NASA Astrophysics Data System (ADS)
Ono, Tomoya; Heide, Marcus; Atodiresei, Nicolae; Baumeister, Paul; Tsukamoto, Shigeru; Blügel, Stefan
2010-11-01
We have developed an efficient computational scheme utilizing the real-space finite-difference formalism and the projector augmented-wave (PAW) method to perform precise first-principles electronic-structure simulations based on the density-functional theory for systems containing transition metals with a modest computational effort. By combining the advantages of the time-saving double-grid technique and the Fourier-filtering procedure for the projectors of pseudopotentials, we can overcome the egg box effect in the computations even for first-row elements and transition metals, which is a problem of the real-space finite-difference formalism. In order to demonstrate the potential power in terms of precision and applicability of the present scheme, we have carried out simulations to examine several bulk properties and structural energy differences between different bulk phases of transition metals and have obtained excellent agreement with the results of other precise first-principles methods such as a plane-wave-based PAW method and an all-electron full-potential linearized augmented plane-wave (FLAPW) method.
Gulans, Andris; Kontur, Stefan; Meisenbichler, Christian; Nabok, Dmitrii; Pavone, Pasquale; Rigamonti, Santiago; Sagmeister, Stephan; Werner, Ute; Draxl, Claudia
2014-09-10
Linearized augmented planewave methods are known as the most precise numerical schemes for solving the Kohn-Sham equations of density-functional theory (DFT). In this review, we describe how this method is realized in the all-electron full-potential computer package, exciting. We emphasize the variety of different related basis sets, subsumed as (linearized) augmented planewave plus local orbital methods, discussing their pros and cons and we show that extremely high accuracy (microhartrees) can be achieved if the basis is chosen carefully. As the name of the code suggests, exciting is not restricted to ground-state calculations, but has a major focus on excited-state properties. It includes time-dependent DFT in the linear-response regime with various static and dynamical exchange-correlation kernels. These are preferably used to compute optical and electron-loss spectra for metals, molecules and semiconductors with weak electron-hole interactions. exciting makes use of many-body perturbation theory for charged and neutral excitations. To obtain the quasi-particle band structure, the GW approach is implemented in the single-shot approximation, known as G(0)W(0). Optical absorption spectra for valence and core excitations are handled by the solution of the Bethe-Salpeter equation, which allows for the description of strongly bound excitons. Besides these aspects concerning methodology, we demonstrate the broad range of possible applications by prototypical examples, comprising elastic properties, phonons, thermal-expansion coefficients, dielectric tensors and loss functions, magneto-optical Kerr effect, core-level spectra and more. PMID:25135665
NASA Astrophysics Data System (ADS)
Nabok, Dmitrii; Gulans, Andris; Draxl, Claudia
2016-07-01
The G W approach of many-body perturbation theory has become a common tool for calculating the electronic structure of materials. However, with increasing number of published results, discrepancies between the values obtained by different methods and codes become more and more apparent. For a test set of small- and wide-gap semiconductors, we demonstrate how to reach the numerically best electronic structure within the framework of the full-potential linearized augmented plane-wave (FLAPW) method. We first evaluate the impact of local orbitals in the Kohn-Sham eigenvalue spectrum of the underlying starting point. The role of the basis-set quality is then further analyzed when calculating the G0W0 quasiparticle energies. Our results, computed with the exciting code, are compared to those obtained using the projector-augmented plane-wave formalism, finding overall good agreement between both methods. We also provide data produced with a typical FLAPW basis set as a benchmark for other G0W0 implementations.
A full potential inverse method based on a density linearization scheme for wing design
NASA Technical Reports Server (NTRS)
Shankar, V.
1982-01-01
A mixed analysis inverse procedure based on the full potential equation in conservation form was developed to recontour a given base wing to produce density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FL030 finite volume analysis code was modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for a trailing edge closure model are proposed for further study.
