Sample records for alkyl ammonium cations

  1. Alkyl ammonium cation stabilized biocidal polyiodides with adaptable high density and low pressure.

    PubMed

    He, Chunlin; Parrish, Damon A; Shreeve, Jean'ne M

    2014-05-26

    The effective application of biocidal species requires building the active moiety into a molecular back bone that can be delivered and decomposed on demand under conditions of low pressure and prolonged high-temperature detonation. The goal is to destroy storage facilities and their contents while utilizing the biocidal products arising from the released energy to destroy any remaining harmful airborne agents. Decomposition of carefully selected iodine-rich compounds can produce large amounts of the very active biocides, hydroiodic acid (HI) and iodine (I2). Polyiodide anions, namely, I3(-), I5(-), which are excellent sources of such biocides, can be stabilized through interactions with large, symmetric cations, such as alkyl ammonium salts. We have designed and synthesized suitable compounds of adaptable high density up to 3.33 g cm(-3) that are low-pressure polyiodides with various alkyl ammonium cations, deliverable iodine contents of which range between 58.0-90.9%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermochemical Stability Study of Alkyl-Tethered Quaternary Ammonium Cations for Anion Exchange Membrane Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Angela D.; Tignor, Steven E.; Sturgeon, Matthew R.

    2017-01-01

    The increased interest in the use of anion exchange membranes (AEMs) for applications in electrochemical devices has prompted significant efforts in designing materials with robust stability in alkaline media. Most reported AEMs suffer from polymer backbone degradation as well as cation functional group degradation. In this report, we provide comprehensive experimental investigations for the analysis of cation functional group stability under alkaline media. A silver oxide-mediated ion exchange method and an accelerated stability test in aqueous KOH solutions at elevated temperatures using a Parr reactor were used to evaluate a broad scope of quaternary ammonium (QA) cationic model compound structures,more » particularly focusing on alkyl-tethered cations. Additionally, byproduct analysis was employed to gain better understanding of degradation pathways and trends of alkaline stability. Experimental results under different conditions gave consistent trends in the order of cation stability of various QA small molecule model compounds. Overall, cations that are benzyl-substituted or that are near to electronegative atoms (such as oxygen) degrade faster in alkaline media in comparison to alkyl-tethered QAs. These comprehensive model compound stability studies provide valuable information regarding the relative stability of various cation structures and can help guide researchers towards designing new and promising candidates for AEM materials.« less

  3. Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors.

    PubMed

    He, Tieshi; Meng, Xiangling; Nie, Junping; Tong, Yujin; Cai, Kedi

    2016-06-08

    Thermally reduced graphene oxide (RGO) electrochemically activated by a quaternary alkyl ammonium-based organic electrolytes/activated carbon (AC) electrode asymmetric capacitor is proposed. The electrochemical activation process includes adsorption of anions into the pores of AC in the positive electrode and the interlayer intercalation of cations into RGO in the negative electrode under high potential (4.0 V). The EA process of RGO by quaternary alkyl ammonium was investigated by X-ray diffraction and electrochemical measurements, and the effects of cation size and structure were extensively evaluated. Intercalation by quaternary alkyl ammonium demonstrates a small degree of expansion of the whole crystal lattice (d002) and a large degree of expansion of the partial crystal lattice (d002) of RGO. RGO electrochemically activated by bis-spiro quaternary alkyl ammonium in propylene carbonate/AC asymmetric capacitor exhibits good activated efficiency, high specific capacity, and stable cyclability.

  4. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation

    NASA Astrophysics Data System (ADS)

    Jolliffe, John D.; Armstrong, Roly J.; Smith, Martin D.

    2017-06-01

    Axially chiral biaryls, as exemplified by 1,1‧-bi-2-naphthol (BINOL), are key components of catalysts, natural products and medicines. These materials are synthesized conventionally in enantioenriched form through metal-mediated cross coupling, de novo construction of an aromatic ring, point-to-axial chirality transfer or an atropselective transformation of an existing biaryl. Here, we report a highly enantioselective organocatalytic method for the synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Treatment of racemic 1-aryl-2-tetralones with a chiral quinidine-derived ammonium salt under basic conditions in the presence of an alkylating agent leads to atropselective O-alkylation with e.r. up to 98:2. Oxidation with DDQ gives access to C2-symmetric and non-symmetric BINOL derivatives without compromising e.r. We propose that the chiral ammonium counterion differentiates between rapidly equilibrating atropisomeric enolates, leading to highly atropselective O-alkylation. This dynamic kinetic resolution process offers a general approach to the synthesis of enantioenriched atropisomeric materials.

  5. Protic ammonium carboxylate ionic liquids: insight into structure, dynamics and thermophysical properties by alkyl group functionalization.

    PubMed

    Reddy, Th Dhileep N; Mallik, Bhabani S

    2017-04-19

    This study is aimed at characterising the structure, dynamics and thermophysical properties of five alkylammonium carboxylate ionic liquids (ILs) from classical molecular dynamics simulations. The structural features of these ILs were characterised by calculating the site-site radial distribution functions, g(r), spatial distribution functions and structure factors. The structural properties demonstrate that ILs show greater interaction between cations and anions when alkyl chain length increases on the cation or anion. In all ILs, spatial distribution functions show that the anion is close to the acidic hydrogen atoms of the ammonium cation. We determined the role of alkyl group functionalization of the charged entities, cations and anions, in the dynamical behavior and the transport coefficients of this family of ionic liquids. The dynamics of ILs are described by studying the mean square displacement (MSD) of the centres of mass of the ions, diffusion coefficients, ionic conductivities and hydrogen bonds as well as residence dynamics. The diffusion coefficients and ionic conductivity decrease with an increase in the size of the cation or anion. The effect of alkyl chain length on ionic conductivity calculated in this article is consistent with the findings of other experimental studies. Hydrogen bond lifetimes and residence times along with structure factors were also calculated, and are related to alkyl chain length.

  6. Effect of polyester blends in hydroentangled raw and bleached cotton nonwoven fabrics on the adsorption of alkyl-dimethyl-benzyl-ammonium chloride

    USDA-ARS?s Scientific Manuscript database

    The adsorption kinetics and isotherms of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on hydroentangled nonwoven fabrics (applicable for wipes) including raw cotton, bleached cotton, and their blends with polyester (PES) were stu...

  7. Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length

    NASA Astrophysics Data System (ADS)

    Liu, Libin; Wu, Xiwen; Li, Tianduo

    2014-03-01

    A series of comb-like cationic polyurethanes (PUs) were synthesized by quaternizing different bromoalkane (C2H5Br, C8H17Br, and C14H29Br) with polyurethane. Solid polymer electrolytes were prepared by complexes cationic PUs with different content of LiClO4. All the solid polymer electrolytes had sufficient thermal stability as confirmed by TGA and exhibited a single-phase behavior evidenced by DSC results. For these electrolytes, FT-IR spectra indicated the formation of polymer-ion complexes. The ac impedance spectra show that the conductivity of the electrolytes follow the Arrhenius behavior, and ionic conductivity is associated with both the charge migration of ions between coordination sites and transmission between aggregates, as confirmed by FT-IR and SEM. Alkyl quaternary ammonium salts in the polymer backbone are recognized as inherent plasticizers, which make the electrolytes exhibit liquid-like behavior. The plasticizing effect of PU-C8 and PU-C14 electrolytes are more effective than that of PU-C2 electrolyte. Maximum ionic conductivity at room temperature for PU-C8 electrolytes containing 50 wt% LiClO4 reached 1.1 × 10-4 S cm-1. This work provides a new research clue that alkyl quaternary ammonium salts could be used as inherent plasticizers and hence make the system behave like a liquid with high ionic conductivity, while preserving the dimensional stability of the solids.

  8. Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates

    NASA Astrophysics Data System (ADS)

    Lee, Min-Hong

    The purpose of this work was to increase the reactivity of Faujasite X (NaX) zeolite toward the reactive decontamination of materials subject to nucleophilic attack by means of zeolite cation optimization and by means of the synthesis of mesoporous Faujasite X. Primary alkyl halides and trialkyl phosphates have been the test materials on which the cation-optimized and mesoporous zeolites have been tested. In the alkali cation optimization work, reactions of methyl iodide and 1-chloropropane with alkali metal cation exchanged Faujasite zeolite X were investigated at room temperature. The reactivity of the framework and the product formation were shown to depend on zeolite framework counter-cation. A quantitative study of zeolite product formation has been carried out, primarily using solid-state NMR spectroscopy. Large alkali cations showed preference toward substitution chemistry. In contrast, alkyl halide exposed LiX and NaX zeolites underwent both substitution and elimination. Subsequently introduced water molecules led to hydrolysis of framework species that was sensitive to framework counter-cation. The mesoporous NaX zeolites work undertakes to test whether an improvement in surface chemical reactivity can be achieved by introducing mesopores into the already reactive nucleophilic microporous NaX zeolite. Incorporation of the polydiallyl dimethyl ammonium chloride (PDADMAC) template and the formation of mesopores in Faujasite X zeolite (NaX) were successful and well-characterized. The mesopores are proposed to have occurred from incorporation of the cationic PDADMAC polymer into the zeolite by compensating zeolite framework charge. Subsequent sodium cation exchange of calcined mesoporous NaX was shown to restore the chemical reactivity characteristic of as-synthesized NaX. Trialkyl organophosphorous compounds underwent substitution reactions. The reactivity of both microporous and mesoporous Faujasite zeolite X and the product formation was shown to depend on

  9. Understanding the effect of alkyl chains of gemini cations on the physicochemical and cellular properties of polyurethane micelles.

    PubMed

    Pan, Zhicheng; Fang, Danxuan; Song, Yuanqing; Song, Nijia; Ding, Mingming; Li, Jiehua; Luo, Feng; Li, Jianshu; Tan, Hong; Fu, Qiang

    2018-06-06

    Cationic gemini quaternary ammonium (GQA) has been used as a cell internalization promoter to improve the permeability of the cell membrane and enhance the cellular uptake. However, the effect of the alkyl chain length on the cellular properties of nanocarriers has not been elucidated yet. In this study, we developed a series of polyurethane micelles containing GQAs with various alkyl chain lengths. The alteration of the gemini alkyl chain length was found to change the distribution of GQA surfactants in the micellar structure and affect the surface charge exposure, stability, and the protein absorption properties of nanocarriers. Moreover, we also clarified the role of the alkyl chain length in tumor cell internalization and macrophage uptake of polyurethane micelles. This work provides a new understanding on the effect of the GQA alkyl chain length on the physicochemical and biological properties of nanomedicines, and offers guidance on the rational design of effective drug delivery systems where the issue of functional group exposure at the micellar surface should be considered.

  10. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    PubMed

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers. © American Society for Mass Spectrometry, 2011

  11. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  12. An influence of structural changes in ammonium cations on ecotoxicity of 2,2'-thiodiacetate mono and bis-salts.

    PubMed

    Biczak, R; Turek, M; Pawłowska, B; Różycka-Sokołowska, E; Marciniak, B; Deska, M; Krupa, P; Jatulewicz, I; Skalik, J; Bałczewski, P

    2018-07-15

    2,2'-Thiodiacetates with their excellent complexing properties may be used as metal extraction agents, fluorescent and superparamagnetic materials, antibacterial and anticancer medical agents, however there are no data concerning the environmental impact of 2,2'-thiodiacetates derivatives and data definying the potential hazard connected with their use. This study describes the ecotoxicity assessment of seven 2,2'-thiodiacetates with non-metallic, alkyl and aryl ammonium cations, which were obtained in an environmentally friendly, solvent-free syntheses. The ecotoxicity of these water soluble compounds was tested in aquatic and benthic environments using luminescent marine bacteria Vibrio fischeri (Microtox ® test) and the crustaceans Heterocypris incongruens (Ostracodtoxkit F™), respectively. The antimicrobial and antifungal activity against Trichoderma viridis, Aspergillus niger, Rhizoctonia solani and Escherichia coli was also investigated. The results showed how structural changes within ammonium cations themselves influence ecotoxicity: the QASs with alkylammonium cations exhibited a similar, rather low toxicity both to Vibrio fischeri and Heterocypris incongruens, and they would not pose a risk to these organisms in case of leakage. Higher toxicity was observed in case of two isoquinolinium salts, however it was rather associated with the heteroaromatic cation, than with the 2,2'-thiodiacetate anion. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A novel route to recognizing quaternary ammonium cations using electrospray mass spectrometry.

    PubMed

    Shackman, Holly M; Ding, Wei; Bolgar, Mark S

    2015-01-01

    Characterizing and elucidating structures is a commonplace and necessary activity in the pharmaceutical industry with mass spectrometry and NMR being the primary tools for analysis. Although many functional groups are readily identifiable, quaternary ammonium cations have proven to be difficult to unequivocally identify using these techniques. Due to the lack of an N-H bond, quaternary ammonium groups can only be detected in the (1)H NMR spectra by weak signals generated from long-range (14)N-H coupling, which by themselves are inconclusive evidence of a quaternary ammonium functional group. Due to their low intensity, these signals are frequently not detected. Additionally, ions cannot be differentiated in a mass spectrum as an M(+) or [M + H](+) ion without prior knowledge of the compound's structure. In order to utilize mass spectrometry as a tool for determining this functionality, ion cluster formation of quaternary ammonium cations and non-quaternary amines was studied using electrospray ionization. Several mobile phase modifiers were compared; however, the addition of small amounts of trifluoroacetic acid proved superior in producing characteristic and intense [M +2TFA](-) clusters for compounds containing quaternary ammonium cations when using negative electrospray. By fragmenting this characteristic ion using CID, nearly all compounds studied could be unambiguously identified as containing a quaternary ammonium cation or a non-quaternary amine attributable to the presence (non-quaternary amine) or absence (quaternary ammonium cation) of the resulting [2TFA + H](-) ion in the product spectra. This method of analysis provides a rapid, novel, and reliable technique for indicating the presence of quaternary ammonium cations in order to aid in structural elucidation.

  14. Structure-biocompatibility and transfection activity relationships of cationic polyaspartamides with (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups.

    PubMed

    Salakhieva, Diana; Shevchenko, Vesta; Németh, Csaba; Gyarmati, Benjámin; Szilágyi, András; Abdullin, Timur

    2017-01-30

    A series of 14 cationic derivatives of poly(aspartic acid) i.e. cationic polyaspartamides with different (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups was synthesized by nucleophilic addition on polysuccinimide. The resulting polyaspartamides have moderate amphiphilic properties. Relationships between the structure and ratio of side groups and in vitro properties of polyaspartamides, including their cytotoxic and membrane-damaging activity towards human cell lines, primary skin fibroblasts and erythrocytes, were established and discussed. Cationic polyaspartamides vary in their DNA-binding, condensing and nuclease-protecting characteristics depending on the concentration ratio of (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups. Effective cell transfection was achieved upon polyaspartamide-mediated plasmid DNA delivery in serum-free medium in the presence of chloroquine. Effect of serum proteins adsorption onto polyaspartamide based polyplexes, and the role of concentration of polyplexes in culture medium in their colloidal stability and transfection process were demonstrated. Synthesized polyaspartamides are biocompatible and long-acting gene carriers, which are applied to cells after dilution and without washing, thus providing transfection level comparable to that of commercial transfection reagent. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Toxicity evaluation of selected ammonium-based ionic liquid forms with MCPP and dicamba moieties on Pseudomonas putida.

    PubMed

    Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Łukasz; Heipieper, Hermann J

    2017-01-01

    Combination of the hydrophilic herbicidal anion with hydrophobic, antimicrobial ammonium cation allows to obtain compounds in ionic liquid form with better properties then conventional herbicides. Both cation and anion can be modified by selection of herbicide and the length of alkyl chains in cation structure. However the knowledge of their potential toxic effects are still limited. Furthermore, the relation between hydrophobicity associated with the length of alkyl chains and toxicity for ionic liquids has not been thoroughly studied. Therefore we investigated toxic effects of herbicidal ionic liquid forms on growth inhibition, given as EC 50, of the common soil bacterium Pseudomonas putida. We thereby concentrated on quaternary ammonium salts. Analyzed compounds were composed of dicamba or MCPP moieties and cation with various alkyl chain lengths (n = 6,8,10) We compared them with commercial herbicides, and ammonium-based ionic liquids with neutral anion (Br - ). In addition, cis-trans isomerisation of unsaturated membrane fatty acids in Pseudomonas putida was applied as the proxy for toxicity and membrane activity. We showed that toxicity increased with the length of alkyl chains. However, this correlation is only valid for six and eight carbon atom in alkyl chains, where for n = 10 the EC 50 values rise by one order of magnitude. In our studies, the herbicidal ionic liquids [C 10 ,C 10 ,C 1 ,C 1 N][MCPP] and [C 10 ,C 10 ,C 1 ,C 1 N][dicamba] showed the lowest toxicity among analyzed quaternary ammonium salts and comparable toxicity with corresponding herbicides. No clear increase in toxicity could be followed by changing the anion moieties for ammonium-based ionic liquid forms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of alkyl branches on the thermal stability of quaternary ammonium cations in organic electrolytes for electrochemical double layer capacitors.

    PubMed

    Ahn, Yong Nam; Lee, Sung Hoon; Lee, Goo Soo; Kim, Hyunbin

    2017-08-02

    Quaternary ammoniums are cations having widespread use in organic electrolytes for high performance electrochemical double layer capacitors (EDLCs) due to their various advantages such as high electrochemical stability and inexpensive production cost. However, the decomposition of quaternary ammoniums via Hofmann elimination hinders their applications for EDLCs operating at elevated temperatures. This study systematically investigates the reactivity of four different quaternary ammoniums (tetraethyl-, triethylmethyl-, diethyldimethyl-, and trimethylethyl-ammonium) in EDLC by utilizing density functional theory calculations and Brownian dynamics simulations complemented with molecular dynamics simulations. It is found that ammonium stability reduces upon increasing the number of ethyl branches that have a stronger positive charge than the methyl groups. However, the contribution of the entropy change to the reaction free energy makes trimethylethylammonium less stable than diethyldimethylammonium at room temperature although the former has less ethyl branches than the latter. Trimethylethylammonium becomes the most stable at a high temperature of 488 K above which the activation free energy becomes effectively negligible and thus the number of reactive sites determines the overall stability. The fundamental understanding of the ammonium decompositions through Hofmann elimination demonstrated in this study is expected to contribute to developing new long-life organic electrolyte systems for high-temperature applications.

  17. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes

    NASA Astrophysics Data System (ADS)

    Zhu, Liang; Yu, Xuedi; Hickner, Michael A.

    2018-01-01

    In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.

  18. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN P-00...

  19. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN P-00...

  20. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...

  1. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...

  2. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...

  3. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    NASA Astrophysics Data System (ADS)

    Roest, Steven; van der Mei, Henny C.; Loontjens, Ton J. A.; Busscher, Henk J.

    2015-11-01

    Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 1014 cm-2. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 1016 cm-2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its carrier. The at.% N401.3 eV should be above 0.45 at.% for Gram-positive bacterial contact-killing.

  4. Fluorescent water-Soluble Probes Based on Ammonium Cation Peg Substituted Perylenepisimides: Synthesis, Photophysical Properties, and Live Cell Images

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Cai, Jiaxuan; Zhang, Shuchen; Yi, Xuegang; Gao, Baoxiang

    2018-01-01

    To synthesize perylenbisimides (PBI) fluorescent probes that will improve the water-soluble ability and the cytocompatibility, the synthesis and properties of fluorescent water-soluble probes based on dendritic ammonium cation polyethylene glycol (PEG) substituted perylenebisimides(GPDIs) are presented. As we expected, with increased ammonium cation PEG, the aggregation of the PBI in an aqueous solution is completely suppressed by the hydrophilic ammonium cation PEG groups. And the fluorescence quantum yield increases from 25% for GPDI-1 to 62% for GPDI-2. When incubated with Hela cells for 48 h, the viabilities are 71% (for GPDI-1) and 76% (for GPDI-2). Live cell imaging shows that these probes are efficiently internalized by HeLa cells. The study of the photophysical properties indicated increasing the ammonium cation PEG generation can increase the fluorescence quantum yield. Live cell imaging shows that with the ammonium cation PEG chains of perylenebisimides has high biocompatibility. The exceptionally low cytotoxicity is ascribed to the ammonium cation PEG chains, which protect the dyes from nonspecifically interacting with the extracellular proteins. Live cell imaging shows that ammonium cations PEG chains can promote the internalization of these probes.

  5. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.

    PubMed Central

    Liaw, S. H.; Kuo, I.; Eisenberg, D.

    1995-01-01

    Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to yield glutamine, ADP, and inorganic phosphate in the presence of divalent cations. Bacterial GS is an enzyme of 12 identical subunits, arranged in two rings of 6, with the active site between each pair of subunits in a ring. In earlier work, we have reported the locations within the funnel-shaped active site of the substrates glutamate and ATP and of the two divalent cations, but the site for ammonia (or ammonium) has remained elusive. Here we report the discovery by X-ray crystallography of a binding site on GS for monovalent cations, Tl+ and Cs+, which is probably the binding site for the substrate ammonium ion. Fourier difference maps show the following. (1) Tl+ and Cs+ bind at essentially the same site, with ligands being Glu 212, Tyr 179, Asp 50', Ser 53' of the adjacent subunit, and the substrate glutamate. From its position adjacent to the substrate glutamate and the cofactor ADP, we propose that this monovalent cation site is the substrate ammonium ion binding site. This proposal is supported by enzyme kinetics. Our kinetic measurements show that Tl+, Cs+, and NH4+ are competitive inhibitors to NH2OH in the gamma-glutamyl transfer reaction. (2) GS is a trimetallic enzyme containing two divalent cation sites (n1, n2) and one monovalent cation site per subunit. These three closely spaced ions are all at the active site: the distance between n1 and n2 is 6 A, between n1 and Tl+ is 4 A, and between n2 and Tl+ is 7 A. Glu 212 and the substrate glutamate are bridging ligands for the n1 ion and Tl+. (3) The presence of a monovalent cation in this site may enhance the structural stability of GS, because of its effect of balancing the negative charges of the substrate glutamate and its ligands and because of strengthening the "side-to-side" intersubunit interaction through the cation-protein bonding. (4) The presence of the cofactor ADP increases the Tl+ binding to GS

  6. The effect of the cation alkyl chain branching on mutual solubilities with water and toxicities.

    PubMed

    Kurnia, Kiki A; Sintra, Tânia E; Neves, Catarina M S S; Shimizu, Karina; Canongia Lopes, José N; Gonçalves, Fernando; Ventura, Sónia P M; Freire, Mara G; Santos, Luís M N B F; Coutinho, João A P

    2014-10-07

    The design of ionic liquids has been focused on the cation-anion combinations but other more subtle approaches can be used. In this work the effect of the branching of the cation alkyl chain on the design of ionic liquids (ILs) is evaluated. The mutual solubilities with water and toxicities of a series of bis(trifluoromethylsulfonyl)-based ILs, combined with imidazolium, pyridinium, pyrrolidinium, and piperidinium cations with linear or branched alkyl chains, are reported. The mutual solubility measurements were carried out in the temperature range from (288.15 to 323.15) K. From the obtained experimental data, the thermodynamic properties of the solution (in the water-rich phase) were determined and discussed. The COnductor like Screening MOdel for Real Solvents (COSMO-RS) was used to predict the liquid-liquid equilibrium. Furthermore, molecular dynamic simulations were also carried out aiming to get a deeper understanding of these fluids at the molecular level. The results show that the increase in the number of atoms at the cation ring (from five to six) leads to a decrease in the mutual solubilities with water while increasing their toxicity, and as expected from the well-established relationship between toxicities and hydrophobicities of ILs. The branching of the alkyl chain was observed to decrease the water solubility in ILs, while increasing the ILs solubility in water. The inability of COSMO-RS to correctly predict the effect of branching alkyl chains toward water solubility on them was confirmed using molecular dynamic simulations to be due to the formation of nano-segregated structures of the ILs that are not taken into account by the COSMO-RS model. In addition, the impact of branched alkyl chains on the toxicity is shown to be not trivial and to depend on the aromatic nature of the ILs.

  7. Understanding the impact of the central atom on the ionic liquid behavior: phosphonium vs ammonium cations.

    PubMed

    Carvalho, Pedro J; Ventura, Sónia P M; Batista, Marta L S; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A P

    2014-02-14

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.

  8. Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations

    NASA Astrophysics Data System (ADS)

    Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A. P.

    2014-02-01

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.

  9. Ultrasonic Relaxation Study of 1-Alkyl-3-methylimidazolium-Based Room-Temperature Ionic Liquids: Probing the Role of Alkyl Chain Length in the Cation.

    PubMed

    Zorębski, Michał; Zorębski, Edward; Dzida, Marzena; Skowronek, Justyna; Jężak, Sylwia; Goodrich, Peter; Jacquemin, Johan

    2016-04-14

    Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally, the speed of sound, density, and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e., relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single-Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.

  10. How Does the Ionic Liquid Organizational Landscape Change when Nonpolar Cationic Alkyl Groups Are Replaced by Polar Isoelectronic Diethers?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Hemant K.; Santos, Cherry S.; Daly, Ryan P.

    2012-12-21

    The X-ray scattering experiments and molecular dynamics simulations have been performed to investigate the structure of four room temperature ionic liquids (ILs) comprising the bis(trifluoromethylsulfonyl)amide (NTf 2 –) anion paired with the triethyloctylammonium (N 2228 +) and triethyloctylphosphonium (P 2228 +) cations and their isoelectronic diether analogs, the (2-ethoxyethoxy)ethyltriethylammonium (N 222(2O2O2) +) and (2-ethoxyethoxy)ethyltriethylphosphonium (P 222(2O2O2) +) cations. Agreement between simulations and experiments is good and permits a clear interpretation of the important topological differences between these systems. The first sharp diffraction peak (or prepeak) in the structure function S(q) that is present in the case of the liquids containingmore » the alkyl-substituted cations is absent in the case of the diether substituted analogs. Using different theoretical partitioning schemes for the X-ray structure function, we show that the prepeak present in the alkyl-substituted ILs arises from polarity alternations between charged groups and nonpolar alkyl tails. In the case of the diether substituted ILs, we find considerable curling of tails. Anions can be found with high probability in two different environments: close to the cationic nitrogen (phosphorus) and also close to the two ether groups. Moreover, for the two diether systems, anions are found in locations from which they are excluded in the alkyl-substituted systems. This removes the longer range (polar/nonpolar) pattern of alternation that gives rise to the prepeak in alkyl-substituted systems.« less

  11. Rotational diffusion of nonpolar and ionic solutes in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides: is solute rotation always influenced by the length of the alkyl chain on the imidazolium cation?

    PubMed

    Gangamallaiah, V; Dutt, G B

    2012-10-25

    In an attempt to find out whether the length of the alkyl chain on the imidazolium cation has a bearing on solute rotation, temperature-dependent fluorescence anisotropies of three structurally similar solutes have been measured in a series of 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides. Solute-solvent coupling constants obtained from the experimentally measured reorientation times with the aid of Stokes-Einstein-Debye hydrodynamic theory indicate that there is no influence of the length of the alkyl chain on the rotation of nonpolar, anionic, and cationic solutes 9-phenylanthracene (9-PA), fluorescein (FL), and rhodamine 110 (R110), respectively. It has also been noticed that the rotational diffusion of 9-PA is closer to the predictions of slip hydrodynamics, whereas the rotation of negatively charged FL and positively charged R110 is almost identical and follows stick hydrodynamics in these ionic liquids. Despite having similar shape and size, ionic solutes rotate slower by a factor of 3-4 compared to the nonpolar solute. Interplay of specific and electrostatic interactions between FL and the imidazolium cation of the ionic liquids, and between R110 and the bis(trifluoromethylsulfonyl)imide anion, appear to be responsible for the observed behavior. These results are an indication that the length of the alkyl chain on the imidazolium cation does not alter their physical properties in a manner that has an effect on solute rotation.

  12. Emergence of innovative properties by replacement of nitrogen atom with phosphorus atom in quaternary ammonium ionic liquids: Insights from ab initio calculations and MD simulations

    NASA Astrophysics Data System (ADS)

    Ghatee, Mohammad Hadi; Bahrami, Maryam

    2017-06-01

    We investigate to contrasting structure, dynamic and thermophysical properties of quaternary ammonium and phosphonium ionic liquids (ILs) based on triethylalkylammonium [N222n]+ and triethylalkylphosphonium [P222n]+ cations (n = 5, 8, 12) and (bis(trifluoromethylsulfonyl)imide) anion [NTf2]- by quantum chemical calculations (QCC) and molecular dynamics (MD) simulations. QCCs conform to previous studies, showing that phosphonium cation alkyl chain rotational-energy-barrier is lower than ammonium cation. These molecular nature leads to no appreciable differences in their liquid density. However, their simulated transport properties (self-diffusion, conductivity, etc) are appreciably different. In particular, viscosity of phosphoniums are much lower than ammoniums. Ammoniums make nano-scale structural domains larger than phosphoniums. Employed analysis, vector re-orientational dynamics, ion-pair lifetime and nanostructure domain are in favor of faster dynamic for phosphoniums than ammoniums. [NTf2]- anion features a long lived pairing with ammoniums than phosphoniums. Overall, phosphoniums possess higher transference number, higher conductivity, and appreciably lower viscosity favorable for higher electrochemical performances.

  13. Ion Dynamics in a Mixed-Cation Alkoxy-Ammonium Ionic Liquid Electrolyte for Sodium Device Applications.

    PubMed

    Pope, Cameron R; Kar, Mega; MacFarlane, Douglas R; Armand, Michel; Forsyth, Maria; O'Dell, Luke A

    2016-10-18

    The ion dynamics in a novel sodium-containing room-temperature ionic liquid (IL) consisting of an ether-functionalised quaternary ammonium cation and bis(trifluoromethylsulfonyl)amide [NTf 2 ] anion with various concentrations of Na[NTf 2 ] have been characterised using differential scanning calorimetry, impedance spectroscopy, diffusometry and NMR relaxation measurements. The IL studied has been specifically designed to dissolve a relatively large concentration of Na[NTf 2 ] salt (over 2 mol kg -1 ) as this has been shown to improve ion transport and conductivity. Consistent with other studies, the measured ionic conductivity and diffusion coefficients show that the overall ionic mobility decreases with decreasing temperature and increasing salt content. NMR relaxation measurements provide evidence for correlated dynamics between the ether-functionalised ammonium and Na cations, possibly with the latter species acting as cross-links between multiple ammonium cations. Finally, preliminary cyclic voltammetry experiments show that this IL can undergo stable electrochemical cycling and could therefore be potentially useful as an electrolyte in a Na-based device. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fascinating interaction of the ammonium cation with [2.2.2]paracyclophane: experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Makrlík, Emanuel; Sýkora, David; Böhm, Stanislav; Kvíčalová, Magdalena; Vaňura, Petr

    2018-05-01

    By means of electrospray ionisation mass spectrometry, it was evidenced experimentally that the ammonium cation (NH4+) reacts with the electroneutral [2.2.2]paracyclophane ligand (C24H24) to form the cationic complex [NH4(C24H24)]+. Moreover, applying quantum chemical calculations, the most probable conformation of the proven [NH4(C24H24)]+ complex was solved. In the complex [NH4(C24H24)]+ having a symmetry very close to C3, the 'central' cation NH4+ is coordinated by three strong bifurcated intramolecular hydrogen bonds to the corresponding six carbon atoms from the three benzene rings of [2.2.2]paracyclophane via cation-π interaction. Finally, the interaction energy, E(int), of the considered complex [NH4(C24H24)]+ was evaluated as -625.8 kJ/mol, confirming the formation of this fascinating complex species as well. It means that the [2.2.2]paracyclophane ligand can be considered as an effective receptor for the ammonium cation in the gas phase.

  15. Comprehensive Study on the Impact of the Cation Alkyl Side Chain Length on the Solubility of Water in Ionic Liquids.

    PubMed

    Kurnia, Kiki A; Neves, Catarina M S S; Freire, Mara G; Santos, Luís M N B F; Coutinho, João A P

    2015-10-01

    A comprehensive study on the phase behaviour of two sets of ionic liquids (ILs) and their interactions with water is here presented through combining experimental and theoretical approaches. The impact of the alkyl side chain length and the cation symmetry on the water solubility in the asymmetric [C N- 1 C 1 im][NTf 2 ] and symmetric [C N- 1 C N- 1 im][NTf 2 ] series of ILs ( N up to 22), from 288.15 K to 318.15 K and at atmospheric pressure, was studied. The experimental data reveal that the solubility of water in ILs with an asymmetric cation is higher than in those with the symmetric isomer. Several trend shifts on the water solubility as a function of the alkyl side chain length were identified, namely at [C 6 C 1 im][NTf 2 ] for asymmetric ILs and at [C 4 C 4 im][NTf 2 ] and [C 7 C 7 im][NTf 2 ] for the symmetric ILs. To complement the experimental data and to further investigate the molecular-level mechanisms behind the dissolution process, Density Functional Theory calculations, using the Conductor-like Screening Model for Real Solvents (COSMO-RS) and the Electrostatic potential-derived CHelpG, were performed. The COSMO-RS model is able to qualitatively predict water solubility as function of temperature and alkyl chain lengths of both symmetric and asymmetric cations. Furthermore, the model is also capable to predict the somewhat higher water solubility in the asymmetric cation, as well as the trend shift as function of alkyl chain lengths experimentally observed. Both COSMO-RS and the electrostatic potential-derived CHelpG show that the interactions of water and the IL cation take place on the IL polar region, namely on the aromatic head and adjacent methylene groups what explains the differences in water solubility observed for cations with different chain lengths. Furthermore, the CHelpG calculations for the isolated cations in the gas phase indicates that the trend shift of water solubility as function of alkyl chain lengths and the difference of water

  16. Synthesis and Solution Properties of Adamantane Containing Quaternary Ammonium Salt-type Cationic Surfactants: Hydrocarbon-based, Fluorocarbonbased and Bola-type.

    PubMed

    Yoshimura, Tomokazu; Okada, Mari; Matsuoka, Keisuke

    2016-10-01

    Quaternary ammonium salt-type cationic surfactants with an adamantyl group (hydrocarbon-type; C n AdAB, fluorocarbon-type; C m F C 3 AdAB, bola-type; Ad-s-Ad, where n, m and s represent hydrocarbon chain lengths of 8-16, fluorocarbon chain lengths of 4-8, and spacer chain length of 10-12) were synthesized via quaternization of N, N-dimethylaminoadamantane and n-alkyl bromide or 1, n-dibromoalkane. Conductivity and surface tension were measured to characterize the solution properties of the synthesized adamantyl group-containing cationic surfactants. In addition, the effects of hydrocarbon and fluorocarbon chain lengths and spacer chain length between headgroups on the measured properties were evaluated by comparison with those of conventional cationic surfactants. The critical micelle concentration (CMC) of C n AdAB and Ad-s-Ad was 2/5 of that for the corresponding conventional surfactants C n TAB and bola-type surfactants with similar number of carbons in the alkyl or alkylene chain; this was because of the increased hydrophobicity due to the adamantyl group. A linear relationship between the logarithm of CMC and the hydrocarbon chain length for C n AdAB was observed, as well as for C n TAB. The slope of the linear correlation for both surfactants was almost the same, indicating that the adamantyl group does not affect the CMC with variations in the hydrocarbon chain length. Similar to conventional surfactants C n TAB, the hydrocarbon-type C n AdAB is highly efficient in reducing the surface tension of water, despite the large occupied area per molecule resulting from the relatively bulky structure of the adamantane skeleton. On the other hand, the bola-type Ad-s-Ad resulted in increased surface tension compared to C n AdAB, indicating that the curved chain between adamantyl groups leads to poor adsorption and orientation at the air-water interface.

  17. New cationic vesicles prepared with double chain surfactants from arginine: Role of the hydrophobic group on the antimicrobial activity and cytotoxicity.

    PubMed

    Pinazo, A; Petrizelli, V; Bustelo, M; Pons, R; Vinardell, M P; Mitjans, M; Manresa, A; Perez, L

    2016-05-01

    Cationic double chain surfactants have attracted much interest because they can give rise to cationic vesicles that can be used in biomedical applications. Using a simple and economical synthetic approach, we have synthesized four double-chain surfactants with different alkyl chain lengths (LANHCx). The critical aggregation concentration of the double chain surfactants is at least one order of magnitude lower than the CMC of their corresponding single-chain LAM and the solutions prepared with the LANHCx contain stable cationic vesicles. Encouragingly, these new arginine derivatives show very low haemolytic activity and weaker cytotoxic effects than conventional dialkyl dimethyl ammonium surfactants. In addition, the surfactant with the shortest alkyl chain exhibits good antimicrobial activity against Gram-positive bacteria. The results show that a rational design applied to cationic double chain surfactants might serve as a promising strategy for the development of safe cationic vesicular systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Structure and electronic properties of ion pairs accompanying cyclic morpholinium cation and alkylphosphite anion based ionic liquids

    NASA Astrophysics Data System (ADS)

    Verma, Prakash L.; Singh, Priti; Gejji, Shridhar P.

    2017-07-01

    Molecular insights for the formation of ion pairs accompanying the cyclic ammonium cation based room temperature ionic liquids (RTILs) composed of alkyl substituted N-methylmorpholinium (RMMor) and alkylphosphite [(Rsbnd O)2PHdbnd O] (Rdbnd ethyl, butyl, hexyl, octyl) anion have been derived from the M06-2x level of theory. Electronic structures, binding energies, and spectral characteristics of the ion pairs underlying these RTILs have been characterized. The ion pair formation is largely governed by Csbnd H⋯O and other intermolecular interactions. Calculated binding energies increase with the increasing alkyl chain on either cation or alkylphosphite anion. The cation-anion binding reveals signature in the frequency down-(red) shift of the characteristic anionic Pdbnd O stretching whereas the Psbnd H stretching exhibits a shift in the opposite direction in vibrational spectra which has further been rationalized through molecular electron density topography. Correlations of measured electrochemical stability with the separation of frontier orbital energies and binding energies in the ion pairs have further been established.

  19. Alkyl chain interaction at the surface of room temperature ionic liquids: systematic variation of alkyl chain length (R = C(1)-C(4), C(8)) in both cation and anion of [RMIM][R-OSO(3)] by sum frequency generation and surface tension.

    PubMed

    Santos, Cherry S; Baldelli, Steven

    2009-01-29

    The gas-liquid interface of halide-free 1,3-dialkylimidazolium alkyl sulfates [RMIM][R-OSO(3)] with R chain length from C(1)-C(4) and C(8) has been studied systematically using the surface-specific sum frequency generation (SFG) vibrational spectroscopy and surface tension measurements. From the SFG spectra, vibrational modes from the methyl group of both cation and anion are observed for all ionic liquid samples considered in the present study. These results suggest the presence of both ions at the gas-liquid interface, which is further supported by surface tension measurements. Surface tension data show a decreasing trend as the alkyl chain in the imidazolium cation is varied from methyl to butyl chain, with a specific anion. A similar trend is observed when the alkyl chain of the anion is modified and the cation is fixed.

  20. Effect of Dialkyl Ammonium Cationic Surfactants on the Microfluidity of Membranes Containing Raft Domains.

    PubMed

    Uyama, Makoto; Inoue, Kaori; Kinoshita, Koichi; Miyahara, Reiji; Yokoyama, Hirokazu; Nakano, Minoru

    2018-01-01

    It has been reported that a lot of receptors localize in lipid raft domains and that the microfluidity of these domains regulates the activation of these receptors. In this study, we focused on the lipid raft and in order to evaluate the physicochemical effects of surfactants on microfluidity of lipid membranes, we used liposomes comprising of egg-yolk L-α-phosphatidylcholine, egg-yolk sphingomyelin, and cholesterol as a model of cell membranes containing raft domains. The microfluidity of the domains was characterized by fluorescence spectrometry using 1,6-diphenyl-1,3,5-hexatriene and 2-dimethylamino-6-lauroylnaphthalene. Among several surfactants, dialkylammonium-type cationic surfactants most efficiently increased the microfluidity. It is therefore concluded that (1) the electrostatic interaction between the cationic surfactant and eggPC/eggSM/cholesterol liposome could be important, (2) surfactants with alkyl chains more effectively inserted into membranes than those with acyl chains, and (3) cationic surfactants with lower T m values have a greater ability to increase the fluidity.

  1. The adsorption of alkyl-dimethyl-benzyl-ammonium chloride onto cotton nonwoven hydroentangled substrates at the solid-liquid interface is minimized by additive chemistries

    USDA-ARS?s Scientific Manuscript database

    Quaternary ammonium compounds, commonly referred to as quats, are cationic surfactants widely used as the active biocide ingredient for disposable disinfecting wipes. The cationic nature of quats results in a strong ionic interaction and adsorption onto wipes materials that have an anionic surface ...

  2. Induction of thermotropic bicontinuous cubic phases in liquid-crystalline ammonium and phosphonium salts.

    PubMed

    Ichikawa, Takahiro; Yoshio, Masafumi; Hamasaki, Atsushi; Taguchi, Satomi; Liu, Feng; Zeng, Xiang-bing; Ungar, Goran; Ohno, Hiroyuki; Kato, Takashi

    2012-02-08

    Two series of wedge-shaped onium salts, one ammonium and the other phosphonium, having 3,4,5-tris(alkyloxy)benzyl moieties, exhibit thermotropic bicontinuous "gyroid" cubic (Cub(bi)) and hexagonal columnar liquid-crystalline (LC) phases by nanosegregation between ionophilic and ionophobic parts. The alkyl chain lengths on the cationic moieties, anion species, and alkyl chain lengths on the benzyl moieties have crucial effects on their thermotropic phase behavior. For example, triethyl-[3,4,5-tris(dodecyloxy)benzyl]ammonium hexafluorophosphate forms the thermotropic Ia3d Cub(bi) LC phase, whereas an analogous compound with trifluoromethanesulfonate anion shows no LC properties. Synchrotron small-angle diffraction intensities from the Ia3d Cub(bi) LC materials provide electron density maps in the bulk state. The resulting maps show convincingly that the Ia3d Cub(bi) structure is composed of three-dimensionally interconnected ion nanochannel networks surrounded by aliphatic domains. A novel differential mapping technique has been applied successfully. The map of triethyl-[3,4,5-tris(decyloxy)benzyl]ammonium tetrafluoroborate has been subtracted from that of the analogous ammonium salt with hexafluorophosphate anion in the Ia3d Cub(bi) phases. The differential map shows that the counteranions are located in the core of the three-dimensionally interconnected nanochannel networks. Changing from trimethyl- via triethyl- to tripropylammonium cation changes the phase from columnar to Cub(bi) to no mesophase, respectively. This sensitivity to the widened shape for the narrow end of the molecule is explained successfully by the previously proposed semiquantitative geometric model based on the radial distribution of volume in wedge-shaped molecules. The LC onium salts dissolve lithium tetrafluoroborate without losing the Ia3d Cub(bi) LC phase. The Cub(bi) LC materials exhibit efficient ion-transporting behavior as a result of their 3D interconnected ion nanochannel networks

  3. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples.

    PubMed

    Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek

    2013-11-15

    A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry). Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Evidence that two alkyl ester quaternary ammonium compounds lack substantial human skin-sensitizing potential.

    PubMed

    Jowsey, Ian R; Kligman, Albert M; White, Ian R; Goossens, An; Basketter, David A

    2007-03-01

    Alkyl ester quaternary ammonium compounds (ester quats) are used extensively in fabric rinse conditioners. It is important to document in the literature the outcome of historical studies that were performed to assess the risk of adverse skin effects associated with their use. (1) To document the outcomes of historical studies performed to evaluate the skin sensitizing potential of two ester quats (the di-[hardened tallow fatty acid] ester of 2,3-dihydroxypropyl-trimethyl ammonium chloride [HEQ] and the dialkyl ester of triethanol ammonium methyl sulfate [TEA-Quat]) and (2) to demonstrate that these ester quats lack marked skin-sensitizing potential in humans, such that they do not present a risk of contact allergy for consumers who use fabric rinse conditioners. Each material was assessed in the human maximization test in a panel of 25 volunteers. Diagnostic patch testing was also performed with each material in a population of 239 patients undergoing routine patch testing for suspected allergic contact dermatitis. These data are also considered in the context of an exposure-based quantitative risk assessment. Neither HEQ nor TEA-Quat was found to cause skin sensitization under the conditions of the human maximization test. No evidence of contact allergy to the materials was found among the relatively small population assessed by diagnostic patch testing. This study provides evidence that HEQ and TEA-Quat lack substantial skin-sensitizing potential in humans. Taken together with similar data for other ester quats, it suggests that compounds in this class are unlikely to be significant human contact allergens.

  5. Synthesis of Quaternary Ammonium Salts of Tricyclic Cationic Drugs: A One-Pot Synthesis for the Bioorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Mogannam, Abid C.; Hwee, Won B.; Chen, James Y.

    2007-01-01

    A one-pot conversion of tricyclic cationic drugs to their quaternary ammonium forms is described for a widely used bioactive drug: chlorpromazine, a phenothiazine-based antipsychotic. After conversion to its free base, the parent drug was methylated using substoichiometric amounts of methyl iodide dissolved in ether; the charged quaternary…

  6. Structure-Antibacterial Activity Relationships of Imidazolium-Type Ionic Liquid Monomers, Poly(ionic liquids) and Poly(ionic liquid) Membranes: Effect of Alkyl Chain Length and Cations.

    PubMed

    Zheng, Zhiqiang; Xu, Qiming; Guo, Jiangna; Qin, Jing; Mao, Hailei; Wang, Bin; Yan, Feng

    2016-05-25

    The structure-antibacterial activity relationship between the small molecular compounds and polymers are still elusive. Here, imidazolium-type ionic liquid (IL) monomers and their corresponding poly(ionic liquids) (PILs) and poly(ionic liquid) membranes were synthesized. The effect of chemical structure, including carbon chain length of substitution at the N3 position and charge density of cations (mono- or bis-imidazolium) on the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by determination of minimum inhibitory concentration (MIC). The antibacterial activities of both ILs and PILs were improved with the increase of the alkyl chain length and higher charge density (bis-cations) of imidazolium cations. Moreover, PILs exhibited lower MIC values relative to the IL monomers. However, the antibacterial activities of PIL membranes showed no correlation to those of their analogous small molecule IL monomers and PILs, which increased with the charge density (bis-cations) while decreasing with the increase of alkyl chain length. The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.

  7. Effect of ten quaternary ammonium cations on tetrachloromethane sorption to clay from water

    USGS Publications Warehouse

    Smith, J.A.

    1990-01-01

    The mineral surface of Wyoming bentonite (clay) was modified by replacing inorganic ions by each of 10 quaternary ammonium compounds, and tetrachloromethane sorption to the modified sorbents from water was studied. Tetrachloromethane sorption from solution to clay modified with tetramethyl-, tetraethyl-, benzyltrimethyl-, or benzyltriethylammonium cations generally is characterized by relatively high solute uptake, isotherm nonlinearity, and competitive sorption (with trichloroethene as the competing sorbate). For these sorbents, the ethyl functional groups yield reduced sorptive capacity relative to methyl groups, whereas the benzyl group appears to have a similar effect on sorbent capacity as the methyl group. Sorption of tetrachloromethane to clay modified with dodecyldimethyl(2-phenoxyethyl)-, dodecyltrimethyl-, tetradecyltrimethyl-, hexadecyltrimethyl-, or benzyldimethylhexadecylammonium bromide is characterized by relatively low solute uptake, isotherm linearity, and noncompetitive sorption. For these sorbents, an increase in the size of the nonpolar functional group(s) causes an increase in the organic carbon normalized sorption coefficient (Koc). No measurable uptake of tetrachloromethane sorption by the unmodified clay or clay modified by ammonium bromide was observed. ?? 1990 American Chemical Society.

  8. [Determination of soil exchangeable base cations by using atomic absorption spectrophotometer and extraction with ammonium acetate].

    PubMed

    Zhang, Yu-ge; Xiao, Min; Dong, Yi-hua; Jiang, Yong

    2012-08-01

    A method to determine soil exchangeable calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) by using atomic absorption spectrophotometer (AAS) and extraction with ammonium acetate was developed. Results showed that the accuracy of exchangeable base cation data with AAS method fits well with the national standard referential soil data. The relative errors for parallel samples of exchangeable Ca and Mg with 66 pair samples ranged from 0.02%-3.14% and 0.06%-4.06%, and averaged to be 1.22% and 1.25%, respectively. The relative errors for exchangeable K and Na with AAS and flame photometer (FP) ranged from 0.06%-8.39% and 0.06-1.54, and averaged to be 3.72% and 0.56%, respectively. A case study showed that the determination method for exchangeable base cations by using AAS was proven to be reliable and trustable, which could reflect the real situation of soil cation exchange properties in farmlands.

  9. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    EPA Science Inventory

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  10. The requirement of ammonium or other cations linked with p-cresol sulfate for cross-reactivity with a peptide of myelin basic protein.

    PubMed

    Jackson, Patricia L; Cao, Ligong; Blalock, J Edwin; Whitaker, John N

    2003-10-15

    Urinary myelin basic protein-like material (MBPLM), so designated because of its immunoreactivity with a polyclonal antibody directed against a cryptic epitope located in residues 83-89 of myelin basic protein (MBP), exists in humans normally but increases in concentration in patients with multiple sclerosis who have progressive disease. Given its possible role in reflecting events of neural tissue destruction occurring in multiple sclerosis, urinary MBPLM is a candidate surrogate marker for this phase of the disease. Previously, it has been demonstrated that p-cresol sulfate (PCS) is the dominant component of MBPLM; however, another component(s) was essential in enabling p-cresol sulfate to have molecular mimicry with MBP peptide 83-89 detected by immunoreactivity. In the present investigation, this remaining component(s) was characterized by a combination of high performance size exclusion chromatography followed by nuclear magnetic resonance spectroscopy and shown to be ammonium. The monovalent cation ammonium could be substituted in vitro by several different monovalent and divalent cations, most notably zinc, in restoring to deprotonated p-cresol sulfate its immunoreactivity as MBPLM. These findings indicate the basis for the unexpected molecular mimicry between an epitope of an encephalitogenic protein and a complex containing a small organic molecule, p-cresol sulfate. Furthermore, the reaction of either ammonium or other cations with p-cresol sulfate may represent an in vivo process directly related to damage of axonal membranes.

  11. Effect of ionic strength and cationic DNA affinity binders on the DNA sequence selective alkylation of guanine N7-positions by nitrogen mustards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, J.A.; Forrow, S.M.; Souhami, R.L.

    Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increase ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specificmore » chemical cleavage technique for DNA sequencing. The result differed with both the nitrogen mustard and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove.« less

  12. Thermo-responsive triblock copolymer phase transition behaviour in imidazolium-based ionic liquids: Role of the effect of alkyl chain length of cations.

    PubMed

    Umapathi, Reddicherla; Venkatesu, Pannuru

    2017-01-01

    Different biophysical techniques such as fluorescence spectroscopy, dynamic light scattering (DLS), viscosity (η) and Fourier transform infrared (FTIR) spectroscopy have been carried out to characterize the effect of imidazolium-based ionic liquids (ILs) on the thermo-responsive triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly-(ethylene glycol) (PEG-PPG-PEG). In addition, to demonstrate the distinct morphological changes of various self-assembled morphologies, we further employed field emission scanning electron microscope (FESEM). To investigate the effect of alkyl chain length of the cation, concentration of the ILs and the related Hofmeister series on the phase behaviour of PEG-PPG-PEG, we used a series of ILs possessing same Cl - anion and a set of cation [C n mim] + with increasing alkyl chain length of cation such as 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]), 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]), 1-hexyl-3-methylimidazolium chloride ([Hmim][Cl]) and 1-decyl-3-methylimidazolium chloride ([Dmim][Cl]). The critical micellization temperature (CMT) of the copolymer in the presence of well hydrated cations is directly correlated to their hydration. The overall specific ranking of ILs in decreasing the CMT of PEG-PPG-PEG in aqueous solution was [Emim][Cl]>[Bmim][Cl]>[Hmim][Cl]>[Dmim][Cl]. The trend of these ILs followed the well-known Hofmeister series of cations of ILs. The present study provides important information about the solution properties that can be helpful to tune the IL or temperature-sensitive copolymer CMT and micelle shapes which are crucial for understanding the drug delivery mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Thioimidazolium Ionic Liquids as Tunable Alkylating Agents.

