-mediated endocytic internalization pathway as previously suggested. Structural studies revealed a random coil conformation of hCT(9–32) in solution, transforming to α-helices when the peptide is localized at lipid-free or lipid-containing air-water interfaces. Atomic force microscopy studies of monolayers of the peptide alone or mixed with dioleoylphosphatidylcholine revealed that hCT(9–32) forms filaments rolled into spirals. In contrast, when interacting with dioleoylphosphatidylglycerol, hCT(9–32) does not adopt filamentous structures. A molecular model and packing is proposed for the spiral-forming hCT(9–32). PMID:15240473

  8. 40 CFR 721.10178 - Distillates (Fischer-Tropsch), hydroisomerized middle, C10-13-branched alkane fraction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...), hydroisomerized middle, C10-13-branched alkane fraction. 721.10178 Section 721.10178 Protection of Environment...), hydroisomerized middle, C10-13-branched alkane fraction. (a) Chemical substance and significant new uses subject... middle, C10-13-branched alkane fraction (PMN P-04-319; CAS No. 642928-30-1) is subject to reporting under...

  9. I Situ Surface X-Ray Diffraction Studies of Electrochemically Deposited Monolayers

    NASA Astrophysics Data System (ADS)

    Yee, Dennis

    1995-01-01

    In situ x-ray diffraction has been used to determine the detailed atomic structure of electrochemically deposited lead, thallium, and bismuth monolayers on the silver (111) electrode surface. A review of our previously published lead and thallium monolayer results and the first in situ surface x-ray crystallographic study of the bismuth monolayer structure is presented. The crystallographic analysis of the bismuth Bragg rod intensities and the interference between the bismuth Bragg rod and silver crystal truncation rod scattering were used to determine the detailed atomic structure of the bismuth on silver (111) system at the liquid-solid interface. Our previous in situ x-ray diffraction studies showed that the bismuth monolayer lattice is rectangular and uniaxially incommensurate with the underlying hexagonal silver surface. A crystallographic analysis of the measured structure factor magnitudes reveals that the monolayer forms chains of atoms on the silver surface, similar to the bulk Bi(110)_{rh} plane, with a near neighbor distance of 3.12 +/- 0.01 A and a bond angle of 93 +/- 1^circ, consistent with the bulk Bi(110) _{rh} plane values. The crystallographic refinement also shows that the bismuth monolayer atoms are anisotropically disordered with a rms disorder of 0.25 +/- 0.03 A in the incommensurate direction and 0.09 +/- 0.03 A rms in the commnensurate direction. The interference between the Bi(20) Bragg rod and the Ag(10L)_ {h} crystal truncation rod scattering reveals that one set of bismuth atoms is registered near the bridge sites of the silver (111) surface while another set is registered near the 3-fold hollow sites. In addition, the Bi-Ag d-spacing (3.1 +/- 0.1 A) is found to be consistent with the bulk bismuth near neighbor distance. The bismuth z-direction rms disorder (1.01 +/- 0.08 A) is found to be dominated by the roughness of the underlying silver (sigma_{Ag} = 0.9 +/- 0.1 A rms). Using the estimated bismuth-bismuth spring constant of 1

  10. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (PMNs...

  11. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (PMNs...

  12. Survival and Energy Producing Strategies of Alkane Degraders Under Extreme Conditions and Their Biotechnological Potential.

    PubMed

    Park, Chulwoo; Park, Woojun

    2018-01-01

    Many petroleum-polluted areas are considered as extreme environments because of co-occurrence of low and high temperatures, high salt, and acidic and anaerobic conditions. Alkanes, which are major constituents of crude oils, can be degraded under extreme conditions, both aerobically and anaerobically by bacteria and archaea of different phyla. Alkane degraders possess exclusive metabolic pathways and survival strategies, which involve the use of protein and RNA chaperones, compatible solutes, biosurfactants, and exopolysaccharide production for self-protection during harsh environmental conditions such as oxidative and osmotic stress, and ionic nutrient-shortage. Recent findings suggest that the thermophilic sulfate-reducing archaeon Archaeoglobus fulgidus uses a novel alkylsuccinate synthase for long-chain alkane degradation, and the thermophilic Candidatus Syntrophoarchaeum butanivorans anaerobically oxidizes butane via alkyl-coenzyme M formation. In addition, gene expression data suggest that extremophiles produce energy via the glyoxylate shunt and the Pta-AckA pathway when grown on a diverse range of alkanes under stress conditions. Alkane degraders possess biotechnological potential for bioremediation because of their unusual characteristics. This review will provide genomic and molecular insights on alkane degraders under extreme conditions.

  13. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  14. Even-odd alternation of near-infrared spectra of alkane-α,ω-diols in their solid states

    NASA Astrophysics Data System (ADS)

    Toyama, Yuta; Murakami, Kohei; Yoshimura, Norio; Takayanagi, Masao

    2018-05-01

    Even-odd alternation of the melting points of α,ω-disubstituted linear alkanes such as alkane-α,ω-diols, alkane-α,ω-dinitriles and α,ω-diaminoalkanes is well known. Melting points for compounds with an even number of carbons in their alkyl chains are systematically higher than those for compounds with an odd number of carbons. In order to clarify the origin of this alternation, near-infrared absorption spectra of linear alkane-α,ω-diols with 3 to 9 carbon atoms in their alkyl chains were measured in the liquid and solid states. The band due to the first overtone of the Osbnd H stretching mode was investigated. The temperature-dependent spectra of all alkane-α,ω-diols in their liquid states were found to be similar; no even-odd alternation was observed. In the solid state, however, spectra of alkane-α,ω-diols with even and odd numbers of carbon atoms differed greatly. Spectra of alkane-α,ω-diols with an odd number of carbon atoms in their solid states were similar to those in the liquid states, although the variation of spectra observed upon lowering the temperature of liquid seemed to continue when the liquids were frozen. In contrast, spectra of alkane-α,ω-diols with an even number of carbon atoms in their liquid and solid states were found to be quite different. New bands appeared upon freezing. The observed even-odd alternation of the spectra observed for alkane-α,ω-diols in their solid states is presumably caused by their even-odd alternation of crystal structures.

  15. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes

    PubMed Central

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-01-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. PMID:21914097

  16. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes.

    PubMed

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-11-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study.

    PubMed

    Guo, San-Dong; Liu, Jiang-Tao

    2017-12-06

    Phonon transport in group-VA element (As, Sb and Bi) monolayer semiconductors has been widely investigated in theory, and, of them, monolayer Sb (antimonene) has recently been synthesized. In this work, phonon transport in monolayer SbAs is investigated with a combination of first-principles calculations and the linearized phonon Boltzmann equation. It is found that the lattice thermal conductivity of monolayer SbAs is lower than those of both monolayer As and Sb, and the corresponding sheet thermal conductance is 28.8 W K -1 at room temperature. To understand the lower lattice thermal conductivity in monolayer SbAs than those in monolayer As and Sb, the group velocities and phonon lifetimes of monolayer As, SbAs and Sb are calculated. The calculated results show that the group velocities of monolayer SbAs are between those of monolayer As and Sb, but that the phonon lifetimes of SbAs are smaller than those of both monolayer As and Sb. Hence, the low lattice thermal conductivity in monolayer SbAs is attributed to very small phonon lifetimes. Unexpectedly, the ZA branch has very little contribution to the total thermal conductivity, only 2.4%, which is obviously different from those of monolayer As and Sb with very large contributions. This can be explained by very small phonon lifetimes for the ZA branch of monolayer SbAs. The lower lattice thermal conductivity of monolayer SbAs compared to that of monolayer As or Sb can be understood by the alloying of As (Sb) with Sb (As), which should introduce phonon point defect scattering. We also consider the isotope and size effects on the lattice thermal conductivity. It is found that isotope scattering produces a neglectful effect, and the lattice thermal conductivity with a characteristic length smaller than 30 nm can reach a decrease of about 47%. These results may offer perspectives on tuning the lattice thermal conductivity by the mixture of multiple elements for applications of thermal management and

  18. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil.

    PubMed

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-06-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Microbial Incorporation of Fatty Acids Derived From n-Alkanes Into Glycerides and Waxes

    PubMed Central

    Davis, J. B.

    1964-01-01

    When n-alkanes with 13 to 20 carbon atoms were fed to a Nocardia closely related to N. salmonicolor, the produced cellular triglycerides and aliphatic waxes invariably contained fatty acids with an even or an odd number of carbon atoms subject to this feature of the n-alkane substrate. Beta-oxidation and C2 addition are both operative, as evidenced by the spectra of fatty acids incorporated into the cellular lipid components. There is no distinction in the rate of microbial incorporation of the odd-or even-numbered carbon chains. The fatty acids are apparently directly derived from the long chain n-alkanes, rather than synthesized via the classic C2-condensation route. The alcohol component of waxes produced by the Nocardia is invariably of the same chain length as the n-alkane substrate. PMID:14170957

  20. A study of binuclear zirconium hydride catalysts of the hydrogenolysis of alkanes by the density functional theory method

    NASA Astrophysics Data System (ADS)

    Ustynyuk, L. Yu.; Fast, A. S.; Ustynyuk, Yu. A.; Lunin, V. V.

    2012-06-01

    Binuclear hydride centers containing two Zr(IV) atoms are suggested as promising catalysts for the hydrogenolysis of alkanes under mild conditions ( T < 450 K, p ˜ 1 atm). Reactions of model compounds L2(H)Zr(X)2Zr(H)L2 (X = H, L = OSi≡ ( 4a), X = L = OMe ( 4d)), L(H)Zr(O)2Zr(H)L (L = OSi≡ ( 4b), Cp( 4c)) and (≡SiO)2(H)Zr-O-Zr(H)(OSi≡)2 ( 4e and 4f) with the propane molecule were studied using the density functional theory method. The results show that centers of the 4a, 4e, and 4f types and especially 4b are promising catalysts of the hydrogenolysis of alkanes due to a high degree of unsaturation of two Zr atoms and their sequential participation in the splitting of the C-C bond and hydrogenation of ethylene formed as a result of splitting.

  1. Alkanes in flower surface waxes of Momordica cochinchinensis influence attraction to Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae).

    PubMed

    Mukherjee, A; Sarkar, N; Barik, A

    2013-08-01

    Extraction, thin-layer chromatography, and gas chromatography-mass spectrophotometry analyses revealed 15 alkanes representing 97.14% of the total alkanes in the surface waxes of Momordica cochinchinensis Spreng flowers. Nonacosane was the prevailing alkane followed by hexatriacontane, nonadecane, heptacosane, and hentriacontane, accounting for 39.08%, 24.24%, 13.52%, 6.32%, and 5.12%, respectively. The alkanes from flower surface waxes followed by a synthetic mixture of alkanes mimicking alkanes of flower surface waxes elicited attraction of the female insect, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) between 2 and 10-μg/mL concentrations in a Y-shaped glass tube olfactometer bioassay under laboratory conditions. Synthetic nonadecane from 178.28-891.37 ng, heptacosane from 118.14-590.72 ng, and nonacosane at 784.73 ng showed attraction of the insect. A synthetic mixture of 534.82 ng nonadecane, 354.43 ng heptacosane, and 2,354.18 ng nonacosane elicited highest attraction of A. foveicollis.

  2. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes

    NASA Astrophysics Data System (ADS)

    Ahuja, Ritu; Punji, Benudhar; Findlater, Michael; Supplee, Carolyn; Schinski, William; Brookhart, Maurice; Goldman, Alan S.

    2011-02-01

    Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.

  3. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  4. Cement-based stabilization/solidification of oil refinery sludge: Leaching behavior of alkanes and PAHs.

    PubMed

    Karamalidis, Athanasios K; Voudrias, Evangelos A

    2007-09-05

    Stabilization/solidification is a process widely applied for the immobilization of inorganic constituents of hazardous wastes, especially for metals. Cement is usually one of the most common binders for that purpose. However, limited results have been presented on immobilization of hydrocarbons in cement-based stabilized/solidified petroleum solid waste. In this study, real oil refinery sludge samples were stabilized and solidified with various additions of I42.5 and II42.5 cement (Portland and blended cement, respectively) and subject to leaching. The target analytes were total petroleum hydrocarbons, alkanes and 16 polycyclic aromatic hydrocarbons of the EPA priority pollutant list. The experiments showed that the waste was confined in the cement matrix by macroencapsulation. The rapture of the cement structure led to the increase of leachability for most of the hydrocarbons. Leaching of n-alkanes from II42.5 cement-solidified samples was lower than that from I42.5 solidified samples. Leaching of alkanes in the range of n-C(10) to n-C(27) was lower than that of long chain alkanes (>n-C(27)), regardless the amount of cement addition. Generally, increasing the cement content in the solidified waste samples, increased individual alkane leachability. This indicated that cement addition resulted in destabilization of the waste. Addition of I42.5 cement favored immobilization of anthracene, benzo[a]anthracene, benzo[b]fluoroanthene, benzo[k]fluoroanthene, benzo[a]pyrene and dibenzo[a,h]anthracene. However, addition of II42.5 favored 5 out of 16, i.e., naphthalene, anthracene, benzo[b]fluoroanthene, benzo[k]fluoroanthene and dibenzo[a,h]anthracene.

  5. Even-odd alternation of near-infrared spectra of alkane-α,ω-diols in their solid states.

    PubMed

    Toyama, Yuta; Murakami, Kohei; Yoshimura, Norio; Takayanagi, Masao

    2018-05-15

    Even-odd alternation of the melting points of α,ω-disubstituted linear alkanes such as alkane-α,ω-diols, alkane-α,ω-dinitriles and α,ω-diaminoalkanes is well known. Melting points for compounds with an even number of carbons in their alkyl chains are systematically higher than those for compounds with an odd number of carbons. In order to clarify the origin of this alternation, near-infrared absorption spectra of linear alkane-α,ω-diols with 3 to 9 carbon atoms in their alkyl chains were measured in the liquid and solid states. The band due to the first overtone of the OH stretching mode was investigated. The temperature-dependent spectra of all alkane-α,ω-diols in their liquid states were found to be similar; no even-odd alternation was observed. In the solid state, however, spectra of alkane-α,ω-diols with even and odd numbers of carbon atoms differed greatly. Spectra of alkane-α,ω-diols with an odd number of carbon atoms in their solid states were similar to those in the liquid states, although the variation of spectra observed upon lowering the temperature of liquid seemed to continue when the liquids were frozen. In contrast, spectra of alkane-α,ω-diols with an even number of carbon atoms in their liquid and solid states were found to be quite different. New bands appeared upon freezing. The observed even-odd alternation of the spectra observed for alkane-α,ω-diols in their solid states is presumably caused by their even-odd alternation of crystal structures. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Biodegradation of n-alkanes on oil-seawater interfaces at different temperatures and microbial communities associated with the degradation.

    PubMed

    Lofthus, Synnøve; Netzer, Roman; Lewin, Anna S; Heggeset, Tonje M B; Haugen, Tone; Brakstad, Odd Gunnar

    2018-04-01

    Oil biodegradation studies have mainly focused on microbial processes in dispersions, not specifically on the interfaces between the oil and the seawater in the dispersions. In this study, a hydrophobic adsorbent system, consisting of Fluortex fabrics, was used to investigate biodegradation of n-alkanes and microbial communities on oil-seawater interfaces in natural non-amended seawater. The study was performed over a temperature range from 0 to 20 °C, to determine how temperature affected biodegradation at the oil-seawater interfaces. Biodegradation of n-alkanes were influenced both by seawater temperature and chain-length. Biotransformation rates of n-alkanes decreased by reduced seawater temperature. Low rate coefficients at a seawater temperature of 0 °C were probably associated with changes in physical-chemical properties of alkanes. The primary bacterial colonization of the interfaces was predominated by the family Oceanospirillaceae at all temperatures, demonstrating the wide temperature range of these hydrocarbonoclastic bacteria. The mesophilic genus Oleibacter was predominant at the seawater temperature of 20 °C, and the psychrophilic genus Oleispira at 5 and 0 °C. Upon completion of n-alkane biotransformation, other oil-degrading and heterotrophic bacteria became abundant, including Piscirickettsiaceae (Cycloclasticus), Colwelliaceae (Colwellia), Altermonadaceae (Altermonas), and Rhodobacteraceae. This is one of a few studies that describe the biodegradation of oil, and the microbial communities associated with the degradation, directly at the oil-seawater interfaces over a large temperature interval.

  7. Polycyclic aromatic hydrocarbons in model bacterial membranes - Langmuir monolayer studies.

    PubMed

    Broniatowski, Marcin; Binczycka, Martyna; Wójcik, Aneta; Flasiński, Michał; Wydro, Paweł

    2017-12-01

    High molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) are persistent organic pollutants which due to their limited biodegradability accumulate in soils where their increased presence can lead to the impoverishment of the decomposer organisms. As very hydrophobic PAHs easily penetrate cellular membranes of soil bacteria and can be incorporated therein, changing the membrane fluidity and other functions which in consequence can lead to the death of the organism. The structure and size of PAH molecule can be crucial for its membrane activity; however the correlation between PAH structure and its interaction with phospholipids have not been investigated so far. In our studies we applied phospholipid Langmuir monolayers as model bacterial membranes and investigated how the incorporation of six structurally different PAH molecules change the membrane texture and physical properties. In our studies we registered surface pressure and surface potential isotherms upon the monolayer compression, visualized the monolayer texture with the application of Brewster angle microscopy and searched the ordering of the film-forming molecules with molecular resolution with the application of grazing incidence X-ray diffraction (GIXD) method. It turned out that the phospholipid-PAH interactions are strictly structure dependent. Four and five-ring PAHs of the angular or cluster geometry can be incorporated into the model membranes changing profoundly their textures and fluidity; whereas linear or large cluster PAHs cannot be incorporated and separate from the lipid matrix. The observed phenomena were explained based on structural similarities of the applied PAHs with membrane steroids and hopanoids. Copyright © 2017. Published by Elsevier B.V.

  8. FRET study of G-quadruplex forming fluorescent oligonucleotide probes at the lipid monolayer interface.

    PubMed

    Swiatkowska, Angelika; Kosman, Joanna; Juskowiak, Bernard

    2016-01-05

    Spectral properties and G-quadruplex folding ability of fluorescent oligonucleotide probes at the cationic dioctadecyldimethylammonium bromide (DODAB) monolayer interface are reported. Two oligonucleotides, a 19-mer bearing thrombin binding aptamer sequence and a 21-mer with human telomeric sequence, were end-labeled with fluorescent groups (FAM and TAMRA) to give FRET probes F19T and F21T, respectively. The probes exhibited abilities to fold into a quadruplex structure and to bind metal cations (Na(+) and K(+)). Fluorescence spectra of G-quadruplex FRET probes at the monolayer interface are reported for the first time. Investigations included film balance measurements (π-A isotherms) and fluorescence spectra recording using a fiber optic accessory interfaced with a spectrofluorimeter. The effect of the presence of DODAB monolayer, metal cations and the surface pressure of monolayer on spectral behavior of FRET probes were examined. Adsorption of probe at the cationic monolayer interface resulted in the FRET signal enhancement even in the absence of metal cations. Variation in the monolayer surface pressure exerted rather modest effect on the spectral properties of probes. The fluorescence energy transfer efficiency of monolayer adsorbed probes increased significantly in the presence of sodium or potassium ion in subphase, which indicated that the probes retained their cation binding properties when adsorbed at the monolayer interface. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Brewster Angle Microscopy Study of Model Stratum Corneum Lipid Monolayers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Adams, Ellen; Champagne, Alex; William, Joseph; Allen, Heather

    2012-04-01

    As the first and last barrier in the body, the stratum corneum (SC) is essential to life. Understanding the interactions and organization of lipids within the SC provides insight into essential physiological processes, including water loss prevention and the adsorption of substances from the environment. Langmuir monolayers have long been used to study complex systems, such as biological membranes and marine aerosols, due to their ability to shed light on intermolecular interactions. In this study, lipid mixtures with varying cholesterol and cerebroside ratios were investigated at the air/water interface. Surface tension measurements along with Brewster angle microscopy (BAM) images were used to examine the lipid phase transitions. Results indicate that cholesterol and cerebrosides form miscible monolayers, exhibiting ideal behavior. BAM images of a singular, uniform collapse phase also suggest formation of a miscible monolayer.

  10. Accumulation of n-alkanes and carboxylic acids in peat mounds

    NASA Astrophysics Data System (ADS)

    Gabov, D. N.; Beznosikov, V. A.; Gruzdev, I. V.; Yakovleva, E. V.

    2017-10-01

    The quantitative and qualitative compositions of n-alkanes and carboxylic acids have been identified, and the features of their vertical stratification in peat mound profiles of the forest-tundra zone of Komi Republic have been revealed. The composition of n-alkanes (structures with C23, C25, C27, C29, and C31) and carboxylic acids (C24, C26, and C28) and their proportions make it possible to determine changes in plant communities of peat mounds with time and can be used as markers for the degree of decomposition of organic matter. In cryogenic horizons, the contents of n-alkanes (mainly C23, C25, and C27) and carboxylic acids (C24, C26, and C28) significantly decrease because of the different botanic composition of cryogenic horizons (grass-woody residues) and seasonally thawing horizons (moss-subshrub residues) and the almost complete stopping of the equilibrium accumulation and transformation of organic compounds in permafrost.

  11. Lithium halide monolayers: Structural, electronic and optical properties by first principles study

    NASA Astrophysics Data System (ADS)

    Safari, Mandana; Maskaneh, Pegah; Moghadam, Atousa Dashti; Jalilian, Jaafar

    2016-09-01

    Using first principle study, we investigate the structural, electronic and optical properties of lithium halide monolayers (LiF, LiCl, LiBr). In contrast to graphene and other graphene-like structures that form hexagonal rings in plane, these compounds can form and stabilize in cubic shape interestingly. The type of band structure in these insulators is identified as indirect type and ionic nature of their bonds are illustrated as well. The optical properties demonstrate extremely transparent feature for them as a result of wide band gap in the visible range; also their electron transitions are indicated for achieving a better vision on the absorption mechanism in these kinds of monolayers.

  12. A molecular dynamics study of the effect of thermal boundary conductance on thermal transport of ideal crystal of n-alkanes with different number of carbon atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastgarkafshgarkolaei, Rouzbeh; Zeng, Yi; Khodadadi, J. M., E-mail: khodajm@auburn.edu

    2016-05-28

    Phase change materials such as n-alkanes that exhibit desirable characteristics such as high latent heat, chemical stability, and negligible supercooling are widely used in thermal energy storage applications. However, n-alkanes have the drawback of low thermal conductivity values. The low thermal conductivity of n-alkanes is linked to formation of randomly oriented nano-domains of molecules in their solid structure that is responsible for excessive phonon scattering at the grain boundaries. Thus, understanding the thermal boundary conductance at the grain boundaries can be crucial for improving the effectiveness of thermal storage systems. The concept of the ideal crystal is proposed in thismore » paper, which describes a simplified model such that all the nano-domains of long-chain n-alkanes are artificially aligned perfectly in one direction. In order to study thermal transport of the ideal crystal of long-chain n-alkanes, four (4) systems (C{sub 20}H{sub 42}, C{sub 24}H{sub 50}, C{sub 26}H{sub 54}, and C{sub 30}H{sub 62}) are investigated by the molecular dynamics simulations. Thermal boundary conductance between the layers of ideal crystals is determined using both non-equilibrium molecular dynamics (NEMD) and equilibrium molecular dynamics (EMD) simulations. Both NEMD and EMD simulations exhibit no significant change in thermal conductance with the molecular length. However, the values obtained from the EMD simulations are less than the values from NEMD simulations with the ratio being nearly three (3) in most cases. This difference is due to the nature of EMD simulations where all the phonons are assumed to be in equilibrium at the interface. Thermal conductivity of the n-alkanes in three structures including liquid, solid, and ideal crystal is investigated utilizing NEMD simulations. Our results exhibit a very slight rise in thermal conductivity values as the number of carbon atoms of the chain increases. The key understanding is that thermal transport

  13. Stable hydrogen and carbon isotopic compositions of long-chain (C21-C33) n-alkanes and n-alkenes in insects

    NASA Astrophysics Data System (ADS)

    Chikaraishi, Yoshito; Kaneko, Masanori; Ohkouchi, Naohiko

    2012-10-01

    We report the molecular and stable isotopic (δD and δ13C) compositions of long-chain n-alkanes in common insects including the cabbage butterfly, swallowtail, wasp, hornet, grasshopper, and ladybug. Insect n-alkanes are potential candidates of the contamination of soil and sedimentary n-alkanes that are believed to be derived from vascular plant waxes. Long-chain n-alkanes (range C21-33; maximum C23-C29) are found to be abundant in the insects (31-781 μg/dry g), with a carbon preference index (CPI) of 5.1-31.5 and an average chain length (ACL) of 24.9-29.3. The isotopic compositions (mean ± 1σ, n = 33) of the n-alkanes are -195 ± 16‰ for hydrogen and -30.6 ± 2.4‰ for carbon. The insect n-alkanes are depleted in D by approximately 30-40‰ compared with wax n-alkanes from C3 (-155 ± 25‰) and C4 vascular plants (-167 ± 13‰), whereas their δ13C values fall between those of C3 (-36.2 ± 2.4‰) and C4 plants (-20.3 ± 2.4‰). Thus, the contribution of insect-derived n-alkanes to soil and sediment could potentially shift δD records of n-alkanes toward more negative values and potentially muddle the assumed original C3/C4 balance in the δ13C records of the soil and sedimentary n-alkanes. n-Alkenes are also found in three insects (swallowtail, wasp and hornet). They are more depleted in D relative to the same carbon numbered n-alkanes (δDn-alkene - δDn-alkane = -17 ± 16‰), but the δ13C values are almost identical to those of the n-alkanes (δ13Cn-alkene - δ13Cn-alkane = 0.1 ± 0.2‰). These results suggest that these n-alkenes are desaturated products of the same carbon numbered n-alkanes.

  14. IR spectroscopic study of the displacement of an SF6 monolayer on graphite by Xe

    NASA Astrophysics Data System (ADS)

    Hess, G. B.; Xia, Yu

    2017-09-01

    We report a study of displacement by xenon of a monolayer of sulphur hexafluoride initially condensed on a graphite surface. Earlier work showed that, below 112 K, Xe displaces SF6 almost completely in a first-order transition. Working at higher temperatures, we show that this system has a simple eutectic-like phase diagram, at least for SF6 not too dilute. In our experiment, both adsorbates are in equilibrium with their respective vapors in a cold cell. In our infrared reflection-absorption spectroscopy measurements, the SF6 coverage on the surface is monitored by the frequency shift due to dynamic dipole coupling of the collective mode of the strong SF6 ν3 vibrational resonance. Simulations relate this frequency shift to the SF6 areal density. Below T ≈ 134 K, with increasing Xe pressure, a small amount Xe dissolves in the solid SF6 monolayer preceding its displacement by a solid predominantly Xe monolayer in a first-order transition. Above 134 K, there is a weaker first-order transition to a mixed liquid monolayer, followed by continuous increase in Xe concentration. If the initial SF6 monolayer is near its melting line, the melting transition on adding Xe appears to become continuous.

  15. IR spectroscopic study of the displacement of an SF6 monolayer on graphite by Xe.

    PubMed

    Hess, G B; Xia, Yu

    2017-09-07

    We report a study of displacement by xenon of a monolayer of sulphur hexafluoride initially condensed on a graphite surface. Earlier work showed that, below 112 K, Xe displaces SF 6 almost completely in a first-order transition. Working at higher temperatures, we show that this system has a simple eutectic-like phase diagram, at least for SF 6 not too dilute. In our experiment, both adsorbates are in equilibrium with their respective vapors in a cold cell. In our infrared reflection-absorption spectroscopy measurements, the SF 6 coverage on the surface is monitored by the frequency shift due to dynamic dipole coupling of the collective mode of the strong SF 6 ν 3 vibrational resonance. Simulations relate this frequency shift to the SF 6 areal density. Below T ≈ 134 K, with increasing Xe pressure, a small amount Xe dissolves in the solid SF 6 monolayer preceding its displacement by a solid predominantly Xe monolayer in a first-order transition. Above 134 K, there is a weaker first-order transition to a mixed liquid monolayer, followed by continuous increase in Xe concentration. If the initial SF 6 monolayer is near its melting line, the melting transition on adding Xe appears to become continuous.

  16. Excess thermodynamics of mixtures involving xenon and light linear alkanes by computer simulation.

    PubMed

    Carvalho, A J Palace; Ramalho, J P Prates; Martins, Luís F G

    2007-06-14

    Excess molar enthalpies and excess molar volumes as a function of composition for liquid mixtures of xenon + ethane (at 161.40 K), xenon + propane (at 161.40 K) and xenon + n-butane (at 182.34 K) have been obtained by Monte Carlo computer simulations and compared with available experimental data. Simulation conditions were chosen to closely match those of the corresponding experimental results. The TraPPE-UA force field was selected among other force fields to model all the alkanes studied, whereas the one-center Lennard-Jones potential from Bohn et al. was used for xenon. The calculated H(m)(E) and V(m)(E) for all systems are negative, increasing in magnitude as the alkane chain length increases. The results for these systems were compared with experimental data and with other theoretical calculations using the SAFT approach. An excellent agreement between simulation and experimental results was found for xenon + ethane system, whereas for the remaining two systems, some deviations that become progressively more significant as the alkane chain length increases were observed.

  17. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 721.535 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to...

  18. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  19. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  20. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds.

    PubMed

    Mohamad Shahimin, Mohd Faidz; Foght, Julia M; Siddique, Tariq

    2016-05-15

    Oil sands tailings ponds harbor diverse anaerobic microbial communities capable of methanogenic biodegradation of solvent hydrocarbons entrained in the tailings. Mature fine tailings (MFT) from two operators (Albian and CNRL) that use different extraction solvents were incubated with mixtures of either two (n-pentane and n-hexane) or four (n-pentane, n-hexane, n-octane and n-decane) n-alkanes under methanogenic conditions for ~600 d. Microbes in Albian MFT began methane production by ~80 d, achieving complete depletion of n-pentane and n-hexane in the two-alkane mixture and their preferential biodegradation in the four-alkane mixture. Microbes in CNRL MFT preferentially metabolized n-octane and n-decane in the four-alkane mixture after a ~80 d lag but exhibited a lag of ~360 d before commencing biodegradation of n-pentane and n-hexane in the two-alkane mixture. 16S rRNA gene pyrosequencing revealed Peptococcaceae members as key bacterial n-alkane degraders in all treatments except CNRL MFT amended with the four-alkane mixture, in which Anaerolineaceae, Desulfobacteraceae (Desulfobacterium) and Syntrophaceae (Smithella) dominated during n-octane and n-decane biodegradation. Anaerolineaceae sequences increased only in cultures amended with the four-alkane mixture and only during n-octane and n-decane biodegradation. The dominant methanogens were acetoclastic Methanosaetaceae. These results highlight preferential n-alkane biodegradation by microbes in oil sands tailings from different producers, with implications for tailings management and reclamation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    PubMed

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

  2. Dielectric constant of liquid alkanes and hydrocarbon mixtures

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Arakelian, T.

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  3. 40 CFR 721.10704 - Aryl-substituted alkane.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aryl-substituted alkane. 721.10704 Section 721.10704 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES..., Authorization, and Restriction of Chemicals in the European Union) without submitting all final reports and the...

  4. Adiabatic Coupling Constant of Nitrobenzene- n-Alkane Critical Mixtures. Evidence from Ultrasonic Spectra and Thermodynamic Data

    NASA Astrophysics Data System (ADS)

    Mirzaev, Sirojiddin Z.; Kaatze, Udo

    2016-09-01

    Ultrasonic spectra of mixtures of nitrobenzene with n-alkanes, from n-hexane to n-nonane, are analyzed. They feature up to two Debye-type relaxation terms with discrete relaxation times and, near the critical point, an additional relaxation term due to the fluctuations in the local concentration. The latter can be well represented by the dynamic scaling theory. Its amplitude parameter reveals the adiabatic coupling constant of the mixtures of critical composition. The dependence of this thermodynamic parameter upon the length of the n-alkanes corresponds to that of the slope in the pressure dependence of the critical temperature and is thus taken another confirmation of the dynamic scaling model. The change in the variation of the coupling constant and of several other mixture parameters with alkane length probably reflects a structural change in the nitrobenzene- n-alkane mixtures when the number of carbon atoms per alkane exceeds eight.

  5. Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions

    PubMed Central

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, “Shengli Cluster” and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes. PMID:25409013

  6. First-principles study on the structure and electronic property of gas molecules adsorption on Ge2Li2 monolayer

    NASA Astrophysics Data System (ADS)

    Hu, Yiwei; Long, Linbo; Mao, Yuliang; Zhong, Jianxin

    2018-06-01

    Using first-principles methods, we have studied the adsorption of gas molecules (CO2, CH4, H2S, H2 and NH3) on two dimensional Ge2Li2 monolayer. The adsorption geometries, adsorption energies, charge transfer, and band structures of above mentioned gas molecules adsorption on Ge2Li2 monolayer are analyzed. It is found that the adsorption of CO2 on Ge2Li2 monolayer is a kind of strong chemisorption, while other gas molecules such as CH4, H2S, H2 and NH3 are physisorption. The strong covalent binding is formed between the CO2 molecule and the nearest Ge atom in Ge2Li2 monolayer. This adsorption of CO2 molecule on Ge2Li2 monolayer leads to a direct energy gap of 0.304 eV. Other gas molecules exhibit mainly ionic binding to the nearest Li atoms in Ge2Li2 monolayer, which leads to indirect energy gap after adsorptions. Furthermore, it is found that the work function of Ge2Li2 monolayer is sensitive with the variation of adsorbents. Our results reveal that the Ge2Li2 monolayer can be used as a kind of nano device for gas molecules sensor.

  7. X-ray study of the structure of phospholipid monolayers on the water surface

    NASA Astrophysics Data System (ADS)

    Asadchikov, V. E.; Tikhonov, A. M.; Volkov, Yu. O.; Roshchin, B. S.; Ermakov, Yu. A.; Rudakova, E. B.; D'yachkova, I. G.; Nuzhdin, A. D.

    2017-10-01

    The possibility of laboratory X-ray reflectometry study of the structure of dimyristoyl phosphatidylserine (DMPS) phospholipid monolayers on the water surface in various phase states has been demonstrated.

  8. Ligand-accelerated activation of strong C-H bonds of alkanes by a (salen)ruthenium(VI)-nitrido complex.

    PubMed

    Man, Wai-Lun; Lam, William W Y; Kwong, Hoi-Ki; Yiu, Shek-Man; Lau, Tai-Chu

    2012-09-03

    Kinetic and mechanistic studies on the intermolecular activation of strong C-H bonds of alkanes by a (salen)ruthenium(VI) nitride were performed. The initial, rate-limiting step, the hydrogen atom transfer (HAT) from the alkane to Ru(VI)≡N, generates Ru(V)=NH and RC·HCH(2)R. The following steps involve N-rebound and desaturation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fidelity of fossil n-alkanes from leaf to paleosol and applications to the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; McInerney, F. A.; Baczynski, A. A.; Wing, S. L.

    2011-12-01

    Long chain n-alkanes (C21-C35) are well-known as biomarkers of terrestrial plants. They can be preserved across a wide range of terrestrial and marine environments, survive in the sedimentary record for millions of years, and can serve as proxies for ancient environments. Most n-alkane records are derived from sediments rather than directly from fossil leaves. However, little is known about the fidelity of the n-alkane record: how and where leaf preservation relates to n-alkane preservation and how patterns of n-alkane carbon isotope ratios (δ13C) compare to living relatives. To examine these questions, we analyzed n-alkanes from fluvial sediments and individual leaf fossils collected in the Bighorn Basin, Wyoming, across the Paleocene-Eocene Thermal Maximum (PETM) carbon isotope excursion. We assessed the fidelity of the n-alkane signature from individual fossil leaves via three separate means. 1) Spatial variations were assessed by comparing n-alkane concentrations on a fossil leaf and in sediments both directly adjacent to the leaf and farther away. Absolute concentrations were greater within the compression fossil than in the directly adjacent sediment, which were in turn greater than in more distant sediment. 2) n-Alkane abundances and distributions were examined in fossil leaves having a range of preservational quality, from fossils with intact cuticle to carbonized fossils lacking cuticle and higher-order venation. The best preserved fossils preserved a higher concentration of n-alkanes and showed the most similar n-alkane distribution to living relatives. However, a strong odd over even predominance suggests a relatively unmodified plant source occurred in all samples regardless of preservation state. 3) n-Alkane δ13C values were measured for both fossil leaves and their living relatives. Both the saw-tooth pattern of δ13C values between odd and even chain lengths and the general decrease in δ13C values with increasing chain length are consistent with

  10. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  11. Chemisorbed monolayers of corannulene penta-thioethers on gold.

    PubMed

    Angelova, Polina; Solel, Ephrath; Parvari, Galit; Turchanin, Andrey; Botoshansky, Mark; Gölzhäuser, Armin; Keinan, Ehud

    2013-02-19

    Penta(tert-butylthio)corannulene and penta(4-dimethylaminophenylthio)corannulene form highly stable monolayers on gold surfaces, as indicated by X-ray photoelectron spectroscopy (XPS). Formation of these homogeneous monolayers involves multivalent coordination of the five sulfur atoms to gold with the peripheral alkyl or aryl substituents pointing away from the surface. No dissociation of C-S bonds upon binding could be observed at room temperature. Yet, the XPS experiments reveal strong chemical bonding between the thioether groups and gold. Temperature-dependent XPS study shows that the thermal stability of the monolayers is higher than the typical stability of self-assembled monolayers (SAMs) of thiolates on gold.

  12. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    PubMed Central

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R.

    2014-01-01

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria. PMID

  13. Understanding the factors affecting the activation of alkane by Cp′Rh(CO)2 (Cp′ = Cp or Cp*)

    PubMed Central

    George, Michael W.; Hall, Michael B.; Jina, Omar S.; Portius, Peter; Sun, Xue-Zhong; Towrie, Michael; Wu, Hong; Yang, Xinzheng; Zarić, Snežana D.

    2010-01-01

    Fast time-resolved infrared spectroscopic measurements have allowed precise determination of the rates of activation of alkanes by Cp′Rh(CO) (Cp′ = η5-C5H5 or η5-C5Me5). We have monitored the kinetics of C─H activation in solution at room temperature and determined how the change in rate of oxidative cleavage varies from methane to decane. The lifetime of CpRh(CO)(alkane) shows a nearly linear behavior with respect to the length of the alkane chain, whereas the related Cp*Rh(CO)(alkane) has clear oscillatory behavior upon changing the alkane. Coupled cluster and density functional theory calculations on these complexes, transition states, and intermediates provide the insight into the mechanism and barriers in order to develop a kinetic simulation of the experimental results. The observed behavior is a subtle interplay between the rates of activation and migration. Unexpectedly, the calculations predict that the most rapid process in these Cp′Rh(CO)(alkane) systems is the 1,3-migration along the alkane chain. The linear behavior in the observed lifetime of CpRh(CO)(alkane) results from a mechanism in which the next most rapid process is the activation of primary C─H bonds (─CH3 groups), while the third key step in this system is 1,2-migration with a slightly slower rate. The oscillatory behavior in the lifetime of Cp*Rh(CO)(alkane) with respect to the alkane’s chain length follows from subtle interplay between more rapid migrations and less rapid primary C─H activation, with respect to CpRh(CO)(alkane), especially when the CH3 group is near a gauche turn. This interplay results in the activation being controlled by the percentage of alkane conformers. PMID:21048088

  14. Unsupported single-atom-thick copper oxide monolayers

    NASA Astrophysics Data System (ADS)

    Yin, Kuibo; Zhang, Yu-Yang; Zhou, Yilong; Sun, Litao; Chisholm, Matthew F.; Pantelides, Sokrates T.; Zhou, Wu

    2017-03-01

    Oxide monolayers may present unique opportunities because of the great diversity of properties of these materials in bulk form. However, reports on oxide monolayers are still limited. Here we report the formation of single-atom-thick copper oxide layers with a square lattice both in graphene pores and on graphene substrates using aberration-corrected scanning transmission electron microscopy. First-principles calculations find that CuO is energetically stable and its calculated lattice spacing matches well with the measured value. Furthermore, free-standing copper oxide monolayers are predicted to be semiconductors with band gaps ˜3 eV. The new wide-bandgap single-atom-thick copper oxide monolayers usher a new frontier to study the highly diverse family of two-dimensional oxides and explore their properties and their potential for new applications.

  15. Paleoclimate and Asian monsoon variability inferred from n-alkanes and their stable isotopes at lake Donggi Cona, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Saini, Jeetendra; Guenther, Franziska; Mäusbacher, Roland; Gleixner, Gerd

    2015-04-01

    The Tibetan Plateau is one of the most extensive and sensitive region of elevated topography affecting global climate. The interplay between the Asian summer monsoon and the westerlies greatly influences the lake systems at the Tibetan Plateau. Despite a considerable number of research efforts in last decade, possible environmental reactions to change in monsoon dynamics are still not well understood. Here we present results from a sediment core of lake Donggi Cona, which dates back to late glacial period. Distinct organic geochemical proxies and stable isotopes are used to study the paleoenvironmental and hydrological changes in late glacial and Holocene period. Sedimentary n-alkanes of lake Donggi Cona are used as a proxy for paleoclimatic and monsoonal reconstruction. The hydrogen (δD) and carbon (δ13C) isotopes of n-alkanes are used as proxy for hydrological and phytoplankton productivity, respectively . Qualitative and quantitative analysis were performed for n-alkanes over the sediment core. δD proxy for sedimentary n-alkanes is used to infer lake water and rainfall signal. δD of (n-alkane C23) records the signal of the lake water, whereas δD of (n-alkane C29) record the precipitation signal, hence act as an appropriate proxy to track Asian monsoon. Long chain n-alkanes dominate over the sediment core while unsaturated mid chain n-alkenes have high abundance in some samples. From 18.4-13.8 cal ka BP, sample shows low organic productivity due to cold and arid climate. After 13.8-11.8 cal ka BP, slight increase in phytoplankton productivity indicate onset of weaker monsoon. From 11.8-6.8 cal ka BP, high content of organic matter indicates rise in productivity and strong monsoon with high inflow. After 6.8 cal ka BP, decrease in phytoplankton productivity indicating cooler climate and show terrestrial signal. Our results provide new insight into the variability of east Asian monsoon and changes in phytoplankton productivity for last 18.4 ka. Keywords: n-alkanes

  16. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  17. Thermoelectric properties of SnSe2 monolayer.

    PubMed

    Li, Guanpeng; Ding, Guangqian; Gao, Guoying

    2017-01-11

    The 2H (MoS 2 -type) phase of 2D transition metal dichalcogenides (TMDCs) has been extensively studied and exhibits excellent electronic and optoelectronic properties, but the high phonon thermal conductivity is detrimental to the thermoelectric performances. Here, we use first-principles methods combined with Boltzmann transport theory to calculate the electronic and phononic transport properties of 1T (CdI 2 -type) SnSe 2 monolayer, a recently realized 2D metal dichalcogenide semiconductor. The calculated band gap is 0.85 eV, which is a little larger than the bulk value. Lower phonon thermal conductivity and higher power factor are obtained in 1T-SnSe 2 monolayer compared to 2H-TMDCs monolayers. The low phonon thermal conductivity (3.27 W mK -1 at room temperature) is mainly due to the low phonon frequency of acoustic modes and the coupling of acoustic modes with optical modes. We also find that the p-type has better thermoelectric performance than the n-type, and the figure of merit within p-type can reach 0.94 at 600 K for 1T-SnSe 2 monolayer, which is higher than those of most 2H-TMDCs monolayers, making 1T-SnSe 2 monolayer a promising candidate for thermoelectric applications.

  18. Microbial alteration of normal alkane δ13C and δD in sedimentary archives

    NASA Astrophysics Data System (ADS)

    Brittingham, A.; Hren, M. T.; Hartman, G.

    2016-12-01

    Long-carbon chain normal alkanes (e.g. C25-C33) are produced by a wide range of terrestrial plants and commonly preserved in ancient sediments. These serve as a potential paleoclimate proxy because their hydrogen (δD) and carbon (δ13C) isotope values reflect the combined effect of plant-specific species effects and responses to environmental conditions. While these are commonly believed to remain unaltered at low burial temperatures (e.g. <150°C), there is still uncertainty around the role microbes play during the breakdown of these compounds in stored sediment and the potential risk for isotopic alteration. We analyzed two sets of identical samples to assess the role of microbial and other degradation process on the hydrogen and carbon isotope composition of these compounds. The first set of sediment samples were collected in the summer of 2011 from central Armenia, a region with continental climate, and allowed to sit in sealed bags at room temperature for three years. A second and identical set was collected in 2014 and frozen immediately. Stored samples showed high amounts of medium chain length n-alkanes (C19-C26), produced by microorganisms, which were absent from the samples that were collected in 2014 and frozen immediately after sampling. Along with the presence of medium chain length n-alkanes, the average chain length of n-alkanes from C25-C33 decreased significantly in all 2011 samples. Storage of the samples over three years resulted in altered δD and δ13C values of C29 and C31 n-alkanes. While δD values were heavier relative to the control by 4-25‰, δ13C values were mostly lighter (maximum change of -4.2‰ in C29 and -2.9‰ in C31). DNA analysis of the soil showed Rhodococcus and Aeromicrobium, genera that contain multiple coding regions for alkane degrading enzymes CYP153 and AlkB, increased by an order of magnitude during sample storage (from 0.7% to 7.5% of bacteria present). The proliferation of alkane degrading bacteria, combined with

  19. Stable hydrogen isotopic composition of n-alkanes in atmospheric aerosols as a tracer for the source region of terrestrial plant waxes

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Kawamura, K.

    2009-12-01

    Studies on molecular composition and compound-specific carbon isotopic ratio (δ13C) of leaf wax n-alkanes in atmospheric aerosols have revealed a long-range atmospheric transport of terrestrial higher plant materials over the south Atlantic and western Pacific oceans. However, molecular and δ13C compositions of terrestrial plant waxes in the eastern part of the Asian continent are relatively constant reflecting C3-dominated vegetation, which makes it difficult to specify the source regions of plant materials in the atmospheric aerosols over the East Asia and northwest Pacific regions. Recent observation displays a large (>100‰) spatial variation in hydrogen isotopic composition (δD) of rainwater in East Asia. Because δD values of terrestrial higher plants sensitively reflect those of precipitation waters, δD of leaf waxes are expected to provide information on their source region. In this study, we measured the δD of n-alkanes in atmospheric aerosols from Tokyo to better understand the origin of leaf wax n-alkanes in atmospheric aerosols. The δD values of fossil fuel n-alkanes (C21 to C24) in Tokyo aerosols range from -65 to -94‰, which are in a range of those reported in marine crude oils. In contrast, the δD of higher molecular weight (C29 and C31) n-alkanes (δDHMW) show much larger values by ~70‰ than those of fossil fuel n-alkanes. Their values were found to exhibit concomitant variations with carbon preference index (CPI), suggesting that the δDHMW reflect the δD of leaf wax n-alkanes with a variable contribution from fossil fuel n-alkanes. Nevertheless, good positive correlation (r = 0.89, p < 0.01) between the δDHMW and CPI values enable us to remove the contribution of fossil fuels using a mass balance approach by assuming that CPI of fossil fuel is 1 and CPI of plant waxes is 5-15. Calculated n-alkane δD values averaged from -170 to -185‰ for C29 and from -155 to -168‰ for C31. These values are consistent with those reported from

  20. Fossil Leaves and Fossil Leaf n-Alkanes: Reconstructing the First Closed Canopied Rainforests

    NASA Astrophysics Data System (ADS)

    Graham, H. V.; Freeman, K. H.

    2013-12-01

    characteristics associated with canopy effect. A biomass flux-weighted model of alkane chain-length distribution and δ13Cleaf indicate n-alkanes extracted from bulk rock are consistent with inputs integrated over time from plants represented by fossil leaves. In a modern rainforest, we found leaf lipid amounts markedly higher in the shaded and moist understory, consistent with studies that show alkanes proffer fungal protection. Shade tolerance is associated with higher plant orders and, consistent with this, literature data for modern plants from 30 plant orders shows alkane production in asterids and rosids is 2 to 3 times greater than in basal angiosperms or gymnosperms. The lower clades tend to contain greater amounts of terpenoids and novel benzylisoquinoline alkaloids, rather than alkanes. For our three fossil floras, alkane abundance is strongly influenced by depositional setting, with preservation best in the lacustrine setting. Within each site, abundance patterns are potentially influenced by both taxonomic affiliation and by canopy structure as measured by δ13Cleaf values, and such relationships shed light on the combined influences of plant evolution, canopy structure and the function of biochemical resources on the geochemical record of the first rainforests.

  1. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1989-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  2. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  3. Methods of making monolayers

    DOEpatents

    Alford, Kentin L [Pasco, WA; Simmons, Kevin L [Kennewick, WA; Samuels, William D [Richland, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [Albuquerque, NM; Shin, Yongsoon [Richland, WA; Fryxell, Glen E [Kennewick, WA

    2009-12-08

    The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.

  4. Methods of making monolayers

    DOEpatents

    Alford, Kentin L [Pasco, WA; Simmons, Kevin L [Kennewick, WA; Samuels, William D [Richland, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [Albuquerque, NM; Shin, Yongsoon [Richland, WA; Fryxell, Glen E [Kennewick, WA

    2009-09-15

    The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.