NASA Astrophysics Data System (ADS)
Ye, Lin-Hui
2015-02-01
The Kohn-Sham orbital kinetic energy density τσ(r ) =∑iwi σ|∇ψi σ(r ) | 2 is one fundamental quantity for constructing metageneralized gradient approximations (meta-GGAs) for use by density functional theory. We present a computational scheme of τσ(r ) for the full-potential linearized augmented plane-wave (FLAPW) method. Our scheme is highly accurate and efficient and easy to implement with existing computer codes. To illustrate its performance, we construct the Becke-Johnson meta-GGA exchange potentials for Be, Ne, Mg, Ar, Ca, Zn, Kr, and Cd atoms, which are in very good agreement with the original results. For bulk solids, we construct the Tran-Blaha modified Becke-Johnson potential (mBJ) and confirm its capability to calculate band gaps with the reported bad convergence of the mBJ potential being substantially improved. The present computational scheme of τσ(r ) should also be valuable for developing other meta-GGAs in the FLAPW as well as in similar methods utilizing atom centered basis functions.
NASA Astrophysics Data System (ADS)
Atta-Fynn, Raymond; Ray, Asok K.
2007-04-01
Fully relativistic full-potential density functional calculations with an all-electron linearized augmented plane wave plus local orbitals method have been performed to investigate the electronic and geometric structures of atomic carbon, nitrogen, and oxygen chemisorption on the (1 0 0) surface of δ-Pu. For all chemisorption processes, the center adsorption site is found to be the most preferred site with chemisorption energies of 7.964, 7.665, and 8.335 eV for the C, N, and O adatoms, respectively. The respective optimized distances of the C, N, and O adatoms from the surface were found to be 0.26, 0.35, and 0.48 Å. The work functions and the net magnet moments, respectively, increased and decreased in all cases compared with the bare δ-Pu (1 0 0) surface. In particular, the work function shift is largest for the least preferred top site and lowest for the most preferred center site. A detailed analysis of partial charges inside the atomic spheres, charge density distributions, and the local density of states have been performed to investigate the nature of the interaction between the surface Pu atoms and the adatoms.
NASA Astrophysics Data System (ADS)
Gong, H. R.; Ray, A. K.
2006-06-01
Full-potential linearized-augmented-plane-wave calculations indicate that the antiferromagnetic state including spin-orbit coupling effect is the ground state of bulk δ-Pu with a lattice constant of 8.66 a.u. and a bulk modulus of 32.8 GPa. It is found that spin-polarization and spin-orbit coupling effects play competing roles in the localization to delocalization behavior of 5f electrons. The optimized lattice constants of δ-Pu bulk are used to calculate the electronic structure properties of δ-Pu(1 1 1) films up to seven layers at six theoretical levels, namely non-spin-polarized-no-spin-orbit-coupling (NSP-NSO), non-spin-polarized-spin-orbit-coupling (NSP-SO), spin-polarized-no-spin-orbit-coupling (SP-NSO), spin-polarized-spin-orbit-coupling (SP-SO), antiferromagnetic-no-spin-orbit-coupling (AFM-NSO), and antiferromagnetic-spin-orbit-coupling (AFM-SO). For the δ-Pu(1 1 1) films also, AFM-SO is found to be the ground state. For the films, surface energy rapidly converges and the semi-infinite surface energy is predicted to be 1.16 J/m 2. On the other hand, the magnetic moments show an oscillating behavior, gradually approaching the bulk value of zero with increase in the number of layers. It is also predicted that the work function of δ-Pu(1 1 1) films at the AFM-SO ground state is approximately 3.41 eV, and the work function shows some oscillations when the number of layers is less than five, while it becomes relatively stable when the number of layers is greater than five. This suggests that a 3-layer film might be sufficient for computations of, for example, adsorption energies while a 5-layer film may be necessary for precise computations of, for example, adsorbate-induced work function shifts. The calculated results are compared with other experimental and theoretical results in the literature and the agreements between them are excellent, given the complexity of the physical systems and different computational formalisms.