    PubMed

    Guterman, Ryan; Miao, Han; Antonietti, Markus

    2018-01-19

    Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

  14. Synthesis and Characterization of Perfluoro Quaternary Ammonium Anion Exchange Membranes

    DTIC Science & Technology

    2012-01-01

    study, new alkaline exchange membranes were prepared from the perfluorinated 3M ionomer with various quaternary ammonium cations attached with...ammonium anion exchange membranes Report Title ABSTRACT In this study, new alkaline exchange membranes were prepared from the perfluorinated 3M ionomer...exchange membranes were prepared from the perfluorinated 3M ionomer with vari- ous quaternary ammonium cations attached with sulfonamide linkage. The

  15. Developing force fields when experimental data is sparse: AMBER/GAFF-compatible parameters for inorganic and alkyl oxoanions.

    PubMed

    Kashefolgheta, Sadra; Vila Verde, Ana

    2017-08-09

    We present a set of Lennard-Jones parameters for classical, all-atom models of acetate and various alkylated and non-alkylated forms of sulfate, sulfonate and phosphate ions, optimized to reproduce their interactions with water and with the physiologically relevant sodium, ammonium and methylammonium cations. The parameters are internally consistent and are fully compatible with the Generalized Amber Force Field (GAFF), the AMBER force field for proteins, the accompanying TIP3P water model and the sodium model of Joung and Cheatham. The parameters were developed primarily relying on experimental information - hydration free energies and solution activity derivatives at 0.5 m concentration - with ab initio, gas phase calculations being used for the cases where experimental information is missing. The ab initio parameterization scheme presented here is distinct from other approaches because it explicitly connects gas phase binding energies to intermolecular interactions in solution. We demonstrate that the original GAFF/AMBER parameters often overestimate anion-cation interactions, leading to an excessive number of contact ion pairs in solutions of carboxylate ions, and to aggregation in solutions of divalent ions. GAFF/AMBER parameters lead to excessive numbers of salt bridges in proteins and of contact ion pairs between sodium and acidic protein groups, issues that are resolved by using the optimized parameters presented here.

  16. Reactive Uptake of Dimethylamine by Ammonium Sulfate and Ammonium Sulfate-Sucrose Mixed Particles.

    PubMed

    Chu, Yangxi; Chan, Chak K

    2017-01-12

    Short-chain alkyl amines can undergo gas-to-particle partitioning via reactive uptake by ammonium salts, whose phases have been thought to largely influence the extent of amine uptake. Previous studies mainly focused on particles of single ammonium salt at either dry or wet conditions without any addition of organic compounds. Here we report the uptake of dimethylamine (DMA) by ammonium sulfate (AS) and AS-sucrose mixed particles at different relative humidities (RHs) using an electrodynamic balance coupled with in situ Raman spectroscopy. DMA is selected as a representative of short-chain alkyl amines, and sucrose is used as a surrogate of viscous and hydrophilic organics. Effective DMA uptake was observed for most cases, except for the water-limiting scenario at <5% RH and the formation of an ultraviscous sucrose coating at 10% RH and below. DMA uptake coefficients (γ) were estimated using the particle mass measurements during DMA uptake. Addition of sucrose can increase γ by absorbing water or inhibiting AS crystallization and decrease γ by elevating the particle viscosity and forming a coating layer. DMA uptake can be facilitated for crystalline AS or retarded for aqueous AS with hydrophilic viscous organics (e.g., secondary organic material formed via the oxidation of biogenic volatile organic compounds) present in aerosol particles.

  17. Suitability of the methylene blue test for determination of cation exchange capacity of clay minerals related to ammonium acetate method

    NASA Astrophysics Data System (ADS)

    Milošević, Maja; Logar, Mihovil; Dojčinović, Biljana; Erić, Suzana

    2015-04-01

    Cation exchange capacity (CEC) represents one of the most important parameters of clay minerals which reflects their ability to exchange cations with liquid phases in near contact. Measurement of CEC is used for characterizing sample plasticity, adsorbing and swelling properties which later define their usage in industrial purposes. Several methods have been developed over the years for determination of layer charge, charge density, charge distribution, etc. and have been published in numerous papers (Czimerova et al., 2006; Yukselen and Kaya, 2008). The main goal of present study is comparison of suitability of more recent method - methylene blue test in regard to older method - ammonium acetate for determination of CEC. For this study, we selected one montmorillonite clay (Bogovina, Serbia) and two mainly kaolinite clays (Miličinica, Serbia). Chemicals used for CEC determinations were solution of methylene blue (MB)(14*10-6M/ml) and ammonium acetate (AA) solution (1M). The obtained results are showing generally lower values in case of MB method. The main difference is due to molecular aggregation of MB on the clay surface. AA method is highly sensitive to the presence of CaO. Release of Ca ion from the sample into the solution can limit the saturation of exchange sites by the ammonium ion. This is clearly visible in case of montmorillonite clay. Fe2+ and Mg ions are difficult to move by the ammonium ion because of their ion radius, but in case of MB molecule there is no such restriction in removing them from the exchange sites. MB solution, even in a low concentration (2*10-6M/ml), is showing preferable results in moving the ions from their positions which is already visible after adding a small quantity of solution (25cm3). Both MB-titration and MB-spot test yield similar results and are much simpler methods than AA and they also give other information such as specific surface area (external and internal) whereas AA method only provides information about

  18. Electrochemically and Bioelectrochemically Induced Ammonium Recovery

    PubMed Central

    Gildemyn, Sylvia; Luther, Amanda K.; Andersen, Stephen J.; Desloover, Joachim; Rabaey, Korneel

    2015-01-01

    Streams such as urine and manure can contain high levels of ammonium, which could be recovered for reuse in agriculture or chemistry. The extraction of ammonium from an ammonium-rich stream is demonstrated using an electrochemical and a bioelectrochemical system. Both systems are controlled by a potentiostat to either fix the current (for the electrochemical cell) or fix the potential of the working electrode (for the bioelectrochemical cell). In the bioelectrochemical cell, electroactive bacteria catalyze the anodic reaction, whereas in the electrochemical cell the potentiostat applies a higher voltage to produce a current. The current and consequent restoration of the charge balance across the cell allow the transport of cations, such as ammonium, across a cation exchange membrane from the anolyte to the catholyte. The high pH of the catholyte leads to formation of ammonia, which can be stripped from the medium and captured in an acid solution, thus enabling the recovery of a valuable nutrient. The flux of ammonium across the membrane is characterized at different anolyte ammonium concentrations and currents for both the abiotic and biotic reactor systems. Both systems are compared based on current and removal efficiencies for ammonium, as well as the energy input required to drive ammonium transfer across the cation exchange membrane. Finally, a comparative analysis considering key aspects such as reliability, electrode cost, and rate is made. This video article and protocol provide the necessary information to conduct electrochemical and bioelectrochemical ammonia recovery experiments. The reactor setup for the two cases is explained, as well as the reactor operation. We elaborate on data analysis for both reactor types and on the advantages and disadvantages of bioelectrochemical and electrochemical systems. PMID:25651406

  19. Electrochemically and bioelectrochemically induced ammonium recovery.

    PubMed

    Gildemyn, Sylvia; Luther, Amanda K; Andersen, Stephen J; Desloover, Joachim; Rabaey, Korneel

    2015-01-22

    Streams such as urine and manure can contain high levels of ammonium, which could be recovered for reuse in agriculture or chemistry. The extraction of ammonium from an ammonium-rich stream is demonstrated using an electrochemical and a bioelectrochemical system. Both systems are controlled by a potentiostat to either fix the current (for the electrochemical cell) or fix the potential of the working electrode (for the bioelectrochemical cell). In the bioelectrochemical cell, electroactive bacteria catalyze the anodic reaction, whereas in the electrochemical cell the potentiostat applies a higher voltage to produce a current. The current and consequent restoration of the charge balance across the cell allow the transport of cations, such as ammonium, across a cation exchange membrane from the anolyte to the catholyte. The high pH of the catholyte leads to formation of ammonia, which can be stripped from the medium and captured in an acid solution, thus enabling the recovery of a valuable nutrient. The flux of ammonium across the membrane is characterized at different anolyte ammonium concentrations and currents for both the abiotic and biotic reactor systems. Both systems are compared based on current and removal efficiencies for ammonium, as well as the energy input required to drive ammonium transfer across the cation exchange membrane. Finally, a comparative analysis considering key aspects such as reliability, electrode cost, and rate is made. This video article and protocol provide the necessary information to conduct electrochemical and bioelectrochemical ammonia recovery experiments. The reactor setup for the two cases is explained, as well as the reactor operation. We elaborate on data analysis for both reactor types and on the advantages and disadvantages of bioelectrochemical and electrochemical systems.

  20. [Dental plaque microcosm biofilm behavior on a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt].

    PubMed

    Junling, Wu; Qiang, Zhang; Ruinan, Sun; Ting, Zhu; Jianhua, Ge; Chuanjian, Zhou

    2015-12-01

    To develop a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt, and to measure its effect on human dental plaque microcosm biofilm. A novel nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt was synthesized according to methods introduced in previous research. Samples of the novel nano-antibacterial inorganic fillers were modified by a coupling agent and then added into resin composite at 0%, 5%, 10%, 15% or 20% mass fractions; 0% composite was used as control. A flexural test was used to measure resin composite mechanical properties. Results showed that a dental plaque microcosm biofilm model with human saliva as inoculum was formed. Colony-forming unit (CFU) counts, lactic acid production, and live/dead assay of biofilm on the resin composite were calculated to test the effect of the resin composite on human dental plaque microcosm biofilm. The incorporation of nano-antibacterial inorganic fillers with as much as 15% concentration into the resin composite showed no adverse effect on the mechanical properties of the resin composite (P > 0.05). Resin composite containing 5% or more nano-antibacterial inorganic fillers significantly inhibited the metabolic activity of dental plaque microcosm biofilm, suggesting its strong antibacterial potency (P < 0.05). This novel resin composite exhibited a strong antibacterial property upon the addition of up to 5% nano-antibacterial inorganic fillers, thereby leading to effective caries inhibition in dental application.

  1. Mass spectrometry of analytical derivatives. 1. Cyanide cations in the spectra of N-alkyl-N-perfluoroacyl-α-amino acids and their methyl esters

    PubMed Central

    Todua, Nino G.; Tretyakov, Kirill V.; Mikaia, Anzor I.

    2016-01-01

    The central mission for the development of the National Institute of Standards and Technology/National Institutes of Health/Environmental Protection Agency Mass Spectral Library is the acquisition of reference gas chromatography–mass spectrometry data for important compounds and their chemical modification products. The addition of reliable reference data of various derivatives of amino acids to The Library, and the study of their behavior under electron ionization conditions may be useful for their identification, structure elucidation, and a better understanding of the data obtained when the same derivatives are subjected to other ionization methods. N-Alkyl-N-perfluoroacyl derivatives of amino acids readily produce previously unreported alkylnitrilium cations of composition [HC≡N-alkyl]+. Homologous [HC≡N-aryl]+ cations are typical for corresponding N-aryl analogs. The formation of other ions characteristic for these derivatives involves oxygen rearrangement giving rise to ions [CnF2n+1–C≡N+–CnH2n+1] and [CnF2n+1–C≡N+-aryl]. The introduction of an N-benzyl substituent in a molecule favors a process producing benzylidene iminium cations. l-Threonine and l-cysteine derivatives exhibit more fragmentation pathways not typical for other α-amino acids; additionally, the Nω-amino group in l-lysine directs the dissociation process and provides structural information on the substitution at the amino functions in the molecule. PMID:26307698

  2. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in the Phosphonium Cation.

    PubMed

    Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F

    2016-06-30

    A series of room-temperature ionic liquids (ILs) composed of triethyl(alkyl)phosphonium cations paired with three different aprotic heterocyclic anions (AHAs) (alkyl = butyl ([P2224](+)) and octyl ([P2228](+))) were prepared to investigate the effect of cationic alkyl chain length on transport properties. The transport properties and density of these ILs were measured from 283.15 to 343.15 K at ambient pressure. The dependence of the transport properties (viscosity, ionic conductivity, diffusivity, and molar conductivity) on temperature can be described by the Vogel-Fulcher-Tamman (VFT) equation. The ratio of the molar conductivity obtained from the molar concentration and ionic conductivity measurements to that calculated from self-diffusion coefficients (measured by pulsed gradient spin-echo nuclear magnetic resonance spectroscopy) using the Nernst-Einstein equation was used to quantify the ionicity of these ILs. The molar conductivity ratio decreases with increasing number of carbon atoms in the alkyl chain, indicating that the reduced Coulombic interactions resulting from lower density are more than balanced by the increased van der Waals interactions between the alkyl chains. The results of this study may provide insight into the design of ILs with enhanced dynamics that may be suitable as electrolytes in lithium ion batteries and other electrochemical applications.

  3. Self-assembly of 3,5-bis(ethoxycarbonyl)pyrazolate anions and ammonium cations of beta-phenylethylamine or homoveratrylamine into hetero-double-stranded helical structures.

    PubMed

    Reviriego, Felipe; Sanz, Ana; Navarro, Pilar; Latorre, Julio; García-España, Enrique; Liu-Gonzalez, Malva

    2009-08-21

    Hydrogen-bonded double-stranded hetero-helices are formed when reacting sodium 3,5-bis(ethoxycarbonyl)pyrazolate with beta-phenethylammonium or homoveratrylammonium chloride, in which one of the strands is defined by the ammonium cations and the other one by the pyrazolate anions.

  4. Effects of alkyl chain length and solvents on thermodynamic dissociation constants of the ionic liquids with one carboxyl group in the alkyl chain of imidazolium cations.

    PubMed

    Chen, Yuehua; Wang, Huiyong; Wang, Jianji

    2014-05-01

    Thermodynamic dissociation constants of the Brønsted acidic ionic liquids (ILs) are important for their catalytic and separation applications. In this work, a series of imidazolium bromides with one carboxylic acid substitute group in their alkyl chain ([{(CH2)nCOOH}mim]Br, n = 1,3,5,7) have been synthesized, and their dissociation constants (pKa) at different ionic strengths have been determined in aqueous and aqueous organic solvents at 0.1 mole fraction (x) of ethanol, glycol, iso-propanol, and dimethyl sulfoxide by potentiometric titrations at 298.2 K. The standard thermodynamic dissociation constants (pKa(T)) of the ILs in these solvents were calculated from the extended Debye-Hückel equation. It was found that the pKa values increased with the increase of ionic strength of the media and of the addition of organic solvent in water. The pKa(T) values also increased with the increase of the alkyl chain length of cations of the ILs. In addition, the effect of solvent nature on pKa(T) values is interpreted from solvation of the dissociation components and their Gibbs energy of transfer from water to aqueous organic solutions.

  5. Structural effect of quaternary ammonium chitin derivatives on their bactericidal activity and specificity.

    PubMed

    Morkaew, Tirut; Pinyakong, Onruthai; Tachaboonyakiat, Wanpen

    2017-08-01

    The effect of the quaternary ammonium chitin structure on the bactericidal activity and specificity against Escherichia coli and Staphylococcus aureus was investigated. Quaternary ammonium chitins were synthesized by the separate acylation of chitin (CT) with carboxymethyl trimethylammonium chloride (CMA), 3-carboxypropyl trimethylammonium chloride (CPA) and N-dodecyl-N,N-(dimethylammonio)butyrate (DDMAB). The successful acylation was confirmed by newly formed ester linkage. All three derivatives had a higher surface charge than chitin due to the additional positively charged quaternary ammonium groups. The N-short alkyl substituent (methyl) of CTCMA and CTCPA increased the hydrophilicity whilst the N-long alkyl substituent (dodecyl) of CTDDMAB increased the hydrophobicity compared to chitin. Chitin did not exhibit any bactericidal activity, while CTCMA and CTCPA completely killed E. coli and S. aureus in 30 and 60min, respectively, and CTDDMAB completely killed S. aureus in 10min but did not kill E. coli after a 2-h exposure. Therefore, the N-short alkyl substituent was more effective for killing E. coli and the N-long alkyl substituent conferred specific bactericidal activity against S. aureus. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Lubricants or lubricant additives composed of ionic liquids containing ammonium cations

    DOEpatents

    Qu, Jun [Knoxville, TN; Truhan, Jr; John, J [Cookeville, TN; Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN; Blau, Peter J [Knoxville, TN

    2010-07-13

    A lubricant or lubricant additive is an ionic liquid alkylammonium salt. The alkylammonium salt has the structure R.sub.xNH.sub.(4-x).sup.+,[F.sub.3C(CF.sub.2).sub.yS(O).sub.2].sub.2N.sup- .- where x is 1 to 3, R is independently C.sub.1 to C.sub.12 straight chain alkyl, branched chain alkyl, cycloalkyl, alkyl substituted cycloalkyl, cycloalkyl substituted alkyl, or, optionally, when x is greater than 1, two R groups comprise a cyclic structure including the nitrogen atom and 4 to 12 carbon atoms, and y is independently 0 to 11. The lubricant is effective for the lubrication of many surfaces including aluminum and ceramics surfaces.

  7. Effects of ammonium-based ionic liquids and 2,4-dichlorophenol on the phospholipid fatty acid composition of zebrafish embryos.

    PubMed

    Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Lukasz; Luckenbach, Till; Heipieper, Hermann J

    2018-01-01

    Ionic liquids consisting of a combination of herbicidal anions with a quaternary ammonium cation act as efficient herbicides, which are under consideration to be used in the agriculture. In the present study, we used embryos of the zebrafish (Danio rerio) as a model to assess the toxic potential of ammonium-based ionic liquids for aquatic organisms. As we assumed interference of the partially hydrophobic ionic liquid cation with lipids, we investigated the adaptation response in the lipid composition of the zebrafish embryos, triggered by the ionic compound. Therefore, the impact of ammonium-based ionic liquids with different lengths of the alkyl chain ([C6,C6,C1,C1N][Br], [C8,C8,C1,C1N][Br]) on the phospholipid fatty acid (PLFA) profile of zebrafish embryos up to 72 hours post fertilization (hpf) was examined. Furthermore, the changes in the unsaturation index (UI) of PLFAs, as the sum parameter of membrane fluidity in eukaryotic cells, were presented. The PLFA's UI in the zebrafish embryos upon exposure to quaternary ammonium salts was compared to the UI of the embryos upon exposure to nonionic 2,4-dichlorophenol, which has a similar hydrophobicity but is structurally different to [C8,C8,C1,C1N][Br]. It was shown that for ammonium-based ionic liquid precursors non-specific mode of action occurs and the toxic effect on lipid composition of zebrafish embryos can be well predicted based on chemical properties, like hydrophobicity. Furthermore, the changes in PLFAs, expressed by the UI, can be useful to study toxic effects of organic contamination. However, for zebrafish embryos, after ionic liquids and 2,4-DCP exposure, the changes were observed at high lethal concentrations, which caused the incidence of lethality of 30 and 50% of a group of test animals.

  8. Effects of ammonium-based ionic liquids and 2,4-dichlorophenol on the phospholipid fatty acid composition of zebrafish embryos

    PubMed Central

    Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Lukasz; Luckenbach, Till

    2018-01-01

    Ionic liquids consisting of a combination of herbicidal anions with a quaternary ammonium cation act as efficient herbicides, which are under consideration to be used in the agriculture. In the present study, we used embryos of the zebrafish (Danio rerio) as a model to assess the toxic potential of ammonium-based ionic liquids for aquatic organisms. As we assumed interference of the partially hydrophobic ionic liquid cation with lipids, we investigated the adaptation response in the lipid composition of the zebrafish embryos, triggered by the ionic compound. Therefore, the impact of ammonium-based ionic liquids with different lengths of the alkyl chain ([C6,C6,C1,C1N][Br], [C8,C8,C1,C1N][Br]) on the phospholipid fatty acid (PLFA) profile of zebrafish embryos up to 72 hours post fertilization (hpf) was examined. Furthermore, the changes in the unsaturation index (UI) of PLFAs, as the sum parameter of membrane fluidity in eukaryotic cells, were presented. The PLFA’s UI in the zebrafish embryos upon exposure to quaternary ammonium salts was compared to the UI of the embryos upon exposure to nonionic 2,4-dichlorophenol, which has a similar hydrophobicity but is structurally different to [C8,C8,C1,C1N][Br]. It was shown that for ammonium-based ionic liquid precursors non-specific mode of action occurs and the toxic effect on lipid composition of zebrafish embryos can be well predicted based on chemical properties, like hydrophobicity. Furthermore, the changes in PLFAs, expressed by the UI, can be useful to study toxic effects of organic contamination. However, for zebrafish embryos, after ionic liquids and 2,4-DCP exposure, the changes were observed at high lethal concentrations, which caused the incidence of lethality of 30 and 50% of a group of test animals. PMID:29342167

  9. Inert Reassessment Document for Alkyl (C8-C24)

    EPA Pesticide Factsheets

    Inert Ingredient Tolerance Reassessments: Two Exemptions from theRequirement of a Tolerance for Alkyl (C8-C24) Benzenesulfonic Acid and its Ammonium, Calcium, Magnesium, Potassium, Sodium, and Zinc Salts

  10. TREATMENT OF AMMONIUM NITRATE SOLUTIONS

    DOEpatents

    Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.

    1958-06-10

    The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.

  11. Ether bond effects in quaternary ammonium and phosphonium ionic liquid-propanol solutions

    NASA Astrophysics Data System (ADS)

    Kishimura, Hiroaki; Kohki, Erica; Nakada, Ayumu; Tamatani, Kentaro; Abe, Hiroshi

    2018-03-01

    The liquid-liquid equilibria (LLE) of quaternary ammonium and phosphonium ionic liquid (IL)-propanol solutions were examined. The ILs contained cations with or without ether bonds; the anion in all the ILs was bis(trifluoromethanesulfonyl)imide (TFSI-). The cations without ether groups are tributylmethyl ammonium (N4441+), triethylpentyl phosphonium (P2225+), triethyloctyl phosphonium (P2228+), and tributylmethyl phosphonium (P4441+). The cations containing ether groups are N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium, (N122(2O1)+), triethyl(methoxymethyl) phosphonium (P222(1O1)+), and triethyl(2-methoxyethyl) phosphonium, (P222(2O1)+). Propanol isomer effect was observed to affect the LLEs, reflecting the geometrical factors and hydrophobicities of 1-propanol and 2-propanol. According to Raman spectroscopy, the TFSI- anion conformers in the mixtures were altered in the presence of ether bonds in the cations. The universal quasichemical (UNIQUAC) interaction parameters are consistent with significant factors affecting IL-propanol solutions, such as the type of cation (ammonium or phosphonium), ether bonds, TFSI- conformers, and propanol isomer effects.

  12. High-capacity cation-exchange column for enhanced resolution of adjacent peaks of cations in ion chromatography.

    PubMed

    Rey, M A

    2001-06-22

    One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.

  13. Phosphonium-Organophosphate Ionic Liquids as Lubricant Additives: Effects of Cation Structure on Physicochemical and Tribological Characteristics

    DOE PAGES

    Barnhill, William C.; Qu, Jun; Luo, Huimin; ...

    2014-11-17

    In our previous work we suggest great potential for a phosphonium-organophosphate ionic liquid (IL) as an antiwear lubricant additive. In this study, a set of five ILs were carefully designed and synthesized, with identical organophosphate anions but dissimilar phosphonium cations, to allow systematic investigation of the effects of cation alkyl chain length and symmetry on physicochemical and tribological properties. Symmetric cations with shorter alkyl chains seem to increase the density and thermal stability due to closer packing. On the other hand, either higher cation symmetry or longer alkyl moieties induce a higher viscosity, though the viscosity index is dependent moremore » on molecular mass than on symmetry. While a larger cation size generally increases an IL’s solubility in nonpolar hydrocarbon oils, six-carbon seems to be the critical minimum alkyl chain length for high oil miscibility. Both the two ILs, that are mutually oil miscible, have demonstrated promising lubricating performance at 1.04% treat rate, though the symmetric-cation IL moderately outperformed the asymmetric-cation IL. Moreover, characterizations on the tribofilm formed by the best-performing symmetric-cation IL revealed the film thickness, nanostructure, and chemical composition. Our results provide fundamental insights for future molecular design in developing oil-soluble ILs as lubricant additives.« less

  14. Role of sucrose in the heterogeneous uptake of dimethylamine by ammonium sulfate aerosol particles

    NASA Astrophysics Data System (ADS)

    Chu, Y.; Chan, C. K.

    2016-12-01

    Alkyl amines are important alkaline gases besides ammonia in the atmosphere and widely detected in both gas and particle phases. Heterogeneous uptake by pre-existing particles containing acids as well as ammonium salts is one of the major pathways of alkyl amines partitioning into aerosols. Recently, phase state of ammonium salt particles has been revealed to largely affect the degree of alkyl amines uptake. Using an electrodynamic balance coupled with Raman spectroscopy, we extend the study by investigating the alkyl amine uptake by ammonium sulfate (AS) - sucrose mixed particles, since ambient aerosols usually consist of a mixed phase of organics and inorganics. Sucrose is a surrogate of hydrophilic viscous organics that can alter the phase of AS at low relative humidity (RH) and dimethylamine (DMA) is selected for its abundance amongst alkyl amine compounds. DMA uptake occurred effectively at not only 70% RH but also RH as low as 10%, significantly below the AS crystallization point. The net uptake coefficient decreased as RH decreased for fixed initial AS - sucrose particle compositions. Interestingly, it followed a first increasing then decreasing trend as sucrose molar fraction increased from 0 to 0.5, at RH below 30%. Sucrose, albeit inert to DMA vapor, indirectly affected the interaction between DMA and AS - sucrose particles. On one hand, it absorbed water at low RH and delayed the efflorescence of AS to promote DMA uptake. On the other hand, the particle became more viscous with higher sucrose concentration and exhibited an effective mass transport barrier. Hence, the uptake of alkyl amines may occur slowly once ammonium salts are mixed with viscous organics, such as those secondary organic materials formed via the oxidation of biogenic volatile organic compounds, in the particle phase. Acknowledgment This work is supported by Research Grants Council (RGC) of Hong Kong Special Administrative Region, China (GRF 16300214). The grant from Hong Kong RGC Ph

  15. Mesophase stabilization in ionic liquid crystals through pairing equally shaped mesogenic cations and anions

    DOE PAGES

    Stappert, Kathrin; Lipinski, Gregor; Kopiec, Gabriel; ...

    2015-07-23

    The synthesis and properties of a set of novel ionic liquid crystals with congruently shaped cations and anions are reported to check whether pairing mesogenic cations with mesogenic anions leads to a stabilization of a liquid crystalline phase. To that avail 1-alkyl-3-methyl-triazolium cations with an alkyl chain length of 10, 12, and 14 carbon atoms have been combined with p-alkyloxy-benzenesulfonate anions with different alkyl chain lengths (n = 10, 12, and 14). The corresponding triazolium iodides have been synthesized as reference compounds where the cation and anion have strong size and shape mismatch. The mesomorphic behavior of all compounds ismore » studied by differential scanning calorimetry and polarizing optical microscopy. All compounds except 1-methyl-3-decyltriazolium iodide, which qualifies as an ionic liquid, are thermotropic ionic liquid crystals. All other compounds adopt smectic A phases. As a result, a comparison of the thermal phase behavior of the 1-methyl-3-decyltriazolium bromides to the corresponding p-alkoxy-benzensulfonates reveals that definitely the mesophase is stabilized by pairing the rod-shaped 1-alkyl-3-methyltriazolium cation with a rod-like anion of similar size.« less

  16. Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on kaolinite

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Min, Fan-fei; Liu, Lingyun; Liu, Chunfu; Lu, Fangqin

    2017-10-01

    The adsorption of four different amine/ammonium salts of DDA (Dodecyl amine), MDA (N-methyldodecyl amine), DMDA (N,N-dimethyldodecyl amine) and DTAC (Dodecyl trimethyl ammonium chloride) on kaolinite particles was investigated in the study through the measurement of contact angles, zeta potentials, aggregation observation, adsorption and sedimentation. The results show that different amine/ammonium salts can adsorb on the kaolinite surface to enhance the hydrophobicity and reduce the electronegativity of kaolinite particle surface, and thus induce a strong hydrophobic aggregation of kaolinite particles which promotes the settlement of kaolinite. To explore the adsorption mechanism of these four amine/ammonium salts on kaolinite surfaces, the adsorptions of DDA+, MDA+, DMDA+ and DTAC+ on kaolinite (001) surface and (00 1 bar) surface are calculated with DFT (Density functional theory). The DFT calculation results indicate that different amine/ammonium cations can strongly adsorbed on kaolinite (001) surface and (00 1 bar) surface by forming Nsbnd H⋯O strong hydrogen bonds or Csbnd H⋯O weak hydrogen bonds, and there are strongly electrostatic attractions between different amine/ammonium cations and kaolinite surfaces. The main adsorption mechanism of amine/ammonium cations on kaolinite is hydrogen-bond interaction and electrostatic attraction.

  17. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    NASA Astrophysics Data System (ADS)

    Yudovin-Farber, Ira; Beyth, Nurit; Weiss, Ervin I.; Domb, Abraham J.

    2010-02-01

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  18. Aquatic toxicity and biodegradability of advanced cationic surfactant APA-22 compatible with the aquatic environment.

    PubMed

    Yamane, Masayuki; Toyo, Takamasa; Inoue, Katsuhisa; Sakai, Takaya; Kaneko, Youhei; Nishiyama, Naohiro

    2008-01-01

    Cationic surfactant is a chemical substance used in hair conditioner, fabric softener and other household products. By investigating the relationship between the aquatic toxicity and the chemical structures of two types of mono alkyl cationic surfactants, alkyl trimethylammonium salts and alkyl dimethylamine salts, we have found that the C22 alkyl chain length is effective to reduce the toxicity. Besides, we have recognized that the amidopropyl functional group contributes to the enhanced biodegradability by investigating the biodegradation trend of (alkylamidopropyl)dimethylamine salt (alkyl chain length: C18). Based on these findings, we have developed mono alkyl cationic surfactant called APA-22, N-[3-(dimethylamino)propyl]docosanamide salt. APA-22 is formed by the C22 alkyl chain, amidopropyl functional group and di-methyltertiary amine group. We evaluated the aerobic and anaerobic biodegradability of APA-22 by two standard methods (OECD Test Guideline 301B and ECETOC technical document No.28) and found that this substance was degraded rapidly in both conditions. The toxicity to algae, invertebrate and fish of this substance are evaluated by using OECD Test Guideline 201, 202 and 203, respectively. All acute toxicity values are >1 mg/L, which indicates that environmental toxicity of this substance is relatively less toxic to aquatic organism. In addition, we estimated the biodegradation pathway of APA-22 and observed the complete disappearance of APA-22 and its intermediates during the test periods. Based on the environmental data provided above, we concluded that APA22 is more compatible with the aquatic environment compared to other cationic surfactants with mono long alkyl chain.

  19. Effect of alkyl chain length on the rotational diffusion of nonpolar and ionic solutes in 1-alkyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imides.

    PubMed

    Gangamallaiah, V; Dutt, G B

    2013-10-10

    Rotational diffusion of a nonpolar solute 9-phenylanthracene (9-PA) and a cationic solute rhodamine 110 (R110) has been examined in a series of 1-alkyl-3-methylimidazolium (alkyl = octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl) bis(trifluoromethylsulfonyl)imides to understand the influence of alkyl chain length on solute rotation. In this study, reorientation times (τr) have been measured as a function of viscosity (η) by varying the temperature (T) of the solvents. These results have been analyzed using the Stokes-Einstein-Debye (SED) hydrodynamic theory along with the ones obtained for the same solutes in 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides (Gangamallaiah and Dutt, J. Phys. Chem. B 2012, 116, 12819-12825). It has been noticed that the data for 9-PA and R110 follows the relation τr = A(η/T)(n) with A being the ratio of hydrodynamic volume of the solute to the Boltzmann constant and n = 1 as envisaged by the SED theory. However, upon increasing the alkyl chain length from methyl to octadecyl significant deviations from the SED theory have been observed especially from the octyl derivative onward. From methyl to octadecyl derivatives, the value of A decreases by a factor of 3 for both the solutes and n by a factor of 1.4 and 1.6 for 9-PA and R110, respectively. These observations have been rationalized by taking into consideration the organized structure of the ionic liquids, whose influence appears to be pronounced when the number of carbon atoms in the alkyl chain attached to the imidazolium cation exceeds eight.

  20. Preparation of immunoglobulin Y from egg yolk using ammonium sulfate precipitation and ion exchange chromatography.

    PubMed

    Ko, K Y; Ahn, D U

    2007-02-01

    The objective of this study was to develop an economical, simple, and large-scale separation method for IgY from egg yolk. Egg yolk diluted with 9 volumes of cold water was centrifuged after adjusting the pH to 5.0. The supernatant was added with 0.01% charcoal or 0.01% carrageenan and centrifuged at 2,800 x g for 30 min. The supernatant was filtered through a Whatman no. 1 filter paper and then the filtrate was concentrated to 20% original volume using ultrafiltration. The concentrated solution was further purified using either cation exchange chromatography or ammonium sulfate precipitation. For the cation exchange chromatography method, the concentrated sample was loaded onto a column equilibrated with 20 mM citrate-phosphate buffer at pH 4.8 and eluted with 200 mM citrate-phosphate buffer at pH 6.4. For the ammonium sulfate precipitation method, the concentrated sample was twice precipitated with 40% ammonium sulfate solution at pH 9.0. The yield and purity of IgY were determined by ELISA and electrophoresis. The yield of IgY from the cation exchange chromatography method was 30 to 40%, whereas that of the ammonium sulfate precipitation was 70 to 80%. The purity of IgY from the ammonium sulfate method was higher than that of the cation exchange chromatography. The cation exchange chromatography could handle only a small amount of samples, whereas the ammonium sulfate precipitation could handle a large volume of samples. This suggests that ammonium sulfate precipitation was a more efficient and useful purification method than cation exchange chromatography for the large-scale preparation of IgY from egg yolk.

  1. Theoretical studies of alkyl radicals in the NaY and HY zeolites.

    PubMed

    Ghandi, Khashayar; Zahariev, Federico E; Wang, Yan Alexander

    2005-08-18

    Interplay of quantum mechanical calculations and experimental data on hyperfine coupling constants of ethyl radical in zeolites at several temperatures was engaged to study the geometries and binding energies and to predict the temperature dependence of hyperfine splitting of a series of alkyl radicals in zeolites for the first time. The main focus is on the hyperfine interaction of alkyl radicals in the NaY and HY zeolites. The hyperfine splitting for neutral free radicals and free radical cations is predicted for different zeolite environments. This information can be used to establish the nature of the muoniated alkyl radicals in the NaY and HY zeolites via muSR experiments. The muon hyperfine coupling constants of the ethane radical cation in these zeolites are very large with relatively little dependence on temperature. It was found that the intramolecular dynamics of alkyl free radicals are only weakly affected by their strong binding to zeolites. In contrast, the substrate binding has a significant effect on their intermolecular dynamics.

  2. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system.

    PubMed

    Vidyadhar, A; Hanumantha Rao, K

    2007-02-15

    The adsorption mechanism of mixed cationic alkyl diamine and anionic sulfonate/oleate collectors at acidic pH values was investigated on microcline and quartz minerals through Hallimond flotation, electrokinetic and diffuse reflectance FTIR studies. In the presence of anionic collectors, neither of the minerals responded to flotation but the diamine flotation of the minerals was observed to be pH and concentration dependent. The presence of sulfonate enhanced the diamine flotation of the minerals by its co-adsorption. The difference in surface charge between the minerals at pH 2 was found to be the basis for preferential feldspar flotation from quartz in mixed diamine/sulfonate collectors. The infrared spectra revealed no adsorption of sulfonate collector when used alone but displayed its co-adsorption as diamine-sulfonate complex when used with diamine. The presence of sulfonate increased the diamine adsorption due to a decrease in the electrostatic head-head repulsion between the adjacent surface ammonium ions and thereby increasing the lateral tail-tail hydrophobic bonds. The mole ratio of diamine/sulfonate was found to be an important factor in the orientation of alkyl chains and thus the flotation response of minerals. The increase in sulfonate concentration beyond diamine concentration leads to the formation of soluble 1:2 diamine-sulfonate complex or precipitate and the adsorption of these species decreased the flotation since the alkyl chains are in chaotical orientation with a conceivable number of head groups directing towards the solution phase.

  3. Infrared Spectroscopic Investigation on CH Bond Acidity in Cationic Alkanes

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka

    2016-06-01

    We have demonstrated large enhancements of CH bond acidities in alcohol, ether, and amine cations through infrared predissociation spectroscopy based on the vacuum ultraviolet photoionization detection. In this study, we investigate for the cationic alkanes (pentane, hexane, and heptane) with different alkyl chain lengths. The σ electrons are ejected in the ionization of alkanes, while nonbonding electrons are ejected in ionization of alcohols, ethers, and amines. Nevertheless, the acidity enhancements of CH in these cationic alkanes have also been demonstrated by infrared spectroscopy. The correlations of their CH bond acidities with the alkyl chain lengths as well as the mechanisms of their acidity enhancements will be discussed by comparison of infrared spectra and theoretical calculations.

  4. Determination of ammonium in a buddingtonite sample by ion-chromatography

    USGS Publications Warehouse

    Klock, P.R.; Lamothe, P.J.

    1986-01-01

    An ion-chromatographic method for the direct determination of ammonium, potassium, and sodium in geologic materials is described. Samples are decomposed with a mixture of hydrofluoric and hydrochloric acids in a sealed polycarbonate bottle heated in a microwave oven. The ion-chromatograph separates the cations and determines them by conductivity measurement. The ammonium concentrations thus determined have been verified by use of an ammonia-specific electrode. A total of 32 analyses of ammonium salts by both techniques showed an average error of -4%, with a relative standard deviation (RSD) of 6%. The ammonium concentrations found in a buddingtonite sample had an RSD of 2.2% and their mean agreed with that obtained by the Kjeldahl method. By use of the prescribed dilution of the sample, detection limits of 0.1% can be achieved for all three cations. ?? 1986.

  5. Highly Stable, Anion Conductive, Comb-Shaped Copolymers for Alkaline Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, NW; Leng, YJ; Hickner, MA

    2013-07-10

    To produce an anion-conductive and durable polymer electrolyte for alkaline fuel cell applications, a series of quaternized poly(2,6-dimethyl phenylene oxide)s containing long alkyl side chains pendant to the nitrogen-centered cation were synthesized using a Menshutkin reaction to form comb-shaped structures. The pendant alkyl chains were responsible for the development of highly conductive ionic domains, as confirmed by small-angle X-ray scattering (SAXS). The comb-shaped polymers having one alkyl side chain showed higher hydroxide conductivities than those with benzyltrimethyl ammonium moieties or structures with more than one alkyl side chain per cationic site. The highest conductivity was observed for comb-shaped polymers withmore » benzyldimethylhexadecyl ammonium cations. The chemical stabilities of the comb-shaped membranes were evaluated under severe, accelerated-aging conditions, and degradation was observed by measuring IEC and ion conductivity changes during aging. The comb-shaped membranes retained their high ion conductivity in 1 M NaOH at 80 degrees C for 2000 h. These cationic polymers were employed as ionomers in catalyst layers for alkaline fuel cells. The results indicated that the C-16 alkyl side chain ionomer had a slightly better initial performance, despite its low IEC value, but very poor durability in the fuel cell. In contrast, 90% of the initial performance was retained for the alkaline fuel cell with electrodes containing the C-6 side chain after 60 h of fuel cell operation.« less

  6. A theoretical study of complexes formed between cations and curved aromatic systems: electrostatics does not always control cation-π interaction.

    PubMed

    Carrazana-García, Jorge A; Cabaleiro-Lago, Enrique M; Rodríguez-Otero, Jesús

    2017-04-19

    The present work studies the interaction of two extended curved π-systems (corannulene and sumanene) with various cations (sodium, potassium, ammonium, tetramethylammonium, guanidinium and imidazolium). Polyatomic cations are models of groups found in important biomolecules in which cation-π interaction plays a fundamental role. The results indicate an important size effect: with extended π systems and cations of the size of potassium and larger, dispersion is much more important than has been generally recognized for cation-π interactions. In most of the systems studied here, the stability of the cation-π complexes is the result of a balanced combination of electrostatic, induction and dispersion contributions. None of the systems studied here owes its stability to the electrostatic interaction more than 42%. Induction dominates stabilization in complexes with sodium, and in some of the potassium and ammonium complexes. In complexes with large cations and with flat cations dispersion is the major stabilizing contribution and can provide more than 50% of the stabilization energy. This implies that theoretical studies of the cation-π interaction involving large or even medium-size fragments require a level of calculation capable of properly modelling dispersion. The separation between the cation and the π system is another important factor to take into account, especially when the fragments of the cation-π complex are bound (for example, to a protein backbone) and cannot interact at the most favourable distance.

  7. Retardation of ammonium and potassium transport through a contaminated sand and gravel aquifer: The Role of cation exchange

    USGS Publications Warehouse

    Ceazan, M.L.; Thurman, E.M.; Smith, R.L.

    1989-01-01

    The role of cation exchange in the retardation of ammonium (NH4+) and potassium (K+) transport in a shallow sand and gravel aquifer was evaluated by use of observed distributions of NH4+ and K+ within a plume of sewage-contaminated groundwater, small-scale tracer injection tests, and batch sorption experiments on aquifer material. Both NH4+ and K+ were transported ???2 km in the 4-km-long contaminant plume (retardation factor, Rf = 2.0). Sediments from the NH4+-containing zone of the plume contained significant quantities of KCl-extractable NH4+ (extraction distribution coefficient, Kd,extr = 0.59-0.87 mL/g of dry sediment), and when added to uncontaminated sediments, NH4+ sorption followed a linear isotherm. Small-scale tracer tests demonstrated that NH4+ and K+ were retarded (Rf =3.5) relative to a nonreactive tracer (Br-). Sorption of dissolved NH4+ was accompanied by concomitant release of calcium (Ca2+), magnesium (Mg2+), and sodium (Na+) from aquifer sediments, suggesting involvement of cation exchange. In contrast, nitrate (NO3-) was not retarded and cleanly separated from NH4+ and K+ in the small-scale tracer tests. This study demonstrates that transport of NH4+ and K+ through a sand and gravel aquifer can be markedly affected by cation-exchange processes even at a clay content less than 0.1%.

  8. Efficacy of alkyl dimethyl benzyl ammonium chloride on suppression of Physalospora vaccinii in laboratory assays.

    PubMed

    Tubajika, K M

    2006-10-01

    Growth of Physalospora vaccinii on inoculated agar growth medium and cranberries treated with 0.1, 1, 10, 100, and 1,000 ppm of alkyl dimethyl benzyl ammonium chloride (ADBAC) was investigated in the laboratory. In vitro growth assays, the colony diameter, and mycelial dry weight of P. vaccinii was reduced at 1,000 ppm ADBAC. Mild or no reduction of fungal growth and mycelial dry weight was observed at concentrations less than 100 ppm when compared with the nonamended control. Growth of P. vaccinii on inoculated cranberries was inhibited by treatment with 10 and 100 ppm ADBAC. Complete inhibition of fungus growth was also achieved at 1,000 ppm ADBAC. Area under the disease progress curve values in wounded fruits were 75, 77, and 100% at 10, 100, and 1,000 ppm ADBAC, respectively, whereas area under the disease progress curve values in fruits immersed in ADBAC and pathogen were reduced 47 to 100% compared with the untreated fruits used as controls. No P. vaccinii or other fungi were detected on the control fruits inoculated with sterile distilled water. This is the first report on the use of ADBAC to control a field and storage rotting fungus, P. vaccinii. ADBAC is likely to be an important component to any integrated approach for reducing the risks associated with the presence of pathogenic microorganisms in or on foods.

  9. Final report on the safety assessment of sodium cetearyl sulfate and related alkyl sulfates as used in cosmetics.

    PubMed

    Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-05-01

    Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.

  10. Ab initio molecular dynamic study of solid-state transitions of ammonium nitrate

    PubMed Central

    Yu, Hongyu; Duan, Defang; Liu, Hanyu; Yang, Ting; Tian, Fubo; Bao, Kuo; Li, Da; Zhao, Zhonglong; Liu, Bingbing; Cui, Tian

    2016-01-01

    High-pressure polymorphism and phase transitions have wide ranging consequences on the basic properties of ammonium nitrate. However, the phase diagram of ammonium nitrate at high pressure and high temperature is still under debate. This study systematically investigates the phase transitions and structural properties of ammonium nitrate at a pressure range of 5–60 GPa and temperature range of 250–400 K by ab initio molecular dynamics simulations. Two new phases are identified: one corresponds to the experimentally observed phase IV’ and the other is named AN-X. Simultaneously, the lattice strains play a significant role in the formation and stabilization of phase IV’, providing a reasonable explanation for experimental observation of phase IV-IV’ transition which only appears under nonhydrostatic pressure. In addition, 12 O atoms neighboring the NH (N atom in ammonium cation) atom are selected as reference system to clearly display the tanglesome rotation of ammonium cation. PMID:26754622

  11. Epitope mapping of imidazolium cations in ionic liquid-protein interactions unveils the balance between hydrophobicity and electrostatics towards protein destabilisation.

    PubMed

    Silva, Micael; Figueiredo, Angelo Miguel; Cabrita, Eurico J

    2014-11-14

    We investigated imidazolium-based ionic liquid (IL) interactions with human serum albumin (HSA) to discern the level of cation interactions towards protein stability. STD-NMR spectroscopy was used to observe the imidazolium IL protons involved in direct binding and to identify the interactions responsible for changes in Tm as accessed by differential scanning calorimetry (DSC). Cations influence protein stability less than anions but still significantly. It was found that longer alkyl side chains of imidazolium-based ILs (more hydrophobic) are associated with a higher destabilisation effect on HSA than short-alkyl groups (less hydrophobic). The reason for such destabilisation lies on the increased surface contact area of the cation with the protein, particularly on the hydrophobic contacts promoted by the terminus of the alkyl chain. The relevance of the hydrophobic contacts is clearly demonstrated by the introduction of a polar moiety in the alkyl chain: a methoxy or alcohol group. Such structural modification reduces the degree of hydrophobic contacts with HSA explaining the lesser extent of protein destabilisation when compared to longer alkyl side chain groups: above [C2mim](+). Competition STD-NMR experiments using [C2mim](+), [C4mim](+) and [C2OHmim](+) also validate the importance of the hydrophobic interactions. The combined effect of cation and anion interactions was explored using (35)Cl NMR. Such experiments show that the nature of the cation has no influence on the anion-protein contacts, still the nature of the anion modulates the cation-protein interaction. Herein we propose that more destabilising anions are likely to be a result of a partial contribution from the cation as a direct consequence of the different levels of interaction (cation-anion pair and cation-protein).

  12. From Broad-Spectrum Biocides to Quorum Sensing Disruptors and Mussel Repellents: Antifouling Profile of Alkyl Triphenylphosphonium Salts

    PubMed Central

    Martín-Rodríguez, Alberto J.; Babarro, Jose M. F.; Lahoz, Fernando; Sansón, Marta; Martín, Víctor S.; Norte, Manuel; Fernández, José J.

    2015-01-01

    ‘Onium’ compounds, including ammonium and phosphonium salts, have been employed as antiseptics and disinfectants. These cationic biocides have been incorporated into multiple materials, principally to avoid bacterial attachment. In this work, we selected 20 alkyl-triphenylphosphonium salts, differing mainly in the length and functionalization of their alkyl chains, in fulfilment of two main objectives: 1) to provide a comprehensive evaluation of the antifouling profile of these molecules with relevant marine fouling organisms; and 2) to shed new light on their potential applications, beyond their classic use as broad-spectrum biocides. In this regard, we demonstrate for the first time that these compounds are also able to act as non-toxic quorum sensing disruptors in two different bacterial models (Chromobacterium violaceum and Vibrio harveyi) as well as repellents in the mussel Mytilus galloprovincialis. In addition, their inhibitory activity on a fouling-relevant enzymatic model (tyrosinase) is characterized. An analysis of the structure-activity relationships of these compounds for antifouling purposes is provided, which may result useful in the design of targeted antifouling solutions with these molecules. Altogether, the findings reported herein provide a different perspective on the biological activities of phosphonium compounds that is particularly focused on, but, as the reader will realize, is not limited to their use as antifouling agents. PMID:25897858

  13. Intramolecular, Exciplex-Mediated, Proton-Coupled, Charge-Transfer Processes in N,N-Dimethyl-3-(1-pyrenyl)propan-1-ammonium Cations: Influence of Anion, Solvent Polarity, and Temperature.

    PubMed

    Safko, Trevor M; Faleiros, Marcelo M; Atvars, Teresa D Z; Weiss, Richard G

    2016-06-16

    An intramolecular exciplex-mediated, proton-coupled, charge-transfer (PCCT) process has been investigated for a series of N,N-dimethyl-3-(1-pyrenyl)propan-1-ammonium cations with different anions (PyS) in solvents of low to intermediate polarity over a wide temperature range. Solvent mediates both the equilibrium between conformations of the cation that place the pyrenyl and ammonium groups in proximity (conformation C) or far from each other (conformation O) and the ability of the ammonium group to transfer a proton adiabatically in the PyS excited singlet state. Thus, exciplex emission, concurrent with the PCCT process, was observed only in hydrogen-bond accepting solvents of relatively low polarity (tetrahydrofuran, ethyl acetate, and 1,4-dioxane) and not in dichloromethane. From the exciplex emission and other spectroscopic and thermodynamic data, the acidity of the ammonium group in conformation C of the excited singlet state of PyS (pKa*) has been estimated to be ca. -3.4 in tetrahydrofuran. The ratios between the intensities of emission from the exciplex and the locally excited state (IEx/ILE) appear to be much more dependent on the nature of the anion than are the rates of exciplex formation and decay, although the excited state data do not provide a quantitative measure of the anion effect on the C-O equilibrium. The activation energies associated with exciplex formation in THF are calculated to be 0.08 to 0.15 eV lower than for the neutral amine, N,N-dimethyl-3-(1-pyrenyl)propan-1-amine. Decay of the exciplexes formed from the deprotonation of PyS is hypothesized to occur through charge-recombination processes. To our knowledge, this is the first example in which photoacidity and intramolecular exciplex formation (i.e., a PCCT reaction) are coupled.

  14. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    DOEpatents

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  15. Flocculation and antimicrobial properties of a cationized starch.

    PubMed

    Liu, Zhouzhou; Huang, Mu; Li, Aimin; Yang, Hu

    2017-08-01

    In this study, a series of cationized starch-based flocculants (starch-3-chloro-2-hydroxypropyl triethyl ammonium chloride, St-CTA) containing various quaternary ammonium salt groups on the starch backbone were prepared using a simple etherification reaction. All of the prepared starch-based flocculants show effective performance for the flocculation of kaolin suspension, two bacterial (Escherichia coli and Staphylococcus aureus) suspensions, and two contaminant mixtures (kaolin and each bacterium) under most pH conditions. St-CTA with a high substitution degree of CTA demonstrates improved contaminant removal efficiency because of the strong cationic nature of the grafted quaternary ammonium salt groups and the charge naturalization flocculation effect. The antibacterial effects of St-CTA were also evaluated, considering that many quaternary ammonium salt compounds elicit bactericidal effects. Three-dimensional excitation-emission matrix spectra and direct cell morphological observation under scanning electron microscopy reveal that the starch-based flocculants exhibit better antibacterial effects on the Gram-negative bacterium E. coli than on the Gram-positive bacterium S. aureus. The thicker cell wall due to the presence of abundant peptidoglycan and teichoic acids of S. aureus than E. coli explains the uneasy breakage of S. aureus cell wall after being attacked by the cationized starch-based flocculants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Influence of temperature and molecular structure on ionic liquid solvation layers.