  5. Selectivity and Sensitivity of Ultrathin Monolayer Electrodes

    NASA Astrophysics Data System (ADS)

    Cheng, Quan

    The objective of this work is to build a molecular architecture on the electrode surface with a well-defined morphology and desirable electrochemical characteristics. The goal is accomplished by means of self-assembly of thioctic acid, a sulfur-terminated organic molecule with a short alkyl chain and a hydrophilic carboxylic headgroup, on a gold electrode. Characterization of the monolayer structure and the electrochemical response of the monolayer electrodes is performed by means of capacitance measurements and voltammetry. Investigation of the capacitance of the self-assembled monolayers provides insight into the macroscopic permeability of the films and reveals that penetration of solvent/ions into the thioctic acid monolayer film occurs extensively. Voltammetric results demonstrate that permselectivity of the monolayer electrode can be obtained as a result of the induced electrostatic interactions between the monolayer interface and the electroactive species. Measurement of the voltammetric response of the redox probes at the monolayers as a function of the electrolyte concentration and composition is used to qualitatively analyze the effect of electrolyte on response. A model describing the role of the interfacial charge in the electrochemical response of the monolayers as a function of the solution composition and surface smoothness is proposed. A strategy is developed to further explore the applications of the monolayer electrodes to control the electrochemical response of the biological molecules such as catecholamines. The ability to control the surface hydrophobicity of the monolayer electrodes through coadsorption of thioctic acid and hexanethiol, to display different electrochemical properties towards biological molecules is tested. The optimum conditions for detection of the biological molecules on the monolayer electrodes are discussed. In order to pursue selective analysis in microenvironments, the thioctic acid monolayer formed on the

  6. First-principles study of adsorption-induced magnetic properties of InSe monolayers

    NASA Astrophysics Data System (ADS)

    Fu, Zhaoming; Yang, Bowen; Zhang, Na; Ma, Dongwei; Yang, Zongxian

    2018-04-01

    In this work we studied the adsorption-induced magnetic behaviors on the two-dimensional InSe monolayer. Six kinds of adatoms (H, B, C, N, O and F) are taken into account. It is found that the InSe with adsorbing C and F have nonzero magnetic moments and good stability. Importantly, the magnetism of C and F modified InSe monolayers completely comes from p electrons of adatoms and substrates. The strength of magnetic exchange interaction can be controlled by changing the coverage of adsorbates. This p-electron magnetic material is thought to have obvious advantages compared to conventional d- or f-electron magnets. Our research is meaningful for practical applications in spintronic electronics and two dimensional magnetic semiconductors.

  7. Biogeographic variation of foliar n-alkanes of Juniperus communis var. saxatilis Pallas from the Balkans.

    PubMed

    Rajčević, Nemanja; Janaćković, Pedja; Dodoš, Tanja; Tešević, Vele; Marin, Petar D

    2014-12-01

    The composition of the epicuticular n-alkanes isolated from the leaves of ten populations of Juniperus communis L. var. saxatilis Pallas from central (continental) and western (coastal) areas of the Balkan Peninsula was characterized by GC-FID and GC/MS analyses. In the leaf waxes, 14 n-alkane homologues with chain-lengths ranging from C22 to C35 were identified. All samples were dominated by n-tritriacontane (C33 ), but differences in two other dominant n-alkanes allowed separating the coastal from the continental populations. Several statistical methods (ANOVA, principal component, discriminant, and cluster analyses as well as the Mantel test) were deployed to analyze the diversity and variability of the epicuticular-leaf-n-alkane patterns of the ten natural populations of J. communis var. saxatilis and their relation to different geographic and bioclimatic parameters. Cluster analysis showed a high correlation of the leaf-n-alkane patterns with the geographical distribution of the investigated samples, differentiating the coastal from the continental populations of this taxon. Several bioclimatic parameters related to aridity were highly correlated with this differentiation. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  8. Monolayer coated aerogels and method of making

    DOEpatents

    Zemanian, Thomas Samuel [Richland, WA; Fryxell, Glen [Kennwick, WA; Ustyugov, Oleksiy A [Spokane, WA

    2006-03-28

    Aerogels having a monolayer coating are described. The aerogel and a monolayer forming precursor are provided in a supercritical fluid, whereupon the aerogel and the monolayer forming precursor are reacted in said supercritical fluid to form a covalent bond between the aerogel and the monolayer forming precursor. Suitable aerogels are ceramic oxides such as silica, alumina, aluminosilicate, and combinations thereof. Suitable monolayer forming precursors include alkyl silanes, chlorosilanes, boranes, chloroboranes, germanes, and combinations thereof. The method may also include providing a surface preparation agent such as water, or hydroetching an aerogel to enhance the coating of the monolayer.

  9. Carbon Kinetic Isotope Effects in the Oxidation of Atmospheric Alkane and Aromatic Hydrocarbons by Hydroxyl Radicals

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Thompson, A. E.; Rudolph, J.; Huang, L.

    2001-12-01

    To interpret measurements of stable carbon isotope ratios of ambient NMHC, we need to understand the isotopic composition of the emissions, and the isotope fractionation associated with the removal of NMHC from the atmosphere. Oxidation by OH-radicals is by far the most important atmospheric process for removal of NMHC. In this presentation measurements of the kinetic isotope effects (KIEs) for the reactions of hydroxyl radicals with several C5-C8 alkanes, including cyclic, branched and straight-chain alkanes, as well as C6-C9 aromatics are presented. All KIEs are positive: compounds containing only 12C atoms react faster than 13C labelled compounds. KIEs for light n-alkanes are typically between 1.5-4‰ and are larger than mass dependent collision frequencies, deviating from the collision frequency as carbon number increases. For n-alkanes there is no statistically significant difference between the KIEs of structural isomers. KIEs for the reactions of light alkenes and aromatics with OH-radicals are considerably higher than for alkane reactions, ranging from 3-18‰ . The KIEs for the aromatic reactions can be described by a 33.3+/-2.0‰ fractionation for the addition of an OH-radical to the aromatic ring and an inverse dependency on the number of carbon atoms, added to the mass dependent collision frequency. There are indications for minor structure specific effects, however the deviations from the idealised inverse carbon number dependence is relatively small and the limited number of studied alkyl benzenes does not yet allow the identification of systematic dependencies.

  10. Monolayer atomic crystal molecular superlattices.

    PubMed

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A; Huang, Yu; Duan, Xiangfeng

    2018-03-07

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 10 7 , along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  11. Monolayer atomic crystal molecular superlattices

    NASA Astrophysics Data System (ADS)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  12. First-principles study of the heavy metal atoms X (X=Au, Hg, Tl or Pb) doped monolayer WS2

    NASA Astrophysics Data System (ADS)

    Xie, Ling-Yun; Zhang, Jian-Min

    2017-12-01

    The heavy metal atoms X (X = Au, Hg, Tl or Pb) doped monolayer WS2 systems have been studied by using the spin-polarized first-principles calculations. Although pure monolayer WS2 system is a nonmagnetic semiconductor with a direct band gap of 1.820 eV, the Au and Hg atoms doped monolayer WS2 systems change to half-metal (HM) ferromagnets with the total magnetic moments 0.697 and 1.776 μB as well as the smaller spin-down gaps 0.605 and 0.527 eV, respectively, while the Tl and Pb atoms doped monolayer WS2 systems change to magnetic metal with the total magnetic moment 0.584 μB and a nonmagnetic metal. From the minimization of the formation energy, we find that it is easy to incorporate these heavy metal atoms into monolayer WS2 system under S-rich condition, especially for the Au doped monolayer WS2 system not only easily to be formed but also a HM ferromagnet, and thus the best candidate used in the spintronic devices.

  13. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels.

    PubMed

    Sun, Shaohui; Yang, Ruishu; Wang, Xin; Yan, Shaokang

    2018-04-01

    An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C 5 -C 20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA) can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  14. Reprint of "Stable hydrogen and carbon isotopic compositions of long-chain (C21-C33) n-alkanes and n-alkenes in insects"

    NASA Astrophysics Data System (ADS)

    Chikaraishi, Yoshito; Kaneko, Masanori; Ohkouchi, Naohiko

    2013-06-01

    We report the molecular and stable isotopic (δD and δ13C) compositions of long-chain n-alkanes in common insects including the cabbage butterfly, swallowtail, wasp, hornet, grasshopper, and ladybug. Insect n-alkanes are potential candidates of the contamination of soil and sedimentary n-alkanes that are believed to be derived from vascular plant waxes. Long-chain n-alkanes (range C21-33; maximum C23-C29) are found to be abundant in the insects (31-781 μg/dry g), with a carbon preference index (CPI) of 5.1-31.5 and an average chain length (ACL) of 24.9-29.3. The isotopic compositions (mean ± 1σ, n = 33) of the n-alkanes are -195 ± 16‰ for hydrogen and -30.6 ± 2.4‰ for carbon. The insect n-alkanes are depleted in D by approximately 30-40‰ compared with wax n-alkanes from C3 (-155 ± 25‰) and C4 vascular plants (-167 ± 13‰), whereas their δ13C values fall between those of C3 (-36.2 ± 2.4‰) and C4 plants (-20.3 ± 2.4‰). Thus, the contribution of insect-derived n-alkanes to soil and sediment could potentially shift δD records of n-alkanes toward more negative values and potentially muddle the assumed original C3/C4 balance in the δ13C records of the soil and sedimentary n-alkanes. n-Alkenes are also found in three insects (swallowtail, wasp and hornet). They are more depleted in D relative to the same carbon numbered n-alkanes (δDn-alkene - δDn-alkane = -17 ± 16‰), but the δ13C values are almost identical to those of the n-alkanes (δ13Cn-alkene - δ13Cn-alkane = 0.1 ± 0.2‰). These results suggest that these n-alkenes are desaturated products of the same carbon numbered n-alkanes.

  15. Molecular Recognition in Gels, Monolayers, and Solids

    DTIC Science & Technology

    1991-12-01

    monolayers (SAMs) of alkyl thiolates on gold to the study of protein adsorption on organic surfaces; and the use of networkc 20. ISTIBUION AVALABLITYOF...areas of molecular recognition: affinity polymers and molecular self-assembly. We illustrute these artas by examples drawn frozr affinity gel electro...polyacmy~amides be’.ring,,sialic acid groups; the application of self-a-eseinbled monolayers (SAMs) of alkyl thiolates on gold to the study of protein

  16. Comment on “Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions” [J. Chem. Phys. 141, 064905 (2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, Jesse G.; Yethiraj, Arun

    The manuscript by Ballal et al.(Ref 1) presents an interesting study demonstrating the inability of popular force fields with standard combination rules to accurately describe water/alkane interactions. The authors find that the Lorentz-Berthelot combination rules on the SPC/E water and TraPPE alkane potentials give a cross interaction that fails to predict the (low-water content) water solubility in various alkanes. Realizing that both explicit polarization as well as the static octupole moment of methane are missing in these potentials, the authors examine the effect of these terms, but are still unable to resolve the discrepancy. They conclude with the statement thatmore » “the research community lacks a complete picture of water-alkane interactions at the molecular level.« less

  17. Comment on “Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions” [J. Chem. Phys. 141, 064905 (2014)

    DOE PAGES

    McDaniel, Jesse G.; Yethiraj, Arun

    2016-04-06

    The manuscript by Ballal et al.(Ref 1) presents an interesting study demonstrating the inability of popular force fields with standard combination rules to accurately describe water/alkane interactions. The authors find that the Lorentz-Berthelot combination rules on the SPC/E water and TraPPE alkane potentials give a cross interaction that fails to predict the (low-water content) water solubility in various alkanes. Realizing that both explicit polarization as well as the static octupole moment of methane are missing in these potentials, the authors examine the effect of these terms, but are still unable to resolve the discrepancy. They conclude with the statement thatmore » “the research community lacks a complete picture of water-alkane interactions at the molecular level.« less

  18. The behavior of the adsorption of cytochrome C on lipid monolayers: A study by the Langmuir-Blodgett technique and theoretical analysis.

    PubMed

    Li, Junhua; Sun, Runguang; Hao, Changchun; He, Guangxiao; Zhang, Lei; Wang, Juan

    2015-10-01

    Cytochrome c (Cyt c) is an essential component of the inner mitochondrial respiratory chain because of its function of transferring electrons. The feature is closely related to the interaction between Cyt c and membrane lipids. We used Langmuir-Blodgett monolayer technique combined with AFM to study the interaction of Cyt c with lipid monolayers at air-buffer interface. In our work, by comparing the mixed Cyt c-anionic (DPPS) and Cyt c-zwitterionic (DPPC/DPPE) monolayers, the adsorption capacity of Cyt c on lipid monolayers is DPPS>DPPE>DPPC, which is attributed to their different headgroup structures. π-A isothermal data show that Cyt c (v=2.5 μL) molecules are at maximum adsorption quantity on lipid monolayer. Moreover, Cyt c molecules would form aggregations and drag some lipids with them into subphase if the protein exceeds the maximum adsorption quantity. π-T curve indicates that it takes more time for Cyt c molecular conformation to rearrange on DPPE monolayer than on DPPC. The compressibility study reveals that the adsorption or intermolecular aggregation of Cyt c molecules on lipid monolayer will change the membrane fluidization. In order to quantitatively estimate Cyt c molecular adsorption properties on lipid monolayers, we fit the experimental isotherm with a simple surface state equation. A theoretical model is also introduced to analyze the liquid expanded (LE) to liquid condensed (LC) phase transition of DPPC monolayer. The results of theoretical analysis are in good agreement with the experiment. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Monocarboxylic acids from oxidation of acyclic isoprenoid alkanes by Mycobacterium fortuitum

    NASA Technical Reports Server (NTRS)

    Cox, R. E.; Maxwell, J. R.; Myers, R. N.

    1976-01-01

    Mycobacterium fortuitum utilizes certain stereoisomeric mixtures of individual multimethyl branched alkanes as sole carbon source, including 2,6(R), 10(S), 14(RS)-tetramethylhexadecane; 2,6(R), 10(S), 14(RS)-tetramethylheptadecane; 2,6(RS), 10(RS)-trimethyltetradecane, and 2,6(R), 10(S)-trimethylpentadecane. Products of oxidation isolated from the bacterial lipids were acids derived predominantly from oxidation of the isopropyl terminus of each alkane, except in the case of 2,6(RS), 10(RS)-trimethyltetradecane. With the latter, acids from oxidation at either terminus were detected in comparable proportions.

  20. First principles study of the electronic properties and band gap modulation of two-dimensional phosphorene monolayer: Effect of strain engineering

    NASA Astrophysics Data System (ADS)

    Phuc, Huynh V.; Hieu, Nguyen N.; Ilyasov, Victor V.; Phuong, Le T. T.; Nguyen, Chuong V.

    2018-06-01

    The effect of strain on the structural and electronic properties of monolayer phosphorene is studied by using first-principle calculations based on the density functional theory. The intra- and inter-bond length and bond angle for monolayer phosphorene is also evaluated. The intra- and inter-bond length and the bond angle for phosphorene show an opposite tendency under different directions of the applied strain. At the equilibrium state, monolayer phosphorene is a semiconductor with a direct band gap at the Γ-point of 0.91 eV. A direct-indirect band gap transition is found in monolayer phosphorene when both the compression and tensile strain are simultaneously applied along both zigzag and armchair directions. Under the applied compression strain, a semiconductor-metal transition for monolayer phosphorene is observed at -13% and -10% along armchair and zigzag direction, respectively. The direct-indirect and phase transition will largely constrain application of monolayer phosphorene to electronic and optical devices.

  1. Molecular dynamics simulation of the folding of single alkane chains with different lengths on single-walled carbon nanotubes and graphene.

    PubMed

    Liu, Yan Fang; Yang, Hua; Zhang, Hui

    2018-05-31

    Chain folding is an important step during polymer crystallization. In order to study the effects of the surface on chain folding, molecular dynamics simulations of the folding of different alkane chains on three kinds of single-walled carbon nanotubes (SWCNTs) and graphene were performed. The folding behaviors of the single alkane chains on these surfaces were found to be different from their folding behaviors in vacuum. The end-to-end distances of the chains were calculated to explore the chain folding. An increasing tendency to fold into two or more stems with increasing alkane chain length was observed. This result indicates that the occurrence and the stability of chain folding are related to the surface curvature, the diameter of the SWCNT, and surface texture. In addition, the angle between the direction of the alkane chain segment and the direction of the surface texture was measured on different surfaces.

  2. Studying electron transfer through alkanethiol self-assembled monolayers on a hanging mercury drop electrode using potentiometric measurements.

    PubMed

    Cohen-Atiya, Meirav; Mandler, Daniel

    2006-10-14

    A new approach based on measuring the change of the open-circuit potential (OCP) of a hanging mercury drop electrode (HMDE), modified with alkanethiols of different chain length conducted in a solution containing a mixture of Ru(NH3)6(2+) and Ru(NH3)6(3+) is used for studying electron transfer across the monolayer. Following the time dependence of the OCP allowed the extraction of the kinetic parameters, such as the charge transfer resistance (R(ct)) and the electron transfer rate constant (k(et)), for different alkanethiol monolayers. An electron tunneling coefficient, beta, of 0.9 A(-1) was calculated for the monolayers on Hg.

  3. Systematic study of aggregation structure and thermal behavior of a series of unique H-shape alkane molecules.

    PubMed

    Yamamoto, Hiroko; Tashiro, Kohji; Nemoto, Norio; Motoyama, Yukihiro; Takahashi, Yoshiaki

    2011-08-11

    The H-shape alkanes of various arm lengths have been synthesized successfully through the Grignard reaction. The detailed investigation of these novel compounds may allow us to widen the topological chemistry field furthermore. The molecular form and molecular packing structure in the crystal lattice have been revealed successfully on the basis of X-ray structure analysis as well as the analysis of Raman longitudinal acoustic modes (LAM) sensitive to the alkyl zigzag chain segments. The molecular conformation in the crystal lattice is deformed markedly from the originally imagined H-shape. In the cases of C3HOH to C6HOH, for example, the molecules are packed in a complicated manner and the OH···O hydrogen bonds govern the whole intermolecular interactions mainly. Since the alkyl segmental length is not very long, the conformational change is not very drastic, i.e., the small configurational entropy. Synergic effect of the hydrogen bonds and the small configurational entropy gives the higher melting point as known from the thermal data. On the other hand, in the cases of C10HOH and C12HOH, one of the long alkyl chain arms is found to be bent by 90° so that all of the alky chain segments of planar-zigzag conformation can be packed as closely as possible, and the intermolecular OH···O hydrogen bonds are also formed effectively without any mistake. As a result, the contribution of nonbonded intra- and intermolecular van der Waals interactions between the trans-zigzag alkyl chain segments become major, and the coupling of this enthalpy effect with the larger configurational entropy effect of the molecular shape results in the decrement of the melting point which approaches gradually that of longer n-alkane compound. In this way a sensitive balance between the nonbonded van der Waals interactions, the OH···O hydrogen bonds, as well as the configurational entropy effect gives the characteristic thermal behavior of the H-shape compounds. The thus

  4. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

    PubMed Central

    Sun, Xiaoli

    2017-01-01

    Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te). The adsorption and diffusion of lithium on the stable MX2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in both 2H/1T or 2H/1T' phases. The results show that lithium is energetically favourable for adsorption on MX2 monolayers, which can be semiconductors with a narrow bandgap and metallic materials. Lithium cannot be adsorbed onto 2H-WS2 and 2H-WSe2, which have large bandgaps of 1.66 and 1.96 eV, respectively. The diffusion energy barrier is in the range between 0.17 and 0.64 eV for lithium on MX2 monolayers, while for most of the materials it was found to be around 0.25 eV. Therefore, this work illustrated that most of the MX2 monolayers explored in this work can be used as promising anode materials for lithium ion batteries. PMID:29354342

  5. Variation in the Apparent Biosynthetic Fractionation for N-alkane δD Among Terrestrial Plants: Patterns, Mechanisms, and Implications

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Tipple, B. J.; Betancourt, J. L.; Ehleringer, J. R.; Leavitt, S. W.; Monson, R. K.

    2016-12-01

    Long-chain normal alkanes (n-alkanes) are a component of the leaf cuticle of all terrestrial plants. Since the hydrogen in the n-alkanes is derived from the hydrogen in plants' water sources and is non-exchangeable, the stable hydrogen isotopic composition (δD) of the n-alkanes provides information about the δD of environmental waters. While this relationship creates opportunities for using n-alkane δD for process-based reconstructions of δD of environmental waters, progress in this direction is currently constrained by the observation that terrestrial plants exhibit a startlingly wide range of apparent biosynthetic fractionations. To understand the mechanisms responsible for variation in the apparent biosynthetic fractionations, we compared measurements and models of δD for n-C29 in a water-limited ecosystem where the timing of primary and secondary cuticle deposition is closely coupled to water availability (Tumamoc Hill, Tucson, Arizona, USA). During the 2014-2015 hydrologic year, the most widespread and abundant plant species at this site exhibited δD for n-C29 varying over a total range of 102‰. Discrete samples of leaf water collected at the same time as the n-C29 samples exhibited δD varying over a total range of only 53‰, but a continuous model of leaf water through the annual cycle predicted δD varying over a total range of 190‰. These results indicate that the observed variation in the apparent biosynthetic fractionation for n-C29 δD could be primarily attributable to leaf water dynamics that are temporally uncoupled from primary and secondary cuticle deposition. If a single biosynthetic fractionation does describe the relationship between the δD of n-alkanes and leaf water during intervals of cuticle deposition, it will facilitate process-based interpretations of n-alkane δD values in ecological, hydrological, and climatological studies of modern and ancient terrestrial environments.

  6. Testing the effectiveness of monolayers under wind and wave conditions.

    PubMed

    Palada, C; Schouten, P; Lemckert, C

    2012-01-01

    Monolayers are highly desirable for their evaporation reducing capabilities due to their relatively minimal cost and ease of application. Despite these positive attributes, monolayers have consistently failed to perform effectively due to the harsh wind and wave conditions prevalent across real-world water reserves. An exhaustive and consistent study testing the influence of wind and wave combinations on monolayer performance has yet to be presented in the literature. To remedy this, the effect of simultaneous wind and wave conditions on a benchmark high-performance monolayer (octadecanol suspension, CH(3)(CH(2))(16)CH(2)OH) has been analysed. Subjected only to waves, the monolayer remained intact due to its innate ability to compress and expand. However, the constant simultaneous application of wind and waves caused the monolayer to break up and gather down-wind where it volatilised over time. At wind speeds above 1.3 m s(-1) the monolayer was completely ineffective. For wind speeds below this threshold, the monolayer had an influence on the evaporation rate dependent on wind speed. From these results a series of application protocols can now be developed for the optimised deployment of monolayers in real-world water reserves. This will be of interest to private, commercial and government organisations involved in the storage and management of water resources.

  7. The titration of carboxyl-terminated monolayers revisited: in situ calibrated fourier transform infrared study of well-defined monolayers on silicon.

    PubMed

    Aureau, D; Ozanam, F; Allongue, P; Chazalviel, J-N

    2008-09-02

    The acid-base equilibrium at the surface of well-defined mixed carboxyl-terminated/methyl-terminated monolayers grafted on silicon (111) has been investigated using in situ calibrated infrared spectroscopy (attenuated total reflectance (ATR)) in the range of 900-4000 cm (-1). Spectra of surfaces in contact with electrolytes of various pH provide a direct observation of the COOH <--> COO (-) conversion process. Quantitative analysis of the spectra shows that ionization of the carboxyl groups starts around pH 6 and extends over more than 6 pH units: approximately 85% ionization is measured at pH 11 (at higher pH, the layers become damaged). Observations are consistently accounted for by a single acid-base equilibrium and discussed in terms of change in ion solvation at the surface and electrostatic interactions between surface charges. The latter effect, which appears to be the main limitation, is qualitatively accounted for by a simple model taking into account the change in the Helmholtz potential associated with the surface charge. Furthermore, comparison of calculated curves with experimental titration curves of mixed monolayers suggests that acid and alkyl chains are segregated in the monolayer.

  8. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks

    PubMed Central

    Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho

    2015-01-01

    Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952

  9. 40 CFR 721.10163 - Chloro fluoro alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chloro fluoro alkane (generic). 721.10163 Section 721.10163 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...)(2) of this section. (2) The significant new uses are: (i) Industrial, commercial, and consumer...

  10. MODELING OF ALKANE EMISSIONS FROM A WOOD STAIN

    EPA Science Inventory

    The article discusses full-scale residential house tests to evaluate the effects of organic emissions from a wood finishing product--wood stain--on indoor air quality (IAQ). The test house concentrations of three alkane species, nonane, decane, and undecane, were measured as a fu...

  11. Berberine cation: A fluorescent chemosensor for alkanes and other low-polarity compounds. An explanation of this phenomenon

    PubMed

    Cossio; Arrieta; Cebolla; Membrado; Vela; Garriga; Domingo

    2000-07-27

    Alkanes in the presence of berberine sulfate provide an enhancement of fluorescent signal, which depends on alkane concentration and structure, when the system is irradiated with monochromatic UV light. Computational analysis suggests that an ion-induced dipole between alkanes and berberine sulfate is responsible for this phenomenon. This interaction can properly model the experimentally obtained fluorescent response. The proposed explanation allows other interacting systems to be designed, which have been experimentally confirmed.

  12. Production of Low-Freezing-Point Highly Branched Alkanes through Michael Addition.

    PubMed

    Jing, Yaxuan; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2017-12-22

    A new approach for the production of low-freezing-point, high-quality fuels from lignocellulose-derived molecules was developed with Michael addition as the key step. Among the investigated catalysts, CoCl 2 ⋅6 H 2 O was found most active for the Michael addition of 2,4-pentanedione with FA (single aldol adduct of furfural and acetone, 4-(2-furanyl)-3-butene-2-one). Over CoCl 2 ⋅6 H 2 O, a high carbon yield of C 13 oxygenates (about 75 %) can be achieved under mild conditions (353 K, 20 h). After hydrodeoxygenation, low-freezing-point (<223 K) branched alkanes with 13 carbons within jet fuel ranges were obtained over a Pd/NbOPO 4 catalyst. Furthermore, C 18,23 fuel precursors could be easily synthesized through Michael addition of 2,4-pentanedione with DFA (double-condensation product of furfural and acetone) under mild conditions and the molar ratio of C 18 /C 23 is dependent on the reaction conditions of Michael addition. After hydrodeoxygenation, high density (0.8415 g mL -1 ) and low-freezing-point (<223 K) branched alkanes with 18, 23 carbons within lubricant range were also obtained over a Pd/NbOPO 4 catalyst. These highly branched alkanes can be directly used as transportation fuels or additives. This work opens a new strategy for the synthesis of highly branched alkanes with low freezing point from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nonequilibrium 2-Hydroxyoctadecanoic Acid Monolayers: Effect of Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lendrum, Conrad D.; Ingham, Bridget; Lin, Binhua

    2012-02-06

    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position {alpha} to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of {approx}6. Themore » role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase.« less

  14. n-Alkanes in sediments from the Yellow River Estuary, China: Occurrence, sources and historical sedimentary record.

    PubMed

    Wang, Shanshan; Liu, Guijian; Yuan, Zijiao; Da, Chunnian

    2018-04-15

    A total of 21 surface sediments from the Yellow River Estuary (YRE) and a sediment core from the abandoned Old Yellow River Estuary (OYRE) were analyzed for n-alkanes using gas chromatography-mass spectrometry (GC-MS). n-Alkanes in the range C 12 -C 33 and C 13 -C 34 were identified in the surface sediments and the core, respectively. The homologous series were mainly bimodal distribution pattern without odd/even predominance in the YRE and OYRE. The total n-alkanes concentrations in the surface sediments ranged from 0.356 to 0.572mg/kg, with a mean of 0.434mg/kg on dry wt. Evaluation of n-alkanes proxies indicated that the aliphatic hydrocarbons in the surface sediments were derived mainly from a petrogenic source with a relatively low contribution of submerged/floating macrophytes, terrestrial and emergent plants. The dated core covered the time period 1925-2012 and the mean sedimentation rate was ca. 0.5cm/yr. The total n-alkanes concentrations in the core ranged from 0.0394 to 0.941mg/kg, with a mean of 0.180mg/kg. The temporal evolution of n-alkanes reflected the historical input of aliphatic hydrocarbons and was consistent with local and regional anthropogenic activity. In general, the investigation on the sediment core revealed a trend of regional environmental change and the role of anthropogenic activity in environmental change. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Heritability of the structures and 13C fractionation in tomato leaf wax alkanes: a genetic model system to inform paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Bender, Amanda L. D.; Chitwood, Daniel H.; Bradley, Alexander S.

    2017-06-01

    Leaf wax n-alkanes are broadly used to reconstruct paleoenvironmental information. However, the utility of n-alkanes as a paleoenvironmental proxy may be modulated by the extent to which biological as well as environmental factors influence the structural and isotopic variability of leaf waxes. In paleoclimate applications, there is usually an implicit assumption that most variation of leaf wax traits through a time series can be attributed to environmental change and that biological sources of variability within plant communities are small. For example, changes in hydrology affect the δ2H of waxes via rainwater and the δ13C of leaf waxes by changing plant communities. We measured the degree of genetic control over δ13C variation in leaf waxes within closely related species with an experimental greenhouse growth study. We measured the proportion of variability in structural and isotopic leaf wax traits that is attributable to genetic variation using a set of 76 introgression lines (ILs) between two interfertile Solanum (tomato) species: S. lycopersicum cv M82 (hereafter cv M82) and S. pennellii. Leaves of S. pennellii, a wild desert tomato relative, produced significantly more iso-alkanes than cv M82, a domesticated tomato cultivar adapted to water-replete conditions. We report a methylation index to summarize the ratio of branched (iso- and anteiso-) to total alkanes. Between S. pennellii and cv M82, the iso-alkanes were found to be enriched in 13C by 1.2-1.4‰ over n-alkanes. The broad-sense heritability values (H2) of leaf wax traits describe the degree to which genetic variation contributes to variation of these traits. Variation of individual carbon isotopic compositions of alkanes were of low heritability (H2 = 0.13-0.19), suggesting that most variation in δ13C of leaf waxes in this study can be attributed to environmental variance. This supports the interpretation that variation in the δ13C of wax compounds recorded in sediments reflects

  16. A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal

    NASA Astrophysics Data System (ADS)

    Solowey, Douglas P.; Mane, Manoj V.; Kurogi, Takashi; Carroll, Patrick J.; Manor, Brian C.; Baik, Mu-Hyun; Mindiola, Daniel J.

    2017-11-01

    Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CHtBu(CH3) (PNP=N[2-P(CHMe2)2-4-methylphenyl]2-), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C4 to C8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.

  17. A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal.

    PubMed

    Solowey, Douglas P; Mane, Manoj V; Kurogi, Takashi; Carroll, Patrick J; Manor, Brian C; Baik, Mu-Hyun; Mindiola, Daniel J

    2017-11-01

    Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CH t Bu(CH 3 ) (PNP=N[2-P(CHMe 2 ) 2 -4-methylphenyl] 2 - ), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C 4 to C 8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.

  18. Cyano- and polycyanometalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been substituted with one or more cyano groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  19. Modeling SOA production from the oxidation of intermediate volatility alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-12-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapour pressure. This process was investigated using the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere). Results for the C8-C24 n-alkane series show the expected trends, i.e. (i) SOA yield grows with the carbon backbone of the parent hydrocarbon, (ii) SOA yields decreases with the decreasing pre-existing organic aerosol concentration, (iii) the number of generations required to describe SOA production increases when the pre-existing organic aerosol concentration decreases. Most SOA contributors were found to be not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA). Branched alkanes are more prone to fragment in the early stage of the oxidation than their corresponding linear analogues. Fragmentation is expected to alter both the yield and the mean oxidation state of the SOA. Here, GECKO-A is applied to generate highly detailed oxidation schemes for various series of branched and cyclised alkanes. Branching and cyclisation effects on SOA yields and oxidation states will be examined.

  20. Model predictions of higher-order normal alkane ignition from dilute shock-tube experiments

    NASA Astrophysics Data System (ADS)

    Rotavera, B.; Petersen, E. L.

    2013-07-01

    Shock-induced oxidation of two higher-order linear alkanes was measured using a heated shock tube facility. Experimental overlap in stoichiometric ignition delay times obtained under dilute (99 % Ar) conditions near atmospheric pressure was observed in the temperature-dependent ignition trends of n-nonane ( n-C9H20) and n-undecane ( n-C11H24). Despite the overlap, model predictions of ignition using two different detailed chemical kinetics mechanisms show discrepancies relative to both the measured data as well as to one another. The present study therefore focuses on the differences observed in the modeled, high-temperature ignition delay times of higher-order n-alkanes, which are generally regarded to have identical ignition behavior for carbon numbers above C7. Comparisons are drawn using experimental data from the present study and from recent work by the authors relative to two existing chemical kinetics mechanisms. Time histories from the shock-tube OH* measurements are also compared to the model predictions; a double-peaked structure observed in the data shows that the time response of the detector electronics is crucial for properly capturing the first, incipient peak near time zero. Calculations using the two mechanisms were carried out at the dilution level employed in the shock-tube experiments for lean {({φ} = 0.5)}, stoichiometric, and rich {({φ} = 2.0)} equivalence ratios, 1230-1620 K, and for both 1.5 and 10 atm. In general, the models show differing trends relative to both measured data and to one another, indicating that agreement among chemical kinetics models for higher-order n-alkanes is not consistent. For example, under certain conditions, one mechanism predicts the ignition delay times to be virtually identical between the n-nonane and n-undecane fuels (in fact, also for all alkanes between at least C8 and C12), which is in agreement with the experiment, while the other mechanism predicts the larger fuels to ignite progressively more slowly.

  1. Geochemical Tracers and Rates of Short-Chain Alkane Production in Gulf of Mexico Cold Seep Sediments

    NASA Astrophysics Data System (ADS)

    Sibert, R.; Bernard, B. B.; Brooks, J. M.; Hunter, K.; Joye, S. B.

    2014-12-01

    The organic-rich cold seep sediments in the deep Gulf of Mexico commonly contain mixtures of light hydrocarbon gases either dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is typically methane (C1), but ethane (C2) and propane (C3) are nearly always present in trace or major amounts. The ratio of C1:C2:C3 varies but C2 and C3 are typically present at single digit percent levels, whereas methane usually dominates at >80%. Methane production proceeds by at least two well-studied mechanisms: either 1) by thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, methanogenesis. In contrast, ethane and propane production in deep-sea sediments has been historically attributed only to thermocatalytic processes. However, limited data suggests production of C2/C3 compounds through the activity of archaea. Such studies of microbial- driven dynamics of C2/C3 gases (i.e. 'alkanogenesis') in cold seep sediments are rare. Furthermore, the identities of potential substrates are poorly constrained and no attempt has been made to quantify production rates of C2/C3 gases. However, carbon isotopic data on ethane and propane from deep cores from the Gulf of Mexico suggest alkanogenesis at depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Here, we present the results of a series of incubation experiments using sediment slurries culled from GC600, one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of both alkane production and oxidation were measured under a variety of conditions to assess the net rates of alkane production and elucidate the driving microbiological mechanisms and controls on the central processes of >C1 alkane cycling in cold seep sediments. Microbial processes are important both in terms of alkane production and oxidation, raising many questions as to the

  2. Characterization of Self-Assembled Monolayers on a Ruthenium Surface

    PubMed Central

    2017-01-01

    We have modified and stabilized the ruthenium surface by depositing a self-assembled monolayer (SAM) of 1-hexadecanethiol on a polycrystalline ruthenium thin film. The growth mechanism, dynamics, and stability of these monolayers were studied. SAMs, deposited under ambient conditions, on piranha-cleaned and piranha + H2SO4 cleaned substrates were compared to monolayers formed on H-radical-cleaned Ru surfaces. We found that alkanethiols on H-radical-cleaned Ru formed densely packed monolayers that remained stable when kept in a nitrogen atmosphere. X-ray photoelectron spectroscopy (XPS) shows a distinct sulfur peak (BE = 162.3 eV), corresponding to metal–sulfur bonding. When exposed to ambient conditions, the SAM decayed over a period of hours. PMID:28585831

  3. Lipid monolayer structure and interactions in the presence of peptides and proteins

    NASA Astrophysics Data System (ADS)

    Freites, Juan Alfredo

    Structural aspects of two simple model systems, protein-lipid monolayer and peptide-lipid monolayer, were studied by experimental and computer simulation techniques. In both cases, both the choice of system and the approach employed to studying it, were motivated by specific biological problems. The interaction of annexin A1 with monolayers of dipalmitoylphosphatidylcholine (DPPC) was studied by fluorescence microscopy as a function of lipid monolayer phase and pH. It was shown that the annexin A1-DPPC interaction depends strongly on both the domain structure and phase behavior of the DPPC monolayer, and only weakly on the subphase pH. Annexin A1 was found to be line-active, adsorbing preferentially at phase boundaries. Also, annexin A1 was found to form networks in the presence of a domain structure in the lipid monolayer. Molecular dynamics simulations were carried out on a model system composed of a surfactant protein B peptide, SP-B1--25, and a monolayer of hexadecanoic acid. A detailed structural characterization was performed as a function of the lipid monolayer specic area. It was found that the peptide remains inserted in the monolayer up to values of specific area corresponding to an untilted condensed phase of the pure hexadecanoic acid monolayer. The system remains stable by altering the conformational order of both the anionic lipid monolayer and the peptide secondary structure, and effectively constitutes a unique disordered lipid-peptide monolayer phase. Two elements appear to be key for the constitution of this phase: an electrostatic interaction between the cationic residues of the peptide with the anionic headgroups of the lipids, and an exclusion of the aromatic residues on the hydrophobic end of the peptide from the hydrophilic and aqueous regions of the system. A direct comparison between molecular dynamics simulations and laboratory experiments was performed for hexadecanoic acid monolayer systems. In order to simulate specific points on the

  4. Trimethylamine (fishy odor) adsorption by biomaterials: effect of fatty acids, alkanes, and aromatic compounds in waxes.

    PubMed

    Boraphech, Phattara; Thiravetyan, Paitip

    2015-03-02

    Thirteen plant leaf materials were selected to be applied as dried biomaterial adsorbents for polar gaseous trimethylamine (TMA) adsorption. Biomaterial adsorbents were efficient in adsorbing gaseous TMA up to 100% of total TMA (100 ppm) within 24 h. Sansevieria trifasciata is the most effective plant leaf material while Plerocarpus indicus was the least effective in TMA adsorption. Activated carbon (AC) was found to be lower potential adsorbent to adsorb TMA when compared to biomaterial adsorbents. As adsorption data, the Langmuir isotherm supported that the gaseous TMA adsorbed monolayer on the adsorbent surface and was followed pseudo-second order kinetic model. Wax extracted from plant leaf could also adsorb gaseous TMA up to 69% of total TMA within 24 h. Another 27-63% of TMA was adsorbed by cellulose and lignin that naturally occur in high amounts in plant leaf. Subsequently, the composition appearing in biomaterial wax showed a large quantity of short-chain fatty acids (≤C18) especially octadecanoic acid (C18), and short-chain alkanes (C12-C18) as well as total aromatic components dominated in the wax, which affected TMA adsorption. Hence, it has been demonstrated that plant biomaterial is a superior biosorbent for TMA removal.

  5. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane, substituted...

  6. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane, substituted...

  7. Studying Gastric Lipase Adsorption Onto Phospholipid Monolayers by Surface Tensiometry, Ellipsometry, and Atomic Force Microscopy.

    PubMed

    Bénarouche, A; Sams, L; Bourlieu, C; Vié, V; Point, V; Cavalier, J F; Carrière, F

    2017-01-01

    The access to kinetic parameters of lipolytic enzyme adsorption onto lipids is essential for a better understanding of the overall catalytic process carried out by these interfacial enzymes. Gastric lipase, for instance, shows an apparent optimum activity on triglycerides (TAG) at acidic pH, which is controlled by its pH-dependent adsorption at lipid-water interfaces. Since gastric lipase acts on TAG droplets covered by phospholipids, but does not hydrolyze these lipids, phospholipid monolayers spread at the air-water interfaces can be used as biomimetic interfaces to study lipase adsorption and penetration through the phospholipid layer, independently from the catalytic activity. The adsorption of recombinant dog gastric lipase (rDGL) onto 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) monolayers can be monitored by surface tensiometry at various enzyme concentrations, pHs, and surface pressures (Π). These experimental data and the use of Langmuir adsorption isotherm and Verger-de Haas' lipase kinetics models further allow estimating various parameters including the adsorption equilibrium constant (K Ads ), the interfacial concentration [Formula: see text] , the molar fraction [Formula: see text] (Φ E*(%) , mol%), and the molecular area [Formula: see text] of rDGL adsorbed onto the DLPC monolayer under various conditions. Additional insight into rDGL adsorption/insertion on phospholipid monolayers can be obtained by combining ellipsometry, Langmuir-Blodgett film transfer, and atomic force microscopy. When using multicomponent phospholipid monolayers with phase separation, these techniques allow to visualizing how rDGL preferentially partitions toward liquid expanded phase and at phase boundaries, gets adsorbed at various levels of insertion and impacts on the lateral organization of lipids. © 2017 Elsevier Inc. All rights reserved.

  8. Probing the Carbon-Hydrogen Activation of Alkanes Following Photolysis of Tp'Rh(CNR)(carbodiimide): A Computational and Time-Resolved Infrared Spectroscopic Study.

    PubMed

    Guan, Jia; Wriglesworth, Alisdair; Sun, Xue Zhong; Brothers, Edward N; Zarić, Snežana D; Evans, Meagan E; Jones, William D; Towrie, Michael; Hall, Michael B; George, Michael W

    2018-02-07

    Carbon-hydrogen bond activation of alkanes by Tp'Rh(CNR) (Tp' = Tp = trispyrazolylborate or Tp* = tris(3,5-dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ(CNR) and υ(B-H) spectral regions on Tp*Rh(CNCH 2 CMe 3 ), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: κ 3 -η 1 -alkane complex (1); κ 2 -η 2 -alkane complex (2); and κ 3 -alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C-H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C 5 H 10 , C 6 H 12 , C 7 H 14 , and C 8 H 16 ) increase with alkanes size and show a dramatic increase between C 6 H 12 and C 7 H 14 . A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C-H bonds that appear at C 7 H 14 . However, Tp'Rh(CNR) and Tp'Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated κ 2 -η 2 -alkane Tp' complexes stabilizes the d 8 Rh(I) in a square-planar geometry and weakens the metal's ability for oxidative addition of the C-H bond. Further, the Tp'Rh(CNR) fragment has significantly slower rates of C-H activation in comparison to the Tp'Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ 2 -Tp'Rh(CNR)(cycloalkane) species and results in the C-H activation without the assistance of the rechelation.

  9. Transition metal doped (X = V, Cr) CdS monolayer: A DFT study

    NASA Astrophysics Data System (ADS)

    Deb, Jyotirmoy; Paul, Debolina; Sarkar, Utpal

    2018-05-01

    In this work based on density functional theory approach with generalized gradient approximation we have investigated the effect doping and co-doping of transition metal atoms in CdS monolayer sheet. On the basis cohesive energy, we have determined the stability of all the transition metal doped systems. CdS monolayer is of nonmagnetic character but the insertion of transition metal atoms introduces the spontaneous spin polarization which results in a significant value of magnetic moment. The band structure analysis reveals that three different types of conducting nature such as spin-select-half-semiconductor, half metallic and metallic nature with total spin polarization has also been observed. The versatile conducting nature of the transition metal doped CdS monolayer predicts the possibility of using these systems in spintronics mainly as a spin filter and also to form metal-semiconductor interface etc. at nanoscale level.

  10. Investigation of n-Alkane Distributions in Modern Plant Litter from Hawaii wetlands: a potential proxy for past vegetation and hydroclimate changes?

    NASA Astrophysics Data System (ADS)

    Massa, C.; Beilman, D. W.; Nichols, J. E.; Elison Timm, O.

    2016-12-01

    Holocene peat deposits from the Hawaiian Islands provide a unique opportunity to resolve millennial to centennial-scale climate variability over the central Pacific region, where data remain scarce. Because both extratropical and tropical modes of climate variability have a strong influence on modern rainfall over the archipelago, hydroclimate proxies from peat would provide valuable information about past Pacific climate changes. The few terrestrial records studied, based on pollen or leaf wax biomarkers, showed evidence for substantial vegetation changes that have been linked to a drying trend over the Holocene. Leaf wax n-alkanes, as well as their stable isotopic compositions (δ13C and δD), are indeed increasingly used to reconstruct past hydroclimate conditions. The interpretation of n-alkanes as biomarkers requires however a thorough knowledge of their distribution in modern plants that contribute to sediments, but in Hawaii the modern vegetation is understudied compared to proxy applications. Here we report results from a preliminary investigation of n-alkanes distributions in dominant modern plant litter collected at a bog site at the summit of the Waianae mountains on the Island of Oahu. We compared n-alkane distributions among species and plant groups in order to test whether taxa or plant functional types (mosses, ferns, woody plants, and sedges) can be discriminated from their n-alkane profiles. Results showed that general plant groups were difficult to distinguish based on individual n-alkanes abundances, chain lengths, or ratios. At the species level, the sedge Machaerina augustifolia, was largely dominated by n-C29 ( 60%), suggesting some chain lengths could be useful as proxies for identifying the contribution of sedges to sedimentary records. Woody plant average chain length was highly variable but overall was not shorter (even slightly higher) than in other terrestrial plants, as it is often assumed. A sedimentary profile from this site shows

  11. First-principles study on the electronic, optical, and transport properties of monolayer α- and β-GeSe

    DOE PAGES

    Xu, Yuanfeng; Zhang, Hao; Shao, Hezhu; ...

    2017-12-15

    The extraordinary properties and the novel applications of black phosphorene induce the research interest in the monolayer group-IV monochalcogenides. Here using first-principles calculations, we systematically investigate the electronic, transport, and optical properties of monolayer α- and β-GeSe, revealing a direct band gap of 1.61 eV for monolayer α-GeSe and an indirect band gap of 2.47 eV for monolayer β-GeSe. For monolayer β-GeSe, the electronic/hole transport is anisotropic, with an extremely high electron mobility of 2.93×104cm2/Vs along the armchair direction, comparable to that of black phosphorene. However, for β-GeSe, robust band gaps nearly independent of the applied tensile strain along themore » armchair direction are observed. Both monolayer α- and β-GeSe exhibit anisotropic optical absorption in the visible spectrum.« less

  12. Comparative Study of Protein Immobilization Properties on Calixarene Monolayers

    PubMed Central

    Chen, Hongxia; Lee, Minsu; Choi, Sungwook; Kim, Jae-Ho; Choi, Heung-Jin; Kim, Sung-Hoon; Lee, Jeabeom; Koh, Kwangnak

    2007-01-01

    Three calix[4]arene (Cal-4) derivatives of which contain ethylester (1), carboxylic acid (2), and crownether (3) at the lower rim with a common reactive thiol at the upper rim were synthesized and constructed to self-assembled monolayers (SAMs) on Au films. After spectroscopic characterization of monolayers, the interaction between Cal-4 and surface confined bovine serum albumin (BSA) in the SAMs was analyzed by surface plasmon resonance (SPR). The estimated surface concentration of BSA on the Cal-4 SAM with crownether group was the highest among the three Cal-4 derivatives. Anti-hIgG and hIgG pair was employed for the investigation of protein-protein interaction. Molecular interaction between anti-hIgG and hIgG can be detected in a concentration range of 10 pg/mL to 200 pg/mL on the Cal-4 derivative 3 SAM modified SPR chip.

  13. Recognition of Salmonella typhimurium by immobilized phage P22 monolayers

    NASA Astrophysics Data System (ADS)

    Handa, Hitesh; Gurczynski, Stephen; Jackson, Matthew P.; Auner, Gregory; Walker, Jeremy; Mao, Guangzhao

    2008-04-01

    Phages are promising alternatives to antibodies as the biorecognition element in a variety of biosensing applications. In this study, a monolayer of bacteriophage P22 whose tailspike proteins specifically recognize Salmonella serotypes was covalently bound to glass substrates through a bifunctional cross linker 3-aminopropyltrimethoxysilane. The specific binding of Salmonella typhimurium to the phage monolayer was studied by enzyme-linked immunosorbent assay and atomic force microscopy. Escherichia coli and a Gram-positive bacterium Listeria monocytogenes were also studied as control bacteria. The P22 particles show strong binding affinity to S. typhimurium. In addition, the dried P22 monolayer maintained 50% binding capacity to S. typhimurium after a one-week storage time. This is a promising method to prepare phage monolayer coatings on surface plasmon resonance and acoustic biosensor substrates in order to utilize the nascent phage display technology.

  14. Methylene blue adsorption on a DMPA lipid langmuir monolayer.

    PubMed

    Giner Casares, Juan José; Camacho, Luis; Martín-Romero, Maria Teresa; López Cascales, José Javier

    2010-07-12

    Adsorption of methylene blue (MB) onto a dimyristoylphosphatidic acid (DMPA) Langmuir air/water monolayer is studied by molecular dynamics (MD) simulations, UV reflection spectroscopy and surface potential measurements. The free-energy profile associated with MB transfer from water to the lipid monolayer shows two minima of -66 and -60 kJ mol(-1) for its solid and gas phase, respectively, corresponding to a spontaneous thermodynamic process. From the position of the free-energy minima, it is possible to predict the precise location of MB in the interior of the DMPA monolayer. Thus, MB is accommodated in the phosphoryl or carbonyl region of the DMPA Langmuir air/water interface, depending on the isomorphic state (solid or gas phase, respectively). Reorientation of MB, measured from the bulk solution to the interior of the lipid monolayer, passes from a random orientation in bulk solution to an orientation parallel to the surface of the lipid monolayer when MB is absorbed.

  15. Seasonal variation of the particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in urban aerosol of Guangzhou, China.