Full potential unsteady computations including aeroelastic effects
NASA Technical Reports Server (NTRS)
Shankar, Vijaya; Ide, Hiroshi
1989-01-01
A unified formulation is presented based on the full potential framework coupled with an appropriate structural model to compute steady and unsteady flows over rigid and flexible configurations across the Mach number range. The unsteady form of the full potential equation in conservation form is solved using an implicit scheme maintaining time accuracy through internal Newton iterations. A flux biasing procedure based on the unsteady sonic reference conditions is implemented to compute hyperbolic regions with moving sonic and shock surfaces. The wake behind a trailing edge is modeled using a mathematical cut across which the pressure is satisfied to be continuous by solving an appropriate vorticity convection equation. An aeroelastic model based on the generalized modal deflection approach interacts with the nonlinear aerodynamics and includes both static as well as dynamic structural analyses capability. Results are presented for rigid and flexible configurations at different Mach numbers ranging from subsonic to supersonic conditions. The dynamic response of a flexible wing below and above its flutter point is demonstrated.
On Approximate Factorization Schemes for Solving the Full Potential Equation
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1997-01-01
An approximate factorization scheme based on the AF2 algorithm is presented for solving the three-dimensional full potential equation for the transonic flow about isolated wings. Two spatial discretization variations are presented, one using a hybrid first-order/second-order-accurate scheme and the second using a fully second-order-accurate scheme. The present algorithm utilizes a C-H grid topology to map the flow field about the wing. One version of the AF2 iteration scheme is used on the upper wing surface and another slightly modified version is used on the lower surface. These two algorithm variations are then connected at the wing leading edge using a local iteration technique. The resulting scheme has improved linear stability characteristics and improved time-like damping characteristics relative to previous implementations of the AF2 algorithm. The presentation is highlighted with a grid refinement study and a number of numerical results.
A Molecular Full-Potential LMTO Calculation for Copper Clusters
NASA Astrophysics Data System (ADS)
Datta, Radhika Prosad; Banerjea, Amitava; Mookerjee, Abhijit; Bhattacharyya, A. K.
We study the electronic properties of small (10-20 atoms) copper clusters using the newly-developed molecular full-potential linearized muffin-tin orbital two-centre-fit (TCF) method of Methfessel and van Schilfgaarde. The geometric structures of the clusters had earlier been determined by us through simulated annealing using the Equivalent Crystal Theory to compute total energies. We report the variation of the binding energy, as obtained from the TCF calculations, with cluster size and compare these to the binding energies determined, for the same structures, from the ECT. We also show the variation of the HOMO-LUMO gap with cluster size, and the pseudo-density of states for select cluster sizes.
A fast, time-accurate unsteady full potential scheme
NASA Technical Reports Server (NTRS)
Shankar, V.; Ide, H.; Gorski, J.; Osher, S.
1985-01-01
The unsteady form of the full potential equation is solved in conservation form by an implicit method based on approximate factorization. At each time level, internal Newton iterations are performed to achieve time accuracy and computational efficiency. A local time linearization procedure is introduced to provide a good initial guess for the Newton iteration. A novel flux-biasing technique is applied to generate proper forms of the artificial viscosity to treat hyperbolic regions with shocks and sonic lines present. The wake is properly modeled by accounting not only for jumps in phi, but also for jumps in higher derivatives of phi, obtained by imposing the density to be continuous across the wake. The far field is modeled using the Riemann invariants to simulate nonreflecting boundary conditions. The resulting unsteady method performs well which, even at low reduced frequency levels of 0.1 or less, requires fewer than 100 time steps per cycle at transonic Mach numbers. The code is fully vectorized for the CRAY-XMP and the VPS-32 computers.
NASA Astrophysics Data System (ADS)
Betzinger, Markus; Friedrich, Christoph; Görling, Andreas; Blügel, Stefan
2015-12-01
We present a methodology to calculate frequency and momentum dependent all-electron response functions determined within Kohn-Sham density functional theory. It overcomes the main obstacle in calculating response functions in practice, which is the slow convergence with respect to the number of unoccupied states and the basis-set size. In this approach, the usual sum-over-states expression of perturbation theory is complemented by the response of the orbital basis functions, explicitly constructed by radial integrations of frequency-dependent Sternheimer equations. To an essential extent an infinite number of unoccupied states are included in this way. Furthermore, the response of the core electrons is treated virtually exactly, which is out of reach otherwise. The method is an extension of the recently introduced incomplete-basis-set correction (IBC) [Betzinger et al., Phys. Rev. B 85, 245124 (2012), 10.1103/PhysRevB.85.245124; Phys. Rev. B 88, 075130 (2013), 10.1103/PhysRevB.88.075130] to the frequency and momentum domain. We have implemented the generalized IBC within the all-electron full-potential linearized augmented-plane-wave method and demonstrate for rocksalt BaO the improved convergence of the dynamical Kohn-Sham polarizability. We apply this technique to compute (a) quasiparticle energies employing the COHSEX approximation for the self-energy of many-body perturbation theory and (b) all-electron RPA correlation energies. It is shown that the favorable convergence of the polarizability is passed over to the COHSEX and RPA calculation.