    PubMed

    Wakeham, Deborah; Hayes, Robert; Warr, Gregory G; Atkin, Rob

    2009-04-30

    Atomic force microscopy (AFM) force profiling is used to investigate the structure of adsorbed and solvation layers formed on a mica surface by various room temperature ionic liquids (ILs) ethylammonium nitrate (EAN), ethanolammonium nitrate (EtAN), ethylammonium formate (EAF), propylammonium formate (PAF), ethylmethylammonium formate (EMAF), and dimethylethylammonium formate (DMEAF). At least seven layers are observed for EAN at 14 degrees C (melting point 13 degrees C), decreasing as the temperature is increased to 30 degrees C due to thermal energy disrupting solvophobic forces that lead to segregation of cation alkyl tails from the charged ammonium and nitrate moieties. The number and properties of the solvation layers can also be controlled by introducing an alcohol moiety to the cation's alkyl tail (EtAN), or by replacing the nitrate anion with formate (EAF and PAF), even leading to the detection of distinct cation and anion sublayers. Substitution of primary by secondary or tertiary ammonium cations reduces the number of solvation layers formed, and also weakens the cation layer adsorbed onto mica. The observed solvation and adsorbed layer structures are discussed in terms of the intermolecular cohesive forces within the ILs.

  17. Effects of low dietary cation-anion difference induced by ruminal ammonium chloride infusion on performance, serum, and urine metabolites of lactating dairy cows.

    PubMed

    Wang, Kun; Nan, Xuemei; Zhao, Puyi; Liu, Wei; Drackley, James K; Liu, Shijie; Zhang, Kaizhan; Bu, Dengpan

    2018-05-01

    The objective of the present study was to determine ammonium chloride tolerance of lactating dairy cows, by examining effects of negative dietary cation anion difference (DCAD) induced by ruminal ammonium chloride infusion on performance, serum and urine minerals, serum metabolites and enzymes of lactating dairy cows. Four primiparous lactating Chinese Holstein cows fitted with ruminal cannulas were infused with increasing amounts (0, 150, 300, or 450 g/d) of ammonium chloride in a crossover design. The DCAD of the base diet was 279 mEq/kg dry matter (DM) using the DCAD formula (Na + K - Cl - S)/kg of DM. Ammonium chloride infusion added the equivalent of 0, 128, 330, and 536 mEq/kg DM of Cl in treatments. According to the different dry matter intakes (DMI), the resulting actual DCAD of the four treatments was 279, 151, -51, and -257 mEq/kg DM, respectively. DMI decreased linearly as DCAD decreased. Yields of milk, 4% fat-corrected milk, energy-corrected milk, milk fat, and milk protein decreased linearly as DCAD decreased. Concentrations of milk protein and milk urea nitrogen increased linearly with decreasing DCAD. Concentration of Cl- in serum increased linearly and concentration of PO43- in serum increased quadratically as DCAD decreased. Urine pH decreased linearly and calculated urine volume increased linearly with decreasing DCAD. Linear increases in daily urinary excretion of Cl - , Ca 2+ , PO 4 3- , urea N, and ammonium were observed as DCAD decreased. Activities of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transferase in serum and urea N concentration in serum increased linearly as DCAD decreased. In conclusion, negative DCAD induced by ruminal ammonium chloride infusion resulted in a metabolic acidosis, had a negative influence on performance, and increased serum enzymes indicating potential liver and kidney damage in lactating dairy cows. Daily ammonium chloride intake by lactating dairy cows should not exceed 300 g, and 150

  18. Membrane-destabilizing activity of pH-responsive cationic lysine-based surfactants: role of charge position and alkyl chain length.

    PubMed

    Nogueira, Daniele Rubert; Mitjans, Montserrat; Morán, M Carmen; Pérez, Lourdes; Vinardell, M Pilar

    2012-09-01

    Many strategies for treating diseases require the delivery of drugs into the cell cytoplasm following internalization within endosomal vesicles. Thus, compounds triggered by low pH to disrupt membranes and release endosomal contents into the cytosol are of particular interest. Here, we report novel cationic lysine-based surfactants (hydrochloride salts of N(ε)- and N(α)-acyl lysine methyl ester) that differ in the position of the positive charge and the length of the alkyl chain. Amino acid-based surfactants could be promising novel biomaterials in drug delivery systems, given their biocompatible properties and low cytotoxic potential. We examined their ability to disrupt the cell membrane in a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model of endosomal membranes. Furthermore, we addressed the mechanism of surfactant-mediated membrane destabilization, including the effects of each surfactant on erythrocyte morphology as a function of pH. We found that only surfactants with the positive charge on the α-amino group of lysine showed pH-sensitive hemolytic activity and improved kinetics within the endosomal pH range, indicating that the positive charge position is critical for pH-responsive behavior. Moreover, our results showed that an increase in the alkyl chain length from 14 to 16 carbon atoms was associated with a lower ability to disrupt cell membranes. Knowledge on modulating surfactant-lipid bilayer interactions may help us to develop more efficient biocompatible amino acid-based drug delivery devices.

  19. Assessment and analysis of aged refuse as ammonium-removal media for the treatment of landfill leachate.

    PubMed

    He, Yan; Li, Dan; Zhao, Youcai; Huang, Minsheng; Zhou, Gongming

    2017-11-01

    This is the first attempt to explore the sustainability of aged refuse as ammonium-removal media. Batch experiments combined with the aged-refuse-based reactor were performed to examine how the adsorption and desorption processes are involved in the ammonia removal via aged refuse media in this research. The results showed that the adsorption of ammonium by aged refuse occurred instantly and the adsorbed ammonium was stable and less exchangeable. The adsorption data fit the Freundlich isotherms well and the n value of 0.1-0.5 indicated that the adsorption of ammonium occurred easily. The maximum adsorbed ammonium occupied less than 10% of the cation exchange capacity in aged-refuse-based reactors owing to the high solid/liquid ratios (50:1-120:1). The synergistic transformations of ammonium within the aged-refuse-based reactor indicated that the cation exchange sites only provide temporary storage of ammonium, and the subsequent nitrification process can be considered the predominant restoration pathway of ammonium adsorption capacity of the reactor. It seems reasonable to assume that there is no expiry for the aged-refuse-based reactor in terms of ammonium removal owing to its bioregeneration via nitrification.

  20. Kinetic and thermodynamic studies on the adsorption of anionic surfactant on quaternary ammonium cationic cellulose.

    PubMed

    Zhang, Yuanzhang; Shi, Wenjian; Zhou, Hualan; Fu, Xing; Chen, Xuan

    2010-06-01

    Removal of anionic surfactants from aqueous solutions by adsorption onto quaternary ammonium cationic cellulose (QACC) was investigated. The effects of solution acidity, initial concentration, adsorption time, and temperature on the adsorption of sodium dodecyl-benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS) were studied. The kinetic experimental data fit well with the pseudo-second-order model; the rate constant of the adsorption increased with temperature. The values of apparent activation energy for the adsorption were calculated as ranging from 10.2 to 17.4 kJ/ mol. The adsorption isotherm can be described by the Langmuir isotherm. The values of thermodynamic parameters (deltaH0, deltaS0, and deltaG0) for the adsorption indicated that this process was spontaneous and endothermic. At 318 K, the saturated adsorption capacities of QACC for SDBS, SLS, and SDS were 1.75, 1.53, and 1.39 mmol/g, respectively. The adsorption process was mainly chemisorption and partially physisorption. The results show that QACC is effective for the removal of anionic surfactants.

  1. USDA research enables total quat release from cotton nonwoven disinfecting wipes

    USDA-ARS?s Scientific Manuscript database

    The adsorption of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on various cotton, cotton-blend, and synthetic nonwoven fabrics was investigated at varying surfactant concentrations using UV-Vis absorption spectroscopy. Modifying ...

  2. Soft antimicrobial agents: synthesis and activity of labile environmentally friendly long chain quaternary ammonium compounds.

    PubMed

    Thorsteinsson, Thorsteinn; Másson, Már; Kristinsson, Karl G; Hjálmarsdóttir, Martha A; Hilmarsson, Hilmar; Loftsson, Thorsteinn

    2003-09-11

    A series of soft quaternary ammonium antimicrobial agents, which are analogues to currently used quaternary ammonium preservatives such as cetyl pyridinium chloride and benzalkonium chloride, were synthesized. These soft analogues consist of long alkyl chain connected to a polar headgroup via chemically labile spacer group. They are characterized by facile nonenzymatic and enzymatic degradation to form their original nontoxic building blocks. However, their chemical stability has to be adequate in order for them to have antimicrobial effects. Stability studies and antibacterial and antiviral activity measurements revealed relationship between activity, lipophilicity, and stability. Their minimum inhibitory concentration (MIC) was as low as 1 microg/mL, and their viral reduction was in some cases greater than 6.7 log. The structure-activity studies demonstrate that the bioactive compounds (i.e., MIC for Gram-positive bacteria of <10 microg/mL) have an alkyl chain length between 12 and 18 carbon atoms, with a polar headgroup preferably of a small quaternary ammonium group, and their acquired inactivation half-life must be greater than 3 h at 60 degrees C.

  3. CATION EXCHANGE METHOD FOR THE RECOVERY OF PROTACTINIUM

    DOEpatents

    Studier, M.H.; Sullivan, J.C.

    1959-07-14

    A cation exchange prccess is described for separating protactinium values from thorium values whereby they are initially adsorbed together from an aqueous 0.1 to 2 N hydrochloric acid on a cation exchange resin in a column. Then selectively eluting the thorium by an ammonium sulfate solution and subsequently eluting the protactinium by an oxalate solution.

  4. Glyphosate sensitivity of 5-enol-pyruvylshikimate-3-phosphate synthase from Bacillus subtilis depends upon state of activation induced by monovalent cations.

    PubMed

    Fischer, R S; Rubin, J L; Gaines, C G; Jensen, R A

    1987-07-01

    The 5-enol-pyruvylshikimate-3-phosphate (EPSP) synthase from Bacillus subtilis was activated by monovalent cations, catalytic activity being negligible in the absence of monovalent cations. The order of cation effectiveness (NH4+ greater than K+ greater than Rb+ greater than Na+ = Cs+ = Li+) indicated that the extent of activation was directly related to the unhydrated cation radius. Ammonium salts, at physiological concentrations, were dramatically more effective than other cations. Activation by ammonium was instantaneous, was not influenced by the counter ion, and gave a hyperbolic saturation curve. Hill plots did not show detectable cooperativity in the binding of ammonium. Double-reciprocal plots indicated that ammonium increases the maximal velocity and decreases the apparent Michaelis constants of EPSP synthase with respect to both phosphoenol pyruvate (PEP) and shikimate 3-phosphate (S3P). A direct relationship between sensitivity to inhibition by glyphosate and the activation state of EPSP synthase was demonstrated. Hill plots indicated a single value for glyphosate binding throughout the range of ammonium activation. Double-reciprocal plots of substrate saturation data obtained with ammonium-activated enzyme in the presence of glyphosate showed glyphosate to behave as a competitive inhibitor with respect to PEP and as a mixed-type inhibitor relative to S3P. The increased glyphosate sensitivity of ammonium-activated EPSP synthase is attributed to a lowering of the inhibitor constant of glyphosate with respect to PEP. Erroneous underestimates of sensitivities of some bacterial EPSP synthases to inhibition by glyphosate may result from failure to recognize cation requirements of EPSP synthases.

  5. Removal of ammonium from aqueous solutions with volcanic tuff.

    PubMed

    Marañón, E; Ulmanu, M; Fernández, Y; Anger, I; Castrillón, L

    2006-10-11

    This paper presents kinetic and equilibrium data concerning ammonium ion uptake from aqueous solutions using Romanian volcanic tuff. The influence of contact time, pH, ammonium concentration, presence of other cations and anion species is discussed. Equilibrium isotherms adequately fit the Langmuir and Freundlich models. The results showed a contact time of 3h to be sufficient to reach equilibrium and pH of 7 to be the optimum value. Adsorption capacities of 19 mg NH(4)(+)/g were obtained in multicomponent solutions (containing NH(4)(+), Zn(2+), Cd(2+), Ca(2+), Na(2+)). The presence of Zn and Cd at low concentrations did not decrease the ammonium adsorption capacity. Comparison of Romanian volcanic tuff with synthetic zeolites used for ammonium removal (5A, 13X and ZSM-5) was carried out. The removal efficiciency of ammonium by volcanic tuff were similar to those of zeolites 5A and 13X at low initial ammonium concentration, and much higher than those of zeolite ZSM-5.

  6. Noncovalent Complexation of Monoamine Neurotransmitters and Related Ammonium Ions by Tetramethoxy Tetraglucosylcalix[4]arene

    NASA Astrophysics Data System (ADS)

    Torvinen, Mika; Kalenius, Elina; Sansone, Francesco; Casnati, Alessandro; Jänis, Janne

    2012-02-01

    The noncovalent complexation of monoamine neurotransmitters and related ammonium and quaternary ammonium ions by a conformationally flexible tetramethoxy glucosylcalix[4]arene was studied by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. The glucosylcalixarene exhibited highest binding affinity towards serotonin, norepinephrine, epinephrine, and dopamine. Structural properties of the guests, such as the number, location, and type of hydrogen bonding groups, length of the alkyl spacer between the ammonium head-group and the aromatic ring structure, and the degree of nitrogen substitution affected the complexation. Competition experiments and guest-exchange reactions indicated that the hydroxyl groups of guests participate in intermolecular hydrogen bonding with the glucocalixarene.

  7. Synthesis and characterization of two novel chiral-type formate frameworks templated by protonated diethylamine and ammonium cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl; Gągor, Anna; Hanuza, Jerzy

    2017-01-15

    Two novel formate frameworks templated by ammonium and diethylammonium (DEtA{sup +}) cations have been synthesized. Chemical analysis as well as optical, Raman and IR studies showed partial substitution of nickel ions by Cr(III) or Fe(III). X-ray diffraction revealed that these compounds crystallize in the chiral-type structure of P6{sub 3}22 symmetry. The oxygen atoms from formate ligands form octahedral coordination around the metal centers and the octahedra are bridged by the formate groups in the anti-anti mode configuration forming the hexagonal structure with large channels expanding along the c direction. The channels are filled with disordered DEtA{sup +} and NH{sub 4}{supmore » +} ions and they show unusual compression with the c/a ratio of only 0.862 and 0.852 for the iron- and chromium-containing compound, respectively. Magnetic studies revealed that the both compounds order magnetically at low temperatures but the ordering temperature is significantly higher for the iron compound (37 K) compared to the chromium analogue (26 K). - Graphical abstract: Temperature dependence of magnetization M of DEtAFeNi showing magnetic order at 37 K. - Highlights: • Two novel chiral formates of P6{sub 3}22 symmetry were synthesized. • The structures contain strongly compressed hexagonal channels filled with disordered cations. • The obtained compounds exhibit magnetic order at low temperatures. • Raman, IR and absorption spectra prove incorporation of Cr(III) and Fe(III) in the frameworks.« less

  8. Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent.

    PubMed

    Huang, Haiming; Xiao, Xianming; Yan, Bo; Yang, Liping

    2010-03-15

    This paper presents a study of the removal of ammonium ion from aqueous solutions using natural Chinese (Chende) zeolite. A series of experiments was conducted to examine the effects of solution pH, particle size, contact time, adsorbent dosage, and the presence of other cation- and anion species on ammonium removal. The findings indicated that these parameters named had a significant effect on the removal of ammonium by the zeolite. The effect of other cations on the removal of ammonium followed the order of preference Na(+)>K(+)>Ca(2+)>Mg(2+) at identical mass concentrations, and the effect of the presence of individual anions followed the order of preference carbonate>chloride>sulfate>phosphate at identical mass concentrations of ammonium ions. Kinetic analysis showed that the adsorption of ammonium on zeolite at different ranges of particle size well followed the pseudo-second-order model and followed the intra-particle diffusion model only during the initial 60 min of the adsorption process. Equilibrium isotherm data was fitted to the linear Langmuir- and Freundlich models with the latter model providing the better description of the process (R(2)=0.991-0.997) compared to the former (R(2)=0.902-0.989). (c) 2009 Elsevier B.V. All rights reserved.

  9. Potential development of a new cotton-based antimicrobial wipe

    USDA-ARS?s Scientific Manuscript database

    The adsorption of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on greige and bleached nonwoven cotton fabrics was investigated using UV/visible spectroscopy. Initial results have shown that greige cotton adsorbs roughly three tim...

  10. Hydrolysis of cellulose catalyzed by quaternary ammonium perrhenates in 1-allyl-3-methylimidazolium chloride.

    PubMed

    Wang, Jingyun; Zhou, Mingdong; Yuan, Yuguo; Zhang, Quan; Fang, Xiangchen; Zang, Shuliang

    2015-12-01

    Quaternary ammonium perrhenates were applied as catalyst to promote the hydrolysis of cellulose in 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The quaternary ammonium perrhenates displayed good catalytic performance for cellulose hydrolysis. Water was also proven to be effective to promote cellulose hydrolysis. Accordingly, 97% of total reduced sugar (TRS) and 42% of glucose yields could be obtained under the condition of using 5mol% of tetramethyl ammonium perrhenate as catalyst, 70μL of water, ca. 0.6mmol of microcrystalline cellulose (MCC) and 2.0g of [Amim]Cl as solvent under microwave irradiation for 30min at 150°C (optimal conditions). The influence of quaternary ammonium cation on the efficiency of cellulose hydrolysis was examined based on different cation structures of perrhenates. The mechanism on perrhenate catalyzed cellulose hydrolysis is also discussed, whereas hydrogen bonding between ReO4 anion and hydroxyl groups of cellulose is assumed to be the key step for depolymerization of cellulose. Copyright © 2015. Published by Elsevier Ltd.

  11. Quasielastic neutron scattering studies on glass-forming ionic liquids with imidazolium cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofu, Maiko; Inamura, Yasuhiro; Miyazaki, Kyoko

    2015-12-21

    Relaxation processes for imidazolium-based ionic liquids (ILs) were investigated by means of an incoherent quasielastic neutron scattering technique. In order to clarify the cation and anion effects on the relaxation processes, ten samples were measured. For all of the samples, we found three relaxations at around 1 ps, 10 ps, and 100 ps-10 ns, each corresponding to the alkyl reorientation, the relaxation related to the imidazolium ring, and the ionic diffusion. The activation energy (E{sub a}) for the alkyl relaxation is insensitive to both anion and alkyl chain lengths. On the other hand, for the imidazolium relaxation and the ionicmore » diffusion processes, E{sub a} increases as the anion size decreases but is almost independent of the alkyl chain length. This indicates that the ionic diffusion and imidazolium relaxation are governed by the Coulombic interaction between the core parts of the cations (imidazolium ring) and the anions. This is consistent with the fact that the imidazolium-based ILs have nanometer scale structures consisting of ionic and neutral (alkyl chain) domains. It is also found that there is a clear correlation between the ionic diffusion and viscosity, indicating that the ionic diffusion is mainly associated with the glass transition which is one of the characteristics of imidazolium-based ILs.« less

  12. Synthetic, structural, and computational investigations of N-alkyl benzo-2,1,3-selenadiazolium iodides and their supramolecular aggregates.

    PubMed

    Lee, Lucia M; Corless, Victoria B; Tran, Michael; Jenkins, Hilary; Britten, James F; Vargas-Baca, Ignacio

    2016-02-28

    Despite their versatility, the application of telluradiazoles as supramolecular building blocks is considerably constrained by their sensitivity to moisture. Albeit more robust, their selenium analogues form weaker supramolecular interactions. These, however, are enhanced when one nitrogen atom is bonded to an alkyl group. Here we investigate general methods for the synthesis of such derivatives. Methyl, iso-propyl and tert-butyl benzo-2,1,3-selenadiazolium cations were prepared by direct alkylation or cyclo-condensation of the alkyl-phenylenediamine with selenous acid. While the former reaction only proceeds with the primary and tertiary alkyl iodides, the latter is very efficient. Difficulties reported in earlier literature are attributable to the formation of adducts of benzoselenadiazole with its alkylated cations and side reactions initiated by aerobic oxidation of iodide. However, the cations themselves are resilient to oxidation and stable in acidic to neutral aqueous medium. X-ray crystallography was used in the identification and characterization of the following compounds: [C6H4N2(R)Se](+)X(-), (R = CH(CH3)2, C(CH3)3; X = I(-), I3(-)], [C6H4N2(CH3)Se](+)I(-), and [C6H4N2Se][C6H4N2(CH3)Se]2I2. Formation of SeN secondary bonding interactions (chalcogen bonds) was only observed in the last structure as anion binding to selenium is a strong competitor. The relative strengths of those forces and the structural preferences they enforce were assessed with DFT-D3 calculations supplemented by AIM analysis of the electron density.

  13. Cation exchange assisted binding-elution strategy for enzymatic synthesis of human milk oligosaccharides (HMOs).

    PubMed

    Zhu, Hailiang; Wu, Zhigang; Gadi, Madhusudhan Reddy; Wang, Shuaishuai; Guo, Yuxi; Edmunds, Garrett; Guan, Wanyi; Fang, Junqiang

    2017-09-15

    A cation exchange assisted binding-elution (BE) strategy for enzymatic synthesis of human milk oligosaccharides (HMOs) was developed. An amino linker was used to provide the cation ion under acidic condition which can be readily bound to cation exchange resin and then eluted off by saturated ammonium bicarbonate. Ammonium bicarbonate in the collections was easily removed by vacuum evaporation. This strategy circumvented the incompatible issue between glycosyltransferases and solid support or large polymers, and no purification was needed for intermediate products. With current approach, polyLacNAc backbones of HMOs and fucosylated HMOs were synthesized smoothly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Exposure to common quaternary ammonium disinfectants decreases fertility in mice

    PubMed Central

    Melin, Vanessa E.; Potineni, Haritha; Hunt, Patricia; Griswold, Jodi; Siems, Bill; Werre, Stephen R.; Hrubec, Terry C.

    2014-01-01

    Quaternary ammonium compounds (QACs) are antimicrobial disinfectants commonly used in commercial and household settings. Extensive use of QACs results in ubiquitous human exposure, yet reproductive toxicity has not been evaluated. Decreased reproductive performance in laboratory mice coincided with the introduction of a disinfectant containing both alkyl dimethyl benzyl ammonium chloride (ADBAC) and didecyl dimethyl ammonium chloride (DDAC). QACs were detected in caging material over a period of several months following cessation of disinfectant use. Breeding pairs exposed for six months to a QAC disinfectant exhibited decreases in fertility and fecundity: increased time to first litter, longer pregnancy intervals, fewer pups per litter and fewer pregnancies. Significant morbidity in near term dams was also observed. In summary, exposure to a common QAC disinfectant mixture significantly impaired reproductive health in mice. This study illustrates the importance of assessing mixture toxicity of commonly used products whose components have only been evaluated individually. PMID:25483128

  15. Cation symmetry effect on the volatility of ionic liquids.

    PubMed

    Rocha, Marisa A A; Coutinho, João A P; Santos, Luís M N B F

    2012-09-06

    This work reports the first data for the vapor pressures at several temperatures of the ionic liquids, [C(N/2)C(N/2)im][NTf(2)] (N = 4, 6, 8, 10, 12) measured using a Knudsen effusion apparatus combined with a quartz crystal microbalance. The morphology and the thermodynamic parameters of vaporization derived from the vapor pressures, are compared with those for the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide series, [C(N-1)C(1)im][NTf(2)] (N = 3 - 9, 11, and 13). It was found that the volatility of [C(N/2)C(N/2)im][NTf(2)] series is significantly higher than the asymmetric cation ILs with the same total number of carbons in the alkyl side chains, [C(N-1)C(1)im][NTf(2)]. The observed higher volatility is related with the lower enthalpy of vaporization. The symmetric cation, [C(N/2)C(N/2)im][NTf(2)], presents lower entropies of vaporization compared with the asymmetric [C(N-1)C(1)im][NTf(2)], indicating an increase of the absolute liquid entropy in the symmetric cation ILs, being a reflection of a change of the ion dynamics in the IL liquid phase. Moreover both the enthalpy and entropy of vaporization of the [C(N/2)C(N/2)im][NTf(2)] ILs, present a clear odd-even effect with higher enthalpies/entropies of vaporization for the odd number of carbons in each alkyl chain ([C(3)C(3)im][NTf(2)] and [C(5)C(5)im][NTf(2)]).

  16. Neighbor-directed histidine N(τ) alkylation. A route to imidazolium-containing phosphopeptide macrocycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Wen-Jian; Park, Jung-Eun; Grant, Robert

    2015-07-07

    Our recently discovered, selective, on-resin route to N(τ)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. These cationic moieties subsequently serve to charge-mask the phosphoamino acid group that directed their formation. Furthermore, neighbor-directed histidine N(τ)-alkylation opens the door to new families of phosphopeptidomimetics for use in a range of chemical biology contexts.

  17. Phase behavior in quaternary ammonium ionic liquid-propanol solutions: Hydrophobicity, molecular conformations, and isomer effects

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Kohki, Erica; Nakada, Ayumu; Kishimura, Hiroaki

    2017-07-01

    In ionic liquids (ILs), the effects of a quaternary ammonium cation containing a hydroxyl group were investigated and compared with the effect of a standard quaternary ammonium cation. The cation possessing a hydroxyl group is choline, Chol+, and the anion is bis(trifluoromethylsulfonyl)imide, TFSI-. Crystal polymorphism of pure [Chol][TFSI] was observed upon both cooling and heating by simultaneous X-ray diffraction and differential scanning calorimetry measurements. In contrast, [N3111][TFSI] (N3111+: N-trimethyl-N-propylammonium), a standard IL, demonstrated simple crystallization upon cooling. By adding 1-propanol or 2-propanol, the phase behaviors of the [Chol][TFSI]-based and [N3111][TFSI]-based mixtures were clearly distinguished. By Raman spectroscopy, the TFSI- anion conformers in the liquid state were shown to vary according to the propanol concentration, propanol isomer, and type of cation. The anomalous behaviors of pure [Chol][TFSI] and its mixtures are derived from hydrogen bonding of the hydroxyl group of Chol+ cation coupled with the hydrophobicity and packing efficiency of propanol.

  18. Properties of the Nafion membrane impregnated with hydroxyl ammonium based ionic liquids

    NASA Astrophysics Data System (ADS)

    Garaev, Valeriy; Kleperis, Janis; Pavlovica, Sanita; Vaivars, Guntars

    2012-08-01

    In this work, the Nafion 112 membrane impregnated with nine various hydroxyl ammonium based ionic liquids have been investigated. The used ionic liquids were combined from hydroxyl ammonium cations (2-hydroxyethylammonium/HEA, bis(2- hydroxyethyl)ammonium/BHEA, tris(2-hydroxyethyl)ammonium/THEA) and carboxylate anions (formate, acetate, lactate). The membranes are characterized by conductivity and thermal stability measurements. It was found, that almost all composites have 10 times higher ion conductivity than a pure Nafion 112 at 90 °C in ambient environment due to the higher thermal stability. The thermal stability of Nafion membrane was increased by all studied nine ionic liquids. In this work, only biodegradable ionic liquids were used for composite preparation.

  19. A Cation-containing Polymer Anion Exchange Membrane based on Poly(norbornene)

    NASA Astrophysics Data System (ADS)

    Beyer, Frederick; Price, Samuel; Ren, Xiaoming; Savage, Alice

    Cation-containing polymers are being studied widely for use as anion exchange membranes (AEMs) in alkaline fuel cells (AFCs) because AEMs offer a number of potential benefits including allowing a solid state device and elimination of the carbonate poisoning problem. The successful AEM will combine high performance from several orthogonal properties, having robust mechanical strength even when wet, high hydroxide conductivity, and the high chemical stability required for long device lifetimes. In this study, we have synthesized a model cationic polymer that combines three of the key advantages of Nafion. The polymer backbone based on semicrystalline atactic poly(norbornene) offers good mechanical properties. A flexible, ether-based tether between the backbone and fixed cation charged species (quaternary ammonium) should provide the low-Tg, hydrophilic environment required to facilitate OH- transport. Finally, methyl groups have been added at the beta position relative to the quaternary ammonium cation to prevent Hoffman elimination, one mechanism by which AEMs are neutralized in a high pH environment. In this poster, we will present our findings on mechanical properties, morphology, charge transport, and chemical stability of this material.

  20. Ionic liquids as refolding additives: N′-alkyl and N′-(ω-hydroxyalkyl) N-methylimidazolium chlorides

    PubMed Central

    Lange, Christian; Patil, Ganesh; Rudolph, Rainer

    2005-01-01

    The purpose of this work was to investigate the influence of a series of N′-alkyl and N′-(ω-hydroxy-alkyl)-N-methylimidazolium chlorides on the renaturation of two model proteins, namely hen egg white lysozyme and the single-chain antibody fragment ScFvOx. All tested ionic liquids acted as refolding enhancers, with varying efficacies and efficiencies. The results of the refolding screening could be interpreted by taking into account the effect of the studied ionic liquids on protein aggregation, together with the systematic variations of their influence on the stability of native proteins in solution. More hydrophobic imidazolium cations carrying longer alkyl chains were increasingly destabilizing, while terminal hydroxylation of the alkyl chain made the salts more compatible with protein stability. The studied ionic liquids can be classified as preferentially bound, slightly to moderately chaotropic cosolvents for proteins. PMID:16195554

  1. Tetra-butyl-ammonium tetra-kis-(trimethyl-silanolato-κO)ferrate(III).

    PubMed

    Hay, Michael; Staples, Richard; Lee, Andre

    2012-09-01

    In the title salt, (C(16)H(36)N)[Fe(C(3)H(9)OSi)(4)], the cation contains a central N atom bonded to four n-butyl alkyl groups in a tetra-hedral arrangement, while the anion contains a central Fe(III) atom tetra-hedrally coordinated by four trimethyl-silanolate ligands.

  2. Hydroxide Degradation Pathways for Substituted Benzyltrimethyl Ammonium: A DFT Study

    DOE PAGES

    Long, Hai; Pivovar, Bryan S.

    2014-11-01

    The stability of cations used in the alkaline exchange membranes has been a major challenge. In this paper, degradation energy barriers were investigated by density functional theory for substituted benzyltrimethyl ammonium (BTMA+) cations. Findings show that electron-donating substituent groups at meta-position(s) of the benzyl ring could result in increased degradation barriers. However, after investigating more than thirty substituted BTMA+ cations, the largest improvement in degradation barrier found was only 6.7 kJ/mol. This suggests a modest (8×) improvement in stability for this type of approach may be possible, but for anything greater other approaches will need to be pursued.

  3. Photoinduced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Boning; Liang, Min; Zmich, Nicole

    Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [Wu, B.; Maroncelli, M.; Castner, E. W., Jr.Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J. Am. Chem. Soc.139, 2017, 14568]. In this paper, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution.more » The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Finally, together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.« less

  4. Photoinduced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors

    DOE PAGES

    Wu, Boning; Liang, Min; Zmich, Nicole; ...

    2018-01-29

    Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [Wu, B.; Maroncelli, M.; Castner, E. W., Jr.Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J. Am. Chem. Soc.139, 2017, 14568]. In this paper, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution.more » The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Finally, together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.« less

  5. Aza-crown ether complex cation ionic liquids: preparation and applications in organic reactions.

    PubMed

    Song, Yingying; Cheng, Chen; Jing, Huanwang

    2014-09-26

    Aza-crown ether complex cation ionic liquids (aCECILs) were devised, fabricated, and characterized by using NMR spectroscopy, MS, thermogravimetric differential thermal analysis (TG-DTA), elemental analysis and physical properties. These new and room-temperature ILs were utilized as catalysts in various organic reactions, such as the cycloaddition reaction of CO2 to epoxides, esterification of acetic acid and alcohols, the condensation reaction of aniline and propylene carbonate, and Friedel-Crafts alkylation of indole with aldehydes were investigated carefully. In these reactions, the ionic liquid exhibited cooperative catalytic activity between the anion and cation. In addition, the aza-[18-C-6HK][HSO4]2 was the best acidic catalyst in the reactions of esterification and Friedel-Crafts alkylation under mild reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Globular, Sponge-like to Layer-like Morphological Transition in 1-n-Alkyl-3-methylimidazolium Octylsulfate Ionic Liquid Homologous Series.

    PubMed

    Kapoor, Utkarsh; Shah, Jindal K

    2018-01-11

    Segregation of polar and nonpolar domains in ionic liquids for which either the cation or anion is responsible for inducing nonpolar domains is well understood. On the other hand, information regarding the nanoscale heterogeneities originating due to the presence of nonpolar content on both the ions is rudimentary at this point. The present contribution is aimed at addressing this question and focuses on a molecular dynamics simulation study to probe nanoscale structural and aggregation features of the 1-n-alkyl-3-methylimidazolium [C n mim] octylsulfate [C 8 SO 4 ] ionic liquid homologous series (n = 2, 4, 6, 8, 10, and 12). The objective of this work is to determine the effect of increasing alkyl chain length in the cation on nonpolar domain formation, especially when the alkyl chain lengths from both the ions participate in defining such domains. The results indicate that all the ionic liquids form nonpolar domains, morphology of which gradually changes from globular, sponge-like to layer-like structure with increase in the cationic alkyl chain length. The length of the nonpolar domains calculated from the total structure factor for [C 10 mim][C 8 SO 4 ] is considerably higher than that reported for other imidazolium-based ionic liquid containing smaller anions. The structure factor for [C 12 mim][C 8 SO 4 ] ionic liquid contains multiple intermediate peaks separating the charge alternation peak and pre-peak, which points to nonpolar domains of varying lengths, an observation that remains to be validated. Analysis of the heterogeneous order parameters and orientational correlation functions of the alkyl chains further suggests an increase in the spatial heterogeneity and long-range order along the homologous series. The origin of rich diversity of structures obtained by introducing nonpolar content on both the ions is discussed.

  7. Review on Thermal Decomposition of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Shalini; Dave, Pragnesh N.

    2013-01-01

    In this review data from the literature on thermal decomposition of ammonium nitrate (AN) and the effect of additives to their thermal decomposition are summarized. The effect of additives like oxides, cations, inorganic acids, organic compounds, phase-stablized CuO, etc., is discussed. The effect of an additive mainly occurs at the exothermic peak of pure AN in a temperature range of 200°C to 140°C.

  8. Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment.

    PubMed

    Tian, Jing; Miller, Valentina; Chiu, Pei C; Maresca, Julia A; Guo, Mingxin; Imhoff, Paul T

    2016-05-15

    The feasibility of using biochar as a filter medium in stormwater treatment facilities was evaluated with a focus on ammonium retention. Successive batch extractions and batch ammonium sorption experiments were conducted in both deionized (DI) water and artificial stormwater using poultry litter (PL) and hardwood (HW) biochars pyrolyzed at 400°C and 500°C. No measureable nitrogen leached from HW biochars except 0.07 μmol/g of org-N from 400°C HW biochar. PL biochar pyrolyzed at 400°C leached 120-127 μmol/g of nitrogen but only 7.1-8.6 μmol/g of nitrogen when pyrolyzed at 500°C. Ammonium sorption was significant for all biochars. At a typical ammonium concentration of 2mg/L in stormwater, the maximum sorption was 150 mg/kg for PL biochar pryolyzed at 400°C. In stormwater, ion competition (e.g. Ca(2+)) suppressed ammonium sorption compared to DI water. Surprisingly, ammonium sorption was negatively correlated to the BET surface area of the tested biochars, but increased linearly with cation exchange capacity. Cation exchange capacity was the primary mechanism controlling ammonium sorption and was enhanced by pyrolysis at 400°C, while BET surface area was enhanced by pyrolysis at 500°C. The optimal properties (BET surface area, CEC, etc.) of biochar as a sorbent are not fixed but depend on the target pollutant. Stormwater infiltration column experiments in sand with 10% biochar removed over 90% of ammonium with influent ammonium concentration of 2mg/L, compared to only 1.7% removal in a sand-only column, indicating that kinetic limitations on sorption were minor for the storm conditions studied. Hardwood and poultry litter biochar pyrolyzed at 500°C and presumably higher temperature may be viable filter media for stormwater treatment facilities, as they showed limited release of organic and inorganic nutrients and acceptable ammonium sorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Analysis of quaternary ammonium and phosphonium ionic liquids by reversed-phase high-performance liquid chromatography with charged aerosol detection and unified calibration.

    PubMed

    Stojanovic, Anja; Lämmerhofer, Michael; Kogelnig, Daniel; Schiesel, Simone; Sturm, Martin; Galanski, Markus; Krachler, Regina; Keppler, Bernhard K; Lindner, Wolfgang

    2008-10-31

    Several hydrophobic ionic liquids (ILs) based on long-chain aliphatic ammonium- and phosphonium cations and selected aromatic anions were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) employing trifluoroacetic acid as ion-pairing additive to the acetonitrile-containing mobile phase and adopting a step-gradient elution mode. The coupling of charged aerosol detection (CAD) for the non-chromophoric aliphatic cations with diode array detection (DAD) for the aromatic anions allowed their simultaneous analysis in a set of new ILs derived from either tricaprylmethylammonium chloride (Aliquat 336) and trihexyltetradecylphosphonium chloride as precursors. Aliquat 336 is a mix of ammonium cations with distinct aliphatic chain lengths. In the course of the studies it turned out that CAD generates an identical detection response for all the distinct aliphatic cations. Due to lack of single component standards of the individual Aliquat 336 cation species, a unified calibration function was established for the quantitative analysis of the quaternary ammonium cations of the ILs. The developed method was validated according to ICH guidelines, which confirmed the validity of the unified calibration. The application of the method revealed molar ratios of cation to anion close to 1 indicating a quantitative exchange of the chloride ions of the precursors by the various aromatic anions in the course of the synthesis of new ILs. Anomalies of CAD observed for the detection of some aromatic anions (thiosalicylate and benzoate) are discussed.

  10. Odd-even effect on the formation of aqueous biphasic systems formed by 1-alkyl-3-methylimidazolium chloride ionic liquids and salts

    NASA Astrophysics Data System (ADS)

    Belchior, Diana C. V.; Sintra, Tânia E.; Carvalho, Pedro J.; Soromenho, Mário R. C.; Esperança, José M. S. S.; Ventura, Sónia P. M.; Rogers, Robin D.; Coutinho, João A. P.; Freire, Mara G.

    2018-05-01

    This work provides a comprehensive evaluation of the effect of the cation alkyl side chain length of the 1-alkyl-3-methylimidazolium chloride series ([CnC1im]Cl, n = 2-14) of ionic liquids (ILs) on their capability to form aqueous biphasic systems (ABSs) with salts and self-aggregation derived properties. The liquid-liquid phase behavior of ternary systems composed of [CnC1im]Cl, water, and K3PO4 or K2CO3 and the respective Setschenow salting-out coefficients (ks), a quantitative measure of the two-phase formation ability, were determined. An odd-even effect in the ks values along the number of methylene groups of the longest IL cation alkyl side chain was identified for the ABS formed by K2CO3, a weaker salting-out agent where the phenomenon is clearly identified. In general, cations with even alkyl side chains, being likely to display higher molar volumes, are more easily salted-out and thus more prone to undergo phase separation. The odd-even effect in the ks values is, however, more significant in ILs up to n = 6, where the nanostructuration/nanosegregation of ILs plays a less relevant role. Still, with the [CnC1im]Cl (n = 7-14) series of ILs, an odd-even effect was also identified in the ILs' ionization degree, molar conductivity, and conductivity at infinite dilution. In summary, it is shown here that the ILs' odd-even effect occurs in IL aqueous solutions and not just in neat ILs, an already well-established phenomenon occurring in a series of ILs' properties described as a result of the orientation of the terminal methyl groups to the imidazolium ring cation and consequent effect in the ILs' cohesive energy.

  11. Using ethane and butane as probes to the molecular structure of 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ionic liquids.

    PubMed

    Costa Gomes, Margarida F; Pison, Laure; Pensado, Alfonso S; Pádua, Agilio A H

    2012-01-01

    In this work, we have studied the solubility and the thermodynamic properties of solvation, between 298 and 343 K and at pressures close to atmospheric, of ethane and n-butane in several ionic liquids based on the bis[(trifluoromethyl) sulfonyl]imide anion and on 1-alkyl-3-methylimidazolium cations, [CnC1Im] [NTf2], with alkyl side-chains varying from two to ten carbon atoms. The solubility of butane is circa one order of magnitude larger than that of ethane with mole fractions as high as 0.15 in [C10C1Im][NTf2] at 300 K. The solubilities of both n-butane and ethane gases are higher for ionic liquids with longer alkyl chains. The behaviour encountered is explained by the preferential solvation of the gases in the non-polar domains of the solvents, the larger solubility of n-butane being attributed to the dispersive contributions to the interaction energy. The rise in solubility with increasing size of the alkyl-side chain is explained by a more favourable entropy of solvation in the ionic liquids with larger cations. These conclusions are corroborated by molecular dynamics simulation studies.

  12. Effect of the alkyl chain length on the rotational dynamics of nonpolar and dipolar solutes in a series of N-alkyl-N-methylmorpholinium ionic liquids.

    PubMed

    Khara, Dinesh Chandra; Kumar, Jaini Praveen; Mondal, Navendu; Samanta, Anunay

    2013-05-02

    Rotational dynamics of two dipolar solutes, 4-aminophthalimide (AP) and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), and a nonpolar solute, anthracene, have been studied in N-alkyl-N-methylmorpholinium (alkyl = ethyl, butyl, hexyl, and octyl) bis(trifluoromethansulfonyl)imide (Tf2N) ionic liquids as a function of temperature and excitation wavelength to probe the microheterogeneous nature of these ionic liquids, which are recently reported to be more structured than the imidazolium ionic liquids (Khara and Samanta, J. Phys. Chem. B2012, 116, 13430-13438). Analysis of the measured rotational time constants of the solutes in terms of the Stokes-Einstein-Debye (SED) hydrodynamic theory reveals that with increase in the alkyl chain length attached to the cationic component of the ionic liquids, AP shows stick to superstick behavior, PRODAN rotation lies between stick and slip boundary conditions, whereas anthracene exhibits slip to sub slip behavior. The contrasting rotational dynamics of these probe molecules is a reflection of their location in distinct environments of the ionic liquids thus demonstrating the heterogeneity of these ionic liquids. The microheterogeneity of these media, in particular, those with the long alkyl chain, is further evidence from the excitation wavelength dependence study of the rotational diffusion of the dipolar probe molecules.

  13. Cationic antimicrobial polymers and their assemblies.

    PubMed

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-05-10

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  14. Cationic Antimicrobial Polymers and Their Assemblies

    PubMed Central

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  15. 40 CFR 721.6540 - Acrylamide, polymers with tetraalkyl ammonium salt and polyalkyl, aminoalkyl meth-a-cryl-a-mide...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylamide, polymers with tetraalkyl... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6540 Acrylamide, polymers... as acrylamide, polymers with tetraalkyl ammonium salt and poly-al-kyl, amino alkyl meth-a-cryl-a-mide...

  16. 40 CFR 721.6540 - Acrylamide, polymers with tetraalkyl ammonium salt and polyalkyl, aminoalkyl meth-a-cryl-a-mide...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylamide, polymers with tetraalkyl... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6540 Acrylamide, polymers... as acrylamide, polymers with tetraalkyl ammonium salt and poly-al-kyl, amino alkyl meth-a-cryl-a-mide...

  17. 40 CFR 721.6540 - Acrylamide, polymers with tetraalkyl ammonium salt and polyalkyl, aminoalkyl meth-a-cryl-a-mide...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylamide, polymers with tetraalkyl... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6540 Acrylamide, polymers... as acrylamide, polymers with tetraalkyl ammonium salt and poly-al-kyl, amino alkyl meth-a-cryl-a-mide...

  18. 40 CFR 721.6540 - Acrylamide, polymers with tetraalkyl ammonium salt and polyalkyl, aminoalkyl meth-a-cryl-a-mide...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylamide, polymers with tetraalkyl... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6540 Acrylamide, polymers... as acrylamide, polymers with tetraalkyl ammonium salt and poly-al-kyl, amino alkyl meth-a-cryl-a-mide...

  19. 40 CFR 721.6540 - Acrylamide, polymers with tetraalkyl ammonium salt and polyalkyl, aminoalkyl meth-a-cryl-a-mide...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylamide, polymers with tetraalkyl... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6540 Acrylamide, polymers... as acrylamide, polymers with tetraalkyl ammonium salt and poly-al-kyl, amino alkyl meth-a-cryl-a-mide...

  20. EFFECT OF INORGANIC CATIONS ON BACTERICIDAL ACTIVITY OF ANIONIC SURFACTANTS

    PubMed Central

    Voss, J. G.

    1963-01-01

    Voss, J. G. (Procter & Gamble Co., Cincinnati, Ohio). Effect of inorganic cations on bactericidal activity of anionic surfactants. J. Bacteriol. 86:207–211. 1963.—The bactericidal effectiveness of two alkyl benzene sulfonates and of three other types of anionic surfactants against Staphylococcus aureus is increased in the presence of low concentrations of divalent cations, especially alkaline earths and metals of group IIB of the periodic table. The cations may act by decreasing the negative charge at the cell surface and increasing adsorption of the surfactant anions, leading to damage to the cytoplasmic membrane and death of the cell. Increased adsorption of surfactant is also found with Escherichia coli, but does not lead to death of the cell. PMID:14058942

  1. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars.

    PubMed

    Cui, Xiaoqiang; Hao, Hulin; Zhang, Changkuan; He, Zhenli; Yang, Xiaoe

    2016-01-01

    The objective of this study was to investigate the relationship between Cd(2+)/NH4(+) sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500°C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH4(+) and Cd(2+), with a maximum sorption of 13.35 and 125.8mgg(-1), respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3mgg(-1)) for Cd(2+). Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd(2+) sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. In situ analysis of corrosion inhibitors using a portable mass spectrometer with paper spray ionization.

    PubMed

    Jjunju, Fred P M; Li, Anyin; Badu-Tawiah, Abraham; Wei, Pu; Li, Linfan; Ouyang, Zheng; Roqan, Iman S; Cooks, R Graham

    2013-07-07

    Paper spray (PS) ambient ionization is implemented using a portable mass spectrometer and applied to the detection of alkyl quaternary ammonium salts in a complex oil matrix. These salts are commonly used as active components in the formulation of corrosion inhibitors. They were identified in oil and confirmed by their fragmentation patterns recorded using tandem mass spectrometry (MS/MS). The cations of alkyl and benzyl-substituted quaternary ammonium salts showed characteristic neutral losses of CnH2n (n carbon number of the longest chain) and C7H8, respectively. Individual quaternary ammonium compounds were detected at low concentrations (<1 ng μL(-1)) and over a dynamic range of ∼5 pg μL(-1) to 500 pg μL(-1) (ppb). Direct detection of these compounds in complex oil samples without prior sample preparation or pre-concentration was also demonstrated using a home-built miniature mass spectrometer at levels below 1 ng μL(-1).

  3. Influence of alkyl chain length and anion species on ionic liquid structure at the graphite interface as a function of applied potential

    NASA Astrophysics Data System (ADS)

    Li, Hua; Wood, Ross J.; Endres, Frank; Atkin, Rob

    2014-07-01

    Atomic force microscopy (AFM) force measurements elucidate the effect of cation alkyl chain length and the anion species on ionic liquid (IL) interfacial structure at highly ordered pyrolytic graphite (HOPG) surfaces as a function of potential. Three ILs are examined: 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([HMIM] FAP), 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([EMIM] FAP), and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM] TFSA). The step-wise force-distance profiles indicate the ILs adopt a multilayered morphology near the surface. When the surface is biased positively or negatively versus Pt quasireference electrode, both the number of steps, and the force required to rupture each step increase, indicating stronger interfacial structure. At all potentials, push-through forces for [HMIM] FAP are the highest, because the long alkyl chain results in strong cohesive interactions between cations, leading to well-formed layers that resist the AFM tip. The most layers are observed for [EMIM] FAP, because the C2 chains are relatively rigid and the dimensions of the cation and anion are similar, facilitating neat packing. [EMIM] TFSA has the smallest push-through forces and fewest layers, and thus the weakest interfacial structure. Surface-tip attractive forces are measured for all ILs. At the same potential, the attractions are the strongest for [EMIM] TFSA and the weakest for [HMIM] FAP because the interfacial layers are better formed for the longer alkyl chain cation. This means interfacial forces are stronger, which masks the weak attractive forces.

  4. Vapor pressures of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with long alkyl chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Marisa A. A., E-mail: lbsantos@fc.up.pt, E-mail: marisa.alexandra.rocha@gmail.com; Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven; Coutinho, João A. P.

    2014-10-07

    This work presents the vapor pressure at several temperatures for the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide series, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 14, 16, 18, and 20), measured by a Knudsen effusion method combined with a quartz crystal microbalance. The thermodynamic properties of vaporization of the ionic liquids under study are analysed together with the results obtained previously for the shorter alkyl chain length [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 2, 4, 6, 8, 10, and 12), in order to evaluate the effect of the alkyl side chains of the cation and to get additional insights concerning the nanostructuration of ionic liquids.more » The symmetry effect is explored, based on the comparison with the asymmetric imidazolium based ionic liquids, [C{sub N-1}C{sub 1}im][NTf{sub 2}]. A trend shift on the thermodynamic properties of vaporization along the alkyl side chains of the extended symmetric ionic liquids, around [C{sub 6}C{sub 6}im][NTf{sub 2}], was detected. An intensification of the odd-even effect was observed starting from [C{sub 6}C{sub 6}im][NTf{sub 2}], with higher enthalpies and entropies of vaporization for the odd numbered ionic liquids, [C{sub 7}C{sub 7}im][NTf{sub 2}] and [C{sub 9}C{sub 9}im][NTf{sub 2}]. Similar, but less pronounced, odd-even effect was found for the symmetric ionic liquids with lower alkyl side chains length, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (with N = 4, 6, 8, 10, and 12). This effect is related with the predominant orientation of the terminal methyl group of the alkyl chain to the imidazolium ring and their influence in the cation-anion interaction. The same Critical Alkyl length at the hexyl, (C{sub 6}C{sub 1}and C{sub 6}C{sub 6}) was found for both asymmetric and symmetric series indicating that the nanostructuration of the ionic liquids is related with alkyl chain length.« less

  5. Ammonium boranes for the selective complexation of cyanide or fluoride ions in water.

    PubMed

    Hudnall, Todd W; Gabbaï, François P

    2007-10-03

    With the recognition of aqueous fluoride and cyanide ions as an objective, we have investigated the anion binding properties of two isomeric ammonium boranes, namely [p-(Mes2B)C6H4(NMe3)]+ ([1]+) and [o-(Mes2B)C6H4(NMe3)]+ ([2]+). These cationic boranes, which could be obtained by reaction of the known 4- and 2-dimesitylboryl-N,N-dimethylaniline with MeOTf, have been investigated both experimentally and computationally. They both react with fluoride and cyanide ions in organic solvents to afford the corresponding fluoroborate/ or cyanoborate/ammonium zwitterions 1F, 1CN, 2F, and 2CN. In aqueous solution, however, these cationic boranes behave as remarkably selective receptors. Indeed, [1]+ only complexes cyanide ions while [2]+ only complexes fluoride ions. In H2O/DMSO 60:40 vol (HEPES 6 mM, pH 7), the cyanide binding constant of [1]+ and the fluoride binding constant of [2]+ are respectively equal to 3.9 (+/-0.1) x 108 and 910 (+/-50) M-1. Structural and computational studies indicate that both steric and electronic effects contribute to the unusual selectivity displayed by these cationic boranes. Owing to favorable Coulombic effects, the para-derivative [1]+ has a very high affinity for cyanide; yet these effects are not sufficiently intense to allow complexation of the more efficiently hydrated and less basic fluoride anion. In the case of the ortho-derivative [2]+, the proximity of the ammonium moiety leads to an increase in the Lewis acidity of the boron center thus making fluoride binding possible. However, steric effects prevent cyanide coordination to the boron center of [2]+. Finally, cation [1]+ and [2]+ bind their dedicated anions reversibly and show a negligible response in the presence of other common anions including Cl-, Br-, I-, NO3-, OAc-, H2PO4-, and HSO4-.