    PubMed

    Tang, X L; Bi, X H; Sheng, G Y; Tan, J H; Fu, J M

    2006-06-01

    Seasonal aerosol samples have been collected by Andersen Hi-Vol pumping system equipped with a five stage cascade impactor and a backup filter (size range: 10-7.2 microm, 7.2-3.0 microm, 3.0-1.5 microm, 1.5-0.95 microm, 0.95-0.49 microm, Alkanes were measured using gas chromatography and PAHs were measured using gas chromatography/mass spectrometry analysis. The bimodal log-normal distributions of n-alkanes and semi-volatile PAHs were found, while for non-volatile PAHs that was unimodal, so much as the mode of semi-volatile PAHs was similar with that of the particles. The n-alkanes and PAHs were preferably associated with fine particles. C (max) (carbon number maximum) (C(22)-C(26)), CPI (carbon preference index) (1.12-1.21), U/R (unresolved to resolved components ratio) (7.42-10.7), wax% (0.9-3.12%) and the diagnostic ratios for PAHs revealed that vehicular emission was the major source of these organic compounds during the study periods, while the contribution of epicuticular waxes emitted by terrestrial plants was minor. CPI(2) (values for petrogenic hydrocarbons), CPI(3) (values for biogenic n-alkanes) and wax% revealed that the natural preferentially accumulated in the larger aerosol while the anthropogenic in the smaller. In addition, the different MMDs (mass median diameters) for n-alkanes and PAHs were observed in different seasons. The MMDs for n-alkanes and PAHs were higher in autumn/winter than those in spring/summer. The seasonal effect was related to the hydrocarbon content in the individual particulate fractions, showing a preferential association of n-alkanes and PAHs with larger particles in the autumn/winter season.

  16. Rapid analysis of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments

    NASA Astrophysics Data System (ADS)

    McDuffee, Kelsey E.; Eglinton, Timothy I.; Sessions, Alex L.; Sylva, Sean; Wagner, Thomas; Hayes, John M.

    2004-10-01

    Long-chain, odd-carbon-numbered C25 to C35 n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (alkane fractions essentially free of interfering components. The δ13C values obtained by MW-irMS did not differ significantly from weighted averages of individual n-alkane δ13C values obtained by irmGC-MS. Isotopic variations in compound-class n-alkane fractions from a latitudinal transect of core-top sediments from the Southwest African margin (3°N-28°S) were congruent with those measured by compound-specific isotopic analyses of plant-wax n-alkanes. The amplitude of the variations was smaller, indicating contributions from non-plant-wax hydrocarbons, but the measurements revealed variations in carbon isotopic composition that are consistent with vegetation zones on the adjacent continent.

  17. Rapid analysis of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments

    NASA Astrophysics Data System (ADS)

    McDuffee, Kelsey E.; Eglinton, Timothy I.; Sessions, Alex L.; Sylva, Sean; Wagner, Thomas; Hayes, John M.

    2004-10-01

    Long-chain, odd-carbon-numbered C25 to C35n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (alkane fractions essentially free of interfering components. The δ13C values obtained by MW-irMS did not differ significantly from weighted averages of individual n-alkane δ13C values obtained by irmGC-MS. Isotopic variations in compound-class n-alkane fractions from a latitudinal transect of core-top sediments from the Southwest African margin (3°N-28°S) were congruent with those measured by compound-specific isotopic analyses of plant-wax n-alkanes. The amplitude of the variations was smaller, indicating contributions from non-plant-wax hydrocarbons, but the measurements revealed variations in carbon isotopic composition that are consistent with vegetation zones on the adjacent continent.

  18. Pd/NbOPO₄ multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans.

    PubMed

    Xia, Qi-Neng; Cuan, Qian; Liu, Xiao-Hui; Gong, Xue-Qing; Lu, Guan-Zhong; Wang, Yan-Qin

    2014-09-08

    Great efforts have been made to convert renewable biomass into transportation fuels. Herein, we report the novel properties of NbO(x)-based catalysts in the hydrodeoxygenation of furan-derived adducts to liquid alkanes. Excellent activity and stability were observed with almost no decrease in octane yield (>90% throughout) in a 256 h time-on-stream test. Experimental and theoretical studies showed that NbO(x) species play the key role in C-O bond cleavage. As a multifunctional catalyst, Pd/NbOPO4 plays three roles in the conversion of aldol adducts into alkanes: 1) The noble metal (in this case Pd) is the active center for hydrogenation; 2) NbO(x) species help to cleave the C-O bond, especially of the tetrahydrofuran ring; and 3) a niobium-based solid acid catalyzes the dehydration, thus enabling the quantitative conversion of furan-derived adducts into alkanes under mild conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Janus Monolayer Transition-Metal Dichalcogenides.

    PubMed

    Zhang, Jing; Jia, Shuai; Kholmanov, Iskandar; Dong, Liang; Er, Dequan; Chen, Weibing; Guo, Hua; Jin, Zehua; Shenoy, Vivek B; Shi, Li; Lou, Jun

    2017-08-22

    The crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe 2 , the top layer of selenium atoms is substituted by sulfur atoms, while the bottom selenium layer remains intact. The structure of this material is systematically investigated by Raman, photoluminescence, transmission electron microscopy, and X-ray photoelectron spectroscopy and confirmed by time-of-flight secondary ion mass spectrometry. Density functional theory (DFT) calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction activity is discovered for the Janus monolayer, and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.

  20. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, H.H.; Chaar, M.A.

    1988-10-11

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  1. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, Harold H.; Chaar, Mohamed A.

    1988-01-01

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M.sub.3 (VO.sub.4).sub.2 and MV.sub.2 O.sub.6, M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  2. Metal ion interaction with phosphorylated tyrosine analogue monolayers on gold.

    PubMed

    Petoral, Rodrigo M; Björefors, Fredrik; Uvdal, Kajsa

    2006-11-23

    Phosphorylated tyrosine analogue molecules (pTyr-PT) were assembled onto gold substrates, and the resulting monolayers were used for metal ion interaction studies. The monolayers were characterized by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), both prior to and after exposure to metal ions. XPS verified the elemental composition of the molecular adsorbate and the presence of metal ions coordinated to the phosphate groups. Both the angle-dependent XPS and IRAS results were consistent with the change in the structural orientation of the pTyr-PT monolayer upon exposure to metal ions. The differential capacitance of the monolayers upon coordination of the metal ions was evaluated using EIS. These metal ions were found to significantly change the capacitance of the pTyr-PT monolayers in contrast to the nonphosphorylated tyrosine analogue (TPT). CV results showed reduced electrochemical blocking capabilities of the phosphorylated analogue monolayer when exposed to metal ions, supporting the change in the structure of the monolayer observed by XPS and IRAS. The largest change in the structure and interfacial capacitance was observed for aluminum ions, compared to calcium, magnesium, and chromium ions. This type of monolayer shows an excellent capability to coordinate metal ions and has a high potential for use as sensing layers in biochip applications to monitor the presence of metal ions.

  3. Integration of Ganglioside GT1b Receptor into DPPE and DPPC Phospholipid Monolayers: An X-Ray Reflectivity and Grazing-Incidence Diffraction Study

    PubMed Central

    Miller, C. E.; Busath, D. D.; Strongin, B.; Majewski, J.

    2008-01-01

    Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structures of mixed-ganglioside GT1b-phospholipid monolayers were investigated at the air-liquid interface and compared with monolayers of the pure components. The receptor GT1b is involved in the binding of lectins and toxins, including botulinum neurotoxin, to cell membranes. Monolayers composed of 20 mol % ganglioside GT1b, the phospholipid dipalmitoyl phosphatidylethanolamine (DPPE), and the phospholipid dipalmitoyl phosphatidylcholine (DPPC) were studied in the gel phase at 23°C and at surface pressures of 20 and 40 mN/m, and at pH 7.4 and 5. Under these conditions, the two components did not phase-separate, and no evidence of domain formation was observed. The x-ray scattering measurements revealed that GT1b was intercalated within the host DPPE/DPPC monolayers, and slightly expanded DPPE but condensed the DPPC matrix. The oligosaccharide headgroups extended normally from the monolayer surfaces into the subphase. This study demonstrated that these monolayers can serve as platforms for investigating toxin membrane binding and penetration. PMID:18599631

  4. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation.

    PubMed

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-07-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.

  5. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation

    PubMed Central

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-01-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant ‘seed bank'. PMID:25535940

  6. Short-chain alkanes synergise responses of moth pests to their sex pheromones.

    PubMed

    Gurba, Alexandre; Guerin, Patrick M

    2016-05-01

    The use of sex pheromones for mating disruption of moth pests of crops is increasing worldwide. Efforts are under way to augment the efficiency and reliability of this control method by adding molecules derived from host plants to the sex attractants in dispensers. We show how attraction of the European grapevine moth, Lobesia botrana Den. & Schiff., and the codling moth, Cydia pomonella L., males to underdosed levels of their sex pheromones is increased by adding heptane or octane over a range of release rates. Pheromone-alkane mixtures enhance male recruitment by up to 30%, reaching levels induced by calling females, and shorten the flight time to the sex attractant by a factor of 2. The findings show the promise of using short-chain alkanes as pheromone synergists for mating disruption of insect pests of food crops. Alkane-pheromone combinations are expected to increase the competitiveness of dispensers with females, and to reduce the amount of pheromone needed for the control of these pests. © 2015 Society of Chemical Industry.

  7. Wavepacket revivals in monolayer and bilayer graphene rings.

    PubMed

    García, Trinidad; Rodríguez-Bolívar, Salvador; Cordero, Nicolás A; Romera, Elvira

    2013-06-12

    We have studied the existence of quantum revivals in graphene quantum rings within a simplified model. The time evolution of a Gaussian-populated wavepacket shows revivals in monolayer and bilayer graphene rings. We have also studied this behavior for quantum rings in a perpendicular magnetic field. We have found that revival time is an observable that shows different values for monolayer and bilayer graphene quantum rings. In addition, the revival time shows valley degeneracy breaking.

  8. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1995-01-17

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or [beta]-pyrrolic positions.

  9. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1993-05-18

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso- and/or [beta]-pyrrolic positions.

  10. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1993-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  11. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1995-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  12. First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan-Yan; Zhang, Jian-Min

    2018-05-01

    We report the structural, magnetic and electronic properties of the pristine and single TM atoms X (X = Fe, Ru or Os) doped monolayer WS2 systems based on first-principle calculations. The results show that the W-S bond shows a stronger covalent bond, but the covalency is obviously weakened after the substitution of W atom with single X atoms, especially for Ru (4d75s1) with the easily lost electronic configuration. The smaller total energies of the doped systems reveal that the spin-polarized states are energetically favorable than the non-spin-polarized states, and the smallest total energy of -373.918 eV shows the spin-polarized state of the Os doped monolayer WS2 system is most stable among three doped systems. In addition, although the pristine monolayer WS2 system is a nonmagnetic-semiconductor with a direct band gap of 1.813 eV, single TM atoms Fe and Ru doped monolayer WS2 systems transfer to magnetic-HM with the total moments Mtot of 1.993 and 1.962 μB , while single TM atom Os doped monolayer WS2 systems changes to magnetic-metal with the total moments Mtot of 1.569 μB . Moreover, the impurity states with a positive spin splitting energies of 0.543, 0.276 and 0.1999 eV near the Fermi level EF are mainly contributed by X-dxy and X-dx2-y2 states hybridized with its nearest-neighbor atom W-dz2 states for Fe, Ru and Os doped monolayer WS2 system, respectively. Finally, we hope that the present study on monolayer WS2 will provide a useful theoretical guideline for exploring low-dimensional spintronic materials in future experiments.

  13. Vanadium impurity effects on optical properties of Ti3N2 mono-layer: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Babaeipour, Manuchehr; Eslam, Farzaneh Ghafari; Boochani, Arash; Nezafat, Negin Beryani

    2018-06-01

    The present work is investigated the effect of vanadium impurity on electronic and optical properties of Ti3N2 monolayer by using density function theory (DFT) implemented in Wien2k code. In order to study optical properties in two polarization directions of photons, namely E||x and E||z, dielectric function, absorption coefficient, optical conductivity, refraction index, extinction index, reflectivity, and energy loss function of Ti3N2 and Ti3N2-V monolayer have been evaluated within GGA (PBE) approximation. Although, Ti3N2 monolayer is a good infrared reflector and can be used as an infrared mirror, introducing V atom in the infrared area will decrease optical conductivity because optical conductivity of a pure form of a material is higher than its doped form.

  14. Flash Points of Secondary Alcohol and n-Alkane Mixtures.

    PubMed

    Esina, Zoya N; Miroshnikov, Alexander M; Korchuganova, Margarita R

    2015-11-19

    The flash point is one of the most important characteristics used to assess the ignition hazard of mixtures of flammable liquids. To determine the flash points of mixtures of secondary alcohols with n-alkanes, it is necessary to calculate the activity coefficients. In this paper, we use a model that allows us to obtain enthalpy of fusion and enthalpy of vaporization data of the pure components to calculate the liquid-solid equilibrium (LSE) and vapor-liquid equilibrium (VLE). Enthalpy of fusion and enthalpy of vaporization data of secondary alcohols in the literature are limited; thus, the prediction of these characteristics was performed using the method of thermodynamic similarity. Additionally, the empirical models provided the critical temperatures and boiling temperatures of the secondary alcohols. The modeled melting enthalpy and enthalpy of vaporization as well as the calculated LSE and VLE flash points were determined for the secondary alcohol and n-alkane mixtures.

  15. Carbon Isotopes of Alkanes in Hydrothermal Abiotic Organic Synthesis Processes at High Temperatures and Pressures: An Experimental Study

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2010-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques [1-4]. With more evidence showing extensive water-rock interaction in Martian history [5-7], abiotic formation by Fischer-Tropsch Type (FTT) synthesis during serpentization reactions may be one possible process responsible for methane generation on Mars [8, 9]. While the experimental studies performed to date leave little doubt that chemical reactions exist for the abiotic synthesis of organic compounds by mineral surface-catalyzed reactions [10-12], little is known about the reaction pathways by which CO2 and/or CO are reduced under hydrothermal conditions. Carbon and hydrogen isotope measurements of alkanes have been used as an effective tool to constrain the origin and reaction pathways of hydrocarbon formation. Alkanes generated by thermal breakdown of high molecular weight organic compounds have carbon and hydrogen isotopic signatures completely distinct from those formed abiotically [13-15]. Recent experimental studies, however, showed that different abiogenic hydrocarbon formation processes (e.g., polymerization vs. depolymerization) may have different carbon and hydrogen isotopic patterns [16]. Results from previous experiments studying decomposition of higher molecular weight organic compounds (lignite) also suggested that pressure could be a crucial factor affecting fractionation of carbon isotopes [17]. Under high pressure conditions, no experimental data are available describing fractionation of carbon isotope during mineral catalyzed FTT synthesis. Thus, hydrothermal experiments present an excellent opportunity to provide the requisite carbon isotope data. Such data can also be used to identify reaction pathways of abiotic organic synthesis under experimental conditions.

  16. Janus Monolayer Transition-Metal Dichalcogenides

    DOE PAGES

    Zhang, Jing; Jia, Shuai; Kholmanov, Iskandar; ...

    2017-08-03

    In this work, the crystal configuration of sandwiched S–Mo–Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized. By controlled sulfurization of monolayer MoSe 2, the top layer of selenium atoms is substituted by sulfur atoms, while the bottom selenium layer remains intact. Furthermore, the structure of this material is systematically investigated by Raman, photoluminescence, transmission electron microscopy, and X-ray photoelectron spectroscopy and confirmed by time-of-flight secondary ion mass spectrometry. Density functional theory (DFT) calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found tomore » correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction activity is discovered for the Janus monolayer, and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.« less

  17. Optical properties of two-dimensional GaS and GaSe monolayers

    NASA Astrophysics Data System (ADS)

    Jappor, Hamad Rahman; Habeeb, Majeed Ali

    2018-07-01

    Optical properties of GaS and GaSe monolayers are investigated using first-principles calculations. The optical properties are studied up to 35 eV. Precisely, our results demonstrated that the optical properties appearance of GaS monolayer is comparative with GaSe monolayer with few informations contrasts. Moreover, the absorption begins in the visible region, although the peaks in the ultraviolet (UV) region. The refractive index values are 1.644 (GaS monolayer) and 2.01 (GaSe monolayer) at zero photon energy limit and increase to 2.092 and 2.698 respectively and both located in the visible region. Furthermore, we notice that the optical properties of both monolayers are obtained in the ultraviolet range and the results are significant. Accordingly, it can be used as a highly promising material in the solar cell, ultraviolet optical nanodevices, nanoelectronics, optoelectronic, and photocatalytic applications.

  18. Electrochemical Properties of Organosilane Self Assembled Monolayers on Aluminum 2024

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Calle, Luz Marina

    2004-01-01

    Self assembled monolayers are commonly used to modify surfaces. Within the last 15 years, self assembled monolayers have been investigated as a way to protect from corrosion[1,2] or biofouling.[3] In this study, self assembled monolayers of decitriethoxysilane (C10H21Si(OC2H5)3) and octadecyltriethoxysilane (C18H37Si(OC2H5)3) were formed on aluminum 2024-T3. The modified surfaces and bare Al 2024 were characterized by dynamic water contact angle measurements, x-ray photoelectron spectroscopy (XIPS) and infrared spectroscopy. Electrochemical impedance spectroscopy (EIS) in 0.5 M NaCl was used to characterize the monolayers and evaluate their corrosion protection properties. The advancing water contact angle and infrared measurements show that the mono layers form a surface where the hydrocarbon chains are packed and oriented away from the surface, consistent with what is found in similar systems. The contact angle hysteresis measured in these systems is relatively large, perhaps indicating that the hydrocarbon chains are not as well packed as monolayers formed on other substrates. The results of the EIS measurements were modeled using a Randle's circuit modified by changing the capacitor to a constant phase element. The constant phase element values were found to characterize the monolayer. The capacitance of the monolayer modified surface starts lower than the bare Al 2024, but approaches values similar to the bare Al 2024 within 24 hours as the monolayer is degraded. The n values found for bare Al 2024 quickly approach the value of a true capacitor and are greater than 0.9 within hours after the start of exposure. For the monolayer modified structure, n can stay lower than 0.9 for a longer period of time. In fact, n for the monolayer modified surfaces is different from the bare surface even after the capacitance values have converged. This indicates that the deviation from ideal capacitance is the most sensitive indicator of the presence of the monolayer.

  19. Using a chemiresistor-based alkane sensor to distinguish exhaled breaths of lung cancer patients from subjects with no lung cancer.

    PubMed

    Tan, Jiunn-Liang; Yong, Zheng-Xin; Liam, Chong-Kin

    2016-10-01

    Breath alkanes are reported to be able to discriminate lung cancer patients from healthy people. A simple chemiresistor-based sensor was designed to respond to alkanes by a change in resistance measured by a digital multimeter connected to the sensor. In preclinical experiments, the sensor response was found to have a strong positive linear relationship with alkane compounds and not responsive to water. This study aimed to determine the ability of the alkane sensor to distinguish the exhaled breaths of lung cancer patients from that of chronic obstructive pulmonary disease (COPD) patients and control subjects without lung cancer. In this cross-sectional study, 12 treatment-naive patients with lung cancer, 12 ex- or current smokers with COPD and 13 never-smokers without lung disease were asked to exhale through a drinking straw into a prototype breath-in apparatus made from an empty 125 mL Vitagen ® bottle with the chemiresistor sensor attached at its inside bottom to measure the sensor peak output (percentage change of baseline resistance measured before exhalation to peak resistance) and the time taken for the baseline resistance to reach peak resistance. Analysis of multivariate variance and post-hoc Tukey test revealed that the peak output and the time to peak values for the lung cancer patients were statistically different from that for both the COPD patients and the controls without lung disease, Pillai's Trace =0.393, F=3.909, df = (4, 64), P=0.007. A 2.20% sensor peak output and a 90-s time to peak gave 83.3% sensitivity and 88% specificity in diagnosing lung cancer. Tobacco smoking did not affect the diagnostic accuracy of the sensor. The alkane sensor could discriminate patients with lung cancer from COPD patients and people without lung disease. Its potential utility as a simple, cheap and non-invasive test for early lung cancer detection needs further studies.

  20. Aggregate-based sub-CMC Solubilization of n-Alkanes by Monorhamnolipid Biosurfactant.

    PubMed

    Zhong, Hua; Yang, Xin; Tan, Fei; Brusseau, Mark L; Yang, Lei; Liu, Zhifeng; Zeng, Guangming; Yuan, Xingzhong

    2016-03-01

    Solubilization of n -decane, dodecane, tetradecane and hexadecane by monorhamnolipid biosurfactant (monoRL) at concentrations near the critical micelle concentration (CMC) was investigated. The apparent solubility of all the four alkanes increases linearly with increasing monoRL concentration either below or above CMC. The capacity of solubilization presented by the molar solubilization ratio (MSR), however, is stronger at monoRL concentrations below CMC than above CMC. The MSR decreases following the order dodecane > decane > tetradecane > hexadecane at monoRL concentration below CMC. Formation of aggregates at sub-CMC monoRL concentrations was demonstrated by dynamic light scattering (DLS) and cryo-transmission electron microscopy examination. DLS-based size ( d ) and zeta potential of the aggregates decrease with increasing monoRL concentration. The surface excess ( Γ ) of monoRL calculated based on alkane solubility and aggregate size data increases rapidly with increasing bulk monoRL concentration, and then asymptotically approaches the maximum surface excess ( Γ max ). Relation between Γ and d indicates that the excess of monoRL molecules at the aggregate surface greatly impacts the surface curvature. The results demonstrate formation of aggregates for alkane solubilization at monoRL concentrations below CMC, indicating the potential of employing low-concentration rhamnolipid for enhanced solubilization of hydrophobic organic compounds.

  1. Size-tunable Lateral Confinement in Monolayer Semiconductors

    DOE PAGES

    Wei, Guohua; Czaplewski, David A.; Lenferink, Erik J.; ...

    2017-06-12

    Three-dimensional confinement allows semiconductor quantum dots to exhibit size-tunable electronic and optical properties that enable a wide range of opto-electronic applications from displays, solar cells and bio-medical imaging to single-electron devices. Additional modalities such as spin and valley properties in monolayer transition metal dichalcogenides provide further degrees of freedom requisite for information processing and spintronics. In nanostructures, however, spatial confinement can cause hybridization that inhibits the robustness of these emergent properties. Here in this paper, we show that laterally-confined excitons in monolayer MoS 2 nanodots can be created through top-down nanopatterning with controlled size tunability. Unlike chemically-exfoliated monolayer nanoparticles, themore » lithographically patterned monolayer semiconductor nanodots down to a radius of 15 nm exhibit the same valley polarization as in a continuous monolayer sheet. The inherited bulk spin and valley properties, the size dependence of excitonic energies, and the ability to fabricate MoS 2 nanostructures using semiconductor-compatible processing suggest that monolayer semiconductor nanodots have potential to be multimodal building blocks of integrated optoelectronics and spintronics systems« less

  2. Biocompatible Ferromagnetic Cr-Trihalide Monolayers

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    Cr with an electronic configuration of 3d54s1 possesses the largest atomic magnetic moment (6µB) of all elements in the 3d transition metal series. Furthermore, the trivalent chromium (Cr3+) is biocompatible and is widely found in food and supplements. Here using first principles calculations combined with Monte Carlo simulations based on Ising model, we systematically study a class of 2D ferromagnetic monolayers CrX3 (X = Cl, Br, I). The feasibility of exfoliation from their layered bulk phase is confirmed by the small cleavage energy and high in-plane stiffness. Spin-polarized calculations, combined with self consistently determined Hubbard U that accounts for strong correlation energy, demonstrate that CrX3 (X =Cl, Br, I) monolayers are ferromagnetic and Cr is trivalent and carries a magnetic moment of 3µB, the resulting Cr3+ ions are biocompatible. The corresponding Curie temperatures for CrCl3 CrBr3 CrI3 are are found to 66, 86, and 107 K, respectively, which can be increased to 323, 314, 293 K by hole doping. The biocompatibility and ferromagnetism render these Cr-containing trichalcogenide monolayers unique for applications.

  3. Superheating of monolayer ice in graphene nanocapillaries

    NASA Astrophysics Data System (ADS)

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-04-01

    The freezing and melting of low-dimensional materials, either via a first-order phase transition or without any discontinuity in thermodynamic, still remain a matter of debate. Melting (superheating) in two-dimensional (2D) ice is fundamentally different from that in bulk counterpart. Here, we perform comprehensive molecular dynamics simulations of the superheating of monolayer ice in graphene nanocapillaries to understand the nature of melting transition in 2D water/ice. We find four different superheating (melting) scenarios can happen in the superheating of monolayer square-like ice, which are closely related to the lateral pressure and the channel width. The anomalous two-stage melting transition with arisen coexistence phase is found, which reveals the unknown extraordinary characteristics of melting in 2D water/ice. Under ultrahigh lateral pressure, the intermediate monolayer triangular amorphous ice will be formed during the superheating of monolayer square-like ice with both continuous-like and first-order phase transitions. Whereas, under low lateral pressure, the melting in monolayer square-like ice manifests typical discontinuity with notable hysteresis-loop in potential energy during the heating/cooling process. Moreover, we also find that highly puckered monolayer square-like ice can transform into bilayer AB-stacked amorphous ice with square pattern in the superheating process. The superheating behavior under high lateral pressure can be partly regarded as the compression limit of superheated monolayer water. The intrinsic phenomena in our simulated superheating of monolayer ice may be significant for understanding the melting behavior in 2D water/ice.

  4. Superheating of monolayer ice in graphene nanocapillaries.

    PubMed

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-04-07

    The freezing and melting of low-dimensional materials, either via a first-order phase transition or without any discontinuity in thermodynamic, still remain a matter of debate. Melting (superheating) in two-dimensional (2D) ice is fundamentally different from that in bulk counterpart. Here, we perform comprehensive molecular dynamics simulations of the superheating of monolayer ice in graphene nanocapillaries to understand the nature of melting transition in 2D water/ice. We find four different superheating (melting) scenarios can happen in the superheating of monolayer square-like ice, which are closely related to the lateral pressure and the channel width. The anomalous two-stage melting transition with arisen coexistence phase is found, which reveals the unknown extraordinary characteristics of melting in 2D water/ice. Under ultrahigh lateral pressure, the intermediate monolayer triangular amorphous ice will be formed during the superheating of monolayer square-like ice with both continuous-like and first-order phase transitions. Whereas, under low lateral pressure, the melting in monolayer square-like ice manifests typical discontinuity with notable hysteresis-loop in potential energy during the heating/cooling process. Moreover, we also find that highly puckered monolayer square-like ice can transform into bilayer AB-stacked amorphous ice with square pattern in the superheating process. The superheating behavior under high lateral pressure can be partly regarded as the compression limit of superheated monolayer water. The intrinsic phenomena in our simulated superheating of monolayer ice may be significant for understanding the melting behavior in 2D water/ice.

  5. A Detailed Chemical Kinetic Reaction Mechanism for n-Alkane Hydrocarbons From n-Octane to n-Hexadecane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westbrook, C K; Pitz, W J; Herbinet, O

    2008-02-08

    Detailed chemical kinetic reaction mechanisms have been developed to describe the pyrolysis and oxidation of nine n-alkanes larger than n-heptane, including n-octane (n-C{sub 8}H{sub 18}), n-nonane (n-C{sub 9}H{sub 20}), n-decane (n-C{sub 10}H{sub 22}), n-undecane (n-C{sub 11}H{sub 24}), n-dodecane (n-C{sub 12}H{sub 26}), n-tridecane (n-C{sub 13}H{sub 28}), n-tetradecane (n-C{sub 14}H{sub 30}), n-pentadecane (n-C{sub 15}H{sub 32}), and n-hexadecane (n-C{sub 16}H{sub 34}). These mechanisms include both high temperature and low temperature reaction pathways. The mechanisms are based on our previous mechanisms for the primary reference fuels n-heptane and iso-octane, using the reaction class mechanism construction first developed for n-heptane. Individual reaction class rules aremore » as simple as possible in order to focus on the parallelism between all of the n-alkane fuels included in the mechanisms, and these mechanisms will be refined further in the future to incorporate greater levels of accuracy and predictive capability. These mechanisms are validated through extensive comparisons between computed and experimental data from a wide variety of different sources. In addition, numerical experiments are carried out to examine features of n-alkane combustion in which the detailed mechanisms can be used to compare reactivities of different n-alkane fuels. The mechanisms for all of these n-alkanes are presented as a single detailed mechanism, which can be edited to produce efficient mechanisms for any of the n-alkanes included, and the entire mechanism, with supporting thermochemical and transport data, together with an explanatory glossary explaining notations and structural details, will be available for download from our web page.« less

  6. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes.

    PubMed

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-03-30

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes.

  7. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes

    PubMed Central

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F.; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-01-01

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes. PMID:27025898

  8. Monolayer collapse regulating process of adsorption-desorption of palladium nanoparticles at fatty acid monolayers at the air-water interface.

    PubMed

    Goto, Thiago E; Lopez, Ricardo F; Iost, Rodrigo M; Crespilho, Frank N; Caseli, Luciano

    2011-03-15

    In this paper, we investigate the affinity of palladium nanoparticles, stabilized with glucose oxidase, for fatty acid monolayers at the air-water interface, exploiting the interaction between a planar system and spheroids coming from the aqueous subphase. A decrease of the monolayer collapse pressure in the second cycle of interface compression proved that the presence of the nanoparticles causes destabilization of the monolayer in a mechanism driven by the interpenetration of the enzyme into the bilayer/multilayer structure formed during collapse, which is not immediately reversible after monolayer expansion. Surface pressure and surface potential-area isotherms, as well as infrared spectroscopy [polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS)] and deposition onto solid plates as Langmuir-Blodgett (LB) films, were employed to construct a model in which the nanoparticle has a high affinity for the hydrophobic core of the structure formed after collapse, which provides a slow desorption rate from the interface after monolayer decompression. This may have important consequences on the interaction between the metallic particles and fatty acid monolayers, which implies the regulation of the multifunctional properties of the hybrid material.

  9. Structural and dynamic characteristics in monolayer square ice.

    PubMed

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-07-28

    When water is constrained between two sheets of graphene, it becomes an intriguing monolayer solid with a square pattern due to the ultrahigh van der Waals pressure. However, the square ice phase has become a matter of debate due to the insufficient experimental interpretation and the slightly rhomboidal feature in simulated monolayer square-like structures. Here, we performed classical molecular dynamics simulations to reveal monolayer square ice in graphene nanocapillaries from the perspective of structure and dynamic characteristics. Monolayer square-like ice (instantaneous snapshot), assembled square-rhombic units with stacking faults, is a long-range ordered structure, in which the square and rhombic units are assembled in an order of alternative distribution, and the other rhombic unit forms stacking faults (polarized water chains). Spontaneous flipping of water molecules in monolayer square-like ice is intrinsic and induces transformations among different elementary units, resulting in the structural evolution of monolayer square ice in dynamics. The existence of stacking faults should be attributed to the spontaneous flipping behavior of water molecules under ambient temperature. Statistical averaging results (thermal average positions) demonstrate the inherent square characteristic of monolayer square ice. The simulated data and insight obtained here might be significant for understanding the topological structure and dynamic behavior of monolayer square ice.

  10. On the behavior of solutions of xenon in liquid n-alkanes: solubility of xenon in n-pentane and n-hexane.

    PubMed

    Bonifácio, Rui P M F; Martins, Luís F G; McCabe, Clare; Filipe, Eduardo J M

    2010-12-09

    The solubility of xenon in liquid n-pentane and n-hexane has been studied experimentally, theoretically, and by computer simulation. Measurements of the solubility are reported for xenon + n-pentane as a function of temperature from 254 to 305 K. The uncertainty in the experimental data is less than 0.15%. The thermodynamic functions of solvation such as the standard Gibbs energy, enthalpy, and entropy of solvation have been calculated from Henry's law coefficients for xenon + n-pentane solutions and also for xenon + n-hexane, which were reported in previous work. The results provide a further example of the similarity between the xenon + n-alkane interaction and the n-alkane + n-alkane interactions. Using the SAFT-VR approach we were able to quantitatively predict the experimental solubility for xenon in n-pentane and semiquantitatively that of xenon in n-hexane using simple Lorentz-Berthelot combining rules to describe the unlikely interaction. Henry's constants at infinite dilution for xenon + n-pentane and xenon + n-hexane were also calculated by Monte Carlo simulation using a united atom force field to describe the n-alkane and the Widom test particle insertion method.

  11. The Electronic Properties of O-Doped Pure and Sulfur Vacancy-Defect Monolayer WS₂: A First-Principles Study.

    PubMed

    Wang, Weidong; Bai, Liwen; Yang, Chenguang; Fan, Kangqi; Xie, Yong; Li, Minglin

    2018-01-31

    Based on the density functional theory (DFT), the electronic properties of O-doped pure and sulfur vacancy-defect monolayer WS₂ are investigated by using the first-principles method. For the O-doped pure monolayer WS₂, four sizes (2 × 2 × 1, 3 × 3 × 1, 4 × 4 × 1 and 5 × 5 × 1) of supercell are discussed to probe the effects of O doping concentration on the electronic structure. For the 2 × 2 × 1 supercell with 12.5% O doping concentration, the band gap of O-doped pure WS₂ is reduced by 8.9% displaying an indirect band gap. The band gaps in 3 × 3 × 1 and 4 × 4 × 1 supercells are both opened to some extent, respectively, for 5.55% and 3.13% O doping concentrations, while the band gap in 5 × 5 × 1 supercell with 2.0% O doping concentration is quite close to that of the pure monolayer WS₂. Then, two typical point defects, including sulfur single-vacancy (V S ) and sulfur divacancy (V 2S ), are introduced to probe the influences of O doping on the electronic properties of WS₂ monolayers. The observations from DFT calculations show that O doping can broaden the band gap of monolayer WS₂ with V S defect to a certain degree, but weaken the band gap of monolayer WS₂ with V 2S defect. Doping O element into either pure or sulfur vacancy-defect monolayer WS₂ cannot change their band gaps significantly, however, it still can be regarded as a potential method to slightly tune the electronic properties of monolayer WS₂.

  12. Structural studies of the HIV-1 accessory protein Vpu in langmuir monolayers: synchrotron X-ray reflectivity.

    PubMed Central

    Zheng, S; Strzalka, J; Ma, C; Opella, S J; Ocko, B M; Blasie, J K

    2001-01-01

    Vpu is an 81 amino acid integral membrane protein encoded by the HIV-1 genome with a N-terminal hydrophobic domain and a C-terminal hydrophilic domain. It enhances the release of virus from the infected cell and triggers degradation of the virus receptor CD4. Langmuir monolayers of mixtures of Vpu and the phospholipid 1,2-dilignoceroyl-sn-glycero-3-phosphocholine (DLgPC) at the water-air interface were studied by synchrotron radiation-based x-ray reflectivity over a range of mole ratios at constant surface pressure and for several surface pressures at a maximal mole ratio of Vpu/DLgPC. Analysis of the x-ray reflectivity data by both slab model-refinement and model-independent box-refinement methods firmly establish the monolayer electron density profiles. The electron density profiles as a function of increasing Vpu/DLgPC mole ratio at a constant, relatively high surface pressure indicated that the amphipathic helices of the cytoplasmic domain lie on the surface of the phospholipid headgroups and the hydrophobic transmembrane helix is oriented approximately normal to the plane of monolayer within the phospholipid hydrocarbon chain layer. At maximal Vpu/DLgPC mole ratio, the tilt of the transmembrane helix with respect to the monolayer normal decreases with increasing surface pressure and the conformation of the cytoplasmic domain varies substantially with surface pressure. PMID:11259297

  13. Maxwell displacement current allows to study structural changes of gramicidin A in monolayers at the air-water interface.

    PubMed

    Vitovic, Pavol; Weis, Martin; Tomcík, Pavol; Cirák, Július; Hianik, Tibor

    2007-05-01

    We applied methods of measurement Maxwell displacement current (MDC) pressure-area isotherms and dipole potential for analysis of the properties of gramicidin A (gA) and mixed gA/DMPC monolayers at an air-water interface. The MDC method allowed us to observe the kinetics of formation of secondary structure of gA in monolayers at an air-water interface. We showed, that secondary structure starts to form at rather low area per molecule at which gA monolayers are in gaseous state. Changes of the MDC during compression can be attributed to the reorientation of dipole moments in a gA double helix at area 7 nm(2)/molecule, followed by the formation of intertwined double helix of gA. The properties of gA in mixed monolayers depend on the molar fraction of gA/DMPC. At higher molar fractions of gA (around 0.5) the shape of the changes of dipole moment of mixed monolayer was similar to that for pure gA. The analysis of excess free energy in a gel (18( ) degrees C) and in a liquid-crystalline phase (28( ) degrees C) allowed us to show influence of the monolayer structural state on the interaction between gA and the phospholipids. In a gel state and at the gA/DMPC molar ratio below 0.17 the aggregates of gA were formed, while above this molar ratio gA interacts favorably with DMPC. In contrast, for DMPC in a liquid-crystalline state aggregation of gA was observed for all molar fractions studied. The effect of formation ordered structures between gA and DMPC is more pronounced at low temperatures.

  14. Molecular organization of phospholipid monolayers on the water surface by Maxwell displacement current measurement

    NASA Astrophysics Data System (ADS)

    Sulaiman, Khaulah; Majid, Wan Haliza Abdul; Muhamad, Muhamad Rasat

    2006-02-01

    The monolayer of organic molecules at the air-water interface has been studied using the Maxwell displacement current (MDC) technique. The materials used in this study were the biological materials of phosphatidyl ethanolamine (PE) and phosphatidic acids (PA). The configuration of the experimental set-up consists of the metal/air-gap/monolayer/metal coupled with the Langmuir method. This measurement enables the detection of current without destroying the monolayer. The phase transition and molecular orientation of the phospholipid monolayers were investigated using MDC measurement without mechanical contact between electrodes and the materials. Direct evidence of phase transition from gaseous to the polar ordering phase can be obtained across phospholipid monolayers even though at very low surface pressure. Relaxation process of the phospholipid monolayers was investigated by using the step compression on the MDC signals.

  15. Theory and Experiment of Binary Diffusion Coefficient of n-Alkanes in Dilute Gases.

    PubMed

    Liu, Changran; McGivern, W Sean; Manion, Jeffrey A; Wang, Hai

    2016-10-10

    Binary diffusion coefficients were measured for n-pentane, n-hexane, and n-octane in helium and of n-pentane in nitrogen over the temperature range of 300 to 600 K, using reversed-flow gas chromatography. A generalized, analytical theory is proposed for the binary diffusion coefficients of long-chain molecules in simple diluent gases, taking advantage of a recently developed gas-kinetic theory of the transport properties of nanoslender bodies in dilute free-molecular flows. The theory addresses the long-standing question about the applicability of the Chapman-Enskog theory in describing the transport properties of nonspherical molecular structures, or equivalently, the use of isotropic potentials of interaction for a roughly cylindrical molecular structure such as large normal alkanes. An approximate potential energy function is proposed for the intermolecular interaction of long-chain n-alkane with typical bath gases. Using this potential and the analytical theory for nanoslender bodies, we show that the diffusion coefficients of n-alkanes in typical bath gases can be treated by the resulting analytical model accurately, especially for compounds larger than n-butane.

  16. Low-temperature study of neutral and charged excitons in the large-area monolayer WS2

    NASA Astrophysics Data System (ADS)

    Gu, Hong; Chen, Le; Lu, Youming; Tian, Feifei; Zhang, Zhiqiang; Xu, Ke; Wu, Jing; Divakar Botcha, V.; Li, Kuilong; Liu, Xinke

    2018-06-01

    We present a low-temperature optical study of the large-area monolayer WS2 grown by chemical vapor deposition (CVD). Power-dependent photoluminescence (PL) measurements were conducted, and temperature-dependent PL spectra were measured in the range of 3 to 300 K. With the comparative PL bands obtained, a stronger trion emission in the edge region was detected to be the key difference. Sulfur vacancies (SVs) were observed to increase in density along the growth direction and found to be the main source of the large population of local charge carriers. The monolayer WS2 exhibited an upper bound for the trion binding energy of 18 meV in the edge region.

  17. A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil

    NASA Astrophysics Data System (ADS)

    Tang, Yongchun; Huang, Yongsong; Ellis, Geoffrey S.; Wang, Yi; Kralert, Paul G.; Gillaizeau, Bruno; Ma, Qisheng; Hwang, Rong

    2005-09-01

    reflectance values corresponding to the onset of thermal cracking of normal alkanes. The experimental and theoretical results of this study have significant implications for the use of compound-specific hydrogen isotope data in petroleum geochemical and paleoclimatological studies. However, there are many other geochemical processes that will significantly affect observed hydrogen isotopic compositions (e.g., biodegradation, water washing, isotopic exchange with water and minerals) that must also be taken into consideration.

  18. Optical properties of monolayer MoS2 nanoribbons

    NASA Astrophysics Data System (ADS)

    Wei, Guohua; Lenferink, Erik J.; Stern, Nathaniel P.

    Confinement of carriers in semiconductors is a powerful mechanism for manipulating optical and electronic properties of materials. Although atomically-thin monolayer semiconductors such as transition metal dichalcogenides naturally confine carriers in the out-of-plane direction, achieving appreciable confinement effects in the in-plane dimensions is less well-studied because their optical processes are dominated by tightly bound excitons. In earlier work, we have shown that lateral confinement effects can be controlled in monolayer MoS2 using high-resolution top-down nanopatterning. Here, we use similar techniques to create monolayer MoS2 nanoribbons that exhibit size-tunable photoluminescence and anisotropic Raman scattering. Our process also allows characterization of transport properties of the nanoribbons. This approach demonstrates how dimensionality influences monolayer semiconductors, which could impact charge and valley dynamics relevant to nano-scale opto-electronic devices. This work is supported by ISEN and ONR (N00014-16-1-3055). Use of the Center for Nanoscale Materials was supported by DOE Contract No. DE-AC02-06CH11357. N.P.S. is an Alfred P. Sloan Research Fellow.

  19. Switchable polarization in an unzipped graphene oxide monolayer.

    PubMed

    Noor-A-Alam, Mohammad; Shin, Young-Han

    2016-08-14

    Ferroelectricity in low-dimensional oxide materials is generally suppressed at the scale of a few nanometers, and has attracted considerable attention from both fundamental and technological aspects. Graphene is one of the thinnest materials (one atom thick). Therefore, engineering switchable polarization in non-polar pristine graphene could potentially lead to two-dimensional (2D) ferroelectric materials. In the present study, based on density functional theory, we show that an unzipped graphene oxide (UGO) monolayer can exhibit switchable polarization due to its foldable bonds between the oxygen atom and two carbon atoms underneath the oxygen. We find that a free standing UGO monolayer exhibits antiferroelectric switchable polarization. A UGO monolayer can be obtained as an intermediate product during the chemical exfoliation process of graphene. Interestingly, despite its dimensionality, our estimated polarization in a UGO monolayer is comparable to that in bulk ferroelectric materials (e.g., ferroelectric polymers). Our calculations could help realize antiferroelectric switchable polarization in 2D materials, which could find various potential applications in nanoscale devices such as sensors, actuators, and capacitors with high energy-storage density.

  20. Neutrophil-endothelial cell interactions on endothelial monolayers grown on micropore filters.

    PubMed Central

    Taylor, R F; Price, T H; Schwartz, S M; Dale, D C

    1981-01-01

    We have developed a technique for growing endothelial monolayers on micropore filters. These monolayers demonstrate confluence by phase and electron microscopy and provide a functional barrier to passage of radiolabeled albumin. Neutrophils readily penetrate the monolayer in response to chemotaxin, whereas there is little movement in the absence of chemotaxin. This system offers unique advantages over available chemotaxis assays and may have wider applications in the study of endothelial function. Images PMID:7007441

  1. First Principles Study of Electronic Band Structure and Structural Stability of Al2C Monolayer and Nanotubes

    NASA Astrophysics Data System (ADS)

    Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.

    2017-09-01

    We used density functional theory (DFT) based on generalized gradient approximation (GGA) and hybrid functional (HSE06) to investigate band gap and structural stability of Al2C monolayer and nanotubes. From the results, both GGA and HSE06 band gaps of Al2C monolayer agree well with previously reported data. For the Al2C nanotubes, we found that their band gaps are more sensitive to the size and the chirality than that of the widely studied SiC2 nanotubes, indicating the Al2C nanotubes may have higher band gap tuning capabilities (with varying diameter size and chirality) compared with those of SiC2 nanotubes. We have also discovered a desirable direct band gap in the case of (n,0) nanotubes, although Al2C monolayer band gap is indirect. The calculated strain energy reveals that (n,0) nanotubes constructed by wrapping up Al2C monolayer consume less energy than (0,n) nanotubes. Thus, (n,0) nanotubes is easier to synthesize than (0,n) nanotubes. This discovery of direct band gap in (n,0) Al2C nanotubes and their adjustable band gap suggests them as promising sensitizer for enhancing power conversion efficiency of excitonic solar cells.

  2. UV-induced reaction kinetics of dilinoleoylphosphatidylethanolamine monolayers.

    PubMed Central

    Viitala, T; Peltonen, J

    1999-01-01

    The UV-induced reactivity of dilinoleoylphosphatidylethanolamine (DLiPE) Langmuir and Langmuir-Blodgett films has been studied by in situ measurements of the changes in the mean molecular area, UV-vis and Fourier transform infrared spectroscopy, and atomic force microscopy (AFM). Optimum orientation and packing density of the DLiPE molecules in the monolayer were achieved by adding uranyl acetate to the subphase. A first-order reaction kinetic model was successfully fitted to the experimental reaction kinetics data obtained at a surface pressure of 30 mN/m. Topographical studies of LB films by AFM were performed on bilayer structures as a function of subphase composition and UV irradiation time. The orientational effect of the uranyl ions on the monolayer molecules was observed as an enhanced homogeneity of the freshly prepared monomeric LB films. However, the long-term stability of these films proved to be bad; clear reorganization and loss of a true monolayer structure were evidenced by the AFM images. This instability was inhibited for the UV-irradiated films, indicating that the UV irradiation gave rise to a cross-linked structure. PMID:10233096

  3. Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guibert, Lilian M.; Loviso, Claudia L.; Borglin, Sharon

    We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlatedmore » with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.« less

  4. Molecular conformation of linear alkane molecules: From gas phase to bulk water through the interface

    NASA Astrophysics Data System (ADS)

    Murina, Ezequiel L.; Fernández-Prini, Roberto; Pastorino, Claudio

    2017-08-01

    We studied the behavior of long chain alkanes (LCAs) as they were transferred from gas to bulk water, through the liquid-vapor interface. These systems were studied using umbrella sampling molecular dynamics simulation and we have calculated properties like free energy profiles, molecular orientation, and radius of gyration of the LCA molecules. The results show changes in conformation of the solutes along the path. LCAs adopt pronounced molecular orientations and the larger ones extend appreciably when partially immersed in the interface. In bulk water, their conformations up to dodecane are mainly extended. However, larger alkanes like eicosane present a more stable collapsed conformation as they approach bulk water. We have characterized the more probable configurations in all interface and bulk regions. The results obtained are of interest for the study of biomatter processes requiring the transfer of hydrophobic matter, especially chain-like molecules like LCAs, from gas to bulk aqueous systems through the interface.

  5. Robust ferromagnetism in monolayer chromium nitride

    PubMed Central

    Zhang, Shunhong; Li, Yawei; Zhao, Tianshan; Wang, Qian

    2014-01-01

    Design and synthesis of two-dimensional (2D) materials with robust ferromagnetism and biocompatibility is highly desirable due to their potential applications in spintronics and biodevices. However, the hotly pursued 2D sheets including pristine graphene, monolayer BN, and layered transition metal dichalcogenides are nonmagnetic or weakly magnetic. Using biomimetic particle swarm optimization (PSO) technique combined with ab initio calculations we predict the existence of a 2D structure, a monolayer of rocksalt-structured CrN (100) surface, which is both ferromagnetic and biocompatible. Its dynamic, thermal and magnetic stabilities are confirmed by carrying out a variety of state-of-the-art theoretical calculations. Analyses of its band structure and density of states reveal that this material is half-metallic, and the origin of the ferromagnetism is due to p-d exchange interaction between the Cr and N atoms. We demonstrate that the displayed ferromagnetism is robust against thermal and mechanical perturbations. The corresponding Curie temperature is about 675 K which is higher than that of most previously studied 2D monolayers. PMID:24912562

  6. Metal adsorption on monolayer blue phosphorene: A first principles study

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Son, Jicheol; Hong, Jisang

    2018-01-01

    We investigated the electronic structure, adsorption energies, magnetic properties, dipole moment and work function of metal adatoms (Mg, Cr, Mo, Pd, Pt, and Au) adsorption on a blue phosphorene monolayer. For Mg, Pt and Au metals, the most stable state was found in hollow site while for Cr, Mo and Pd metals we found an adsorption in valley site. We suggest that the Pd and Pt atoms prefer 2D growth mode while the Mg, Cr, Mo and Au atoms prefer 3D island growth mode on monolayer phosphorene. The electronic band structures and magnetic properties were dependent on the doping site and dopant materials. For instance, the semiconducting features were preserved in Mg, Pd, Pt, and Au doped systems. However, the Cr and Mo doped systems displayed half-metallic band structures. The total magnetic moment of 4.05, 2.0 and 0.77 μB /impurity atom were obtained in Cr, Mo and Au doped systems whereas the Mg, Pd and Pt doped systems remained nonmagnetic. We also investigated the magnetic interaction between two transition metal impurities. We observed ferromagnetic coupling between two transition metal impurities in Cr and Mo doped systems while the Au doped system displayed almost degenerated magnetic state. For Mg, Cr, and Mo adsorptions, we found relatively large values of dipole moments compared to those in the Pd, Pt and Au adsorptions. This resulted in a significant suppression of the work function in Mg, Cr and Mo adsorptions. Overall, adsorption can tune the physical and magnetic properties of phosphorene monolayer.