Supersonic full-potential methods for missile body analysis
NASA Technical Reports Server (NTRS)
Pittman, James L.
1992-01-01
Accounts are presented of representative applications to missile bodies of arbitrary shape of methods based on the steady form of the full potential equation. The NCOREL and SIMP full-potential codes are compared, and their results are evaluated for the cases of an arrow wing and a wing-body configuration. Attention is given to the effect of cross-sectional and longitudinal geometries. Comparisons of surface pressure and longitudinal force and moment data for circular and elliptic bodies have shown that the full-potential methods yielded excellent results in attached-flow conditions. Results are presented for a conical star body, waveriders, the Shuttle Orbiter, and a highly swept wing-body cruising at Mach 4.
Are the Animal Welfare Acts achieving their full potential?
2016-07-30
A decade has passed since the Animal Welfare Act 2006 and the Animal Health and Welfare (Scotland) Act 2006 became law. A session at this year's Animal Welfare Foundation Discussion Forum examined the successes and limitations of the Acts and whether they are working to their full potential. Further discussions centred on the keeping of non-traditional companion animals as pets and whether greater regulation of the pet trade is needed. Laura Honey reports. PMID:27474055
Relaxation of Actinide Surfaces: An All Electron Study
NASA Astrophysics Data System (ADS)
Atta-Fynn, Raymond; Dholabhai, Pratik; Ray, Asok
2006-10-01
Fully relativistic full potential density functional calculations with a linearized augmented plane wave plus local orbitals basis (LAPW + lo) have been performed to investigate the relaxations of heavy actinide surfaces, namely the (111) surface of fcc δ-Pu and the (0001) surface of dhcp Am using WIEN2k. This code uses the LAPW + lo method with the unit cell divided into non-overlapping atom-centered spheres and an interstitial region. The APW+lo basis is used to describe all s, p, d, and f states and LAPW basis to describe all higher angular momentum states. Each surface was modeled by a three-layer periodic slab separated by 60 Bohr vacuum with four atoms per surface unit cell. In general, we have found a contraction of the interlayer separations for both Pu and Am. We will report, in detail, the electronic and geometric structures of the relaxed surfaces and comparisons with the respective non-relaxed surfaces.
Is the full potential of the biopharmaceutics classification system reached?
Bergström, Christel A S; Andersson, Sara B E; Fagerberg, Jonas H; Ragnarsson, Gert; Lindahl, Anders
2014-06-16
In this paper we analyse how the biopharmaceutics classification system (BCS) has been used to date. A survey of the literature resulted in a compilation of 242 compounds for which BCS classes were reported. Of these, 183 compounds had been reported to belong to one specific BCS class whereas 59 compounds had been assigned to multiple BCS classes in different papers. Interestingly, a majority of the BCS class 2 compounds had fraction absorbed (FA) values >85%, indicating that they were completely absorbed after oral administration. Solubility was computationally predicted at pH 6.8 for BCS class 2 compounds to explore the impact of the pH of the small intestine, where most of the absorption occurs, on the solubility. In addition, the solubilization capacity of lipid aggregates naturally present in the intestine was studied computationally and experimentally for a subset of 12 compounds. It was found that all acidic compounds with FA>85% were completely dissolved in the pH of the small intestine. Further, lipids at the concentration used in fasted state simulated intestinal fluid (FaSSIF) dissolved the complete dose given of the most lipophilic (logD6.5>3) compounds studied. Overall, biorelevant dissolution media (pure buffer of intestinal pH or FaSSIF) identified that for 20 of the 29 BCS class 2 compounds with FA>85% the complete dose given orally would be dissolved. These results indicate that a more relevant pH restriction for acids and/or dissolution medium with lipids present better forecast solubility-limited absorption in vivo than the presently used BCS solubility criterion. The analysis presented herein further strengthens the discussion on the requirement of more physiologically relevant dissolution media for the in vitro solubility classification performed to reach the full potential of the BCS. PMID:24075971
Relaxation and approximate factorization methods for the unsteady full potential equation
NASA Technical Reports Server (NTRS)
Shankar, V.; Ide, H.; Gorski, J.