  6. Equilibrium adsorption of caffeic, chlorogenic and rosmarinic acids on cationic cross-linked starch with quaternary ammonium groups.

    PubMed

    Simanaviciute, Deimante; Klimaviciute, Rima; Rutkaite, Ramune

    2017-02-01

    In the present study, the equilibrium adsorption of caffeic acid (CA) and its derivatives, namely, chlorogenic (CGA) and rosmarinic (RA) acids on cationic cross-linked starch (CCS) with degree of substitution of quaternary ammonium groups of 0.42 have been investigated in relation to the structure and acidity of phenolic acids. The Langmuir, Freundlich and Dubinin-Radushkevich adsorption models have been used to describe the equilibrium adsorption of CA, CGA and RA from their initial solutions and solutions having the equimolar amount of NaOH at different temperatures. In the case of adsorption from the initial solutions of acids the values of adsorption parameters were closely related to the dissociation constants of investigated acids. According to the increasing effectiveness of adsorption, phenolic acids could be arranged in the following order: CA

  7. Microbially mediated clinoptilolite regeneration in a multifunctional permeable reactive barrier used to remove ammonium from landfill leachate contamination: laboratory column evaluation.

    PubMed

    Nooten, Thomas Van; Diels, Ludo; Bastiaens, Leen

    2010-05-01

    This study focuses on multifunctional permeable reactive barrier (multibarrier) technology, combining microbial degradation and abiotic ion exchange processes for removal of ammonium from landfill leachate contamination. The sequential multibarrier concept relies on the use of a clinoptilolite-filled buffer compartment to ensure a robust ammonium removal in case of temporary insufficient microbial activities. An innovative strategy was developed to allow in situ clinoptilolite regeneration. Laboratory-scale clinoptilolite-filled columns were first saturated with ammonium, using real landfill leachate as well as synthetic leachates as feed media. Other inorganic metal cations, typically present in landfill leachate, had a detrimental influence on the ammonium removal capacity by competing for clinoptilolite exchange sites. On the other hand, the metals had a highly favorable impact on regeneration of the saturated material. Feeding the columns with leachate deprived from ammonium (e.g., by microbial nitrification in an upgradient compartment), resulted in a complete release of the previously sorbed ammonium from the clinoptilolite, due to exchange with metal cations present in the leachate. The released ammonium is then available for microbial consumption in a downgradient compartment. The regeneration process resulted in a slightly increased ammonium exchange capacity afterward. The described strategy throws a new light on sustainable use of sorption materials for in situ groundwater remediation, by avoiding the need for material replacement and the use of external chemical regenerants.

  8. Effects of 1-Alkyl-3-Methylimidazolium Nitrate on Soil Physical and Chemical Properties and Microbial Biomass.

    PubMed

    Zhou, Tongtong; Wang, Jun; Ma, Zhiqiang; Du, Zhongkun; Zhang, Cheng; Zhu, Lusheng; Wang, Jinhua

    2018-05-01

    Ionic liquids (ILs), also called room temperature ILs, are widely applied in many fields on the basis of their unique physical and chemical properties. However, numerous ILs may be released into and gradually accumulate in the environment due to their extensive use and absolute solubility. The effects of 1-alkyl-3-methylimidazolium nitrate ([C n mim]NO 3 , n = 4, 6, 8) on soil pH, conductivity, cation exchange capacity, microbial biomass carbon, and microbial biomass nitrogen were examined at the doses of 1, 10, and 100 mg/kg on days 10, 20, 30, and 40. The results demonstrated that the soil pH decreased and the conductivity increased with increasing IL doses. No significant differences were observed in the soil cation-exchange capacity. All three of the tested ILs decreased the soil microbial biomass carbon and nitrogen. Additionally, there were few differences among the ILs with different alkyl chain lengths on the tested indicators except for the microbial biomass nitrogen. The present study addressed a gap in the literature regarding the effects of the aforementioned ILs with different alkyl side chains on the physicochemical properties of soil, and the results could provide the basic data for future studies on their toxicity to soil organisms, such as earthworms and soil microbes.

  9. [Determination of di (hydrogenated tallow alkyl) dimethyl ammonium compounds in textile auxiliaries by ultra-high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Zhu, Feng

    2015-01-01

    A method has been developed for the determination of di (hydrogenated tallow alkyl) dimethyl ammonium compounds (DHTDMAC) in textile auxiliaries by ultra-high performance liquid chromatography-tandem mass spectrometry. (UPLC-MS/MS). The samples were extracted and diluted with acidified methanol by 5% (v/v) formic acid under ultrasonic assistance. The separation was performed on an Eclipse Plus C18 column (50 mm x 2.1 mm, 1.8 microm) using 0.1% (v/v) formic acid solution and methanol as the mobile phases. Identification and quantification were achieved by UPLC-MS/MS with electrospray ionization (ESI) source in positive ion mode and multiple reaction monitoring (MRM) mode. The results indicated that the calibration curve of DHTDMAC showed good linear relationship between peak area and mass concentration in the range of 10-280 microg/L with the correlation coefficient (r2) of 0.9991. The limit of detection (LOD, S/N=3) and the limit of quantification (LOQ, S/N= 10) of this method were 3 mg/kg and 10 mg/kg, respectively. The average recoveries from three typical textile auxiliary matrices including dispersant, antistatic agent and fabric softener, at three spiked levels were in the range of 97.2%-108.3% with the relative standard deviations (RSDs) of 1.5%-4.6%. The method is sensitive, accurate, simple and effective for the analysis of DHTDMAC in textile auxiliaries.

  10. Dietary cation-anion difference may explain why ammonium urate nephrolithiasis occurs more frequently in common bottlenose dolphins () under human care than in free-ranging common bottlenose dolphins.

    PubMed

    Ardente, A J; Wells, R S; Smith, C R; Walsh, M T; Jensen, E D; Schmitt, T L; Colee, J; Vagt, B J; Hill, R C

    2017-03-01

    Ammonium urate nephrolithiasis frequently develops in common bottlenose dolphins () managed under human care but is rare in free-ranging common bottlenose dolphins. In other species, the dietary cation-anion difference (DCAD) can affect ammonium urate urolith formation by increasing proton excretion as ammonium ions. Therefore, differences in diet between the 2 dolphin populations could affect urolith formation, but the DCAD of most species consumed by free-ranging and managed dolphins is unknown. To compare the nutrient composition of diets consumed by free-ranging and managed bottlenose dolphins, samples ( = 5) of the 8 species of fish commonly consumed by free-ranging bottlenose dolphins in Sarasota Bay, FL, and the 7 species of fish and squid commonly fed to managed bottlenose dolphins were analyzed for nutrient content. Metabolizable energy was calculated using Atwater factors; the DCAD was calculated using 4 equations commonly used in people and animals that use different absorption coefficients. The nutrient composition of individual species was used to predict the DCAD of 2 model diets typically fed to managed common bottlenose dolphins and a model diet typically consumed by common bottlenose dolphins in Sarasota Bay. To mimic differences in postmortem handling of fish for the 2 populations of bottlenose dolphins, "free-ranging" samples were immediately frozen at -80°C and minimally thawed before analysis, whereas "managed" samples were frozen for 6 to 9 mo at -18°C and completely thawed. "Free-ranging" species contained more Ca and P and less Na and Cl than "managed" fish and squid species. As a consequence, the DCAD of both model managed dolphin diets obtained using 3 of the 4 equations was much more negative than the DCAD of the model free-ranging bottlenose dolphin diet ( < 0.05). The results imply that managed bottlenose dolphins must excrete more protons in urine than free-ranging bottlenose dolphins, which will promote nephrolith formation. The

  11. Probing the effects of the ester functional group, alkyl side chain length and anions on the bulk nanostructure of ionic liquids: a computational study.

    PubMed

    Fakhraee, Mostafa; Gholami, Mohammad Reza

    2016-04-14

    The effects of ester addition on nanostructural properties of biodegradable ILs composed of 1-alkoxycarbonyl-3-alkyl-imidazolium cations ([C1COOCnC1im](+), n = 1, 2, 4) combined with [Br](-), [NO3](-), [BF4](-), [PF6](-), [TfO](-), and [Tf2N](-) were explored by using the molecular dynamics (MD) simulations and quantum theory of atoms in molecules (QTAIM) analysis at 400 K. Various thermodynamic properties of these ILs were extensively computed in our earlier work (Ind. Eng. Chem. Res., 2015, 54, 11678-11700). Nano-scale segregation analysis demonstrates the formation of a small spherical island-like hydrocarbon within the continuous ionic domain for ILs with short alkyl side chain ([C1COOC1C1im]), and a sponge-like nanostructure for the compound with long alkyl side chain ([C1COOC4C1im]). Ester-functionalized ILs with ethyl side chain ([C1COOC2C1im]) are the turning point between two different morphologies. Non-polar channels were observed for [C1COOC4C1im] ILs composed of smaller anions such as [Br] and [NO3], whereas clustering organization was found for the other anions. Formation of the spherical micelle-like nanostructure was seen for lengthened cations. Finally, the incorporation of an ester group into the alkyl side chain of the cation leads to stronger segregation between charged and uncharged networks, which consequently increased the possibility of self-assembly and micelle formation.

  12. Structure of 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ionic liquids with linear, branched, and cyclic alkyl groups.

    PubMed

    Kashyap, Hemant K; Santos, Cherry S; Murthy, N Sanjeeva; Hettige, Jeevapani J; Kerr, Kijana; Ramati, Sharon; Gwon, JinHee; Gohdo, Masao; Lall-Ramnarine, Sharon I; Wishart, James F; Margulis, Claudio J; Castner, Edward W

    2013-12-12

    X-ray scattering and molecular dynamics simulations have been carried out to investigate structural differences and similarities in the condensed phase between pyrrolidinium-based ionic liquids paired with the bis(trifluoromethylsulfonyl)amide (NTf2(-)) anion where the cationic tail is linear, branched, or cyclic. This is important in light of the charge and polarity type alternations that have recently been shown to be present in the case of liquids with cations of moderately long linear tails. For this study, we have chosen to use the 1-alkyl-1-methylpyrrolidinium, Pyrr(1,n(+)) with n = 5 or 7, as systems with linear tails, 1-(2-ethylhexyl)-1-methylpyrrolidinium, Pyrr(1,EtHx(+)), as a system with a branched tail, and 1-(cyclohexylmethyl)-1-methylpyrrolidinium, Pyrr(1,ChxMe(+)), as a system with a cyclic tail. We put these results into context by comparing these data with recently published results for the Pyrr(1,n(+))/NTf2(-) ionic liquids with n = 4, 6, 8, and 10.1,2 General methods for interpreting the structure function S(q) in terms of q-dependent natural partitionings are described. This allows for an in-depth analysis of the scattering data based on molecular dynamics (MD) trajectories that highlight the effect of modifying the cationic tail.

  13. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  14. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  15. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  16. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  17. [Effect of monovalent cations on glutamate metabolism in rat brain].

    PubMed

    Nilova, N S

    1976-10-01

    Glutamate oxidation in vitro via deamination and transamination during gramicidin C-induced transport of K+ and Na+ in rat nervous tissue mitochondria was studied. An increase in ammonium production, i.e. in glutamate oxidation due to deamination, was shown to occur with maximal increase of oxygen consumption in the presence of cations. It was found that 1.5 mM Na+ activate oxygen consumption by 15% and accelerate ammonium production from glutamate (by 17%). No changes in aspartate production were observed. 15 mM K+ increase oxygen consumption by 29% and ammonium production by 11% during a decrease in aspartate production as compared to glutamate oxidation in the presence of a lower (10 mM) concentration of K+ in the samples.

  18. Improving Cellulose Dissolution in Ionic Liquids by Tuning the Size of the Ions: Impact of the Length of the Alkyl Chains in Tetraalkylammonium Carboxylate.

    PubMed

    Meng, Xiangqian; Devemy, Julien; Verney, Vincent; Gautier, Arnaud; Husson, Pascale; Andanson, Jean-Michel

    2017-04-22

    Twenty ionic liquids based on tetraalkylammonium cations and carboxylate anions have been synthesized, characterized, and tested for cellulose dissolution. The amount of cellulose dissolved in these ionic liquids depends strongly on the size of the ions: from 0 to 22 wt % cellulose can be dissolved at 90 °C. The best ionic liquids are less viscous and ammonium carboxylate based ionic liquids can dissolve as much as imidazolium-based ones. The viscosity of an ionic liquid can be decreased by the addition of DMSO as a cosolvent. After the addition of cosolvent, similar amounts of cellulose per ions are reached for most ionic liquids. As observed by rheology, ionic liquids with the longest alkyl chains form a gel when a high amount of cellulose is dissolved; this drastically limits their potential. Molecular simulations and IR spectroscopy have also been used with the aim of understanding how molecular interactions differ between efficient and inefficient ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives

    DOE PAGES

    Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M; ...

    2016-06-23

    In this work we investigated the feasibility of five quaternary (aprotic) and four tertiary (protic) ammonium ionic liquids (ILs) with an identical organophosphate anion as lubricant antiwear additives. Viscosity, oil solubility, thermal stability, and corrosivity of the candidate ILs were characterized and correlated to the molecular structure. The protic group exhibits higher oil solubility than the aprotic group, and longer alkyl chains seem to provide better oil solubility and higher thermal stability. Selected ILs were applied as oil additives in steel-cast iron tribological tests and demonstrated promising anti-scuffing and anti-wear functionality. The thickness, nanostructure, coverage and composition of the tribofilmmore » formed by the besting performing IL were revealed by surface characterization for mechanistic understanding of the tribochemical interactions between the IL and metal surface. Results provide fundamental insights of the correlations among the molecular structure, physiochemical properties and lubricating performance for ammonium-phosphate ILs.« less

  20. Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M

    In this work we investigated the feasibility of five quaternary (aprotic) and four tertiary (protic) ammonium ionic liquids (ILs) with an identical organophosphate anion as lubricant antiwear additives. Viscosity, oil solubility, thermal stability, and corrosivity of the candidate ILs were characterized and correlated to the molecular structure. The protic group exhibits higher oil solubility than the aprotic group, and longer alkyl chains seem to provide better oil solubility and higher thermal stability. Selected ILs were applied as oil additives in steel-cast iron tribological tests and demonstrated promising anti-scuffing and anti-wear functionality. The thickness, nanostructure, coverage and composition of the tribofilmmore » formed by the besting performing IL were revealed by surface characterization for mechanistic understanding of the tribochemical interactions between the IL and metal surface. Results provide fundamental insights of the correlations among the molecular structure, physiochemical properties and lubricating performance for ammonium-phosphate ILs.« less

  1. Coacervation and aggregate transitions of a cationic ammonium gemini surfactant with sodium benzoate in aqueous solution.

    PubMed

    Wang, Ruijuan; Tian, Maozhang; Wang, Yilin

    2014-03-21

    Coacervation in an aqueous solution of cationic ammonium gemini surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) (C12C6C12Br2) with sodium benzoate (NaBz) has been investigated at 25 °C by turbidity titration, light microscopy, dynamic light scattering, cryogenic temperature transmission electron microscopy (Cryo-TEM), scanning electron microscopy (SEM), isothermal titration calorimetry, ζ potential and (1)H NMR measurements. There is a critical NaBz concentration of 0.10 M, only above which coacervation can take place. However, if the NaBz concentration is too large, coacervation also becomes difficult. Coacervation takes place at a very low concentration of C12C6C12Br2 and exists in a very wide concentration region of C12C6C12Br2. The phase behavior in the NaBz concentration from 0.15 to 0.50 M includes spherical micelles, threadlike micelles, coacervation, and precipitation. With increasing NaBz concentration, the phase boundaries of coacervation shift to higher C12C6C12Br2 concentration. Moreover, the C12C6C12Br2-NaBz aggregates in the coacervate are found to be close to charge neutralized. The Cryo-TEM and SEM images of the coacervate shows a layer-layer stacking structure consisting of a three-dimensional network formed by the assembly of threadlike micelles. Long, dense and almost uncharged threadlike micelles are the precursors of coacervation in the system.

  2. Base-Free Photoredox/Nickel Dual-Catalytic Cross-Coupling of Ammonium Alkylsilicates.

    PubMed

    Jouffroy, Matthieu; Primer, David N; Molander, Gary A

    2016-01-20

    Single-electron transmetalation is recognized as an enabling technology for the mild transfer of alkyl groups to transition metal catalysts in cross-coupling reactions. Hypercoordinate silicates represent a new and improved class of radical precursors because of their low oxidation potentials and the innocuous byproducts generated upon oxidation. Herein, we report the cross-coupling of secondary and primary ammonium alkylsilicates with (hetero)aryl bromides in good to excellent yields. The base-free conditions have exceptional protic group tolerance on both partners, permitting the cross-coupling of unprotected primary and secondary amines.

  3. Natural zeolite reactivity towards ozone: the role of compensating cations.

    PubMed

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A

    2012-08-15

    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Self-Assembly of Alkylammonium Chains on Montmorillonite: Effect of Interlayer Cations, CEC, and Chain Length

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Li, Yingjun; Zhou, Yuanlin; Wang, Shanqiang; Zheng, Jian; He, Jiacai

    2017-12-01

    Recently, polymeric materials have been filled with synthetic or natural inorganic compounds in order to improve their properties. Especially, polymer clay nanocomposites have attracted both academic and industrial attention. Currently, the structure and physical phenomena of organoclays at molecular level are difficultly explained by existing experimental techniques. In this work, molecular dynamics (MD) simulation was executed using the CLAYFF and CHARMM force fields to evaluate the structural properties of organoclay such as basal spacing, interlayer density, energy and the arrangement of alkyl chains in the interlayer spacing. Our results are in good agreement with available experimental or other simulation data. The effects of interlayer cations (Na+, K+, Ca2+), the cation exchange capacity, and the alkyl chain length on the basal spacing and the structural properties are estimated. These simulations are expected to presage the microstructure of organo-montmorillonite and lead relevant engineering applications.

  5. Quantitative remote sensing of ammonium minerals, Cedar Mountains, Esmeralda County, Nevada

    NASA Technical Reports Server (NTRS)

    Baugh, William M.; Kruse, Fred A.

    1995-01-01

    Mineral-bound ammonium (NH4+) was discovered by the U.S. Geological Survey in the southern Cedar Mountains of Esmeralda County, Nevada in 1989. At 10 km in length, this site is 100 times larger than any previously known occurrence in volcanic rocks. The ammonium occurs in two hydrothermally altered, crystal-rich rhyolitic tuff units of Oligocene age, and is both structurally and stratigraphically controlled. This research uses Advanced Visible/Infrared Imaging Spectrometer (AVIRIS) data to quantitatively map the mineral-bound ammonium (buddingtonite) concentration in the altered volcanic rocks. Naturally occurring mineral-bound ammonium is fairly rare; however, it has been found to occur in gold-bearing hydrothermal deposits. Because of this association, it is thought that ammonium may be a useful too in exploration for gold and other metal deposits. Mineral-bound ammonium is produced when an ammonium ion (NH4+) replaces the alkali cation site (usually K+) in the crystal structure of silicate minerals such as feldspars, micas and clays. Buddingtonite is an ammonium feldspar. The ammonium originates in buried organic plant matter and is transported to the host rock by hydrothermal fluids. Ammonium alteration does not produce visible changes in the rock, and it is barely detectable with standard x-ray diffraction methods. It is clearly identified, however, by absorption features in short wave-infrared (SWIR) wavelengths (2.0 - 2.5 micrometers). The ammonium absorption features are believed to be caused by N-H vibrational modes and are analogous to hydroxyl (O-H) vibrational modes, only shifted slightly in wavelength. Buddingtonite absorption features in the near- and SWIR lie at 1.56, 2.02 and 2.12 micrometers. The feature at 2.12 micrometer is the strongest of the three and is the only one used in this study. The southern Cedar Mountains are sparsely vegetated and are an ideal site for a remote sensing study.

  6. Alkyl–Alkyl Suzuki Cross-Couplings of Unactivated Secondary Alkyl Chlorides**

    PubMed Central

    Lu, Zhe; Fu, Gregory C.

    2010-01-01

    The first method for achieving alkyl–alkyl Suzuki reactions of unactivated secondary alkyl chlorides has been developed. Carbon–carbon bond formation occurs under mild conditions (at room temperature) with the aid of commercially available catalyst components. This method has proved to be versatile: without modification, it can be applied to Suzuki reactions of secondary and primary alkyl bromides and iodides, as well as primary alkyl chlorides. Mechanistic investigations suggest that oxidative addition is not the turnover-limiting step of the catalytic cycle for unactivated secondary alkyl iodides and bromides, whereas it may be (partially) for chlorides. PMID:20715038

  7. Generation of Perfluoroalkyl Acids from Aerobic Biotransformation of Quaternary Ammonium Polyfluoroalkyl Surfactants.

    PubMed

    Mejia-Avendaño, Sandra; Vo Duy, Sung; Sauvé, Sébastien; Liu, Jinxia

    2016-09-20

    The aerobic biotransformation over 180 days of two cationic quaternary ammonium compounds (QACs) with perfluoroalkyl chains was determined in soil microcosms, and biotransformation pathways were proposed. This is the first time that polyfluoroalkyl cationic surfactants used in aqueous film-forming foam (AFFF) formulations were studied for their environmental fate. The biotransformation of perfluorooctaneamido quaternary ammonium salt (PFOAAmS) was characterized by a DT50 value (time necessary to consume half of the initial mass) of 142 days and significant generation of perfluoroalkyl carboxylic acid (PFOA) at a yield of 30 mol % by day 180. The biotransformation of perfluorooctane sulfonamide quaternary ammonium salt (PFOSAmS) was very slow with unobservable change of the spiked mass; yet the generation of perfluorooctanesulfonate (PFOS) at a yield of 0.3 mol % confirmed the biotransformation of PFOSAmS. Three novel biotransformation intermediates were identified for PFOAAmS and three products including perfluorooctane sulfonamide (FOSA) for PFOSAmS through high-resolution mass spectrometry (MS) analysis and t-MS(2) fragmentation. The significantly slower PFOSAmS biotransformation is hypothesized to be due to its stronger sorption to soil owing to a longer perfluoroalkyl chain and a bulkier sulfonyl group, when compared to PFOAAmS. This study has demonstrated that despite overall high stability of QACs and their biocide nature, the ones with perfluoroalkyl chains can be substantially biotransformed into perfluoroalkyl acids in aerobic soil.

  8. CATIONIC EXCHANGE PROCESS FOR THE SEPARATION OF RARE EARTHS

    DOEpatents

    Choppin, G.R.; Thompson, S.G.; Harvey, B.G.

    1960-02-16

    A process for separating mixtures of elements in the lanthanum and actinium series of the periodic table is described. The mixture of elements is dissolved in 0.05 M HCI, wherein the elements exist as tripositive ions. The resulting solution is then transferred to a column of cationic exchange resin and the column eluted with 0.1 to 0.6 M aqueous ammonium alpha hydroxy isobutyrate solution of pH 3.8 to 5.0. The use of ammonium alpha hydroxy isobutyrate as an eluting agent results in sharper and more rapid separations than previously obtainable with eluants such as citric, tartaric, glycolic, and lactic acids.

  9. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  10. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  11. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  12. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  13. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  14. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  15. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  16. Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations.

    PubMed

    Jin, Hui; O'Hare, Bernie; Dong, Jing; Arzhantsev, Sergei; Baker, Gary A; Wishart, James F; Benesi, Alan J; Maroncelli, Mark

    2008-01-10

    Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of phase-transition temperatures, densities, refractive indices, surface tensions, solvatochromic polarities based on absorption of Nile Red, 19F chemical shifts of the Tf2N- anion, temperature-dependent viscosities, conductivities, and cation diffusion coefficients are reported. Correlations among the measured quantities as well as the use of surface tension and molar volume for estimating Hildebrand solubility parameters of ionic liquids are also discussed.

  17. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  18. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  19. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  20. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  1. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  2. Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions.

    PubMed

    Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa

    2013-04-12

    Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Ab-Initio Calculation of Electronic Structure of Lead Halide Perovskites with Formamidinium Cation as an Active Material for Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Indari, E. D.; Wungu, T. D. K.; Hidayat, R.

    2017-07-01

    Organic lead halide perovskite material based solar cells show impressive power conversion efficiencies, which can reach above 19 percent for perovskite solar cell with methyl-ammonium cations. These efficiencies are originated from efficient photoexcitation and charge carrier transport and not observed in conventional perovskite crystals. In this preliminary research work, we therefore performed Density Functional Theory (DFT) calculation of formamidinium lead iodide (FAPI), an alternative to methyl-ammonium lead iodide (MAPI), to predict their electronic structure and density of state (DOS). The calculation result at the most stable lattice parameters show a good agreement with the experiment results. The obtained band gap energy is 1.307 eV. The valence band is dominantly formed by the 5p orbitals of I- anions, while the conduction band is dominantly formed by the 6p orbitals of Pb2+ cations. The DOS of valence band of this perovskite seems smaller compared to the case of methyl-ammonium lead iodide perovskite, which then may explain the observation of smaller power conversion efficiencies in perovskite solar cells with this formamidinium cations.

  4. An unprecedented up-field shift in the 13C NMR spectrum of the carboxyl carbons of the lantern-type dinuclear complex TBA[Ru2(O2CCH3)4Cl2] (TBA+ = tetra(n-butyl)ammonium cation).

    PubMed

    Hiraoka, Yuya; Ikeue, Takahisa; Sakiyama, Hiroshi; Guégan, Frédéric; Luneau, Dominique; Gillon, Béatrice; Hiromitsu, Ichiro; Yoshioka, Daisuke; Mikuriya, Masahiro; Kataoka, Yusuke; Handa, Makoto

    2015-08-14

    A large up-field shift (-763 ppm) has been observed for the carboxyl carbons of the dichlorido complex TBA[Ru(2)(O(2)CCH(3))(4)Cl(2)] (TBA(+) = tetra(n-butyl)ammonium cation) in the (13)C NMR spectrum (CD(2)Cl(2) at 25 °C). The DFT calculations showed spin delocalization from the paramagnetic Ru(2)(5+) core to the ligands, in agreement with the large up-field shift.

  5. Intramolecular cation-π interactions in protonated phenylalanine derivatives.

    PubMed

    Fu, Weiqiang; Carr, Patrick J J; Lecours, Michael J; Burt, Michael; Marta, Rick A; Steinmetz, Vincent; Fillion, Eric; McMahon, Terrance B; Hopkins, W Scott

    2016-12-21

    The structures and properties of a series of phenylalanine (Phe) derivatives have been investigated in a joint computational and experimental infrared multiple photon dissociation (IRMPD) study. IRMPD spectra in the 1000-2000 cm -1 region show that protonation is localized on the amine group in all cases. Intramolecular cation-π interactions between the ammonium group and the phenyl ring heavily influence molecular geometries and properties such as gas phase basicity and proton affinity. By varying substituents on the phenyl ring, one can sensitively tune the cation-π interaction and, therefore, the molecular structure and properties. Variations in molecular structures and properties as a function of phenyl ring substitution are shown to correlate with substituent Hammett parameters.

  6. Thermodynamic and Spectroscopic Investigation of Interactions between Reactive Red 223 and Reactive Orange 122 Anionic Dyes and Cetyltrimethyl Ammonium Bromide (CTAB) Cationic Surfactant in Aqueous Solution

    PubMed Central

    Irfan, Muhammad; Usman, Muhammad; Mansha, Asim; Rasool, Nasir; Ibrahim, Muhammad; Rana, Usman Ali; Siddiq, Mohammad; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z. E.; Khan, Salah Ud-Din

    2014-01-01

    The present study describes the conductometric and spectroscopic study of the interaction of reactive anionic dyes, namely, reactive red 223 and reactive orange 122 with the cationic surfactant cetyltrimethyl ammonium bromide (CTAB). In a systematic investigation, the electrical conductivity data was used to calculate various thermodynamic parameters such as free energy (ΔG), enthalpy (ΔH), and the entropy (ΔS) of solubilization. The trend of change in these thermodynamic quantities indicates toward the entropy driven solubilization process. Moreover, the results from spectroscopic data reveal high degree of solubilization, with strong interactions observed in the cases of both dyes and the CTAB. The spontaneous nature of solubilization and binding was evident from the observed negative values of free energies (ΔG p and ΔG b). PMID:25243216

  7. Nitrogen removal from wastewater through microbial electrolysis cells and cation exchange membrane.

    PubMed

    Haddadi, Sakineh; Nabi-Bidhendi, Gholamreza; Mehrdadi, Nasser

    2014-02-17

    Vulnerability of water resources to nutrients led to progressively stricter standards for wastewater effluents. Modification of the conventional procedures to meet the new standards is inevitable. New technologies should give a priority to nitrogen removal. In this paper, ammonium chloride and urine as nitrogen sources were used to investigate the capacity of a microbial electrolysis cell (MEC) configured by cation exchange membrane (CEM) for electrochemical removal of nitrogen over open-and closed-circuit potentials (OCP and CCP) during biodegradation of organic matter. Results obtained from this study indicated that CEM was permeable to both organic and ammonium nitrogen over OCP. Power substantially mediated ammonium migration from anodic wastewater to the cathode, as well. With a urine rich wastewater in the anode, the maximum rate of ammonium intake into the cathode varied from 34.2 to 40.6 mg/L.h over CCP compared to 10.5-14.9 mg/L.h over OCP. Ammonium separation over CCP was directly related to current. For 1.46-2.12 mmol electron produced, 20.5-29.7 mg-N ammonium was removed. Current also increased cathodic pH up to 12, a desirable pH for changing ammonium ion to ammonia gas. Results emphasized the potential for MEC in control of ammonium through ammonium separation and ammonia volatilization provided that membrane characteristic is considered in their development.

  8. Rapid visual detection of quaternary ammonium surfactants using citrate-capped silver nanoparticles (Ag NPs) based on hydrophobic effect.

    PubMed

    Zheng, Li-Qing; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2014-01-01

    In this work, a rapid, sensitive and low-cost colorimetric method for detection of quaternary ammonium surfactants using citrate-capped silver nanoparticles (Ag NPs) was developed. The quaternary ammonium surfactants induce the aggregation of Ag NPs through the hydrophobic effect, which is a novel aggregation mechanism of Ag NPs. The addition of cationic surfactant results in color change of Ag NPs solution from yellow to red and finally to colorless, which is due to the broadening of the surface plasmon band. The color change was monitored using a UV-vis spectrophotometer. The LOD of different cationic surfactants was in the range of 0.5-5 µM. More importantly, this detection method was successfully utilized to the disinfectant residual sample. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  9. Tetra­butyl­ammonium tetra­kis­(trimethyl­silanolato-κO)ferrate(III)

    PubMed Central

    Hay, Michael; Staples, Richard; Lee, Andre

    2012-01-01

    In the title salt, (C16H36N)[Fe(C3H9OSi)4], the cation contains a central N atom bonded to four n-butyl alkyl groups in a tetra­hedral arrangement, while the anion contains a central FeIII atom tetra­hedrally coordinated by four trimethyl­silanolate ligands. PMID:22969479

  10. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  11. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-01-05

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  12. Effects of alkyl chain length and anion size on thermal and structural properties for 1-alkyl-3-methylimidazolium hexafluorocomplex salts (C(x)MImAF6, x = 14, 16 and 18; A = P, As, Sb, Nb and Ta).

    PubMed

    Xu, Fei; Matsumoto, Kazuhiko; Hagiwara, Rika

    2012-03-28

    A series of 1-alkyl-3-methylimidazolium hexafluorocomplex salts (C(x)MImAF(6), x = 14, 16 and 18, A = P, As, Sb, Nb and Ta) have been characterized by thermal analysis, X-ray diffraction and polarized optical microscopy. A liquid crystalline mesophase is observed for all the C(16)MIm and C(18)MIm salts. The C(14)MIm(+) cation gives a liquid crystalline mesophase only with PF(6)(-). The temperature range of the liquid crystalline mesophase increases with an increase in alkyl chain length or with decrease in anion size. Single-crystal X-ray diffraction revealed that all the C(18)MImAF(6) salts (A = P, As, Sb, Nb and Ta) are isostructural with each other in the crystalline phase and have a layered structure. The interdigitated alkyl chain of the cation has a bent shape like a spoon near the imidazolium ring in the crystalline phase at -100 °C and is tilted with respect to the sheets of the imidazolium headgroups and anions. An increase of temperature increases the ratio of an all-trans conformation to the bent conformation in the crystalline phase. X-ray diffraction and polarized optical microscopy suggested that the liquid crystalline mesophase has a smectic A(2) structure. The interlayer distance increases with a decrease in the anion size since the smaller anion has a stronger coulombic interaction with the imidazolium headgroup, resulting in the decrease of the interdigitated part to give a larger layer spacing.

  13. Relations of ammonium minerals at several hydrothermal systems in the western U.S.

    USGS Publications Warehouse

    Krohn, M.D.; Kendall, C.; Evans, J.R.; Fries, T.L.

    1993-01-01

    Ammonium bound to silicate and sulfate minerals has recently been located at several major hydrothermal systems in the western U.S. utilizing newly-discovered near-infrared spectral properties. Knowledge of the origin and mineralogic relations of ammonium minerals at known hydrothermal systems is critical for the proper interpretation of remote sensing data and for testing of possible links to mineralization. Submicroscopic analysis of ammonium minerals from two mercury- and gold-bearing hot-springs deposits at Ivanhoe, Nevada and McLaughlin, California shows that the ammonium feldspar, buddingtonite, occurs as fine-grained euhedral crystals coating larger sulfide and quartz crystals. Ammonium feldspar seems to precipitate relatively late in the crystallization sequence and shows evidence for replacement of NH4+ by K+ or other monovalent cations. Some buddingtonite is observed in close association with mercury, but not with gold. Ammonioalunite is found in a variety of isolated crystal forms at both deposits. Nitrogen isotopic values for ammonium-bearing minerals show a 14??? range in composition, precluding assignment of a specific provenance to the nitrogen. The correlations of nitrogen isotopic values with depth and ammonium content suggest some loss of nitrogen in the oxidizing supergene environment, possibly as a metastable mineral. The high ammonium content in these hydrothermal systems, the close association to mercury, and the small crystal size of the ammonium-bearing minerals all suggest that ammonium may be transported in a late-stage vapor phase or as an organic volatile. Such a process could lead to the formation of a non-carbonaceous organic aureole above a buried geothermal source. The discovery of a 10-km outcrop of ammonium minerals confirms that significant substitution of ammonium in minerals is possible over an extensive area and that remote sensing is a feasible means to detect such aureoles. ?? 1993.

  14. A Systematic Investigation of Quaternary Ammonium Ions as Asymmetric Phase Transfer Catalysts. Synthesis of Catalyst Libraries and Evaluation of Catalyst Activity

    PubMed Central

    Denmark, Scott E.; Gould, Nathan D.; Wolf, Larry M.

    2011-01-01

    Despite over three decades of research into asymmetric phase transfer catalysis (APTC), a fundamental understanding of the factors that affect the rate and stereoselectivity of this important process are still obscure. This paper describes the initial stages of a long-term program aimed at elucidating the physical organic foundations of APTC employing a chemoinformatic analysis of the alkylation of a protected glycine imine with a libraries of enantiomerically enriched quaternary ammonium ions. The synthesis of the quaternary ammonium ions follows a diversity oriented approach wherein the tandem inter[4+2]/intra[3+2] cycloaddition of nitroalkenes serves as the key transformation. A two part synthetic strategy comprised of: (1) preparation of enantioenriched scaffolds and (2) development of parallel synthesis procedures is described. The strategy allows for the facile introduction of four variable groups in the vicinity of a stereogenic quaternary ammonium ion. The quaternary ammonium ions exhibited a wide range of activity and to a lesser degree enantioselectivity. Catalyst activity and selectivity are rationalized in a qualitative way based on the effective positive potential of the ammonium ion. PMID:21446721

  15. Modifying Silicates for Better Dispersion in Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces

  16. Radiochemical study of reactions of alkyl cations with amines. I. Reactions of methyl and sec-butyl cations with diethylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignat`ev, I.S.; Kochina, T.A.; Nefedov, V.D.

    1995-08-10

    Ion-molecular gas-phase reactions of free methyl and sec-butyl cations with diethylamine were studied. These reactions proceed via two competing pathways involving formation of a condensation complex or a proton-transfer complex, the latter process predominating. 32 refs., 1 tab.

  17. Teaching Experiment to Elucidate a Cation-Pi Effect in an Alkyne Cycloaddition Reaction and Illustrate Hypothesis-Driven Design of Experiments

    ERIC Educational Resources Information Center

    St.Germain, Elijah J.; Horowitz, Andrew S.; Rucco, Dominic; Rezler, Evonne M.; Lepore, Salvatore D.

    2017-01-01

    An organic chemistry experiment is described that is based on recent research to elucidate a novel cation-pi interaction between tetraalkammonium cations and propargyl hydrazines. This nonbonded interaction is a key component of the mechanism of ammonium-catalyzed intramolecular cycloaddition of nitrogen to the terminal carbon of a C-C triple bond…

  18. Small angle neutron scattering from 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids ([Cnmim][PF6], n=4, 6, and 8)

    NASA Astrophysics Data System (ADS)

    Hardacre, Christopher; Holbrey, John D.; Mullan, Claire L.; Youngs, Tristan G. A.; Bowron, Daniel T.

    2010-08-01

    The presence of local anisotropy in the bulk, isotropic, and ionic liquid phases—leading to local mesoscopic inhomogeneity—with nanoscale segregation and expanding nonpolar domains on increasing the length of the cation alkyl-substituents has been proposed on the basis of molecular dynamics (MD) simulations. However, there has been little conclusive experimental evidence for the existence of intermediate mesoscopic structure between the first/second shell correlations shown by neutron scattering on short chain length based materials and the mesophase structure of the long chain length ionic liquid crystals. Herein, small angle neutron scattering measurements have been performed on selectively H/D-isotopically substituted 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids with butyl, hexyl, and octyl substituents. The data show the unambiguous existence of a diffraction peak in the low-Q region for all three liquids which moves to longer distances (lower Q), sharpens, and increases in intensity with increasing length of the alkyl substituent. It is notable, however, that this peak occurs at lower values of Q (longer length scale) than predicted in any of the previously published MD simulations of ionic liquids, and that the magnitude of the scattering from this peak is comparable with that from the remainder of the amorphous ionic liquid. This strongly suggests that the peak arises from the second coordination shells of the ions along the vector of alkyl-chain substituents as a consequence of increasing the anisotropy of the cation, and that there is little or no long-range correlated nanostructure in these ionic liquids.

  19. Crystal structure of ammonium bis­(pyridine-2,6-di­carboxyl­ato-κ3 O,N,O′)chromate(III) from synchrotron data

    PubMed Central

    Moon, Dohyun; Choi, Jong-Ha

    2015-01-01

    The structure of the title compound, (NH4)[Cr(pydc)2] (pydc is pyridine-2,6-di­carboxyl­ate, C7H3NO4), has been determined from synchrotron data. The CrIII ion and the N atom of the ammonium cation are located on a crystallographic fourfold rotoinversion axis (-4). The CrIII cation is coordinated by four O atoms and the two N atoms of two meridional pydc ligands, displaying a distorted octa­hedral geometry. The Cr—N and Cr—O bond lengths are 1.9727 (15) and 1.9889 (9) Å, respectively. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the N–H groups of the ammonium cation and pyridine C–H groups as donors and the non-coordinating carbonyl O atoms as acceptors. PMID:25878821

  20. Comparison of tetrachloromethane sorption to an alkylammonium-clay and an alkyldiammonium-clay

    USGS Publications Warehouse

    Smith, J.A.; Jaffe, P.R.

    1991-01-01

    The interlamellar space of Wyoming bentonite (clay) was modified by exchanging either decyltrimethyl-ammonium (DTMA) or decyltrimethyldiammonium (DTMDA) cations for inorganic ions, and tetrachloromethane sorption to the resulting two organoclays from water was studied at 10, 20, and 35??C. Only one end of the 10-carbon alkyl chain of the DTMA cation is attached to the silica surface of the clay mineral, and tetrachloromethane sorption of DTMA-clay is characterized by isotherm linearity, noncompetitive sorption, weak solute uptake, and a relatively low heat of sorption. Both ends of the 10-carbon chain of the DTMDA cation are attached to the silica surface of the clay mineral, and tetrachloromethane sorption to DTMDA-clay is characterized by nonlinear isotherms, competitive sorption, strong solute uptake, and a relatively high, exothermic heat of sorption that varies as a function of the mass of tetrachloromethane sorbed. Therefore, the attachment of both ends of the alkyl chain to the interlamellar mineral surface appears to change the sorption mechanism from a partition-dominated process to an adsorption-dominated process. ?? 1991 American Chemical Society.

  1. All-inorganic Germanium nanocrystal films by cationic ligand exchange

    DOE PAGES

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; ...

    2016-01-21

    In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less

  2. [Alkylating agents].

    PubMed

    Pourquier, Philippe

    2011-11-01

    With the approval of mechlorethamine by the FDA in 1949 for the treatment of hematologic malignancies, alkylating agents are the oldest class of anticancer agents. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in specific indications and sometimes represent the unique option for the treatment of refractory diseases. Here, we are reviewing the major classes of alkylating agents and their mechanism of action, with a particular emphasis for the new generations of alkylating agents. As for most of the chemotherapeutic agents used in the clinic, these compounds are derived from natural sources. With a complex but original mechanism of action, they represent new interesting alternatives for the clinicians, especially for tumors that are resistant to conventional DNA damaging agents. We also briefly describe the different strategies that have been or are currently developed to potentiate the use of classical alkylating agents, especially the inhibition of pathways that are involved in the repair of DNA lesions induced by these agents. In this line, the development of PARP inhibitors is a striking example of the recent regain of interest towards the "old" alkylating agents.

  3. Poly(vinyl alcohol) composite films with high percent elongation prepared from amylose-fatty ammonium salt inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Amylose inclusion complexes prepared from cationic fatty ammonium salts and jet-cooked high amylose starch were combined with poly(vinyl alcohol) (PVOH) to form glycerol-plasticized films. Their tensile properties were compared with similar films prepared previously with analogous anionic fatty acid...

  4. Neighbor-Directed Histidine N (s)–Alkylation: A Route to Imidazolium-Containing Phosphopeptide Macrocycles-Biopolymers | Center for Cancer Research

    Cancer.gov

    Our recently discovered, selective, on-resin route to N(s)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. Interestingly, these cationic moieties subsequently

  5. Carbamate-linked cationic lipids with different hydrocarbon chains for gene delivery.

    PubMed

    Shi, Jia; Yu, Shijun; Zhu, Jie; Zhi, Defu; Zhao, Yinan; Cui, Shaohui; Zhang, Shubiao

    2016-05-01

    A series of carbamate-linked cationic lipids containing saturated or unsaturated hydrocarbon chains and quaternary ammonium head were designed and synthesized. After recrystallization, carbamate-linked cationic lipids with high purity (over 95%) were obtained. The structures of these lipids were proved by IR spectrum, HR-ESI-MS, HPLC, (1)H NMR and (13)C NMR. The liposomes were prepared by using these cationic lipids and neutral lipid DOPE. Particle size and zeta-potential were studied to show that they were suitable for gene transfection. The DNA-bonding ability of C12:0, C14:0 and C18:1 cationic liposomes was much better than others. The results of transfection showed that hydrophobic chains of these lipids have great effects on their transfection activity. The lipids bearing C12:0, C14:0 saturated chains or C18:1 unsaturated chain showed relatively higher transfection efficiency and lower cytotoxicity. So these cationic lipids could be used as non-viral gene carriers for further studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Synthesis of Norbornane Bisether Antibiotics via Silver-mediated Alkylation

    PubMed Central

    Hickey, Shane M.; Ashton, Trent D.; White, Jonathan M.; Li, Jian; Nation, Roger L.; Yu, Heidi Y.; Elliott, Alysha G.; Butler, Mark S.; Huang, Johnny X.; Cooper, Matthew A.

    2015-01-01

    A small series of norbornane bisether diguanidines have been synthesized and evaluated as antibacterial agents. The key transformation—bisalkylation of norbornane diol 6—was not successful using Williamson methodology but has been accomplished using Ag2O mediated alkylation. Further functionalization to incorporate two guanidinium groups gave rise to a series of structurally rigid cationic amphiphiles; several of which (16d, 16g and 16h) exhibited antibiotic activity. For example, compound 16d was active against a broad range of bacteria including Pseudomonas aeruginosa (MIC = 8 µg/mL), Escherichia coli (MIC = 8 µg/mL) and methicillin-resistant Staphylococcus aureus (MIC = 8 µg/mL). PMID:26251697

  7. Ion transport with charge-protected and non-charge-protected cations using the compensated Arrhenius formalism. Part 2. Relationship between ionic conductivity and diffusion.

    PubMed

    Petrowsky, Matt; Fleshman, Allison; Bopege, Dharshani N; Frech, Roger

    2012-08-09

    Temperature-dependent ionic conductivities and cation/anion self-diffusion coefficients are measured for four electrolyte families: TbaTf-linear primary alcohols, LiTf-linear primary alcohols, TbaTf-n-alkyl acetates, and LiTf-n-alkyl acetates. The Nernst-Einstein equation does not adequately describe the data. Instead, the compensated Arrhenius formalism is applied to both conductivity and diffusion data. General trends based on temperature and alkyl chain length are observed when conductivity is plotted against cation or anion diffusion coefficient, but there is no clear pattern to the data. However, plotting conductivity exponential prefactors against those for diffusion results in four distinct curves, one each for the alcohol and acetate families described above. Furthermore, the TbaTf-alcohol and TbaTf-acetate data are "in line" with each other. The conductivity prefactors for the LiTf-alcohol data are smaller than those for the TbaTf data. The LiTf-acetate data have the lowest conductivity prefactors. This trend in prefactors mirrors the observed trend in degree of ionic association for these electrolytes.

  8. Antimicrobial activity of chemically modified dextran derivatives.

    PubMed

    Tuchilus, Cristina G; Nichifor, Marieta; Mocanu, Georgeta; Stanciu, Magdalena C

    2017-04-01

    Cationic amphiphilic dextran derivatives with a long alkyl group attached to the reductive end of the polysaccharide chain and quaternary ammonium groups attached as pendent groups to the main dextran backbone were synthesized and tested for their antimicrobial properties against several bacteria and fungi strains. Dependence of antimicrobial activity on both polymer chemical composition (dextran molar mass, length of end alkyl group and chemical structure of ammonium groups) and type of microbes was highlighted by disc-diffusion method (diameter of inhibition zone) and broth microdilution method (minimum inhibitory concentrations). Polymers had antimicrobial activity for all strains studied, except for Pseudomonas aeruginosa ATCC 27853. The best activity against Staphylococcus aureus (Minimun Inhibitory Concentration 60μg/mL) was provided by polymers obtained from dextran with lower molecular mass (Mn=4500), C 12 H 25 or C 18 H 37 end groups, and N,N-dimethyl-N-benzylammonium pendent groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Enhancing Nitrogen Availability, Ammonium Adsorption-Desorption, and Soil pH Buffering Capacity using Composted Paddy Husk

    NASA Astrophysics Data System (ADS)

    Latifah, O.; Ahmed, O. H.; Abdul Majid, N. M.

    2017-12-01

    Form of nitrogen present in soils is one of the factors that affect nitrogen loss. Nitrate is mobile in soils because it does not absorb on soil colloids, thus, causing it to be leached by rainfall to deeper soil layers or into the ground water. On the other hand, temporary retention and timely release of ammonium in soils regulate nitrogen availability for crops. In this study, composted paddy husk was used in studies of soil leaching, buffering capacity, and ammonium adsorption and desorption to determine the: (i) availability of exchangeable ammonium, available nitrate, and total nitrogen in an acid soil after leaching the soil for 30 days, (ii) soil buffering capacity, and (iii) ability of the composted paddy husk to adsorb and desorb ammonium from urea. Leaching of ammonium and nitrate were lower in all treatments with urea and composted paddy husk compared with urea alone. Higher retention of soil exchangeable ammonium, available nitrate, and total nitrogen of the soils with composted paddy husk were due to the high buffering capacity and cation exchange capacity of the amendment to adsorb ammonium thus, improving nitrogen availability through temporary retention on the exchange sites of the humic acids of the composted paddy husk. Nitrogen availability can be enhanced if urea is amended with composted paddy husk.

  10. Ammonium across a Selective Polymer Inclusion Membrane: Characterization, Transport, and Selectivity.

    PubMed

    Casadellà, Anna; Schaetzle, Olivier; Loos, Katja

    2016-05-01

    The recovery of ammonium from urine requires distinguishing and excluding sodium and potassium. A polymer inclusion membrane selective for ammonium is developed using an ionophore based on pyrazole substituted benzene. The interactions of the components are studied, as well as their effect on transport and selectivity. Spectroscopic and thermogravimetric measurements show no extensive physical interactions of the components, and that the plasticizer reduces the intermolecular forces (rigidity) of the membrane. The ionophore turns the membrane more rigid, although it increases its swelling degree and therefore the affinity of cations. A ratio of plasticizer (DEHP) and polymer (PVC) of 1:3 in mass gives the highest ammonium flux. Tested contents of ionophore (2 and 5 wt%) show that the higher the content of the ionophore, the fastest the flux is (7.5 × 10(-3) mmol cm(-2) h(-1) ). Selectivity of NH4 (+) over Na(+) and over K(+) is reduced from 13.07 to 9.33 and from 14.15 to 9.57 correspondingly. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. C-1s NEXAFS spectroscopy reveals chemical fractionation of humic acid by cation-induced coagulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christl,I.; Kretzschmar, R.

    2007-01-01

    The influence of cation-induced coagulation on the chemical composition of dissolved and coagulated fractions of humic acid was investigated in batch coagulation experiments for additions of aluminum at pH 4 and 5, iron at pH 4, and calcium and lead at pH 6. The partitioning of organic carbon and metals was determined by analyzing total organic carbon and total metal contents of the dissolved phase. Both the dissolved and the coagulated humic acid fractions were characterized using synchrotron scanning transmission X-ray microscopy (STXM) and C-1s near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Intensities of {pi}* transitions of carboxyl carbon andmore » {sigma}* transitions of alkyl, O-alkyl, and carboxyl carbon decreased with increasing metal concentration for the dissolved humic acid fractions. This decrease was accompanied by an increase of the respective intensities in the coagulated fraction as shown for lead. Intensities of aromatic and phenolic carbon were affected to a larger extent only by aluminum and iron additions. The changes observed in the C-1s NEXAFS spectra coincided with an increasing removal of organic carbon from the dissolved phase with increasing total metal concentrations. We conclude that humic acid was chemically fractionated by cation-induced coagulation, which preferentially removed functional groups involved in metal-cation binding from solution.« less

  12. Dielectric relaxation of alkyl chains in graphite oxide and n-alkylammonium halides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, Xiaoqian; Tian, Yuchen; Gu, Min, E-mail: mgu@nju.edu.cn

    2016-05-15

    The dynamic of n-alkylammonium halides and n-alkylammonium cations (n = 12, 14, 16, 18) intercalated in graphite oxide (GO) have been investigated with complex impedance spectroscopy. X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, elemental analysis and thermogravimetry served to characterize the materials. The intercalated alkylammonium cations distributes as monolayers (when n = 12, 14 or 16) or bilayers (when n = 18), with their long axis parallel to GO layers, and with cations of headgroups bonded ionically to C-O{sup -} groups of GO; backbones of the confined molecules remain free. All halides and intercalation compounds suffer dielectric loss atmore » low temperature. Arrhenius plots of the thermal dependence of the loss peaks, which are asymmetric, produce apparent activation energies that rise with increasing n. Ngai’s correlated-state model helps to correct for effects of dipole-dipole interaction, leading to virtually identical values for actual activation energy of 110 meV ± 5%; the values are also almost the same as the barrier energy for internal rotation in the alkyl macromolecule. We conclude that the relaxation of the alkylammonium cations arises not from C{sub 3} reorientation of the CH{sub 3} at its headgroup, but from small-angle wobbling around its major axis, an intrinsic motion.« less

  13. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of uniform...