  7. Response surface analysis and modeling of n-alkanes removal through bioremediation of weathered crude oil.

    PubMed

    Mohajeri, Leila; Abdul Aziz, Hamidi; Ali Zahed, Mohammad; Mohajeri, Soraya; Mohamed Kutty, Shamsul Rahman; Hasnain Isa, Mohamed

    2011-01-01

    Central composite design (CCD) and response surface methodology (RSM) were employed to optimize four important variables, i.e. amounts of oil, bacterial inoculum, nitrogen and phosphorus, for the removal of selected n-alkanes during bioremediation of weathered crude oil in coastal sediments using laboratory bioreactors over a 60 day experimentation period. The reactors contained 1 kg soil with different oil, microorganisms and nutrients concentrations. The F Value of 26.89 and the probability value (P < 0.0001) demonstrated significance of the regression model. For crude oil concentration of 2, 16 and 30 g per kg sediments and under optimized conditions, n-alkanes removal was 97.38, 93.14 and 90.21% respectively. Natural attenuation removed 30.07, 25.92 and 23.09% n-alkanes from 2, 16 and 30 g oil/kg sediments respectively. Excessive nutrients addition was found to inhibit bioremediation.

  8. Analysis of n-alkanes at sub microgram per liter level after direct solid phase microextraction from aqueous samples.

    PubMed

    Farajzadeh, Mirali; Hatami, Mehdi

    2002-11-01

    This work describes the application of the previously presented solid phase microextraction (SPME) fiber in direct mode for sampling of C10-C20 n-alkanes from aqueous solution. The fiber has simple composition and is constructed from activated charcoal:PVC suspension in tetrahydrofuran. When the composition of the fiber was optimized that the optimum composition was 90:10 (activated charcoal:PVC) for direct mode, whereas it was 75:25 for sampling from the headspace of aqueous samples. This fiber is completely stable in contact with water. The extraction efficiency is improved in the presence of 0.1 M NaCl. The value is between 17.8-38.5% for the first extraction, which better than the efficiency of similar commercial fibers. After seven extractions, all analytes are removed from the aqueous samples nearly 100%. Single fiber repeatability and fiber-to-fiber reproducibility are good and both are less than 13% for all studied alkanes. Finally, direct mode SPME was used in the determination of n-alkanes in the range of sub microg L(-1) without any additional preconcentration procedure. Gas chromatography along with flame ionization detection were used for separation and detection of the studied analytes.

  9. Study of lnter-Molecular Dynamics within Alkylsiloxane Self-Assembled Monolayer and Elastomer Systems

    NASA Astrophysics Data System (ADS)

    Roman, Michael

    In this work, molecular motion, and in particular, glassy relaxations are studied in two novel experimental systems. Both experimental systems offer a significant degree of control over molecule-molecule, or group-group (where group refers to a portion of a molecule), interactions by controlling density and the type of inter-molecular interaction. Both systems have rigid elements that decrease the tendency of bulk materials to spontaneously change their density with temperature. Thus, density can be maintained and controlled and the effect of density and temperature can be (at least in part) de-convolved. The goal of this work is to experimentally observe the transition from simple, local relaxations to glassy dynamics as density is increased and to understand how this transition differs as the inter-molecular interactions are altered. In both approaches, the system is fabricated from individual parts where the nature, spacing, and particular arrangement of the parts can be controlled and the resultant changes in molecular motion can be observed. Building up a custom system from parts enables fundamental investigation into the glass transition (as discussed above) and also makes possible the development of materials that have engineered responses as a function of temperature. As a short-hand, we refer to the two systems as the monolayer or SAM (short for Self-Assembled Monolayer) and elastomer approaches. In Chapters 4-7 we discuss results from the monolayer approach. Chapter 8 summarizes results from the elastomer approach. In particular, Chapter 4 introduces you to dielectric spectroscopy and briefly summarizes the previous work by former students in the Clarke group which identified the local and glass relaxations in silane monolayers of substituted alkyl chains as analogous to the local and glassy relaxations in polymeric systems containing phase segregated alkyl chains, and similar to the local and glass modes in poly(ethylene). The remainder of Chapter 4

  10. The ferromagnetic monolayer Fe(110) on W(110)

    NASA Astrophysics Data System (ADS)

    Gradmann, U.; Liu, G.; Elmers, H. J.; Przybylski, M.

    1990-07-01

    Ferromagnetic order in the pseudomorphic monolayer Fe(110) on W(110) was analyzed experimentally using Conversion Electron Mössbauer Spectroscopy (CEMS) and Torsion Oscillation Magnetometry (TOM). The monolayer is thermodynamically stable, crystallizes to large monolayer patches at elevated temperatures and therefore forms an excellent approximation to the ideal monolayer structure. It is ferromagnetic below a Curie-temperature T c,mono, which is given by (282±3) K for the Ag-coated layer, (290±10) K for coating by Cu, Ag or Au and ≈210 K for the free monolayer. For the Ag-coated monolayer, ground state hyperfine field B hf (0)=(11.9±0.3) T and magnetic moment per atom μ=2.53 μB could be determined, in fair agreement with theoretical predictions. Unusual properties of the phase transition are detected by the combination of both experimental techniques. Strong magnetic anisotropies, which are essential for ferromagnetic order, are determined by CEMS.

  11. Liquid-Crystalline Collapse of Pulmonary Surfactant Monolayers

    PubMed Central

    Schief, William R.; Antia, Meher; Discher, Bohdana M.; Hall, Stephen B.; Vogel, Viola

    2003-01-01

    During exhalation, the surfactant film of lipids and proteins that coats the alveoli in the lung is compressed to high surface pressures, and can remain metastable for prolonged periods at pressures approaching 70 mN/m. Monolayers of calf lung surfactant extract (CLSE), however, collapse in vitro, during an initial compression at ∼45 mN/m. To gain information on the source of this discrepancy, we investigated how monolayers of CLSE collapse from the interface. Observations with fluorescence, Brewster angle, and light scattering microscopies show that monolayers containing CLSE, CLSE-cholesterol (20%), or binary mixtures of dipalmitoyl phosphatidylcholine(DPPC)-dihydrocholesterol all form bilayer disks that reside above the monolayer. Upon compression and expansion, lipids flow continuously from the monolayer into the disks, and vice versa. In several respects, the mode of collapse resembles the behavior of other amphiphiles that form smectic liquid-crystal phases. These findings suggest that components of surfactent films must collapse collectively rather than being squeezed out individually. PMID:12770885

  12. Partial oxidation of alkanes by dioxiranes formed in situ at low temperature.

    PubMed

    Yacob, Sara; Caulfield, Michael J; Barckholtz, Timothy A

    2018-01-13

    Partial oxidation catalysts capable of efficiently operating at low temperatures may limit the over-oxidation of alkane substrates and thereby improve selectivity. This work focuses on examining alkane oxidation using completely metal-free organocatalysts, dioxiranes. The dioxiranes employed here are synthesized by oxidation of a ketone using a terminal oxidant, such as hydrogen peroxide. Our work generates the dioxirane in situ , so that the process can be catalytic with respect to the ketone. To date, we have demonstrated selective partial oxidation of adamantane using ketone catalysts resulting in yields upwards of 60% towards 1-adamantanol with greater than 99% selectivity. Furthermore, we have demonstrated that changing the electrophilic character of the ketone R groups to contain more electron-donating ligands facilitates the dioxirane ring formation and improves overall oxidation yields. Isotopic labelling studies using H 2 18 O 2 show the preferential incorporation of an 18 O label into the parent ketone, providing evidence for a dioxirane intermediate formed in situ The isotopic labelling studies, along with solvent effect studies, suggest the formation of peracetic acid as a reactive intermediate.This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'. © 2017 The Author(s).

  13. Long-Term Incubation Reveals Methanogenic Biodegradation of C5 and C6 iso-Alkanes in Oil Sands Tailings.

    PubMed

    Siddique, Tariq; Mohamad Shahimin, Mohd Faidz; Zamir, Saima; Semple, Kathleen; Li, Carmen; Foght, Julia M

    2015-12-15

    iso-Alkanes are major components of petroleum and have been considered recalcitrant to biodegradation under methanogenic conditions. However, indigenous microbes in oil sands tailings ponds exposed to solvents rich in 2-methylbutane, 2-methylpentane, 3-methylpentane, n-pentane, and n-hexane produce methane in situ. We incubated defined mixtures of iso- or n-alkanes with mature fine tailings from two tailings ponds of different ages historically exposed to different solvents: one, ~10 years old, receiving C5-C6 paraffins and the other, ~35 years old, receiving naphtha. A lengthy incubation (>6 years) revealed iso-alkane biodegradation after lag phases of 900-1800 and ~280 days, respectively, before the onset of methanogenesis, although lag phases were shorter with n-alkanes (~650-1675 and ~170 days, respectively). 2-Methylpentane and both n-alkanes were completely depleted during ~2400 days of incubation, whereas 2-methylbutane and 3-methylpentane were partially depleted only during active degradation of 2-methylpentane, suggesting co-metabolism. In both cases, pyrotag sequencing of 16S rRNA genes showed codominance of Peptococcaceae with acetoclastic (Methanosaeta) and hydrogenotrophic (Methanoregula and Methanolinea) methanogens. These observations are important for predicting long-term greenhouse-gas emissions from oil sands tailings ponds and extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments.

  14. Biocatalytic, one-pot diterminal oxidation and esterification of n-alkanes for production of α,ω-diol and α,ω-dicarboxylic acid esters.

    PubMed

    van Nuland, Youri M; de Vogel, Fons A; Scott, Elinor L; Eggink, Gerrit; Weusthuis, Ruud A

    2017-11-01

    Direct and selective terminal oxidation of medium-chain n-alkanes is a major challenge in chemistry. Efforts to achieve this have so far resulted in low specificity and overoxidized products. Biocatalytic oxidation of medium-chain n-alkanes - with for example the alkane monooxygenase AlkB from P. putida GPo1- on the other hand is highly selective. However, it also results in overoxidation. Moreover, diterminal oxidation of medium-chain n-alkanes is inefficient. Hence, α,ω-bifunctional monomers are mostly produced from olefins using energy intensive, multi-step processes. By combining biocatalytic oxidation with esterification we drastically increased diterminal oxidation upto 92mol% and reduced overoxidation to 3% for n-hexane. This methodology allowed us to convert medium-chain n-alkanes into α,ω-diacetoxyalkanes and esterified α,ω-dicarboxylic acids. We achieved this in a one-pot reaction with resting-cell suspensions of genetically engineered Escherichia coli. The combination of terminal oxidation and esterification constitutes a versatile toolbox to produce α,ω-bifunctional monomers from n-alkanes. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Evaluation of the organic matter sources using the δ13C composition of individual n-alkanes in sediments from Brazilian estuarine systems by GC/C/IRMS

    NASA Astrophysics Data System (ADS)

    Maioli, Otávio Luiz Gusso; de Oliveira, Cristiane Rossi; Dal Sasso, Marco Aurélio; Madureira, Luiz Augusto dos Santos; Azevedo, Débora de Almeida; de Aquino Neto, Francisco Radler

    2012-12-01

    The δ13C composition of individual n-alkanes (from C16 to C34) was measured from surface sediments of five Brazilian estuarine systems affected by different organic matter sources, such as harbor area, industries, urban centers and sugar cane crops, in order to determine the origins of the organic matter. The aliphatic hydrocarbon fraction was analyzed by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS). The levels of n-alkanes in the studied areas ranged from 0.34 to 18.14 μg kg-1, being relatively low in comparison to high polluted environments. The Carbon Preference Index (CPI) calculated in the C23-C34 range indicates that n-alkanes are mainly inherited from cuticular waxes of higher plants. The δ13C composition of all n-alkanes detected in the sediment samples ranged from -39.6 to -18.3‰ showing different sources for the studied estuarine systems. Through Principal Component Analysis (PCA) it was possible to verify the petrogenic influence in the n-alkane sources, especially in the Paraíba do Sul sediment samples. Differences up to 15‰ of the δ13C values between n-alkanes of odd and even carbon number (C26 and C27) also indicated mixture of petrogenic and biogenic sources in Paraíba do Sul River. High (less negative) δ13C n-alkane values of odd carbon number were obtained from two sampling sites located close to an ethanol plant, indicating residues discharge of sugar cane (C4 plant). Influence of C3 plants that are the main components of dense ombrophile forest was observed in the Itajaí-Açu sediments by the decrease of δ13C (about 10‰ compared to the Paraíba do Sul River δ13C).

  16. Multifunctional Self-Assembled Monolayers for Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Cernetic, Nathan

    Organic field effect transistors (OFETs) have the potential to reach commercialization for a wide variety of applications such as active matrix display circuitry, chemical and biological sensing, radio-frequency identification devices and flexible electronics. In order to be commercially competitive with already at-market amorphous silicon devices, OFETs need to approach similar performance levels. Significant progress has been made in developing high performance organic semiconductors and dielectric materials. Additionally, a common route to improve the performance metric of OFETs is via interface modification at the critical dielectric/semiconductor and electrode/semiconductor interface which often play a significant role in charge transport properties. These metal oxide interfaces are typically modified with rationally designed multifunctional self-assembled monolayers. As means toward improving the performance metrics of OFETs, rationally designed multifunctional self-assembled monolayers are used to explore the relationship between surface energy, SAM order, and SAM dipole on OFET performance. The studies presented within are (1) development of a multifunctional SAM capable of simultaneously modifying dielectric and metal surface while maintaining compatibility with solution processed techniques (2) exploration of the relationship between SAM dipole and anchor group on graphene transistors, and (3) development of self-assembled monolayer field-effect transistor in which the traditional thick organic semiconductor is replaced by a rationally designed self-assembled monolayer semiconductor. The findings presented within represent advancement in the understanding of the influence of self-assembled monolayers on OFETs as well as progress towards rationally designed monolayer transistors.

  17. Localized diffusive motion on two different time scales in solid alkane nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, S.-K.; Mamontov, E.; Bai, M.; Hansen, F. Y.; Taub, H.; Copley, J. R. D.; García Sakai, V.; Gasparovic, G.; Jenkins, T.; Tyagi, M.; Herwig, K. W.; Neumann, D. A.; Montfrooij, W.; Volkmann, U. G.

    2010-09-01

    High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a "fast" motion corresponding to uniaxial rotation about the long molecular axis; and a "slow" motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase.

  18. Piezoelectric effect on the thermal conductivity of monolayer gallium nitride

    NASA Astrophysics Data System (ADS)

    Zhang, Jin

    2018-01-01

    Using molecular dynamics and density functional theory simulations, in this work, we find that the heat transport property of the monolayer gallium nitride (GaN) can be efficiently tailored by external electric field due to its unique piezoelectric characteristic. As the monolayer GaN possesses different piezoelectric properties in armchair and zigzag directions, different effects of the external electric field on thermal conductivity are observed when it is applied in the armchair and zigzag directions. Our further study reveals that due to the elastoelectric effect in the monolayer GaN, the external electric field changes the Young's modulus and therefore changes the phonon group velocity. Also, due to the inverse piezoelectric effect, the applied electric field induces in-plane stress in the monolayer GaN subject to a length constraint, which results in the change in the lattice anharmonicity and therefore affects the phonon mean free path. Furthermore, for relatively long GaN monolayers, the in-plane stress may trigger the buckling instability, which can significantly reduce the phonon mean free path.

  19. A Detailed Chemical Kinetic Reaction Mechanism for n-Alkane Hydrocarbons from n-Octane to n-Hexadecane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westbrook, C K; Pitz, W J; Herbinet, O

    2007-09-25

    Detailed chemical kinetic reaction mechanisms have been developed to describe the pyrolysis and oxidation of the n-alkanes, including n-octane (n-C{sub 8}H{sub 18}), n-nonane (n-C{sub 9}H{sub 20}), n-decane (n-C{sub 10}H{sub 22}), n-undecane (n-C{sub 11}H{sub 24}), n-dodecane (n-C{sub 12}H{sub 26}), n-tridecane (n-C{sub 13}H{sub 28}), n-tetradecane (n-C{sub 14}H{sub 30}), n-pentadecane (n-C{sub 15}H{sub 32}), and n-hexadecane (n-C{sub 16}H{sub 34}). These mechanisms include both high temperature and low temperature reaction pathways. The mechanisms are based on previous mechanisms for n-heptane, using the same reaction class mechanism construction developed initially for n-heptane. Individual reaction class rules are as simple as possible in order to focus onmore » the parallelism between all of the n-alkane fuels included in the mechanisms, and there is an intent to develop these mechanisms further in the future to incorporate greater levels of accuracy and predictive capability. Several of these areas for improvement are identified and explained in detail. These mechanisms are validated through comparisons between computed and experimental data from as many different sources as possible. In addition, numerical experiments are carried out to examine features of n-alkane combustion in which the detailed mechanisms can be used to compare processes in all of the n-alkane fuels. The mechanisms for all of these n-alkanes are presented as a single detailed mechanism, which can be edited to produce efficient mechanisms for any of the n-alkanes included, and the entire mechanism, with supporting thermochemical and transport data, together with an explanatory glossary explaining notations and structural details, will be available on our web page when the paper is accepted for publication.« less

  20. Refractive index and thickness determination in Langmuir monolayers of myelin lipids.

    PubMed

    Pusterla, Julio M; Malfatti-Gasperini, Antonio A; Puentes-Martinez, Ximena E; Cavalcanti, Leide P; Oliveira, Rafael G

    2017-05-01

    Langmuir monolayers at the air/water interface are widely used as biomembrane models and for amphiphilic molecules studies in general. Under controlled intermolecular organization (lateral molecular area), surface pressure, surface potential, reflectivity (R) and other magnitudes can be precisely determined on these planar monomolecular films. However, some physical parameters such as the refractive index of the monolayer (n) still remain elusive. The refractive index is very relevant because (in combination with R) it allows for the determination of the thickness of the film. The uncertainties of n determine important errors that propagate non-linearly into the calculation of monolayers thickness. Here we present an analytical method for the determination of n in monolayers based on refractive index matching. By using a Brewster angle microscopy (BAM) setup and monolayers spread over subphases with variable refractive index (n 2 ), a minimum in R is search as a function of n 2 . In these conditions, n equals n 2 . The results shown correspond to monolayers of myelin lipids. The n values remain constant at 1.46 upon compression and equals the obtained value for myelin lipid bilayers in suspension. The values for n and R allow for the determination of thickness. We establish comparisons between these thicknesses for the monolayer and those obtained from two X-ray scattering techniques: 1) GIXOS for monolayers at the air/water interface and 2) SAXS for bilayers in bulk suspension. This allows us to conclude that the thickness that we measure by BAM includes the apolar and polar headgroup regions of the monolayer. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modeling of Alkane Oxidation Using Constituents and Species

    NASA Technical Reports Server (NTRS)

    Bellan, Jasette; Harstad, Kenneth G.

    2010-01-01

    It is currently not possible to perform simulations of turbulent reactive flows due in particular to complex chemistry, which may contain thousands of reactions and hundreds of species. This complex chemistry results in additional differential equations, making the numerical solution of the equation set computationally prohibitive. Reducing the chemical kinetics mathematical description is one of several important goals in turbulent reactive flow modeling. A chemical kinetics reduction model is proposed for alkane oxidation in air that is based on a parallel methodology to that used in turbulence modeling in the context of the Large Eddy Simulation. The objective of kinetic modeling is to predict the heat release and temperature evolution. This kinetic mechanism is valid over a pressure range from atmospheric to 60 bar, temperatures from 600 K to 2,500 K, and equivalence ratios from 0.125 to 8. This range encompasses diesel, HCCI, and gas-turbine engines, including cold ignition. A computationally efficient kinetic reduction has been proposed for alkanes that has been illustrated for n-heptane using the LLNL heptane mechanism. This model is consistent with turbulence modeling in that scales were first categorized into either those modeled or those computed as progress variables. Species were identified as being either light or heavy. The heavy species were decomposed into defined 13 constituents, and their total molar density was shown to evolve in a quasi-steady manner. The light species behave either in a quasi-steady or unsteady manner. The modeled scales are the total constituent molar density, Nc, and the molar density of the quasi-steady light species. The progress variables are the total constituent molar density rate evolution and the molar densities of the unsteady light species. The unsteady equations for the light species contain contributions of the type gain/loss rates from the heavy species that are modeled consistent with the developed mathematical

  2. Catalytic conversion of light alkanes: Quarterly report, January 1-March 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biscardi, J.; Bowden, P.T.; Durante, V.A.

    The first Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between January 1. 1992 and March 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mildmore » selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient porphryinic macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE III).« less

  3. Electrochemistry of redox-active self-assembled monolayers

    PubMed Central

    Eckermann, Amanda L.; Feld, Daniel J.; Shaw, Justine A.; Meade, Thomas J.

    2010-01-01

    Redox-active self-assembled monolayers (SAMs) provide an excellent platform for investigating electron transfer kinetics. Using a well-defined bridge, a redox center can be positioned at a fixed distance from the electrode and electron transfer kinetics probed using a variety of electrochemical techniques. Cyclic voltammetry, AC voltammetry, electrochemical impedance spectroscopy, and chronoamperometry are most commonly used to determine the rate of electron transfer of redox-activated SAMs. A variety of redox species have been attached to SAMs, and include transition metal complexes (e.g., ferrocene, ruthenium pentaammine, osmium bisbipyridine, metal clusters) and organic molecules (e.g., galvinol, C60). SAMs offer an ideal environment to study the outer-sphere interactions of redox species. The composition and integrity of the monolayer and the electrode material influence the electron transfer kinetics and can be investigated using electrochemical methods. Theoretical models have been developed for investigating SAM structure. This review discusses methods and monolayer compositions for electrochemical measurements of redox-active SAMs. PMID:20563297

  4. Using a chemiresistor-based alkane sensor to distinguish exhaled breaths of lung cancer patients from subjects with no lung cancer

    PubMed Central

    Tan, Jiunn-Liang; Yong, Zheng-Xin

    2016-01-01

    Background Breath alkanes are reported to be able to discriminate lung cancer patients from healthy people. A simple chemiresistor-based sensor was designed to respond to alkanes by a change in resistance measured by a digital multimeter connected to the sensor. In preclinical experiments, the sensor response was found to have a strong positive linear relationship with alkane compounds and not responsive to water. This study aimed to determine the ability of the alkane sensor to distinguish the exhaled breaths of lung cancer patients from that of chronic obstructive pulmonary disease (COPD) patients and control subjects without lung cancer. Methods In this cross-sectional study, 12 treatment-naive patients with lung cancer, 12 ex- or current smokers with COPD and 13 never-smokers without lung disease were asked to exhale through a drinking straw into a prototype breath-in apparatus made from an empty 125 mL Vitagen® bottle with the chemiresistor sensor attached at its inside bottom to measure the sensor peak output (percentage change of baseline resistance measured before exhalation to peak resistance) and the time taken for the baseline resistance to reach peak resistance. Results Analysis of multivariate variance and post-hoc Tukey test revealed that the peak output and the time to peak values for the lung cancer patients were statistically different from that for both the COPD patients and the controls without lung disease, Pillai’s Trace =0.393, F=3.909, df = (4, 64), P=0.007. A 2.20% sensor peak output and a 90-s time to peak gave 83.3% sensitivity and 88% specificity in diagnosing lung cancer. Tobacco smoking did not affect the diagnostic accuracy of the sensor. Conclusions The alkane sensor could discriminate patients with lung cancer from COPD patients and people without lung disease. Its potential utility as a simple, cheap and non-invasive test for early lung cancer detection needs further studies. PMID:27867553

  5. Investigating Alkylsilane Monolayer Tribology at a Single-Asperity Contact with Molecular Dynamics Simulation.

    PubMed

    Summers, Andrew Z; Iacovella, Christopher R; Cummings, Peter T; McCabe, Clare

    2017-10-24

    Chemisorbed monolayer films are known to possess favorable characteristics for nanoscale lubrication of micro- and nanoelectromechanical systems (MEMS/NEMS). Prior studies have shown that the friction observed for monolayer-coated surfaces features a strong dependence on the geometry of contact. Specifically, tip-like geometries have been shown to penetrate into monolayer films, inducing defects in the monolayer chains and leading to plowing mechanisms during shear, which result in higher coefficients of friction (COF) than those observed for planar geometries. In this work, we use molecular dynamics simulations to examine the tribology of model silica single-asperity contacts under shear with monolayer-coated substrates featuring various film densities. It is observed that lower monolayer densities lead to reduced COFs, in contrast to results for planar systems where COF is found to be nearly independent of monolayer density. This is attributed to a liquid-like response to shear, whereby fewer defects are imparted in monolayer chains from the asperity, and chains are easily displaced by the tip as a result of the higher free volume. This transition in the mechanism of molecular plowing suggests that liquid-like films should provide favorable lubrication at single-asperity contacts.

  6. MURI Center for Materials Chemistry in the Space Environment

    DTIC Science & Technology

    2006-11-30

    ionic species in relevant reaction environments, surface photochemistry expertise, synchrotron-based measurement and irradiation, synthesis of structural...and Ne+ ions with dodecanethiolate and semifluorinated dodecanethiolate self-assembled monolayers (SAM), polyhedral oligomeric silsesquioxane (POSS...POSS/Kapton models as gas phase species, and with alkane thiol self assembled monolayers on gold surfaces, and with liquid squalane. We have also

  7. Can Stress-Induced Biochemical Differences drive Variation in the Hydrogen Isotope Composition of Leaf Wax n-Alkanes from Terrestrial Higher Plants?

    NASA Astrophysics Data System (ADS)

    Eley, Y.; Pedentchouk, N.; Dawson, L.

    2014-12-01

    Recent research has identified that interspecies variation in leaf wax n-alkane 2H/1H from plants growing at the same geographical location can exceed 100‰. These differences cannot easily be explained by mechanisms that influence the isotopic composition of leaf water. Biochemical processes are therefore likely to drive some of this variability. Currently, however, little is known about the relative importance of different biochemical processes in shaping n-alkane hydrogen isotope composition. To explore this issue, we combined n-alkane δ2H analysis with measurements of: (i) the percentage content of leaf C and N; and (ii) foliar δ15N, from seven plants growing at Stiffkey salt marsh, Norfolk, UK. These species differ biochemically in respect of the protective compounds they produce under salt or water stressed conditions, with monocots generally producing more carbohydrates, and dicots producing more nitrogenous compounds. We found that monocots had higher %C, while dicots had higher %N and 15N-enriched leaf tissue. We identified a systematic relationship between the nature of the dominant protective compound produced (carbohydrate vs. nitrogenous) and n-alkane 2H/1H: species with a greater proportion of carbohydrates have more negative δ2H values. These findings might imply that shifts in the relative contribution of H to pyruvate from NADPH (2H-depleted) and recycled carbohydrates (2H-enriched) can influence n-alkane δ2H. The 2H-depletion of monocot n-alkanes relative to dicots may therefore be due to a greater proportion of NADPH-derived H incorporated into pyruvate because of their enhanced demand for carbohydrates. The production of protective compounds in plant species is a common response to a range of abiotic stresses (e.g. high UV irradiation, drought, salinity, high/low temperature). Species-specific biochemical responses to stress could therefore influence n-alkane 2H/1H across a range of habitats. This study highlights the importance of detailed

  8. Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: A first- principles study

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Li, C. Y.; Liu, L. L.; Zhou, B.; Zhang, Q. K.; Chen, Z. Q.; Tang, Z.

    2016-09-01

    Adsorption of small gas molecules (O2, NO, NO2 and NH3) on transition-metal Cu atom embedded monolayer MoS2 was investigated by first-principles calculations based on the density-functional theory (DFT). The embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS2 with a high diffusion barrier. The stable adsorption geometry, charge transfer and electronic structures of these gas molecules on monolayer MoS2 embedded with transition-metal Cu atom are discussed in detail. It is found that the monolayer MoS2 with embedded Cu atom can effectively capture these gas molecules with high adsorption energy. The NH3 molecule acts as electron donor after adsorption, which is different from the other gas molecules (O2, NO, and NO2). The results suggest that MoS2-Cu system may be promising for future applications in gas molecules sensing and catalysis, which is similar to those of the transition-metal embedded graphene.

  9. Catalytic total hydrodeoxygenation of biomass-derived polyfunctionalized substrates to alkanes.

    PubMed

    Nakagawa, Yoshinao; Liu, Sibao; Tamura, Masazumi; Tomishige, Keiichi

    2015-04-13

    The total hydrodeoxygenation of carbohydrate-derived molecules to alkanes, a key reaction in the production of biofuel, was reviewed from the aspect of catalysis. Noble metals (or Ni) and acid are the main components of the catalysts, and group 6 or 7 metals such as Re are sometimes added as modifiers of the noble metal. The main reaction route is acid-catalyzed dehydration plus metal-catalyzed hydrogenation, and in some systems metal-catalyzed direct CO dissociation is involved. The appropriate active metal, acid strength, and reaction conditions depend strongly on the reactivity of the substrate. Reactions that use Pt or Pd catalysts supported on Nb-based acids or relatively weak acids are suitable for furanic substrates. Carbohydrates themselves and sugar alcohols undergo CC dissociation easily. The systems that use metal-catalyzed direct CO dissociations can give a higher yield of the corresponding alkane from carbohydrates and sugar alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps.

    PubMed

    Rubin-Blum, Maxim; Antony, Chakkiath Paul; Borowski, Christian; Sayavedra, Lizbeth; Pape, Thomas; Sahling, Heiko; Bohrmann, Gerhard; Kleiner, Manuel; Redmond, Molly C; Valentine, David L; Dubilier, Nicole

    2017-06-19

    Cycloclasticus bacteria are ubiquitous in oil-rich regions of the ocean and are known for their ability to degrade polycyclic aromatic hydrocarbons (PAHs). In this study, we describe Cycloclasticus that have established a symbiosis with Bathymodiolus heckerae mussels and poecilosclerid sponges from asphalt-rich, deep-sea oil seeps at Campeche Knolls in the southern Gulf of Mexico. Genomic and transcriptomic analyses revealed that, in contrast to all previously known Cycloclasticus, the symbiotic Cycloclasticus appears to lack the genes needed for PAH degradation. Instead, these symbionts use propane and other short-chain alkanes such as ethane and butane as carbon and energy sources, thus expanding the limited range of substrates known to power chemosynthetic symbioses. Analyses of short-chain alkanes in the environment of the Campeche Knolls symbioses revealed that these are present at high concentrations (in the μM to mM range). Comparative genomic analyses revealed high similarities between the genes used by the symbiotic Cycloclasticus to degrade short-chain alkanes and those of free-living Cycloclasticus that bloomed during the Deepwater Horizon oil spill. Our results indicate that the metabolic versatility of bacteria within the Cycloclasticus clade is higher than previously assumed, and highlight the expanded role of these keystone species in the degradation of marine hydrocarbons.

  11. Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps

    PubMed Central

    Rubin-Blum, Maxim; Antony, Chakkiath Paul; Borowski, Christian; Sayavedra, Lizbeth; Pape, Thomas; Sahling, Heiko; Bohrmann, Gerhard; Kleiner, Manuel; Redmond, Molly C.; Valentine, David L.; Dubilier, Nicole

    2017-01-01

    Cycloclasticus bacteria are ubiquitous in oil-rich regions of the ocean and are known for their ability to degrade polycyclic aromatic hydrocarbons (PAHs). In this study, we describe Cycloclasticus that have established a symbiosis with Bathymodiolus heckerae mussels and poecilosclerid sponges from asphalt-rich, deep-sea oil seeps at Campeche Knolls in the southern Gulf of Mexico. Genomic and transcriptomic analyses revealed that in contrast to all known Cycloclasticus, the symbiotic Cycloclasticus appeared to lack the genes needed for PAH degradation. Instead, these symbionts use propane and other short-chain alkanes such as ethane and butane as carbon and energy sources, thus expanding the limited range of substrates known to power chemosynthetic symbioses. Analyses of short-chain alkanes in the environment of the Campeche Knolls symbioses revealed that these are present at high concentrations (in the µM to mM range). Comparative genomic analyses revealed high similarities between the genes used by the symbiotic Cycloclasticus to degrade short-chain alkanes and those of free-living Cycloclasticus that bloomed during the Deepwater Horizon (DWH) oil spill. Our results indicate that the metabolic versatility of bacteria within the Cycloclasticus clade is higher than previously assumed, and highlight the expanded role of these keystone species in the degradation of marine hydrocarbons. PMID:28628098

  12. Biodegradation of artificial monolayers applied to water storages to reduce evaporative loss.

    PubMed

    Pittaway, P; Herzig, M; Stuckey, N; Larsen, K

    2015-01-01

    Repeat applications of an artificial monolayer to the interfacial boundary layer of large agricultural water storages during periods of high evaporative demand remains the most commercially feasible water conservation strategy. However, the interfacial boundary layer (or microlayer) is ecologically distinct from subsurface water, and repeat monolayer applications may adversely affect microlayer processes. In this study, the natural cleansing mechanisms operating within the microlayer were investigated to compare the biodegradability of two fatty alcohol (C16OH and C18OH) and one glycol ether (C18E1) monolayer compound. The C16OH and C18OH compounds were more susceptible to microbial degradation, but the C18E1 compound was most susceptible to indirect photodegradation. On clean water the surface pressure and evaporation reduction achieved with a compressed C18E1 monolayer was superior to the C18OH monolayer, but on brown water the surface pressure dropped rapidly. These results suggest artificial monolayers are readily degraded by the synergy between photo and microbial degradation. The residence time of C18OH and C18E1 monolayers on clear water is sufficient for cost-effective water conservation. However, the susceptibility of C18E1 to photodegradation indicates the application of this monolayer to brown water may not be cost-effective.

  13. Growth Mechanism of Transition Metal Dichalcogenide Monolayers: The Role of Self-Seeding Fullerene Nuclei.

    PubMed

    Cain, Jeffrey D; Shi, Fengyuan; Wu, Jinsong; Dravid, Vinayak P

    2016-05-24

    Due to their unique optoelectronic properties and potential for next generation devices, monolayer transition metal dichalcogenides (TMDs) have attracted a great deal of interest since the first observation of monolayer MoS2 a few years ago. While initially isolated in monolayer form by mechanical exfoliation, the field has evolved to more sophisticated methods capable of direct growth of large-area monolayer TMDs. Chemical vapor deposition (CVD) is the technique used most prominently throughout the literature and is based on the sulfurization of transition metal oxide precursors. CVD-grown monolayers exhibit excellent quality, and this process is widely used in studies ranging from the fundamental to the applied. However, little is known about the specifics of the nucleation and growth mechanisms occurring during the CVD process. In this study, we have investigated the nucleation centers or "seeds" from which monolayer TMDs typically grow. This was accomplished using aberration-corrected scanning transmission electron microscopy to analyze the structure and composition of the nuclei present in CVD-grown MoS2-MoSe2 alloys. We find that monolayer growth proceeds from nominally oxi-chalcogenide nanoparticles which act as heterogeneous nucleation sites for monolayer growth. The oxi-chalcogenide nanoparticles are typically encased in a fullerene-like shell made of the TMD. Using this information, we propose a step-by-step nucleation and growth mechanism for monolayer TMDs. Understanding this mechanism may pave the way for precise control over the synthesis of 2D materials, heterostructures, and related complexes.

  14. Active cell-matrix coupling regulates cellular force landscapes of cohesive epithelial monolayers

    NASA Astrophysics Data System (ADS)

    Zhao, Tiankai; Zhang, Yao; Wei, Qiong; Shi, Xuechen; Zhao, Peng; Chen, Long-Qing; Zhang, Sulin

    2018-03-01

    Epithelial cells can assemble into cohesive monolayers with rich morphologies on substrates due to competition between elastic, edge, and interfacial effects. Here we present a molecularly based thermodynamic model, integrating monolayer and substrate elasticity, and force-mediated focal adhesion formation, to elucidate the active biochemical regulation over the cellular force landscapes in cohesive epithelial monolayers, corroborated by microscopy and immunofluorescence studies. The predicted extracellular traction and intercellular tension are both monolayer size and substrate stiffness dependent, suggestive of cross-talks between intercellular and extracellular activities. Our model sets a firm ground toward a versatile computational framework to uncover the molecular origins of morphogenesis and disease in multicellular epithelia.

  15. Effect of Varying the 1-4 Intramolecular Scaling Factor in Atomistic Simulations of Long-Chain N-alkanes with the OPLS-AA Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Almeida, Valmor F; Ye, Xianggui; Cui, Shengting

    2013-01-01

    A comprehensive molecular dynamics simulation study of n-alkanes using the Optimized Potential for Liquid Simulation-All Atoms (OPLS-AA) force field at ambient condition has been performed. Our results indicate that while simulations with the OPLS-AA force field accurately predict the liquid state mass density for n-alkanes with carbon number equal or less than 10, for n-alkanes with carbon number equal or exceeding 12, the OPLS-AA force field with the standard scaling factor for the 1-4 intramolecular Van der Waals and electrostatic interaction gives rise to a quasi-crystalline structure. We found that accurate predictions of the liquid state properties are obtained bymore » successively reducing the aforementioned scaling factor for each increase of the carbon number beyond n-dodecane. To better un-derstand the effects of reducing the scaling factor, we analyzed the variation of the torsion potential pro-file with the scaling factor, and the corresponding impact on the gauche-trans conformer distribution, heat of vaporization, melting point, and self-diffusion coefficient for n-dodecane. This relatively simple procedure thus allows for more accurate predictions of the thermo-physical properties of longer n-alkanes.« less

  16. Pseudorotational epitaxy of self-assembled octadecyltrichlorosilane monolayers on sapphire (0001)

    DOE PAGES

    Steinrück, H. -G.; Magerl, A.; Deutsch, M.; ...

    2014-10-06

    The structure of octadecyltrichlorosilane self-assembled monolayers (SAMs) on sapphire (0001) was studied by Å-resolution surface-specific x-ray scattering methods. The monolayer was found to consist of three sublayers where the outermost layer corresponds to vertically oriented, closely packed alkyl tails. Laterally, the monolayer is hexagonally packed and exhibits pseudorotational epitaxy to the sapphire, manifested by a broad scattering peak at zero relative azimuthal rotation, with long powderlike tails. The lattice mismatch of ~1% – 3% to the sapphire’s and the different length scale introduced by the lateral Si-O-Si bonding prohibit positional epitaxy. However, the substrate induces an intriguing increase in themore » crystalline coherence length of the SAM’s powderlike crystallites when rotationally aligned with the sapphire’s lattice. As a result, the increase correlates well with the rotational dependence of the separation of corresponding substrate-monolayer lattice sites.« less

  17. Study on transport properties of silicene monolayer under external field using NEGF method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syaputra, Marhamni, E-mail: marhamni@students.itb.ac.id; Wella, Sasfan Arman; Wungu, Triati Dewi Kencana

    2015-09-30

    We investigate the current-voltage (I-V) characteristics of a pristine monolayer silicene using non-equilibrium Green function (NEGF) method combining with density functional theory (DFT). This method succeeded in showing the relationship of I and V on silicene corresponding to the electronic characteristics such as density of states. The external field perpendicular to the silicene monolayer affects in increasing of the current. Under 0.2 eV external field, the current reaches the maximum peak at Vb = 0.3 eV with the increase is about 60% from what it is in zero external field.

  18. Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes

    NASA Astrophysics Data System (ADS)

    Saxena, Priyank

    In order to enhance the fuel efficiency of an engine and to control pollutant formation, an improved understanding of the combustion chemistry of the fuels at a fundamental level is paramount. This knowledge can be gained by developing detailed reaction mechanisms of the fuels for various combustion processes and by studying combustion analytically employing reduced-chemistry descriptions. There is a need for small detailed reaction mechanisms for alkane and alcohol fuels with reduced uncertainties in their combustion chemistry that are computationally cheaper in multidimensional CFD calculations. Detailed mechanisms are the starting points in identifying reduced-chemistry descriptions of combustion processes to study problems analytically. This research includes numerical, experimental and analytical studies. The first part of the dissertation consists of numerical and experimental studies of ethanol flames. Although ethanol has gained popularity as a possible low-pollution source of renewable energy, significant uncertainties remain in its combustion chemistry. To begin to address ethanol combustion, first a relatively small detailed reaction mechanism, commonly known as the San Diego Mech, is developed for the combustion of hydrogen, carbon monoxide, formaldehyde, methane, methanol, ethane, ethylene, and acetylene, in air or oxygen-inert mixtures. This mechanism is tested for autoignition, premixed-flame burning velocities, and structures and extinction of diffusion flames and of partially premixed flames of many of these fuels. The reduction in uncertainties in the combustion chemistry can best be achieved by consistently updating a reaction mechanism with reaction rate data for the elementary steps based on newer studies in literature and by testing it against as many experimental conditions as available. The results of such a testing for abovementioned fuels are reported here along with the modifications of reaction-rate parameters of the most important

  19. Study for fabrication, evaluation, and testing of monolayer woven type materials for space suit insulation

    NASA Technical Reports Server (NTRS)

    Merrick, E. B.

    1979-01-01

    An alternative space suit insulation concept using a monolayer woven pile material is discussed. The material reduces cost and improves the durability of the overgarment, while providing protection similar to that provided by multilayer insulation (MLI). Twelve samples of different configurations were fabricated and tested for compressibility and thermal conductivity as a function of compression loading. Two samples which showed good results in the initial tests were further tested for thermal conductivity with respect to ambient pressure and temperature. Results of these tests were similar to results of the MLI tests, indicating the potential of the monolayer fabric to replace the present MLI. A seaming study illustrated that the fabric can be sewn in a structurally sound seam with minimal heat loss. It is recommended that a prototype thermal meteroid garment be fabricated.

  20. Self-organization of a wedge-shaped surfactant in monolayers and multilayers.

    PubMed

    Cain, Nicholas; Van Bogaert, Josh; Gin, Douglas L; Hammond, Scott R; Schwartz, Daniel K

    2007-01-16

    The self-organization behavior of a wedge-shaped surfactant, disodium-3,4,5-tris(dodecyloxy)phenylmethylphosphonate, was studied in Langmuir monolayers (at the air-water interface), Langmuir-Blodgett (LB) monolayers and multilayers, and films adsorbed spontaneously from isooctane solution onto a mica substrate (self-assembled films). This compound forms an inverted hexagonal lyotropic liquid crystal phase in the bulk and in thick adsorbed films. Surface pressure isotherm and Brewster angle microscope (BAM) studies of Langmuir monolayers revealed three phases: gas (G), liquid expanded (LE), and liquid condensed (LC). The surface pressure-temperature phase diagram was determined in detail; a triple point was found at approximately 10 degrees C. Atomic force microscope (AFM) images of LB monolayers transferred from various regions of the phase diagram were consistent with the BAM images and indicated that the LE regions are approximately 0.5 nm thinner than the LC regions. AFM images were also obtained of self-assembled films after various adsorption times. For short adsorption times, when monolayer self-assembly was incomplete, the film topography indicated the coexistence of two distinct monolayer phases. The height difference between these two phases was again 0.5 nm, suggesting a correspondence with the LE/LC coexistence observed in the Langmuir monolayers. For longer immersion times, adsorbed multilayers assembled into highly organized periodic arrays of inverse cylindrical micelles. Similar periodic structures, with the same repeat distance of 4.5 nm, were also observed in three-layer LB films. However, the regions of organized periodic structure were much smaller and more poorly correlated in the LB multilayers than in the films adsorbed from solution. Collectively, these observations indicate a high degree of similarity between the molecular organization in Langmuir layers/LB films and adsorbed self-assembled films. In both cases, monolayers progress through

  1. Large-area synthesis of high-quality monolayer 1T’-WTe2 flakes

    NASA Astrophysics Data System (ADS)

    Naylor, Carl H.; Parkin, William M.; Gao, Zhaoli; Kang, Hojin; Noyan, Mehmet; Wexler, Robert B.; Tan, Liang Z.; Kim, Youngkuk; Kehayias, Christopher E.; Streller, Frank; Zhou, Yu Ren; Carpick, Robert; Luo, Zhengtang; Park, Yung Woo; Rappe, Andrew M.; Drndić, Marija; Kikkawa, James M.; Johnson, A. T. Charlie

    2017-06-01

    Large-area growth of monolayer films of the transition metal dichalcogenides is of the utmost importance in this rapidly advancing research area. The mechanical exfoliation method offers high quality monolayer material but it is a problematic approach when applied to materials that are not air stable. One important example is 1T’-WTe2, which in multilayer form is reported to possess a large non saturating magnetoresistance, pressure induced superconductivity, and a weak antilocalization effect, but electrical data for the monolayer is yet to be reported due to its rapid degradation in air. Here we report a reliable and reproducible large-area growth process for obtaining many monolayer 1T’-WTe2 flakes. We confirmed the composition and structure of monolayer 1T’-WTe2 flakes using x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, Raman spectroscopy and aberration corrected transmission electron microscopy. We studied the time dependent degradation of monolayer 1T’-WTe2 under ambient conditions, and we used first-principles calculations to identify reaction with oxygen as the degradation mechanism. Finally we investigated the electrical properties of monolayer 1T’-WTe2 and found metallic conduction at low temperature along with a weak antilocalization effect that is evidence for strong spin-orbit coupling.

  2. ARPES Studies on the substrate effect on monolayer FeSe

    NASA Astrophysics Data System (ADS)

    Rebec, Slavko; Jia, Tao; Lee, James; Li, Wei; Zhang, Chaofan; Moore, Robert; Shen, Z. X.

    For 2D films, interface interactions can play a critical role in determining the prevailing physics of the system. In the case of FeSe on SrTiO3, reducing the FeSe thickness to 1 monolayer (ML) from bulk leads to a significantly increased superconducting transition temperature (Tc). To fully utilize and maximize this approach to increasing Tc in FeSe and potentially apply it to other superconducting materials, the role which the substrate plays in this system must be understood. Here we present recent in-situ angle-resolved photo emission studies of the substrate effect on MBE grown 1 ML FeSe films.

  3. Monolayer phase coarsening using oscillatory flow

    NASA Astrophysics Data System (ADS)

    Leung, J.; Lopez, J. M.; Vogel, M. J.

    2005-11-01

    The co-existing phase domains of monolayers commonly observed via microscope are examined on flowing systems. Recent evidence shows that co-existing phase domains have profound effects on monolayer response to bulk flow. The present flow geometry consists of an open-top rectangular cavity in which the flow is driven by the periodic oscillation of the floor in its own plane. The oscillation of the floor dilates and compresses any film at the gas/liquid interface while still maintaining an essentially flat interface. A range of flow conditions (oscillation frequency and amplitude) is chosen so that the flow remains essentially two-dimensional. Measurements at the interface, initially covered by an insoluble monolayer (vitamin K1 or stearic acid), are made using a Brewster angle microscope system with a pulsed laser. Various phenomena such as fragmentation (breaking up of co-existing domains into finer ones) had previously been observed in sheared monolayer flows. In this new flow regime, we have seen dramatic coarsening of the domains. Interesting relaxation behavior at short and long time scales will also be discussed.

  4. Re-assessing the role of plant community change and climate in the PETM n-alkane record

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; Baczynski, A. A.; McInerney, F. A.; Chen, D.

    2012-12-01

    The terrestrial leaf wax n-alkane record of the Paleocene-Eocene Thermal Maximum (PETM) in the Bighorn Basin, Wyoming, shows large excursions in both carbon isotope (δ13C) values and n-alkane average chain length (ACL). At the onset of the PETM, ACL values increase from ~28.5 to ~30.1 while the negative carbon isotope excursion (CIE) is 4-6‰ in magnitude and larger than δ13C records from other materials. It has been hypothesized previously that both the ACL excursion and the large magnitude of the CIE were caused by a concurrent turnover in the local flora from a mixed conifer/angiosperm community before the PETM to a different suite of angiosperm species during the PETM. Here, we present the results of a meta-analysis of data (>2000 data from 89 sources, both published and unpublished) on n-alkane amounts and chain length distributions in modern plants from around the world. We applied the data in two sets of comparisons: 1) within and among plant groups such as herbs and graminoids, and 2) between plants and climate, using reported collection locations for outdoor plants and climate values generated via GIS extraction of WorldClim modeled data. We show that angiosperms, as group, produce more n-alkanes than do gymnosperms by 1-2 orders of magnitude, and this means that the gymnosperm contribution to a mixed soil n-alkane pool would be negligible, even in an ecosystem where gymnosperms dominated (i.e. the pre/post-PETM ecosystems). The modern plant data also demonstrate that turnover of the plant community during the PETM, even among only the angiosperm species, is likely not the source of the observed ACL excursion. First, we constructed "representative" groups of PETM and pre/post-PETM communities using living relative species at the Chicago Botanic Garden and find no significant difference in chain length distributions between the two groups. Second and moreover, the modern plant data reveal that n-alkane chain length distributions are tremendously variable

  5. Source apportionment of PAHs and n-alkanes in respirable particles in Tehran, Iran by wind sector and vertical profile.