1984-01-01
The unsteady form of the full potential equation is solved in conservation form, using implicit methods based on approximate factorization and relaxation schemes. A local time linearization for density is introduced to enable solution to the equation in terms of phi, the velocity potential. A novel flux-biasing technique is applied to generate proper forms of the artificial viscosity, to treat hyperbolic regions with shocks and sonic lines present. The wake is properly modeled by accounting not only for jumps in phi, but also for jumps in higher derivatives of phi obtained from requirements of density continuity. The far field is modeled using the Riemann invariants to simulate nonreflecting boundary conditions. Results are presented for flows over airfoils, cylinders, and spheres. Comparisons are made with available Euler and full potential results.
Electronic and magnetic properties of Cr doped graphene; Full potential approach
Thakur, Jyoti Kashyap, Manish K.; Saini, Hardev S.
2015-08-28
The electronic and magnetic properties of pristine and Cr doped graphene have been calculated using WIEN2k implementation of full potential linearized augmented plane wave (FPLAPW) method based on Density Functional Theory (DFT). The exchange and correlation (XC) effects were taken into account by generalized gradient approximation (GGA). The calculated results show that Cr doping introduces appropriate magnetic moment on graphene. The p-d interaction between 3d states of Cr atom and p-states of C atom are responsible for half metallicity in graphene. The calculated Half-metallic behavior of Cr-doped graphene makes it an ideal candidate for spintronic applications.
NASA Astrophysics Data System (ADS)
Klüppelberg, Daniel A.; Betzinger, Markus; Blügel, Stefan
2015-01-01
We analyze the accuracy of the atomic force within the all-electron full-potential linearized augmented plane-wave (FLAPW) method using the force formalism of Yu et al. [Phys. Rev. B 43, 6411 (1991), 10.1103/PhysRevB.43.6411]. A refinement of this formalism is presented that explicitly takes into account the tail of high-lying core states leaking out of the muffin-tin sphere and considers the small discontinuities of LAPW wave function, density, and potential at the muffin-tin sphere boundaries. For MgO and EuTiO3 it is demonstrated that these amendments substantially improve the acoustic sum rule and the symmetry of the force constant matrix. Sum rule and symmetry are realized with an accuracy of μ Htr /aB .
NASA Astrophysics Data System (ADS)
Betzinger, Markus; Friedrich, Christoph; Blügel, Stefan
2013-08-01
In a previous publication [Betzinger, Friedrich, Görling, and Blügel, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.85.245124 85, 245124 (2012)] we presented a technique to compute accurate all-electron response functions, e.g., the density response function, within the full-potential linearized augmented-plane-wave (FLAPW) method. Response contributions that are not captured (completely) within the finite Hilbert space spanned by the LAPW basis are taken into account by an incomplete-basis-set correction (IBC). The latter is based on a formal response of the basis functions themselves, which is derived by exploiting their dependence on the effective potential. Its construction requires the solution of radial differential equations, having the form of Sternheimer equations, by numerical integration. The approach includes a formally exact treatment of the response contribution from the core states. While we restricted the formalism to spherical perturbations in the previous work, we here generalize the formalism to nonspherical perturbations. The improvements are demonstrated with exact-exchange optimized-effective-potential (EXX-OEP) calculations of antiferromagnetic NiO. It is shown that with the generalized IBC a basis-set convergence is realized that is as fast as in density-functional theory calculations using standard local or semilocal functionals. The EXX-OEP band gap, magnetic moment, and spectral function of NiO are in substantially better agreement with experiment than results obtained from calculations with local and semilocal functionals.