  14. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of uniform...

  15. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of uniform...

  16. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of uniform...

  17. Removal of both cationic and anionic contaminants by amphoteric starch.

    PubMed

    Peng, Huanlong; Zhong, Songxiong; Lin, Qintie; Yao, Xiaosheng; Liang, Zhuoying; Yang, Muqun; Yin, Guangcai; Liu, Qianjun; He, Hongfei

    2016-03-15

    A novel amphoteric starch incorporating quaternary ammonium and phosphate groups was applied to investigate the efficiency and mechanism of cationic and anionic contaminant treatment. Its flocculation abilities for kaolin suspension and copper-containing wastewater were evaluated by turbidity reduction and copper removal efficiency, respectively. And the kinetics of formation, breakage and subsequent re-formation of aggregates were monitored using a Photometric Dispersion Analyzer (PDA) and characterized by flocculation index (FI). The results showed that amphoteric starch possessed the advantages of being lower-dosages-consuming and being stronger in shear resistance than cationic starch, and exhibited a good flocculation efficiency over a wide pH range from 3.0 to 11.0. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Adsorption of dissymmetric cationic gemini surfactants at silica/water interface

    NASA Astrophysics Data System (ADS)

    Sun, Yuhai; Feng, Yujun; Dong, Hongwei; Chen, Zhi

    2007-05-01

    Adsorption of a series of cationic gemini surfactants 12-2- m ( m = 8, 12, 16) on the surface of silica was investigated. The critical micelle concentrations, cmcs, of cationic gemini surfactants in the initial solutions and in the supernatants were measured by conductometry and tensiometer. The changes in cmc values indicate that the ion exchanges take place between polar groups of gemini surfactants adsorbed and ions bound on the surface of silica. The adsorption isotherms of cationic gemini surfactants were obtained by a solution depletion method. Based on the driving force, the adsorption includes two steps, one of which is ion exchange, and the other is hydrophobic interaction. In each step, the tendency of surfactant molecules in the solution to form aggregates or to be adsorbed on the silica varies with their structures. The maximum adsorption amount of gemini surfactants on the silica, τmax, decreases as increasing in the length of one alkyl chain, m, from 8, 12 to 16. So the results show that the adsorption behaviors of gemini surfactants are closely related to the dissymmetry of gemini molecules.

  19. Critical behaviour and vapour-liquid coexistence of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids via Monte Carlo simulations.

    PubMed

    Rai, Neeraj; Maginn, Edward J

    2012-01-01

    Atomistic Monte Carlo simulations are used to compute vapour-liquid coexistence properties of a homologous series of [C(n)mim][NTf2] ionic liquids, with n = 1, 2, 4, 6. Estimates of the critical temperatures range from 1190 K to 1257 K, with longer cation alkyl chains serving to lower the critical temperature. Other quantities such as critical density, critical pressure, normal boiling point, and accentric factor are determined from the simulations. Vapour pressure curves and the temperature dependence of the enthalpy of vapourisation are computed and found to have a weak dependence on the length of the cation alkyl chain. The ions in the vapour phase are predominately in single ion pairs, although a significant number of ions are found in neutral clusters of larger sizes as temperature is increased. It is found that previous estimates of the critical point obtained from extrapolating experimental surface tension data agree reasonably well with the predictions obtained here, but group contribution methods and primitive models of ionic liquids do not capture many of the trends observed in the present study

  20. Interaction of ammonium with birnessite: Evidence of a chemical and structural transformation in alkaline aqueous medium

    NASA Astrophysics Data System (ADS)

    Boumaiza, Hella; Coustel, Romain; Despas, Christelle; Ruby, Christian; Bergaoui, Latifa

    2018-02-01

    The ammonium cation interaction with Na-birnessite in aqueous alkaline medium was studied. Solution and solid analysis give evidence that birnessite is not only acting as a cationic exchanger toward NH4+. The surface analysis performed by XPS showed that N1s spectra are characterized by the existence of two different environments: one assignable to an interlayer NH4+ and the second to a chemisorbed N-species. Structural and chemical transformations were observed on birnessite with nitrogen mass balance deficit. The monitoring of NH4+, Na+, Mn2+, NO3- and NO2- and solid changes (average oxidation state of Mn, cation exchange capacity, solid nitrogen content and symmetry evolution identified by XRD and FTIR) indicate unambiguously that NH4+ reacts chemically with the birnessite.

  1. Poly(terphenylene) Anion Exchange Membranes: The Effect of Backbone Structure on Morphology and Membrane Property

    DOE PAGES

    Lee, Woo-Hyung; Park, Eun Joo; Han, Junyoung; ...

    2017-05-05

    A new design concept for ion-conducting polymers in anion exchange membranes (AEMs) fuel cells is proposed based on structural studies and conformational analysis of polymers and their effect on the properties of AEMs. Thermally, chemically, and mechanically stable terphenyl-based polymers with pendant quaternary ammonium alkyl groups were synthesized to investigate the effect of varying the arrangement of the polymer backbone and cation-tethered alkyl chains. The results demonstrate that the microstructure and morphology of these polymeric membranes significantly influence ion conductivity and fuel cell performance. Finally, the results of this study provide new insights that will guide the molecular design ofmore » polymer electrolyte materials to improve fuel cell performance.« less

  2. Direct observation of electrogenic NH4(+) transport in ammonium transport (Amt) proteins.

    PubMed

    Wacker, Tobias; Garcia-Celma, Juan J; Lewe, Philipp; Andrade, Susana L A

    2014-07-08

    Ammonium transport (Amt) proteins form a ubiquitous family of integral membrane proteins that specifically shuttle ammonium across membranes. In prokaryotes, archaea, and plants, Amts are used as environmental NH4(+) scavengers for uptake and assimilation of nitrogen. In the eukaryotic homologs, the Rhesus proteins, NH4(+)/NH3 transport is used instead in acid-base and pH homeostasis in kidney or NH4(+)/NH3 (and eventually CO2) detoxification in erythrocytes. Crystal structures and variant proteins are available, but the inherent challenges associated with the unambiguous identification of substrate and monitoring of transport events severely inhibit further progress in the field. Here we report a reliable in vitro assay that allows us to quantify the electrogenic capacity of Amt proteins. Using solid-supported membrane (SSM)-based electrophysiology, we have investigated the three Amt orthologs from the euryarchaeon Archaeoglobus fulgidus. Af-Amt1 and Af-Amt3 are electrogenic and transport the ammonium and methylammonium cation with high specificity. Transport is pH-dependent, with a steep decline at pH values of ∼5.0. Despite significant sequence homologies, functional differences between the three proteins became apparent. SSM electrophysiology provides a long-sought-after functional assay for the ubiquitous ammonium transporters.

  3. Direct observation of electrogenic NH4+ transport in ammonium transport (Amt) proteins

    PubMed Central

    Wacker, Tobias; Garcia-Celma, Juan J.; Lewe, Philipp; Andrade, Susana L. A.

    2014-01-01

    Ammonium transport (Amt) proteins form a ubiquitous family of integral membrane proteins that specifically shuttle ammonium across membranes. In prokaryotes, archaea, and plants, Amts are used as environmental NH4+ scavengers for uptake and assimilation of nitrogen. In the eukaryotic homologs, the Rhesus proteins, NH4+/NH3 transport is used instead in acid–base and pH homeostasis in kidney or NH4+/NH3 (and eventually CO2) detoxification in erythrocytes. Crystal structures and variant proteins are available, but the inherent challenges associated with the unambiguous identification of substrate and monitoring of transport events severely inhibit further progress in the field. Here we report a reliable in vitro assay that allows us to quantify the electrogenic capacity of Amt proteins. Using solid-supported membrane (SSM)-based electrophysiology, we have investigated the three Amt orthologs from the euryarchaeon Archaeoglobus fulgidus. Af-Amt1 and Af-Amt3 are electrogenic and transport the ammonium and methylammonium cation with high specificity. Transport is pH-dependent, with a steep decline at pH values of ∼5.0. Despite significant sequence homologies, functional differences between the three proteins became apparent. SSM electrophysiology provides a long-sought-after functional assay for the ubiquitous ammonium transporters. PMID:24958855

  4. The vibrational spectrum and lattice dynamics of polycrystalline ammonium hydrosulfide. [Jupiter atmosphere implications

    NASA Technical Reports Server (NTRS)

    Bragin, J.; Diem, M.; Guthals, D.; Chang, S.

    1977-01-01

    The infrared spectra of alkali metal and ammonium hydrosulfides have been recorded from wavenumbers of 200 to 4000 at liquid nitrogen temperatures, and the Raman spectra of these substances have been recorded from wavenumbers of 0 to 4000 over the temperature range 83-390 K. No evidence of a second solid phase was obtained. Internal and external fundamentals were assigned, in detail, based on selection rules, isotopic frequency shifts, and analogy with structurally similar salts. Barriers to anion and cation reorientation of 3.8 and 1.9 kcal/mole, respectively, have been calculated from librational assignments. The implications of the infrared spectrum of ammonium hydrosulfide for the possible spectroscopic detection of this substance in the atmosphere of the planet Jupiter are discussed.

  5. Structure, hydrogen bonding and thermal expansion of ammonium carbonate monohydrate.

    PubMed

    Fortes, A Dominic; Wood, Ian G; Alfè, Dario; Hernández, Eduardo R; Gutmann, Matthias J; Sparkes, Hazel A

    2014-12-01

    We have determined the crystal structure of ammonium carbonate monohydrate, (NH4)2CO3·H2O, using Laue single-crystal diffraction methods with pulsed neutron radiation. The crystal is orthorhombic, space group Pnma (Z = 4), with unit-cell dimensions a = 12.047 (3), b = 4.453 (1), c = 11.023 (3) Å and V = 591.3 (3) Å(3) [ρcalc = 1281.8 (7) kg m(-3)] at 10 K. The single-crystal data collected at 10 and 100 K are complemented by X-ray powder diffraction data measured from 245 to 273 K, Raman spectra measured from 80 to 263 K and an athermal zero-pressure calculation of the electronic structure and phonon spectrum carried out using density functional theory (DFT). We find no evidence of a phase transition between 10 and 273 K; above 273 K, however, the title compound transforms first to ammonium sesquicarbonate monohydrate and subsequently to ammonium bicarbonate. The crystallographic and spectroscopic data and the calculations reveal a quite strongly hydrogen-bonded structure (EHB ≃ 30-40 kJ mol(-1)), on the basis of H...O bond lengths and the topology of the electron density at the bond critical points, in which there is no free rotation of the ammonium cation at any temperature. The barrier to free rotation of the ammonium ions is estimated from the observed librational frequency to be ∼ 36 kJ mol(-1). The c-axis exhibits negative thermal expansion, but the thermal expansion behaviour of the a and b axes is ormal.

  6. Structure, hydrogen bonding and thermal expansion of ammonium carbonate monohydrate

    PubMed Central

    Fortes, A. Dominic; Wood, Ian G.; Alfè, Dario; Hernández, Eduardo R.; Gutmann, Matthias J.; Sparkes, Hazel A.

    2014-01-01

    We have determined the crystal structure of ammonium carbonate monohydrate, (NH4)2CO3·H2O, using Laue single-crystal diffraction methods with pulsed neutron radiation. The crystal is orthorhombic, space group Pnma (Z = 4), with unit-cell dimensions a = 12.047 (3), b = 4.453 (1), c = 11.023 (3) Å and V = 591.3 (3) Å3 [ρcalc = 1281.8 (7) kg m−3] at 10 K. The single-crystal data collected at 10 and 100 K are complemented by X-ray powder diffraction data measured from 245 to 273 K, Raman spectra measured from 80 to 263 K and an athermal zero-pressure calculation of the electronic structure and phonon spectrum carried out using density functional theory (DFT). We find no evidence of a phase transition between 10 and 273 K; above 273 K, however, the title compound transforms first to ammonium sesquicarbonate monohydrate and subsequently to ammonium bicarbonate. The crystallographic and spectroscopic data and the calculations reveal a quite strongly hydrogen-bonded structure (E HB ≃ 30–40 kJ mol−1), on the basis of H⋯O bond lengths and the topology of the electron density at the bond critical points, in which there is no free rotation of the ammonium cation at any temperature. The barrier to free rotation of the ammonium ions is estimated from the observed librational frequency to be ∼ 36 kJ mol−1. The c-axis exhibits negative thermal expansion, but the thermal expansion behaviour of the a and b axes is ormal. PMID:25449618

  7. Molecular dynamic simulation of dicationic ionic liquids: effects of anions and alkyl chain length on liquid structure and diffusion.

    PubMed

    Yeganegi, Saeid; Soltanabadi, Azim; Farmanzadeh, Davood

    2012-09-20

    Structures and dynamics of nine geminal dicationic ionic liquids (DILs) Cn(mim)2X2, where n = 3, 6, and 9 and X = PF6(-), BF4(-), and Br(-), were studied by molecular dynamic simulations (J. Phys. Chem.B2004, 108, 2038-2047). A force field with a minor modification for C3(mim)2 × 2 was adopted for the simulations. Densities, detailed microscopic structures, mean-square displacements (MSD), and self-diffusivities for various ion pairs from MD simulations have been presented. The calculated densities for C9(mim)2X2 (X = Br(-) and BF4(-)) agreed well with the experimental values. The calculated RDFs show that anions are well organized around the imidazolium rings. The calculated RDFs indicate that, unlike the mono cationic ILs, the anions and cations in DILs distribute homogeneously. Enthalpies of vaporization were calculated and correlated with the structural features of DILs. The local structure of C9(mim)2X2 (X = Br, PF6) was examined by the spatial distribution function (SDF). The calculated SDFs show that similar trends were found by other groups for mono cationic ionic liquids (ILs). The highest probability densities are located around the imidazolium ring hydrogens. The calculated diffusion coefficients show that the ion diffusivities are 1 order of magnitude smaller than that of the mono cationic ionic liquids. The effects of alkyl chain length and anion type on the diffusion coefficient were also studied. The dynamics of the imidazolium rings and the alkyl chain in different time scales have also discussed. The calculated transference numbers show that the anions have the major role in carrying the electric current in a DIL.

  8. The Scarlet Letter of Alkylation: A Mini Review of Selective Alkylating Agents

    PubMed Central

    Oronsky, Bryan T; Reid, Tony; Knox, Susan J; Scicinski, Jan J

    2012-01-01

    If there were a stigma scale for chemotherapy, alkylating agents would be ranked at the top of the list. The chemical term alkylation is associated with nonselective toxicity, an association that dates back to the use of nitrogen mustards during World War I as chemical warfare agents. That this stigma persists and extends to compounds that, through selectivity, attempt to “tame” the indiscriminate destructive potential of alkylation is the subject of this review. Selective alkylation, as it is referred to herein, constitutes an extremely nascent and dynamic field in oncology. The pharmacodynamic response to this selective strategy depends on a delicate kinetic balance between specificity and the rate and extent of binding. Three representative compounds are presented: RRx-001, 3-bromopyruvate, and TH-302. The main impetus for the development of these compounds has been the avoidance of the serious complications of traditional alkylating agents; therefore, it is the thesis of this review that they should not experience stigma by association. PMID:22937173

  9. TRANSPORT AND FATE OF AMMONIUM AND ITS IMPACT ON URANIUM AND OTHER TRACE ELEMENTS AT A FORMER URANIUM MILL TAILING SITE

    PubMed Central

    Miao, Ziheng; Nihat, Hakan; McMillan, Andrew Lee; Brusseau, Mark L.

    2013-01-01

    The remediation of ammonium-containing groundwater discharged from uranium mill tailing sites is a difficult problem facing the mining industry. The Monument Valley site is a former uranium mining site in the southwest US with both ammonium and nitrate contamination of groundwater. In this study, samples collected from 14 selected wells were analyzed for major cations and anions, trace elements, and isotopic composition of ammonium and nitrate. In addition, geochemical data from the U.S. Department of Energy (DOE) database were analyzed. Results showing oxic redox conditions and correspondence of isotopic compositions of ammonium and nitrate confirmed the natural attenuation of ammonium via nitrification. Moreover, it was observed that ammonium concentration within the plume area is closely related to concentrations of uranium and a series of other trace elements including chromium, selenium, vanadium, iron, and manganese. It is hypothesized that ammonium-nitrate transformation processes influence the disposition of the trace elements through mediation of redox potential, pH, and possibly aqueous complexation and solid-phase sorption. Despite the generally relatively low concentrations of trace elements present in groundwater, their transport and fate may be influenced by remediation of ammonium or nitrate at the site. PMID:24357895

  10. The performance of ammonium exchanged zeolite for the biodegradation of petroleum hydrocarbons migrating in soil water.

    PubMed

    Freidman, Benjamin L; Gras, Sally L; Snape, Ian; Stevens, Geoff W; Mumford, Kathryn A

    2016-08-05

    Nitrogen deficiency has been identified as the main inhibiting factor for biodegradation of petroleum hydrocarbons in low nutrient environments. This study examines the performance of ammonium exchanged zeolite to enhance biodegradation of petroleum hydrocarbons migrating in soil water within laboratory scale flow cells. Biofilm formation and biodegradation were accelerated by the exchange of cations in soil water with ammonium in the pores of the exchanged zeolite when compared with natural zeolite flow cells. These results have implications for sequenced permeable reactive barrier design and the longevity of media performance within such barriers at petroleum hydrocarbon contaminated sites deficient in essential soil nutrients. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Connecting Structural and Transport Properties of Ionic Liquids with Cationic Oligoether Chains

    DOE PAGES

    Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele; ...

    2017-06-01

    We used X-ray diffraction and molecular dynamics simulations to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Furthermore, their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidiniummore » ILs increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. Our results point to specific aspects that could be useful for researchers designing ILs for specific applications.« less

  12. Anti-Caries Effects of Dental Adhesives Containing Quaternary Ammonium Methacrylates with Different Chain Lengths

    PubMed Central

    Han, Qi; Li, Bolei; Zhou, Xuedong; Ge, Yang; Wang, Suping; Li, Mingyun; Ren, Biao; Wang, Haohao; Zhang, Keke; Xu, Hockin H. K.; Peng, Xian; Feng, Mingye; Weir, Michael D.; Chen, Yu; Cheng, Lei

    2017-01-01

    The objectives of this study were to investigate the effects of dental adhesives containing quaternary ammonium methacrylates (QAMs) with different alkyl chain lengths (CL) on ecological caries prevention in vitro. Five QAMs were synthesized with a CL = 3, 6, 9, 12, and 16 and incorporated into adhesives. Micro-tensile bond strength and surface charge density were used to measure the physical properties of the adhesives. The proportion change in three-species biofilms consisting of Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii was tested using the TaqMan real-time polymerase chain reaction. Lactic acid assay, MTT [3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, exopolysaccharide staining, live/dead staining, scanning electron microscopy (SEM), and transverse microradiography (TMR) were performed to study the anti-biofilm and anti-demineralization effects of the dental adhesives. The results showed that incorporating QAMs with different alkyl chain lengths into the adhesives had no obvious effect on the dentin bond strength. The adhesives containing QAMs with a longer alkyl chain developed healthier biofilms. The surface charge density, anti-biofilm, and anti-demineralization effects of the adhesives increased with a CL of the QAMs from 3 to 12, but decreased slightly with a CL from 12 to 16. In conclusion, adhesives containing QAMs with a tailored chain length are promising for preventing secondary caries in an “ecological way”. PMID:28773004

  13. Three degradation pathways of 1-octyl-3-methylimidazolium cation by activated sludge from wastewater treatment process.

    PubMed

    Cho, Chul-Woong; Pham, Thi Phuong Thuy; Kim, Sok; Song, Myung-Hee; Chung, Yun-Jo; Yun, Yeoung-Sang

    2016-03-01

    The biodegradability and degradation pathways of 1-octyl-3-methylimidazolium cation [OMIM](+) by microbial community of wastewater treatment plant in Jeonju city, Korea were investigated. It was found that [OMIM](+) could be easily degraded by the microbial community. New degradation products and pathways of [OMIM](+) were identified, which are partially different from previous results (Green Chem. 2008, 10, 214-224). For the analysis of the degradation pathways and intermediates, the mass peaks observed in the range m/z of 50-300 were screened by using a tandem mass spectrometer (MS), and their fragmentation patterns were investigated by MS/MS. Surprisingly, we found three different degradation pathways of [OMIM](+), which were separated according to the initially oxidized position i.e. middle of the long alkyl chain, end of the long alkyl chain, and end of the short alkyl chain. The degradation pathways showed that the long and short alkyl chains of [OMIM](+) gradually degraded by repeating oxidation and carbon release. The results presented here shows that [OMIM](+) can be easily biodegraded through three different degradation pathways in wastewater treatment plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A practical derivatization LC/MS approach for determination of trace level alkyl sulfonates and dialkyl sulfates genotoxic impurities in drug substances.

    PubMed

    An, Jianguo; Sun, Mingjiang; Bai, Lin; Chen, Ted; Liu, David Q; Kord, Alireza

    2008-11-04

    Derivatization LC/MS methodology has been developed for the determination of a group of commonly encountered alkyl esters of sulfonates or sulfates in drug substances at low ppm levels. This general method uses trimethylamine as the derivatizing reagent for ethyl/propyl/isopropyl esters and triethylamine for methyl esters. The resulting quaternary ammonium derivatization products are highly polar (ionic) and can be retained by a hydrophilic interaction liquid chromatography (HILIC) column and readily separated from the main interfering active pharmaceutical ingredient (API) peak that is usually present at very high concentration. The method gives excellent sensitivity for all the alkyl esters at typical target analyte level of 1-2 ppm when the API samples were prepared at 5mg/mL. The recoveries at 1-2 ppm were generally above 85% for all the alkyl esters in the various APIs tested. The injection precisions of the lowest concentration standards were excellent with R.S.D.=0.4-4%. A linear range for concentrations from 0.2 to 20 ppm has been established with R(2)>or=0.99. This general method has been tested in a number of API matrices and used successfully for determination of alkyl sulfonates or dialkyl sulfates in support of API batch releases at GlaxoSmithKline.

  15. Investigations of the ex situ ionic conductivities at 30 degrees C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities.

    PubMed

    Varcoe, John R

    2007-03-28

    This article presents the first systematic study of the effect of Relative Humidity (RH) on the water content and hydroxide ion conductivity of quaternary ammonium-based Alkaline Anion-Exchange Membranes (AAEMs). These AAEMs have been developed specifically for application in alkaline membrane fuel cells, where conductivities of >0.01 S cm(-1) are mandatory. When fully hydrated, an ETFE-based radiation-grafted AAEM exhibited a hydroxide ion conductivity of 0.030 +/- 0.005 S cm(-1) at 30 degrees C without additional incorporation of metal hydroxide salts; this is contrary to the previous wisdom that anion-exchange membranes are very low in ionic conductivity and represents a significant breakthrough for metal-cation-free alkaline ionomers. Desirably, this AAEM also showed increased dimensional stability on full hydration compared to a Nafion-115 proton-exchange membrane; this dimensional stability is further improved (with no concomitant reduction in ionic conductivity) with a commercial AAEM of similar density but containing additional cross-linking. However, all of the AAEMs evaluated in this study demonstrated unacceptably low conductivities when the humidity of the surrounding static atmospheres was reduced (RH = 33-91%); this highlights the requirement for continued AAEM development for operation in H(2)/air fuel cells with low humidity gas supplies. Preliminary investigations indicate that the activation energies for OH(-) conduction in these quaternary ammonium-based solid polymer electrolytes are typically 2-3 times higher than for H(+) conduction in acidic Nafion-115 at all humidities.

  16. Electrostatically driven resonance energy transfer in "cationic" biocompatible indium phosphide quantum dots.

    PubMed

    Devatha, Gayathri; Roy, Soumendu; Rao, Anish; Mallick, Abhik; Basu, Sudipta; Pillai, Pramod P

    2017-05-01

    Indium Phosphide Quantum Dots (InP QDs) have emerged as an alternative to toxic metal ion based QDs in nanobiotechnology. The ability to generate cationic surface charge, without compromising stability and biocompatibility, is essential in realizing the full potential of InP QDs in biological applications. We have addressed this challenge by developing a place exchange protocol for the preparation of cationic InP/ZnS QDs. The quaternary ammonium group provides the much required permanent positive charge and stability to InP/ZnS QDs in biofluids. The two important properties of QDs, namely bioimaging and light induced resonance energy transfer, are successfully demonstrated in cationic InP/ZnS QDs. The low cytotoxicity and stable photoluminescence of cationic InP/ZnS QDs inside cells make them ideal candidates as optical probes for cellular imaging. An efficient resonance energy transfer ( E ∼ 60%) is observed, under physiological conditions, between the cationic InP/ZnS QD donor and anionic dye acceptor. A large bimolecular quenching constant along with a linear Stern-Volmer plot confirms the formation of a strong ground state complex between the cationic InP/ZnS QDs and the anionic dye. Control experiments prove the role of electrostatic attraction in driving the light induced interactions, which can rightfully form the basis for future nano-bio studies between cationic InP/ZnS QDs and anionic biomolecules.

  17. Analysis of reversibility and reaction products of glyoxal uptake onto ammonium sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Chhabra, P. S.; Chan, A. W.; Surratt, J. D.; Kwan, A. J.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.; Keutsch, F. N.

    2009-04-01

    Glyoxal, the smallest alpha-dicarbonyl, is an oxidation product of both biogenic and anthropogenic volatile organic compounds (Fu et al. JGR 113, D15303, 2008). Despite its low molecular weight, its role in secondary organic aerosol (SOA) formation has gained interest and a recent study suggested that it accounts for more than 15% of SOA in Mexico City (Volkamer et al. GRL 34, L19807, 2007). Despite numerous previous studies, questions remain regarding the processes controlling glyoxal uptake onto aerosol, including the role of acid catalysis, degree of reversibility, and identity of aerosol phase reaction products. We present results of chamber aerosol studies (Galloway et al. ACPD 8, 20799, 2008) and laboratory studies of bulk samples aimed at improving the understanding of these processes, in particular formation of oligomers and organosulfates of glyoxal, as well as the formation of imidazoles (carbon-nitrogen containing heterocyclic aromatic compounds) under dark and irradiated conditions. The relevance of these classes of reaction products extends beyond glyoxal, as evidence of oligomers and organosulfates other than those of glyoxal have been found in ambient aerosol (Surratt et al. JPCA 112, 8345, 2008; Denkenberger et al. Environ. Sci. Technol. 41, 5439, 2007). Experiments in which a chamber air mass was diluted after equilibration of glyoxal uptake onto ammonium sulfate seed aerosol (relative humidity 60% and glyoxal mixing ratios of 25-200 ppbv) shows that under these conditions uptake is reversible. The most important condensed phase products are hydrated oligomers of glyoxal, which are also formed reversibly under these conditions. Our studies show that organosulfates were not formed under dark conditions for neutral or acidified aerosol; similarly, Minerath et al. have recently shown that formation of a different class of organosulfates (alkyl sulfates) also proceeds very slowly even under acidic conditions (Environ. Sci. Technol. 42, 4410, 2008). The

  18. Effects of low-level hydrophobic substitution on conditioning properties of cationic cellulosic polymers in shampoo systems.

    PubMed

    Drovetskaya, T V; Kreeger, R L; Amos, J L; Davis, C B; Zhou, S

    2004-01-01

    A new class of cationic conditioning polymers (Polymer SL) has been prepared and evaluated in shampoo formulations. Polymer SL is a family of high viscosity quaternized hydroxyethyl cellulose (HEC) polymers with cationic substitution of trimethyl ammonium and dimethyldodecyl ammonium (Figure 1). SL compositions benefit from hydrophobic character to deliver superior conditioning performance in hair care applications. At the same time, low levels of hydrophobes have been chosen to assure good compatibility with surfactant systems without the complications of associative thickening. The polymers have been evaluated in clear shampoo formulations and two-in-one silicone containing shampoos using objective lab methods and subjective panel evaluation on hair tresses. Commercial conditioning polymers: Polyquaternium-10 (PQ-10) (UCARE Polymer LR-30M) and Guar Hydroxypro-pyltrimethylammonium Chloride (Jaguar C-13S) were used as performance benchmarks. The new hydrophobically-modified cationic polymers demonstrated superior performance in all major categories of conditioning and showed improved silicone deposition from two-in-one systems. Moreover, they retained other good qualities of their PQ-10 structural analogs such as enabling crystal clear formulations and showing no build-up or volume-down effects on hair. These new olymers were also found to be efficient conditioning agents in different surfactant systems with or without silicones.

  19. 40 CFR 180.910 - Inert ingredients used pre- and post-harvest; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... formulation Surfactant α-Alkyl(C6-C15)-ω-hydroxypoly(oxyethylene)sulfate, and its ammonium, calcium, magnesium..., related adjuvants of surfactants Alkyl (C8-C18) sulfate and its ammonium, calcium, isopropylamine... stearate Surfactant Ammonium sulfate Solid diluent, carrier Ammonium thiosulfate Intensifier when used with...

  20. Effects of Surfactants on the Improvement of Sludge Dewaterability Using Cationic Flocculants

    PubMed Central

    Zhai, Jun; Teng, Houkai; Zhao, Chun; Zhao, Chuanliang; Liao, Yong

    2014-01-01

    The effects of the cationic surfactant (cationic cetyl trimethyl ammonium bromide, CTAB) on the improvement of the sludge dewaterability using the cationic flocculant (cationic polyacrylamide, CPAM) were analyzed. Residual turbidity of supernatant, dry solid (DS) content, extracellular polymeric substances (EPS), specific resistance to filtration (SRF), zeta potential, floc size, and settling rate were investigated, respectively. The result showed that the CTAB positively affected the sludge conditioning and dewatering. Compared to not using surfactant, the DS and the settling rate increased by 8%–21.2% and 9.2%–15.1%, respectively, at 40 mg·L−1 CPAM, 10×10−3 mg·L−1 CTAB, and pH 3. The residual turbidities of the supernatant and SRF were reduced by 14.6%–31.1% and 6.9%–7.8% compared with turbidities and SRF without surfactant. Furthermore, the release of sludge EPS, the increases in size of the sludge flocs, and the sludge settling rate were found to be the main reasons for the CTAB improvement of sludge dewatering performance. PMID:25347394

  1. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  2. Crystal structure of ammonium/potassium trans-bis­(N-methyl­iminodi­acetato-κ3 O,N,O′)chromate(III) from synchrotron data

    PubMed Central

    Moon, Dohyun; Choi, Jong-Ha

    2016-01-01

    The structure of the title compound, [(NH4)0.8K0.2][Cr(C5H7NO4)2] (C5H7NO4 is methyl­iminodi­acetate; mida), has been determined from synchrotron data. The CrIII atom is located on a centre of symmetry and is coordinated by two N atoms and four O atoms of two facially arranged tridentate mida ligands, displaying a slightly distorted octa­hedral coordination environment. The Cr—N and mean Cr—O bond lengths are 2.0792 (14) and 1.958 (14) Å, respectively. The cation site is located on a twofold rotation axis and shows occupational disorder, being occupied by ammonium and potassium cations in a 0.8:0.2 ratio. In the crystal, inter­molecular hydrogen bonds involving the N—H groups of the ammonium cation as donor and the two non-coordinating O atoms of the carboxyl­ate group as acceptor groups consolidate the three-dimensional packing. PMID:27536411

  3. Stereoconvergent Amine-Directed Alkyl–Alkyl Suzuki Reactions of Unactivated Secondary Alkyl Chlorides

    PubMed Central

    Lu, Zhe; Wilsily, Ashraf; Fu, Gregory C.

    2011-01-01

    A new family of stereoconvergent cross-couplings of unactivated secondary alkyl electrophiles has been developed, specifically, arylamine-directed alkyl–alkyl Suzuki reactions. This represents the first such investigation to be focused on the use of alkyl chlorides as substrates. Structure-enantioselectivity studies are consistent with the nitrogen, not the aromatic ring, serving as the primary site of coordination of the arylamine to the catalyst. The rate law for this asymmetric cross-coupling is compatible with transmetalation being the turnover-limiting step of the catalytic cycle. PMID:21553917

  4. Self-aggregation of cationically modified poly(ε-caprolactone)2-co-poly(ethylene glycol) copolymers: Effect of cationic grafting ligand and poly(ε-caprolactone) chain length.

    PubMed

    Charoongchit, Pimchanok; Suksiriworapong, Jiraphong; Sripha, Kittisak; Mao, Shirui; Sapin-Minet, Anne; Maincent, Philippe; Junyaprasert, Varaporn Buraphacheep

    2017-03-01

    Cationic copolymers have been attractive to investigate due to their potential to complexation with anionic drugs and expected to use in the pharmaceutical application. In this study, the modified poly(ε-caprolactone) 2 -co-poly(ethylene glycol) copolymers (P(CL) 2 -PEG) were successfully synthesized by click reaction. The amount of small molecular cationic ligand, propargyltrimethyl ammonium iodide, was varied and grafted onto various mole ratios of P(CL) to PEG. The effects of P(CL) chain length and amount of the grafting cationic ligand on physicochemical properties of polymers and particles were studied. The number-average molecular weights of the copolymers grafted with cationic ligand were found ranging between 10,000 and 23,000g/mol as investigated by NMR. From DSC study, the results showed that the grafting ligand affected thermal behaviors of the copolymers by increasing the glass transition temperature and decreasing the melting temperature of the copolymers. Furthermore, these cationic copolymers could self-aggregate with their critical aggregation concentration depending on mole ratios of hydrophilic to hydrophobic portions. The particles containing higher amounts of the cationic ligand tended to aggregate in both acidic and basic pH environment and at high salt concentration. Additionally, particle size, size distribution (PdI), and morphology of self-assembling particles varied depending on P(CL) chain length and the amount of the grafting cationic ligand. The synthesized cationic copolymer showed a capability to encapsulate a high negatively charged drug, enoxaparin, with an encapsulation efficiency of 87%. After drug incorporation, the particles substantially changed in size, shape, PdI, and zeta potential to become more suitable for drug delivery. These cationic copolymers with flexible properties will be the candidate for further development as carriers for the delivery of negatively charged drugs. Copyright © 2016. Published by Elsevier B.V.

  5. Identifying the charge generation dynamics in Cs+-based triple cation mixed perovskite solar cells.

    PubMed

    Salado, Manuel; Kokal, Ramesh K; Calio, Laura; Kazim, Samrana; Deepa, Melepurath; Ahmad, Shahzada

    2017-08-30

    Triple cation based perovskite solar cells offer enhanced moisture tolerance and stability compared to mixed perovskites. Slight substitution of methyl ammonium or formamidinium cation by cesium (Cs + ), was also reported to eliminate halide segregation due to its smaller size. To elucidate the device kinetics and understand the role of the Cs, we undertook different modes of scanning probe microscopy and electrochemical impedance spectroscopy (EIS) experiments. Kelvin probe force microscopy revealed that the incorporation of the Cs cation increases the contact potential difference (CPD), this CPD further increases when Spiro-OMeTAD is used as a hole transport material. The current at the nanoscale level shows improvement with Cs inclusion and further enhancement by the Spiro-OMeTAD deposition, studied under light illumination, which supports the high photocurrent density obtained from the cells. EIS demonstrates that in a triple cation environment, reduced carrier recombination at the TiO 2 /perovskite interface was also obtained which in turn allow us to achieve a higher V oc value.

  6. Mechanism by which ammonium bicarbonate and ammonium sulfate inhibit mycotoxigenic fungi.

    PubMed Central

    DePasquale, D A; Montville, T J

    1990-01-01

    In this study we examined the mechanism by which ammonium bicarbonate inhibits mycotoxigenic fungi. Elevated extracellular pH, alone, was not responsible for the antifungal activity. Although conidia of Penicillium griseofulvum and Fusarium graminearum had internal pH (pHi) values as high as 8.0 in buffer at an external pH (pHo) of 9.5, their viability was not markedly affected. The pHi values from conidia equilibrated in glycine-NaOH-buffered treatments without ammonium bicarbonate or ammonium sulfate were similar to values obtained from buffered treatments containing the ammonium salts. Thus, inhibition did not appear to be directly related to increased pHi. Ammonium sulfate in buffered media at pH greater than or equal to 8.7 was as inhibitory as ammonium bicarbonate, but was completely ineffective at pH less than or equal to 7.8. The hypothesis that free ammonia caused the fungal inhibition was tested by using ammonium sulfate as a model for ammonium bicarbonate. Viability, expressed as log CFU/ml, and percent germination of P. griseofulvum and F. graminearum decreased dramatically as the free ammonia concentration increased. Germination rate ratios (the germination rate in buffered ammonium sulfate divided by the germination rate in buffer alone) decreased linearly as the free ammonia concentration increased, further establishing NH3 as the toxic agent. Ammonium bicarbonate inhibits fungi because the bicarbonate anion supplies the alkalinity necessary to establish an antifungal concentration of free ammonia. PMID:2082821

  7. How Does the Alkyl Chain Length of an Ionic Liquid Influence Solute Rotation in the Presence of an Electrolyte?

    PubMed

    Prabhu, Sugosh R; Dutt, G B

    2016-12-29

    Fluorescence anisotropies of a nonpolar solute, 9-phenylanthracene (9-PA), have been measured in 1-alkyl-3-methylimidazolium (alkyl = methyl, butyl, octyl, and dodecyl) bis(trifluoromethylsulfonyl)imides ([RMIM][Tf 2 N]) with varying amounts (0-0.3 mole fraction) of lithium bis(trifluoromethylsulfonyl)imide (LiTf 2 N). This study has been carried out to understand how the length of the alkyl chain and the concentration of the electrolyte influence the rotational diffusion of a nonpolar solute. It has been observed that the addition of an electrolyte to the ionic liquid increases the bulk viscosity of the system significantly, as the Li + cations strongly coordinate with the [Tf 2 N] anions in the polar domains. The reorientation times of 9-PA have been analyzed with the aid of Stokes-Einstein-Debye hydrodynamic (SED) theory, and they fall within the broad limits set by the hydrodynamic slip and stick boundary conditions. However, deviations from the SED theory have been noticed upon addition of LiTf 2 N, and the influence of the electrolyte is more pronounced in the case of ionic liquids with shorter alkyl chains. The observed trends have been rationalized in terms of electrolyte-induced structural changes in these ionic liquids.

  8. Alkylation of enolates: An electrophilicity perspective

    NASA Astrophysics Data System (ADS)

    Elango, M.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P. K.

    Enolates are ambient nucleophiles, and alkylation can occur either at a carbon or at an oxygen site. It is known that the ratio of C/O alkylation depends significantly on various factors, including the type of enolate, alkylating agent, site of alkylation, and solvent environment. Analysis of regioselectivity and solvent effects on alkylation of lithium enolates is investigated using various reactivity descriptors, including generalized philicity. These results point out the reliability of both global and local reactivity descriptors in providing significant information about site selectivity and chemical reactivity of lithium enolates.

  9. Surface-induced dissociation of methanol cations: A non-ergodic process

    DOE PAGES

    Shukla, Anil K.

    2017-09-01

    Here, dissociation of methanol molecular cations, CH 3OH +, to CH 2OH + on collision with a self-assembled monolayer surface of fluorinated alkyl thiol on gold 111 crystal has been studied at 12.5 eV collision energy. Two energetically and spatially distinct processes contribute to the dissociation process: one involving loss of very large amount of energy approaching the initial kinetic energy of the primary ions with scattering of fragment ions over a broad angular range between surface normal and surface parallel while the second process results from small amount of energy loss with fragment ions scattered over a narrow angularmore » range close to the surface parallel. There is a third process with relatively small contribution to total dissociation whose characteristics are very similar to the low energy loss process. Finally, these results demonstrate that surface-induced dissociation of methanol cations via hydrogen loss is non-ergodic.« less

  10. Surface-induced dissociation of methanol cations: A non-ergodic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil K.

    Here, dissociation of methanol molecular cations, CH 3OH +, to CH 2OH + on collision with a self-assembled monolayer surface of fluorinated alkyl thiol on gold 111 crystal has been studied at 12.5 eV collision energy. Two energetically and spatially distinct processes contribute to the dissociation process: one involving loss of very large amount of energy approaching the initial kinetic energy of the primary ions with scattering of fragment ions over a broad angular range between surface normal and surface parallel while the second process results from small amount of energy loss with fragment ions scattered over a narrow angularmore » range close to the surface parallel. There is a third process with relatively small contribution to total dissociation whose characteristics are very similar to the low energy loss process. Finally, these results demonstrate that surface-induced dissociation of methanol cations via hydrogen loss is non-ergodic.« less

  11. Interplay between alkyl chain asymmetry and cholesterol addition in the rigid ion pair amphiphile bilayer systems

    NASA Astrophysics Data System (ADS)

    Huang, Fong-yin; Chiu, Chi-cheng

    2017-01-01

    Ion pair amphiphile (IPA), a molecular complex composed of a pair of cationic and anionic surfactants, has been proposed as a novel phospholipid substitute. Controlling the physical stability of IPA vesicles is important for its application developments such as cosmetic and drug deliveries. To investigate the effects of IPA alkyl chain combinations and the cholesterol additive on the structural and mechanical properties of IPA vesicular bilayers, we conducted a series of molecular dynamics studies on the hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS) and dodecyltrimethylammonium-hexadecylsulfate (DTMA-HS) IPA bilayers with cholesterol. We found that both IPA bilayers are in the gel phase at 298 K, consistent with experimental observations. Compared with the HTMA-DS system, the DTMA-HS bilayer has more disordered alkyl chains in the hydrophobic region. When adding cholesterol, it induces alkyl chain ordering around its rigid sterol ring. Yet, cholesterol increases the molecular areas for all species and disturbs the molecular packing near the hydrophilic region and the bilayer core. Cholesterol also promotes the alkyl chain mismatch between the IPA moieties, especially for the DTMA-HS bilayer. The combined effects lead to non-monotonically enhancement of the membrane mechanical moduli for both IPA-cholesterol systems. Furthermore, cholesterol can form H-bonds with the alkylsulfate and thus enhance the contribution of alkylsulfate to the overall mechanical moduli. Combined results provide valuable molecular insights into the roles of each IPA component and the cholesterol on modulating the IPA bilayer properties.

  12. Cation-π Interactions: Computational Analyses of the Aromatic Box Motif and the Fluorination Strategy for Experimental Evaluation

    PubMed Central

    Davis, Matthew R.; Dougherty, Dennis A.

    2015-01-01

    Cation-π interactions are common in biological systems, and many structural studies have revealed the aromatic box as a common motif. With the aim of understanding the nature of the aromatic box, several computational methods were evaluated for their ability to reproduce experimental cation-π binding energies. We find the DFT method M06 with the 6-31G(d,p) basis set performs best of several methods tested. The binding of benzene to a number of different cations (sodium, potassium, ammonium, tetramethylammonium, and guanidinium) was studied. In addition, the binding of the organic cations NH4+ and NMe4+ to ab initio generated aromatic boxes as well as examples of aromatic boxes from protein crystal structures were investigated. These data, along with a study of the distance dependence of the cation-π interaction, indicate that multiple aromatic residues can meaningfully contribute to cation binding, even with displacements of more than an angstrom from the optimal cation-π interaction. Progressive fluorination of benzene and indole was studied as well, and binding energies obtained were used to reaffirm the validity of the “fluorination strategy” to study cation-π interactions in vivo. PMID:26467787

  13. Cation-π interactions: computational analyses of the aromatic box motif and the fluorination strategy for experimental evaluation.

    PubMed

    Davis, Matthew R; Dougherty, Dennis A

    2015-11-21

    Cation-π interactions are common in biological systems, and many structural studies have revealed the aromatic box as a common motif. With the aim of understanding the nature of the aromatic box, several computational methods were evaluated for their ability to reproduce experimental cation-π binding energies. We find the DFT method M06 with the 6-31G(d,p) basis set performs best of several methods tested. The binding of benzene to a number of different cations (sodium, potassium, ammonium, tetramethylammonium, and guanidinium) was studied. In addition, the binding of the organic cations NH4(+) and NMe4(+) to ab initio generated aromatic boxes as well as examples of aromatic boxes from protein crystal structures were investigated. These data, along with a study of the distance dependence of the cation-π interaction, indicate that multiple aromatic residues can meaningfully contribute to cation binding, even with displacements of more than an angstrom from the optimal cation-π interaction. Progressive fluorination of benzene and indole was studied as well, and binding energies obtained were used to reaffirm the validity of the "fluorination strategy" to study cation-π interactions in vivo.

  14. 40 CFR 180.910 - Inert ingredients used pre- and post-harvest; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... formulation Surfactant α-Alkyl(C6-C15)-ω-hydroxypoly(oxyethylene)sulfate, and its ammonium, calcium, magnesium... Alkyl (C8-C18) sulfate and its ammonium, calcium, isopropylamine, magnesium, potassium, sodium, and zinc..., 93917-76-1, 5297-93-8, 94266-36-1, 1002-89-7) Surfactant Ammonium stearate Surfactant Ammonium sulfate...

  15. Liquid-liquid distribution of ion associates of tetrabromoindate(III) with quaternary ammonium counter ions.

    PubMed

    Yamamoto, K; Matsumoto, A

    1997-11-01

    The solvent extraction of an ion associate of tetrabromoindate(III) ion, InBr(-)(4), with quaternary ammonium cations (Q(+)) has been studied. The extraction constant (K(ex)) were determined for the ion associates of InBr(-)(4) with Q(+) between an aqueous phase and several organic phases (chloroform, chlorobenzene, benzene and toluene). A linear relationship was found between log K(ex) and the total number of carbon atoms in Q(+); from the slope of the lines, the contribution of a methylene group to log K(ex) was calculated to be 0.91 for the chloroform extraction system and 0.52 for the other extraction systems. The extractability with alkyltrimethylammonium cations was larger than that with symmetrical tetraalkylammonium cations and the mean difference in log K(ex) for two cations (one of each type) with the same number of carbon atoms was about 1.3. From the extraction constant obtained, the extractability of InBr(-)(4) among metal-halogeno complex anions was in the order TlBr(-)(4) > BiI(-)(4) > AuBr(-)(4) > AuCl(-)(4) > TlCl(-)(4) > InBr(-)(4) > CuCl(-)(2).

  16. Determination of trace quaternary ammonium surfactants in water by combining solid-phase extraction with surface-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Chen, Y C; Sun, M C

    2001-01-01

    This study demonstrates the feasibility of combining solid-phase extraction (SPE) with surface-assisted laser desorption/ionization (SALDI) mass spectrometry to determine trace quaternary ammonium surfactants in water. The trace surfactants in water were directly concentrated on the surface of activated carbon sorbent in SPE. The activated carbon sorbent was then mixed with the SALDI liquid for SALDI analysis. No SPE elution procedure was necessary. Experimental results indicate that the surfactants with longer chain alkyl groups exhibit higher sensitivities than those with shorter chain alkyl groups in SPE-SALDI analysis. The detection limit for hexadecyltrimethylammonium bromide is around 10 ppt in SPE-SALDI analysis by sampling 100 mL of aqueous solution, while that of tetradecyltrimethylammonium bromide is about 100 ppt. The detection limit for decyltrimethylammonium bromide and dodecyltrimethylammonium bromide is in the low-ppb range. Copyright 2001 John Wiley & Sons, Ltd.

  17. Solid-phase extraction sorbent consisting of alkyltrimethylammonium surfactants immobilized onto strong cation-exchange polystyrene resin.

    PubMed

    Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D

    2002-10-25

    Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.

  18. Enhancing biodegradation of C16-alkyl quaternary ammonium compounds using an oxygen-based membrane biofilm reactor.

    PubMed

    Lai, YenJung Sean; Ontiveros-Valencia, Aura; Ilhan, Zehra Esra; Zhou, Yun; Miranda, Evelyn; Maldonado, Juan; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2017-10-15

    Quaternary ammonium compounds (QACs) (e.g., hexadecyltrimethyl-ammonium bromide, CTAB) are emerging contaminants with widespread use as surfactants and disinfectants. Because the initial step of QAC biodegradation is mono-oxygenation, QAC degraders require O 2 , but normal aeration leads to serious foaming. Here, we developed and tested an oxygen-based membrane biofilm reactor (O 2 -MBfR) that delivers O 2 by diffusion through the walls of hollow-membranes to a biofilm accumulating on the outer surface of membranes. The O 2 -MBfR sustained QAC biodegradation even with high and toxic QAC input concentrations, up to 400 mg/L CTAB. Bubbleless O 2 transfer completely eliminated foaming, and biofilm accumulation helped the QAC biodegraders resist toxicity. Pseudomonas, Achromobacter, Stenotrophomonas, and members of the Xanthomonadaceae family were dominant in the biofilm communities degrading CTAB, and their proportions depended on the O 2 -delivery capacity of the membranes. Bacteria capable of biodegrading QACs often harbor antibiotic resistance genes (ARGs) that help them avoid QAC toxicity. Gene copies of ARGs were detected in biofilms and liquid, but the levels of ARGs were 5- to 35-fold lower in the liquid than in the biofilm. In summary, the O 2 -MBfR achieved aerobic biodegradation of CTAB with neither foaming nor toxicity, and it also minimized the spread of ARGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Nearly 1000 Protein Identifications from 50 ng of Xenopus laevis Zygote Homogenate Using Online Sample Preparation on a Strong Cation Exchange Monolith Based Microreactor Coupled with Capillary Zone Electrophoresis.

    PubMed

    Zhang, Zhenbin; Sun, Liangliang; Zhu, Guijie; Cox, Olivia F; Huber, Paul W; Dovichi, Norman J

    2016-01-05

    A sulfonate-silica hybrid strong cation exchange monolith microreactor was synthesized and coupled to a linear polyacrylamide coated capillary for online sample preparation and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) bottom-up proteomic analysis. The protein sample was loaded onto the microreactor in an acidic buffer. After online reduction, alkylation, and digestion with trypsin, the digests were eluted with 200 mM ammonium bicarbonate at pH 8.2 for CZE-MS/MS analysis using 1 M acetic acid as the background electrolyte. This combination of basic elution and acidic background electrolytes results in both sample stacking and formation of a dynamic pH junction. 369 protein groups and 1274 peptides were identified from 50 ng of Xenopus laevis zygote homogenate, which is comparable with an offline sample preparation method, but the time required for sample preparation was decreased from over 24 h to less than 40 min. Dramatically improved performance was produced by coupling the reactor to a longer separation capillary (∼100 cm) and a Q Exactive HF mass spectrometer. 975 protein groups and 3749 peptides were identified from 50 ng of Xenopus protein using the online sample preparation method.

  20. Transition-Metal-Catalyzed C-H Alkylation Using Alkenes.

    PubMed

    Dong, Zhe; Ren, Zhi; Thompson, Samuel J; Xu, Yan; Dong, Guangbin

    2017-07-12

    Alkylation reactions represent an important organic transformation to form C-C bonds. In addition to conventional approaches with alkyl halides or sulfonates as alkylating agents, the use of unactivated olefins for alkylations has become attractive from both cost and sustainability viewpoints. This Review summarizes transition-metal-catalyzed alkylations of various carbon-hydrogen bonds (addition of C-H bonds across olefins) using regular olefins or 1,3-dienes up to May 2016. According to the mode of activation, the Review is divided into two sections: alkylation via C-H activation and alkylation via olefin activation.

  1. Ion transport and structural dynamics in homologous ammonium and phosphonium-based room temperature ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Philip J., E-mail: pgrif@seas.upenn.edu; Holt, Adam P.; Tsunashima, Katsuhiko

    2015-02-28

    Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphoniummore » IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range—indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.« less

  2. Ion transport and structural dynamics in homologous ammonium and phosphonium-based room temperature ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Phillip J.; Holt, Adam P.; Tsunashima, Katsuhiko

    2015-02-01

    Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphoniummore » IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range-indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.« less

  3. Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants.