    PubMed

    Moeinaddini, Mazaher; Esmaili Sari, Abbas; Riyahi bakhtiari, Alireza; Chan, Andrew Yiu-Chung; Taghavi, Seyed Mohammad; Hawker, Darryl; Connell, Des

    2014-06-01

    The vertical concentration profiles and source contributions of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in respirable particle samples (PM4) collected at 10, 100, 200 and 300-m altitude from the Milad Tower of Tehran, Iran during fall and winter were investigated. The average concentrations of total PAHs and total n-alkanes were 16.7 and 591 ng/m(3), respectively. The positive matrix factorization (PMF) model was applied to the chemical composition and wind data to apportion the contributing sources. The five PAH source factors identified were: 'diesel' (56.3% of total PAHs on average), 'gasoline' (15.5%), 'wood combustion, and incineration' (13%), 'industry' (9.2%), and 'road soil particle' (6.0%). The four n-alkane source factors identified were: 'petrogenic' (65% of total n-alkanes on average), 'mixture of petrogenic and biomass burning' (15%), 'mixture of biogenic and fossil fuel' (11.5%), and 'biogenic' (8.5%). Source contributions by wind sector were also estimated based on the wind sector factor loadings from PMF analysis. Directional dependence of sources was investigated using the conditional probability function (CPF) and directional relative strength (DRS) methods. The calm wind period was found to contribute to 4.4% of total PAHs and 5.0% of total n-alkanes on average. Highest average concentrations of PAHs and n-alkanes were found in the 10 and 100 m samples, reflecting the importance of contributions from local sources. Higher average concentrations in the 300 m samples compared to those in the 200 m samples may indicate contributions from long-range transport. The vertical profiles of source factors indicate the gasoline and road soil particle-associated PAHs, and the mixture from biogenic and fossil fuel source-associated n-alkanes were mostly from local emissions. The smaller average contribution of diesel-associated PAHs in the lower altitude samples also indicates that the restriction of diesel-fueled vehicle use in the central area

  6. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone.

    PubMed

    Yang, Jinfan; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2013-07-01

    Our best results jet: C10 and C11 branched alkanes, with low freezing points, are synthesized through the aldol condensation of furfural and methyl isobutyl ketone from lignocellulose, which is then followed by hydrodeoxygenation. These jet-fuel-range alkanes are obtained in high overall yields (≈90%) under solvent-free conditions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. First-principles studies of Te line-ordered alloys in a MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Andriambelaza, N. F.; Mapasha, R. E.; Chetty, N.

    2018-04-01

    The thermodynamic stability, structural and electronic properties of Te line-ordered alloys are investigated using density functional theory (DFT) methods. Thirty four possible Te line-ordered alloy configurations are found in a 5×5 supercell of a MoS2 monolayer. The calculated formation energies show that the Te line-ordered alloy configurations are thermodynamically stable at 0 K and agree very well with the random alloys. The lowest energy configurations at each concentration correspond to the configuration where the Te atom rows are far apart from each other (avoiding clustering) within the supercell. The variation of the lattice constant at different concentrations obey Vegard's law. The Te line-ordered alloys fine tune the band gap of a MoS2 monolayer although deviating from linearity behavior. Our results suggest that the Te line-ordered alloys can be an effective way to modulate the band gap of a MoS2 monolayer for nanoelectronic, optoelectronic and nanophotonic applications.

  8. A comparative study for Hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jinlian; Guo, Yanhua; Zhang, Yun

    A comparative study for hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers has been investigated within the framework of first-principle calculations. Our results show that the binding energies of Li, Ca, Sc, Ti on graphyne nanotubes are stronger than that on graphyne monolayers. Such strong binding would prevent the formation of metal clusters on graphyne nanotubes. From the charge transfer and partial density of states, it is found that the curvature effect of nanotubes plays an important role for the strong binding strength of metal on graphyne nanotubes. And the hydrogen storage capacity is 4.82 wt%, 5.08 wt%,more » 4.88 wt%, 4.76 wt% for Li, Ca, Sc, Ti decorated graphyne nanotubes that promise a potential material for storing hydrogen. - Graphical abstract: Metal atoms (Li, Ca, Sc and Ti) can strongly bind to graphyne nanotubes to avoid the formation of metal clusters, and a capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015. Twenty-four hydrogen molecules absorb to Ti-decorated graphyne nanotube. - Highlights: • The binding strength for metal on graphyne nanotubes is much stronger than that on γ-graphyne monolayer. • Metal atoms can strongly bind to the curving triangle acetylenes rings to avoid the formation of metal clusters. • A capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015.« less

  9. Electronic and optical properties of MoSe2 monolayer in the presence of Nb impurity: A first principle study

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Sharma, Munish; Ahluwalia, P. K.

    2018-04-01

    The study of electronic and optical properties of Molybdenum diselenide monolayer (1H-MoSe2) in the presence of Niobium impurity (Nb), has been calculated and compared with available experimental and other calculated results in the literature. The electronic and optical properties of this system are investigated in the two cases.i) when MoS2 monolayer is doped suitably with Nb ii) when Nb is added (intercalated in the interstitial sites) suitably. The presence of even 2.08% Nb as an impurity reflects strong bonding with the host and results in semiconducting to metallic transition, which is also reflected in the overlap of σ valence band and п plasmon band in EELS. Thus, Molybdenum diselenide monolayer in the presence of Nb impurity appears to be a potential a candidate for applications in electrical and optical devices.

  10. Cracking and aromatization of C{sub 6}-C{sub 10} n-alkanes and n-alkenes on a zeolite-containing catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gairbekov, T.M.; Takaeva, M.I.; Khadzhiev, S.N.

    1992-05-10

    Despite the extensive studies on catalysis on zeolites, the question of the mechanism of the reactions of cracking and aromatization of hydrocarbons is still debated. The classic Whitmore theory hypothesizes that cracking of alkanes and alkenes takes place through the formation of the same intermediate trivalent carbenium ions of the (C{sub n}H{sub 2n+1}){sup +} type. Ola`s protolytic mechanism hypothesizes nonclassic five- (four-)coordinated ions of the (C{sub n}H{sub 2n+3}){sup +} type for cracking of alkanes and classic carbenium ions for alkenes. When the classic mechanism occurs on zeolites, an analogous effect on the rate of the reactions of alkanes and alkenesmore » with the molecular weight of the starting hydrocarbons and similar compositions of the products obtained should be predicted. The authors investigated the transformation of individual n-alkanes and n-1-alkenes of C{sub 6}-C{sub 10} composition in the presence of a catalyst synthesized by addition of 30 wt.% decationized ultrahigh-silicon zeolite of the ZSM type (Si/Al - 16) modified with 1 wt.% zinc on {gamma}-Al{sub 2}O{sub 3}. The experiment was conducted on a flow-type laboratory setup at 425{degrees}C in conditions of the minimum effect of diffusion factors with the method described in detail previously. 13 refs., 4 figs., 1 tab.« less

  11. Monolayer coated gold nanoparticles for delivery applications

    PubMed Central

    Rana, Subinoy; Bajaj, Avinash; Mout, Rubul; Rotello, Vincent M.

    2011-01-01

    Gold nanoparticles (AuNPs) provide attractive vehicles for delivery of drugs, genetic materials, proteins, and small molecules. AuNPs feature low core toxicity coupled with the ability to parametrically control particle size and surface properties. In this review, we focus on engineering of the AuNP surface monolayer, highlighting recent advances in tuning monolayer structures for efficient delivery of drugs and biomolecules. This review covers two broad categories of particle functionalization, organic monolayers and biomolecule coatings, and discusses their applications in drug, DNA/RNA, protein and small molecule delivery. PMID:21925556

  12. Ferromagnetic properties of Mn-doped HfS2 monolayer under strain

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Zhao, Xu; Wu, Ninghua; Xin, Qianqian; Liu, Xiaomeng; Wang, Tianxing; Wei, Shuyi

    2017-12-01

    Using the first-principles calculations, we investigated electronic and magnetic properties of Mn-doped HfS2 monolayer for 4% and 8% Mn concentration. We study the strain tuning of electronic and magnetic properties of 4% Mn-doped HfS2 monolayer firstly. Our results show that the Mn-doped HfS2 monolayer is magnetic nanomaterial without strain. It keeps this character until the compressive strain comes to -8%, and the magnetism disappear with lager compressive strain. With the increasing tensile strain, the doped system transforms from semiconductor to half-metallic when the tensile strain is equivalent to or greater than 5%. The largest half-metallic gap is 1.307 eV at 5% tensile strain and the magnetic moment always keeps about 3μB, which indicates that Mn-doped HfS2 monolayer can be a candidate for superior half-metallic namomaterial. Furthermore, we find two Mn dopants couple ferromagnetically via antiferromagnetic (AFM) p-d exchange interaction at the environment of 8% concentration. It keeps the properties of magnetic semiconductor under two Mn-doped configurations with different Mn-Mn separations. Our studies predict Mn-doped HfS2 monolayer under strain to be candidates for dilute magnetic semiconductors.

  13. The stability of aluminium oxide monolayer and its interface with two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Song, Ting Ting; Yang, Ming; Chai, Jian Wei; Callsen, Martin; Zhou, Jun; Yang, Tong; Zhang, Zheng; Pan, Ji Sheng; Chi, Dong Zhi; Feng, Yuan Ping; Wang, Shi Jie

    2016-07-01

    The miniaturization of future electronic devices requires the knowledge of interfacial properties between two-dimensional channel materials and high-κ dielectrics in the limit of one atomic layer thickness. In this report, by combining particle-swarm optimization method with first-principles calculations, we present a detailed study of structural, electronic, mechanical, and dielectric properties of Al2O3 monolayer. We predict that planar Al2O3 monolayer is globally stable with a direct band gap of 5.99 eV and thermal stability up to 1100 K. The stability of this high-κ oxide monolayer can be enhanced by substrates such as graphene, for which the interfacial interaction is found to be weak. The band offsets between the Al2O3 monolayer and graphene are large enough for electronic applications. Our results not only predict a stable high-κ oxide monolayer, but also improve the understanding of interfacial properties between a high-κ dielectric monolayer and two-dimensional material.

  14. Wet formation and structural characterization of quasi-hexagonal monolayers.

    PubMed

    Batys, Piotr; Weroński, Paweł; Nosek, Magdalena

    2016-01-01

    We have presented a simple and efficient method for producing dense particle monolayers with controlled surface coverage. The method is based on particle sedimentation, manipulation of the particle-substrate electrostatic interaction, and gentle mechanical vibration of the system. It allows for obtaining quasi-hexagonal structures under wet conditions. Using this method, we have produced a monolayer of 3 μm silica particles on a glassy carbon substrate. By optical microscopy, we have determined the coordinates of the particles and surface coverage of the obtained structure to be 0.82. We have characterized the monolayer structure by means of the pair-correlation function and power spectrum. We have also compared the results with those for a 2D hexagonal monolayer and monolayer generated by random sequential adsorption at the coverage 0.50. We have found the surface fractal dimension to be 2.5, independently of the monolayer surface coverage. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Effect of Thermal Maturation on n-alkanes and Kerogen in Preserved Organic Matter: Implications for Paleoenvironment Biomarkers

    NASA Astrophysics Data System (ADS)

    Craven, O. D.; Longbottom, T. L.; Hockaday, W. C.; Blackaby, E.

    2017-12-01

    Understanding the effects of maturity on biomarkers is vital in assessing biomarker reliability in mature sediments. It is well known for n-alkanes that increased maturity shortens chain lengths and decreases the odd over even preference however, the amount of change in these variables has not been determined for different maturities and types of preserved organic matter. For this reason, it is difficult to judge the trustworthiness of even lightly matured samples for paleoenvironment reconstruction. Another complication is the difficulty of accurately determining maturity as many maturity indicators are error-prone or not appropriate at low maturities. Using hydrous pyrolysis, we artificially matured black shale samples with type I (lacustrine) and type II (marine) kerogen to measure changes in n-alkane length and odd over even preference. Whole rock samples underwent hydrous pyrolysis for 72 hours, at 250 °C, 300 °C, 325 °C, 350 °C, and 375 °C to cover a wide maturity range. From the immature and artificially matured samples, the bitumen was extracted and the saturate fraction was separated using column chromatography. The saturate fraction was analyzed for n-alkanes using gas chromatography-mass spectroscopy. Kerogen structural changes were also measured using solid-state 13C NMR to relate changes in n-alkane biomarkers to changes in kerogen structure. Results show that for type I bitumen the n-alkanes did not change at low maturities considered premature in terms of oil generation (<325 °C). The NMR spectra of the type I kerogen support the lack of change, at low maturities no changes in the aliphatic portion (Fal) were observed, however, after 325 °C Fal decreased with increasing maturity. The loss of Fal indicates kerogen contributing hydrocarbons to bitumen that cause changes in n-alkane measurements. The type II kerogen's Fal also decreased with increasing maturity, but unlike the type I kerogen Fal loss started at low maturities. The differences

  16. Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers.

    PubMed Central

    ten Grotenhuis, E; Demel, R A; Ponec, M; Boer, D R; van Miltenburg, J C; Bouwstra, J A

    1996-01-01

    The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:8874014

  17. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOEpatents

    Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.; Bhinde, Manoj V.

    1998-01-01

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.

  18. Electrochemical behavior of monolayer and bilayer graphene.

    PubMed

    Valota, Anna T; Kinloch, Ian A; Novoselov, Kostya S; Casiraghi, Cinzia; Eckmann, Axel; Hill, Ernie W; Dryfe, Robert A W

    2011-11-22

    Results of a study on the electrochemical properties of exfoliated single and multilayer graphene flakes are presented. Graphene flakes were deposited on silicon/silicon oxide wafers to enable fast and accurate characterization by optical microscopy and Raman spectroscopy. Conductive silver paint and silver wires were used to fabricate contacts; epoxy resin was employed as a masking coating in order to expose a stable, well-defined area of graphene. Both multilayer and monolayer graphene microelectrodes showed quasi-reversible behavior during voltammetric measurements in potassium ferricyanide. However, the standard heterogeneous charge transfer rate constant, k°, was estimated to be higher for monolayer graphene flakes. © 2011 American Chemical Society

  19. Catalytic oxidation of light alkanes in presence of a base

    DOEpatents

    Bhinde, Manoj V.; Bierl, Thomas W.

    1998-01-01

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol.

  20. Characterization and two-dimensional crystallization of membrane component AlkB of the medium-chain alkane hydroxylase system from Pseudomonas putida GPo1.

    PubMed

    Alonso, Hernan; Roujeinikova, Anna

    2012-11-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C(12)E(8)]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-D-maltopyranoside (DM), n-dodecyl-β-D-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism.

  1. Characterization and Two-Dimensional Crystallization of Membrane Component AlkB of the Medium-Chain Alkane Hydroxylase System from Pseudomonas putida GPo1

    PubMed Central

    Alonso, Hernan

    2012-01-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C12E8]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-d-maltopyranoside (DM), n-dodecyl-β-d-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism. PMID:22941083

  2. Protonation of octadecylamine Langmuir monolayer by adsorption of halide counterions

    NASA Astrophysics Data System (ADS)

    Sung, Woongmo; Avazbaeva, Zaure; Lee, Jonggwan; Kim, Doseok

    Langmuir monolayer consisting of octadecylamine (C18H37NH2, ODA) was investigated by heterodyne vibrational sum-frequency generation (HD-VSFG) spectroscopy in conjunction with surface pressure-area (π- A) isotherm, and the result was compared with that from cationic-lipid (DPTAP) Langmuir monolayer. In case of ODA monolayer on pure water, both SF intensity of water OH band and the surface pressure were significantly smaller than those of the DPTAP monolayer implying that only small portion of the amine groups (-NH3+ is protonated in the monolayer. In the presence of sodium halides (NaCl and NaI) in the subphase water, it was found that the sign of Imχ (2) of water OH band remained the same as that of the ODA monolayer on pure water, but there was a substantial increase in the SF amplitude. From this, we propose that surface excess of the halide counterions (Cl- and I-) makes the solution condition near the ODA monolayer/water interface more acidic so that ODA molecules in the monolayer are more positively charged, which works to align the water dipoles at the interface.

  3. Alkane and polycyclic aromatic hydrocarbons in sediments and benthic invertebrates of the northern Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Harvey, H. Rodger; Taylor, Karen A.

    2017-10-01

    The Hanna Shoal region represents an important northern gateway for transport and deposition in the Chukchi Sea. This study determined the concentration and distribution of organic contaminants (aliphatic hydrocarbon and polycyclic aromatic hydrocarbons, PAHs) in surface sediments from 34 sites across Hanna Shoal. Up to 31 total PAHs, including parent and alkyl homologues were detected with total concentrations ranging from a low of 168 ng g-1 the western flank of Hanna Shoal (station H34) to 1147 ng g-1 at station in Barrow Canyon (station BarC5). Alkyl PAHs were more abundant than parent structures and accounted for 53-64% of the summed concentrations suggesting overall at background levels (< 1600 ng g-1) in sediments. Alkane (C15-C33) hydrocarbons ranged from 4.3 μg g-1 on the southern flank of Hanna shoal to 31 μg g-1 at a northern station. Sediments were often dominated by short chain (C15-C22) alkanes with overall terrestrial aquatic ratios (TAR) for the region averaging 0.20. Based on the ratio of Fl/(Fl+ Py) and BaF/(Baf+BeP) verses (BA/BA+Ch) in sediments, PAHs are largely derived from petrogenic sources with minor amounts of mixed combustion sources. A diversity of PAHs were detected in the northern whelk Neptunea heros foot muscle with total concentrations ranging from 0.14 to 1.5 μg g-1 dry tissue wt. Larger (and presumably older) animals showed higher levels of PAH per unit muscle tissue, suggesting that animals may bioaccumulate PAHs over time, with low but increasing concentrations also present in internal and external eggs. Alkane hydrocarbons were also higher in whelks with distributions similar to that seen in sediments. The mussel Muscularus discors collected in Barrow Canyon showed constrained distributions and substantially lower concentrations of both PAHs and alkanes than the surrounding surface sediments.

  4. Defects and oxidation of group-III monochalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun

    2017-09-01

    Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.

  5. First principles kinetic Monte Carlo study on the growth patterns of WSe2 monolayer

    NASA Astrophysics Data System (ADS)

    Nie, Yifan; Liang, Chaoping; Zhang, Kehao; Zhao, Rui; Eichfeld, Sarah M.; Cha, Pil-Ryung; Colombo, Luigi; Robinson, Joshua A.; Wallace, Robert M.; Cho, Kyeongjae

    2016-06-01

    The control of domain morphology and defect level of synthesized transition metal dichalcogenides (TMDs) is of crucial importance for their device applications. However, current TMDs synthesis by chemical vapor deposition and molecular beam epitaxy is in an early stage of development, where much of the understanding of the process-property relationships is highly empirical. In this work, we use a kinetic Monte Carlo coupled with first principles calculations to study one specific case of the deposition of monolayer WSe2 on graphene, which can be expanded to the entire TMD family. Monolayer WSe2 domains are investigated as a function of incident flux, temperature and precursor ratio. The quality of the grown WSe2 domains is analyzed by the stoichiometry and defect density. A phase diagram of domain morphology is developed in the space of flux and the precursor stoichiometry, in which the triangular compact, fractal and dendritic domains are identified. The phase diagram has inspired a new synthesis strategy for large TMD domains with improved quality.

  6. Stilling Waves with Ordered Molecular Monolayers

    ERIC Educational Resources Information Center

    Vitz, Ed

    2008-01-01

    A demonstration of the damping effect of an oil monolayer on water waves is described. The history of this remarkable demonstration--with a 2000 (or more) year span--and a brief explanation in terms of the properties of water and the monolayer are presented. If a layer of olive oil, one molecule thick (about one-ten millionth of a centimeter), is…

  7. Structural Exploration of the Two HBI Alkanes in the Chinese Maoming Oil Shale

    NASA Astrophysics Data System (ADS)

    Liao, J.; Lu, H.; Wang, Q.; Zhou, Y., Sr.

    2017-12-01

    The Maoming oil shale is notable for its high rate of oil production and abundant biomarker compounds. Apart from the odd-numbered C31 and C33botryococcanes dominant and characteristic, two highly branched isoprenoid (HBI) alkanes (Fig. 1) were exclusively occurred (Brassell et al., 1986). The first identification of the two HBI alkanes in the Maoming oil shale was based on a comparison with the mass spectrum of C20 HBI (2,6,10-trimethyl-7-(3-methylbutyl)dodecane) (Yon et al., 1982; Rowland et al., 1985 ) from Rozel Point crude oil. Brassell et al (1986) thought that the characteristic ions at m/z 308 and 336 could be indicative of an additional C10 alkyl side chain on top of the characteristic ions of m/z 168 and 197 for the C20-HBI. However, the structural speculation seemed suspicious for not only their mass spectrum but also their co-chromatography results were not identical to the later synthesized C30 HBI alkane (Rowland and Robson, 1990). In addition, the source attribution of diatoms indicated by two C30 HBIs was inconsistent with the species of B race of Botryococcus braunii indicated by the dominant distribution of botryococcanes. Thus, the thirty-year-old structural assignment of the two C30 HBI alkanes may require confirmation. At first, the monomers of two HBIs were prepared by preparative gas chromatography. The HR-EI MS (436.5003) illustrated a formula of C31H64 rather than carbon numbered C30 HBIs. Moreover, two novel polymethyl alkane structures (I, II) could be yielded by 1D and 2D NMR results (Fig. 2), which completely different from that of previously speculated C30-HBIs (Fig. 2). According to the elucidated structure, the characteristic ions at m/z 308, 336, 434 and other irons at m/z 127, 211, 225, 281, 336 were mainly corresponded to relevant cleavages. Hence, their mass spectra were basically consistent with the structure determined from the NMR data. The new structural skeleton in our results for the two compounds does not support the

  8. Tunneling Spectra of a Quasifreestanding Graphene Monolayer

    NASA Astrophysics Data System (ADS)

    Li, Si-Yu; Bai, Ke-Ke; Zuo, Wei-Jie; Liu, Yi-Wen; Fu, Zhong-Qiu; Wang, Wen-Xiao; Zhang, Yu; Yin, Long-Jing; Qiao, Jia-Bin; He, Lin

    2018-05-01

    Considering the great success of scanning-tunneling-microscopy (STM) studies of graphene in the past ten years, it is quite surprising to notice that there is still a fundamental contradiction in the reported tunneling spectra of the quasifreestanding graphene monolayer. Many groups observed "V -shaped" spectra with linearly vanishing density of states at the Dirac point, whereas others reported spectra with a gap of ±60 meV pinned to the Fermi level in the quasifreestanding graphene monolayer. Here, we systematically study the two contradicting tunneling spectra of the quasifreestanding graphene monolayer on various substrates in the presence of different magnetic fields and demonstrate that both spectra are the "correct" spectra. However, the V -shaped spectrum exhibits only the contribution of the low-energy Dirac fermions, whereas the gapped spectrum is contributed by both the low-energy Dirac fermions and the high-energy nearly free-electron states due to the existence of the inelastic tunneling process. Our results indicate that interaction with substrates plays a vital role in affecting the spectra of graphene. We also show that it is possible to switch the tunneling spectra between the two distinct features at the nanoscale through voltage pulses applied to the STM tip.

  9. High Selective Gas Detection for small molecules based on Germanium selenide monolayer

    NASA Astrophysics Data System (ADS)

    Liu, Lian; Yang, Qun; Wang, Zeping; Ye, Huaiyu; Chen, Xianping; Fan, Xuejun; Zhang, Guoqi

    2018-03-01

    Predictive calculations based on density functional theory (DFT) are used here to study the electronic and optical properties of GeSe monolayer after adsorbing gas molecules (O2, NH3, SO2, H2, CO2, H2S, NO2, CH4, H2O, NO, CO). Our results reveal that for all the gas molecules considered, only NH3 is adsorbed on GeSe monolayer by physisorption. Whereas SO2 and NO2 are chemisorbed on GeSe monolayer with strong adsorption energies. In addition, the adsorption of O2, NO and NO2 distinctly enhances the optical absorbance and broaden the absorbance range of GeSe monolayer in visible light region. Also, it is found that the adsorption of H2S, NO and NH3 can reduce the work function of the GeSe monolayer. The results indicate that GeSe monolayer is not only a promising candidate for the sensing, capture, and storage of NH3, but also an anticipated disposable gas sensor or metal-free catalyst for detecting and catalyzing SO2 and NO2. Furthermore, it has excellent potential to be applied to optical sensors, solar cells, nanoelectronics or optoelectronics devices.

  10. Thermoelectric transport properties of Ti doped/adsorbed monolayer blue phosphorene.

    PubMed

    Zhu, Lin; Li, Bowen; Yao, Kailun

    2018-08-10

    Thermoelectric transport properties of Ti doped or adsorbed monolayer blue phosphorene are investigated by density functional theory combined with the nonequilibrium Green's function formalism. The thermal giant magnetoresistance and a nearly 100% spin polarization which solely relies on the temperature gradient of electrodes without bias or gate voltage are observed. Moreover, the spin Seebeck effect is also found. Furthermore, taking into account the electronic and phonon dispersion, the thermoelectric merit for Ti doping in the monolayer blue phosphorene at room temperature is also studied, the maximum value of thermoelectric merit can reach 1.01 near the Fermi level. The results indicate that Ti doped or adsorbed monolayer blue phosphorene has potential application in both spintronics and spin caloritronics.

  11. Isochoric thermal conductivity of solid n-alkanes: Hexane C6H14

    NASA Astrophysics Data System (ADS)

    Konstantinov, V. A.; Revyakin, V. P.; Sagan, V. V.

    2011-05-01

    The isochoric thermal conductivity of solid n-hexane C6H14 is studied using three samples with different densities for temperatures ranging from 100 K to the onset of melting. In all cases, the isochoric thermal conductivity varies more weakly than Λ∝1/T. The present results are compared with the thermal conductivities of other representatives of the n-alkanes. The contributions of low-frequency phonons and "diffuse modes" to the thermal conductivity are calculated.

  12. Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes

    PubMed Central

    2015-01-01

    We report a set of rare copper-catalyzed reactions of alkanes with simple amides, sulfonamides, and imides (i.e., benzamides, tosylamides, carbamates, and phthalimide) to form the corresponding N-alkyl products. The reactions lead to functionalization at secondary C–H bonds over tertiary C–H bonds and even occur at primary C–H bonds. [(phen)Cu(phth)] (1-phth) and [(phen)Cu(phth)2] (1-phth2), which are potential intermediates in the reaction, have been isolated and fully characterized. The stoichiometric reactions of 1-phth and 1-phth2 with alkanes, alkyl radicals, and radical probes were investigated to elucidate the mechanism of the amidation. The catalytic and stoichiometric reactions require both copper and tBuOOtBu for the generation of N-alkyl product. Neither 1-phth nor 1-phth2 reacted with excess cyclohexane at 100 °C without tBuOOtBu. However, the reactions of 1-phth and 1-phth2 with tBuOOtBu afforded N-cyclohexylphthalimide (Cy-phth), N-methylphthalimide, and tert-butoxycyclohexane (Cy-OtBu) in approximate ratios of 70:20:30, respectively. Reactions with radical traps support the intermediacy of a tert-butoxy radical, which forms an alkyl radical intermediate. The intermediacy of an alkyl radical was evidenced by the catalytic reaction of cyclohexane with benzamide in the presence of CBr4, which formed exclusively bromocyclohexane. Furthermore, stoichiometric reactions of [(phen)Cu(phth)2] with tBuOOtBu and (Ph(Me)2CO)2 at 100 °C without cyclohexane afforded N-methylphthalimide (Me-phth) from β-Me scission of the alkoxy radicals to form a methyl radical. Separate reactions of cyclohexane and d12-cyclohexane with benzamide showed that the turnover-limiting step in the catalytic reaction is the C–H cleavage of cyclohexane by a tert-butoxy radical. These mechanistic data imply that the tert-butoxy radical reacts with the C–H bonds of alkanes, and the subsequent alkyl radical combines with 1-phth2 to form the corresponding N-alkyl imide product

  13. Computational Insight into the Mechanism of Alkane Hydroxylation by Non-heme Fe(PyTACN) Iron Complexes. Effects of the Substrate and Solvent.

    PubMed

    Postils, Verònica; Company, Anna; Solà, Miquel; Costas, Miquel; Luis, Josep M

    2015-09-08

    The reaction mechanisms for alkane hydroxylation catalyzed by non-heme Fe(V)O complexes presented in the literature vary from rebound stepwise to concerted highly asynchronous processes. The origin of these important differences is still not completely understood. Herein, in order to clarify this apparent inconsistency, the hydroxylation of a series of alkanes (methane and substrates bearing primary, secondary, and tertiary C-H bonds) through a Fe(V)O species, [Fe(V)(O)(OH)(PyTACN)](2+) (PyTACN = 1-(2'-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane), has been computationally examined at the gas phase and in acetonitrile solution. The initial breaking of the C-H bond can occur via hydrogen atom transfer (HAT), leading to an intermediate where there is an interaction between the radical substrate and [Fe(IV)(OH)2(PyTACN)](2+), or through hydride transfer to form a cationic substrate interacting with the [Fe(III)(OH)2(PyTACN)](+) species. Our calculations show the following: (i) except for methane in the rest of the alkanes studied, the intermediate formed by R(+) and [Fe(III)(OH)2(PyTACN)](+) is more stable than that involving the alkyl radical and the [Fe(IV)(OH)2(PyTACN)](2+) complex; (ii) in spite of (i), the first step of the reaction mechanism for all substrates is a HAT instead of hydride abstraction; (iii) the HAT is the rate-determining step for all analyzed cases; and (iv) the barrier for the HAT decreases along methane → primary → secondary → tertiary carbon. The second part of the reaction mechanism corresponds to the rebound process. Therefore, the stereospecific hydroxylation of alkane C-H bonds by non-heme Fe(V)(O) species occurs through a rebound stepwise mechanism that resembles that taking place at heme analogues. Finally, our study also shows that, to properly describe alkane hydroxylation processes mediated by Fe(V)O species, it is essential to consider the solvent effects during geometry optimizations. The use of gas-phase geometries

  14. Leaf wax n-alkane patterns from plants and topsoils in the semi-humid to arid southern Caucasus region as a base for paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Bliedtner, Marcel; von Suchodoletz, Hans; Schäfer, Imke; Zech, Roland

    2017-04-01

    Leaf waxes of terrestrial plants are relatively resistant against degradation and can thus serve as valuable biomarkers that are preserved in various sedimentary archives for millenia. Particularly long-chain n-alkanes are increasingly used for paleoenvironmental studies as they have the great potential to reconstruct past changes in vegetation and climate. However, prior to any robust interpretation of the homologue patterns of long-chain n-alkanes, reference samples from modern vegetation and topsoil material should be investigated at a regional scale, because it has been questioned recently, whether n-alkane patterns are suitable to distinguish between different vegetation types at a global scale (Bush and McInerney, 2013). Apart from Central and Southeastern Europe (Zech et al., 2013; Schäfer et al., 2016), systematic regional studies are still largely lacking. To address this issues and to test the potential of leaf wax n-alkanes for paleoenvironmental studies in the semi-humid to arid southern Caucasus region, we investigated the influence of different vegetation types on the leaf wax signal in modern plants and topsoil material in eastern Georgia. We sampled modern plant and topsoil (0-5 cm) material from (i) grassland sites that included steppe, cultivated grassland and meadows, and (ii) from sites that are dominated by deciduous hornbeam forests. The n-alkane results show distinct differences between samples from sites with grassland and deciduous forests and thus corroborate our results from Central and Southeastern Europe (Schäfer et al., 2016): n-Alkanes from grassland sites are mainly dominated by C31 and C33, while n-alkanes from deciduous sites show high abundances of C27 and C29. Thus, chain-length ratios allow to discriminate between these vegetation types and have a great potential when used for paleoenvironmental reconstructions at least in this region. We updated the existing end-member model of Zech et al. (2013) which accounts for

  15. Catalytic oxidation of light alkanes in presence of a base

    DOEpatents

    Bhinde, M.V.; Bierl, T.W.

    1998-03-03

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol. 1 fig.

  16. Insights into the Anaerobic Biodegradation Pathway of n-Alkanes in Oil Reservoirs by Detection of Signature Metabolites

    PubMed Central

    Bian, Xin-Yu; Maurice Mbadinga, Serge; Liu, Yi-Fan; Yang, Shi-Zhong; Liu, Jin-Feng; Ye, Ru-Qiang; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Anaerobic degradation of alkanes in hydrocarbon-rich environments has been documented and different degradation strategies proposed, of which the most encountered one is fumarate addition mechanism, generating alkylsuccinates as specific biomarkers. However, little is known about the mechanisms of anaerobic degradation of alkanes in oil reservoirs, due to low concentrations of signature metabolites and lack of mass spectral characteristics to allow identification. In this work, we used a multidisciplinary approach combining metabolite profiling and selective gene assays to establish the biodegradation mechanism of alkanes in oil reservoirs. A total of twelve production fluids from three different oil reservoirs were collected and treated with alkali; organic acids were extracted, derivatized with ethanol to form ethyl esters and determined using GC-MS analysis. Collectively, signature metabolite alkylsuccinates of parent compounds from C1 to C8 together with their (putative) downstream metabolites were detected from these samples. Additionally, metabolites indicative of the anaerobic degradation of mono- and poly-aromatic hydrocarbons (2-benzylsuccinate, naphthoate, 5,6,7,8-tetrahydro-naphthoate) were also observed. The detection of alkylsuccinates and genes encoding for alkylsuccinate synthase shows that anaerobic degradation of alkanes via fumarate addition occurs in oil reservoirs. This work provides strong evidence on the in situ anaerobic biodegradation mechanisms of hydrocarbons by fumarate addition. PMID:25966798

  17. Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols.

    PubMed

    Li, Meng; Liu, Ping; Adzic, Radoslav R

    2012-12-06

    The slow, incomplete oxidation of methanol and ethanol on platinum-based anodes as well as the high price and limited reserves of Pt has hampered the practical application of direct alcohol fuel cells. We describe the electrocatalysts consisting of one Pt monolayer (one atom thick layer) placed on extended or nanoparticle surfaces having the activity and selectivity for the oxidation of alcohol molecules that can be controlled with platinum-support interaction. The suitably expanded Pt monolayer (i.e., Pt/Au(111)) exhibits a factor of 7 activity increase in catalyzing methanol electrooxidation relative to Pt(111). Sizable enhancement is also observed for ethanol electrooxidation. Furthermore, a correlation between substrate-induced lateral strain in a Pt monolayer and its activity/selectivity is established and rationalized by experimental and theoretical studies. The knowledge we gained with single-crystal model catalysts was successfully applied in designing real nanocatalysts. These findings for alcohols are likely to be applicable for the oxidation of other classes of organic molecules.

  18. Proton and hydrogen transport through two-dimensional monolayers

    NASA Astrophysics Data System (ADS)

    Seel, Max; Pandey, Ravindra

    2016-06-01

    Diffusion of protons and hydrogen atoms in representative two-dimensional materials is investigated. Specifically, density functional calculations were performed on graphene, hexagonal boron nitride (h-BN), phosphorene, silicene, and molybdenum disulfide (MoS2) monolayers to study the surface interaction and penetration barriers for protons and hydrogen atoms employing finite cluster models. The calculated barrier heights correlate approximately with the size of the opening formed by the three-fold open sites in the monolayers considered. They range from 1.56 eV (proton) and 4.61 eV (H) for graphene to 0.12 eV (proton) and 0.20 eV (H) for silicene. The results indicate that only graphene and h-BN monolayers have the potential for membranes with high selective permeability. The MoS2 monolayer behaves differently: protons and H atoms become trapped between the outer S layers in the Mo plane in a well with a depth of 1.56 eV (proton) and 1.5 eV (H atom), possibly explaining why no proton transport was detected, suggesting MoS2 as a hydrogen storage material instead. For graphene and h-BN, off-center proton penetration reduces the barrier to 1.38 eV for graphene and 0.11 eV for h-BN. Furthermore, Pt acting as a substrate was found to have a negligible effect on the barrier height. In defective graphene, the smallest barrier for proton diffusion (1.05 eV) is found for an oxygen-terminated defect. Therefore, it seems more likely that thermal protons can penetrate a monolayer of h-BN but not graphene and defects are necessary to facilitate the proton transport in graphene.

  19. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westbrook, Charles K.; Pitz, William J.; Herbinet, Olivier

    2009-01-15

    Detailed chemical kinetic reaction mechanisms have been developed to describe the pyrolysis and oxidation of nine n-alkanes larger than n-heptane, including n-octane (n-C{sub 8}H{sub 18}), n-nonane (n-C{sub 9}H{sub 20}), n-decane (n-C{sub 10}H{sub 22}), n-undecane (n-C{sub 11}H{sub 24}), n-dodecane (n-C{sub 12}H{sub 26}), n-tridecane (n-C{sub 13}H{sub 28}), n-tetradecane (n-C{sub 14}H{sub 30}), n-pentadecane (n-C{sub 15}H{sub 32}), and n-hexadecane (n-C{sub 16}H{sub 34}). These mechanisms include both high temperature and low temperature reaction pathways. The mechanisms are based on previous mechanisms for the primary reference fuels n-heptane and iso-octane, using the reaction classes first developed for n-heptane. Individual reaction class rules are as simple asmore » possible in order to focus on the parallelism between all of the n-alkane fuels included in the mechanisms. These mechanisms are validated through extensive comparisons between computed and experimental data from a wide variety of different sources. In addition, numerical experiments are carried out to examine features of n-alkane combustion in which the detailed mechanisms can be used to compare reactivities of different n-alkane fuels. The mechanisms for these n-alkanes are presented as a single detailed mechanism, which can be edited to produce efficient mechanisms for any of the n-alkanes included, and the entire mechanism, with supporting thermochemical and transport data, together with an explanatory glossary explaining notations and structural details, is available for download from our web page. (author)« less

  20. Catalytic Hydrodeoxygenation of High Carbon Furylmethanes to Renewable Jet-fuel Ranged Alkanes over a Rhenium-Modified Iridium Catalyst.

    PubMed

    Liu, Sibao; Dutta, Saikat; Zheng, Weiqing; Gould, Nicholas S; Cheng, Ziwei; Xu, Bingjun; Saha, Basudeb; Vlachos, Dionisios G

    2017-08-24

    Renewable jet-fuel-range alkanes are synthesized by hydrodeoxygenation of lignocellulose-derived high-carbon furylmethanes over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. Ir-ReO x /SiO 2 with a Re/Ir molar ratio of 2:1 exhibits the best performance, achieving a combined alkanes yield of 82-99 % from C 12 -C 15 furylmethanes. The catalyst can be regenerated in three consecutive cycles with only about 12 % loss in the combined alkanes yield. Mechanistically, the furan moieties of furylmethanes undergo simultaneous ring saturation and ring opening to form a mixture of complex oxygenates consisting of saturated furan rings, mono-keto groups, and mono-hydroxy groups. Then, these oxygenates undergo a cascade of hydrogenolysis reactions to alkanes. The high activity of Ir-ReO x /SiO 2 arises from a synergy between Ir and ReO x , whereby the acidic sites of partially reduced ReO x activate the C-O bonds of the saturated furans and alcoholic groups while the Ir sites are responsible for hydrogenation with H 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Complexation of phospholipids and cholesterol by triterpenic saponins in bulk and in monolayers.

    PubMed

    Wojciechowski, Kamil; Orczyk, Marta; Gutberlet, Thomas; Geue, Thomas

    2016-02-01

    The interactions between three triterpene saponins: α-hederin, hederacoside C and ammonium glycyrrhizate with model lipids: cholesterol and dipalmitoylphosphatidylcholine (DPPC) are described. The oleanolic acid-type saponins (α-hederin and hederacoside C) were shown to form 1:1 complexes with lipids in bulk, characterized by stability constants in the range (4.0±0.2)·10(3)-(5.0±0.4)·10(4) M(-1). The complexes with cholesterol are generally stronger than those with DPPC. On the contrary, ammonium glycyrrhizate does not form complexes with any of the lipids in solution. The saponin-lipid interactions were also studied in a confined environment of Langmuir monolayers of DPPC and DPPC/cholesterol with the saponins present in the subphase. A combined monolayer relaxation, surface dilational rheology, fluorescence microscopy and neutron reflectivity (NR) study showed that all three saponins are able to penetrate pure DPPC and mixed DPPC/cholesterol monolayers. Overall, the effect of the saponins on the model lipid monolayers does not fully correlate with the lipid-saponin complex formation in the homogeneous solution. The best correlation was found for α-hederin, for which even the preference for cholesterol over DPPC observed in bulk is well reflected in the monolayer studies and the literature data on its membranolytic activity. Similarly, the lack of interaction of ammonium glycyrrhizate with both lipids is evident equally in bulk and monolayer experiments, as well as in its weak membranolytic activity. The combined bulk and monolayer results are discussed in view of the role of confinement in modulating the saponin-lipid interactions and possible mechanism of membranolytic activity of saponins. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Piezoelectric monolayers as nonlinear energy harvesters.

    PubMed

    López-Suárez, Miquel; Pruneda, Miguel; Abadal, Gabriel; Rurali, Riccardo

    2014-05-02

    We study the dynamics of h-BN monolayers by first performing ab-initio calculations of the deformation potential energy and then solving numerically a Langevine-type equation to explore their use in nonlinear vibration energy harvesting devices. An applied compressive strain is used to drive the system into a nonlinear bistable regime, where quasi-harmonic vibrations are combined with low-frequency swings between the minima of a double-well potential. Due to its intrinsic piezoelectric response, the nonlinear mechanical harvester naturally provides an electrical power that is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the induced nonlinearity, a 20 nm2 device is predicted to harvest an electrical power of up to 0.18 pW for a noisy vibration of 5 pN.

  3. Integrated circuits based on conjugated polymer monolayer

    DOE PAGES

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; ...

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1. The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Realmore » logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Lastly, our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.« less

  4. Integrated circuits based on conjugated polymer monolayer.

    PubMed

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2  V -1  s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.

  5. Integrated circuits based on conjugated polymer monolayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1. The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Realmore » logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Lastly, our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.« less

  6. First-principles studies of chromium line-ordered alloys in a molybdenum disulfide monolayer

    NASA Astrophysics Data System (ADS)

    Andriambelaza, N. F.; Mapasha, R. E.; Chetty, N.

    2017-08-01

    Density functional theory calculations have been performed to study the thermodynamic stability, structural and electronic properties of various chromium (Cr) line-ordered alloy configurations in a molybdenum disulfide (MoS2) hexagonal monolayer for band gap engineering. Only the molybdenum (Mo) sites were substituted at each concentration in this study. For comparison purposes, different Cr line-ordered alloy and random alloy configurations were studied and the most thermodynamically stable ones at each concentration were identified. The configurations formed by the nearest neighbor pair of Cr atoms are energetically most favorable. The line-ordered alloys are constantly lower in formation energy than the random alloys at each concentration. An increase in Cr concentration reduces the lattice constant of the MoS2 system following the Vegard’s law. From density of states analysis, we found that the MoS2 band gap is tunable by both the Cr line-ordered alloys and random alloys with the same magnitudes. The reduction of the band gap is mainly due to the hybridization of the Cr 3d and Mo 4d orbitals at the vicinity of the band edges. The band gap engineering and magnitudes (1.65 eV to 0.86 eV) suggest that the Cr alloys in a MoS2 monolayer are good candidates for nanotechnology devices.

  7. Distribution and origins of n-alkanes, hopanes, and steranes in rivers and marine sediments from Southwest Caspian coast, Iran: implications for identifying petroleum hydrocarbon inputs.

    PubMed

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud

    2016-09-01

    The occurrence of n-alkanes and biomarkers (hopane and sterane) in surface sediments from Southwestern coasts of Caspian Sea and 28 rivers arriving to this lake, determined with a gas chromatography-mass spectrometry method, was used to assess the impacts of anthropogenic activities in the studied area. The concentrations of total n-alkanes (Σ21 n-alkane) in costal and riverine sediments varied from 249.2 to 3899.5 and 56 to 1622.4 μg g(-1), respectively. An evaluation of the source diagnostic indices indicated that petroleum related sources (petrogenic) were mainly contributed to n-alkanes in costal and most riverine sediments. Only the hydrocarbons in sediment of 3 rivers were found to be mainly of biogenic origin. Principal component analysis using hopane diagnostic ratios in costal and riverine sediments, and Anzali, Turkmenistan, and Azerbaijan oils were used to identify the sources of hydrocarbons in sediments. It was indicated that the anthropogenic contributions in most of the costal sediment samples are dominated with inputs of oil spills from Turkmenistan and Azerbaijan countries.

  8. Carbon isotope analyses of n-alkanes released from rapid pyrolysis of oil asphaltenes in a closed system.

    PubMed

    Chen, Shasha; Jia, Wanglu; Peng, Ping'an

    2016-08-15

    Carbon isotope analysis of n-alkanes produced by the pyrolysis of oil asphaltenes is a useful tool for characterizing and correlating oil sources. Low-temperature (320-350°C) pyrolysis lasting 2-3 days is usually employed in such studies. Establishing a rapid pyrolysis method is necessary to reduce the time taken for the pretreatment process in isotope analyses. One asphaltene sample was pyrolyzed in sealed ampoules for different durations (60-120 s) at 610°C. The δ(13) C values of the pyrolysates were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The molecular characteristics and isotopic signatures of the pyrolysates were investigated for the different pyrolysis durations and compared with results obtained using the normal pyrolysis method, to determine the optimum time interval. Several asphaltene samples derived from various sources were analyzed using this method. The asphaltene pyrolysates of each sample were similar to those obtained by the flash pyrolysis method on similar samples. However, the molecular characteristics of the pyrolysates obtained over durations longer than 90 s showed intensified secondary reactions. The carbon isotopic signatures of individual compounds obtained at pyrolysis durations less than 90 s were consistent with those obtained from typical low-temperature pyrolysis. Several asphaltene samples from various sources released n-alkanes with distinct carbon isotopic signatures. This easy-to-use pyrolysis method, combined with a subsequent purification procedure, can be used to rapidly obtain clean n-alkanes from oil asphaltenes. Carbon isotopic signatures of n-alkanes released from oil asphaltenes from different sources demonstrate the potential application of this method in 'oil-oil' and 'oil-source' correlations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques.

    PubMed

    Zhou, Lei; Li, Kai-Ping; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2012-08-01

    Despite the knowledge on anaerobic degradation of hydrocarbons and signature metabolites in the oil reservoirs, little is known about the functioning microbes and the related biochemical pathways involved, especially about the methanogenic communities. In the present study, a methanogenic consortium enriched from high-temperature oil reservoir production water and incubated at 55 °C with a mixture of long chain n-alkanes (C(15)-C(20)) as the sole carbon and energy sources was characterized. Biodegradation of n-alkanes was observed as methane production in the alkanes-amended methanogenic enrichment reached 141.47 μmol above the controls after 749 days of incubation, corresponding to 17 % of the theoretical total. GC-MS analysis confirmed the presence of putative downstream metabolites probably from the anaerobic biodegradation of n-alkanes and indicating an incomplete conversion of the n-alkanes to methane. Enrichment cultures taken at different incubation times were subjected to microbial community analysis. Both 16S rRNA gene clone libraries and DGGE profiles showed that alkanes-degrading community was dynamic during incubation. The dominant bacterial species in the enrichment cultures were affiliated with Firmicutes members clustering with thermophilic syntrophic bacteria of the genera Moorella sp. and Gelria sp. Other represented within the bacterial community were members of the Leptospiraceae, Thermodesulfobiaceae, Thermotogaceae, Chloroflexi, Bacteroidetes and Candidate Division OP1. The archaeal community was predominantly represented by members of the phyla Crenarchaeota and Euryarchaeota. Corresponding sequences within the Euryarchaeota were associated with methanogens clustering with orders Methanomicrobiales, Methanosarcinales and Methanobacteriales. On the other hand, PCR amplification for detection of functional genes encoding the alkylsuccinate synthase α-subunit (assA) was positive in the enrichment cultures. Moreover, the appearance of a new ass

  10. Zwitterionic lipid assemblies: Molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field

    PubMed Central

    Shinoda, Wataru; DeVane, Russell; Klein, Michael L.

    2010-01-01

    A new coarse-grained (CG) intermolecular force field is presented for a series of zwitterionic lipids. The model is an extension of our previous work on nonionic surfactants and is designed to reproduce experimental surface/interfacial properties as well as distribution functions from all-atom molecular dynamics (MD) simulations. Using simple functional forms, the force field parameters are optimized for multiple lipid molecules, simultaneously. The resulting CG lipid bilayers have reasonable molecular areas, chain order parameters, and elastic properties. The computed surface pressure vs. area (π-A) curve for a DPPC monolayer demonstrates a significant improvement over the previous CG models. The DPPC monolayer has a longer persistence length than a PEG lipid monolayer, exhibiting a long-lived curved monolayer surface under negative tension. The bud ejected from an oversaturated DPPC monolayer has a large bicelle-like structure, which is different from the micellar bud formed from an oversaturated PEG lipid monolayer. We have successfully observed vesicle formation during CG-MD simulations, starting from an aggregate of DMPC molecules. Depending on the aggregate size, the lipid assembly spontaneously transforms into a closed vesicle or a bicelle. None of the various intermediate structures between these extremes seem to be stable. An attempt to observe fusion of two vesicles through the application of an external adhesion force was not successful. The present CG force field also supports stable multi-lamellar DMPC vesicles. PMID:20438090

  11. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOEpatents

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.

    1998-06-23

    Transition metal complexes of meso-haloalkylporphyrins are disclosed, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.

  12. Plant Wax n-Alkane and n-Alkanoic Acid Signatures Overprinted by Microbial Contributions and Old Carbon in Meromictic Lake Sediments

    NASA Astrophysics Data System (ADS)

    Makou, Matthew; Eglinton, Timothy; McIntyre, Cameron; Montluçon, Daniel; Antheaume, Ingrid; Grossi, Vincent

    2018-01-01

    Specific n-alkanes and n-alkanoic acids are commonly used as biomarkers in paleoenvironmental reconstruction, yet any individual homologue may originate from multiple biological sources. Here we improve source and age controls for these compounds in meromictic systems by measuring the radiocarbon (14C) ages of specific homologues preserved in twentieth century Lake Pavin (France) sediments. In contrast to many studies, 14C ages generally decreased with increasing carbon chain length, from 7.3 to 2.6 ka for the C14-C30 n-alkanoic acids and from 9.2 to 0.3 ka for the C21-C33 n-alkanes. Given a known hard water effect, these values suggest that aquatic microbial sources predominate and contributed to most of the homologues measured. Only the longest chain n-alkanes exclusively represent inputs of higher plant waxes, which were previously sequestered in soils over centennial to millennial timescales prior to transport and deposition. These findings suggest that biomarker source and age should be carefully established for lacustrine settings.