NASA Astrophysics Data System (ADS)
Atta-Fynn, Raymond; Ray, Asok
2006-10-01
Fully-relativistic full potential density functional calculations have been performed to investigate atomic carbon, nitrogen, and oxygen chemisorption on the (111) surface of δ-Pu using the all-electron linearized augmented plane wave plus local orbitals code WIEN2k and the generalized gradient approximation to density functional theory. The surface was modeled by a three-layer periodic slab separated by 60 Bohr vacuum with two atoms per surface unit cell. The hollow fcc adsorption site was found to be the most preferred site with chemisorption energies of 6.539 eV, 6.714 eV, and 8.2 eV for the C, N, and O adatoms, respectively. The respective distances of the C, N, and O adatoms from the surface were found to be 1.16 å, 1.08 å, and 1.25 å. Analysis of the partial charges inside the atomic spheres, charge density distributions, and the local density of states indicate hybridizations between Pu 5f and the 2p states of the adatoms.
Electronic and magnetic properties of Mo doped graphene; full potential approach
Thakur, Jyoti Kashyap, Manish K.; Singh, Mukhtiyar; Saini, Hardev S.
2015-05-15
The electronic and magnetic properties of Pristine and Mo doped Graphene have been calculated using WIEN2k implementation of full potential linearized augmented plane wave (FPLAPW) method based on Density Functional Theory (DFT). The exchange and correlation (XC) effects were taken into account by generalized gradient approximation (GGA). The calculated results show that Mo doping creates magnetism in Graphene by shifting the energy levels at E{sub F} and opens up a channel for Graphene to be used in real nanoscale device applications. The unpaired d-electrons of Mo atom are responsible for induced magnetism in Graphene. Magnetic ordering created in Graphene in this way makes it suitable for recording media, magnetic sensors, magnetic inks and spintronic devices.
Lehtovaara, Lauri; Havu, Ville; Puska, Martti
2011-10-21
We present an all-electron method for time-dependent density functional theory which employs hierarchical nonuniform finite-element bases and the time-propagation approach. The method is capable of treating linear and nonlinear response of valence and core electrons to an external field. We also introduce (i) a preconditioner for the propagation equation, (ii) a stable way to implement absorbing boundary conditions, and (iii) a new kind of absorbing boundary condition inspired by perfectly matched layers. PMID:22029294
Full potential calculation of electronics and thermoelectric properties of doped Mg{sub 2}Si
Poopanya, P.; Yangthaisong, A.
2013-12-04
We present the calculations of the electronic structure and transport properties on the anti-fluorite Mg{sub 2}Si using the full potential linearized augmented plane-wave (FP-LAPW) method and the semi-classical Boltzmann theory. The modified Becke-Johnson (mBJ) exchange potentials are used to derive energy gaps and correct band gaps according to experimental values. It is found that Mg{sub 2}Si is an indirect band gap (Γ→X) material with the gap of 0.56 eV which is in good agreement with the experimental observation. Note that the band structure of Mg{sub 2}Si is directly used in combination with the semi-classical Boltzmann theory to obtain the transport coefficients. It is found that the material is the n-type semiconductor with the lowest electron concentration of 3.03×10{sup 14} cm{sup −3} at 300 K. We have also calculated the thermoelectric properties of Mg{sub 2}Si based on the rigid band approximation by varying the p-type and n-type doping levels. At room temperature, the highest power factor for p-type and n-type dopants are obtained at the hole and electron concentration of 1.63×10{sup 20} cm{sup −3} and 1.15×1021 cm{sup −3}, respectively. From the electronic states, we also found that the n-type doping region is dominated by the Mg−2p{sup 6} 3s{sup 2} and Si−3p{sup 2} states, while the Mg−2p{sup 6} and Si−3p{sup 2} states are important in the p-type doped Mg{sub 2}Si.
Rapid Bacterial Detection via an All-Electronic CMOS Biosensor.