    PubMed

    Zhou, Chengcheng; Wang, Fengyan; Chen, Hui; Li, Meng; Qiao, Fulin; Liu, Zhang; Hou, Yanbo; Wu, Chunxian; Fan, Yaxun; Liu, Libing; Wang, Shu; Wang, Yilin

    2016-02-17

    This work reports that cationic micelles formed by cationic trimeric, tetrameric, and hexameric surfactants bearing amide moieties in spacers can efficiently kill Gram-negative E. coli with a very low minimum inhibitory concentration (1.70-0.93 μM), and do not cause obvious toxicity to mammalian cells at the concentrations used. With the increase of the oligomerization degree, the antibacterial activity of the oligomeric surfactants increases, i.e., hexameric surfactant > tetrameric surfactant > trimeric surfactant. Isothermal titration microcalorimetry, scanning electron microscopy, and zeta potential results reveal that the cationic micelles interact with the cell membrane of E. coli through two processes. First, the integrity of outer membrane of E. coli is disrupted by the electrostatic interaction of the cationic ammonium groups of the surfactants with anionic groups of E. coli, resulting in loss of the barrier function of the outer membrane. The inner membrane then is disintegrated by the hydrophobic interaction of the surfactant hydrocarbon chains with the hydrophobic domains of the inner membrane, leading to the cytoplast leakage. The formation of micelles of these cationic oligomeric surfactants at very low concentration enables more efficient interaction with bacterial cell membrane, which endows the oligomeric surfactants with high antibacterial activity.

  4. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature.

    PubMed

    Do, Hien-Quang; Bachman, Shoshana; Bissember, Alex C; Peters, Jonas C; Fu, Gregory C

    2014-02-05

    The development of a mild and general method for the alkylation of amides with relatively unreactive alkyl halides (i.e., poor substrates for SN2 reactions) is an ongoing challenge in organic synthesis. We describe herein a versatile transition-metal-catalyzed approach: in particular, a photoinduced, copper-catalyzed monoalkylation of primary amides. A broad array of alkyl and aryl amides (as well as a lactam and a 2-oxazolidinone) couple with unactivated secondary (and hindered primary) alkyl bromides and iodides using a single set of comparatively simple and mild conditions: inexpensive CuI as the catalyst, no separate added ligand, and C-N bond formation at room temperature. The method is compatible with a variety of functional groups, such as an olefin, a carbamate, a thiophene, and a pyridine, and it has been applied to the synthesis of an opioid receptor antagonist. A range of mechanistic observations, including reactivity and stereochemical studies, are consistent with a coupling pathway that includes photoexcitation of a copper-amidate complex, followed by electron transfer to form an alkyl radical.

  5. Polyimides with pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1982-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  6. Quaternary ammonium isobaric tag for a relative and absolute quantification of peptides.

    PubMed

    Setner, Bartosz; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2018-02-01

    Isobaric labeling quantification of peptides has become a method of choice for mass spectrometry-based proteomics studies. However, despite of wide variety of commercially available isobaric tags, none of the currently available methods offers significant improvement of sensitivity of detection during MS experiment. Recently, many strategies were applied to increase the ionization efficiency of peptides involving chemical modifications introducing quaternary ammonium fixed charge. Here, we present a novel quaternary ammonium-based isobaric tag for relative and absolute quantification of peptides (QAS-iTRAQ 2-plex). Upon collisional activation, the new stable benzylic-type cationic reporter ion is liberated from the tag. Deuterium atoms were used to offset the differential masses of a reporter group. We tested the applicability of QAS-iTRAQ 2-plex reagent on a series of model peptides as well as bovine serum albumin tryptic digest. Obtained results suggest usefulness of this isobaric ionization tag for relative and absolute quantification of peptides. Copyright © 2017 John Wiley & Sons, Ltd.

  7. High pH instability of quaternary ammonium surfactant coatings in capillary electrophoresis.

    PubMed

    Shulman, Lisa; Pei, Lei; Bahnasy, Mahmoud F; Lucy, Charles A

    2017-06-12

    The two-tailed cationic surfactant dioctadecyldimethyl ammonium bromide (DODAB) produces semi-permanent coatings that yield strongly reversed electroosmotic flow (EOF), for example -0.31 ± 0.01 cm 2 kV -1 s -1 at pH 3.5. Moreover, these coatings are easy to prepare, regenerable, cost effective, and yield high efficiency (520 000-900 000 plates per m) separations of cationic proteins over many runs under acidic (pH 3.5) conditions. Given the quaternary amine functionality of DODAB, we were surprised to observe that DODAB coatings become unstable at pH > 7. At pH 7.2, the EOF of a DODAB coated capillary drifted from reversed to cathodic over only 5 runs, and protein separations became severely compromised. By pH 12, no EOF reversal was observed. Electrophoretic and mass spectrometric studies demonstrate that the coating decomposition involves a surface conversion of the quaternary amine in DODAB to a variety of products, although the exact mechanism remains elusive. Regardless, the results herein demonstrate that semi-permanent coatings based on cationic two-tailed surfactants such as DODAB are limited to separations using acidic buffers.

  8. Purge-and-trap ion chromatography for the determination of trace ammonium ion in high-salinity water samples.

    PubMed

    Wang, Po-Yen; Wu, Jing-Yi; Chen, Hung-Jhen; Lin, Tzung-Yi; Wu, Chien-Hou

    2008-04-25

    It has always been assumed that purge-and-trap (P&T) method is only used for the analysis of volatile organic compounds (VOCs) in aqueous samples. In this paper, a novel P&T preconcentrator has been developed for the determination of trace amounts of ammonium ion in high-salinity water samples by ion chromatography (IC). Method performance is evaluated as a function of concentration of assistant purging material, purging time, and flow rate. Under the optimum P&T conditions with the purified nitrogen gas at flow rate 40 mL/min for 15.0 min at 40 degrees C, the overall collection efficiency is independent of the concentration of ammonium over the range 1.2-5.9 microM. The enrichment factor (EF) of ammonium correlates the ratio of the sample volume to the acceptor solution volume in the trap vessel, providing potentially unlimited increase of the ammonium signal. Our results indicate that environmental samples with low levels of ammonium in matrices with high concentrations of sodium can be easily analyzed and the detection limit down to 75 nM (1.35 ppb) level, corresponding to picomole of ammonia in the injected sample. Calibration graph was constructed with ammonium standards ranging from 0.05 to 6.0 microM and the linearity of the present method was good as suggested by the square of correlation coefficients being better than 0.997. Thus, we have demonstrated that the P&T-IC method allows the routine determination of ammonium ion in seawater samples without cation interferences.

  9. Catanionic mixtures forming gemini-like amphiphiles.

    PubMed

    Sakai, Hideki; Okabe, Yuji; Tsuchiya, Koji; Sakai, Kenichi; Abe, Masahiko

    2011-01-01

    The properties of aqueous mixtures of cationic species with alkyl dicarboxylic acid compounds have been studied. The cationic compounds used in this study were tertiary amine-type N-methyl-N-(2,3-dioxypropyl)hexadecylamine (C16amine) and quaternary ammonium-type N,N-dimethyl-N-(2,3-dioxypropyl)hexadecylammonium chloride (C16Q). The alkyl dicarboxylic acid compounds used were HOOC(CH(2))(10)COOH (C12H) and its sodium salt (C12Na). Three aqueous mixtures were examined in this study: (System I) C16amine + C12H, (System II) C16Q + C12Na, and (System III) C16Q + C12H. The solution pH was set at 12 for System III. The combination of (1)H-NMR and mass spectroscopy data has suggested that a stoichiometric complex is formed in the aqueous solutions at a mole fraction of C12H (or C12Na) = 0.33. Here, the C12H (or C12Na) molecule added to the system bridges two cationic molecules, like a spacer of gemini surfactants. In fact, the static surface tensiometry has demonstrated that the stoichiometric complex behaves as gemini-like amphiphiles in aqueous solutions. Our current study offers a possible way for easily preparing gemini surfactant systems.

  10. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C. Judson; MacKenzie, Patricia D.

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  11. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  12. Molecular design of sequence specific DNA alkylating agents.

    PubMed

    Minoshima, Masafumi; Bando, Toshikazu; Shinohara, Ken-ichi; Sugiyama, Hiroshi

    2009-01-01

    Sequence-specific DNA alkylating agents have great interest for novel approach to cancer chemotherapy. We designed the conjugates between pyrrole (Py)-imidazole (Im) polyamides and DNA alkylating chlorambucil moiety possessing at different positions. The sequence-specific DNA alkylation by conjugates was investigated by using high-resolution denaturing polyacrylamide gel electrophoresis (PAGE). The results showed that polyamide chlorambucil conjugates alkylate DNA at flanking adenines in recognition sequences of Py-Im polyamides, however, the reactivities and alkylation sites were influenced by the positions of conjugation. In addition, we synthesized conjugate between Py-Im polyamide and another alkylating agent, 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). DNA alkylation reactivies by both alkylating polyamides were almost comparable. In contrast, cytotoxicities against cell lines differed greatly. These comparative studies would promote development of appropriate sequence-specific DNA alkylating polyamides against specific cancer cells.

  13. Simultaneous determination of inorganic anions and cations in explosive residues by ion chromatography.

    PubMed

    Meng, Hong-Bo; Wang, Tian-Ran; Guo, Bao-Yuan; Hashi, Yuki; Guo, Can-Xiong; Lin, Jin-Ming

    2008-07-15

    A non-suppressed ion chromatographic method by connecting anion-exchange and cation-exchange columns directly was developed for the separation and determination of five inorganic anions (sulfate, nitrate, chloride, nitrite, and chlorate) and three cations (sodium, ammonium, and potassium) simultaneously in explosive residues. The mobile phase was composed of 3.5mM phthalic acid with 2% acetonitrile and water at flow rate of 0.2 mL/min. Under the optimal conditions, the eight inorganic ions were completely separated and detected simultaneously within 16 min. The limits of detection (S/N=3) of the anions and cations were in the range of 50-100 microg/L and 150-320 microg/L, respectively, the linear correlation coefficients were 0.9941-0.9996, and the R.S.D. of retention time and peak area were 0.10-0.29% and 5.65-8.12%, respectively. The method was applied successfully to the analysis of the explosive samples with satisfactory results.

  14. Mass spectral analysis of long chain alkyl aromatic compounds synthesized from alpha-olefin alkylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, M.T.; Hudson, J.D.

    1994-12-31

    Long chain alkyl aromatic compounds are important petrochemicals with many applications. They are generally synthesized by alkylating the corresponding aromatic nucleus. In this report, the authors will describe the mass spectral fragmentation of alkylphenols and alkylsalicylates.

  15. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under this...

  16. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methyl imidazolium tartrate on Scenedesmus obliquus.

    PubMed

    Liu, Huijun; Zhang, Xiaoqiang; Dong, Ying; Chen, Caidong; Zhu, Shimin; Ma, Xiangjuan

    2015-12-01

    Ionic liquids (ILs) are being used in various industries during the last few decades, while the good solubility and high stability of ILs may pose a potential threat to the aquatic environment. Effect of chiral ionic liquids (CILs) 1-alkyl-3-methyl imidazolium tartrate (RMIM T) on Scenedesmus obliquus (S.obliquus) was studied. The growth rate inhibition and cell membrane permeability increased with increasing RMIM T concentration and increasing alkyl chain lengths. The IC50 values of D-(-)-tartrate 1-hexyl-3-methyl imidazolium (D-(-)-HMIM T) were 28.30, 12.23,10.15 and 14.41 mg/L, respectively, at 24, 48, 72 and 96h. While that of L-(+)-tartrate 1-hexyl-3-methyl imidazolium (L-(+)-HMIM T) were 15.97, 7.91, 9.43 and 12.04 mg/L respectively. The concentration of chl a, chl b and chl (a+b) decreased with increasing RMIM T concentration. The chlorophyll fluorescence parameters (F0, Fv/Fm, Fv/F0, Y(II), ETR and NPQ) were affected by RMIM T, indicating that the RMIM T will damage the PSII, inhibit the transmission of excitation energy, decrease the efficiency of photosynthesis. The results showed that there were enantioselective toxicity of RMIM T to algae, and the toxicity of L-(+)-RMIM T was greater than that of D-(-)-RMIM T, but the enantioselective difference becomes smaller with increasing exposure time, and with the increasing carbon chain length of cation, indicating that cation properties may have a larger effect on toxicity than anion properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Isolation of tert-alkylphenols from the products of alkylation of phenols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesterova, T.N.; Verevkin, S.P.; Rempel', R.D.

    1987-08-10

    The authors studied the conditions of isolation of tert-amyl-, hexyl-, heptyl-, octyl-, decyl-, and dodecylphenols, and tert-alkylcresols, alkylpyrocatechols, and alkylhydroquinones from alkylation products. The compounds were isolated in all cases from reaction mixtures obtained in presence of cation-exchange resins of the KU-2 type. A preliminary stage, flash evaporation of the reaction mass at 4-13 Pa for 5-15 min, is needed to prevent decomposition of tert-alkylphenols during their isolation from acid reaction mixtures by fractionation. Flash distillation of high-boiling tert-alkylphenols should be conducted in presence of a component lowering the boiling point of the mixture, added in 1:(0.5-1.0) weight ratio ofmore » original mixture to the component.« less

  18. Stereocontrolled Alkylative Construction of Quaternary Carbon Centers

    PubMed Central

    Kummer, David A.; Chain, William J.; Morales, Marvin R.; Quiroga, Olga; Myers, Andrew G.

    2009-01-01

    Protocols for the stereodefined formation of α,α-disubstituted enolates of pseudoephedrine amides are presented followed by the implementation of these in diastereoselective alkylation reactions. Direct alkylation of α,α-disubstituted pseudoephedrine amide substrates is demonstrated to be both efficient and diastereoselective across a range of substrates, as exemplified by alkylation of the diastereomeric pseudoephedrine α-methylbutyramides, where both substrates are found to undergo stereospecific replacement of the α-C-H bond with α-C-alkyl, with retention of stereochemistry. This is shown to arise by sequential stereospecific enolization and alkylation reactions, with the alkyl halide attacking a common π-face of the E- and Z-enolates, proposed to be that opposite the pseudoephedrine alkoxide side-chain. Pseudoephedrine α-phenylbutyramides are found to undergo highly stereoselective but not stereospecific α-alkylation reactions, which evidence suggests is due to facile enolate isomerization. Also, we show that α, α-disubstituted pseudoephedrine amide enolates can be generated in a highly stereocontrolled fashion by conjugate addition of an alkyllithium reagent to the s-cis-conformer of an α-alkyl-α,β-unsaturated pseudoephedrine amide, providing α,α-disubstituted enolate substrates that undergo alkylation in the same sense as those formed by direct deprotonation. Methods are presented to transform the α-quaternary pseudoephedrine amide products into optically active carboxylic acids, ketones, primary alcohols, and aldehydes. PMID:18788739

  19. 70. INTERIOR VIEW OF AMMONIUM NITRATE HOUSE, LOOKING AT AMMONIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. INTERIOR VIEW OF AMMONIUM NITRATE HOUSE, LOOKING AT AMMONIUM NITRATE IN STORAGE. APRIL 18, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  20. A Spectral-SAR Model for the Anionic-Cationic Interaction in Ionic Liquids: Application to Vibrio fischeri Ecotoxicity

    PubMed Central

    Lacrămă, Ana-Maria; Putz, Mihai V.; Ostafe, Vasile

    2007-01-01

    Within the recently launched the spectral-structure activity relationship (S-SAR) analysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, along with the associated algebraic correlation factor in terms of the measured and predicted activity norms. The reliability of the present scheme is tested by assessing the Hansch factors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicity endpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium, choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, while confirming the cationic dominant influence when only lipophylicity is considered, demonstrate that the anionic effect dominates all other more specific interactions. It was also proved that the S-SAR vectorial model predicts considerably higher activity for the ionic liquids than for its anionic and cationic subsystems separately, in all considered cases. Moreover, through applying the least norm-correlation path principle, the complete toxicological hierarchies are presented, unfolding the ecological rules of combined cationic and anionic influences in ionic liquid toxicity.

  1. Highly conductive side chain block copolymer anion exchange membranes.

    PubMed

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.

  2. Effects of Cationic Pendant Groups on Ionic Conductivity for Anion Exchange Membranes: Structure Conductivity Relationships

    NASA Astrophysics Data System (ADS)

    Kim, Sojeong; Choi, Soo-Hyung; Lee, Won Bo

    Anion exchange membranes(AEMs) have been widely studied due to their various applications, especially for Fuel cells. Previous proton exchange membranes(PEMs), such as Nafions® have better conductivity than AEMs so far. However, technical limitations such as slow electrode kinetics, carbon monoxide (CO) poisoning of metal catalysts, high methanol crossover and high cost of Pt-based catalyst detered further usages. AEMs have advantages to supplement its drawbacks. AEMs are environmentally friendly and cost-efficient. Based on the well-defined block copolymer, self-assembled morphology is expected to have some relationship with its ionic conductivity. Recently AEMs based on various cations, including ammonium, phosphonium, guanidinium, imidazolium, metal cation, and benzimidazolium cations have been developed and extensively studied with the aim to prepare high- performance AEMs. But more fundamental approach, such as relationships between nanostructure and conductivity is needed. We use well-defined block copolymer Poly(styrene-block-isoprene) as a backbone which is synthesized by anionic polymerization. Then we graft various cationic functional groups and analysis the relation between morphology and conductivity. Theoretical and computational soft matter lab.

  3. Photoionization mass spectrometry of ω -phenylalkylamines: Role of radical cation-π interaction

    NASA Astrophysics Data System (ADS)

    Corinti, Davide; Catone, Daniele; Turchini, Stefano; Rondino, Flaminia; Crestoni, Maria Elisa; Fornarini, Simonetta

    2018-04-01

    Linear ω-phenylalkylamines of increasing alkyl chain length have been investigated employing synchrotron radiation in the photon energy range from 7 to 15 eV. These molecules have received considerable interest because they bear the skeleton of biologically relevant compounds including neurotransmitters and because of the possible interaction between the amino moiety and the phenyl ring. Recently, the contribution of this interaction has been assayed in both neutral and protonated species, pointing to a role of the polymethylene chain length. In this work, the ionization energy (IE) values of benzylamine (BA), 2-phenylethylamine (2-PEA), 3-phenylpropylamine (3-PPA), and 4-phenylbutylamine (4-PBA) were investigated in order to ascertain the impact of the different alkyl chain lengths and to verify an amino radical cation-π interaction. The IEs obtained experimentally, 8.54, 8.37, 8.29, and 8.31 eV for BA, 2-PEA, 3-PPA and 4-PBA, respectively, show a decreasing trend that is discussed employing calculations at the CBS-QB3 level. Moreover, the appearance energy values for major fragments produced by the photofragmentation process are reported.

  4. Enhancement of perchlorate removal from groundwater by cationic granular activated carbon: Effect of preparation protocol and surface properties.

    PubMed

    Hou, Pin; Yan, Zhe; Cannon, Fred S; Yue, Ye; Byrne, Timothy; Nieto-Delgado, Cesar

    2018-06-01

    In order to obtain a high adsorption capacity for perchlorate, the epoxide-forming quaternary ammonium (EQA) compounds were chemically bonded onto granular activated carbon (GAC) surface by cationic reaction. The optimum preparation condition of the cationic GAC was achieved while applying softwood-based Gran C as the parent GAC, dosing EQA first at a pH of 12, preparation time of 48 h, preparation temperature of 50 °C, and mole ratio of EQA/oxygen groups of 2.5. The most favorable cationic GAC that had the QUAB360 pre-anchored exhibited the highest perchlorate adsorption capacity of 24.7 mg/g, and presented the longest bed volumes (3000 BV) to 2 ppb breakthrough during rapid small scale column tests (RSSCTs), which was 150 times higher than that for the pristine Gran C. This was attributed to its higher nitrogen amount (1.53 At%) and higher positive surface charge (0.036 mmol/g) at pH 7.5. Also, there was no leaching of the quaternary ammonium detected in the effluent of the RSSCTs, indicating there was no secondary pollution occurring during the perchlorate removal process. Overall, this study provides an effective and environmental-friendly technology for improving GAC perchlorate adsorption capacity for groundwater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (Oxidizers and Organic Peroxides), and Division 1.5 Materials § 176.410 Division 1.5 materials, ammonium...) Ammonium nitrate, Division 5.1 (oxidizer), UN1942. (3) Ammonium nitrate fertilizer, Division 5.1 (oxidizer), UN 2067. (b) This section does not apply to Ammonium nitrate fertilizer, Class 9, UN 2071 or to any...

  6. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-04

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride.

  7. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation].

    PubMed

    Liu, Zheng-chuan; Yuan, Lin-jiang; Zhou, Guo-biao; Li, Jing

    2015-09-01

    The transformation of nitrite-reducing anaerobic ammonium oxidation to sulfate-reducing anaerobic ammonium oxidation in an UASB was performed and the changes in microbial community were studied. The result showed that the sulfate reducing anaerobic ammonium oxidation process was successfully accomplished after 177 days' operation. The removal rate of ammonium nitrogen and sulfate were up to 58. 9% and 15. 7%, the removing load of ammonium nitrogen and sulfate were 74. 3 mg.(L.d)-1 and 77. 5 mg.(L.d)-1 while concentration of ammonium nitrogen and sulfate of influent were 130 mg.(L.d)-1 and 500 mg.(L.d)-1, respectively. The lost nitrogen and sulphur was around 2 in molar ratio. The pH value of the effluent was lower than that of the influent. Instead of Candidatus brocadia in nitrite reducing anaerobic ammonium oxidation granular sludge, Bacillus benzoevorans became the dominant species in sulfate reducing anaerobic ammonium oxidation sludge. The dominant bacterium in the two kinds of anaerobic ammonium oxidation process is different. Our results imply that the two anaerobic ammonium oxidation processes are carried out by different kind of bacterium.

  8. A continuous analyzer for soluble anionic constituents and ammonium in atmospheric particulate matter.

    PubMed

    Al-Horr, Rida; Samanta, Gautam; Dasgupta, Purnendu K

    2003-12-15

    A new continuous soluble particle collector (PC) that does not use steam is described. Preceded by a denuder and interfaced with an ion chromatograph, this compact collector (3 in. o.d., approximately 5 in. total height) permits collection and continuous extraction of soluble components in atmospheric particulate matter. The PC is mounted atop a parallel plate wetted denuder for removal of soluble gases. The soluble gas denuded air enters the PC through an inlet. One version of the PC contained an integral cyclone-like inlet. For this device, penetration of particles as a function of size was characterized. In the simpler design, the sampled air enters the PC through a nozzle, and deionized water flows through a capillary tube placed close to the exit side of the nozzle by Venturi action or is forcibly pumped. Some growth of the aerosol occurs in the highly humid mist-chamber environment, but the dominant aerosol capture mechanism involves capture by the water film that forms on the hydrophobic PTFE membrane filter that constitutes the top of the PC and the airflow exit. Water drops coalesce on the filter and fall below into a purpose-machined cavity equipped with a liquid sensor. The water and the dissolved constituents are aspirated by a pump onto serial cation and anion preconcentrator columns. NH4+ captured by the cation preconcentrator is eluted with NaOH and is passed across an asymmetric membrane device. NH3 diffuses from the alkaline donor stream into a deionized water flowing countercurrent; the conductivity of the latter provides a measure of ammonium. The anions on the anion preconcentrator column are eluted and measured by a fully automated ion chromatography system. The total system thus provides automated semicontinuous measurement of soluble anions and ammonium. With a 15 min analytical cycle and a sampling rate of 5 L/min, the limit of detection (LOD) for ammonium is 8 ng/m3 and those for sulfate, nitrate, and oxalate are < or = 0.1 ng/m3. The

  9. Ammonium hydroxide poisoning

    MedlinePlus

    Ammonium hydroxide is a colorless liquid chemical solution. It is in a class of substances called caustics. Ammonium hydroxide forms when ammonia dissolves in water. This article discusses poisoning from ...

  10. Synthesis, characterization, and antibacterial activity of N,O-quaternary ammonium chitosan.

    PubMed

    Xu, Tao; Xin, Meihua; Li, Mingchun; Huang, Huili; Zhou, Shengquan; Liu, Juezhao

    2011-11-08

    N,N,N-Trimethyl O-(2-hydroxy-3-trimethylammonium propyl) chitosans (TMHTMAPC) with different degrees of O-substitution were synthesized by reacting O-methyl-free N,N,N-trimethyl chitosan (TMC) with 3-chloro-2-hydroxy-propyl trimethyl ammonium chloride (CHPTMAC). The products were characterized by (1)H NMR, FTIR and TGA, and investigated for antibacterial activity against Staphylococcus aureus and Escherichia coli under weakly acidic (pH 5.5) and weakly basic (pH 7.2) conditions. TMHTMAPC exhibited enhanced antibacterial activity compared with TMC, and the activity of TMHTMAPC increased with an increase in the degree of substitution. Divalent cations (Ba(2+) and Ca(2+)) strongly reduced the antibacterial activity of chitosan, O-carboxymethyl chitosan and N,N,N-trimethyl-O-carboxymethyl chitosan, but the repression on the antibacterial activity of TMC and TMHTMAPC was weaker. This indicates that the free amino group on chitosan backbone is the main functional group interacting with divalent cations. The existence of 100 mM Na(+) slightly reduced the antibacterial activity of both chitosan and its derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The competition of charge remote and charge directed fragmentation mechanisms in quaternary ammonium salt derivatized peptides--an isotopic exchange study.

    PubMed

    Cydzik, Marzena; Rudowska, Magdalena; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2011-12-01

    Derivatization of peptides as quaternary ammonium salts (QAS) is a promising method for sensitive detection by electrospray ionization tandem mass spectrometry (Cydzik et al. J. Pept. Sci. 2011, 17, 445-453). The peptides derivatized by QAS at their N-termini undergo fragmentation according to the two competing mechanisms - charge remote (ChR) and charge directed (ChD). The absence of mobile proton in the quaternary salt ion results in ChR dissociation of a peptide bond. However, Hofmann elimination of quaternary salt creates an ion with one mobile proton leading to the ChD fragmentation. The experiments on the quaternary ammonium salts with deuterated N-alkyl groups or amide NH bonds revealed that QAS derivatized peptides dissociate according to the mixed ChR-ChD mechanism. The isotopic labeling allows differentiation of fragments formed according to ChR and ChD mechanisms. © The Author(s) 2011. This article is published with open access at Springerlink.com

  12. Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System.

    PubMed

    Wu, Xianyong; Qi, Yitong; Hong, Jessica J; Li, Zhifei; Hernandez, Alexandre S; Ji, Xiulei

    2017-10-09

    Aqueous rechargeable batteries are promising solutions for large-scale energy storage. Such batteries have the merit of low cost, innate safety, and environmental friendliness. To date, most known aqueous ion batteries employ metal cation charge carriers. Here, we report the first "rocking-chair" NH 4 -ion battery of the full-cell configuration by employing an ammonium Prussian white analogue, (NH 4 ) 1.47 Ni[Fe(CN) 6 ] 0.88 , as the cathode, an organic solid, 3,4,9,10-perylenetetracarboxylic diimide (PTCDI), as the anode, and 1.0 m aqueous (NH 4 ) 2 SO 4 as the electrolyte. This novel aqueous ammonium-ion battery demonstrates encouraging electrochemical performance: an average operation voltage of ca. 1.0 V, an attractive energy density of ca. 43 Wh kg -1 based on both electrodes' active mass, and excellent cycle life over 1000 cycles with 67 % capacity retention. Importantly, the topochemistry results of NH 4 + in these electrodes point to a new paradigm of NH 4 + -based energy storage. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Palladium-Catalyzed Borylation of Primary Alkyl Bromides

    PubMed Central

    Joshi-Pangu, Amruta; Ma, Xinghua; Diane, Mohamed; Iqbal, Sidra; Kribs, Robert J.; Huang, Richard; Wang, Chao-Yuan

    2012-01-01

    A mild Pd-catalyzed process for the borylation of alkyl bromides has been developed using bis(pinacolato)diboron as a boron source. This process accommodates the use of a wide range of functional groups on the alkyl bromide substrate. Primary bromides react with complete selectivity in the presence of a secondary bromide. The generality of this approach is demonstrated by its extension to the use of alkyl iodides and alkyl tosylates, as well as borylation reactions employing bis(neopentyl glycolato)diboron as the boron source. PMID:22774861

  14. Structural and Mechanistic Analysis of the Choline Sulfatase from Sinorhizobium melliloti: A Class I Sulfatase Specific for an Alkyl Sulfate Ester.

    PubMed

    van Loo, Bert; Schober, Markus; Valkov, Eugene; Heberlein, Magdalena; Bornberg-Bauer, Erich; Faber, Kurt; Hyvönen, Marko; Hollfelder, Florian

    2018-03-30

    Hydrolysis of organic sulfate esters proceeds by two distinct mechanisms, water attacking at either sulfur (S-O bond cleavage) or carbon (C-O bond cleavage). In primary and secondary alkyl sulfates, attack at carbon is favored, whereas in aromatic sulfates and sulfated sugars, attack at sulfur is preferred. This mechanistic distinction is mirrored in the classification of enzymes that catalyze sulfate ester hydrolysis: arylsulfatases (ASs) catalyze S-O cleavage in sulfate sugars and arylsulfates, and alkyl sulfatases break the C-O bond of alkyl sulfates. Sinorhizobium meliloti choline sulfatase (SmCS) efficiently catalyzes the hydrolysis of alkyl sulfate choline-O-sulfate (k cat /K M =4.8×10 3 s -1 M -1 ) as well as arylsulfate 4-nitrophenyl sulfate (k cat /K M =12s -1 M -1 ). Its 2.8-Å resolution X-ray structure shows a buried, largely hydrophobic active site in which a conserved glutamate (Glu386) plays a role in recognition of the quaternary ammonium group of the choline substrate. SmCS structurally resembles members of the alkaline phosphatase superfamily, being most closely related to dimeric ASs and tetrameric phosphonate monoester hydrolases. Although >70% of the amino acids between protomers align structurally (RMSDs 1.79-1.99Å), the oligomeric structures show distinctly different packing and protomer-protomer interfaces. The latter also play an important role in active site formation. Mutagenesis of the conserved active site residues typical for ASs, H 2 18 O-labeling studies and the observation of catalytically promiscuous behavior toward phosphoesters confirm the close relation to alkaline phosphatase superfamily members and suggest that SmCS is an AS that catalyzes S-O cleavage in alkyl sulfate esters with extreme catalytic proficiency. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Biological and surface-active properties of double-chain cationic amino acid-based surfactants.

    PubMed

    Greber, Katarzyna E; Dawgul, Małgorzata; Kamysz, Wojciech; Sawicki, Wiesław; Łukasiak, Jerzy

    2014-08-01

    Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.

  16. Ion/Ion Reactions with "Onium" Reagents: An Approach for the Gas-phase Transfer of Organic Cations to Multiply-Charged Anions

    NASA Astrophysics Data System (ADS)

    Gilbert, Joshua D.; Prentice, Boone M.; McLuckey, Scott A.

    2015-05-01

    The use of ion/ion reactions to effect gas-phase alkylation is demonstrated. Commonly used fixed-charge "onium" cations are well-suited for ion/ion reactions with multiply deprotonated analytes because of their tendency to form long-lived electrostatic complexes. Activation of these complexes results in an SN2 reaction that yields an alkylated anion with the loss of a neutral remnant of the reagent. This alkylation process forms the basis of a general method for alkylation of deprotonated analytes generated via electrospray, and is demonstrated on a variety of anionic sites. SN2 reactions of this nature are demonstrated empirically and characterized using density functional theory (DFT). This method for modification in the gas phase is extended to the transfer of larger and more complex R groups that can be used in later gas-phase synthesis steps. For example, N-cyclohexyl- N'-(2-morpholinoethyl)carbodiimide (CMC) is used to transfer a carbodiimide functionality to a peptide anion containing a carboxylic acid. Subsequent activation yields a selective reaction between the transferred carbodiimide group and a carboxylic acid, suggesting the carbodiimide functionality is retained through the transfer process. Many different R groups are transferable using this method, allowing for new possibilities for charge manipulation and derivatization in the gas phase.

  17. Determination of ammonium in wastewaters by capillary electrophoresis on a column-coupling chip with conductivity detection.

    PubMed

    Luc, Milan; Kruk, Pavol; Masár, Marián

    2011-07-01

    Analytical potentialities of a chip-based CE in determination of ammonium in wastewaters were investigated. CZE with the electric field and/or ITP sample stacking was performed on a column-coupling (CC) chip with integrated conductivity detectors. Acetate background electrolytes (pH ∼3) including 18-crown-6-ether (18-crown-6) and tartaric acid were developed to reach rapid (in 7-8 min) CZE and ITP-CZE resolutions of ammonium from other cations (sodium, potassium, calcium and magnesium) present in wastewater samples. Under preferred working conditions (suppressed hydrodynamic flow (HDF) and EOF on the column-coupling chip), both the employed methods did provide very good repeatabilities of the migration (RSD of 0.2-0.8% for the migration time) and quantitative (RSD of 0.3-4.9% for the peak area) parameters in the model and wastewater samples. Using a 900-nL sample injection volume, LOD for ammonium were obtained at 20 and 40 μg/L concentrations in CZE and ITP-CZE separations, respectively. Very good agreements of the CZE and ITP-CZE determinations of ammonium in six untreated wastewater samples (only filtration and dilution) with the results obtained by a reference spectrometric method indicate a very good accuracy of both the CE methods presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more than...

  19. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more than...

  20. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more than...

  1. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more than...

  2. Aryl sulfonate based anticancer alkylating agents.

    PubMed

    Sheikh, Hamdullah Khadim; Arshad, Tanzila; Kanwal, Ghazala

    2018-05-01

    This research work revolves around synthesis of antineoplastic alkylating sulfonate esters with dual alkylating sites for crosslinking of the DNA strands. These molecules were evaluated as potential antineoplastic cross linking alkylating agents by reaction with the nucleoside of Guanine DNA nucleobase at both ends of the synthesized molecule. Synthesis of the alkylating molecules and the crosslinking with the guanosine nucleoside was monitored by MALDITOF mass spectroscopy. The synthesized molecule's crosslinking or adduct forming rate with the nucleoside was compared with that of 1,4 butane disulfonate (busulfan), in form of time taken for the appearance of [M+H] + . It was found that aryl sulfonate leaving group was causing higher rate of nucleophilic attack by the Lewis basic site of the nucleobase. Furthermore, the rate was also found to be a function of electron withdrawing or donating nature of the substituent on the aryl ring. Compound with strong electron withdrawing substituent on the para position of the ring reacted fastest. Hence, new alkylating agents were synthesized with optimized or desired reactivity.

  3. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M [Idaho Falls, ID; Petkovic, Lucia [Idaho Falls, ID

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  4. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  5. Cationic surfactants in the form of nanoparticles and micelles elicit different human neutrophil responses: a toxicological study.

    PubMed

    Hwang, Tsong-Long; Sung, Calvin T; Aljuffali, Ibrahim A; Chang, Yuan-Ting; Fang, Jia-You

    2014-02-01

    Cationic surfactants are an ingredient commonly incorporated into nanoparticles for clinical practicability; however, the toxicity of cationic surfactants in nanoparticles is not fully elucidated. We aimed to evaluate the inflammatory responses of cationic nanobubbles and micelles in human neutrophils. Soyaethyl morpholinium ethosulfate (SME) and hexadecyltrimethyl-ammonium bromide (CTAB) are the two cationic surfactants employed in this study. The zeta potential of CTAB nanobubbles was 80 mV, which was the highest among all formulations. Nanobubbles, without cationic surfactants, showed no cytotoxic effects on neutrophils in terms of inflammatory responses. Cationic nanobubbles caused a concentration-dependent cytotoxicity of degranulation (elastase release) and membrane damage (release of lactate dehydrogenase, LDH). Among all nanoparticles and micelles, CTAB-containing nanosystems showed the greatest inflammatory responses. A CTAB nanobubble diluent (1/150) increased the LDH release 80-fold. Propidium iodide staining and scanning electron microscopy (SEM) verified cell death and morphological change of neutrophils treated by CTAB nanobubbles. SME, in a micelle form, strengthened the inflammatory response more than SME-loaded nanobubbles. Membrane interaction and subsequent Ca(2+) influx were the mechanisms that triggered inflammation. The information obtained from this work is beneficial in designing nanoparticulate formulations for balancing clinical activity and toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Protonation of a lanthanum phosphide-alkyl occurs at the P-La not the C-La bond: isolation of a cationic lanthanum alkyl complex.

    PubMed

    Izod, Keith; Liddle, Stephen T; Clegg, William

    2004-08-07

    Protonation of the heteroleptic, cyclometalated lanthanum phosphide complex [((Me3Si)2CH)(C6H4-2-CH2NMe2)P]La(THF)[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))] with [Et3NH][BPh4] yields the cationic alkyllanthanum complex [(THF)4La[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))

  7. Phase Stabilization of Ammonium Nitrate

    DTIC Science & Technology

    2008-11-04

    substance into the ammonium nitrate crystal structure. Salts containing ions larger or smaller than either ammonium or nitrate ions have been used...introducing another substance into the ammonium nitrate crystal structure. Salts containing ions larger or smaller than either ammonium or nitrate...two ionic attachment points should yield a nonmigrating salt due to difficulty of having simultaneous dissociation of two ionic structures

  8. Ionic Liquid-Solute Interactions Studied by 2D NOE NMR Spectroscopy.

    PubMed

    Khatun, Sufia; Castner, Edward W

    2015-07-23

    Intermolecular interactions between a Ru(2+)(bpy)3 solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {(1)H-(19)F} HOESY and {(1)H-(1)H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru(2+)(bpy)3 solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru(2+)(bpy)3 solute interacts with both the polar head and the nonpolar tail groups of the 1-butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.

  9. Oil recovery method utilizing glyceryl ether sulfonates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naylor, C.G.

    1984-03-13

    Petroleum may be recovered from petroleum containing formations having high salinity and/or high temperature by injecting into the formation an aqueous fluid containing an effective amount of a surface active agent characterized by the formula: R-O-(A-O)N-(CH2-CH(-CH2-O-CH2-CH2-SO3X)-O)M-H wherein R is an alkyl or alkylaryl radical, AO is an alkylene oxide radical, n is an integer of from 1 to 50, m is an integer from 1 to 10 and X is a sodium, potassium or ammonium cation.

  10. Functionalizing aluminum substrata by quaternary ammonium for antifouling performances

    NASA Astrophysics Data System (ADS)

    He, Xiaoyan; Suo, Xinkun; Bai, Xiuqin; Yuan, Chengqing; Li, Hua

    2018-05-01

    Due to the great loss induced by biofouling, developing new strategies for combating biofouling has attracted extensive attention. Quaternary ammonium salts are potent cationic antimicrobials used in consumer products and their use for surface immobilization could create a contact-active antimicrobial layer. Here we report the facile preparation of a contact-active antifouling coating by tethering polyethyleneimine (PEI) onto flat/nanostructured aluminum surface by hydrogen bonding between PEI and AlOOH. Quaternized PEI (QPEI) is obtained through quaternization reactions. Biofouling testing suggests excellent antifouling performances of the samples by declining the adhesion of 95% Phaeodactylum tricornutum and 98% of Chlorella pyrenoidosa. The antifouling properties of PEI/QPEI are attributed predominately to their hydrophilic and antimicrobial nature. The technical route of PEI/QPEI surface grafting shows great potential for modifying marine infrastructures for enhanced antifouling performances.

  11. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with...

  12. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with...

  13. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with...

  14. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with...

  15. Hydrothermal synthesis of ammonium illite

    USGS Publications Warehouse

    Šucha, Vladimír; Elsass, F.; Eberl, D.D.; Kuchta, L'.; Madejova, J.; Gates, W.P.; Komadel, P.

    1998-01-01

    Synthetic gel and glass of illitic composition, natural kaolinite, and mixed-layer illite-smectite were used as starting materials for hydrothermal synthesis of ammonium illite. Ammonium illite was prepared from synthetic gel by hydrothermal treatment at 300??C. The onset of crystallization began within 3 h, and well-crystallized ammonium illite appeared at 24 h. Increasing reaction time (up to four weeks) led to many illite layers per crystal. In the presence of equivalent proportions of potassium and ammonium, the gel was transformed to illite with equimolar contents of K and NH4. In contrast, synthesis using glass under the same conditions resulted in a mixture of mixed-layer ammonium illite-smectite with large expandability and discrete illite. Hydrothermal treatments of the fine fractions of natural kaolinite and illite-smectite produced ammonium illite from kaolinite but the illite-smectite remained unchanged.

  16. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    DOE PAGES

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulkmore » IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less

  17. Sorbate-nitrite interactions: acetonitrile oxide as an alkylating agent.

    PubMed

    Pérez-Prior, M Teresa; Gómez-Bombarelli, Rafael; González-Pérez, Marina; Manso, José A; García-Santos, M Pilar; Calle, Emilio; Casado, Julio

    2009-07-01

    Because chemical species with DNA-damaging and mutagenic activity are formed in sorbate-nitrite mixtures and because sorbic acid sometimes coexists with nitrite occurring naturally or incorporated as a food additive, the study of sorbate-nitrite interactions is important. Here, the alkylating potential of the products resulting from such interactions was investigated. Drawn were the following conclusions: (i) Acetonitrile oxide (ACNO) is the compound responsible for the alkylating capacity of sorbate-nitrite mixtures; (ii) ACNO alkylates 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to those of DNA bases, forming an adduct (AD; epsilon = 1.4 x 10(4) M(-1) cm(-1); lambda = 519 nm); (iii) the NBP alkylation reaction complies with the rate equation, r = d[AD]/dt = k(alk)(ACNO)[ACNO][NBP]-k(hyd)(AD)[AD], k(alk)(ACNO) being the NBP alkylation rate constant for ACNO and k(hyd)(AD) the rate constant for the adduct hydrolysis reaction; (iv) the small fraction of ACNO forming the adduct with NBP, as well as the small magnitude of the quotient (k(alk) (ACNO)/k(hyd)(ACNO)) as compared with those reported for other alkylating agents, such as some lactones and N-alkyl-N-nitrosoureas, reveals the ACNO effective alkylating capacity to be less significant; (v) the low value of the NBP-ACNO adduct life (defined as the total amount of adduct present along the progression of the NBP alkylation per unit of alkylating agent concentration) points to the high instability of this adduct; and (vi) the obtained results are in accordance with the low carcinogenicity of ACNO.

  18. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126..., ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. (a) When any item of ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

  19. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126..., ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. (a) When any item of ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

  20. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126..., ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. (a) When any item of ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

  1. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126..., ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. (a) When any item of ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

  2. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126..., ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. (a) When any item of ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

  3. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    NASA Astrophysics Data System (ADS)

    Straka, Pavel; Buryan, Petr; Bičáková, Olga

    2018-02-01

    The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.

  4. Diclofenac Salts. V. Examples of Polymorphism among Diclofenac Salts with Alkyl-hydroxy Amines Studied by DSC and HSM

    PubMed Central

    Fini, Adamo; Cavallari, Cristina; Ospitali, Francesca

    2010-01-01

    Nine diclofenac salts prepared with alkyl-hydroxy amines were analyzed for their properties to form polymorphs by DSC and HSM techniques. Thermograms of the forms prepared from water or acetone are different in most cases, suggesting frequent examples of polymorphism among these salts. Polymorph transition can be better highlighted when analysis is carried out by thermo-microscopy, which in most cases made it possible to observe the processes of melting of the metastable form and re-crystallization of the stable one. Solubility values were qualitatively related to the crystal structure of the salts and the molecular structure of the cation. PMID:27721347

  5. Building a Better Quaternary Ammonium Compound (QAC): Branched Tetracationic Antiseptic Amphiphiles.

    PubMed

    Forman, Megan E; Jennings, Megan C; Wuest, William M; Minbiole, Kevin P C

    2016-07-05

    Bacteria contaminate surfaces in a wide variety of environments, causing severe problems across a number of industries. In a continuation of our campaign to develop novel antibacterial quaternary ammonium compounds (QACs) as useful antiseptics, we have identified a starting material bearing four tertiary amines, enabling the rapid synthesis of several tris- and tetracationic QACs. Herein we report the synthesis and biological activity of a series of 24 multiQACs deemed the "superT" family, and an investigation of the role of cationic charge in antimicrobial and anti-biofilm activity, as well as toxicity. This class represents the most potent series of QACs reported to date against methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentrations (MICs) and minimum biofilm eradication concentrations (MBECs) as low as 0.25 and 25 μm, respectively. Based on the significant cell-surface-charge differences between bacterial and eukaryotic cells, in certain cases we observed excellent efficacy-to-toxicity profiles, exceeding a 100-fold differential. This work further elucidates the chemical underpinnings of disinfectant efficacy versus toxicity based on cationic charge. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 21 CFR 184.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium bicarbonate. 184.1135 Section 184.1135... Listing of Specific Substances Affirmed as GRAS § 184.1135 Ammonium bicarbonate. (a) Ammonium bicarbonate.... Crystals of ammonium bicarbonate are precipitated from solution and subsequently washed and dried. (b) The...

  7. 21 CFR 184.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium bicarbonate. 184.1135 Section 184.1135... Listing of Specific Substances Affirmed as GRAS § 184.1135 Ammonium bicarbonate. (a) Ammonium bicarbonate.... Crystals of ammonium bicarbonate are precipitated from solution and subsequently washed and dried. (b) The...

  8. 21 CFR 184.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium bicarbonate. 184.1135 Section 184.1135... Listing of Specific Substances Affirmed as GRAS § 184.1135 Ammonium bicarbonate. (a) Ammonium bicarbonate.... Crystals of ammonium bicarbonate are precipitated from solution and subsequently washed and dried. (b) The...

  9. Alkylsilyl Peroxides as Alkylating Agents in the Copper-Catalyzed Selective Mono-N-Alkylation of Primary Amides and Arylamines.

    PubMed

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-07-06

    The copper-catalyzed selective mono-N-alkylation of primary amides or arylamines using alkylsilyl peroxides as alkylating agents is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the alkylsilyl peroxides, as well as to the primary amides and arylamines. Mechanistic studies suggest that the present reaction should proceed through a free-radical process that includes alkyl radicals generated from the alkylsilyl peroxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Unexpected regio- and chemoselectivity of cationic gold-catalyzed cycloisomerizations of propargylureas: access to tetrasubstituted 3,4-dihydropyrimidin-2(1H)-ones.

    PubMed

    Pereshivko, Olga P; Peshkov, Vsevolod A; Peshkov, Anatoly A; Jacobs, Jeroen; Van Meervelt, Luc; Van der Eycken, Erik V

    2014-03-21

    Cationic gold-catalyzed cycloisomerizations of propargylureas, derived in situ from secondary propargylamines and aryl or alkyl isocyanates, have been studied. The reaction outcome was found to be different from what was previously observed for the tosyl isocyanate-derived ureas in terms of both regio- and chemoselectivity. As a result, the current protocol offers efficient access to the 3,4-dihydropyrimidin-2(1H)-one core through the 6-endo-dig N-cyclization.

  11. Studying of drug solubility in water and alcohols using drug-ammonium ionic liquid-compounds.

    PubMed

    Halayqa, Mohammad; Pobudkowska, Aneta; Domańska, Urszula; Zawadzki, Maciej

    2018-01-01

    Synthesis of three mefenamic acid (MEF) derivatives - ionic liquid compounds composed of MEF in an anionic form and ammonium cation (choline, MEF1), or {di(2-hydroxyethyl)dimethyl ammonium (MEF2)}, or {tri(2-hydroxyethyl)methyl ammonium compound (MEF3)} is presented. The basic thermal properties of pure compounds i.e. fusion temperatures, and the enthalpy of fusion of these compounds have been measured with differential scanning microcalorimetry technique (DSC). Molar volumes have been calculated with the Barton group contribution method. The solubilities of MEF1, MEF2 and MEF3 using the dynamic method were measured at constant pH in a range of temperature from (290 to 370) K in three solvents: water, ethanol and 1-octanol. The experimental solubility data have been correlated by means of three commonly known G E equations: the Wilson, NRTL and UNIQUAC with the assumption that the systems studied here present simple eutectic behaviour. The activity coefficients of pharmaceuticals at saturated solutions in each binary mixture were calculated from the experimental data. The formation of MEF-ionic liquid compounds greatly increases the solubility in water in comparison with pure MEF or complexes with 2-hydroxypropyl-β-cyclodextrin. The development of these compounds formulations will assist in medication taking into account oral solid or gel medicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Reactions of Tributylstannyl Anioniods with Alkyl Bromides.

    DTIC Science & Technology

    1981-09-28

    g (12 mmol) of cesium tert-butoxide was added to the reaction vessel before the addition of n-butyllithium. Alkylation of Tributylstannyl Anionoids...Dry reaction vessels were purged with argon. The desired alkyl halide (1.0 mmol unless noted) and any desired additive were added to the reaction ...OFFICE OF NAVAL RESEARCH Contract N00014-79-C-0584 Task No. NR 053-714 TECHNICAL REPORT No. 2 Reactions of Tributylstannyl Anionoids with Alkyl

  13. Self-assembly and photopolymerization of a novel quaternary-ammonium functionalized diacetylene on noble metal nanoparticles: A comparative study

    NASA Astrophysics Data System (ADS)

    Martinez-Espinoza, Maria Isabel; Maccagno, Massimo; Thea, Sergio; Alloisio, Marina

    2018-01-01

    Stable hydrosols of gold and silver nanoparticles coated with the quaternary-ammonium group endowed diacetylene DAAMM (N,N,N-trimethyl-3-(pentacosa-10,12-diynamido)propan-1-ammonium) were obtained through a ligand-exchange reaction leaving the morphology of the pristine cores unmodified. Photopolymerization of the chemisorbed diacetylene shell occurred in both red and blue phases thanks to the presence of internal, H-bondable amide functions in the monomer chain, which are supposed to help the formation of a packed bilayer on the metal surfaces. Multidisciplinary characterization of the polymerized samples, including spectroscopic, morphological and thermal techniques, highlighted that differences occur in the polymerization process on gold and silver nanoparticles under different experimental conditions, suggesting a higher affinity of the trimethylammonium headgroup for gold substrates in acidic media. With respect to the extensively investigated PCDA (pentacosa-10,12-diynoic acid), DAAMM showed reduced capability of photogenerating thick polymer shells, especially in the more delocalized blue form, probably because of the inefficiency of the cationic monomer to form the multi-bilayered architecture typical of the highly-performing, carboxyl-terminated diacetylene. On the other end, the inner cross-linked structure gives to poly(DAAMM)-coated nanohybrids increased stability in water with respect to self-assembled counterparts deriving from saturated cationic surfactants, making them a promising sensing platform for rapid and cost effective assays of real samples.

  14. 21 CFR 184.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ammonium bicarbonate. 184.1135 Section 184.1135... GRAS § 184.1135 Ammonium bicarbonate. (a) Ammonium bicarbonate (NH4HCO3, CAS Reg. No. 1066-33-7) is prepared by reacting gaseous carbon dioxide with aqueous ammonia. Crystals of ammonium bicarbonate are...

  15. Femtosecond Raman-Induced Kerr Effect Study of Temperature-Dependent Intermolecular Dynamics in Imidazolium-Based Ionic Liquids: Effects of Anion Species and Cation Alkyl Groups.

    PubMed

    Kakinuma, Shohei; Ishida, Tateki; Shirota, Hideaki

    2017-01-12

    The temperature dependence of the intermolecular vibrational dynamics in imidazolium-based ionic liquids (ILs) with 10 different anions was studied by femtosecond Raman-induced Kerr effect spectroscopy. For all ILs investigated in this study, the intensity in the low-frequency region below 50 cm -1 increases, and the spectral density in the high-frequency region above 80 cm -1 decreases (and shows a redshift) with increasing temperature. The first phenomenon would be attributed to the activation of the translational vibrational motions, whereas the second one is ascribed to the slowing librational motion of the imidazolium ring with increasing temperature. Calculated spectra of the density of states for the intermolecular vibrations of 1-butyl-3-methylimidazolium hexafluorophosphate, which is one of the experiment samples studied here, obtained by molecular dynamics simulation agreed well with the experimental results and confirmed the spectral assignments. When we compared the difference spectra between spectra measured at various temperatures and the spectrum measured at 293 K, a clear difference was found in the ∼50 cm -1 region of the Kerr spectra of 1-butyl-3-methylimidazolium thiocyanate and 1-butyl-3-methylimidazolium dicyanamide from those of the other ILs. The difference might have originated from the librational motions of the corresponding anions. We also compared the temperature-dependent Kerr spectra of hexafluorophosphate salts of 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, and 1-heptyl-3-methylimidazolium cations. These ILs showed a similar temperature dependence, which was not affected by the alkyl group length. The temperature-dependent viscosities and glass transition temperatures of the ILs were also estimated to determine their fragilities.