  13. Micro-heterogeneity versus clustering in binary mixtures of ethanol with water or alkanes.

    PubMed

    Požar, Martina; Lovrinčević, Bernarda; Zoranić, Larisa; Primorać, Tomislav; Sokolić, Franjo; Perera, Aurélien

    2016-08-24

    Ethanol is a hydrogen bonding liquid. When mixed in small concentrations with water or alkanes, it forms aggregate structures reminiscent of, respectively, the direct and inverse micellar aggregates found in emulsions, albeit at much smaller sizes. At higher concentrations, micro-heterogeneous mixing with segregated domains is found. We examine how different statistical methods, namely correlation function analysis, structure factor analysis and cluster distribution analysis, can describe efficiently these morphological changes in these mixtures. In particular, we explain how the neat alcohol pre-peak of the structure factor evolves into the domain pre-peak under mixing conditions, and how this evolution differs whether the co-solvent is water or alkane. This study clearly establishes the heuristic superiority of the correlation function/structure factor analysis to study the micro-heterogeneity, since cluster distribution analysis is insensitive to domain segregation. Correlation functions detect the domains, with a clear structure factor pre-peak signature, while the cluster techniques detect the cluster hierarchy within domains. The main conclusion is that, in micro-segregated mixtures, the domain structure is a more fundamental statistical entity than the underlying cluster structures. These findings could help better understand comparatively the radiation scattering experiments, which are sensitive to domains, versus the spectroscopy-NMR experiments, which are sensitive to clusters.

  14. Transport properties of mixtures by the soft-SAFT + free-volume theory: application to mixtures of n-alkanes and hydrofluorocarbons.

    PubMed

    Llovell, F; Marcos, R M; Vega, L F

    2013-05-02

    In a previous paper (Llovell et al. J. Phys. Chem. B, submitted for publication), the free-volume theory (FVT) was coupled with the soft-SAFT equation of state for the first time to extend the capabilities of the equation to the calculation of transport properties. The equation was tested with molecular simulations and applied to the family of n-alkanes. The capability of the soft-SAFT + FVT treatment is extended here to other chemical families and mixtures. The compositional rules of Wilke (Wilke, C. R. J. Chem. Phys. 1950, 18, 517-519) are used for the diluted term of the viscosity, while the dense term is evaluated using very simple mixing rules to calculate the viscosity parameters. The theory is then used to predict the vapor-liquid equilibrium and the viscosity of mixtures of nonassociating and associating compounds. The approach is applied to determine the viscosity of a selected group of hydrofluorocarbons, in a similar manner as previously done for n-alkanes. The soft-SAFT molecular parameters are taken from a previous work, fitted to vapor-liquid equilibria experimental data. The application of FVT requires three additional parameters related to the viscosity of the pure fluid. Using a transferable approach, the α parameter is taken from the equivalent n-alkane, while the remaining two parameters B and Lv are fitted to viscosity data of the pure fluid at several isobars. The effect of these parameters is then investigated and compared to those obtained for n-alkanes, in order to better understand their effect on the calculations. Once the pure fluids are well characterized, the vapor-liquid equilibrium and the viscosity of nonassociating and associating mixtures, including n-alkane + n-alkane, hydrofluorocarbon + hydrofluorocarbon, and n-alkane + hydrofluorocarbon mixtures, are calculated. One or two binary parameters are used to account for deviations in the vapor-liquid equilibrium diagram for nonideal mixtures; these parameters are used in a

  15. Distribution and stable isotope composition of leaf wax n-alkanes as tracers for organic matter transport along hydrological transects in the NW Argentine Andes

    NASA Astrophysics Data System (ADS)

    Tofelde, Stefanie; Sachse, Dirk; Schildgen, Taylor; Strecker, Manfred R.

    2015-04-01

    The burial of organic matter in marine sediments represents the main long-term sink for reduced carbon in the global carbon cycle, with the fluvial system being the predominant transport mechanism. Organic matter deposited in marine and continental sediments contains valuable information on ecological and climatic conditions, and organic proxy data is thus often used in paleoclimate research. To use sedimentary records to investigate past environmental conditions in the terrestrial realm, processes dictating the transport of organic matter, including spatial and temporal resolution as well as the influence of climatic and tectonic processes, have to be understood. In this study, we test if a lipid biomarker based approach can be used to trace present-day organic matter sources in a fluvial watershed draining two intermontane basins in the southern-central Andes of NW Argentina, a tectonically active region with pronounced topographic, rainfall, and vegetation gradients. We investigated the distribution of long-chain leaf-wax n-alkanes, a terrestrial plant biomarker (and as such representative of terrestrially sourced carbon), in river sediments and coarse particulate organic matter (CPOM) along two altitudinal and hydrological gradients. We used n-alkane abundances and their stable carbon and hydrogen isotopic values as three independent parameters for source discrimination. Additionally, we analyzed the control of environmental parameters on the isotopic signatures in leaf-wax n-alkanes. The general pattern of n-alkane distribution in river sediments and CPOM samples in our study area suggest that vascular plants are the major source of riverine organic matter. The stable carbon isotopic composition of nC29 alkanes suggests a nearly exclusive input of C3 vegetation. Although C4 plants are present in the lower catchment areas, the total percentage is too low to have a detectable influence on the carbon isotopic composition in river sediment and CPOM samples

  16. Metal-organic framework for the separation of alkane isomers

    DOEpatents

    Long, Jeffrey R.; Herm, Zoey R.; Wiers, Brian M.; Krishna, Rajamani

    2017-01-10

    A metal organic framework Fe.sub.2(bdp).sub.3 (BDP.sup.2-=1,4-benzenedipyrazolate) with triangular channels is particularly suited for C5-C7 separations of alkanes according to the number of branches in the molecule rather than by carbon number. The metal-organic framework can offer pore geometries that is unavailable in zeolites or other porous media, facilitating distinct types of shape-based molecular separations.

  17. Omeprazole decreases magnesium transport across Caco-2 monolayers

    PubMed Central

    Thongon, Narongrit; Krishnamra, Nateetip

    2011-01-01

    AIM: To elucidate the effect and underlying mechanisms of omeprazole action on Mg2+ transport across the intestinal epithelium. METHODS: Caco-2 monolayers were cultured in various dose omeprazole-containing media for 14 or 21 d before being inserted into a modified Ussing chamber apparatus to investigate the bi-directional Mg2+ transport and electrical parameters. Paracellular permeability of the monolayer was also observed by the dilution potential technique and a cation permeability study. An Arrhenius plot was performed to elucidate the activation energy of passive Mg2+ transport across the Caco-2 monolayers. RESULTS: Both apical to basolateral and basolateral to apical passive Mg2+ fluxes of omeprazole-treated epithelium were decreased in a dose- and time-dependent manner. Omeprazole also decreased the paracellular cation selectivity and changed the paracellular selective permeability profile of Caco-2 epithelium to Li+, Na+, K+, Rb+, and Cs+ from series VII to series VI of the Eisenman sequence. The Arrhenius plot revealed the higher activation energy for passive Mg2+ transport in omeprazole-treated epithelium than that of control epithelium, indicating that omeprazole affected the paracellular channel of Caco-2 epithelium in such a way that Mg2+ movement was impeded. CONCLUSION: Omeprazole decreased paracellular cation permeability and increased the activation energy for passive Mg2+ transport of Caco-2 monolayers that led to the suppression of passive Mg2+ absorption. PMID:21472124

  18. Monolayer II-VI semiconductors: A first-principles prediction

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Chen, Nian-Ke; Zhang, S. B.; Li, Xian-Bin

    A systematic study of 32 honeycomb monolayer II-VI semiconductors is carried out by first-principles methods. It appears that BeO, MgO, CaO, ZnO, CdO, CaS, SrS, SrSe, BaTe, and HgTe honeycomb monolayers have a good dynamic stability which is revealed by phonon calculations. In addition, from the molecular dynamic (MD) simulation of other unstable candidates, we also find two extra monolayers dynamically stable, which are tetragonal BaS and orthorhombic HgS. The honeycomb monolayers exist in form of either a planar perfect honeycomb or a low-buckled 2D layer, all of which possess a band gap and most of them are in the ultraviolet region. Interestingly, the dynamically stable SrSe has a gap near visible light, and displays exotic electronic properties with a flat top of the valence band, and hence has a strong spin polarization upon hole doping. The honeycomb HgTe has been reported to achieve a topological nontrivial phase under appropriate in-plane tensile strain and spin-orbital coupling (SOC). Some II-VI partners with less than 5% lattice mismatch may be used to design novel 2D heterojunction devices. If synthesized, potential applications of these 2D II-VI families could include optoelectronics, spintronics, and strong correlated electronics. Distinguished Student (DS) Program of APS FIP travel funds.

  19. Omeprazole decreases magnesium transport across Caco-2 monolayers.

    PubMed

    Thongon, Narongrit; Krishnamra, Nateetip

    2011-03-28

    To elucidate the effect and underlying mechanisms of omeprazole action on Mg(2+) transport across the intestinal epithelium. Caco-2 monolayers were cultured in various dose omeprazole-containing media for 14 or 21 d before being inserted into a modified Ussing chamber apparatus to investigate the bi-directional Mg(2+) transport and electrical parameters. Paracellular permeability of the monolayer was also observed by the dilution potential technique and a cation permeability study. An Arrhenius plot was performed to elucidate the activation energy of passive Mg(2+) transport across the Caco-2 monolayers. Both apical to basolateral and basolateral to apical passive Mg(2+) fluxes of omeprazole-treated epithelium were decreased in a dose- and time-dependent manner. Omeprazole also decreased the paracellular cation selectivity and changed the paracellular selective permeability profile of Caco-2 epithelium to Li(+), Na(+), K(+), Rb(+), and Cs(+) from series VII to series VI of the Eisenman sequence. The Arrhenius plot revealed the higher activation energy for passive Mg(2+) transport in omeprazole-treated epithelium than that of control epithelium, indicating that omeprazole affected the paracellular channel of Caco-2 epithelium in such a way that Mg(2+) movement was impeded. Omeprazole decreased paracellular cation permeability and increased the activation energy for passive Mg(2+) transport of Caco-2 monolayers that led to the suppression of passive Mg(2+) absorption.

  20. Electromelting of confined monolayer ice.

    PubMed

    Qiu, Hu; Guo, Wanlin

    2013-05-10

    In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under a perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to the field-induced disruption of the water-wall interaction induced well-ordered network of the hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.

  1. Giant coercivity in perpendicularly magnetized cobalt monolayer

    NASA Astrophysics Data System (ADS)

    Lin, D. C.; Song, C.; Cui, B.; Wang, Y. Y.; Wang, G. Y.; Pan, F.

    2012-09-01

    We report giant coercivity (HC) up to 35 kOe at 4 K, measured by the anomalous Hall effect, in perpendicularly magnetized Co (˜0.3 nm) films, where Co is approximately one monolayer. The HC is dramatically reduced with huge applied current, due to Joule heating rather than Rashba effect. It is also sensitive to temperatures, producing almost zero HC at 200 K. The Curie temperature of the Co monolayer is ˜275 K, far lower than that of bulk Co. The giant HC could be explained by the strong interaction at Co/Pd interface, providing a promising paradise: one monolayer, one permanent magnet.

  2. Hydrogen isotope composition of leaf wax n-alkanes in glaucous and non-glaucous varieties of wheat (Triticum spp.)

    NASA Astrophysics Data System (ADS)

    Pedentchouk, Nikolai; Eley, Yvette; Frizell-Armitage, Amelia; Uauy, Cristobal

    2015-04-01

    The use of the 2H/1H composition of terrestrial plants in climate and ecology studies depends on fundamental understanding of the processes within the plant that control fractionation of these two isotopes. Little is currently known about the extent of 2H/1H fractionation at different steps of biosynthesis, after the initial H uptake following leaf water photolysis. Knowing this effect is particularly important when seeking to interpret the 2H/1H composition of leaf wax biomarkers from plants that differ in the amount and type of individual compound classes in their leaf waxes. The purpose of this study was to investigate the link between the quantity and distribution of n-alkyl lipids in leaf waxes and their isotopic composition. We used a genetic approach to suppress glaucousness in 2 varieties of wheat (Alchemy and Malacca), which resulted in glaucous and non-glaucous phenotypes of both varieties. Both phenotypes were then grown outdoors under identical environmental conditions in central Norfolk, UK. At the end of the growing season, the plants were sampled for soil water, leaf water, and leaf wax isotopic measurements. Comparison of the leaf wax composition of the non-glaucous and glaucous phenotypes revealed that the non-glaucous varieties were characterised by the absence of diketones and a greater concentration of n-alkanes and primary alcohols.. Our results showed very small differences between glaucous and non-glaucous varieties with regard to soil (mean values, <2 per mil) and leaf (<1 per mil) water 2H/1H. Conversely, there was 15-20 and 10-15 per mil 2H-depletion in the C29 and C31 n-alkanes, respectively, from the non-glaucous phenotype. This 2H-depletion in the non-glaucous phenotype demonstrated that the suppression of diketone production and the increase in n-alkane and primary alcohol concentrations are linked with a shift in the 2H/1H composition of n-alkanes. The initial results of this work suggest that plants using the same environmental water

  3. Molecular printboards: monolayers of beta-cyclodextrins on silicon oxide surfaces.

    PubMed

    Onclin, Steffen; Mulder, Alart; Huskens, Jurriaan; Ravoo, Bart Jan; Reinhoudt, David N

    2004-06-22

    Monolayers of beta-cyclodextrin host molecules have been prepared on SiO2 surfaces. An ordered and stable cyano-terminated monolayer was modified in three consecutive surface reactions. First, the cyanide groups were reduced to their corresponding free amines using Red Al as a reducing agent. Second, 1,4-phenylene diisothiocyanate was used to react with the amine monolayer where it acts as a linking molecule, exposing isothiocyanates that can be derivatized further. Finally, per-6-amino beta-cyclodextrin was reacted with these isothiocyanate functions to yield a monolayer exposing beta-cyclodextrin. All monolayers were characterized by contact angle measurements, ellipsometric thickness measurements, Brewster angle Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry, which indicate the formation of a densely packed cyclodextrin surface. It was demonstrated that the beta-cyclodextrin monolayer could bind suitable guest molecules in a reversible manner. A fluorescent molecule (1), equipped with two adamantyl groups for complexation, was adsorbed onto the host monolayer from solution to form a monolayer of guest molecules. Subsequently, the guest molecules were desorbed from the surface by competition with increasing beta-cyclodextrin concentration in solution. The data were fitted using a model. An intrinsic binding constant of 3.3 +/- 1 x 10(5) M(-1) was obtained, which corresponds well to previously obtained results with a divalent guest molecule on beta-cyclodextrin monolayers on gold. In addition, the number of guest molecules bound to the host surface was determined, and a surface coverage of ca. 30% was found.

  4. Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: Riverine contributions to Beaufort Sea coastal sediment

    NASA Astrophysics Data System (ADS)

    Yunker, Mark B.; Macdonald, Robie W.; Cretney, Walter J.; Fowler, Brian R.; McLaughlin, Fiona A.

    1993-07-01

    To study the largest source of river sediment to the Arctic Ocean, we have collected suspended particulates from the Mackenzie River in all seasons and sediments from the Mackenzie shelf between the river mouth and the shelf edge. These samples have been analyzed for alkanes, triterpenes and polycyclic aromatic hydrocarbons (PAHs). We found that naturally occurring hydrocarbons predominate in the river and on the shelf. These hydrocarbons include biogenic alkanes and triterpenes with a higher plant/peat origin, diagenetic PAHs from peat and plant detritus, petrogenic alkanes, triterpenes and PAHs from oil seeps and/or bitumens and combustion PAHs that are likely relict in peat deposits. Because these components vary independently, the season is found to strongly influence the concentration and composition of hydrocarbons in the Mackenzie River. While essentially the same pattern of alkanes, diagenetic hopanes and alkyl PAHs is observed in all river and most shelf sediment samples, alkane and triterpene concentration variations are strongly linked to the relative amount of higher plant/peat material. Polycyclic aromatic hydrocarbon molecular-mass profiles also appear to be tied primarily to varying proportions of peat, with an additional petrogenic component which is most likely associated with lithic material mobilized by the Mackenzie River at freshet. Consistent with the general lack of alkyl PAHs in peat, the higher PAHs found in the river are probably derived from forest and tundra fires. A few anthropogenic/pyrogenic compounds are manifest only at the shelf edge, probably due to a weakening of the river influence. We take this observation of pyrogenic PAHs and the pronounced source differences between two sediment samples collected at the shelf edge as evidence of a transition from dominance by the Mackenzie River to the geochemistry prevalent in Arctic regions far removed from major rivers.

  5. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  6. Angiosperm n-alkane distribution patterns and the geologic record of C4 grassland evolution

    NASA Astrophysics Data System (ADS)

    Henderson, A.; Graham, H. V.; Patzkowsky, M.; Fox, D. L.; Freeman, K. H.

    2012-12-01

    n-Alkane average chain-length (ACL) patterns vary regionally with community composition and climate. To clarify the influence of phylogenetic and community patterns, we compiled and analyzed a global database of published n-alkane abundance for n-C27 to C35 homologs in modern plant specimens (n=205). ACL for waxes in C4 non-woody plants are longer than for woody plants, suggesting ACL can serve as an indicator of the three-dimensional structure of local vegetation. Further, these findings suggest compound-specific isotopic data for longer alkane homologs (C31, C33, C35) will proportionately represent non-woody vegetation and isotope measurements of C29 are more representative of woody vegetation. Thus, the combination of ACL and carbon isotope compositions should allow us to disentangle C3 woody, C3 non-woody, and C4 non-woody signals in terrestrial paleorecords. Application of this approach to the geologic record of Miocene C4 grassland expansion in the US Great Plains and the Siwaliks in Pakistan illustrate two very different transition scenarios. Alkane-specific isotopic data indicate C4 grasslands appeared 2.5 Ma in the Great Plains and 6.5 Ma in the Siwaliks, and ACL analysis indicates that this transition involved the replacement of woody vegetation in the US and the replacement of C3 grasses in Pakistan. Our analysis illustrates that, consistent with differences in the timing of C4 grassland, the drivers of change were likely not the same in these regions. Oxygen isotope records suggest that the more recent transition in the Great Plains was associated with climate cooling and possibly changes in disturbance regimes and that the transition in the Siwaliks was likely associated with warming and drying.

  7. Controlling Morphology and Molecular Packing of Alkane Substituted Phthalocyanine Blend Bulk Heterojunction Solar Cells†

    PubMed Central

    Jurow, Matthew J.; Hageman, Brian A.; Nam, Chang-Yong; Pabon, Cesar; Black, Charles T.

    2013-01-01

    Systematic changes in the exocyclic substiution of core phthalocyanine platform tune the absorption properties to yield commercially viable dyes that function as the primary light absorbers in organic bulk heterojunction solar cells. Blends of these complementary phthalocyanines absorb a broader portion of the solar spectrum compared to a single dye, thereby increasing solar cell performance. We correlate grazing incidence small angle x-ray scattering structural data with solar cell performance to elucidate the role of nanomorphology of active layers composed of blends of phthalocyanines and a fullerene derivative. A highly reproducible device architecture is used to assure accuracy and is relevant to films for solar windows in urban settings. We demonstrate that the number and structure of the exocyclic motifs dictate phase formation, hierarchical organization, and nanostructure, thus can be employed to tailor active layer morphology to enhance exciton dissociation and charge collection efficiencies in the photovoltaic devices. These studies reveal that disordered films make better solar cells, short alkanes increase the optical density of the active layer, and branched alkanes inhibit unproductive homogeneous molecular alignment. PMID:23589766

  8. Sensing properties of monolayer borophane nanosheet towards alcohol vapors: A first-principles study.

    PubMed

    Nagarajan, V; Chandiramouli, R

    2017-05-01

    The electronic properties of borophane nanosheet and adsorption behavior of three distinct alcohol vapors namely methanol, ethanol and 1-propanol on borophane nanosheet is studied using density functional theory method for the first time. The state-of-the-art provides insights on to the development of new two dimensional materials with the surface passivation on boron nanostructures. The density of states spectrum provides a clear perception on charge transfer upon adsorption of alcohol vapors on borophane nanosheets. The monolayer of borophane band gap widens upon adsorption of alcohol vapors, which can be used for the detection for volatile organic vapors. The adsorption properties of alcohol vapors on borophane base material are analyzed in terms of natural bond orbital, average energy gap variation, adsorption energy and energy gap. The most suitable adsorption sites of methanol, ethanol and 1-propanol molecules on borophane nanosheet are investigated in atomistic level. The adsorption of alcohol molecules on borophane nanosheet is found to be more favorable. The findings suggest that the monolayer borophane nanosheet can be utilized to detect the presence of alcohol vapors in the atmosphere. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Study of simultaneous reduction and nitrogen doping of graphene oxide Langmuir-Blodgett monolayer sheets by ammonia plasma treatment

    NASA Astrophysics Data System (ADS)

    Singh, Gulbagh; Sutar, D. S.; Divakar Botcha, V.; Narayanam, Pavan K.; Talwar, S. S.; Srinivasa, R. S.; Major, S. S.

    2013-09-01

    Graphene oxide (GO) monolayer sheets, transferred onto Si by the Langmuir-Blodgett technique, were subjected to ammonia plasma treatment at room temperature with the objective of simultaneous reduction and doping. Scanning electron microscopy and atomic force microscopy studies show that plasma treatment at a relatively low power (˜10 W) for up to 15 min does not affect the morphological stability and monolayer character of GO sheets. X-ray photoelectron spectroscopy has been used to study de-oxygenation of GO monolayers and the incorporation of nitrogen in graphitic-N, pyrrolic-N and pyridinic-N forms due to the plasma treatment. The corresponding changes in the valence band electronic structure, density of states at the Fermi level and work function have been investigated by ultraviolet photoelectron spectroscopy. These studies, supported by Raman spectroscopy and electrical conductivity measurements, have shown that a short duration plasma treatment of up to 5 min results in an increase of sp2-C content along with a substantial incorporation of the graphitic-N form, leading to the formation of n-type reduced GO. Prolonged plasma treatment for longer durations results in a decrease of electrical conductivity, which is accompanied by a substantial decrease of sp2-C and an increase in defects and disorder, primarily attributed to the increase in pyridinic-N content.

  10. Short-chain alkane cycling in deep Gulf of Mexico cold-seep sediments

    NASA Astrophysics Data System (ADS)

    Sibert, R.; Joye, S. B.; Hunter, K.

    2015-12-01

    Mixtures of light hydrocarbon gases are common in deep Gulf of Mexico cold-seep sediments, and are typically dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is usually methane (>80% C1), but ethane (C2) and propane (C3) are nearly always present in trace amounts (<1% total). The processes that control the concentration and isotopic signature of these gases in sediments are well explained for methane, but the controls for C2/C3 cycling are still a relative mystery. Methane production proceeds in deep anoxic sediments by either 1) thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, i.e. methanogenesis. In surface sediments, it appears that both microbial consumption and chemical deposition of methane (i.e. as methane clathrate) ensures that >95% of the methane produced at depth never reaches the water column. Production of C1 and C2 in deep-sea sediments has been historically attributed only to thermocatalytic processes, though limited data suggests production of C2/C3 compounds through the activity of archaea at depth. Furthermore, carbon isotopic data on ethane and propane from deep cores of Gulf of Mexico sediments suggest alkanogenesis at >3 m depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Additional studies have also isolated microorganisms capable of oxidizing ethane and propane in the laboratory, but field studies of microbial-driven dynamics of C2/C3 gases in cold-seep sediments are rare. Here, we present the results of a series of incubation experiments using sediment slurries culled from surface sediments from one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of alkane oxidation were measured under a variety of conditions to assess the surface-driven microbial controls on C2/C3 cycling in cold-seep environments. Such microbial processes

  11. Fundamental optical properties of linear and cyclic alkanes: VUV absorbance and index of refraction.

    PubMed

    Costner, Elizabeth A; Long, Brian K; Navar, Carlos; Jockusch, Steffen; Lei, Xuegong; Zimmerman, Paul; Campion, Alan; Turro, Nicholas J; Willson, C Grant

    2009-08-20

    VUV absorbance and index of refraction data for a series of linear and cyclic alkanes have been collected in order to understand the relationship between the electronic excitation wavelength (or absorbance edge), index of refraction, and molecular structure. The absorbance edge and index for a homologous series of both linear and cyclic alkanes increase with increasing carbon number. The optical properties of complex cycloalkanes do not vary predictably with increasing carbon number but instead depend on variations in the hydrocarbon structure in addition to hydrocarbon size. An understanding of the fundamental optical properties of this class of compounds is directly applicable to the identification of a high index and low-absorbance fluid for 193 nm immersion lithography.

  12. Synthesis of chiral 2-alkanols from n-alkanes by a P. putida whole-cell biocatalyst.

    PubMed

    Tieves, Florian; Erenburg, Isabelle N; Mahmoud, Osama; Urlacher, Vlada B

    2016-09-01

    The cytochrome P450 monooxygenase CYP154A8 from Nocardia farcinica was previously found to catalyze hydroxylation of linear alkanes (C7 -C9 ) with a high regio- and stereoselectivity. The objective of this study was to integrate CYP154A8 along with suitable redox partners into a whole-cell system for the production of chiral 2-alkanols starting from alkanes. Both recombinant Escherichia coli and Pseudomonas putida whole-cell biocatalysts tested for this purpose showed the ability to produce chiral alkanols, but a solvent tolerant P. putida strain demonstrated several advantages in the applied biphasic reaction system. The optimized P. putida whole-cell system produced ∼16 mM (S)-2-octanol with 87% ee from octane, which is more than sevenfold higher than the previously described system with isolated enzymes. The achieved enantiopurity of the product could further be increased up to 99% ee by adding an alcohol dehydrogenase (ADH) to the alkane-oxidizing P. putida whole-cell systems. By using this setup for the individual conversions of heptane, octane or nonane, 2.6 mM (S)-2-heptanol with 91% ee, 5.4 mM (S)-2-octanol with 97% ee, or 5.5 mM (S)-2-nonanol with 97% ee were produced, respectively. The achieved concentrations of chiral 2-alkanols are the highest reported for a P450-based whole-cell system so far. Biotechnol. Bioeng. 2016;113: 1845-1852. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Alkane biodegradation genes from chronically polluted subantarctic coastal sediments and their shifts in response to oil exposure.

    PubMed

    Guibert, Lilian M; Loviso, Claudia L; Marcos, Magalí S; Commendatore, Marta G; Dionisi, Hebe M; Lozada, Mariana

    2012-10-01

    Although sediments are the natural hydrocarbon sink in the marine environment, the ecology of hydrocarbon-degrading bacteria in sediments is poorly understood, especially in cold regions. We studied the diversity of alkane-degrading bacterial populations and their response to oil exposure in sediments of a chronically polluted Subantarctic coastal environment, by analyzing alkane monooxygenase (alkB) gene libraries. Sequences from the sediment clone libraries were affiliated with genes described in Proteobacteria and Actinobacteria, with 67 % amino acid identity in average to sequences from isolated microorganisms. The majority of the sequences were most closely related to uncultured microorganisms from cold marine sediments or soils from high latitude regions, highlighting the role of temperature in the structuring of this bacterial guild. The distribution of alkB sequences among samples of different sites and years, and selection after experimental oil exposure allowed us to identify ecologically relevant alkB genes in Subantarctic sediments, which could be used as biomarkers for alkane biodegradation in this environment. 16 S rRNA amplicon pyrosequencing indicated the abundance of several genera for which no alkB genes have yet been described (Oleispira, Thalassospira) or that have not been previously associated with oil biodegradation (Spongiibacter-formerly Melitea-, Maribius, Robiginitomaculum, Bizionia and Gillisia). These genera constitute candidates for future work involving identification of hydrocarbon biodegradation pathway genes.

  14. Sodium adsorption and diffusion on monolayer black phosphorus with intrinsic defects

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Wang, Zhiguo

    2018-01-01

    Monolayer black phosphorus is a potential anode material for rechargeable ion batteries. In this work, the effects of intrinsic defects including mono-vacancy (MV), di-vacancy, and Stone-Wales (SW) defects on the adsorption and diffusion of sodium on monolayer black phosphorus were investigated using first-principles calculations. The adsorption energies for sodium on monolayer black phosphorus are in the range of -1.80 to -0.56 eV, which is lower than the value of -0.48 eV for sodium adsorbed on pristine monolayer phosphorus. This indicates that these defects can enhance the adsorption of sodium on monolayer black phosphorus. The diffusivity of sodium on monolayer phosphorus with SW and MV defects is 2.35 × 10-4-3.36 × 10-6 cm2/s, and 7.38 × 10-5-1.48 × 10-9 cm2/s, respectively. Although these values are smaller than that of the pristine monolayer phosphorus at 7.38 × 10-5 cm2/s, defects are inevitably introduced during these fabrication processes. These diffusivity values are reasonable for defective monolayer phosphorus used as an effective anode for sodium ion batteries.

  15. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.

    PubMed

    Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2016-07-07

    Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A class of monolayer metal halogenides MX{sub 2}: Electronic structures and band alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Feng; Wang, Weichao; Luo, Xiaoguang

    2016-03-28

    With systematic first principles calculations, a class of monolayer metal halogenides MX{sub 2} (M = Mg, Ca, Zn, Cd, Ge, Pb; M = Cl, Br, I) has been proposed. Our study indicates that these monolayer materials are semiconductors with the band gaps ranging from 2.03 eV of ZnI{sub 2} to 6.08 eV of MgCl{sub 2}. Overall, the band gap increases with the increase of the electronegativity of the X atom or the atomic number of the metal M. Meanwhile, the band gaps of monolayer MgX{sub 2} (X = Cl, Br) are direct while those of other monolayers are indirect. Based on the band edge curvatures, the derived electronmore » (m{sub e}) and hole (m{sub h}) effective masses of MX{sub 2} monolayers are close to their corresponding bulk values except that the m{sub e} of CdI{sub 2} is three times larger and the m{sub h} for PbI{sub 2} is twice larger. Finally, the band alignments of all the studied MX{sub 2} monolayers are provided using the vacuum level as energy reference. These theoretical results may not only introduce the monolayer metal halogenides family MX{sub 2} into the emerging two-dimensional materials, but also provide insights into the applications of MX{sub 2} in future electronic, visible and ultraviolet optoelectronic devices.« less

  17. Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples.

    PubMed Central

    Sticher, P; Jaspers, M C; Stemmler, K; Harms, H; Zehnder, A J; van der Meer, J R

    1997-01-01

    A microbial whole-cell biosensor was developed, and its potential to measure water-dissolved concentrations of middle-chain-length alkanes and some related compounds by bioluminescence was characterized. The biosensor strain Escherichia coli DH5 alpha(pGEc74, pJAMA7) carried the regulatory gene alkS from Pseudomonas oleovorans and a transcriptional fusion of PalkB from the same strain with the promoterless luciferase luxAB genes from Vibrio harveyi on two separately introduced plasmids. In standardized assays, the biosensor cells were readily inducible with octane, a typical inducer of the alk system. Light emission after induction periods of more than 15 min correlated well with octane concentration. In well-defined aqueous samples, there was a linear relationship between light output and octane concentrations between 24 and 100 nM. The biosensor responded to middle-chain-length alkanes but not to alicyclic or aromatic compounds. In order to test its applicability for analyzing environmentally relevant samples, the biosensor was used to detect the bioavailable concentration of alkanes in heating oil-contaminated groundwater samples. By the extrapolation of calibrated light output data to low octane concentrations with a hyperbolic function, a total inducer concentration of about 3 nM in octane equivalents was estimated. The whole-cell biosensor tended to underestimate the alkane concentration in the groundwater samples by about 25%, possibly because of the presence of unknown inhibitors. This was corrected for by spiking the samples with a known amount of an octane standard. Biosensor measurements of alkane concentrations were further verified by comparing them with the results of chemical analyses. PMID:9327569

  18. Ionic channels and nerve membrane constituents. Tetrodotoxin-like interaction of saxitoxin with cholesterol monolayers.

    PubMed

    Villegas, R; Barnola, F V

    1972-01-01

    Saxitoxin (STX) and tetrodotoxin (TTX) have the same striking property of blocking the Na(+) channels in the axolemma. Experiments with nerve plasma membrane components of the squid Dosidicus gigas have shown that TTX interacts with cholesterol monolayers. Similar experiments were carried out with STX. The effect of STX on the surface pressure-area diagrams of lipid monolayers and on the fluorescence emission spectra of sonicated nerve membranes was studied. The results indicate a TTX-like interaction of STX with cholesterol monolayers. The expansion of the monolayers caused by 10(-6)M STX was 2.2 A(2)/cholesterol molecule at 25 degrees C. From surface pressure measurements at constant cholesterol area (39 A(2)/molecule) in media with various STX concentrations, it was calculated that the STX/cholesterol surface concentration ratio is 0.54. The apparent dissociation constant of the STX-cholesterol monolayer complex is 4.0 x 10(-7)M. The STX/cholesterol ratio and the apparent dissociation constant are similar to those determined for TTX. The presence of other lipids in the monolayers affects the STX-cholesterol association. The interactions of STX and TTX with cholesterol monolayers suggest (a) that cholesterol molecules may be part of the nerve membrane Na(+) channels, or (b) that the toxin receptor at the nerve membrane shares similar chemical features with the cholesterol monolayers.

  19. X-Ray Synchrotron and Neutron Reflectivity Studies of = Polymer-Modified Lipid Monolayers on Water

    NASA Astrophysics Data System (ADS)

    Smith, G. S.; Majewski, J.; Kuhl, T.; Israelachvili, J.; Kjaer, K.; Gerstenberg, M. C.; Als-Nielsen, J.

    1997-03-01

    We studied monolayers (at air-water interface) composed of mixtures of distearoyl phosphatidyl ethanolamine (DSPE) mixed with 1.3, 4.5 and 9% of the same lipid but modified by polyethylene glycol chains (PEG) covalently linked to its head group. The GID data yielded three reflections leading to a hexagonal unit cell a_H=4.7Åarea per lipid molecule = 38.3Åindependent of PEG concentration. The in-plane coherence lengths decreased from 360Åfor the pure lipid to 230Åfor 9.0% DSPE-PEG. The FWHM(q_z) of each of the Bragg rods increased with PEG-lipid concentration suggesting decreasing of the lengths of the coherently diffracting part of the hydrocarbon chains. Reflectivities show that both the density and the extension of the polymer segments increase with DSPE-PEG concentration and can be well modeled with a parabolic density profile. Our data indicates that the bulky hydrophilic polymer disrupts the lipid monolayer. This is attributed to an increase in lipid protrusions and a relaxation of the lateral force between PEG portions by staggering of the lipid headgroups.

  20. A pentacene monolayer trapped between graphene and a substrate.

    PubMed

    Zhang, Qicheng; Peng, Boyu; Chan, Paddy Kwok Leung; Luo, Zhengtang

    2015-09-21

    A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures.

  1. Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors.

    PubMed

    Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito

    2009-12-09

    We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.

  2. Adsorption of radionuclides on the monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Zhang, Zheng; Ouyang, Xiaoping

    2018-04-01

    How to remove radionuclides from radioactive wastewater has long been a difficult problem, especially in nuclear accidents. In this paper, the adsorption of radionuclides Cs, Sr, and Ba on the monolayer MoS2 was investigated by using the first principles calculation method. Through the calculation of adsorption energy and Hirshfeld charge of the radionuclides on the monolayer MoS2 at six adsorption sites, the results show that all of the radionuclides chemisorbed on the monolayer MoS2, and the adsorption strength of these three kinds of radionuclides on the monolayer MoS2 is Ba > Sr > Cs. This work might shed some light on the treatment of the radioactive wastewater.

  3. A theoretical study for electronic and transport properties of covalent functionalized MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Gao, Lijuan; Yang, Zhao-Di; Zhang, Guiling

    2017-06-01

    The geometries, electronic and electron transport properties of a series of functionalized MoS2 monolayers were investigated using density-functional theory (DFT) and the non-equilibrium Green's function (NEGF) methods. n-Propyl, n-trisilicyl, phenyl, p-nitrophenyl and p-methoxyphenyl are chosen as electron-donating groups. The results show covalent functionalization with electron-donating groups could make a transformation from typical semiconducting to metallic properties for appearance of midgap level across the Fermi level (Ef). The calculations of transport properties for two-probe devices indicate that conductivities of functionalized systems are obviously enhanced relative to pristine MoS2 monolayer. Grafted groups contribute to the major transport path and play an important role in enhancing conductivity. The NDR effect is found. The influence of grafted density is also studied. Larger grafted density leads to wider bandwidth of midgap level, larger current response of I-V curves and larger current difference between peak and valley.

  4. The distribution of conformational disorder in the high-temperature phases of the crystalline n-alkanes

    NASA Astrophysics Data System (ADS)

    Maroncelli, M.; Strauss, H. L.; Snyder, R. G.

    1985-03-01

    The distributions of conformational defects that exist in the high-temperature phase II (also referred to as the hexagonal or rotator phase) of the crystalline n-alkanes C21 and C29 have been measured by an infrared CD2-substitution technique and have been accounted for in terms of a lattice model that provides freedom for longitudinal displacement of the chains. The defects consist almost entirely of gtg' kinks distributed nonuniformly along the chain. The uneven distribution is indicated in the variation in the concentration of gauche bonds measured at various sites along the chain. The highest concentration is at the chain ends, and the concentrations at interior sites decrease exponentially in going toward the middle. To explain the distribution we used a modification of a lattice model that had been successfully applied to the lipid bilayer. Comparison of observed distributions with those computed from the model indicates that the factors that determine the shape of the distribution are quite different in the n-alkane and bilayer cases. For the bilayer, the dominant factor is the variation in the lateral density of chains; for the n-alkane, the dominant factor is associated with longitudinal displacement of the chains.

  5. Interface thermal conductance of van der Waals monolayers on amorphous substrates

    NASA Astrophysics Data System (ADS)

    Correa, Gabriela C.; Foss, Cameron J.; Aksamija, Zlatan

    2017-03-01

    Heterostructures based on atomic monolayers are emerging as leading materials for future energy efficient and multifunctional electronics. Due to the single atom thickness of monolayers, their properties are strongly affected by interactions with the external environment. We develop a model for interface thermal conductance (ITC) in an atomic monolayer van der Waals bonded to a disordered substrate. Graphene on SiO2 is initially used in our model and contrasted against available experimental data; the model is then applied to monolayer molybdenum disulfide (MoS2) on SiO2 substrate. Our findings show the dominant carrier of heat in both graphene and MoS2 in the cross-plane direction is the flexural (ZA) phonon mode, owing to the large overlap between graphene ZA and substrate vibrational density of states. The rate of phonon transfer across the interface depends quadratically on the substrate coupling constant K a , but this interaction also causes a lifting of the lowest flexural phonon modes. As a result, ITC depends roughly linearly on the strength of the coupling between a monolayer and its substrate. We conclude that, in both graphene and MoS2 on SiO2, substrate adhesion plays a strong role in determining ITC, requiring further study of substrate coupling in TMDCs.

  6. Treponema pallidum Invades Intercellular Junctions of Endothelial Cell Monolayers

    NASA Astrophysics Data System (ADS)

    Thomas, D. Denee; Navab, Mahamad; Haake, David A.; Fogelman, Alan M.; Miller, James N.; Lovett, Michael A.

    1988-05-01

    The pathogenesis of syphilis reflects invasive properties of Treponema pallidum, but the actual mode of tissue invasion is unknown. We have found two in vitro parallels of treponemal invasiveness. We tested whether motile T. pallidum could invade host cells by determining the fate of radiolabeled motile organisms added to a HeLa cell monolayer; 26% of treponemes associated with the monolayer in a trypsin-resistant niche, presumably between the monolayer and the surface to which it adhered, but did not attain intracellularity. Attachment of T. pallidum to cultured human and rabbit aortic and human umbilical vein endothelial cells was 2-fold greater than to HeLa cells. We added T. pallidum to aortic endothelial cells grown on membrane filters under conditions in which tight intercellular junctions had formed. T. pallidum was able to pass through the endothelial cell monolayers without altering tight junctions, as measured by electrical resistance. In contrast, heat-killed T. pallidum and the nonpathogen Treponema phagedenis biotype Reiter failed to penetrate the monolayer. Transmission electron micrographs of sections of the monolayer showed T. pallidum in intercellular junctions. Our in vitro observations suggest that these highly motile spirochetes may leave the circulation by invading the junctions between endothelial cells.

  7. Hydrogen isotope composition of leaf wax n-alkanes in Arabidopsis lines with different transpiration rates

    NASA Astrophysics Data System (ADS)

    Pedentchouk, N.; Lawson, T.; Eley, Y.; McAusland, L.

    2012-04-01

    Stable isotopic compositions of oxygen and hydrogen are used widely to investigate modern and ancient water cycles. The D/H composition of organic compounds derived from terrestrial plants has recently attracted significant attention as a proxy for palaeohydrology. However, the role of various plant physiological and biochemical factors in controlling the D/H signature of leaf wax lipids in extant plants remains unclear. The focus of this study is to investigate the effect of plant transpiration on the D/H composition of n-alkanes in terrestrial plants. This experiment includes 4 varieties of Arabidopsis thaliana that differ with respect to stomatal density and stomatal geometry. All 4 varieties were grown indoors under identical temperature, relative humidity, light and watering regimes and then sampled for leaf wax and leaf water stable isotopic measurements. During growth, stomatal conductance to carbon dioxide and water vapour were also determined. We found that the plants varied significantly in terms of their transpiration rates. Transpiration rates were significantly higher in Arabidopsis ost1 and ost1-1 varieties (2.4 and 3.2 mmol m-2 s-1, respectively) than in Arabidopsis RbohD and Col-0 (1.5 and 1.4). However, hydrogen isotope measurements of n-alkanes extracted from leaf waxes revealed a very different pattern. Varieties ost1, ost1-1, and RbohD have very similar deltaD values of n-C29 alkane (-125, -128, and -127 per mil), whereas the deltaD value of Col-0 is more negative (-137 per mil). The initial results of this work suggest that plant transpiration is decoupled from the D/H composition of n-alkanes. In other words, physical processes that affect water vapour movement between the plant and its environment apparently cannot account for the stable hydrogen isotope composition of organic compounds that comprise leaf waxes. Additional, perhaps biochemical, processes that affect hydrogen isotope fractionation during photosynthesis might need to be invoked

  8. Strain and electric field induced metallization in the GaX (X = N, P, As & Sb) monolayer

    NASA Astrophysics Data System (ADS)

    Bahuguna, Bhagwati Prasad; Saini, L. K.; Sharma, Rajesh O.; Tiwari, Brajesh

    2018-05-01

    We investigate the strain and electric field dependent electronic properties of two dimensional Ga-based group III-V monolayer from the first-principles approach within density functional theory. The energy bandgap of GaX monolayer increases upto the certain value of compressive strain and then decreases. On the other hand, the energy bandgap of GaX monolayer is monotonically decreased with increasing tensile strain and become metallic at the higher value. Furthermore, the perpendicular electric field decreases the energy band gap of unstrained GaX monolayer and shows semiconductor to metal transition. These results suggest that the nature of energy bands and value of energy bandgap in GaX monolayer can be tuned by the biaxial mechanical strain or perpendicular electrical field. Additionally, we have also studied the optical response of unstrained GaX monolayer in term of optical conductivity. These findings may provide valuable information to develop the Ga-based optoelectronic devices and further the understanding of the GaX monolayer.

  9. Large-area snow-like MoSe2 monolayers: synthesis, growth mechanism, and efficient electrocatalyst application.

    PubMed

    Huang, Jingwen; Liu, Huiqiang; Jin, Bo; Liu, Min; Zhang, Qingchun; Luo, Liqiong; Chu, Shijin; Chu, Sheng; Peng, Rufang

    2017-07-07

    This study explores the large-area synthesis of controllable morphology, uniform, and high-quality monolayer. MoSe 2 is essential for its potential application in optoelectronics, photocatalysis, and renewable energy sources. In this study, we successfully synthesized snow-like MoSe 2 monolayers using a simple chemical vapor deposition method. Results reveal that snow-like MoSe 2 is a single crystal with a hexagonal structure, a thickness of ∼0.9 nm, and a lateral dimension of up to 20 μm. The peak position of the photoluminescence spectra is ∼1.52 eV corresponding to MoSe 2 monolayer. The growth mechanism of the snow-like MoSe 2 monolayer was investigated and comprised a four-step process during growth. Finally, we demonstrate that the snow-like MoSe 2 monolayers are ideal electrocatalysts for hydrogen evolution reactions (HERs), reflected by a low Tafel slope of ∼68 mV/decade. Compared with the triangular-shaped MoSe 2 monolayer, the hexangular snow-like shape with plentiful edges is superior for perfect electrocatalysts for HERs or transmission devices of optoelectronic signals.

  10. Microbial oxidation of gaseous hydrocarbons: production of methylketones from corresponding n-alkanes by methane-utilizing bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, R.N.; Hou, C.T.; Laskin, A.I.

    Cell suspensions of methane-utilizing bacteria grown on methane oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding methylketones (acetone, 2-butanone, 2-pentanone, 2-hexanone). The product methylketones accumulated extracellularly. The rate of production of methylketones varied with the organism used for oxidation; however, the average rate of acetone, 2-butanone, 2-pentanone, and 2-hexanone production was 1.2, 1.0, 0.15, and 0.025 ..mu..mol/h per 5.0 mg of protein in cell suspensions. Primary alcohols and aldehydes were also detected in low amounts as products of n-alkane (propane and butane) oxidation, but were rapidly metabolized further by cell suspensions. The optimal conditions for in vivo methylketone formationmore » from n-alkanes were compared in Methylococcus capsulatus (Texas strain), Methylosinus sp. (CRL-15), and Methylobacterium sp. (CRL-26). The rate of acetone and 2-butanone production was linear for the first 60 min of incubation and directly increased with cell concentration up to 10 mg of protein per ml for all three cultures tested. The optimal temperatures for the production of acetone and 2-butanone were 35/sup 0/C for Methylosinus trichosporium sp. (CRL-15) and Methylobacterium sp. (CRL-26) and 40/sup 0/C for Methylococcus capsulatus (Texas). Metal-chelating agents inhibited the production of methylketones, suggesting the involvement of a metal-containing enzymatic system in the oxidation of n-alkanes to the corresponding methylketones. The soluble crude extracts derived from methane-utilizing bacteria contained an oxidized nicotinamide adenine dinucleotide-dependent dehydrogenase which catalyzed the oxidation of secondary alcohols.« less

  11. Solar photothermochemical alkane reverse combustion

    PubMed Central

    Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H.; MacDonnell, Frederick M.

    2016-01-01

    A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical–thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions. PMID:26903631

  12. Pressure-induced enhancement in the thermoelectric properties of monolayer and bilayer SnSe2

    NASA Astrophysics Data System (ADS)

    Zou, Daifeng; Yu, Chuanbin; Li, Yuhao; Ou, Yun; Gao, Yongyi

    2018-03-01

    The electronic structures of monolayer and bilayer SnSe2 under pressure were investigated by using first-principles calculations including van der Waals interactions. For monolayer SnSe2, the variation of electronic structure under pressure is controlled by pressure-dependent lattice parameters. For bilayer SnSe2, the changes in electronic structure under pressure are dominated by intralayer and interlayer atomic interactions. The n-type thermoelectric properties of monolayer and bilayer SnSe2 under pressure were calculated on the basis of the semi-classical Boltzmann transport theory. It was found that the electrical conductivity of monolayer and bilayer SnSe2 can be enhanced under pressure, and such dependence can be attributed to the pressure-induced changes of the Se-Sn antibonding states in conduction band. Finally, the doping dependence of power factors of n-type monolayer and bilayer SnSe2 at three different pressures were estimated, and the results unveiled that thermoelectric performance of n-type monolayer and bilayer SnSe2 can be improved by applying external pressure. This study benefits to understand the nature of the transport properties for monolayer and bilayer SnSe2 under pressure, and it offers valuable insight for designing high-performance thermoelectric few-layered SnSe2 through strain engineering induced by external pressure.

  13. Accelerating oxygen reduction on Pt monolayer via substrate compression

    NASA Astrophysics Data System (ADS)

    Zhang, Xilin; Chen, Yue; Yang, Zongxian; Lu, Zhansheng

    2017-11-01

    Many methods have been proposed to accelerate the oxygen reduction and save the dosage of Pt. Here, we report a promising way in fulfilling these purposes by applying substrate strain on the supported Pt monolayer. The compressive strain would modify the geometric and electronic structures of tungsten carbide (WC) substrate, changing the interaction nature between substrate and Pt monolayer and resulting in a downward shift of the d-band center of surface Pt atoms. The activity of Pt monolayer on the compressed WC is further evaluated from the kinetics of the dissociation and protonation of O2. The dissociation barrier of O2 is increased and the hydrogenation barrier of O atom is decreased, indicating that the recovery of the catalytically active sites is accelerated and the deactivation by oxygen poison is alleviated. The present study provides an effective way in tuning the activity of Pt-based catalysts by applying the substrate strain.

  14. Evaluating Carbon Isotope Signature of Bulk Organic Matter and Plant Wax Derived n-alkanes from Lacustrine Sediments as Climate Proxies along the Western Side of the Andes

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Werne, J. P.; Araneda, A.; Conejero, C. A.