Nikkhoo, Nasim; Cumby, Nichole; Gulak, P Glenn; Maxwell, Karen L
2016-01-01
The timely and accurate diagnosis of infectious diseases is one of the greatest challenges currently facing modern medicine. The development of innovative techniques for the rapid and accurate identification of bacterial pathogens in point-of-care facilities using low-cost, portable instruments is essential. We have developed a novel all-electronic biosensor that is able to identify bacteria in less than ten minutes. This technology exploits bacteriocins, protein toxins naturally produced by bacteria, as the selective biological detection element. The bacteriocins are integrated with an array of potassium-selective sensors in Complementary Metal Oxide Semiconductor technology to provide an inexpensive bacterial biosensor. An electronic platform connects the CMOS sensor to a computer for processing and real-time visualization. We have used this technology to successfully identify both Gram-positive and Gram-negative bacteria commonly found in human infections. PMID:27618185
Full-potential LAPW electronic structure study of δ - plutonium and the (001) surface
NASA Astrophysics Data System (ADS)
Wu, Xueyuan; Ray, Asok K.
2005-07-01
The electronic and geometric properties of bulk fcc δ -plutonium and the quantum size effects in the surface energies and the work functions of the (001) ultrathin films (UTF) up to seven layers have been investigated with periodic density-functional theory calculations within the full-potential-linearized-augmented-plane-wave (FP-LAPW) approach as implemented in the WIEN2k package. The effects of several approximations have been examined: (i) nonspin polarization (NSP) versus spin polarization (SP); (ii) scalar-relativity [no spin-orbit coupling (NSO)] versus full-relativity [i.e., with spin-orbit (SO) coupling included]. Our calculations show that both spin-polarization and spin-orbit coupling play important roles in determining the equilibrium atomic volume and bulk modulus for δ -plutonium. Our calculated equilibrium atomic volume of 178.3a.u.3 and bulk modulus of 24.9 GPa at the fully relativistic level of theory, i.e., spin-polarization and spin-orbit coupling included, are in good agreement with the experimental values of 168.2a.u.3 and 25 GPa (593 K), respectively. In particular, the energy difference brought by spin-orbit coupling, ˜7-8eV , is dominant, but the energy difference brought by spin-polarization, from a few tenths to 2 eV, has a stronger dependence on the atomic volume. Features of the density of states show that 5f electrons are more itinerant when the volume of δ -plutonium is compressed and they are more localized when the volume is expanded, which provides evidence to explain the origin of the volume expansion between the α and δ phases. The calculated equilibrium lattice constants at different levels of approximation are used in the surface property calculations for the thin films. The surface energy is found to be rapidly converged at all four level approximations, NSP-NSO, NSP-SO, SP-NSO, and SP-SO. The semi-infinite surface energy is predicted to be 0.692 eV at the full relativistic level with spin-polarization and spin
NASA Astrophysics Data System (ADS)
Ravindran, P.; Kjekshus, A.; Fjellvåg, H.; James, P.; Nordström, L.; Johansson, B.; Eriksson, O.
2001-04-01
The computational framework of this study is based on the local-spin-density approximation with first-principles full-potential linear muffin-tin orbital calculations including orbital polarization (OP) correction. We have studied the magnetic anisotropy for a series of bilayer CuAu(I)-type materials such as FeX, MnX (X=Ni,Pd,Pt), CoPt, NiPt, MnHg, and MnRh in a ferromagnetic state using experimental structural parameters to understand the microscopic origin of magnetic-anisotropy energy (MAE) in magnetic multilayers. Except for MnRh and MnHg, all these phases show perpendicular magnetization. We have analyzed our results in terms of angular momentum-, spin- and site-projected density of states, magnetic-angular-momentum-projected density of states, orbital-moment density of states, and total density of states. The orbital-moment number of states and the orbital-moment anisotropy for FeX (X=Ni,Pd,Pt) are calculated as a function of band filling to study its effect on MAE. The total and site-projected spin and orbital moments for all these systems are calculated with and without OP when the magnetization is along or perpendicular to the plane. The results are compared with available experimental as well as theoretical results. Our calculations show that OP always enhances the orbital moment in these phases and brings them closer to experimental values. The changes in MAE are analyzed in terms of exchange splitting, spin-orbit splitting, and tetragonal distortion/crystal-field splitting. The calculated MAE is found to be in good agreement with experimental values when the OP correction is included. Some of the materials considered here show large magnetic anisotropy of the order of meV. In particular we found that MnPt will have a very large MAE if it could be stabilized in a ferromagnetic configuration. Our analysis indicates that apart from large spin-orbit interaction and exchange interaction from at least one of the constituents, a large crystal-field splitting
Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite
NASA Astrophysics Data System (ADS)
Edelbro, R.; Sandström, Å.; Paul, J.