  16. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    PubMed Central

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  17. Alkylating agents for Waldenstrom's macroglobulinaemia.

    PubMed

    Yang, Kun; Tan, Jianlong; Wu, Taixiang

    2009-01-21

    Waldenstrom's macroglobulinaemia (WM) is an uncommon B-cell lymphoproliferative disorder characterized by bone marrow infiltration and production of monoclonal immunoglobulin. Uncertainty remains if alkylating agents, such as chlorambucil, melphalan or cyclophosphamide, are an effective form of management. To assess the effects and safety of the alkylating agents on Waldenstrom's macroglobulinaemia (WM). We searched the Cochrane Central Register of Controlled Trials (Issue 1, 2008), MEDLINE (1966 to 2008), EMBASE (1980 to 2008), the Chinese Biomedical Base (1982 to 2008) and reference lists of articles.We also handsearched relevant conference proceedings from 1990 to 2008. Randomised controlled trials (RCTs) comparing alkylating agents given concomitantly with radiotherapy, splenectomy, plasmapheresis, stem-cell transplantation in patients with a confirmed diagnosis of WM. Two authors independently assessed trial quality and extracted data. We contacted study authors for additional information. We collected adverse effects information from the trials. One trial involving 92 participants with pretreated/relapsed WM compared the effect of fludarabine versus the combination of cyclophosphamide (the alkylating agent), doxorubicin and prednisone (CAP). Compared to CAP, the Hazard ratio (HR) for deaths of treatment with fludarabine was estimated to be 1.04, with a standard error of 0.30 (95% CI 0.58 to 1.48) and it indicated that the mean difference of median survival time was -4.00 months, and 16.00 months for response duration. The relative risks (RR) of response rate was 2.80 (95% CI 1.10 to 7.12). There were no statistically difference in overall survival rate and median survival months, while on the basis of response rate and response duration, fludarabine seemed to be superior to CAP for pretreated/relapsed patients with macroglobulinaemia. Although alkylating agents have been used for decades they have never actually been tested in a proper randomised trial. This

  18. Examination of the effect of the annealing cation on higher order structures containing guanine or isoguanine repeats

    PubMed Central

    Pierce, Sarah E.; Wang, Junmei; Jayawickramarajah, Janarthanan; Hamilton, Andrew D.; Brodbelt, Jennifer S.

    2010-01-01

    Isoguanine (2-oxo-6-amino-guanine), a natural but non-standard base, exhibits unique self-association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. The guanine-containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI-MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads. PMID:19746468

  19. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...). It is prepared by the sublimation of a mixture of ammonium sulfate and calcium carbonate and occurs... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium carbonate. 184.1137 Section 184.1137 Food... Specific Substances Affirmed as GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3, CAS...

  20. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...). It is prepared by the sublimation of a mixture of ammonium sulfate and calcium carbonate and occurs... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium carbonate. 184.1137 Section 184.1137 Food... Specific Substances Affirmed as GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3, CAS...

  1. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...). It is prepared by the sublimation of a mixture of ammonium sulfate and calcium carbonate and occurs... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium carbonate. 184.1137 Section 184.1137 Food... Specific Substances Affirmed as GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3, CAS...

  2. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The...

  3. Crystal structure of the heptamolybdate(VI) (paramolybdate) ion, [Mo7O24]6-, in the ammonium and potassium tetrahydrate salts

    USGS Publications Warehouse

    Evans, H.T.; Gatehouse, B.M.; Leverett, P.

    1975-01-01

    The crystal structures of the isomorphous salts MI6 [Mo7O24],4H2O (M = NH4 or K) have been refined by three-dimensional X-ray diffraction methods. Unit cell dimensions of these monoclinic compounds, space group P21/C with Z = 4, are, ammonium salt: a = 8.3934 ?? 0.0008, b = 36.1703 ?? 0.0045, c = 10.4715 ?? 0.0011 A??, ?? = 115.958?? ?? 0.008??; and potassium salt: a = 8.15 ?? 0.02, b = 35.68 ?? 0.1, c = 10.30 ?? 0.02 A??, ?? = 115.2?? ?? 02??. By use of multiple Weissenberg patterns, 8197 intensity data (Mo-K?? radiation) for the ammonium compound and 2178 (Cu-K?? radiation) for the potassium compound were estimated visually and used to test and refine Lindqvist's proposed structure in the space group P21/c. Lindqvist's structure was confirmed and the full matrix least-squares isotropic refinement led to R 0.076 (ammonium) 0.120 (potassium), with direct unambiguous location of the cations and water molecules in the potassium compound.

  4. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal.

    PubMed

    Liu, Sitong; Yang, Fenglin; Gong, Zheng; Meng, Fangang; Chen, Huihui; Xue, Yuan; Furukawa, Kenji

    2008-10-01

    The simultaneous ammonium and sulfate removal was detected in an anammox reactor, consisted of ammonium oxidization with sulfate deoxidization, and subsequently traditional anammox process, in via of middle medium nitrite with solid sulfur and N2 as the terminal products. The pure anammox bacteria offered a great biotechnological potential for the completely autotrophic reaction indicated by batch tests. Denaturing gradient gel electrophoresis (DGGE) analysis further revealed that a new organism belonging to Planctomycetales was strongly enriched in the defined niche: the redox of ammonium and sulfate. The new species "Anammoxoglobussulfate" was so considered as holding a critical role in the ammonium oxidization with sulfate deoxidization to nitrite. Afterwards, the Planctomyces existing in the bacteria community performed the anammox process together to achieve the complete nitrogen and sulfate removal. The potential use of sulfate as electron acceptor for ammonium oxidizing widens the usage of anammox bacteria.

  5. Construction of divergent fused heterocycles via an acid-promoted intramolecular ipso-Friedel-Crafts alkylation of phenol derivatives.

    PubMed

    Yokosaka, Takuya; Shiga, Naoki; Nemoto, Tetsuhiro; Hamada, Yasumasa

    2014-05-02

    Two different cascade cyclization processes were developed using aryl group-substituted propargyl alcohol derivatives with a p-hydroxybenzylamine unit as common substrates. Using TFA as an acid promoter, an intramolecular ipso-Friedel-Crafts alkylation of phenol derivatives, formation of an iminium cation via a rearomatization-promoted C-C bond cleavage, an aza-Prins reaction, and a 6-membered ring formation proceeded sequentially, producing a variety of fused-tricyclic dihydroquinoline derivatives in 45-99% yield. In addition, a one-pot sequential silver acetate-catalyzed hydroamination/etherification-acid-promoted skeletal rearrangement was examined using the same series of substrates, affording fused-tricyclic indole/benzofuran derivatives in 66-89% yield.

  6. G2(+)M study on N-alkylamino cation affinities of neutral main-group element hydrides: trends across the periodic table.

    PubMed

    Geng, Song; Wu, Ding-Lu; Yang, Jing; Wei, Xi-Guang; Zhu, Jun; Zhang, Hai-Bo; Ren, Yi; Lau, Kai-Chung

    2014-05-08

    We have made an extensive theoretical exploration of gas-phase N-alkylamino cation affinities (NAAMCA), including amino cation affinities (AMCA) and N-dimethylamino cation affinities (NDMAMCA), of neutral main-group element hydrides of groups 15-17 and periods 2-4 in the periodic table by using the G2(+)M method. Some similarities and differences are found between NAAMCA and the corresponding alkyl cation affinities (ACA) of H(n)X. Our calculations show that the AMCA and NDMAMCA are systematically lower than the corresponding proton affinities (PA) for H(n)X. In general, there is no linear correlation between NAAMCA and PA of H(n)X. Instead, the correlations exist only within the central elements X in period 2, or periods 3-4, which is significantly different from the reasonable correlations between ACA and PA for all H(n)X. NAAMCA (H(n)X) are weaker than NAAMCA (H(n-1)X(-)) by more than 700 kJ/mol and generally stronger than ACA (H(n)X), with three exceptions: H2ONR2(+)(R = H, Me) and HFNH2(+). These new findings can be rationalized by the negative hyperconjugation and Pauli repulsion.

  7. Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: Effect of the spacer on their ecological properties.

    PubMed

    Garcia, M Teresa; Kaczerewska, Olga; Ribosa, Isabel; Brycki, Bogumił; Materna, Paulina; Drgas, Małgorzata

    2016-07-01

    Aerobic biodegradability and aquatic toxicity of five types of quaternary ammonium-based gemini surfactants have been examined. The effect of the spacer structure and the head group polarity on the ecological properties of a series of dimeric dodecyl ammonium surfactants has been investigated. Standard tests for ready biodegradability assessment (OECD 310) were conducted for C12 alkyl chain gemini surfactants containing oxygen, nitrogen or a benzene ring in the spacer linkage and/or a hydroxyethyl group attached to the nitrogen atom of the head groups. According to the results obtained, the gemini surfactants examined cannot be considered as readily biodegradable compounds. The negligible biotransformation of the gemini surfactants under the standard biodegradation test conditions was found to be due to their toxic effects on the microbial population responsible for aerobic biodegradation. Aquatic toxicity of gemini surfactants was evaluated against Daphnia magna. The acute toxicity values to Daphnia magna, IC50 at 48 h exposure, ranged from 0.6 to 1 mg/L. On the basis of these values, the gemini surfactants tested should be classified as toxic or very toxic to the aquatic environment. However, the dimeric quaternary ammonium-based surfactants examined result to be less toxic than their corresponding monomeric analogs. Nevertheless the aquatic toxicity of these gemini surfactants can be reduced by increasing the molecule hydrophilicity by adding a heteroatom to the spacer or a hydroxyethyl group to the polar head groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  9. Disinfection of Water with Quaternary Ammonium Salts Insolubilized on a Porous Glass Surface

    PubMed Central

    Nakagawa, Yoshihiro; Hayashi, Hiroyuki; Tawaratani, Takahiko; Kourai, Hiroki; Horie, Tokunaru; Shibasaki, Isao

    1984-01-01

    Insoluble quaternary ammonium salts bound to porous glass showed antibacterial activity. An agent designated as G12, which had a dodecyl alkyl chain, was selected for some antibacterial tests on comparison of it with the agent reported previously. The antibacterial activity of G12 toward Escherichia coli was mainly due to the adsorption of cells and therefore gradually decreased during continuous treatment of a cell suspension. The lost G12 activity was completely recovered by washing with ethanol, and the activity of refreshed G12 decreased in the same manner as that of fresh G12. The lost activity was, however, always recovered only by ethanol treatment. This indicated that G12 might interact with cells more strongly by means of a hydrophobic force than an electrostatic one. The antimicrobial spectrum showed that G12 was effective against not only bacteria but also yeasts. PMID:16346491

  10. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... sublimation of a mixture of ammonium sulfate and calcium carbonate and occurs as a white powder or a hard... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ammonium carbonate. 184.1137 Section 184.1137 Food... GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3, CAS Reg. No. 8000-73-5) is a...

  11. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  12. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  13. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  14. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  15. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  16. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  17. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  18. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  19. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    PubMed

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3

  20. Polymerization of Conducting Polymers Confined to Free Surfaces: A comparison of the Langmuir-Blodgett Polymerization of 3-Alkyl Pyrroles and 2- Alkyl Anilines

    DTIC Science & Technology

    1992-05-19

    Confined to Free Surfaces: A Comparison of the Langmuir-Blodgett Polymerization of 3- Alkyl Pyrroles and 2- Alkyl Anilines Submitted for Publication in...Surfaces: A Comparison of the Langmuir Blodgett Polymerizations of 3- alkyl pyrroles and 2- alkyl anilines R. S. Duran and H.C. Zhou Dept. of Chemistry...polymerization reactions in more detail and compare them. To do this, the polymerization reactions were run under two conditions. In the first case

  1. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section. (a) The alkyl ketene dimers are manufactured by the dehydrohalogenation of the acyl halides derived from the fatty acids of animal or vegetable fats and oils. (b) The alkyl ketene dimers are used as...

  2. The Minimal Pharmacophore for Silent Agonism of the α7 Nicotinic Acetylcholine Receptor

    PubMed Central

    Chojnacka, Kinga; Horenstein, Nicole A.

    2014-01-01

    The minimum pharmacophore for activation of the human α7 nicotinic acetylcholine receptor (nAChR) is the tetramethylammonium cation. Previous work demonstrated that larger quaternary ammonium compounds, such as diethyldimethylammonium or 1-methyl quinuclidine, were α7-selective partial agonists, but additional increase in the size of the ammonium cation or the quinuclidine N-alkyl group by a single carbon to an N-ethyl group led to a loss of efficacy for ion channel activation. We report that although such compounds are ineffective at inducing the normal channel open state, they nonetheless regulate the induction of specific conformational states normally considered downstream of channel activation. We synthesized several panels of quaternary ammonium nAChR ligands that systematically varied the size of the substituents bonded to the central positively charged nitrogen atom. In these molecular series, we found a correlation between the molecular volume of the ligand and/or charge density, and the receptor’s preferred distribution among conformational states including the closed state, the active state, a nonconducting state that could be converted to an activated state by a positive allosteric modulator (PAM), and a PAM-insensitive nonconducting state. We hypothesize that the changes of molecular volume of an agonist’s cationic core subtly impact interactions at the subunit interface constituting the orthosteric binding site in such a way as to regulate the probability of conversions among the conformational states. We define a new minimal pharmacophore for the class of compounds we have termed “silent agonists,” which are able to induce allosteric modulator-dependent activation but not the normal activated state. PMID:24990939

  3. Preparation and swelling inhibition of cation glucoside to montmorillonite

    NASA Astrophysics Data System (ADS)

    Song, Shaofu; Liu, Jurong; Guo, Gang; Huang, Lei; Qu, Chentun; Li, Bianqin; Chen, Gang

    2017-06-01

    In this work, a cation glucoside (CG) was synthesized with glucose and glycidyl trimethyl ammonium chloride (GTA) and used as montmorillonite (MMT) swelling inhibiter. The inhibition of CG was investigated by MMT linear expansion test and mud ball immersing test. The results showed that the CG has a good inhibition to the hydration swelling and dispersion of MMT. Under the same condition, the linear expansion rate of MMT in CG solution is much lower that of methylglucoside and the hydration expansion degree of the mud ball in the CG solution was significantly inhibited. The characterizations of physic-chemical properties of particle, analysized by thermogravimetric analysis and scanning electron microscopy, revealed that CG play great role to prevent water from absorb and keep MMT in large particle size.

  4. A Concentration-Dependent Insulin Immobilization Behavior of Alkyl-Modified Silica Vesicles: The Impact of Alkyl Chain Length.

    PubMed

    Zhang, Jun; Zhang, Long; Lei, Chang; Huang, Xiaodan; Yang, Yannan; Yu, Chengzhong

    2018-05-01

    The insulin immobilization behaviors of silica vesicles (SV) before and after modification with hydrophobic alkyl -C 8 and -C 18 groups have been studied and correlated to the grafted alkyl chain length. In order to minimize the influence from the other structural parameters, monolayered -C 8 or -C 18 groups are grafted onto SV with controlled density. The insulin immobilization capacity of SV is dependent on the initial insulin concentrations (IIC). At high IIC (2.6-3.0 mg/mL), the trend of insulin immobilization capacity of SV is SV-OH > SV-C 8 > SV-C 18 , which is determined mainly by the surface area of SV. At medium IIC (0.6-1.9 mg/mL), the trend changes to SV-C 8 ≥ SV-C 18 > SV-OH as both the surface area and alkyl chain length contribute to the insulin immobilization. At an extremely low IIC, the hydrophobic-hydrophobic interaction between the alkyl group and insulin molecules plays the most significant role. Consequently, SV-C 18 with longer alkyl groups and the highest hydrophobicity show the best insulin enrichment performance compared to SV-C 8 and SV-OH, as evidenced by an insulin detection limit of 0.001 ng/mL in phosphate buffered saline (PBS) and 0.05 ng/mL in artficial urine determined by mass spectrometry (MS).

  5. Simultaneous Analysis of Monovalent Anions and Cations with a Sub-Microliter Dead-Volume Flow-Through Potentiometric Detector for Ion Chromatography

    PubMed Central

    Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim

    2016-01-01

    A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na+), potassium (K+), ammonium (NH4+), chloride (Cl−) and nitrate (NO3−) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples. PMID:26786906

  6. Activation of the chemosensing transient receptor potential channel A1 (TRPA1) by alkylating agents.

    PubMed

    Stenger, Bernhard; Zehfuss, Franziska; Mückter, Harald; Schmidt, Annette; Balszuweit, Frank; Schäfer, Eva; Büch, Thomas; Gudermann, Thomas; Thiermann, Horst; Steinritz, Dirk

    2015-09-01

    The transient receptor potential ankyrin 1 (TRPA1) cation channel is expressed in different tissues including skin, lung and neuronal tissue. Recent reports identified TRPA1 as a sensor for noxious substances, implicating a functional role in the molecular toxicology. TRPA1 is activated by various potentially harmful electrophilic substances. The chemical warfare agent sulfur mustard (SM) is a highly reactive alkylating agent that binds to numerous biological targets. Although SM is known for almost 200 years, detailed knowledge about the pathophysiology resulting from exposure is lacking. A specific therapy is not available. In this study, we investigated whether the alkylating agent 2-chloroethyl-ethylsulfide (CEES, a model substance for SM-promoted effects) and SM are able to activate TRPA1 channels. CEES induced a marked increase in the intracellular calcium concentration ([Ca(2+)]i) in TRPA1-expressing but not in TRPA1-negative cells. The TRP-channel blocker AP18 diminished the CEES-induced calcium influx. HEK293 cells permanently expressing TRPA1 were more sensitive toward cytotoxic effects of CEES compared with wild-type cells. At low CEES concentrations, CEES-induced cytotoxicity was prevented by AP18. Proof-of-concept experiments using SM resulted in a pronounced increase in [Ca(2+)]i in HEK293-A1-E cells. Human A549 lung epithelial cells, which express TRPA1 endogenously, reacted with a transient calcium influx in response to CEES exposure. The CEES-dependent calcium response was diminished by AP18. In summary, our results demonstrate that alkylating agents are able to activate TRPA1. Inhibition of TRPA1 counteracted cellular toxicity and could thus represent a feasible approach to mitigate SM-induced cell damage.

  7. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  8. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  9. Renal ammonium production--une vue canadienne.

    PubMed

    Brosnan, J T; Lowry, M; Vinay, P; Gougoux, A; Halperin, M L

    1987-04-01

    The purpose of this review is to examine the factors regulating ammonium production in the kidney and to place these factors in the perspective of acid-base balance. Renal ammonium production and excretion are required to maintain acid-base balance. However, only a portion of renal ammonium production is specifically stimulated by metabolic acidosis. One should examine urinary ammonium excretion at three levels: distribution of ammonium between blood and urine, augmented glutamine metabolism, and an energy constraint due to ATP balance considerations. With respect to the biochemical regulation of acid-base renal ammonium production, an acute stimulation of alpha-ketoglutarate dehydrogenase by a fall in pH seems to be important but this may not be the entire story. In chronic metabolic acidosis augmented glutamine entry into mitochondria (dog) or increased phosphate-dependent glutaminase activity (rat) become critical to support a high flux rate. Metabolic alterations, which diminish the rate of oxidation of alternate fuels, might also be important. The above principles are discussed in the ketoacidosis of fasting, the clinically important situation of high rates of renal ammonium production.

  10. Extended 3{beta}-alkyl steranes and 3-alkyl triaromatic steroids in crude oils and rock extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, J.; Moldowan, J.M.; Summons, R.E.

    1995-09-01

    In oils and Precambian- to Miocene-age source rocks from varying depositional environments, we have conclusively identified several novel 3-alkyl sterane and triaromatic steroid series, including (1) 3{beta}-n-pentyl steranes, (2) 3{beta}-isopentyl steranes, (3) 3{beta}-n-hexyl steranes, (4) 3{beta}-n-hepatyl steranes, (5) 3,4-dimethyl steranes, (6) 3{beta}-butyl,4-methyl steranes, (7) triaromatic 3-n-pentyl steroids, and (8) triaromatic 3-isopentyl steroids. We have also tentatively identified additional homologs with 3-alkyl substituents as large as C{sub 11}. The relative abundances of these compounds vary substantially between samples, as indicated by (1) the ratio of 3{beta}-n-pentyl steranes to 3{beta}-isopentyl steranes and (2) the ratio of 3-n-pentyl triaromatic steroids to 3-isopentyl triaromaticmore » steroids. These data suggest possible utility for these parameters as tools for oil-source rock correlations and reconstruction of depositional environments. Although no 3-alkyl steroid natural products are currently known, several lines of evidence suggest that 3{beta}-alkyl steroids result from bacterial side-chain additions to diagenetic {delta}{sup 2}-sterenes.« less

  11. Simultaneous determination of cations, zwitterions and neutral compounds using mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography.

    PubMed

    Li, Jingyi; Shao, Shan; Jaworsky, Markian S; Kurtulik, Paul T

    2008-03-28

    A novel mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography (HPLC) method is described to simultaneously determine four related impurities of cations, zwitterions and neutral compounds in developmental Drug A. The commercial column is Primesep 200 containing hydrophobic alkyl chains with embedded acidic groups in H(+) form on a silica support. The mobile phase variables of acid additives, contents of acetonitrile and concentrations of potassium chloride have been thoroughly investigated to optimize the separation. The retention factors as a function of the concentrations of potassium chloride and the percentages of acetonitrile in the mobile phases are investigated to get an insight into the retention and separation mechanisms of each related impurity and Drug A. Furthermore, the elution orders of the related impurities and Drug A in an ion-pair chromatography (IPC) are compared to those in the mixed-mode HPLC to further understand the chromatographic retention behaviors of each related impurity and Drug A. The study found that the positively charged Degradant 1, Degradant 2 and Drug A were retained by both ion-exchange and reversed-phase partitioning mechanisms. RI2, a small ionic compound, was primarily retained by ion-exchange. RI4, a neutral compound, was retained through reversed-phase partitioning without ion-exchange. Moreover, the method performance characteristics of selectivity, sensitivity and accuracy have been demonstrated to be suitable to determine the related impurities in the capsules of Drug A.

  12. Synthesis, characterization and antibacterial properties of dihydroxy quaternary ammonium salts with long chain alkyl bromides.

    PubMed

    Liu, Wen-Shuai; Wang, Chun-Hua; Sun, Ju-Feng; Hou, Gui-Ge; Wang, Yu-Peng; Qu, Rong-Jun

    2015-01-01

    Five N-methyl-N-R-N,N-bis(2-hydroxyethyl) ammonium bromides (R = -benzyl (chloride, BNQAS), -dodecyl (C12QAS), -tetradecyl (C14QAS), -hexadecyl (C16QAS), -octadecyl (C18QAS)) were prepared based on N-methyldiethanolamine (MDEA) and halohydrocarbon. Five QAS were characterized by FTIR, NMR, and MS. BNQAS, C12QAS, C14QAS, and C16QAS were confirmed by X-ray single-crystal diffraction. Their antibacterial properties indicated good antibacterial abilities against E. coli, S. aureus, B. subtilis, especially C12QAS with the best antibacterial ability (100% to E. coli, 95.65% to S. aureus, and 91.41% to B. subtilis). In addition, C12QAS also displayed the best antifungal activities than BNQAS and C18QAS against Cytospora mandshurica, Botryosphaeria ribis, Physalospora piricola, and Glomerella cingulata with the ratio of full marks. The strategy provides a facile way to design and develop new types of antibacterial drugs for application in preventing the fruit rot, especially apple. © 2014 John Wiley & Sons A/S.

  13. Polyimide characterization studies - Effect of pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1984-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  14. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length

    PubMed Central

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.; Du, Yang; Nielsen, Anne K.; Byrne, Bernadette; Kobilka, Brian K.; Loland, Claus J.; Guan, Lan

    2017-01-01

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. PMID:27981750

  15. SO2 Solvation in the 1-Ethyl-3-Methylimidazolium Thiocyanate Ionic Liquid by Incorporation into the Extended Cation-Anion Network.

    PubMed

    Firaha, Dzmitry S; Kavalchuk, Mikhail; Kirchner, Barbara

    We have carried out an ab initio molecular dynamics study on the sulfur dioxide (SO 2 ) solvation in 1-ethyl-3-methylimidazolium thiocyanate for which we have observed that both cations and anions play an essential role in the solvation of SO 2 . Whereas, the anions tend to form a thiocyanate- and much less often an isothiocyanate-SO 2 adduct, the cations create a "cage" around SO 2 with those groups of atoms that donate weak interactions like the alkyl hydrogen atoms as well as the heavy atoms of the [Formula: see text]-system. Despite these similarities between the solvation of SO 2 and CO 2 in ionic liquids, an essential difference was observed with respect to the acidic protons. Whereas CO 2 avoids accepting hydrogen bonds form the acidic hydrogen atoms of the cations, SO 2 can from O(SO 2 )-H(cation) hydrogen bonds and thus together with the strong anion-adduct it actively integrates in the hydrogen bond network of this particular ionic liquid. The fact that SO 2 acts in this way was termed a linker effect by us, because the SO 2 can be situated between cation and anion operating as a linker between them. The particular contacts are the H(cation)[Formula: see text]O(SO 2 ) hydrogen bond and a S(anion)-S(SO 2 ) sulfur bridge. Clearly, this observation provides a possible explanation for the question of why the SO 2 solubility in these ionic liquids is so high.

  16. Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

    PubMed Central

    Deshmukh, Ruchi; Mehra, Anurag

    2017-01-01

    Aggregation and self-assembly are influenced by molecular interactions. With precise control of molecular interactions, in this study, a wide range of nanostructures ranging from zero-dimensional nanospheres to hierarchical nanoplates and spindles have been successfully synthesized at ambient temperature in aqueous solution. The nanostructures reported here are formed by aggregation of spherical seed particles (monomers) in presence of quaternary ammonium salts. Hydroxide ions and a magnetic moment of the monomers are essential to induce shape anisotropy in the nanostructures. The cobalt nanoplates are studied in detail, and a growth mechanism based on collision, aggregation, and crystal consolidation is proposed based on a electron microscopy studies. The growth mechanism is generalized for rods, spindles, and nearly spherical nanostructures, obtained by varying the cation group in the quaternary ammonium hydroxides. Electron diffraction shows different predominant lattice planes on the edge and on the surface of a nanoplate. The study explains, hereto unaddressed, the temporal evolution of complex magnetic nanostructures. These ferromagnetic nanostructures represent an interesting combination of shape anisotropy and magnetic characteristics. PMID:28326240

  17. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium-Sulfur Batteries.

    PubMed

    Pan, Huilin; Han, Kee Sung; Vijayakumar, M; Xiao, Jie; Cao, Ruiguo; Chen, Junzheng; Zhang, Jiguang; Mueller, Karl T; Shao, Yuyan; Liu, Jun

    2017-02-08

    In rechargeable Li-S batteries, the uncontrollable passivation of electrodes by highly insulating Li 2 S limits sulfur utilization, increases polarization, and decreases cycling stability. Dissolving Li 2 S in organic electrolyte is a facile solution to maintain the active reaction interface between electrolyte and sulfur cathode, and thus address the above issues. Herein, ammonium salts are demonstrated as effective additives to promote the dissolution of Li 2 S to 1.25 M in DMSO solvent at room temperature. NMR measurements show that the strong hydrogen binding effect of N-H groups plays a critical role in dissolving Li 2 S by forming complex ligands with S 2- anions coupled with the solvent's solvating surrounding. Ammonium additives in electrolyte can also significantly improve the oxidation kinetics of Li 2 S, and therefore enable the direct use of Li 2 S as cathode material in Li-S battery system in the future. This provides a new approach to manage the solubility of lithium sulfides through cation coordination with sulfide anion.

  18. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium–Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Huilin; Han, Kee Sung; Vijayakumar, M.

    In rechargeable Li-S batteries, the uncontrollable passivation of electrodes by highly insulating Li2S limits sulfur utilization, increases polarization and decreases cycling stability. Dissolving Li2S in organic electrolyte is a facile solution to maintain the active reaction interface between electrolyte and sulfur cathode, and thus address the above issues. Herein, ammonium salts are demonstrated as effective additives to promote the dissolution of Li2S to 1.25 M in DMSO solvent at room temperature. NMR measurements show that the strong hydrogen binding effect of N-H groups plays a critical role in dissolving Li2S by forming complex ligands with S2- anions coupled with themore » solvent’s solvating surrounding. Ammonium additives in electrolyte can also significantly improve the oxidation kinetics of Li2S, therefore enables the direct use of Li2S as cathode material in Li-S battery system in the future. This provides a new approach to manage the solubility of lithium sulfides through cation coordination with sulfide anion.« less

  19. Application of mixed-mode, solid-phase extraction in environmental and clinical chemistry. Combining hydrogen-bonding, cation-exchange and Van der Waals interactions

    USGS Publications Warehouse

    Mills, M.S.; Thurman, E.M.; Pedersen, M.J.

    1993-01-01

    Silica- and styrene-divinylbenzene-based mixed-mode resins that contain C8, C18 and sulphonated cation-exchange groups were compared for their efficiency in isolation of neutral triazine compounds from water and of the basic drug, benzoylecgonine, from urine. The triazine compounds were isolated by a combination of Van der Waals and hydrogen-bonding interactions, and benzoylecgonine was isolated by Van der Waals interactions and cation exchange. All analytes were eluted with a polar organic solvent contaning 2% ammonium hydroxide. Larger recoveries (95%) were achieved on copolymerized mixed-mode resins where C18 and sulfonic acid are in closer proximity than on 'blended' mixed-mode resins (60-70% recovery).

  20. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    PubMed Central

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  1. Static and transport properties of alkyltrimethylammonium cation-based room-temperature ionic liquids.

    PubMed

    Seki, Shiro; Tsuzuki, Seiji; Hayamizu, Kikuko; Serizawa, Nobuyuki; Ono, Shimpei; Takei, Katsuhito; Doi, Hiroyuki; Umebayashi, Yasuhiro

    2014-05-01

    We have measured physicochemical properties of five alkyltrimethylammonium cation-based room-temperature ionic liquids and compared them with those obtained from computational methods. We have found that static properties (density and refractive index) and transport properties (ionic conductivity, self-diffusion coefficient, and viscosity) of these ionic liquids show close relations with the length of the alkyl chain. In particular, static properties obtained by experimental methods exhibit a trend complementary to that by computational methods (refractive index ∝ [polarizability/molar volume]). Moreover, the self-diffusion coefficient obtained by molecular dynamics (MD) simulation was consistent with the data obtained by the pulsed-gradient spin-echo nuclear magnetic resonance technique, which suggests that computational methods can be supplemental tools to predict physicochemical properties of room-temperature ionic liquids.

  2. Evidence of ammonium ion-exchange properties of natural bentonite and application to ammonium detection.

    PubMed

    Zazoua, A; Kazane, I; Khedimallah, N; Dernane, C; Errachid, A; Jaffrezic-Renault, N

    2013-12-01

    Ammonium exchange with hybrid PVC-bentonite (mineral montmorillonite clay) thin film was revealed using FTIR spectroscopy, EDX, cyclic voltammetry and electrochemical impedance spectroscopy. The effect of ammonium exchange on the charge transfer resistance of PVC-bentonite hybrid thin film was attributed to a modification of the intersheet distance and hydration of bentonite crystals. The obtained impedimetric ammonium sensor shows a linear range of detection from 10(-4)M to 1M and a detection limit around 10(-6)M. © 2013.

  3. Determination of selected quaternary ammonium compounds by liquid chromatography with mass spectrometry. Part II. Application to sediment and sludge samples in Austria.

    PubMed

    Martínez-Carballo, Elena; González-Barreiro, Carmen; Sitka, Andrea; Kreuzinger, Norbert; Scharf, Sigrid; Gans, Oliver

    2007-03-01

    Soxhlet extraction and high-performance liquid chromatography (HPLC) coupled to tandem mass spectrometry detection (MS/MS) was used for the determination of selected quaternary ammonium compounds (QACs) in solid samples. The method was applied for the determination of alkyl benzyl, dialkyl and trialkyl quaternary ammonium compounds in sediment and sludge samples in Austria. The overall method quantification limits range from 0.6 to 3 microg/kg for sediments and from 2 to 5 microg/kg for sewage sludges. Mean recoveries between 67% and 95% are achieved. In general sediments were especially contaminated by C12 chain benzalkonium chloride (BAC-C12) as well as by the long C-chain dialkyldimethylammonium chloride (DDAC-C18) with a maximum concentration of 3.6 mg/kg and 2.1mg/kg, respectively. Maxima of 27 mg/kg for DDAC-C10, 25 mg/kg for BAC-C12 and 23 mg/kg for BAC-C14 were determined for sludge samples. The sums of the 12 selected target compounds range from 22 mg/kg to 103 mg/kg in the sludge samples.

  4. 40 CFR 721.10677 - Alkyl phosphonate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10677 Alkyl phosphonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl phosphonate (PMN P-12-584...

  5. 21 CFR 556.375 - Maduramicin ammonium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... residues of maduramicin ammonium in chickens as follows: (a) A tolerance for maduramicin ammonium (marker residue) in chickens is 0.38 parts per million in fat (target tissue). A tolerance refers to the... animals. (b) The safe concentrations for total maduramicin ammonium residues in uncooked edible chicken...

  6. PREPARATION OF ALKYL PYROPHOSPHATE EXTRACTANTS

    DOEpatents

    Levine, C.A.; Skiens, W.E.; Moore, G.R.

    1960-08-01

    A process for providing superior solvent extractants for metal recovery processes is given wherein the extractant comprises an alkyl pyrophosphoric acid ester dissolved in an organic solvent diluent. Finely divided solid P/sub 2/O/ sub 5/ is slurried in an organic solvent-diluent selected from organic solvents such as kerosene, benzene, chlorobenzene, toluene, etc. An alcohol selected from the higher alcohols having 4 to 17 carbon atoms. e.g.. hexanol-1. heptanol-3, octanol-1. 2.6-dimethyl-heptanol-4, and decanol-1, is rapidly added to the P/sub 2/O/sub 5/ slurry in the amount of about 2 moles of alcohol to 1 mole of P/sub 2/ O/sub 5/. The temperature is maintained below about 110 deg C during the course of the P/sub 2/O/sub 5/-alcohol reaction. An alkyl pyrophosphate extractant compound is formed as a consequence of the reaction process. The alkyl pyrophosphate solvent-diluent extractant phase is useful in solvent extraction metal recovery processes.

  7. Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: relevance of their surface active properties and of the type of emulsifier.

    PubMed

    González, María J; Medina, Isabel; Maldonado, Olivia S; Lucas, Ricardo; Morales, Juan C

    2015-09-15

    The antioxidant activity of gallic acid and a series of alkyl gallates (C4-C18) and glycosylated alkyl gallates (C4-C18) on fish oil-in-water emulsions was studied. Three types of emulsifiers, lecithin, Tween-20 and sodium dodecyl sulphate (SDS) were tested. A nonlinear behavior of the antioxidant activity of alkyl gallates when increasing alkyl chain length was observed for emulsions prepared with lecithin. Medium-size alkyl gallates (C6-C12) were the best antioxidants. In contrast, for emulsions prepared with Tween-20, the antioxidants seem to follow the polar paradox. Glucosyl alkyl gallates were shown previously to be better surfactants than alkyl gallates. Nevertheless, they exhibited a worse antioxidant capacity than their corresponding alkyl gallates, in emulsions prepared with lecithin or Tween-20, indicating the greater relevance of having three OH groups at the polar head in comparison with having improved surfactant properties but just a di-ortho phenolic structure in the antioxidant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... Solids), Class 5 (Oxidizers and Organic Peroxides), and Division 1.5 Materials § 176.415 Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as...

  9. 21 CFR 582.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ammonium bicarbonate. 582.1135 Section 582.1135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1135 Ammonium bicarbonate. (a) Product. Ammonium bicarbonate. (b) Conditions of use. This...

  10. 21 CFR 582.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ammonium bicarbonate. 582.1135 Section 582.1135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1135 Ammonium bicarbonate. (a) Product. Ammonium bicarbonate. (b) Conditions of use. This...

  11. 21 CFR 582.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium bicarbonate. 582.1135 Section 582.1135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1135 Ammonium bicarbonate. (a) Product. Ammonium bicarbonate. (b) Conditions of use. This...

  12. 21 CFR 582.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ammonium bicarbonate. 582.1135 Section 582.1135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1135 Ammonium bicarbonate. (a) Product. Ammonium bicarbonate. (b) Conditions of use. This...

  13. Optimalisation of magnesium ammonium phosphate precipitation and its applicability to the removal of ammonium.

    PubMed

    Demeestere, K; Smet, E; Van Langenhove, H; Galbacs, Z

    2001-12-01

    Among the physico-chemical abatement technologies, mainly acid scrubbers have been used to control NH3-emission. The disadvantage of this technique is that it yields waste water, highly concentrated in ammonia. In this report, the applicability of the magnesium ammonium phosphate (MAP) process to regenerate the liquid phase, produced by scrubbing NH3-loaded waste gases, was investigated. In the MAP process, ammonium is precipitated as magnesium ammonium phosphate, which can be used as a slow release fertilizer. The influence of a number of parameters, e.g. pH, kinetics, molar ratio NH(+)4/Mg2+/PO(3-)4 on the efficiency of the formation of MAP and on the ammonium removal efficiency was investigated. In this way, optimal conditions were determined for the precipitation reaction. Next to this, interference caused by other precipitation reactions was studied. At aqueous NH(+)4-concentrations of about 600 mg l(-1), ammonium removal efficiencies of 97% could be obtained at a molar ratio NH(+)4/Mg2+/PO(3-)4 of 1/1.5/1.5. To obtain this result, the pH was continuously adjusted to a value of 9 during the reaction. According to this study, it is obvious that the MAP-precipitation technology offers opportunities for ammonium removal from scrubbing liquids. The practical applicability of the MAP-process in waste gas treatment systems, however, should be the subject for further investigations.

  14. Effect of the C-2 hydroxyl group on the mesomorphism of alkyl glycosides: synthesis and thermotropic behavior of alkyl 2-deoxy-D-arabino-hexopyranosides.

    PubMed

    Singh, Madan Kumar; Jayaraman, Narayanaswamy; Rao, D S Shankar; Prasad, S Krishna

    2008-10-01

    A homologous series of alkyl 2-deoxy-alpha-d-arabino-hexopyranosides and alkyl 2-deoxy-beta-d-arabino-hexopyranosides were synthesized, upon glycosylation of 1-alkanols (from C8 to C18 alkanols) with ethyl 2-deoxy-3,4,6-tri-O-acetyl-1-thio-d-arabino-hexopyranoside, followed by a deprotection. The thermotropic behavior of these new types of alkyl glycosides was investigated. It was observed that the beta-anomers of these alkyl glycosides, bearing nonyl to tetradecyl alkyl chain are mesomorphic, exhibiting monotropic smectic A phase. In contrast, the alpha-anomers are all non-mesomorphic. An effort to identify the liquid crystalline behavior of binary mixtures of the alpha- and beta-anomers was undertaken and it was found that mixtures containing equimolar amounts of the anomers exhibited mesomorphic behavior. A fine balance of the hydrophilic and hydrophobic components within the molecule is also found to be important for the alkyl 2-deoxy glycosides to form the mesophase.

  15. Direct N-alkylation of unprotected amino acids with alcohols

    PubMed Central

    Yan, Tao; Feringa, Ben L.; Barta, Katalin

    2017-01-01

    N-alkyl amino acids find widespread application as highly valuable, renewable building blocks. However, traditional synthesis methodologies to obtain these suffer from serious limitations, providing a major challenge to develop sustainable alternatives. We report the first powerful catalytic strategy for the direct N-alkylation of unprotected α-amino acids with alcohols. This method is highly selective, produces water as the only side product leading to a simple purification procedure, and a variety of α-amino acids are mono- or di-N-alkylated, in most cases with excellent retention of optical purity. The hydrophobicity of the products is tunable, and even simple peptides are selectively alkylated. An iron-catalyzed route to mono-N-alkyl amino acids using renewable fatty alcohols is also described that represents an ideal green transformation for obtaining fully bio-based surfactants. PMID:29226249

  16. Effects of Organic Cation Length on Exciton Recombination in Two-Dimensional Layered Lead Iodide Hybrid Perovskite Crystals.

    PubMed

    Gan, Lu; Li, Jing; Fang, Zhishan; He, Haiping; Ye, Zhizhen

    2017-10-19

    In recent years, 2D layered organic-inorganic lead halide perovskites have attracted considerable attention due to the distinctive quantum confinement effects as well as prominent excitonic luminescence. Herein, we show that the recombination dynamics and photoluminescence (PL) of the 2D layered perovskites can be tuned by the organic cation length. 2D lead iodide perovskite crystals with increased length of the organic chains reveal blue-shifted PL as well as enhanced relative internal quantum efficiency. Furthermore, we provide experimental evidence that the formation of face-sharing [PbI 6 ] 4- octahedron in perovskites with long alkyls induces additional confinement for the excitons, leading to 1D-like recombination. As a result, the PL spectra show enhanced inhomogeneous broadening at low temperature. Our work provides physical understanding of the role of organic cation in the optical properties of 2D layered perovskites, and would benefit the improvement of luminescence efficiency of such materials.

  17. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance...

  18. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance...

  19. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance...

  20. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance...

  1. Extraction of urea and ammonium ion

    NASA Technical Reports Server (NTRS)

    Anselmi, R. T.; Husted, R. R.; Schulz, J. R.

    1977-01-01

    Water purification system keeps urea and ammonium ion concentration below toxic limits in recirculated water of closed loop aquatic habitat. Urea is first converted to ammonium ions and carbon dioxide by enzygmatic action. Ammonium ions are removed by ion exchange. Bioburden is controlled by filtration through 0.45 micron millipore filters.

  2. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length.

    PubMed

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S; Du, Yang; Nielsen, Anne K; Byrne, Bernadette; Kobilka, Brian K; Loland, Claus J; Guan, Lan; Chae, Pil Seok

    2016-12-14

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C 12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile-lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Salvage of failed protein targets by reductive alkylation.

    PubMed

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.

  4. Salvage of Failed Protein Targets by Reductive Alkylation

    PubMed Central

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719

  5. A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries

    PubMed Central

    Zhang, Weidong; Zhuang, Houlong L.; Fan, Lei; Gao, Lina; Lu, Yingying

    2018-01-01

    Dendritic Li deposition has been “a Gordian knot” for almost half a century, which significantly hinders the practical use of high-energy lithium metal batteries (LMBs). The underlying mechanisms of this dendrite formation are related to the preferential lithium deposition on the tips of the protuberances of the anode surface and also associated with the concentration gradient or even depletion of anions during cycling. Therefore, a synergistic regulation of cations and anions at the interface is vital to promoting dendrite-free Li anodes. An ingenious molecular structure is designed to realize the “cation-anion regulation” with strong interactions between adsorption sites and ions at the molecular level. A quaternized polyethylene terephthalate interlayer with a “lithiophilic” ester building block and an “anionphilic” quaternary ammonium functional block can guide ions to form dendrite-free Li metal deposits at an ultrahigh current density of 10 mA cm−2, enabling stable LMBs. PMID:29507888

  6. Structural and energetic study of cation-π-cation interactions in proteins.

    PubMed

    Pinheiro, Silvana; Soteras, Ignacio; Gelpí, Josep Lluis; Dehez, François; Chipot, Christophe; Luque, F Javier; Curutchet, Carles

    2017-04-12

    Cation-π interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-π-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins. We present a statistical analysis of the occurrence, composition and geometrical preferences of cation-π-cation interactions identified in a set of non-redundant protein structures taken from the Protein Data Bank. Our results demonstrate that this structural motif is observed at a small, albeit non-negligible frequency in proteins, and suggest a preference to establish cation-π-cation motifs with Trp, followed by Tyr and Phe. Furthermore, we have found that cation-π-cation interactions tend to be highly conserved, which supports their structural or functional role. Finally, we have performed an energetic analysis of a representative subset of cation-π-cation complexes combining quantum-chemical and continuum solvation calculations. Our results point out that the protein environment can strongly screen the cation-cation repulsion, leading to an attractive interaction in 64% of the complexes analyzed. Together with the high degree of conservation observed, these results suggest a potential stabilizing role in the protein fold, as demonstrated recently for a miniature protein (Craven et al., J. Am. Chem. Soc. 2016, 138, 1543). From a computational point of view, the significant contribution of non-additive three-body terms challenges the suitability of standard additive force fields for describing cation-π-cation motifs in molecular simulations.

  7. Rotational dynamics of imidazolium-based ionic liquids: do the nature of the anion and the length of the alkyl chain influence the dynamics?

    PubMed

    Prabhu, Sugosh R; Dutt, G B

    2014-11-20

    The rotational dynamics of 1-alkyl-3-methylimidazolium-based ionic liquids has been investigated by monitoring their inherent fluorescence with the intent to unravel the characteristics of the emitting species. For this purpose, temperature-dependent fluorescence anisotropies of 1-alkyl-3-methylimidazolium (alkyl = ethyl and hexyl) ionic liquids with anions such as tris(pentafluoroethyl)trifluorophosphate ([FAP]), bis(trifluoromethylsulfonyl)imide ([Tf2N]), tetrafluoroborate ([BF4]), and hexafluorophosphate ([PF6]) have been measured. It has been observed that the reorientation times (τr) of the ionic liquids with an ethyl chain scale linearly with viscosity and were found to be independent of the nature of the anion. The experimentally measured τr values are a factor of 3 longer than the ones calculated for 1-ethyl-3-methylimidazolium cation using the Stokes-Einstein-Debye (SED) hydrodynamic theory with stick boundary condition, which suggests that the emitting species is not the imidazolium moiety but some kind of associated species. The reorientation times of ionic liquids with a hexyl chain, in contrast, follow the trend τr([FAP]) > τr([Tf2N]) = τr([BF4]) > τr([PF6]) at a given viscosity (η) and temperature (T). The ability of the ionic liquids with longer alkyl chains to form the organized structure appears to be responsible for the observed behavior considering the fact that significant deviations from linearity have been noticed in the τr versus η/T plots for strongly associating anions [BF4] and [PF6], especially at ambient temperatures.

  8. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    PubMed

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  9. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  10. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT... GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg. No. 7783-20-2) occurs...

  11. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg...

  12. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg...

  13. The atypical cation-conduction and gating properties of ELIC underscore the marked functional versatility of the pentameric ligand-gated ion-channel fold

    PubMed Central

    Gonzalez-Gutierrez, Giovanni

    2015-01-01

    The superfamily of pentameric ligand-gated ion channels (pLGICs) is unique among ionotropic receptors in that the same overall structure has evolved to generate multiple members with different combinations of agonist specificities and permeant-ion charge selectivities. However, aside from these differences, pLGICs have been typically regarded as having several invariant functional properties. These include pore blockade by extracellular quaternary-ammonium cations in the micromolar-to-millimolar concentration range (in the case of the cation-selective members), and a gain-of-function phenotype, which manifests as a slower deactivation time course, as a result of mutations that reduce the hydrophobicity of the transmembrane pore lining. Here, we tested this notion on three distantly related cation-selective members of the pLGIC superfamily: the mouse muscle nicotinic acetylcholine receptor (nAChR), and the bacterial GLIC and ELIC channels. Remarkably, we found that, whereas low millimolar concentrations of TMA+ and TEA+ block the nAChR and GLIC, neither of these two quaternary-ammonium cations blocks ELIC at such concentrations; instead, both carry measurable inward currents when present as the only cations on the extracellular side. Also, we found that, whereas lidocaine binding speeds up the current-decay time courses of the nAChR and GLIC in the presence of saturating concentrations of agonists, the binding of lidocaine to ELIC slows this time course down. Furthermore, whereas mutations that reduce the hydrophobicity of the side chains at position 9′ of the M2 α-helices greatly slowed the deactivation time course of the nAChR and GLIC, these mutations had little effect—or even sped up deactivation—when engineered in ELIC. Our data indicate that caution should be exercised when generalizing results obtained with ELIC to the rest of the pLGICs, but more intriguingly, they hint at the possibility that ELIC is a representative of a novel branch of the

  14. Identification of alkyl carbazoles and alkyl benzocarbazoles in Brazilian petroleum derivatives.

    PubMed

    Oliveira, Eniz Conceição; Vaz de Campos, Maria Cecília; Rodrigues, Maria Regina Alves; Pérez, Valéria Flores; Melecchi, Maria Inês Soares; Vale, Maria Goreti Rodrigues; Zini, Cláudia Alcaraz; Caramão, Elina Bastos

    2006-02-10

    Carbozoles are important compounds in crude oils, as they may be used as geochemical tracers, being the major type of nitrogen compounds in petroleum. At the same time, they are regarded as undesirable due to the problems they may cause in the refining process, such as catalyst poisoning, corrosion, gum or color formation in final products. As separation and identification of carbazoles are challenging goals, this work presents a chromatographic method, made of a pre-fractionation on neutral alumina followed by the separation and identification of two classes of carbazoles using FeCl(3)/Chromossorb W and gas chromatograph with mass spectrometer (GC/MS) (SIM-single ion monitoring mode) analysis. For the first time, a series of alkyl carbazoles and alkyl benzocarbazoles were identified in heavy gas oil (HGO) and atmospheric residue of distillation (ARD) obtained from Brazilian petroleum.

  15. Combined Hydrous Ferric Oxide and Quaternary Ammonium Surfactant Tailoring of Granular Activated Carbon for Concurrent Arsenate and Perchlorate Removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, M.; Cannon, F; Parette, R

    2009-01-01

    Activated carbon was tailored with both iron and quaternary ammonium surfactants so as to concurrently remove both arsenate and perchlorate from groundwater. The iron (hydr)oxide preferentially removed the arsenate oxyanion but not perchlorate; while the quaternary ammonium preferentially removed the perchlorate oxyanion, but not the arsenate. The co-sorption of two anionic oxyanions via distinct mechanisms has yielded intriguing phenomena. Rapid small-scale column tests (RSSCTs) with these dually prepared media employed synthetic waters that were concurrently spiked with arsenate and perchlorate; and these trial results showed that the quaternary ammonium surfactants enhanced arsenate removal bed life by 25-50% when compared tomore » activated carbon media that had been preloaded merely with iron (hydr)oxide; and the surfactant also enhanced the diffusion rate of arsenate per the Donnan effect. The authors also employed natural groundwater from Rutland, MA which contained 60 microg/L As and traces of silica, and sulfate; and the authors spiked this with 40 microg/L perchlorate. When processing this water, activated carbon that had been tailored with iron and cationic surfactant could treat 12,500 bed volumes before 10 microg/L arsenic breakthrough, and 4500 bed volumes before 6 microg/L perchlorate breakthrough. Although the quaternary ammonium surfactants exhibited only a slight capacity for removing arsenate, these surfactants did facilitate a more favorably positively charged avenue for the arsenate to diffuse through the media to the iron sorption site (i.e. via the Donnan effect).« less

  16. 40 CFR 721.10548 - Mixed alkyl phosphate esters alkoxylated (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed alkyl phosphate esters... Specific Chemical Substances § 721.10548 Mixed alkyl phosphate esters alkoxylated (generic). (a) Chemical... as mixed alkyl phosphate esters alkoxylated (PMN P-04-624) is subject to reporting under this section...

  17. 40 CFR 721.10548 - Mixed alkyl phosphate esters alkoxylated (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed alkyl phosphate esters... Specific Chemical Substances § 721.10548 Mixed alkyl phosphate esters alkoxylated (generic). (a) Chemical... as mixed alkyl phosphate esters alkoxylated (PMN P-04-624) is subject to reporting under this section...