    2015-12-01

    Sedimentary carbon isotope values (δ13C) of bulk organic matter and long chain (C25 to C35) n-alkanes are among the most long-lived and widely utilized proxies of organic matter and vegetation source. The carbon distribution (e.g. average carbon chain length, ACL) and isotope signature from long chain n-alkanes had been intensively used on paleoclimate studies because they are less influenced by diagenesis, differential preservation of compound classes, and changes in the sources of organic matter than bulk δ13C values. Recently, studies of modern plant n-alkanes have challenged the use of carbon distribution and carbon isotope signature from sedimentary n-alkanes as reliable indicators of vegetation and climate change. The climate in central-south western South America (SA) is projected to become significantly warmer and drier over the next several decades to centuries in response to anthropogenically driven warming. Paleolimnological studies along western SA are critical to obtain more realistic and reliable regional reconstructions of past climate and environments, including vegetation and water budget variability. Here we discuss bulk δ13C, distribution and δ13C in long chain n-alkanes from a suite of ~40 lake surface sediment (core-top) samples spanning the transition from a Mediterranean climate with a patchwork of cultivated vegetation, pastureland, conifers in central Chile to a rainy temperate climate dominated by broadleaf deciduous and evergreen forest. Data are compared to the latitudinal and orographic climatic trends of the Andes based on the climatology (e.g. precipitation and temperature) of the locations of all lakes involved in this study, using monthly gridded reanalysis products of the Climate Forecast System Reanalysis (CFSR), based on the NCEP global forecast model and meteorological stations available in the region, from January 1979 to December 2010 with a 0.5° horizontal resolution.

  15. Full superconducting dome of strong Ising protection in gated monolayer WS2.

    PubMed

    Lu, Jianming; Zheliuk, Oleksandr; Chen, Qihong; Leermakers, Inge; Hussey, Nigel E; Zeitler, Uli; Ye, Jianting

    2018-04-03

    Many recent studies show that superconductivity not only exists in atomically thin monolayers but can exhibit enhanced properties such as a higher transition temperature and a stronger critical field. Nevertheless, besides being unstable in air, the weak tunability in these intrinsically metallic monolayers has limited the exploration of monolayer superconductivity, hindering their potential in electronic applications (e.g., superconductor-semiconductor hybrid devices). Here we show that using field effect gating, we can induce superconductivity in monolayer WS 2 grown by chemical vapor deposition, a typical ambient-stable semiconducting transition metal dichalcogenide (TMD), and we are able to access a complete set of competing electronic phases over an unprecedented doping range from band insulator, superconductor, to a reentrant insulator at high doping. Throughout the superconducting dome, the Cooper pair spin is pinned by a strong internal spin-orbit interaction, making this material arguably the most resilient superconductor in the external magnetic field. The reentrant insulating state at positive high gating voltages is attributed to localization induced by the characteristically weak screening of the monolayer, providing insight into many dome-like superconducting phases observed in field-induced quasi-2D superconductors.

  16. Strain induced chemical potential difference between monolayer graphene sheets.

    PubMed

    Zhang, Yupeng; Luo, Chengzhi; Li, Weiping; Pan, Chunxu

    2013-04-07

    Monolayer graphene sheets were deposited on a transparent and flexible polydimethylsiloxane (PDMS) substrate, and a tensile strain was loaded by stretching the substrate in one direction. It was found that an electric potential difference between stretched and static monolayer graphene sheets reached 8 mV when the strain was 5%. Theoretical calculations for the band structure and total energy revealed an alternative way to experimentally tune the band gap of monolayer graphene, and induce the generation of electricity.

  17. Modeling the phase behavior of H2S+n-alkane binary mixtures using the SAFT-VR+D approach.

    PubMed

    dos Ramos, M Carolina; Goff, Kimberly D; Zhao, Honggang; McCabe, Clare

    2008-08-07

    A statistical associating fluid theory for potential of variable range has been recently developed to model dipolar fluids (SAFT-VR+D) [Zhao and McCabe, J. Chem. Phys. 2006, 125, 104504]. The SAFT-VR+D equation explicitly accounts for dipolar interactions and their effect on the thermodynamics and structure of a fluid by using the generalized mean spherical approximation (GMSA) to describe a reference fluid of dipolar square-well segments. In this work, we apply the SAFT-VR+D approach to real mixtures of dipolar fluids. In particular, we examine the high-pressure phase diagram of hydrogen sulfide+n-alkane binary mixtures. Hydrogen sulfide is modeled as an associating spherical molecule with four off-center sites to mimic hydrogen bonding and an embedded dipole moment (micro) to describe the polarity of H2S. The n-alkane molecules are modeled as spherical segments tangentially bonded together to form chains of length m, as in the original SAFT-VR approach. By using simple Lorentz-Berthelot combining rules, the theoretical predictions from the SAFT-VR+D equation are found to be in excellent overall agreement with experimental data. In particular, the theory is able to accurately describe the different types of phase behavior observed for these mixtures as the molecular weight of the alkane is varied: type III phase behavior, according to the scheme of classification by Scott and Konynenburg, for the H2S+methane system, type IIA (with the presence of azeotropy) for the H2S+ethane and+propane mixtures; and type I phase behavior for mixtures of H2S and longer n-alkanes up to n-decane. The theory is also able to predict in a qualitative manner the solubility of hydrogen sulfide in heavy n-alkanes.

  18. Determination of molecular diffusion coefficient in n-alkane binary mixtures: empirical correlations.

    PubMed

    De Mezquia, D Alonso; Bou-Ali, M Mounir; Larrañaga, M; Madariaga, J A; Santamaría, C

    2012-03-08

    In this work we have measured the molecular diffusion coefficient of the n-alkane binary series nC(i)-nC(6), nC(i)-nC(10), and nC(i)-nC(12) at 298 K and 1 atm and a mass fraction of 0.5 by using the so-called sliding symmetric tubes technique. The results show that the diffusion coefficient at this concentration is proportional to the inverse viscosity of the mixture. In addition, we have also measured the diffusion coefficient of the systems nC(12)-nC(6), nC(12)-nC(7), and nC(12)-nC(8) as a function of concentration. From the data obtained, it is shown that the diffusion coefficient of the n-alkane binary mixtures at any concentration can be calculated from the molecular weight of the components and the dynamic viscosity of the corresponding mixture at 50% mass fraction.

  19. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  20. Study of GO-Cu2O and RGO-Cu nanocomposite monolayer sheets prepared by modified Langmuir Blodgett route

    NASA Astrophysics Data System (ADS)

    Botcha, V. Divakar; Sutar, D. S.; Major, S. S.

    2018-07-01

    The modified Langmuir-Blodgett (MLB) technique has been improvised and extended to transfer GO-Cu2O nanocomposite monolayer sheets, by introducing Cu2+ ions into the subphase at room temperature. Morphological studies of as-transferred sheets revealed the presence of closely spaced GO monolayer sheets, with slightly enhanced roughness. XPS studies of as-transferred sheets confirmed the presence of copper, either as metallic Cu or Cu2O, along with significant Cu(OH)2 component, but TEM results confirmed the formation of Cu2O nanocrystallites of size (7 ± 2) nm, distributed uniformly over GO sheets. After heat treatment in vacuum at 400 °C, the nanocomposite sheets were covered with a uniform distribution of larger size nanoparticles. Based on Raman, XPS and TEM studies it has been confirmed that heat treatment at 400 °C in vacuum results in the formation of agglomerated Cu nanoparticles of size (23 ± 9) nm distributed uniformly over reduced graphene oxide (RGO) sheets. The electrical characterization of nanocomposite sheets on SiO2/Si in back-gated FET geometry revealed that the electrical conductivity of as-transferred GO-Cu2O sheets was similar to that usually observed for GO monolayer sheets. The RGO-Cu sheets also displayed electrical conductivity and field effect mobility values comparable to those reported for RGO sheets obtained by chemical/thermal reduction, and was unaffected by the presence of Cu nanoparticles.

  1. Potential 2D thermoelectric material ATeI (A = Sb and Bi) monolayers from a first-principles study

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong; Zhang, Ai-Xia; Li, Hui-Chao

    2017-11-01

    Lots of two-dimensional (2D) materials have been predicted theoretically and further confirmed in experiments, and have wide applications in nanoscale electronic, optoelectronic and thermoelectric devices. In this work, the thermoelectric properties of ATeI (A = Sb and Bi) monolayers are systematically investigated according to semiclassical Boltzmann transport theory. It is found that spin-orbit coupling (SOC) has an important effect on the electronic transport coefficients of p-type doping, but a negative influence on n-type doping. The room-temperature sheet thermal conductance is 14.2 {{W}} {{{K}}}-1 for SbTeI and 12.6 {{W}} {{{K}}}-1 for BiTeI, which is lower than that of most well-known 2D materials, such as the transition-metal dichalcogenide, group IV-VI, group VA and group IV monolayers. The very low sheet thermal conductance of ATeI (A = Sb and Bi) monolayers is mainly due to their small group velocities and short phonon lifetimes. The strongly polarized covalent bonds between A and Te or I atoms induce strong phonon anharmonicity, which gives rise to low lattice thermal conductivity. It is found that the high-frequency optical branches contribute significantly to the total thermal conductivity, which is obviously different from the usual picture, where there is little contribution from the optical branches. According to cumulative lattice thermal conductivity with respect to the phonon mean free path (MFP), it is difficult to further reduce the lattice thermal conductivity using nanostructures. Finally, the possible thermoelectric figure of merit ZT values of the ATeI (A = Sb and Bi) monolayers are calculated. It is found that p-type doping has much better thermoelectric properties than n-type doping. At room temperature, the peak ZT can reach 1.11 for SbTeI and 0.87 for BiTeI, respectively. These results make us believe that ATeI (A = Sb and Bi) monolayers may be potential 2D thermoelectric materials, which could stimulate further experimental work

  2. Potential 2D thermoelectric material ATeI (A = Sb and Bi) monolayers from a first-principles study.

    PubMed

    Guo, San-Dong; Zhang, Ai-Xia; Li, Hui-Chao

    2017-11-03

    Lots of two-dimensional (2D) materials have been predicted theoretically and further confirmed in experiments, and have wide applications in nanoscale electronic, optoelectronic and thermoelectric devices. In this work, the thermoelectric properties of ATeI (A = Sb and Bi) monolayers are systematically investigated according to semiclassical Boltzmann transport theory. It is found that spin-orbit coupling (SOC) has an important effect on the electronic transport coefficients of p-type doping, but a negative influence on n-type doping. The room-temperature sheet thermal conductance is 14.2 [Formula: see text] for SbTeI and 12.6 [Formula: see text] for BiTeI, which is lower than that of most well-known 2D materials, such as the transition-metal dichalcogenide, group IV-VI, group VA and group IV monolayers. The very low sheet thermal conductance of ATeI (A = Sb and Bi) monolayers is mainly due to their small group velocities and short phonon lifetimes. The strongly polarized covalent bonds between A and Te or I atoms induce strong phonon anharmonicity, which gives rise to low lattice thermal conductivity. It is found that the high-frequency optical branches contribute significantly to the total thermal conductivity, which is obviously different from the usual picture, where there is little contribution from the optical branches. According to cumulative lattice thermal conductivity with respect to the phonon mean free path (MFP), it is difficult to further reduce the lattice thermal conductivity using nanostructures. Finally, the possible thermoelectric figure of merit ZT values of the ATeI (A = Sb and Bi) monolayers are calculated. It is found that p-type doping has much better thermoelectric properties than n-type doping. At room temperature, the peak ZT can reach 1.11 for SbTeI and 0.87 for BiTeI, respectively. These results make us believe that ATeI (A = Sb and Bi) monolayers may be potential 2D thermoelectric materials, which could stimulate further experimental

  3. Vacancy-Induced Formation and Growth of Inversion Domains in Transition-Metal Dichalcogenide Monolayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Junhao; Pantelides, Sokrates T.; Zhou, Wu

    2015-04-23

    Sixty degree grain boundaries in semiconducting transition-metal dichalcogenide (TMDC) monolayers have been shown to act as conductive channels that have profound influence on both the transport properties and exciton behavior of the monolayers. We show that annealing TMDC monolayers at high temperature induces the formation of large-scale inversion domains surrounded by such 60° grain boundaries. To study the formation mechanism of such inversion domains, we use the electron beam in a scanning transmission electron microscope to activate the dynamic process within pristine TMDC monolayers. Moreover, the electron beam acts to generate chalcogen vacancies in TMDC monolayers and provide energy formore » them to undergo structural evolution. We directly visualize the nucleation and growth of such inversion domains and their 60° grain boundaries atom-by-atom within a MoSe 2 monolayer and explore their formation mechanism. Combined with density functional theory, we conclude that the nucleation of the inversion domains and migration of their 60° grain boundaries are driven by the collective evolution of Se vacancies and subsequent displacement of Mo atoms, where such a dynamical process reduces the vacancy-induced lattice shrinkage and stabilizes the system. Our results can help to understand the performance of such materials under severe conditions (e.g., high temperature).« less

  4. Measuring mechanodynamics in an unsupported epithelial monolayer grown at an air–water interface

    PubMed Central

    Gullekson, Corinne; Walker, Matthew; Harden, James L.; Pelling, Andrew E.

    2017-01-01

    Actomyosin contraction and relaxation in a monolayer is a fundamental biophysical process in development and homeostasis. Current methods used to characterize the mechanodynamics of monolayers often involve cells grown on solid supports such as glass or gels. The results of these studies are fundamentally influenced by these supporting structures. Here we describe a new method for measuring the mechanodynamics of epithelial monolayers by culturing cells at an air–liquid interface. These model monolayers are grown in the absence of any supporting structures, removing cell–substrate effects. This method’s potential was evaluated by observing and quantifying the generation and release of internal stresses upon actomyosin contraction (800 ± 100 Pa) and relaxation (600 ± 100 Pa) in response to chemical treatments. Although unsupported monolayers exhibited clear major and minor strain axes, they were not correlated with nuclear alignment as observed when the monolayers were grown on soft deformable gels. It was also observed that both gels and glass substrates led to the promotion of long-range cell nuclei alignment not seen in the hanging-drop model. This new approach provides us with a picture of basal actomyosin mechanodynamics in a simplified system, allowing us to infer how the presence of a substrate affects contractility and long-range multicellular organization and dynamics. PMID:28035043

  5. Antibacterial and tribological behavior of self-assembled monolayer on optical lens

    NASA Astrophysics Data System (ADS)

    Horng, J. H.; Jeng, Y. R.; Wei, C. C.; Tasi, Y. T.

    2010-10-01

    This paper studies the effects of the antibacterial and anti-adhesion properties of self-assembled monolayers (SAMs) on optical parts. Therefore, the experiments in this study prepared several kinds of SAMs, including alkyl and biphenyl spacer chains with different surface terminal groups (-CH3,-COOH) and head groups (-SH). This study reports the growth of eight self-assembled monolayers on optical parts: OTS, ODS, OTS with antibacterial solution, ODS with antibacterial solution, and pure antibacterial solution, with bio-compatibility. Experimental results regarding the contact angle of five self-assembled monolayers show that ODS with antibacterial illustrated the maximum contact angle 103° 12 hours after reaction. The solutions of OTS, ODS with antibacterial, OTS with antibacterial, and pure anti-bacterial showed contact angles of 102°, 99°, 101°, and 59° respectively. These results indicate that the antibacterial solution has negligible effects on anti-adhesion property of optical lenses. The results of digital optical microscope system analysis show that in the antibacterial experiment of eight kinds of selfassembled monolayers, the OTSanti50% effect cultured for 24 hours achieved the best results, with a growth rate of 12%. The descending order of antibacterial effect is antibacterial 10%>ODS>OTS> antibacterial 50%>ODSanti50%>OTSanti10%>ODSanti10%. In summary, the surface treatment of optical lenses involving OTSanti 50% is the most capable of effectively increasing antifouling and antibacterial functions.

  6. Biosynthesis of medium chain length alkanes for bio-aviation fuel by metabolic engineered Escherichia coli.

    PubMed

    Wang, Meng; Nie, Kaili; Cao, Hao; Xu, Haijun; Fang, Yunming; Tan, Tianwei; Baeyens, Jan; Liu, Luo

    2017-09-01

    The aim of this work was to study the synthesis of medium-chain length alkanes (MCLA), as bio-aviation product. To control the chain length of alkanes and increase the production of MCLA, Escherichia coli cells were engineered by incorporating (i) a chain length specific thioesterase from Umbellularia californica (UC), (ii) a plant origin acyl carrier protein (ACP) gene and (iii) the whole fatty acid synthesis system (FASs) from Jatropha curcas (JC). The genetic combination was designed to control the product spectrum towards optimum MCLA. Decanoic, lauric and myristic acid were produced at concentrations of 0.011, 0.093 and 1.657mg/g, respectively. The concentration of final products nonane, undecane and tridecane were 0.00062mg/g, 0.0052mg/g, and 0.249mg/g respectively. Thioesterase from UC controlled the fatty acid chain length in a range of 10-14 carbons and the ACP gene with whole FASs from JC significantly increased the production of MCLA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Inhomogeneous composition distribution in monolayer transition metal dichalcogenide alloys

    NASA Astrophysics Data System (ADS)

    Xie, Shuang; Xu, Mingsheng; Huang, Shuyun; Liang, Tao; Wang, Shengping; Li, Hongfei; Iwai, Hideo; Onishi, Keiko; Hanagata, Nobutaka; Fujita, Daisuke; Ma, Xiangyang; Yang, Deren

    2017-04-01

    Alloying with various compositions is an efficient method to tailor the optoelectronic properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). However, the composition distribution in the monolayer of TMDs alloys lacks detailed investigation. Here, by exploring scanning Auger electron spectroscopy, we investigate the composition distribution in MoS2(1-x)Se2x monolayers with high spatial resolution. Our results demonstrate that inhomogeneous composition distribution exists not only among different nanosheets on a substrate but also within individual nanosheets. Our study would be helpful to develop new methods for controllable synthesis of TMDs alloys and other 2D materials.

  8. Dynamics of Functionalized Surface Molecular Monolayers Studied with Ultrafast Infrared Vibrational Spectroscopy

    PubMed Central

    Rosenfeld, Daniel E.; Nishida, Jun; Yan, Chang; Gengeliczki, Zsolt; Smith, Brian J.; Fayer, Michael D.

    2012-01-01

    The structural dynamics of thin films consisting of tricarbonyl (1,10-phenanthroline)rhenium chloride (RePhen(CO)3Cl) linked to an alkyl silane monolayer through a triazole linker synthesized on silica-on-calcium-fluoride substrates are investigated using ultrafast infrared (IR) techniques. Ultrafast 2D IR vibrational echo experiments and polarization selective heterodyne detected transient grating (HDTG) measurements, as well as polarization dependent FT-IR and AFM experiments are employed to study the samples. The vibrational echo experiments measure spectral diffusion, while the HDTG experiments measure the vibrational excited state population relaxation and investigate the vibrational transition dipole orientational anisotropy decay. To investigate the anticipated impact of vibrational excitation transfer, which can be caused by the high concentration of RePhen(CO)3Cl in the monolayer, a concentration dependence of the spectral diffusion is measured. To generate a range of concentrations, mixed monolayers consisting of both hydrogen terminated and triazole/RePhen(CO)3Cl terminated alkyl silanes are synthesized. It is found that the measured rate of spectral diffusion is independent of concentration, with all samples showing spectral diffusion of 37 ± 6 ps. To definitively test for vibrational excitation transfer, polarization selective HDTG experiments are conducted. Excitation transfer will cause anisotropy decay. Polarization resolved heterodyne detected transient grating spectroscopy is sensitive to anisotropy decay (depolarization) caused by excitation transfer and molecular reorientation. The HDTG experiments show no evidence of anisotropy decay on the appropriate time scale, demonstrating the absence of excitation transfer the RePhen(CO)3Cl. Therefore the influence of excitation transfer on spectral diffusion is inconsequential in these samples, and the vibrational echo measurements of spectral diffusion report solely on structural dynamics. A small

  9. Interaction of antimicrobial arginine-based cationic surfactants with liposomes and lipid monolayers.

    PubMed

    Castillo, José A; Pinazo, Aurora; Carilla, Josep; Infante, M Rosa; Alsina, M Asunción; Haro, Isabel; Clapés, Pere

    2004-04-13

    The present work examines the relationship between the antimicrobial activity of novel arginine-based cationic surfactants and the physicochemical process involved in the perturbation of the cell membrane. To this end, the interaction of these surfactants with two biomembrane models, namely, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) multilamellar lipid vesicles (MLVs) and monolayers of DPPC, 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt (DPPG), and Escherichia coli total lipid extract, was investigated. For the sake of comparison, this study included two commercial antimicrobial agents, hexadecyltrimethylammonium bromide and chlorhexidine dihydrochloride. Changes in the thermotropic phase transition parameters of DPPC MLVs in the presence of the compounds were studied by differential scanning calorimetry analysis. The results show that variations in both the transition temperature (Tm) and the transition width at half-height of the heat absorption peak (deltaT1/2) were consistent with the antimicrobial activity of the compounds. Penetration kinetics and compression isotherm studies performed with DPPC, DPPG, and E. coli total lipid extract monolayers indicated that both steric hindrance effects and electrostatic forces explained the antimicrobial agent-lipid interaction. Overall, in DPPC monolayers single-chain surfactants had the highest penetration capacity, whereas gemini surfactants were the most active in DPPG systems. The compression isotherms showed an expansion of the monolayers compared with that of pure lipids, indicating an insertion of the compounds into the lipid molecules. Owing to their cationic character, they are incorporated better into the negatively charged DPPG than into zwitterionic DPPC lipid monolayers.

  10. Difference equation model for isothermal gas chromatography expresses retention behavior of homologues of n-alkanes excluding the influence of holdup time

    PubMed Central

    Wu, Liejun; Chen, Yongli; Caccamise, Sarah A.L.; Li, Qing X.

    2012-01-01

    A difference equation (DE) model is developed using the methylene retention increment (Δtz) of n-alkanes to avoid the influence of gas holdup time (tM). The effects of the equation orders (1st–5th) on the accuracy of a curve fitting show that a linear equation (LE) is less satisfactory and it is not necessary to use a complicated cubic or higher order equation. The relationship between the logarithm of Δtz and the carbon number (z) of the n-alkanes under isothermal conditions closely follows the quadratic equation for C3–C30 n-alkanes at column temperatures of 24–260 °C. The first and second order forward differences of the expression (Δlog Δtz and Δ2log Δtz, respectively) are linear and constant, respectively, which validates the DE model. This DE model lays a necessary foundation for further developing a retention model to accurately describe the relationship between the adjusted retention time and z of n-alkanes. PMID:22939376

  11. Characterization and reactivity of organic monolayers on gold and platinum surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chien-Ching

    1995-12-06

    Purpose is to understand how the mobilization, dielectric, orientation, composition, coverage, and structure of self-assembled organic monolayers on metal surfaces affects the surface reactivities and properties of these films in order to facilitate the construction of desired films. Two model systems were used: tiols at Au and aromatic acids at Pt. Surface analysis methods, including contact angle, electrochemistry, ellipsometry, infrared reflection absorption spectroscopy (IRRAS), and x-ray photospectroscopy, were used to study the self-assembled organic monolayers on Au and Pt. IRRAS, contact angle, and electrochemistry were used to determine the surface pK a of phenylcarboxylic acids and pyridylcarboxylic acids monolayers onmore » Pt. These techniques were also used to determine the orientation of polymethylene chain axis and the carboxylic follow the structural evolution of the chains and end group of the thiolate monolayers during formation. IRRAS was also used to assess the carboxylic acid group in terms of its possible existence as the non-hydrogen-bonded species, the hydrogen-bonded dimeric group, and the hydrogen-bonded polymeric group. These different forms of the end group were also followed vs coverage, as well as the reactivity vs solution pH. IRRAS and contact angle were used to calculate the rate constant of the esterification of carboxylic acid-terminated monolayers on Au.« less

  12. Charge injection and transport in a single organic monolayer island

    NASA Astrophysics Data System (ADS)

    Vuillaume, Dominique

    2005-03-01

    We report how electrons and holes, that are locally injected in a single organic monolayer island (where organic monolayers are made from sublimated oligomers (pentacene and other oligoacenes), or made from chemisorption in solution (self-assembled monolayers) of pi-conjugated moieties), stay localized or are able to delocalize over the island as a function of the molecular conformation (order vs. disorder) of this island. Charge carriers were locally injected by the apex of an atomic force microscope tip, and the resulting two-dimensional distribution and concentration of injected charges were measured by electrical force microscopy (EFM) experiments. We show that in crystalline monolayer islands, both electrons and holes can be equally injected, at a similar charge concentration for symmetric injection bias conditions, and that both charge carriers are delocalized over the whole island. On the contrary, charges injected into a more disordered monolayer stay localized at their injection point. These different results are discussed in relation with the electrical performances of molecular devices made from these monolayers (OFET, SAMFET). These results provide insight into the electronic properties, at the nanometer scale, of these molecular devices.

  13. Dehydrogenation of n-Alkanes by Solid-Phase Molecular Pincer-Iridium Catalysts. High Yields of α-Olefin Product.

    PubMed

    Kumar, Akshai; Zhou, Tian; Emge, Thomas J; Mironov, Oleg; Saxton, Robert J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2015-08-12

    We report the transfer-dehydrogenation of gas-phase alkanes catalyzed by solid-phase, molecular, pincer-ligated iridium catalysts, using ethylene or propene as hydrogen acceptor. Iridium complexes of sterically unhindered pincer ligands such as (iPr4)PCP, in the solid phase, are found to give extremely high rates and turnover numbers for n-alkane dehydrogenation, and yields of terminal dehydrogenation product (α-olefin) that are much higher than those previously reported for solution-phase experiments. These results are explained by mechanistic studies and DFT calculations which jointly lead to the conclusion that olefin isomerization, which limits yields of α-olefin from pincer-Ir catalyzed alkane dehydrogenation, proceeds via two mechanistically distinct pathways in the case of ((iPr4)PCP)Ir. The more conventional pathway involves 2,1-insertion of the α-olefin into an Ir-H bond of ((iPr4)PCP)IrH2, followed by 3,2-β-H elimination. The use of ethylene as hydrogen acceptor, or high pressures of propene, precludes this pathway by rapid hydrogenation of these small olefins by the dihydride. The second isomerization pathway proceeds via α-olefin C-H addition to (pincer)Ir to give an allyl intermediate as was previously reported for ((tBu4)PCP)Ir. The improved understanding of the factors controlling rates and selectivity has led to solution-phase systems that afford improved yields of α-olefin, and provides a framework required for the future development of more active and selective catalytic systems.

  14. Silver particle monolayers — Formation, stability, applications.

    PubMed

    Oćwieja, Magdalena; Adamczyk, Zbigniew; Morga, Maria; Kubiak, Katarzyna

    2015-08-01

    The formation of silver particle monolayers at solid substrates in self-assembly processes is thoroughly reviewed. Initially, various silver nanoparticle synthesis routes are discussed with the emphasis focused on the chemical reduction in aqueous media. Subsequently, the main experimental methods aimed at bulk suspension characterization are critically reviewed by pointing out their advantages and limitations. Also, various methods enabling the in situ studies of particle deposition and release kinetics, especially the streaming potential method are discussed. In the next section, experimental data are invoked illustrating the most important features of particle monolayer formation, in particular, the role of bulk suspension concentration, particle size, ionic strength, temperature and pH. Afterward, the stability of monolayers and particle release kinetics are extensively discussed. The results obtained by the ex situ AFM/SEM imaging of particles are compared with the in situ streaming potential measurements. An equivalency of both methods is demonstrated, especially in respect to the binding energy determination. It is shown that these experimental results can be adequately interpreted in terms of the hybrid theoretical approach that combines the bulk transport step with the surface blocking effects derived from the random sequential adsorption model. It is also concluded that the particle release kinetics is governed by the discrete electrostatic interactions among ion pairs on particle and substrate surfaces. The classical theories based on the mean-field (averaged) zeta potential concept proved inadequate. Using the ion pair concept the minor dependence of the binding energy on particle size, ionic strength, pH and temperature is properly explained. The final sections of this review are devoted to the application of silver nanoparticles and their monolayers in medicine, analytical chemistry and catalysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Well-ordered structure of methylene blue monolayers on Au(111) surface: electrochemical scanning tunneling microscopy studies.

    PubMed

    Song, Yonghai; Wang, Li

    2009-02-01

    Well-ordered structure of methylene blue (MB) monolayers on Au(111) surface has been successfully obtained by controlling the substrate potential. Electrochemical scanning tunneling microscopy (ECSTM) examined the monolayers of MB on Au(111) in 0.1 M HClO(4) and showed long-range ordered, interweaved arrays of MB with quadratic symmetry on the substrate in the potential range of double-layer charging. High-resolution ECSTM image further revealed the details of the MB monolayers structure of c(5 x 5 radical 3)rect and the flat-lying orientation of ad-molecules. The dependence of molecular organization on the substrate potential and the formation mechanism of well-ordered structure on Au(111) surface were investigated in detail. The obtained well-ordered structure at the interface between a metal and an aqueous electrolyte might possibly be used as high-density device for signal memory and templates for the advanced nanopatterning of surfaces. (c) 2008 Wiley-Liss, Inc.

  16. The anesthetic effect of alcohols and alkanes in caenorhabditis elegans (C. E. )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, A.H.; Berk, A.I.; Nicholls, C.H.

    1991-03-11

    The authors colleagues reported that the non-parasitic roundworm, C.E., was reversibly immobilized by volatile anesthetics, whose potencies were directly related to their lipid solubilities as in other animals. In further studies on this phenomenon, they tested a homologous series of organic solvents, to determine whether they also had a reversible anesthetic effect in C.E. as in other animals. Synchronized 3-1/2 day-old cultures of about 100 worms each were exposed to increasing concentrations of the alcohols (C{sub 1} - C{sub 14}) and alkanes (C{sub 5} -C{sub 10}) in 15 ml sealed bottles in a volume of 0.5 ml. The dose thatmore » reversibly immobilized 50% of the worms was determined and a straight line was plotted against the octanol/water partition coefficient (K) of each series. As with other animals, potency was directly related to the lipid solubility of these agents so that, for example, the ID{sub 50} for methanol was 1,000 mmol (K=0.12) whereas it was 0.17 mmol for heptanol (K=3,000). The alcohols were about 20 times more potent than the alkanes even though the latter were about 10 times more lipid soluble than the alcohols. In spite of these differences, the cut-off point was at C{sub 9} in the two series.« less

  17. Ion specific 2D to 3D structural modification of Langmuir monolayer at lower surface pressure

    NASA Astrophysics Data System (ADS)

    Das, Kaushik; Kundu, Sarathi

    2017-05-01

    2D to 3D structural transformation of stearic acid Langmuir monolayer in presence of Ca2+ and Zn2+ ions at lower surface pressure (≈25 mN/m) has been studied at lower (pH ≈ 6.8) and higher (pH ≈ 9.5) subphase pH. Generally, 2D to 3D structural transformation of monolayer occurs at higher surface pressure (>50 mN/m) after collapse point which can be identified from surface pressure (π) vs. specific molecular area (A) isotherms. In presence of Ca2+ ions and for both lower and higher subphase pH, stearic acid monolayer remains as 2D monolayer at that lower surface pressure as confirmed from the Atomic Force Microscopy (AFM) studies on the films deposited at π ≈ 25mN/m. However, in presence of Zn2+ at higher subphase pH, stearic acid monolayer shows 2D to 3D structural transformation where less covered bilayer-like structure forms on top of the monolayer as obtained from the AFM studies. Fourier transform infrared (FTIR) spectroscopy results reveal that formation of relatively more amount of bidentate bridging coordination of metal carboxylate headgroup may be the key reason of such 2D to 3D structural transformation for Zn2+.

  18. Controlled assembly and single electron charging of monolayer protected Au144 clusters: an electrochemistry and scanning tunneling spectroscopy study

    NASA Astrophysics Data System (ADS)

    Bodappa, Nataraju; Fluch, Ulrike; Fu, Yongchun; Mayor, Marcel; Moreno-García, Pavel; Siegenthaler, Hans; Wandlowski, Thomas

    2014-11-01

    Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups

  19. Gas chromatographic-mass spectrometric investigation of n-alkanes and carboxylic acids in bottom sediments of the northern Caspian Sea

    NASA Astrophysics Data System (ADS)

    Kenzhegaliev, Akimgali; Zhumagaliev, Sagat; Kenzhegalieva, Dina; Orazbayev, Batyr

    2018-03-01

    Prior to the start of experimental oil production in the Kashagan field (northern part of the Caspian Sea), n-alkanes and carboxylic acids contained in samples obtained from bottom sediments in the area of artificial island "D" were investigated by gas chromatography-mass spectrometry. Concentrations of 10 n-alkanes (composed of C10-C13, C15-C20) and 11 carboxylic acids (composed of C6-C12, C14-C16) were identified and measured. Concentrations of individual alkanes and carboxylic acids in bottom sediments of the various samples varied between 0.001 ÷ 0.88 μg/g and 0.001 ÷ 1.94 μg/g, respectively. Mass spectra, in particular the M+ molecular ion peak and the most intense peaks of fragment ions, are given. The present study illustrates the stability of molecular ions to electronic ionisation and the main fragment ions to the total ion current and shows that the initial fragmentation of alkanes implies radical cleavage of C2H5 rather than CH3. All aliphatic monocarboxylic acids studied were characterised by McLafferty rearrangement leading to the formation of F4 cation-radical with m/z 60 and F3 cation-radical with m/z 88 in the case of ethylhexanoic acid. The formation of oxonium ions presents another important aspect of acid fragmentation. Using mass numbers of oxonium ions and rearrangement ions allows determination of the substitution character in α- and β- C atoms. The essence of our approach is to estimate the infiltration of hydrocarbon fluids from the enclosing formation into sea water, comprising an analysis of derivatives of organic compounds in bottom sediments. Thus, concentrations of derived organic molecules can serve as a basis for estimates of the depth at which hydrocarbon fluids leak, i.e., to serve as an auxiliary technique in the search for hydrocarbon deposits and to repair well leaks.

  20. Effect of Doping on Hydrogen Evolution Reaction of Vanadium Disulfide Monolayer.

    PubMed

    Qu, Yuanju; Pan, Hui; Kwok, Chi Tat; Wang, Zisheng

    2015-12-01

    As cheap and abundant materials, transitional metal dichalcogenide monolayers have attracted increasing interests for their application as catalysts in hydrogen production. In this work, the hydrogen evolution reduction of doped vanadium disulfide monolayers is investigated based on first-principles calculations. We find that the doping elements and concentration affect strongly the catalytic ability of the monolayer. We show that Ti-doping can efficiently reduce the Gibbs free energy of hydrogen adsorption in a wide range of hydrogen coverage. The catalytic ability of the monolayer at high hydrogen coverage can be improved by low Ti-density doping, while that at low hydrogen coverage is enhanced by moderate Ti-density doping. We further show that it is much easier to substitute the Ti atom to the V atom in the vanadium disulfide (VS2) monolayer than other transitional metal atoms considered here due to its lowest and negative formation energy. It is expected that the Ti-doped VS2 monolayer may be applicable in water electrolysis with improved efficiency.

  1. Chain Stretching and Order-Disorder Transitions in Block Copolymer Monolayers and Multilayers

    NASA Astrophysics Data System (ADS)

    Kramer, Edward J.; Mishra, Vindhya; Stein, Gila E.; Sohn, Karen E.; Hur, Sumi; Fredrickson, Glenn H.; Cochran, Eric W.

    2009-03-01

    Both monolayers of block copolymer cylinders and spheres undergo order to disorder transitions (ODT) at temperatures well below those of the bulk. Monolayers of PS-b-P2VP cylinders undergo a ``nematic'' to ``isotropic'' transition at temperatures about 20 K below the bulk ODT while monolayers of PS-b-P2VP with P2VP spheres undergo a 2D crystal to hexatic transition at least 10 K below the bulk ODT. Bilayers of each structure disorder at temperatures well above that of the monolayers. While one is tempted to attribute all of the difference to the fact that ordered monolayers are quasi 2 dimensional while bilayers are not, an alternative explanation exists. In the cylinder monolayer the corona PS chains must stretch to fill a nearly square cross-section domain rather than a hexagonal one in the bulk, while the corona PS chains in a sphere monolayer must stretch to fill a hexagonal prism rather than an octahedron in the bulk. The more non-uniform stretching of the chains in the monolayer should increase its free energy and decrease its order-disorder temperature.

  2. The interaction of insulin, glucose, and insulin-glucose mixtures with a phospholipid monolayer.

    PubMed

    Shigenobu, Hayato; McNamee, Cathy E

    2012-12-15

    We determined how glucose or insulin interacts with a phospholipid monolayer at the air/water interface and explained these mechanisms from a physico-chemical point of view. The 1,2-dipalmitoyl-2-sn-glycero-3-phosphatidylcholine (DPPC) monolayer at an air/water interface acted as a model membrane, which allowed the effect of the molecular packing density in the monolayer on the interactions to be determined. The interaction of glucose, insulin, and a mixture of glucose and insulin to the DPPC monolayer were investigated via surface pressure-area per molecule Langmuir isotherms and fluorescence microscopy. Glucose adsorbed to the underside of the DPPC monolayer, while insulin was able to penetrate through the monolayer when the phospholipid molecules were not densely packed. The presence of a mixture of insulin and glucose affected the molecular packing in the DPPC monolayer differently than the pure insulin or glucose solutions, and the glucose-insulin mixture was seen to be able to penetrate through the monolayer. These results indicated that glucose and insulin interact with one another, giving a material that may then transported through a pore in the monolayer or through the spaces between the molecules of the monolayer. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Characterization of TSP-bound n-alkanes and polycyclic aromatic hydrocarbons at rural and urban sites of Tianjin, China.

    PubMed

    Wu, Shui-Ping; Tao, Shu; Zhang, Zhi-Huan; Lan, Tian; Zuo, Qian

    2007-05-01

    Total suspended particle (TSP) was collected and analyzed at rural and urban sites in Tianjin, China during the domestic heating season (from 15 November to 15 March) of 2003/4 for n-alkanes and 16 polycyclic aromatic hydrocarbons (PAHs). The normalized distribution of n-alkanes with the peak at C22, C23, C24 or C25 suggested that fossil fuel utilization was the major source of particulate n-alkanes at both sites. PAHs normalized distribution for each sample was similar and the higher molecular weight PAH dominated the profile (around 90%) indicating a stronger combustion source at both sites. Precipitation and wind were the most important meteorological factors influencing TSP and PAHs atmospheric concentrations. In the urban area the emission height had significant influence on PAHs levels at different heights under the relative stable atmospheric conditions. Coal combustion was the major source for TSP-bound PAHs at both sites based on some diagnostic ratios.

  4. Exciton Binding Energy of Monolayer WS2

    PubMed Central

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-01-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 ± 0.01 eV around K valley in the Brillouin zone. PMID:25783023

  5. Anaerobic Coculture of Microalgae with Thermosipho globiformans and Methanocaldococcus jannaschii at 68°C Enhances Generation of n-Alkane-Rich Biofuels after Pyrolysis

    PubMed Central

    Matsuyama, Shigeru; Igarashi, Kensuke; Utsumi, Motoo; Shiraiwa, Yoshihiro; Kuwabara, Tomohiko

    2013-01-01

    We tested different alga-bacterium-archaeon consortia to investigate the production of oil-like mixtures, expecting that n-alkane-rich biofuels might be synthesized after pyrolysis. Thermosipho globiformans and Methanocaldococcus jannaschii were cocultured at 68°C with microalgae for 9 days under two anaerobic conditions, followed by pyrolysis at 300°C for 4 days. Arthrospira platensis (Cyanobacteria), Dunaliella tertiolecta (Chlorophyta), Emiliania huxleyi (Haptophyta), and Euglena gracilis (Euglenophyta) served as microalgal raw materials. D. tertiolecta, E. huxleyi, and E. gracilis cocultured with the bacterium and archaeon inhibited their growth and CH4 production. E. huxleyi had the strongest inhibitory effect. Biofuel generation was enhanced by reducing impurities containing alkanenitriles during pyrolysis. The composition and amounts of n-alkanes produced by pyrolysis were closely related to the lipid contents and composition of the microalgae. Pyrolysis of A. platensis and D. tertiolecta containing mainly phospholipids and glycolipids generated short-carbon-chain n-alkanes (n-tridecane to n-nonadecane) and considerable amounts of isoprenoids. E. gracilis also produced mainly short n-alkanes. In contrast, E. huxleyi containing long-chain (31 and 33 carbon atoms) alkenes and very long-chain (37 to 39 carbon atoms) alkenones, in addition to phospholipids and glycolipids, generated a high yield of n-alkanes of various lengths (n-tridecane to n-pentatriacontane). The gas chromatography-mass spectrometry (GC-MS) profiles of these n-alkanes were similar to those of native petroleum crude oils despite containing a considerable amount of n-hentriacontane. The ratio of phytane to n-octadecane was also similar to that of native crude oils. PMID:23183975

  6. Oxidation of Alkyl-substituted Cyclic Hydrocarbons by a Nocardia during Growth on n-Alkanes

    PubMed Central

    Davis, J. B.; Raymond, R. L.

    1961-01-01

    Nocardia 107-332, a soil isolate, oxidizes short-chain alkyl-substituted cyclic hydrocarbons to cyclic acids while growing on n-alkanes. Cyclic acids are produced also from relatively long-chain alkyl-substituted cyclics such as n-nonylbenzene or n-dodecylbenzene which alone support growth in a mineral-salts medium. ω-Oxidation of the alkyl substituents is followed by β-oxidation. It is of particular interest that cyclic acids such as cyclohexaneacetic and phenylacetic with C2 residual carboxylic acid substituents are resistant to further oxidation by the nocardia but cyclic acids with C1 or C3 substituents are readily oxidized and utilized for growth. The specificity of microbial oxidations is demonstrated by the conversion of p-isopropyltoluene (p-cymene) to p-isopropylbenzoic acid in n-alkane, growth-supported nocardia cultures. PMID:13720182

  7. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed metal...

  8. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed metal...

  9. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed metal...

  10. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed metal...

  11. ESR and PALS detection of the dynamic crossover in the supercooled liquid states of short and medium-sized n-alkanes

    NASA Astrophysics Data System (ADS)

    Bartoš, J.; Zgardzinska, B.; Švajdlenková, H.; Lukešová, M.; Zaleski, R.

    2018-05-01

    A joint study of the spin probe TEMPO dynamics by ESR and the annihilation rate of ortho-positronium by PALS in four short-and medium-sized n-alkanes is presented. In addition to the usually observed changes in both the reorientation dynamics and size of free volumes at the temperature of melting, Tm, and solid-solid phase transition, Tss, an additional coincidence between the characteristic ESR and PALS temperatures TX1fast ≅ Tb1sol < Tm, Tss was found. The phenomenological analysis of the viscosity data of n-alkanes using the power law equation indicates a presence of locally disordered regions in which the dynamic change occurs at the crossover temperature TX ≅ TX1fast ≅ Tb1sol.

  12. Integrated quantitative fractal polarimetric analysis of monolayer lung cancer cells

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman; Zhang, Lin; Quang, Tri; Farrahi, Tannaz; Narayan, Chaya; Deshpande, Aditi; Na, Ying; Blinzler, Adam; Ma, Junyu; Liu, Bo; Giakos, George C.

    2014-05-01

    Digital diagnostic pathology has become one of the most valuable and convenient advancements in technology over the past years. It allows us to acquire, store and analyze pathological information from the images of histological and immunohistochemical glass slides which are scanned to create digital slides. In this study, efficient fractal, wavelet-based polarimetric techniques for histological analysis of monolayer lung cancer cells will be introduced and different monolayer cancer lines will be studied. The outcome of this study indicates that application of fractal, wavelet polarimetric principles towards the analysis of squamous carcinoma and adenocarcinoma cancer cell lines may be proved extremely useful in discriminating among healthy and lung cancer cells as well as differentiating among different lung cancer cells.

  13. Unanticipated C=C bonds in covalent monolayers on silicon revealed by NEXAFS.

    PubMed

    Lee, Michael V; Lee, Jonathan R I; Brehmer, Daniel E; Linford, Matthew R; Willey, Trevor M

    2010-02-02

    Interfaces are crucial to material properties. In the case of covalent organic monolayers on silicon, molecular structure at the interface controls the self-assembly of the monolayers, which in turn influences the optical properties and electrical transport. These properties intrinsically affect their application in biology, tribology, optics, and electronics. We use near-edge X-ray absorption fine structure spectroscopy to show that the most basic covalent monolayers formed from 1-alkenes on silicon retain a double bond in one-fifth to two-fifths of the resultant molecules. Unsaturation in the predominantly saturated monolayers will perturb the regular order and affect the dependent properties. The presence of unsaturation in monolayers produced by two different methods also prompts the re-evaluation of other radical-based mechanisms for forming covalent monolayers on silicon.

  14. Nanoparticle transport across in vitro olfactory cell monolayers.

    PubMed

    Gartziandia, Oihane; Egusquiaguirre, Susana Patricia; Bianco, John; Pedraz, José Luis; Igartua, Manoli; Hernandez, Rosa Maria; Préat, Véronique; Beloqui, Ana

    2016-02-29

    Drug access to the CNS is hindered by the presence of the blood-brain barrier (BBB), and the intranasal route has risen as a non-invasive route to transport drugs directly from nose-to-brain avoiding the BBB. In addition, nanoparticles (NPs) have been described as efficient shuttles for direct nose-to-brain delivery of drugs. Nevertheless, there are few studies describing NP nose-to-brain transport. Thus, the aim of this work was (i) to develop, characterize and validate in vitro olfactory cell monolayers and (ii) to study the transport of polymeric- and lipid-based NPs across these monolayers in order to estimate NP access into the brain using cell penetrating peptide (CPPs) moieties: Tat and Penetratin (Pen). All tested poly(d,l-lactide-co-glycolide) (PLGA) and nanostructured lipid carrier (NLC) formulations were stable in transport buffer and biocompatible with the olfactory mucosa cells. Nevertheless, 0.7% of PLGA NPs was able to cross the olfactory cell monolayers, whereas 8% and 22% of NLC and chitosan-coated NLC (CS-NLC) were transported across them, respectively. Moreover, the incorporation of CPPs to NLC surface significantly increased their transport, reaching 46% of transported NPs. We conclude that CPP-CS-NLC represent a promising brain shuttle via nose-to-brain for drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Diverse carrier mobility of monolayer BNC x : a combined density functional theory and Boltzmann transport theory study

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng

    2017-11-01

    BNC x monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNC x (x  =  1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC2-1 is a material with very small band gap (0.02 eV) among all the structures while other BNC x monolayers are semiconductors with band gap ranging from 0.51 eV to 1.32 eV. The carrier mobility of BNC x varies considerably from tens to millions of cm2 V-1 s-1. For BNC2-1, the hole mobility and electron mobility along both x and y directions can reach 105 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNC x monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC4, its hole mobility along the y direction and electron mobility along the x direction unexpectedly reach 106 orders of magnitude, even higher than that of graphene. Our findings suggest that BNC x layered materials with the proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices.

  16. Self-assembled monolayers of alkyl-thiols on InAs: A Kelvin probe force microscopy study

    NASA Astrophysics Data System (ADS)

    Szwajca, A.; Wei, J.; Schukfeh, M. I.; Tornow, M.

    2015-03-01

    We report on the preparation and characterization of self-assembled monolayers from aliphatic thiols with different chain length and termination on InAs (100) planar surfaces. This included as first step the development and investigation of a thorough chemical InAs surface preparation step using a dedicated bromine/NH4OH-based etching process. Ellipsometry, contact angle measurements and atomic force microscopy (AFM) indicated the formation of smooth, surface conforming monolayers. The molecular tilt angles were obtained as 30 ± 10° with respect to the surface normal. Kelvin probe force microscopy (KPFM) measurements in hand with Parameterized Model number 5 (PM5) calculations of the involved molecular dipoles allowed for an estimation of the molecular packing densities on the surface. We obtained values of up to n = 1014 cm- 2 for the SAMs under study. These are close to what is predicted from a simple geometrical model that would calculate a maximum density of about n = 2.7 × 1014 cm- 2. We take this as additional conformation of the substrate smoothness and quality of our InAs-SAM hybrid layer systems.

  17. Interfacial binding of divalent cations to calixarene-based Langmuir monolayers

    DOE PAGES

    Tulli, Ludovico G.; Wang, Wenjie; Lindemann, William R.; ...

    2015-02-20

    The interactions of Langmuir monolayers produced through the self-assembly of an amphiphilic p-carboxycalix[4]arene with a series of divalent, fourth-period transition metals, at the air-water interface, were investigated. Changes in the interfacial behavior of 1 in response to the presence of CuCl 2, CoCl 2, MnCl 2, and NiCl 2 were studied by means of Langmuir compression isotherms and Brewster angle microscopy (BAM). The measurements revealed that the self-assembly properties of 1 are significantly affected by Cu 2+ ions. The interactions of 1-based monolayers with Co 2+ and Cu 2+ ions were further investigated by means of synchrotron radiation-based X-ray reflectivitymore » (XRR), X-ray near-total-reflection fluorescence (XNTRF), and grazing incidence X-ray diffraction (GIXD). XNTRF and XRR analyses revealed that the monolayer of 1 binds more strongly to Cu 2+ than Co 2+ ions. In the presence of relatively high concentrations of Cu 2+ ions in the subphase (1.4 × 10 -3 M), XNTRF exhibited anomalous depth profile behavior and GIXD measurements showed considerably strong diffuse scattering. Furthermore, both measurements suggest the formation of Cu 2+ clusters contiguous to the monolayer of 1.« less

  18. The Intrinsic Ferromagnetism in a MnO2 Monolayer.

    PubMed

    Kan, M; Zhou, J; Sun, Q; Kawazoe, Y; Jena, P

    2013-10-17

    The Mn atom, because of its special electronic configuration of 3d(5)4s(2), has been widely used as a dopant in various two-dimensional (2D) monolayers such as graphene, BN, silicene and transition metal dichalcogenides (TMDs). The distributions of doped Mn atoms in these systems are highly sensitive to the synthesis process and conditions, thus suffering from problems of low solubility and surface clustering. Here we show for the first time that the MnO2 monolayer, synthetized 10 years ago, where Mn ions are individually held at specific sites, exhibits intrinsic ferromagnetism with a Curie temperature of 140 K, comparable to the highest TC value achieved experimentally for Mn-doped GaAs. The well-defined atomic configuration and the intrinsic ferromagnetism of the MnO2 monolayer suggest that it is superior to other magnetic monolayer materials.