  18. Structural basis for the enhanced stability of protein model compounds and peptide backbone unit in ammonium ionic liquids.

    PubMed

    Vasantha, T; Attri, Pankaj; Venkatesu, Pannuru; Devi, R S Rama

    2012-10-04

    Protein folding/unfolding is a fascinating study in the presence of cosolvents, which protect/disrupt the native structure of protein, respectively. The structure and stability of proteins and their functional groups may be modulated by the addition of cosolvents. Ionic liquids (ILs) are finding a vast array of applications as novel cosolvents for a wide variety of biochemical processes that include protein folding. Here, the systematic and quantitative apparent transfer free energies (ΔG'(tr)) of protein model compounds from water to ILs through solubility measurements as a function of IL concentration at 25 °C have been exploited to quantify and interpret biomolecular interactions between model compounds of glycine peptides (GPs) with ammonium based ILs. The investigated aqueous systems consist of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), tetraglycine (Gly(4)), and cyclic glycylglycine (c(GG)) in the presence of six ILs such as diethylammonium acetate (DEAA), diethylammonium hydrogen sulfate (DEAS), triethylammonium acetate (TEAA), triethylammonium hydrogen sulfate (TEAS), triethylammonium dihydrogen phosphate (TEAP), and trimethylammonium acetate (TMAA). We have observed positive values of ΔG'(tr) for GPs from water to ILs, indicating that interactions between ILs and GPs are unfavorable, which leads to stabilization of the structure of model protein compounds. Moreover, our experimental data ΔG'(tr) is used to obtain transfer free energies (Δg'(tr)) of the peptide backbone unit (or glycyl unit) (-CH(2)C═ONH-), which is the most numerous group in globular proteins, from water to IL solutions. To obtain the mechanism events of the ILs' role in enhancing the stability of the model compounds, we have further obtained m-values for GPs from solubility limits. These results explicitly elucidate that all alkyl ammonium ILs act as stabilizers for model compounds through the exclusion of ILs from model compounds of

  19. Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA.

    PubMed

    Yang, Xian-Zhu; Dou, Shuang; Wang, Yu-Cai; Long, Hong-Yan; Xiong, Meng-Hua; Mao, Cheng-Qiong; Yao, Yan-Dan; Wang, Jun

    2012-06-26

    The clinical success of therapeutics of small interfering RNA (siRNA) is still hindered by its delivery systems. Cationic polymer or lipid-based vehicles as the major delivery systems of siRNA cannot sufficiently satisfy siRNA therapeutic applications. It is hypothesized that cationic lipid-polymer hybrid nanoparticles may take advantage of both polymeric and lipid-based nanoparticles for siRNA delivery, while diminishing the shortcomings of both. In this study, cationic lipid-polymer hybrid nanoparticles were prepared by a single-step nanoprecipitation of a cationic lipid (N,N-bis(2-hydroxyethyl)-N-methyl-N-(2-cholesteryloxycarbonyl aminoethyl) ammonium bromide, BHEM-Chol) and amphiphilic polymers for systemic delivery of siRNA. The formed hybrid nanoparticles comprised a hydrophobic polylactide core, a hydrophilic poly(ethylene glycol) shell, and a cationic lipid monolayer at the interface of the core and the shell. Such hybrid nanoparticles exhibited excellent stability in serum and showed significantly improved biocompatibility compared to that of pure BHEM-Chol particles. The hybrid nanoparticles were capable of delivering siRNA into BT474 cells and facilitated the escape of loaded siRNA from the endosome into the cytoplasm. The hybrid nanoparticles carrying polo-like kinase 1 (Plk1)-specific siRNA (siPlk1) remarkably and specifically downregulated expression of the oncogene Plk1 and induced cancer cell apoptosis both in vitro and in vivo and significantly suppressed tumor growth following systemic administration. We demonstrate that this system is stable, nontoxic, highly efficient, and easy to scale up, bringing the clinical application of siRNA therapy one important step closer to reality.

  20. Evolution of Electrogenic Ammonium Transporters (AMTs)

    DOE PAGES

    McDonald, Tami R.; Ward, John M.

    2016-03-31

    The ammonium transporter gene family consists of three main clades, AMT, MEP, and Rh. The evolutionary history of the AMT/MEP/Rh gene family is characterized by multiple horizontal gene transfer events, gene family expansion and contraction, and gene loss; thus the gene tree for this family of transporters is unlike the organismal tree. The genomes of angiosperms contain genes for both electrogenic and electroneutral ammonium transporters, but it is not clear how far back in the land plant lineage electrogenic ammonium transporters occur. Here, we place Marchantia polymorpha ammonium transporters in the AMT/MEP/Rh phylogeny and we show that AMTs from themore » liverwort M. polymorpha are electrogenic. This information suggests that electrogenic ammonium transport evolved at least as early as the divergence of bryophytes in the land plant lineage.« less

  1. Evolution of Electrogenic Ammonium Transporters (AMTs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Tami R.; Ward, John M.

    The ammonium transporter gene family consists of three main clades, AMT, MEP, and Rh. The evolutionary history of the AMT/MEP/Rh gene family is characterized by multiple horizontal gene transfer events, gene family expansion and contraction, and gene loss; thus the gene tree for this family of transporters is unlike the organismal tree. The genomes of angiosperms contain genes for both electrogenic and electroneutral ammonium transporters, but it is not clear how far back in the land plant lineage electrogenic ammonium transporters occur. Here, we place Marchantia polymorpha ammonium transporters in the AMT/MEP/Rh phylogeny and we show that AMTs from themore » liverwort M. polymorpha are electrogenic. This information suggests that electrogenic ammonium transport evolved at least as early as the divergence of bryophytes in the land plant lineage.« less

  2. UREA/ammonium ion removal system for the orbiting frog otolith experiment. [ion exchange resins for water treatment during space missions

    NASA Technical Reports Server (NTRS)

    Schulz, J. R.; Anselmi, R. T.

    1976-01-01

    The feasibility of using free urease enzyme and ANGC-101 ion exchange resin to remove urea and ammonium ion for space system waste water applications was studied. Specifically examined is the prevention of urea and ammonia toxicity in a 30-day Orbiting Frog Otolith (OFO) flight experiment. It is shown that free urease enzyme used in conjunction with ANGC-101 ion-exchange resin and pH control can control urea and amonium ion concentration in unbuffered recirculating water. In addition, the resin does not adversely effect the bullfrogs by lowering the concentration of cations below critical minimum levels. Further investigations on bioburden control, frog waste excretion on an OFO diet, a trade-off analysis of methods of automating the urea/ammonium ion removal system and fabrication and test of a semiautomated breadboard were recommended as continuing efforts. Photographs of test equipment and test animals are shown.

  3. How the spontaneous insertion of amphiphilic imidazolium-based cations changes biological membranes: a molecular simulation study.

    PubMed

    Lim, Geraldine S; Jaenicke, Stephan; Klähn, Marco

    2015-11-21

    The insertion of 1-octyl-3-methylimidazolium cations (OMIM(+)) from a diluted aqueous ionic liquid (IL) solution into a model of a bacterial cell membrane is investigated. Subsequently, the mutual interactions of cations inside the membrane and their combined effect on membrane properties are derived. The ionic liquid solution and the membrane model are simulated using molecular dynamics in combination with empirical force fields. A high propensity of OMIM(+) for membrane insertion is observed, with a cation concentration at equilibrium inside the membrane 47 times larger than in the solvent. Once inserted, cations exhibit a weak effective attraction inside the membrane at a distance of 1.3 nm. At this free energy minimum, negatively charged phosphates of the phospholipids are sandwiched between two OMIM(+) to form energetically favorable OMIM(+)-phosphate-OMIM(+) types of coordination. The cation-cation association free energy is 5.9 kJ mol(-1), whereas the activation barrier for dissociation is 10.1 kJ mol(-1). Subsequently, OMIM(+) are inserted into the leaflet of the membrane bilayer that represents the extracellular side. The cations are evenly distributed with mutual cation distances according to the found optimum distance of 1.3 nm. Because of the short length of the cation alkyl chains compared to lipid fatty acids, voids are generated in the hydrophobic core of the membrane. These voids disorder the fatty acids, because they enable fatty acids to curl into these empty spaces and also cause a thinning of the membrane by 0.6 nm. Additionally, the membrane density increases at its center. The presence of OMIM(+) in the membrane facilitates the permeation of small molecules such as ammonia through the membrane, which is chosen as a model case for small polar solutes. The permeability coefficient of the membrane with respect to ammonia increases substantially by a factor of seven. This increase is caused by a reduction of the involved free energy barriers

  4. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  5. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  6. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  7. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  8. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  9. 40 CFR 721.10493 - Tris-alkyl-alkoxy melamine polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tris-alkyl-alkoxy melamine polymer... Specific Chemical Substances § 721.10493 Tris-alkyl-alkoxy melamine polymer (generic). (a) Chemical... as tris-alkyl-alkoxy melamine polymer (PMN P-05-417) is subject to reporting under this section for...

  10. 40 CFR 721.10493 - Tris-alkyl-alkoxy melamine polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tris-alkyl-alkoxy melamine polymer... Specific Chemical Substances § 721.10493 Tris-alkyl-alkoxy melamine polymer (generic). (a) Chemical... as tris-alkyl-alkoxy melamine polymer (PMN P-05-417) is subject to reporting under this section for...

  11. Effects of ammonium on uranium partitioning and kaolinite mineral dissolution.

    PubMed

    Emerson, Hilary P; Di Pietro, Silvina; Katsenovich, Yelena; Szecsody, Jim

    2017-02-01

    Ammonia gas injection is a promising technique for the remediation of uranium within the vadose zone. It can be used to manipulate the pH of a system and cause co-precipitation processes that are expected to remove uranium from the aqueous phase and decrease leaching from the solid phase. The work presented in this paper explores the effects of ammonium and sodium hydroxide on the partitioning of uranium and dissolution of the kaolinite mineral in simplified synthetic groundwaters using equilibrium batch sorption and sequential extraction experiments. It shows that there is a significant increase in uranium removal in systems with divalent cations present in the aqueous phase but not in sodium chloride synthetic groundwaters. Further, the initial conditions of the aqueous phase do not affect the dissolution of kaolinite. However, the type of base treatment does have an effect on mineral dissolution. Published by Elsevier Ltd.

  12. Selective alkylation of T–T mismatched DNA using vinyldiaminotriazine–acridine conjugate

    PubMed Central

    Onizuka, Kazumitsu; Usami, Akira; Yamaoki, Yudai; Kobayashi, Tomohito; Hazemi, Madoka E; Chikuni, Tomoko; Sato, Norihiro; Sasaki, Kaname; Katahira, Masato

    2018-01-01

    Abstract The alkylation of the specific higher-order nucleic acid structures is of great significance in order to control its function and gene expression. In this report, we have described the T–T mismatch selective alkylation with a vinyldiaminotriazine (VDAT)–acridine conjugate. The alkylation selectively proceeded at the N3 position of thymidine on the T–T mismatch. Interestingly, the alkylated thymidine induced base flipping of the complementary base in the duplex. In a model experiment for the alkylation of the CTG repeats DNA which causes myotonic dystrophy type 1 (DM1), the observed reaction rate for one alkylation increased in proportion to the number of T–T mismatches. In addition, we showed that primer extension reactions with DNA polymerase and transcription with RNA polymerase were stopped by the alkylation. The alkylation of the repeat DNA will efficiently work for the inhibition of replication and transcription reactions. These functions of the VDAT–acridine conjugate would be useful as a new biochemical tool for the study of CTG repeats and may provide a new strategy for the molecular therapy of DM1. PMID:29309639

  13. Alkyl chitosan film-high strength, functional biomaterials.

    PubMed

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  14. Crystal structure of allyl­ammonium hydrogen succinate at 100 K

    PubMed Central

    Dziuk, Błażej; Zarychta, Bartosz; Ejsmont, Krzysztof

    2014-01-01

    The asymmetric unit of the title compound, C2H8N+·C4H5O4 −, consists of two allyl­ammonium cations and two hydrogen succinate anions (Z′ = 2). One of the cations has a near-perfect syn-periplanar (cis) conformation with an N—C—C—C torsion angle of 0.4 (3)°, while the other is characterized by a gauche conformation and a torsion angle of 102.5 (3)°. Regarding the anions, three out of four carboxilic groups are twisted with respect to the central C–CH2–CH2–C group [dihedral angles = 24.4 (2), 31.2 (2) and 40.4 (2)°], the remaining one being instead almost coplanar, with a dihedral angle of 4.0 (2)°. In the crystal, there are two very short, near linear O—H⋯O hydrogen bonds between anions, with the H atoms shifted notably from the donor O towards the O⋯O midpoint. These O—H⋯O hydrogen bonds form helical chains along the [011] which are further linked to each other through N—H⋯O hydrogen bonds (involving all the available NH groups), forming layers lying parallel to (100). PMID:25309251

  15. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation.

    PubMed

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-28

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  16. Solid-State Synthesis and Structure of the Enigmatic Ammonium Octaborate: (NH4)2[B7O9(OH)5]·3/4B(OH)3·5/4H2O.

    PubMed

    Neiner, Doinita; Sevryugina, Yulia V; Schubert, David M

    2016-09-06

    The compound known since the 19th century as ammonium octaborate was structurally characterized revealing the ammonium salt of the ribbon isomer of the heptaborate anion, [B7O9(OH)5](2-), with boric acid and water molecules. Of composition (NH4)2B7.75O12.63·4.88H2O, it approximates the classical ammonium octaborate composition (NH4)2B8O13·6H2O and has the structural formula {(NH4)2[B7O9(OH)5]}4·3B(OH)3·5H2O. It spontaneously forms at room temperature in solid-state mixtures of ammonium tetraborate and ammonium pentaborate. It crystallizes in the monoclinic space group P21/c with a = 11.4137(2) Å, b = 11.8877(2) Å, c = 23.4459(3) Å, β = 90.092(1)°, V = 3181.19(8) Å(3), and Z = 2 and contains well-ordered ammonium cations and [B7O9(OH)5](2-) anions and disordered B(OH)3 and H2O molecules linked by extensive H bonding. Expeditious solid-state formation of the heptaborate anion under ambient conditions has important implications for development of practical syntheses of industrially useful borates.

  17. Ammonium nitrate explosive systems

    DOEpatents

    Stinecipher, Mary M.; Coburn, Michael D.

    1981-01-01

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  18. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  19. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  20. Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids.

    PubMed

    Luo, Huimin; Baker, Gary A; Dai, Sheng

    2008-08-21

    Vaporization enthalpies for two series of ionic liquids (ILs) composed of 1- n-alkyl-3-methylimidazolium cations, [Imm1+] (m=2, 3, 4, 6, 8, or 10), paired with either the bis(trifluoromethanesulfonyl)amide, [Tf2N-], or the bis(perfluoroethylsulfonyl)amide anion, [beti-], were determined using a simple, convenient, and highly reproducible thermogravimetric approach, and from these values, Hildebrand solubility parameters were estimated. Our results reveal two interesting and unanticipated outcomes: (i) methylation at the C2 position of [Imm1+] affords a significantly higher vaporization enthalpy; (ii) in all cases, the [beti-] anion served to lower the enthalpy of vaporization relative to [Tf2N-]. The widespread availability of the apparatus required for these measurements coupled with the ease of automation suggests the broad potential of this methodology for determining this critical parameter in a multitude of ILs.

  1. Detection and identification of alkylating agents by using a bioinspired "chemical nose".

    PubMed

    Hertzog-Ronen, Carmit; Borzin, Elena; Gerchikov, Yulia; Tessler, Nir; Eichen, Yoav

    2009-10-12

    Alkylating agents are simple and reactive molecules that are commonly used in many and diverse fields such as organic synthesis, medicine, and agriculture. Some highly reactive alkylating species are also being used as blister chemical-warfare agents. The detection and identification of alkylating agents is not a trivial issue because of their high reactivity and simple structure. Herein, we report on a new multispot luminescence-based approach to the detection and identification of alkylating agents. In order to demonstrate the potential of the approach, seven pi-conjugated oligomers and polymers bearing nucleophilic pyridine groups, 1-7, were adsorbed onto a solid support and exposed to vapors of alkylators 8-15. The alkylation-induced color-shift patterns of the seven-spot array allow clear discrimination of the different alkylators. The spots are sensitive to minute concentrations of alkylators and, because the detection is based on the formation of new covalent bonds, these spots saturate at about 50 ppb.

  2. Probing dynamics and mechanism of exchange process of quaternary ammonium dimeric surfactants, 14-s-14, in the presence of conventional surfactants.

    PubMed

    Liu, Jun; Jiang, Yan; Chen, Hong; Mao, Shi Zhen; Du, You Ru; Liu, Mai Li

    2012-12-27

    In this Article, we investigated effects of different types of conventional surfactants on exchange dynamics of quaternary ammonium dimeric surfactants, with chemical formula C(14)H(29)N(+)(CH(3))(2)- (CH(2))(s)-N(+)(CH(3))(2)C(14)H(29)·2Br(-), or 14-s-14 for short. Two nonionic surfactants, TritonX-100 (TX-100) and polyethylene glycol (23) laurylether (Brij-35), and one cationic surfactant, n-tetradecyltrimethyl ammonium bromide (TTAB), and one ionic surfactant, sodium dodecyl sulfate (SDS) were chosen as typical conventional surfactants. Exchange rates of 14-s-14 (s = 2, 3, and 4) between the micelle form and monomer in solution were detected by two NMR methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). Results show that the nonionic surfactants (TX-100 and Brij-35), the cationic surfactant (TTAB), and the ionic surfactant (SDS) respectively accelerated, barely influenced, and slowed the exchange rate of 14-s-14. The effect mechanism was investigated by the self-diffusion experiment, relaxation time measurements (T(2)/T(1)), the fluorescence experiment (I(1)/I(3)) and observed chemical shift variations. Results reveal that, nonionic conventional surfactants (TX-100 and Brij-35) loosened the molecule arrangement and decreased hydrophobic interactions in the micelle, and thus accelerated the exchange rate of 14-s-14. The cationic conventional surfactant (TTAB) barely changed the molecule arrangement and thus barely influenced the exchange rate of 14-s-14. The ionic conventional surfactant (SDS) introduced the electrostatic attraction effect, tightened the molecule arrangement, and increased hydrophobic interactions in the micelle, and thus slowed down the exchange rate of 14-s-14. Additionally, the two-step exchange mechanism of 14-s-14 in the mixed solution was revealed through interesting variation tendencies of exchange rates of 14-s-14.

  3. Reactive p-block cations stabilized by weakly coordinating anions

    PubMed Central

    Engesser, Tobias A.; Lichtenthaler, Martin R.; Schleep, Mario

    2016-01-01

    The chemistry of the p-block elements is a huge playground for fundamental and applied work. With their bonding from electron deficient to hypercoordinate and formally hypervalent, the p-block elements represent an area to find terra incognita. Often, the formation of cations that contain p-block elements as central ingredient is desired, for example to make a compound more Lewis acidic for an application or simply to prove an idea. This review has collected the reactive p-block cations (rPBC) with a comprehensive focus on those that have been published since the year 2000, but including the milestones and key citations of earlier work. We include an overview on the weakly coordinating anions (WCAs) used to stabilize the rPBC and give an overview to WCA selection, ionization strategies for rPBC-formation and finally list the rPBC ordered in their respective group from 13 to 18. However, typical, often more organic ion classes that constitute for example ionic liquids (imidazolium, ammonium, etc.) were omitted, as were those that do not fulfill the – naturally subjective – “reactive”-criterion of the rPBC. As a rule, we only included rPBC with crystal structure and only rarely refer to important cations published without crystal structure. This collection is intended for those who are simply interested what has been done or what is possible, as well as those who seek advice on preparative issues, up to people having a certain application in mind, where the knowledge on the existence of a rPBC that might play a role as an intermediate or active center may be useful. PMID:26612538

  4. Mechanisms of chemoresistance to alkylating agents in malignant glioma.

    PubMed

    Sarkaria, Jann N; Kitange, Gaspar J; James, C David; Plummer, Ruth; Calvert, Hilary; Weller, Michael; Wick, Wolfgang

    2008-05-15

    Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but this is dependent on a functional mismatch repair pathway. Thus, tumor cell lines deficient in mismatch repair are resistant to alkylating agents. Perhaps the most important mechanism of resistance to alkylating agents is the DNA repair enzyme O6-methylguanine methyltransferase, which can eliminate the cytotoxic O6-methylguanine DNA adduct before it causes harm. Another mechanism of resistance to alkylating agents is the base excision repair (BER) pathway. Consequently, efforts are ongoing to develop effective inhibitors of BER. Poly(ADP-ribose)polymerase plays a pivotal role in BER and is an important therapeutic target. Developing effective strategies to overcome chemoresistance requires the identification of reliable preclinical models that recapitulate human disease and which can be used to facilitate drug development. This article describes the diverse mechanisms of chemoresistance operating in malignant glioma and efforts to develop reliable preclinical models and novel pharmacologic approaches to overcome resistance to alkylating agents.

  5. Alcohols as alkylating agents in heteroarene C-H functionalization

    NASA Astrophysics Data System (ADS)

    Jin, Jian; MacMillan, David W. C.

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  6. Alcohols as alkylating agents in heteroarene C-H functionalization.

    PubMed

    Jin, Jian; MacMillan, David W C

    2015-09-03

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of 'spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  7. Preparation and Characterization of Novel Cationic Chitosan Derivatives Bearing Quaternary Ammonium and Phosphonium Salts and Assessment of Their Antifungal Properties.

    PubMed

    Tan, Wenqiang; Li, Qing; Dong, Fang; Chen, Qiuhong; Guo, Zhanyong

    2017-08-31

    Chitosan is an abundant and renewable polysaccharide, its derivatives exhibit attractive bioactivities and the wide applications in various biomedical fields. In this paper, two novel cationic chitosan derivatives modified with quaternary phosphonium salts were successfully synthesized via trimethylation, chloride acetylation, and quaternization with tricyclohexylphosphine and triphenylphosphine. The structures and properties of synthesized products in the reactions were characterized by FTIR spectroscopy, ¹H-NMR, 31 P-NMR, elemental and thermogravimetric analysis. The antifungal activities of chitosan derivatives against four kinds of phytopathogens, including Phomopsis asparagi , Watermelon fusarium , Colletotrichum lagenarium , and Fusarium oxysporum were tested using the radial growth assay in vitro. The results revealed that the synthesized cationic chitosan derivatives showed significantly improved antifungal efficiency compared to chitosan. It was reasonably suggested that quaternary phosphonium groups enabled the obviously stronger antifungal activity of the synthesized chitosans. Especially, the triphenylphosphonium-functionalized chitosan derivative inhibited the growth of Phomopsis asparagi most effectively, with inhibitory indices of about 80% at 0.5 mg/mL. Moreover, the data demonstrated that the substituted groups with stronger electron-withdrawing ability relatively possessed greater antifungal activity. The results suggest the possibility that cationic chitosan derivatives bearing quaternary phosphonium salts could be effectively employed as novel antifungal biomaterials for application in the field of agriculture.

  8. 40 CFR 721.10711 - Alkyl substituted catechol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10711 Alkyl substituted catechol (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  9. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this section...

  10. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this section...

  11. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    PubMed

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Lithium perchlorate-nitromethane-promoted alkylation of anilines with arylmethanols.

    PubMed

    Zhou, Jun; Mao, Hai-Feng; Wang, Lu; Zou, Jian-Ping; Zhang, Wei

    2011-11-01

    A new application of lithium perchlorate-nitromethane (LPNM) for the formation of aromatic C-N and C-C bonds is introduced. LPNM-promoted reactions of anilines with diarylmethanols selectively generate N-alkylated anilines or mono and double Friedel-Crafts alkylation products under different conditions by changing the reaction time, reaction temperature, and the ratio of the reactants. This method does not require the use of transition metal catalysts to prepare alkylated aniline derivatives.

  13. Chiral Brønsted Base-Promoted Nitroalkane Alkylation: Enantioselective Synthesis of sec-Alkyl-3-Substituted Indoles

    PubMed Central

    Dobish, Mark C.; Johnston, Jeffrey N.

    2010-01-01

    A Brønsted base-catalyzed reaction of nitroalkanes with alkyl electrophiles provides indole heterocycles substituted at C3 bearing a sec-alkyl group with good enantioselectivity (up to 90% ee). Denitration by hydrogenolysis provides a product with equally high ee. An indolenine intermediate is implicated in the addition step, and surprisingly, water cosolvent was found to have a beneficial effect in this step, leading to a one-pot protocol for elimination/enantioselective addition using PBAM, a bis(amidine) chiral nonracemic base. PMID:21090654

  14. Isolation and characterization of a novel ammonium overly sensitive mutant, amos2, in Arabidopsis thaliana.

    PubMed

    Li, Guangjie; Dong, Gangqiang; Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2012-02-01

    Ammonium (NH(4)(+)) toxicity is a significant agricultural problem globally, compromising crop growth and productivity in many areas. However, the molecular mechanisms of NH(4)(+) toxicity are still poorly understood, in part due to a lack of valuable genetic resources. Here, a novel Arabidopsis mutant, amos2 (ammonium overly sensitive 2), displaying hypersensitivity to NH(4) (+) in both shoots and roots, was isolated. The mutant exhibits the hallmarks of NH(4)(+) toxicity at significantly elevated levels: severely suppressed shoot biomass, increased leaf chlorosis, and inhibition of lateral root formation. Amos2 hypersensitivity is associated with excessive NH(4)(+) accumulation in shoots and a reduction in tissue potassium (K(+)), calcium (Ca(2+)), and magnesium (Mg(2+)). We show that the lesion is specific to the NH(4)(+) ion, is independent of NH(4)(+) metabolism, and can be partially rescued by elevated external K(+). The amos2 lesion was mapped to a 16-cM interval on top of chromosome 1, where no similar mutation has been previously mapped. Our study identifies a novel locus controlling cation homeostasis under NH(4)(+) stress and provides a tool for the future identification of critical genes involved in the development of NH(4)(+) toxicity.

  15. [Occupational allergic "march". Rapid evolution of contact dermatitis to ammonium persulfate into airborne contact dermatitis with rhinitis and asthma in a hairdresser].

    PubMed

    Poltronieri, Anna; Patrini, L; Pigatto, P; Riboldi, L; Marsili, Chiara; Previdi, M; Margonari, M; Marraccini, P

    2010-01-01

    Hairdressers are exposed to irritants and allergenic compounds that may cause contact dermatitis, rhinitis and asthma. In this paper we describe the case of a female, age 33 years, who developed contact dermatitis after 10 years of exposure to ammonium persulfate. After 7 months of progressively extensive and persistent skin lesions, respiratory symptoms appeared that were related to the occupational exposure (on-off test). SIDAPA and specific occupational patch test for hairdressers and occupational challenge with ammonium persulfate were performed. Clinical parameters of inflammation, ECP (eosinophil cationic protein) and exhaled nitric oxide (FeNO) were detected before and after the specific bronchial challenge. The patch test was positive to ammonium persulfate (++), and bronchial challenge for ammonium persulfate showed a significant late response (FEV1 decrease--33%). Both FeNO and ECP showed a significant increase after 24 hours. Dermatitis, urticaria and angioedema occurred on the uncovered skin due to airborne contact. Topic steroids and anti-histaminic drugs resolved the clinical symptoms. Bronchial challenge is, in fact, considered to be the gold standard for the diagnosis of occupational asthma, although new inflammatory parameters can contribute to the diagnosis and can be useful for monitoring after a specific inhalation test with occupational agents. The described case summarizes the evolution from contact dermatitis to inhalation allergy, suggesting the occurrence of an allergic "march" for occupational allergy.

  16. Femtosecond Raman-Induced Kerr Effect Study of Temperature-Dependent Intermolecular Dynamics in Molten Bis(trifluoromethylsulfonyl)amide Salts: Effects of Cation Species.

    PubMed

    Kakinuma, Shohei; Shirota, Hideaki

    2018-05-25

    In this study, we have investigated the effects of cation structures on the temperature dependence of the intermolecular vibrational dynamics of ionic liquids using femtosecond Raman-induced Kerr effect spectroscopy. The ionic liquids used in this study are bis(trifluoromethylsulfonyl)amide [NTf 2 ] - salts of the cations 1-butyl-3-methylimidazolium [C 4 MIm] + , 1-butyl-1-methylpyrrolidinium [Pyrr 14 ] + , 1-butylpyridinium [C 4 Py] + , butyldiethylmethylammonium [N 1224 ] + , triethyloctylammonium [N 2228 ] + , and triethyloctylphosphonium [P 2228 ] + . All of the ionic liquids show temperature-dependent low-frequency spectra. A difference in the temperature dependence between the spectra of the aromatic and nonaromatic cation based ionic liquids is especially significant. In the case of the aromatic cation based ionic liquids [C 4 MIm][NTf 2 ] and [C 4 Py][NTf 2 ], the spectral intensities in the low-frequency region below ca. 50 cm -1 increase and the high-frequency components at ca. 80 cm -1 shift to lower frequencies with rising temperature. In contrast, the ionic liquids based on nonaromatic cations only exhibit an increase in the low-frequency region below ca. 50 cm -1 with increasing temperature, while the high-frequency region of the spectra above ca. 50 cm -1 shows little change with variation of the temperature. These results suggest that the presence or absence of aromatic rings is the main factor in determining the temperature-dependent spectral features, particularly in the high-frequency region. We also found that the alkyl chain length and central atoms of the nonaromatic quaternary cations do not have much influence on the temperature-dependent spectral features. The first moments of the aromatic cation based ionic liquids are a little more sensitive to temperature than those of the nonaromatic cation based ionic liquids. The temperature-dependent viscosities and fragilities of the ionic liquids have also been examined.

  17. Protein Precipitation Using Ammonium Sulfate.

    PubMed

    2016-04-01

    The basic theory of protein precipitation by addition of ammonium sulfate is presented, and the most common applications are listed. Tables are provided for calculating the appropriate amount of ammonium sulfate to add to a particular protein solution. Copyright © 2016 John Wiley & Sons, Inc.

  18. Sleep-inducing N-alkyl-5-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinones and N-alkyl-3-(trifluoromethyl)cinnamamides.

    PubMed

    Houlihan, W J; Gogerty, J H; Ryan, E A; Schmitt, G

    1985-01-01

    A series of N-alkyl-3-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinones and N-alkyl-3-(trifluoromethyl)-cinnamamides were prepared and screened in a series of tests designed to detect potential sleep inducers. The more active members of the series were evaluated for their ability to induce sleep in Cebus monkeys. The most active compound, N-methyl-5-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinone, was equal to methaqualone.

  19. Correlation between the extent of catalytic activity and charge density of montmorillonites.

    PubMed

    Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-09-01

    The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH₃-(CH₂)(n)-NH₃](+), where n = 3-16 and 18, and then measuring d(₀₀₁), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed.

  20. Structure and performance of cationic assembly dispersed in amphoteric surfactants solution as a shampoo for hair damaged by coloring.

    PubMed

    Nagahara, Yasuo; Nishida, Yuichi; Isoda, Masanori; Yamagata, Yoshifumi; Nishikawa, Naoki; Takada, Koji

    2007-01-01

    In recent years, hair coloring gains popularity as a trend of consumer's hair care. This coloring frequently damages hair. In response to this, a new shampoo-base was developed for repairing hair damaged by coloring. The new shampoo-base was prepared by dispersing cationic assembly in a solution of amphoteric surfactants. The mixture of behenyl trimethyl ammonium chloride (C22TAC) and behenyl alcohol (C22OH) was applied as the cationic assembly, which are dispersed in amido propyl betaine laurate (LPB) solution. LPB, which behaves as an amphoteric surfactant, was used as the wash-base. It was verified from the results on the measurements of DSC, calorimeter polarization, cryo-SEM and X-ray diffraction that the cationic assembly has a crystalline structure in the LPB solution. The new shampoo-base was highly efficient to change the color-damaged hair from hydrophilic to hydrophobic. The friction level of the hair washed with the new shampoo-base recovered to the same state as that of healthy hair. The exfoliation of cuticle was reduced after washing with the new shampoo-base.

  1. Sub-Doppler slit jet infrared spectroscopy of astrochemically relevant cations: Symmetric (ν1) and antisymmetric (ν6) NH stretching modes in ND2H2+

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2018-01-01

    Sub-Doppler infrared rovibrational transitions in the symmetric (v1) and antisymmetric (v6) NH stretch modes of the isotopomerically substituted ND2H2+ ammonium cation are reported for the first time in a slit jet discharge supersonic expansion spectrometer. The partially H/D substituted cation is generated by selective isotopic exchange of ND3 with H2O to form NHD2, followed by protonation with H3+ formed in the NHD2/H2/Ne slit-jet discharge expansion environment. Rotational assignment for ND2H2+ is confirmed rigorously by four line ground state combination differences, which agree to be within the sub-Doppler precision in the slit jet (˜9 MHz). Observation of both b-type (ν1) and c-type (ν6) bands enables high precision determination of the ground and vibrationally excited state rotational constants. From an asymmetric top Watson Hamiltonian analysis, the ground state constants are found to be A″ = 4.856 75(4) cm-1, B″ = 3.968 29(4) cm-1, and C″ = 3.446 67(6) cm-1, with band origins at 3297.5440(1) and 3337.9050(1) cm-1 for the v1 and v6 modes, respectively. This work permits prediction of precision microwave/mm-wave transitions, which should be invaluable in facilitating ongoing spectroscopic searches for partially deuterated ammonium cations in interstellar clouds and star-forming regions of the interstellar medium.

  2. Sorption of dodecyltrimethylammonium chloride (DTAC) to agricultural soils.

    PubMed

    Xiang, Lei; Sun, Teng-Fei; Zheng, Mei-Jie; Li, Yan-Wen; Li, Hui; Wong, Ming-Hung; Cai, Quan-Ying; Mo, Ce-Hui

    2016-08-01

    Quaternary ammonium compounds (QACs) used as cationic surfactants are intensively released into environment to be pollutants receiving more and more concerns. Sorption of dodecyltrimethylammonium chloride (DTAC), one of commonly used alkyl QACs, to five types of agricultural soils at low concentrations (1-50mg/L) was investigated using batch experiments. DTAC sorption followed pseudo-second-order kinetics and reached reaction equilibrium within 120min. Both Freundlich model and Langmuir model fitted well with DTAC isotherm data with the latter better. DTAC sorption was spontaneous and favorable, presenting a physical sorption dominated by ion exchanges. Sorption distribution coefficient and sorption affinity demonstrated that soil clay contents acted as a predominant phase of DTAC sorption. DTAC could display a higher mobility and potential accumulation in crops in the soils with lower clay contents and lower pH values. Sorption of DTAC was heavily affected by ions in solution with anion promotion and cation inhibition. Copyright © 2016. Published by Elsevier B.V.

  3. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  4. Cationic gemini surfactants with cleavable spacer: chemical hydrolysis, biodegradation, and toxicity.

    PubMed

    Tehrani-Bagha, A R; Holmberg, K; van Ginkel, C G; Kean, M

    2015-07-01

    The paper describes synthesis and characterization of a new type of cationic gemini surfactant, which has dodecyl tails and a spacer that contains an ester bond. The nomenclature used to describe the structure is 12Q2OCO1Q12, with Q being a quaternary ammonium group and the numbers indicating the number of methylene or methyl groups. Due to the close proximity to the two quaternary ammonium groups, the ester bond is very stable on the acid side and very labile already at slightly alkaline conditions. The hydrolysis products are two single chain surfactants (i.e. 12Q2OH and 12Q1COOH) which are less surface active than the intact gemini surfactant. 12Q2OCO1Q12 was found to be readily biodegradable, i.e. it gave more than 60% biodegradation after 28 days. This is interesting because similar gemini surfactants but with ester bonds in the tails instead of the spacer, have previously been found not to be readily biodegradable. The gemini surfactant was found to be toxic to aquatic organisms (ErC50 value of 0.27 mg/l), although less toxic than the two hydrolysis products. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Synthesis and characterization of chitosan alkyl urea.

    PubMed

    Wang, Jing; Jiang, Ji-Zhou; Chen, Wei; Bai, Zheng-Wu

    2016-07-10

    Chitosan is a versatile material employed for various purposes in many fields including the development of chiral stationary phases for enantioseparation. Chitosan alkyl urea is a kind of intermediate used to prepare enantioseparation materials. In order to synthesize the intermediates, in the present work, a new way to prepare chitosan alkyl urea has been established: chitosan was first reacted with methyl chloroformate yielding N-methoxyformylated chitosan, which was then converted to chitosan alkyl urea through amine-ester exchange reaction. With a large excess of methyl chloroformate and primary amine of low stereohindrance, the amino group in chitosan could be almost completely converted to ureido group. The as-prepared chitosan alkyl urea derivatives were characterized by IR, (1)H NMR, (13)C NMR,(1)H-(1)H COSY and (1)H-(13)C HSQC NMR spectra. The chemical shifts of hydrogen and carbon atoms of glucose unit were assigned. It was found that the degree of substitution was obviously lower if cyclopropyl amine, aniline, tert-butyl amine and diethyl amine were used as reactants for the amine-ester exchange reaction. The reason was explained with the aid of theoretical calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Alcohols as alkylating agents in heteroarene C–H functionalization

    PubMed Central

    Jin, Jian; MacMillan, David W. C.

    2015-01-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage1. One of the core principles that underlies DNA biosynthesis is the radical-mediated elimnation of H2O to deoxygenate ribonucleotides, an example of ‘spin-center shift’ (SCS)2, during which an alcohol C–O bond is cleaved, resulting in a carbon-centered radical intermediate. While SCS is a well-understood biochemical process, it is underutilized by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylations using alcohols as radical precursors. Considering traditional radical-based alkylation methods require the use of stoichiometric oxidants, elevated temperatures, or peroxides3–7, the development of a mild protocol using simple and abundant alkylating agents would have significant utility in the synthesis of diversely functionalized pharmacophores. In this manuscript, we describe the successful execution of this idea via the development of a dual catalytic alkylation of heteroarenes using alcohols as mild alkylating reagents. This method represents the first broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer (HAT) catalysis. The utility of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone. PMID:26308895

  7. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  8. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of...

  9. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  10. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  11. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of...

  12. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of...

  13. 21 CFR 582.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum ammonium sulfate. 582.1127 Section 582.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b) Conditions of...

  14. 21 CFR 182.1127 - Aluminum ammonium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum ammonium sulfate. 182.1127 Section 182.1127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1127 Aluminum ammonium sulfate. (a) Product. Aluminum ammonium sulfate. (b...

  15. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ferric ammonium ferrocyanide. 73.1298 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1298 Ferric ammonium ferrocyanide. (a) Identity. (1) The color additive ferric ammonium ferrocyanide is the blue pigment obtained by oxidizing...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhill, William C.; Qu, Jun; Luo, Huimin

    In our previous work we suggest great potential for a phosphonium-organophosphate ionic liquid (IL) as an antiwear lubricant additive. In this study, a set of five ILs were carefully designed and synthesized, with identical organophosphate anions but dissimilar phosphonium cations, to allow systematic investigation of the effects of cation alkyl chain length and symmetry on physicochemical and tribological properties. Symmetric cations with shorter alkyl chains seem to increase the density and thermal stability due to closer packing. On the other hand, either higher cation symmetry or longer alkyl moieties induce a higher viscosity, though the viscosity index is dependent moremore » on molecular mass than on symmetry. While a larger cation size generally increases an IL’s solubility in nonpolar hydrocarbon oils, six-carbon seems to be the critical minimum alkyl chain length for high oil miscibility. Both the two ILs, that are mutually oil miscible, have demonstrated promising lubricating performance at 1.04% treat rate, though the symmetric-cation IL moderately outperformed the asymmetric-cation IL. Moreover, characterizations on the tribofilm formed by the best-performing symmetric-cation IL revealed the film thickness, nanostructure, and chemical composition. Our results provide fundamental insights for future molecular design in developing oil-soluble ILs as lubricant additives.« less

  17. 21 CFR 582.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1137 Ammonium carbonate. (a) Product. Ammonium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  18. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  19. 21 CFR 582.1135 - Ammonium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1135 Ammonium bicarbonate. (a) Product. Ammonium bicarbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  20. 21 CFR 582.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1137 Ammonium carbonate. (a) Product. Ammonium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  1. 21 CFR 582.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Additives § 582.1137 Ammonium carbonate. (a) Product. Ammonium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  2. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  3. 21 CFR 582.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1137 Ammonium carbonate. (a) Product. Ammonium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  4. 21 CFR 582.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1137 Ammonium carbonate. (a) Product. Ammonium carbonate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  5. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  6. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  7. 21 CFR 582.1139 - Ammonium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...

  8. PROCESS FOR THE PRODUCTION OF AMMONIUM URANIUM FLUORIDE

    DOEpatents

    Ellis, A.S.; Mooney, R.B.

    1953-08-25

    This patent relates to the preparation of ammonium uranium fluoride. The process comprises adding a water soluble fluoride to an aqueous solution of a uranous compound containing an ammonium salt, and isolating the resulting precipitate. This patent relates to the manufacture of uranium tetnafluoride from ammonium uranium fluoride, NH/sub 4/UF/sub 5/. Uranium tetrafluoride is prepared by heating the ammonium uranium fluoride to a temperature at which dissociation occurs with liberation of ammonium fluoride. Preferably the process is carried out under reduced pressure, or in a current of an inert gas.

  9. Detection of Alkylating Agents using Electrical and Mechanical Means

    NASA Astrophysics Data System (ADS)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Tal, Shay; Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir; Eichen, Yoav

    2011-08-01

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  10. Optical absorption and photoconductivity in iodine-excess ionic liquids: the case of 1-alkyl-3-methyl imidazolium iodides.

    PubMed

    Aono, Masami; Miyazaki, Hisashi; Takekiyo, Takahiro; Tsuzuki, Seiji; Abe, Hiroshi

    2018-02-21

    We investigated the optical absorption and photoconductivity of iodine-excess ionic liquids (ILs) based on 1-alkyl-3-methyl imidazolium iodide ([C n mim][I]; n = 3, 4, and 6). The iodide concentration m was 2 ≦ m ≦ 8, which was determined by the molar fraction [C n mim] +  : [I m ] - = 1 : m. By adding iodine, an absorption edge shifted from 282 nm in the UV region to around 600 nm in the visible-light region. The optical bandgaps E o decreased gradually from 2.3 eV to 1.9 eV with increasing m from 2 to 8. The alkyl-side chain lengths of the cations have little effect on the E o . This experimental result was confirmed by ab initio molecular orbital calculations. The effects were reflected in the photoconductivity of the ILs, as expected. [C 4 mim][I m ] exhibited greater photo-induced electron generation compared with [C 3 mim][I m ] and [C 6 mim][I m ]. The photoconductivity in both [C 3 mim][I m ] and [C 6 mim][I m ] increased slightly with increasing m. The trend of photoconductivity in [C 4 mim][I m ] exhibited an N-shaped form. The highest photoconductivity 1.6 was observed in [C 4 mim][I 8 ].

  11. Evidence for ammonium-bearing minerals in Ceres

    NASA Technical Reports Server (NTRS)

    King, T. V. V.; Clark, R. N.; Calvin, W. M.; Sherman, D. M.; Swayze, G. A.; Brown, R. H.

    1991-01-01

    Evidence for ammonium-bearing minerals was found on the surface of the largest asteroid Ceres. The presence of ammonium-bearing clays suggests that Ceres has experienced a period of alteration by substantial amounts of an ammonium-bearing fluid. The presence of the ammonium-bearing clays does not preclude Ceres maintaining a volatile inventory in the core or in a volatile-rich zone at some distance below the surface. Telescopic observations of Ceres, using the 3.0 meter NASA Infrared telescope facility prompted this reevaluation of its surface mineralogy.

  12. Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-07-01

    The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety. © The Author(s) 2016.

  13. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  14. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor.

    PubMed

    Yang, Zhiquan; Zhou, Shaoqi; Sun, Yanbo

    2009-09-30

    A laboratory testing of simultaneous removal of ammonium and sulfate (SRAS) was studied from an anammox process in an anaerobic bioreactor filled with granular activated carbon. Two different phases of experiment were investigated to start up the SRAS process, and final batch tests were performed to analyze the SRAS process. The experiment included an anammox process and an SRAS process. During the anammox process, the highest removal efficiency of ammonium and nitrite was up to 97 and 98%, respectively. After 160 days in the stationary phase of anammox process, the ratio of ammonium to nitrite consumption was approximately 1:1.15, which is much higher than 1:1.32 in the traditional anammox process. The extra electron acceptor, such as sulfate, was thought to react with ammonium by bacteria. Synthetic wastewater containing ammonium chlorine and sodium sulfate was used as the feed for the bioreactor in the second phase of experiment. During the SRAS process, the influent concentrations of ammonium and sulfate were controlled to be 50-60 and 210-240 mg L(-1) respectively. After start-up and acclimatization of this process for 60 days, the average effluent concentrations of ammonium and sulfate were 30 and 160 mg L(-1), respectively. The simultaneous ammonium and sulfate removal was detected in the reactor. In order to further validate the biochemical interaction between ammonium and sulfate, batch tests was carried out. Abiotic tests were carried out to demonstrate that the pure chemical action between ammonium and sulfate without microorganism was not possible. Biotic assays with different ammonium and sulfate concentrations were further investigated that high concentrations of ammonium and sulfate could promote simultaneous removal of ammonium and sulfate. And elemental sulfur and nitrogen gas as the products measured in the SRAS process helped to demonstrate the occurrence of new interaction between nitrogen and sulfur. The new process of SRAS in the inorganic

  15. Alkylation of 6-mercaptopurine (6-MP) with N-alkyl-N-alkoxycarbonylaminomethyl chlorides: S6-(N-alkyl-N-alkoxycarbonyl)aminomethyl-6-MP prodrug structure effect on the dermal delivery of 6-MP.

    PubMed

    Siver, K G; Sloan, K B

    1990-01-01

    The S6-(N-alkyl-N-alkoxycarbonyl)aminomethyl-6-MP (6-CARB-6-MP) prodrugs 5-20 were synthesized from the reaction of 6-MP with N-alkyl-N-alkyoxycarbonylaminomethyl chlorides (4) in dimethyl sulfoxide in overall yields of 5-62%, depending on the N-alkyl and the alkoxy groups involved. The derivatives were fully characterized by spectral and microanalyses. The assignment of the substitution pattern as S6-alkyl was based on comparisons of the UV, 1H NMR and 13C NMR spectra with model compounds. A S6, 9-bis-alkyl derivative was obtained from the reaction of 2 equivalents of 4 with 6-MP but the product was unstable and decomposed on standing to a 9-alkyl derivative. The 6-CARB-6-MP prodrugs reverted to 6-MP in water by an SN1-type mechanism involving unimolecular charge separation in the transition state of the rate determining step. There was no effect of dermal enzymes on the rate of hydrolysis. The solubilities in isopropyl myristate (IPM) for all of the 6-CARB-6-MP prodrugs were significantly greater than the solubility of 6-MP in IPM but only one prodrug (5) was apparently even as soluble as 6-MP in water. Selected 6-CARB-6-MP prodrugs were examined in diffusion cell experiments. Only the N-methyl-N-methoxycarbonyl derivative 5 gave a steady-state rate of delivery of 6-MP from IPM that was significantly greater than the steady-state rate of delivery of 6-MP from 6-MP in IPM. All the other derivatives gave steady-state rates of delivery of 6-MP from IPM that were either not significantly different, or were significantly lower than the rate obtained from 6-MP in IPM. In all cases, the effect of the 6-CARB-6-MP:IPM suspensions on the permeability of the skin, as determined by the second application flux of theophylline:propylene glycol, was of the same magnitude as the effect of IPM alone.

  16. Electricity production coupled to ammonium in a microbial fuel cell.

    PubMed

    He, Zhen; Kan, Jinjun; Wang, Yanbing; Huang, Yuelong; Mansfeld, Florian; Nealson, Kenneth H

    2009-05-01

    The production of electricity from ammonium was examined using a rotating-cathode microbial fuel cell (MFC). The addition of ammonium chloride, ammonium sulfate, or ammonium phosphate (monobasic) resulted in electricity generation, while adding sodium chloride, nitrate, or nitrite did not cause any increase in current production. The peak current increased with increasing amount of ammonium addition up to 62.3 mM of ammonium chloride, suggesting that ammonium was involved in electricity generation either directly as the anodic fuel or indirectly as substrates for nitrifiers to produce organic compounds for heterotrophs. Adding nitrate or nitrite with ammonium increased current production compared to solely ammonium addition. Using 16S rRNA-linked molecular analyses, we found ammonium-oxidizing bacteria and denitrifying bacteria on both the anode and cathode electrodes, whereas no anammox bacteria were detected. The dominant ammonium-oxidizing bacteria were closely related to Nitrosomonas europaea. The present MFC achieved an ammonium removal efficiency of 49.2 +/- 5.9 or 69.7 +/- 3.6%, depending on hydraulic retention time, but exhibited a very low Coulombic efficiency.

  17. Ultrasound promoted N-alkylation of pyrrole using potassium superoxide as base in crown ether.

    PubMed

    Yim, E S; Park, M K; Han, B H

    1997-04-01

    Ultrasound accelerates the N-alkylation of pyrrole by alkylating reagents using potassium superoxide as base in the presence of 18-crown-6. A much lower yield of N-alkylated pyrrole was realized in the absence of ultrasound. N-alkylating reagents employed for pyrrole are methyl iodide, ethyl bromide, benzyl bromide, as well as acrylonitrile allyl cyanide and methyl acrylate. In an extension of this work, we have found that ultrasound was not necessary for the N-alkylation of indole and alkyl amine, such as diphenyl amine and piperidine with alkyl halides using our reagents. In all cases we observed that the 18-crown-6 catalyzed N-alkylation reaction gives higher yields of N-alkylated products than that without crown ether, when potassium superoxide was used as base. These observations are probably due to the potassium-crown complex which can be released when the reaction goes to completion.

  18. Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics.

    PubMed

    Anderson, Eric; Crisci, Anthony; Murugappan, Karthick; Román-Leshkov, Yuriy

    2017-05-22

    Reductive catalytic fractionation of biomass has recently emerged as a powerful lignin extraction and depolymerization method to produce monomeric aromatic oxygenates in high yields. Here, bifunctional molybdenum-based polyoxometalates supported on titania (POM/TiO 2 ) are shown to promote tandem hydrodeoxygenation (HDO) and alkylation reactions, converting lignin-derived oxygenated aromatics into alkylated benzenes and alkylated phenols in high yields. In particular, anisole and 4-propylguaiacol were used as model compounds for this gas-phase study using a packed-bed flow reactor. For anisole, 30 % selectivity for alkylated aromatic compounds (54 % C-alkylation of the methoxy groups by methyl balance) with an overall 72 % selectivity for HDO at 82 % anisole conversion was observed over H 3 PMo 12 O 40 /TiO 2 at 7 h on stream. Under similar conditions, 4-propylguaiacol was mainly converted into 4-propylphenol and alkylated 4-propylphenols with a selectivity to alkylated 4-propylphenols of 42 % (77 % C-alkylation) with a total HDO selectivity to 4-propylbenzene and alkylated 4-propylbenzenes of 4 % at 92 % conversion (7 h on stream). Higher catalyst loadings pushed the 4-propylguaiacol conversion to 100 % and resulted in a higher selectivity to propylbenzene of 41 %, alkylated aromatics of 21 % and alkylated phenols of 17 % (51 % C-alkylation). The reactivity studies coupled with catalyst characterization revealed that Lewis acid sites act synergistically with neighboring Brønsted acid sites to simultaneously promote alkylation and hydrodeoxygenation activity. A reaction mechanism is proposed involving activation of the ether bond on a Lewis acid site, followed by methyl transfer and C-alkylation. Mo-based POMs represent a versatile catalytic platform to simultaneously upgrade lignin-derived oxygenated aromatics into alkylated arenes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  20. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...