  19. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer

    PubMed Central

    Lundt, Nils; Klembt, Sebastian; Cherotchenko, Evgeniia; Betzold, Simon; Iff, Oliver; Nalitov, Anton V.; Klaas, Martin; Dietrich, Christof P.; Kavokin, Alexey V.; Höfling, Sven; Schneider, Christian

    2016-01-01

    Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light–matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure and study the coupling to a monolayer of WSe2, hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy–momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasiparticles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of nonlinearities, macroscopic coherence and advanced spinor physics with novel, low-mass bosons. PMID:27796288

  20. Pressure-induced enhancement in the thermoelectric properties of monolayer and bilayer SnSe2.

    PubMed

    Zou, Daifeng; Yu, Chuanbin; Li, Yuhao; Ou, Yun; Gao, Yongyi

    2018-03-01

    The electronic structures of monolayer and bilayer SnSe 2 under pressure were investigated by using first-principles calculations including van der Waals interactions. For monolayer SnSe 2 , the variation of electronic structure under pressure is controlled by pressure-dependent lattice parameters. For bilayer SnSe 2 , the changes in electronic structure under pressure are dominated by intralayer and interlayer atomic interactions. The n -type thermoelectric properties of monolayer and bilayer SnSe 2 under pressure were calculated on the basis of the semi-classical Boltzmann transport theory. It was found that the electrical conductivity of monolayer and bilayer SnSe 2 can be enhanced under pressure, and such dependence can be attributed to the pressure-induced changes of the Se-Sn antibonding states in conduction band. Finally, the doping dependence of power factors of n -type monolayer and bilayer SnSe 2 at three different pressures were estimated, and the results unveiled that thermoelectric performance of n -type monolayer and bilayer SnSe 2 can be improved by applying external pressure. This study benefits to understand the nature of the transport properties for monolayer and bilayer SnSe 2 under pressure, and it offers valuable insight for designing high-performance thermoelectric few-layered SnSe 2 through strain engineering induced by external pressure.

  1. Electronic structure in 1T-ZrS2 monolayer by strain

    NASA Astrophysics Data System (ADS)

    Xin, Qianqian; Zhao, Xu; Ma, Xu; Wu, Ninghua; Liu, Xiaomeng; Wei, Shuyi

    2017-09-01

    We report electronic structure of 1T-ZrS2 monolayer with biaxial strain from -10% to 15%, basing the first principles calculations. Our calculation results indicate that the band structure of ZrS2 monolayer was changed clearly. The location of conduction band minimum (CBM) and valence band maximum (VBM) changed with the variation of isotropic strain. At compressive strain, the location of CBM and VBM retains at M and Γ point, respectively. The band gap of ZrS2 monolayer decreases from 1.111 eV to 0 eV when compressive strain increases from 0% to -8%, which means that the ZrS2 monolayer turns to metal at -8% compressive strain. Under the tensile strain, the ZrS2 monolayer also retains be an indirect band gap semiconductor. The location of CBM moves from M to Γ point and the location of VBM moves along Γ-A-K-Γ direction. The band gap of ZrS2 monolayer firstly increases and then decreases and the biggest band gap is 1.577 eV at tensile strain 6%. We can see the compression strain is more effective than tensile strain in modulating band gap of 1T-ZrS2 monolayer.

  2. Validation of a δ2Hn-alkane-δ18Ohemicellulose based paleohygrometer: Implications from a climate chamber experiment

    NASA Astrophysics Data System (ADS)

    Hepp, Johannes; Kathrin Schäfer, Imke; Tuthorn, Mario; Wüthrich, Lorenz; Zech, Jana; Glaser, Bruno; Juchelka, Dieter; Rozanski, Kazimierz; Zech, Roland; Mayr, Christoph; Zech, Michael

    2017-04-01

    Leaf wax-derived biomarkers, e.g. long chain n-alkanes and fatty acids, and their hydrogen isotopic composition are proved to be of a value in paleoclimatology/-hydrology research. However, the alteration of the isotopic signal as a result of the often unknown amount of leaf water enrichment challenges a direct reconstruction of the isotopic composition of paleoprecipitation. The coupling of ^2H/^1H results of leaf wax-derived biomarkers with 18O/16O results of hemicellulose-derived sugars has the potential to overcome this limitation and additionally allows reconstructing relative air humidity (RH) (Zech et al., 2013). This approach was recently validated by Tuthorn et al. (2015) by applying it to topsoil samples along a climate transect in Argentina. Accordingly, the biomarker-derived RH values correlate significantly with modern actual RH values from the respective study sites, showing the potential of the established 'paleohygrometer' approach. However, a climate chamber validation study to answer open questions regarding this approach, e.g. how robust biosynthetic fractionation factors are, is still missing. Here we present coupled δ2Hn-alkane-δ18Ohemicellulose results obtained for leaf material from a climate chamber experiment, in which Eucalyptus globulus, Vicia faba and Brassica oleracea were grown under controlled conditions (Mayr, 2003). First, the 2H and 18O enrichment of leaf water strongly reflects actual RH values of the climate chambers. Second, the biomarker-based reconstructed RH values correlate well with the actual RH values of the respective climate chamber, validating the proposed 'paleohygrometer' approach. And third, the calculated fractionation factors between the investigated leaf biomarkers (n-C29 and n-C31 for alkanes; arabinose and xylose for hemicellulose) and leaf water are close to the expected once reviewed from the literature (+27\\permil for hemicellulose; -155\\permil for n-alkanes). Nevertheless, minor dependencies of these

  3. Molecular Packing of Functionalized Fluorinated Lipids in Langmuir Monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landsberg, Michael J.; Ruggles, Jeremy L.; Hussein, Waleed M.

    2012-01-20

    Fluorinated amphipaths are a fascinating class of compounds, which, despite significant challenges associated with their syntheses, have found use across a number of areas of biotechnology. Applications range from the in vitro stabilization of membrane proteins to the development of enhanced stability intravenous drug and gene delivery systems. More recently, monolayer-forming fluorinated lipids have found use in the 2D crystallization of detergent-solubilized hydrophobic or partially hydrophobic proteins at the air-water interface. In this study, we investigate the surface properties of a novel suite of monolayer forming, partially fluorinated lipids. These modular lipid structures contain a densely fluorinated insertion in themore » hydrocarbon tail and a synthetically modifiable headgroup. Analyses of surface-pressure area isotherms and X-ray reflectometry profiles reveal that the lipids spread into fluid monolayers and are more compressible than their non-fluorinated counterparts. Furthermore, the data support a model whereby the partially fluorinated chains of the lipid tails form a film which is fundamentally incompatible with detergents and other destabilizing amphipaths.« less

  4. Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons.

    PubMed

    Xia, Wenjie; Du, Zhifeng; Cui, Qingfeng; Dong, Hao; Wang, Fuyi; He, Panqing; Tang, YongChun

    2014-07-15

    Alkanes and polycyclic aromatic hydrocarbons (PAHs) have threatened the environment due to toxicity and poor bioavailability. Interest in degradation of these hazardous materials by biosurfactant-producing bacteria has been steadily increasing in recent years. In this work, a novel biosurfactant-producing Pseudomonas sp. WJ6 was isolated to degrade a wide range of n-alkanes and polycyclic aromatic hydrocarbons. Production of lipopeptide biosurfactant was observed in all biodegradable studies. These lipopeptides were purified and identified by C18 RP-HPLC system and electrospray ionization-mass spectrometry. Results of structural analysis showed that these lipopeptides generated from different hydrocarbons were classified to be surfactin, fengycin and lichenysin. Heavy-oil sludge washing experiments demonstrated that lipopeptides produced by Pseudomonas sp. WJ6 have 92.46% of heavy-oil washing efficiency. The obtained results indicate that this novel bacterial strain and its lipopeptides have great potentials in the environmental remediation and petroleum recovery. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. An analysis of organic matter sources for surface sediments in the central South Yellow Sea, China: evidence based on macroelements and n-alkanes.

    PubMed

    Zhang, Shengyin; Li, Shuanglin; Dong, Heping; Zhao, Qingfang; Lu, Xinchuan; Shi, Ji'an

    2014-11-15

    By analyzing the composition of n-alkane and macroelements in the surface sediments of the central South Yellow Sea of China, we evaluated the influencing factors on the distribution of organic matter. The analysis indicates that the distribution of total organic carbon (TOC) was low in the west and high in the east, and TOC was more related to Al2O3 content than medium diameter (MD). The composition of n-alkanes indicated the organic matter was mainly derived from terrestrial higher plants. Contributions from herbaceous plants and woody plants were comparable. The comprehensive analysis of the parameters of macroelements and n-alkanes showed the terrestrial organic matter in the central South Yellow Sea was mainly from the input of the modern Yellow River and old Yellow River. However, some samples exhibited evident input characteristics from petroleum sources, which changed the original n-alkanes of organic matter in sediments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Calculation of the anisotropy of molecular polarizability of liquid n-alkanes and n-alcohols

    NASA Astrophysics Data System (ADS)

    Shuvaeva, O. V.

    2007-05-01

    Light scattering from liquid n-alkanes and n-alcohols in a strong electric field is measured by a photoelectric colorimeter at various wavelengths. The anisotropy of molecular polarizability of the substances is calculated by the Rayleigh formula.

  7. Essential-Oil Constituents and Alkanes of Cephalaria ambrosioides Roem. & Schult. (Family Caprifoliaceae, Subfamily Dipsacaceae) and (Chemo)taxonomic Discernment of the Subfamilies Dipsacaceae and Morinaceae.

    PubMed

    Vukićević, Dušan R; Stevanović, Dragana D; Genčić, Marija S; Blagojević, Polina D; Radulović, Niko S

    2016-02-01

    Herein, the results of the first study of the volatile and alkane profiles of Cephalaria ambrosioides Roem. & Schult. (Caprifoliaceae, subfamily Dipsacaceae) were reported. The GC-FID and GC/MS analyses of the essential oils hydrodistilled from leaves and stems (CA1) and flowers (CA2) of C. ambrosioides allowed the identification of 284 different components. The main compounds of the studied oil samples were palmitic acid (24.3 and 32.5% for CA1 and CA2, resp.), hexahydrofarnesyl acetone (1.4 and 10.8% for CA1 and CA2, resp.), (Z)-hex-3-en-1-ol (7.0 and <0.1% for CA1 and CA2, resp.), and linoleic acid (1.9 and 6.5% for CA1 and CA2, resp.). Essential-oil compositional data of selected plant species belonging to the Dipsacaceae (15) and Morinaceae (2) subfamilies were used to resolve taxonomical ambiguities regarding the genus Cephalaria and its infrageneric relations, especially concerning the subfamily Morinaceae (formerly a genus within Dipsacaceae). The results of multivariate statistical analyses (25 different essential-oil samples) supported the exclusion of Morina species from the Dipsacaceae subfamily. The relative abundances of alkanes from n-, iso-, and anteiso-series followed a (distorted) Gaussian-like distribution and suggested that the biosyntheses of n- and branched alkanes in C. ambrosioides are possibly not controlled by the same elongase. Also, the obtained results suggested that there was a difference in the biosynthesis/accumulation of alkanes in the vegetative and reproductive parts of C. ambrosioides. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  8. Langmuir monolayers composed of single and double tail sulfobetaine lipids.

    PubMed

    Hazell, Gavin; Gee, Anthony P; Arnold, Thomas; Edler, Karen J; Lewis, Simon E

    2016-07-15

    Owing to structural similarities between sulfobetaine lipids and phospholipids it should be possible to form stable Langmuir monolayers from long tail sulfobetaines. By modification of the density of lipid tail group (number of carbon chains) it should also be possible to modulate the two-dimensional phase behaviour of these lipids and thereby compare with that of equivalent phospholipids. Potentially this could enable the use of such lipids for the wide array of applications that currently use phospholipids. The benefit of using sulfobetaine lipids is that they can be synthesised by a one-step reaction from cheap and readily available starting materials and will degrade via different pathways than natural lipids. The molecular architecture of the lipid can be easily modified allowing the design of lipids for specific purposes. In addition the reversal of the charge within the sulfobetaine head group relative to the charge orientation in phospholipids may modify behaviour and thereby allow for novel uses of these surfactants. Stable Langmuir monolayers were formed composed of single and double tailed sulfobetaine lipids. Surface pressure-area isotherm, Brewster Angle Microscopy and X-ray and neutron reflectometry measurements were conducted to measure the two-dimensional phase behaviour and out-of-plane structure of the monolayers as a function of molecular area. Sulfobetaine lipids are able to form stable Langmuir monolayers with two dimensional phase behaviour analogous to that seen for the well-studied phospholipids. Changing the number of carbon tail groups on the lipid from one to two promotes the existence of a liquid condensed phase due to increased Van der Waals interactions between the tail groups. Thus the structure of the monolayers appears to be defined by the relative sizes of the head and tail groups in a predictable way. However, the presence of sub-phase ions has little effect on the monolayer structure, behaviour that is surprisingly different to

  9. New covalent modifications of phosphatidylethanolamine by alkanals: mass spectrometry based structural characterization and biological effects

    PubMed Central

    Annibal, Andrea; Schubert, Kristin; Wagner, Ulf; Hoffmann, Ralf; Schiller, Jürgen; Fedorova, Maria

    2014-01-01

    The pathophysiology of numerous human disorders, such as atherosclerosis, diabetes, obesity and Alzheimer's disease, is accompanied by increased production of reactive oxygen species (ROS). ROS can oxidatively damage nearly all biomolecules, including lipids, proteins and nucleic acids. In particular, (poly)unsaturated fatty acids within the phospholipid (PL) structure are easily oxidized by ROS to lipid peroxidation products (LPP) carrying reactive carbonyl groups. Carbonylated LPP are characterized by high in vivo toxicity due to their reactivity with nucleophilic substrates (Lys-, Cys-and His-residues in proteins or amino groups of phosphatidylethanolamines [PE]). Adducts of unsaturated LPP with PE amino groups have been reported before, whereas less is known about the reactivity of saturated alkanals – which are significantly increased in vivo under oxidative stress conditions – towards nucleophilic groups of PLs. Here, we present a study of new alkanal-dipalmitoyl-phosphatidylethanolamine (DPPE) adducts by MS-based approaches, using consecutive fragmentation (MSn) and multiple reaction monitoring techniques. At least eight different DPPE–hexanal adducts were identified, including Schiff base and amide adducts, six of which have not been reported before. The structures of these new compounds were determined by their fragmentation patterns using MSn experiments. The new PE-hexanal adducts contained dimeric and trimeric hexanal conjugates, including cyclic adducts. A new pyridine ring containing adduct of DPPE and hexanal was purified by HPLC, and its biological effects were investigated. Incubation of peripheral blood mononuclear cells and monocytes with modified DPPE did not result in increased production of TNF-α as one selected inflammation marker. However, incorporation of modified DPPE into 1,2-dipalmitoleoyl-sn-phosphatidylethanolamine multilamellar vesicles resulted in a negative shift of the transition temperature, indicating a possible role of

  10. Molecular modelling and quantum biochemistry computations of a naturally occurring bioremediation enzyme: Alkane hydroxylase from Pseudomonas putida P1.

    PubMed

    de Sousa, B G; Oliveira, J I N; Albuquerque, E L; Fulco, U L; Amaro, V E; Blaha, C A G

    2017-10-01

    Many species of bacteria involved in degradation of n-alkanes have an important constitutional metabolic enzyme, the alkane hydroxylase called AlkB, specialized in the conversion of hydrocarbons molecules that can be used as carbon and/or energy source. This enzyme plays an important role in the microbial degradation of oil, chlorinated hydrocarbons, fuel additives, and many other compounds. A number of these enzymes has been biochemically characterized in detail because the potential of alkane hydroxylases to catalyse high added-value reactions is widely recognized. Nevertheless, the industrial and process bioremediation application of them is restricted, owing to their complex biochemistry, challenging process requirements, and the limited number of their three-dimensional structures. Furthermore, AlkB has great potential as biocatalysts for selective transformation of a wide range of chemically inert unreactive alkanes into reactive chemical precursors that can be used as tools for bioremediation and bioprocesses. Aiming to understand the possible ways the AlkB enzyme Pseudomonas putida P1 interacts with octane, octanol and 1-octyne, we consider its suitable biochemical structure taking into account a 3-D homology modelling. Besides, by using a quantum chemistry computational model based on the density functional theory (DFT), we determine possible protein-substrate interaction regions measured by means of its binding energy simulated throughout the Molecular Fractionation with Conjugated Caps (MFCC) approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. First-principles simulation on thermoelectric propertiesof transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Nakamura, Koichi

    2018-06-01

    Thermoelectric properties of transition metal dichalcogenide (TMDC) monolayer models, such as Seebeck coefficient and lattice heat capacity, were simulated on the basis of first-principles calculations. The calculated Seebeck coefficients are appropriate for the thermoelectric element of all the TMDC monolayer models introduced in this study. In the MoX2/WX2 (X = S, Se, and Te) heterojunction structure, carrier electrons and holes are respectively distributed in the MoX2 and WX2 regions by adopting a common Fermi energy for both electronic structures. In particular, in the X = Te case, the practical carrier concentration with a large Seebeck coefficient can be evaluated without doping. The lattice heat capacities and their temperature dependence tendencies can be classified on the basis of the minimum frequencies of the optical modes. The quotient of the lattice thermal conductivity over the phonon relaxation time gives the temperature-independent specific values according to the kind of TMDC monolayer.

  12. A physically based compact I-V model for monolayer TMDC channel MOSFET and DMFET biosensor.

    PubMed

    Rahman, Ehsanur; Shadman, Abir; Ahmed, Imtiaz; Khan, Saeed Uz Zaman; Khosru, Quazi D M

    2018-06-08

    In this work, a compact transport model has been developed for monolayer transition metal dichalcogenide (TMDC) channel MOSFET. The analytical model solves the Poisson's equation for the inversion charge density to get the electrostatic potential in the channel. Current is then calculated by solving the drift-diffusion equation. The model makes gradual channel approximation to simplify the solution procedure. The appropriate density of states obtained from the first principle density functional theory simulation has been considered to keep the model physically accurate for monolayer TMDC channel FET. The outcome of the model has been benchmarked against both experimental and numerical quantum simulation results with the help of a few fitting parameters. Using the compact model, detailed output and transfer characteristics of monolayer WSe 2 FET have been studied, and various performance parameters have been determined. The study confirms excellent ON and OFF state performances of monolayer WSe 2 FET which could be viable for the next generation high-speed, low power applications. Also, the proposed model has been extended to study the operation of a biosensor. A monolayer MoS 2 channel based dielectric modulated FET is investigated using the compact model for detection of a biomolecule in a dry environment.

  13. A physically based compact I–V model for monolayer TMDC channel MOSFET and DMFET biosensor

    NASA Astrophysics Data System (ADS)

    Rahman, Ehsanur; Shadman, Abir; Ahmed, Imtiaz; Zaman Khan, Saeed Uz; Khosru, Quazi D. M.

    2018-06-01

    In this work, a compact transport model has been developed for monolayer transition metal dichalcogenide (TMDC) channel MOSFET. The analytical model solves the Poisson’s equation for the inversion charge density to get the electrostatic potential in the channel. Current is then calculated by solving the drift–diffusion equation. The model makes gradual channel approximation to simplify the solution procedure. The appropriate density of states obtained from the first principle density functional theory simulation has been considered to keep the model physically accurate for monolayer TMDC channel FET. The outcome of the model has been benchmarked against both experimental and numerical quantum simulation results with the help of a few fitting parameters. Using the compact model, detailed output and transfer characteristics of monolayer WSe2 FET have been studied, and various performance parameters have been determined. The study confirms excellent ON and OFF state performances of monolayer WSe2 FET which could be viable for the next generation high-speed, low power applications. Also, the proposed model has been extended to study the operation of a biosensor. A monolayer MoS2 channel based dielectric modulated FET is investigated using the compact model for detection of a biomolecule in a dry environment.

  14. The creation of modulated monoclinic aperiodic composites in n-alkane/urea compounds

    DOE PAGES

    Mariette, Céline; Guérin, Laurent; Rabiller, Philippe; ...

    2014-09-12

    n-Dodecane/urea is a member of the prototype series of n-alkane/urea inclusion compounds. At room temperature, it presents a quasi-one dimensional liquid-like state for the confined guest molecules within the rigid, hexagonal framework of the urea host. At lower temperatures, we report the existence of two other phases. Below T c=248 K there appears a phase with rank four superspace group P6 122(00γ), the one typically observed at room temperature in n-alkane/urea compounds with longer guest molecules. A misfit parameter, defined by the ratio γ=c h/c g (c host/c guest), is found to be 0.632±0.005. Below T c1=123 K, a monoclinicmore » modulated phase is created with a constant shift along c of the guest molecules in adjacent channels. The maximal monoclinic space group for this structure is P12 11(α0γ). We discuss analogies and differences with n-heptane/urea, which also presents a monoclinic, modulated low-temperature phase.« less

  15. Structural, electronic and magnetic properties of Au-based monolayer derivatives in honeycomb structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, Pooja, E-mail: pupooja16@gmail.com; Sharma, Munish; Ahluwalia, P. K.

    2016-05-23

    We present electronic properties of atomic layer of Au, Au{sub 2}-N, Au{sub 2}-O and Au{sub 2}-F in graphene-like structure within the framework of density functional theory (DFT). The lattice constant of derived monolayers are found to be higher than the pristine Au monolayer. Au monolayer is metallic in nature with quantum ballistic conductance calculated as 4G{sub 0}. Similarly, Au{sub 2}-N and Au{sub 2}-F monolayers show 4G{sub 0} and 2G{sub 0} quantum conductance respectively while semiconducting nature with calculated band gap of 0.28 eV has been observed for Au{sub 2}-O monolayer. Most interestingly, half metalicity has been predicted for Au{sub 2}-Nmore » and Au{sub 2}-F monolayers. Our findings may have importance for the application of these monolayers in nanoelectronic and spintronics.« less

  16. Radiationless Electronic Excitation Energy Transfer Between Monolayers of J-Aggregates

    NASA Astrophysics Data System (ADS)

    Chmereva, T. M.; Kucherenko, M. G.

    2018-06-01

    Radiationless electronic excitation energy transfer between monolayers of cyanine dye molecules forming J-aggregates by means of surface plasmons of the metal film of nanometer thickness inserted between the monolayers is theoretically investigated. A dependence of the rate of energy transfer on the geometrical and electrodynamic parameters of the system is established. It is demonstrated that the energy transfer between the monolayers is more effective in the presence of the metal film than in a nonconductive medium.

  17. SPALEED Studies of the Growth of Zero to Mono-layer Graphene on SiC(0001)

    NASA Astrophysics Data System (ADS)

    Hupalo, M.; Hershberger, M. T.; Hattab, H.; McDougall, D. C.; Horn von Hoegen, M.; Tringides, M. C.

    The growth of graphene on SiC was studied in detail with SPA LEED to understand the transition from zero to monolayer graphene with increasing temperature starting at 1200°C. Both the changing diffraction spots with annealing and their line shapes are studied in detail until a fully completed monolayer is obtained with only 6x6 spots remaining. In particular we focus on two strong features not investigated previously: (i) superstructures spots at n/13 locations present between the specular and the graphene spots. These spots are possibly related to different coincidence lattices before graphene locks into its final 6x6 orientation. (ii) The presence of a very broad background intensity covering ~60% of the BZ both around the specular and graphene spots whose origin is still unknown. Detailed studies of the dependence of this background component on energy and comparison between the graphene and specular spots suggest that the origin is not due to the standard variation with electron energy, i.e. a g(s) curve caused by the topography. Throughout the literature this broad background has been seen in graphene grown in different types of substrates. We comment on possible reasons for the origin of the background. Ames Laboratory is operated by the US-DOE under Contract No. DE-AC02-07CH11358.

  18. Stability and electronic properties of Gex(BN)y monolayers

    NASA Astrophysics Data System (ADS)

    Freitas, A.; Machado, L. D.; Tromer, R. M.; Bezerra, C. G.; Azevedo, S.

    2017-10-01

    In this work, we employ ab initio simulations to propose a new class of monolayers with stoichiometry Gex(BN)y . These monolayers belong to a family of 2D materials combining B, N and group IV atoms, such as BxCyNz and SixByNz . We calculated the formation energy for ten atomic arrangements, and found that it increases when the number of Bsbnd Ge and Nsbnd Ge bonds increases, and decreases when the number of Bsbnd N and Gesbnd Ge bonds increases. We found that the lowest energy monolayer presented a Ge2 BN stoichiometry, and maximized the number of Bsbnd N and Gesbnd Ge bonds. This structure also presented mixed sp2 and sp3 bonds and out-of-plane buckling. Moreover, it remained stable in our ab initio molecular dynamics simulations carried out at T = 300 K. The calculated electronic properties revealed that Gex(BN)y monolayers might present conductor or semiconductor behavior, with band gaps ranging from 0.0 to 0.74 eV, depending on atomic arrangement. Tunable values of band gap can be useful in applications. In optoelectronics, for instance, this property might be employed to control absorbed light wavelengths. Our calculations add a new class of monolayers to the increasing library of 2D materials.

  19. Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes

    NASA Astrophysics Data System (ADS)

    Riva, Matthieu; Da Silva Barbosa, Thais; Lin, Ying-Hsuan; Stone, Elizabeth A.; Gold, Avram; Surratt, Jason D.

    2016-09-01

    We report the formation of aliphatic organosulfates (OSs) in secondary organic aerosol (SOA) from the photooxidation of C10-C12 alkanes. The results complement those from our laboratories reporting the formation of OSs and sulfonates from gas-phase oxidation of polycyclic aromatic hydrocarbons (PAHs). Both studies strongly support the formation of OSs from the gas-phase oxidation of anthropogenic precursors, as hypothesized on the basis of recent field studies in which aromatic and aliphatic OSs were detected in fine aerosol collected from several major urban locations. In this study, dodecane, cyclodecane and decalin, considered to be important SOA precursors in urban areas, were photochemically oxidized in an outdoor smog chamber in the presence of either non-acidified or acidified ammonium sulfate seed aerosol. Effects of acidity and relative humidity on OS formation were examined. Aerosols collected from all experiments were characterized by ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS). Most of the OSs identified could be explained by formation of gaseous epoxide precursors with subsequent acid-catalyzed reactive uptake onto sulfate aerosol and/or heterogeneous reactions of hydroperoxides. The OSs identified here were also observed and quantified in fine urban aerosol samples collected in Lahore, Pakistan, and Pasadena, CA, USA. Several OSs identified from the photooxidation of decalin and cyclodecane are isobars of known monoterpene organosulfates, and thus care must be taken in the analysis of alkane-derived organosulfates in urban aerosol.

  20. Fullerene-derivative PC61BM forms three types of phase-pure monolayer on the surface of Au(111)

    NASA Astrophysics Data System (ADS)

    Li, Wen-Jie; Du, Ying-Ying; Zhang, Han-Jie; Chen, Guang-Hua; Sheng, Chun-Qi; Wu, Rui; Wang, Jia-Ou; Qian, Hai-Jie; Ibrahim, Kurash; He, Pi-Mo; Li, Hong-Nian

    2016-12-01

    We have studied the packing structures of C60-derivative PC61BM on the surface of Au(111) in ultrahigh vacuum using scanning tunneling microscopy. The Au(111) has a triangle-like reconstructed surface, which results in some packing structures different from those reported for low coverages. PC61BM can form three types of phase-pure monolayer, namely, the compact straight molecular double-row monolayer, the hexagonal-packing monolayer and the glassy monolayer. The different types of monolayer form for different molecular densities and different annealing temperatures. In addition to the already known inter-molecular interactions (Van de Waals interaction and hydrogen bond), the steric effect of the phenyl-butyric-acid-methyl-ester side tail plays conspicuous role in the molecular self-assembly at high coverages. The steric effect makes it difficult to prepare a hexagonal-packing monolayer at room temperature and decides the instability of the hexagonal-packing monolayer prepared by thermal annealing.

  1. Nanomechanical resonators based on group IV element monolayers

    NASA Astrophysics Data System (ADS)

    He, Ji-Dong; Sun, Jia-Sheng; Jiang, Jin-Wu

    2018-04-01

    We perform molecular dynamics simulations to investigate the energy dissipation of the resonant oscillation for the group IV monolayers of puckered configuration, in which the oscillation is driven with different actuation velocities. We find that, in the moderate actuation velocity regime, the nonlinear coupling between the resonant oscillation mode and other high-frequency modes will lead to the non-resonant motion of the system. For the larger actuation velocity, the effective strain generated during the resonant oscillating causes a structural transition from the puckered configuration into the planar configuration, which is a characteristic energy dissipation mechanism for the resonant oscillation of these group IV puckered monolayers. Our findings shed light on mechanical applications of the group IV monolayers in the nanomechanical resonator field.

  2. Hydrogen isotopes of n-alkanes and n-alkanoic acids as tracers of precipitation in a temperate forest and implications for paleorecords

    NASA Astrophysics Data System (ADS)

    Freimuth, Erika J.; Diefendorf, Aaron F.; Lowell, Thomas V.

    2017-06-01

    The hydrogen isotopic composition of leaf waxes (δDwax) primarily reflects that of plant source water. Therefore, sedimentary δDwax records are increasingly used to reconstruct the δD of past precipitation (δDp) and to investigate paleohydrologic changes. Such reconstructions rely on estimates of apparent fractionation (εapp) between δDp and the resulting δDwax. However, εapp values are modified by numerous environmental and biological factors during leaf wax production. As a result, εapp can vary widely among plant species and growth forms. This complicates estimation of accurate εapp values and presents a central challenge to quantitative leaf wax paleohydrology. During the 2014 growing season, we examined εapp in the five deciduous angiosperm tree species (Prunus serotina, Acer saccharinum, Quercus rubra, Quercus alba, and Ulmus americana) that dominate the temperate forest at Brown's Lake Bog, Ohio, USA. We sampled individuals of each species at weekly to monthly intervals from March to October and report δD values of n-C29 alkanes (δDn-C29 alkane) and n-C28 alkanoic acids (δDn-C28 acid), as well as xylem (δDxw) and leaf water (δDlw). n-Alkane synthesis was most intense 2-3 weeks after leaf emergence and ceased thereafter, whereas n-alkanoic acid synthesis continued throughout the entire growing season. During bud swell and leaf emergence, δDlw was a primary control on δDn-C29 alkane and δDn-C28 acid values, which stabilized once leaves became fully expanded. Metabolic shifts between young and mature leaves may be an important secondary driver of δDwax changes during leaf development. In mature autumn leaves of all species, the mean εapp for n-C29 alkane (-107‰) was offset by approximately -19‰ from the mean εapp for n-C28 alkanoic acid (-88‰). These results indicate that in temperate settings n-alkanes and n-alkanoic acids from deciduous trees are distinct with respect to their abundance, timing of synthesis, and εapp values.

  3. Linear alkane polymerization on a gold surface.

    PubMed

    Zhong, Dingyong; Franke, Jörn-Holger; Podiyanachari, Santhosh Kumar; Blömker, Tobias; Zhang, Haiming; Kehr, Gerald; Erker, Gerhard; Fuchs, Harald; Chi, Lifeng

    2011-10-14

    In contrast to the many methods of selectively coupling olefins, few protocols catenate saturated hydrocarbons in a predictable manner. We report here the highly selective carbon-hydrogen (C-H) activation and subsequent dehydrogenative C-C coupling reaction of long-chain (>C(20)) linear alkanes on an anisotropic gold(110) surface, which undergoes an appropriate reconstruction by adsorption of the molecules and subsequent mild annealing, resulting in nanometer-sized channels (1.22 nanometers in width). Owing to the orientational constraint of the reactant molecules in these one-dimensional channels, the reaction takes place exclusively at specific sites (terminal CH(3) or penultimate CH(2) groups) in the chains at intermediate temperatures (420 to 470 kelvin) and selects for aliphatic over aromatic C-H activation.

  4. Interaction of Ammonia Monooxygenase from Nitrosomonas europaea with Alkanes, Alkenes, and Alkynes

    PubMed Central

    Hyman, Michael R.; Murton, Ian B.; Arp, Daniel J.

    1988-01-01

    Ammonia monooxygenase of Nitrosomonas europaea catalyzes the oxidation of alkanes (up to C8) to alcohols and alkenes (up to C5) to epoxides and alcohols in the presence of ammonium ions. Straight-chain, N-terminal alkynes (up to C10) all exhibited a time-dependent inhibition of ammonia oxidation without effects on hydrazine oxidation. PMID:16347810

  5. Quantification of stromal vascular cell mechanics with a linear cell monolayer rheometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkins, Claire M., E-mail: cma9@stanford.edu; Fuller, Gerald G.; Shen, Wen-Jun

    2015-01-15

    Over the past few decades researchers have developed a variety of methods for measuring the mechanical properties of whole cells, including traction force microscopy, atomic force microscopy (AFM), and single-cell tensile testing. Though each of these techniques provides insight into cell mechanics, most also involve some nonideal conditions for acquiring live cell data, such as probing only one portion of a cell at a time, or placing the cell in a nonrepresentative geometry during testing. In the present work, we describe the development of a linear cell monolayer rheometer (LCMR) and its application to measure the mechanics of a live,more » confluent monolayer of stromal vascular cells. In the LCMR, a monolayer of cells is contacted on both top and bottom by two collagen-coated plates and allowed to adhere. The top plate then shears the monolayer by stepping forward to induce a predetermined step strain, while a force transducer attached to the top plate collects stress information. The stress and strain data are then used to determine the maximum relaxation modulus recorded after step-strain, G{sub r}{sup 0}, referred to as the zero-time relaxation modulus of the cell monolayer. The present study validates the ability of the LCMR to quantify cell mechanics by measuring the change in G{sub r}{sup 0} of a confluent cell monolayer upon the selective inhibition of three major cytoskeletal components (actin microfilaments, vimentin intermediate filaments, and microtubules). The LCMR results indicate that both actin- and vimentin-deficient cells had ∼50% lower G{sub r}{sup 0} values than wild-type, whereas tubulin deficiency resulted in ∼100% higher G{sub r}{sup 0} values. These findings constitute the first use of a cell monolayer rheometer to quantitatively distinguish the roles of different cytoskeletal elements in maintaining cell stiffness and structure. Significantly, they are consistent with results obtained using single-cell mechanical testing methods

  6. Asymmetric or symmetric bilayer formation during oblique drop impact depends on rheological properties of saturated and unsaturated lipid monolayers.

    PubMed

    Vranceanu, Marcel; Terinte, Nicoleta; Nirschl, Hermann; Leneweit, Gero

    2011-02-01

    Bilayer structures are formed by approaching two liquid surfaces with phospholipid monolayers, which are brought into contact by oblique drop impact on a liquid surface. Asymmetric bilayers can be produced by the coupling of drop and target monolayers. In contrast, symmetric bilayers or multilayers are formed by collapse of the compressed target monolayer. We show that under all studied conditions bilayer/multilayer synthesis takes place. The experimental conditions for the synthesis of asymmetric or symmetric bilayers are described quantitatively in terms of the surface rheological (surface elasticity and dilational viscosity) and the hydrodynamical parameters (Weber number and impact angle). The composition and mechanical properties of the phospholipid monolayers strongly influences the patterns of drop impact and the bilayer/multilayer formation. Cholesterol stiffens unsaturated phospholipid monolayers and fluidifies saturated monolayers. All monolayers form asymmetric vesicle-like structures, which are stable in the aqueous medium. Additionally, unsaturated phospholipid monolayers without cholesterol form symmetric vesicles by folding parts of the target monolayer. Sufficient presence of cholesterol in unsaturated phospholipid monolayers inhibits the folding of the target monolayer and the subsequent formation of symmetric bilayers. The rheological properties of saturated and unsaturated phospholipid monolayers and their mixtures with cholesterol are discussed. Based on drop impact results it is shown that the state of a so far undefined region in the DPPC/cholesterol phase diagram is a fluid phase. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Miranda, Paulo Barbeitas

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayers are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayers at liquid/vapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the conformational order of surfactant monolayers. The first part of the Thesis is concerned with surfactant monolayers at the air/water interface (Langmuir films). Surface crystallization of an alcohol Langmuir film and of liquid alkanes are studied and their phase transition behaviors are found to be of different nature, although driven by similar intermolecular interactions. The effect of crystalline order of Langmuir monolayers on the interfacial water structure is also investigated. It is shown that water forms a well-ordered hydrogen-bonded network underneath an alcohol monolayer, in contrast to a fatty acid monolayer which induces a more disordered structure. In the latter case, ionization of the monolayer becomes more significant with increase of the water pH value, leading to an electric-field-induced ordering of interfacial water molecules. We also show that the orientation and conformation of fairly complicated molecules in a Langmuir monolayer can be completely mapped out using a combination of SFG and second harmonic generation (SHG). For a quantitative analysis of molecular orientation at an interface, local-field corrections must be included. The second part is a study of self-assembled surfactant monolayers at the

  8. Ultrafast exciton relaxation in monolayer transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thilagam, A., E-mail: thilaphys@gmail.com

    2016-04-28

    We examine a mechanism by which excitons undergo ultrafast relaxation in common monolayer transition metal dichalcogenides. It is shown that at densities ≈1 × 10{sup 11 }cm{sup −2} and temperatures ≤60 K, excitons in well known monolayers (MoS{sub 2}, MoSe{sub 2}, WS{sub 2}, and WSe{sub 2}) exist as point-like structureless electron-hole quasi-particles. We evaluate the average rate of exciton energy relaxation due to acoustic phonons via the deformation potential and the piezoelectric coupling mechanisms and examine the effect of spreading of the excitonic wavefunction into the region perpendicular to the monolayer plane. Our results show that the exciton relaxation rate is enhanced with increasemore » in the exciton temperature, while it is decreased with increase in the lattice temperature. Good agreements with available experimental data are obtained when the calculations are extrapolated to room temperatures. A unified approach taking into account the deformation potential and piezoelectric coupling mechanisms shows that exciton relaxation induced by phonons is as significant as defect assisted scattering and trapping of excitons by surface states in monolayer transition metal dichalcogenides.« less

  9. Ultrafast electron diffraction optimized for studying structural dynamics in thin films and monolayers

    PubMed Central

    Badali, D. S.; Gengler, R. Y. N.; Miller, R. J. D.

    2016-01-01

    A compact electron source specifically designed for time-resolved diffraction studies of free-standing thin films and monolayers is presented here. The sensitivity to thin samples is achieved by extending the established technique of ultrafast electron diffraction to the “medium” energy regime (1–10 kV). An extremely compact design, in combination with low bunch charges, allows for high quality diffraction in a lensless geometry. The measured and simulated characteristics of the experimental system reveal sub-picosecond temporal resolution, while demonstrating the ability to produce high quality diffraction patterns from atomically thin samples. PMID:27226978

  10. Diverse carrier mobility of monolayer BNC x : a combined density functional theory and Boltzmann transport theory study.

    PubMed

    Wu, Tao; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng

    2017-10-19

    BNC x monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNC x (x  =  1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC 2 -1 is a material with very small band gap (0.02 eV) among all the structures while other BNC x monolayers are semiconductors with band gap ranging from 0.51 eV to 1.32 eV. The carrier mobility of BNC x varies considerably from tens to millions of cm 2 V -1 s -1 . For BNC 2 -1, the hole mobility and electron mobility along both x and y directions can reach 10 5 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNC x monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC 4 , its hole mobility along the y direction and electron mobility along the x direction unexpectedly reach 10 6 orders of magnitude, even higher than that of graphene. Our findings suggest that BNC x layered materials with the proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttman, Shani; Sapir, Zvi; Ocko, Benjamin M.

    Recent extensive studies reveal that surfactant-stabilized spherical alkane emulsion droplets spontaneously adopt polyhedral shapes upon cooling below a temperature T d while remaining liquid. Further cooling induces the growth of tails and spontaneous droplet splitting. Two mechanisms were offered to account for these intriguing effects. One assigns the effects to the formation of an intradroplet frame of tubules consisting of crystalline rotator phases with cylindrically curved lattice planes. The second assigns the sphere-to-polyhedron transition to the buckling of defects in a crystalline interfacial monolayer, known to form in these systems at some T s > T d. The buckling reducesmore » the extensional energy of the crystalline monolayer’s defects, unavoidably formed when wrapping a spherical droplet by a hexagonally packed interfacial monolayer. The tail growth, shape changes, and droplet splitting were assigned to the decrease and vanishing of surface tension, γ. Here we present temperature-dependent γ(T), optical microscopy measurements, and interfacial entropy determinations for several alkane/surfactant combinations. We demonstrate the advantages and accuracy of the in situ γ(T) measurements made simultaneously with the microscopy measurements on the same droplet. The in situ and coinciding ex situ Wilhelmy plate γ(T) measurements confirm the low interfacial tension, ≲0.1 mN/m, observed at T d. Here, our results provide strong quantitative support validating the crystalline monolayer buckling mechanism.« less

  12. Biaxial tensile strain tuned up-and-down behavior on lattice thermal conductivity in β-AsP monolayer

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong; Dong, Jun

    2018-07-01

    Various two-dimensional (2D) materials with a graphene-like buckled structure have emerged, and the β-phase AsP monolayer has been recently proposed to be thermodynamically stable from first-principles calculations. The studies of thermal transport are very useful for these 2D materials-based nano-electronics devices. Motivated by this, a comparative study of strain-dependent phonon transport of AsP monolayers is performed by solving the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). It is found that the lattice thermal conductivity () of the AsP monolayer is very close to the one of As monolayer with a similar buckled structure, which is due to neutralization between the reduction of phonon lifetimes and group velocity enhancement from As to AsP monolayer. The corresponding room-temperature sheet thermal conductance of AsP monolayer is 152.5 . It is noted that the increasing tensile strain can harden a long wavelength out-of-plane (ZA) acoustic mode, and soften the in-plane longitudinal acoustic (LA) and transversal acoustic (TA) modes. Calculated results show that of AsP monolayer presents a nonmonotonic up-and-down behavior with increased strain. The unusual strain dependence is due to the competition among the reduction of phonon group velocities, improved phonon lifetimes of ZA mode and nonmonotonic up-and-down phonon lifetimes of TA/LA mode. It is found that acoustic branches dominate the in the considered strain range, and the contribution from ZA branch increases with increased strain, while it is opposite for TA/LA branch. By analyzing cumulative with respect to phonon mean free path, tensile strain can modulate effectively the size effects on in the AsP monolayer. Our work enriches the studies of thermal transports of 2D materials with graphene-like buckled structures, and strengthens the idea to engineer thermal transport properties by simple mechanical strain, and stimulates further experimental works

  13. Controllable Growth of Monolayer MoS2 and MoSe2 Crystals Using Three-temperature-zone Furnace

    NASA Astrophysics Data System (ADS)

    Zheng, Binjie; Chen, Yuanfu

    2017-12-01

    Monolayer molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) have attracted a great attention for their exceptional electronic and optoelectronic properties among the two dimensional family. However, controllable synthesis of monolayer crystals with high quality needs to be improved urgently. Here we demonstrate a chemical vapor deposition (CVD) growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace. Systematical study of the effects of growth pressure, temperature and time on the thickness, morphology and grain size of crystals shows the good controllability. The photoluminescence (PL) characterizations indicate that the as-grown monolayer MoS2 and MoSe2 crystals possess excellent optical qualities with very small full-width-half-maximum (FWHM) of 96 me V and 57 me V, respectively. It is comparable to that of exfoliated monolayers and reveals their high crystal quality. It is promising that our strategy should be applicable for the growth of other transition metal dichalcogenides (TMDs) monolayer crystals.

  14. Giant piezoelectricity of monolayer group IV monochalcogenides

    NASA Astrophysics Data System (ADS)

    Fei, Ruixiang; Li, Wenbin; Li, Ju; Yang, Li

    We predict enormous, anisotropic piezoelectric effects in intrinsic monolayer group IV monochalcogenides (MX, M =Sn or Ge, X =Se or S), including SnSe, SnS, GeSe, and GeS. Using first-principle simulations based on the modern theory of polarization, we find that their piezoelectric coefficients are about one to two orders of magnitude larger than those of other 2D materials, such as MoS2 and GaSe, and bulk quartz and AlN which are widely used in industry. This enhancement is a result of the unique ``puckered'' C2v symmetry and electronic structure of monolayer group IV monochalcogenides. Given the achieved experimental advances in the fabrication of monolayers, their flexible character, and ability to withstand enormous strain, these 2D structures with giant piezoelectric effects may be promising for a broad range of applications such as nano-sized sensors, piezotronics, and energy harvesting in portable electronic devices.

  15. [Synthesis and monolayer behaviors of 4-methyl-5-hydroxy-ethyl isothiazole stearic ester].

    PubMed

    Shen, Yu-hua; Kong, Lin; Yang, Jia-xiang; Xie, An-jian; Qian, Jia-sheng; Ouyang, Jian-ming; Xia, Bing

    2002-12-01

    4-methyl-5-hydroxy-ethyl isothiazole stearic ester (HISE) was synthesized and characterized by FTIR spectroscopy, 1H NMR and MS. The monolayer-forming ability of HISE was studied in subphases with different pH values using isotherms of surface pressure-area per molecule (pi-A). It was observed that the collapse pressure and the film-forming ability of the monolayers of HISE increased gradually as pH values ascended. Research of differentiated pi-A curves (d pi(/dA-A) indicated that there were one or two phase change points during the compressing process, and the incompressibility and the stability of HISE monolayers on alkalescent subphases were better than on acid subphases.

  16. Adsorption Thermodynamics and Intrinsic Activation Parameters for Monomolecular Cracking of n -Alkanes on Brønsted Acid Sites in Zeolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janda, Amber; Vlaisavljevich, Bess; Lin, Li-Chiang

    Experimental measurements of the rate coefficient (kapp) and apparent enthalpies and entropies of activation (ΔHapp and ΔSapp) for alkane cracking catalyzed by acidic zeolites can be used to characterize the effects of zeolite structure and alkane size on the intrinsic enthalpy and entropy of activation, ΔHint‡ and ΔSint‡. To determine ΔHint‡ and ΔSint‡, enthalpies and entropies of adsorption, ΔHads-H+ and ΔSads-H+, must be determined for alkane molecules moving from the gas phase to Brønsted acid sites at reaction temperatures (>673 K). Experimental values of ΔHapp and ΔSapp must also be properly defined in terms of ΔHads-H+ and ΔSads-H+. We reportmore » here a method for determining ΔHads-H+ and ΔSads-H+ in which the adsorption site is represented by a fixed volume that includes the proton. Values of ΔHads-H+ and ΔSads-H+ obtained from Monte Carlo simulations are in good agreement with values obtained from experimental data measured at 300–400 K. An important feature of the simulations, however, is their ability to account for the redistribution of alkane adsorbed at protons in different locations with increasing temperature. Values of ΔHint‡ and ΔSint‡ for the cracking of propane through n-hexane, determined from measured values of kapp and ΔHapp and simulated values of ΔHads-H+ and ΔSads-H+, agree well with values obtained independently from quantum mechanics/molecular mechanics calculations. Application of our method of analysis reveals that the observed increase in kapp with increasing n-alkane size is due primarily to a decrease in ΔHint‡ with increasing chain length and that ΔSint‡ is independent of chain length.« less

  17. Spin polarized first principles study of Mn doped gallium nitride monolayer nanosheet

    NASA Astrophysics Data System (ADS)

    Sharma, Venus; Kaur, Sumandeep; Srivastava, Sunita; Kumar, Tankeshwar

    2017-05-01

    The structural, electronic and magnetic properties of gallium nitride nanosheet (GaNs) doped with Mn atoms have been studied using spin polarized density functional theory. The binding energy per atom, Energy Band gap, Fermi energy, magnetic moment, electric dipole moment have been found. The doped nanosheet is found to be more stable than pure GaN monolayer nanosheet. Adsorption of Mn atom has been done at four different sites on GaNs which affects the fermi level position. It is found that depending on the doping site, Mn can behave both like p-type semiconductor and also as n-type semiconductor. Also, it is ascertained that Mn doped GaNs (GaNs-Mn) exhibits ferromagnetic behavior.

  18. Janus monolayers of transition metal dichalcogenides.

    PubMed

    Lu, Ang-Yu; Zhu, Hanyu; Xiao, Jun; Chuu, Chih-Piao; Han, Yimo; Chiu, Ming-Hui; Cheng, Chia-Chin; Yang, Chih-Wen; Wei, Kung-Hwa; Yang, Yiming; Wang, Yuan; Sokaras, Dimosthenis; Nordlund, Dennis; Yang, Peidong; Muller, David A; Chou, Mei-Yin; Zhang, Xiang; Li, Lain-Jong

    2017-08-01

    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS 2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

  19. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity.

    PubMed

    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan

    2017-03-22

    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO₂) waveguide-based, 36 degree-rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO₃) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO₂ layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.

  20. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    PubMed Central

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J.; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173