2003-02-01
The bulk electronic structures of Sphalerite, Pyrite and Chalcopyrite have been calculated within an ab initio, full potential, density functional approach. The exchange term was approximated with the Dirac exchange functional, the Vosko-Wilk-Nusair parameterization of the Cepler-Alder free electron gas was used for correlation and linear combinations of Gaussian type orbitals were used as basis functions. The Sphalerite (zinc blende) band gap was calculated to be direct with a width of 2.23 eV. The Sphalerite valence band was 5.2 eV wide and composed of a mixture of sulfur and zinc orbitals. The band below the valence band located around -6.2 eV was mainly composed of Zn 3d orbitals. The S 3s orbitals gave rise to a band located around -12.3 eV. Pyrite was calculated to be a semiconductor with an indirect band gap of 0.51 eV, and a direct gap of 0.55 eV. The valence band was 1.25 eV wide and mainly composed of non-bonding Fe 3d orbitals. The band below the valence band was 4.9 eV wide and composed of a mixture of sulfur and iron orbitals. Due to the short inter-atomic distance between the sulfur dumbbells, the S 3s orbitals in Pyrite were split into a bonding and an anti-bonding range. Chalcopyrite was predicted to be a conductor, with no band-crossings at the Fermi level. The bands at -13.2 eV originate from the sulfur 3s orbitals and were quite similar to the sulfur 3s bands in Sphalerite, though somewhat shifted to lower energy. The top of the valence band consisted of a mixture of orbitals from all the atoms. The lower part of the same band showed metal character. Computational modeling as a tool for illuminating the flotation and leaching processes of Pyrite and Chalcopyrite, in connection with surface science experiments, is discussed.
Numerical computation of transonic flow governed by the full-potential equation
NASA Technical Reports Server (NTRS)
Holst, T. L.
1983-01-01
Numerical solution techniques for solving transonic flow fields governed by the full potential equation are discussed. In a general sense relaxation schemes suitable for the numerical solution of elliptic partial differential equations are presented and discussed with emphasis on transonic flow applications. The presentation can be divided into two general categories: An introductory treatment of the basic concepts associated with the numerical solution of elliptic partial differential equations and a more advanced treatment of current procedures used to solve the full potential equation for transonic flow fields. The introductory material is presented for completeness and includes a brief introduction (Chapter 1), governing equations (Chapter 2), classical relaxation schemes (Chapter 3), and early concepts regarding transonic full potential equation algorithms (Chapter 4).
Comparison of the full potential and Euler formulations for computing transonic airfoil flows
NASA Technical Reports Server (NTRS)
Flores, J.; Barton, J.; Holst, T. L.; Pulliam, T.
1984-01-01
A quantitative comparison between the Euler and full potential formulations with respect to speed and accuracy is presented. The robustness of the codes used is tested by a number of transonic airfoil cases. The computed results are from four transonic airfoil computer codes. The full potential codes use fully implicit iteration algorithms. The first Euler code uses a fully implicit ADI iteration scheme. The second Euler code uses an explicit Runge Kutta time stepping algorithm which is enhanced by a multigrid convergence acceleration scheme. Quantitative comparisons are made using various plots of lift coefficient versus the average mesh spacing along the airfoil. Besides yielding an asymptotic limit to the lift coefficient, these results also demonstrate the truncation error behavior of the various codes. Quantitative conclusions regarding the full potential and Euler formulations with respect to accuracy, speed, and robustness can be presented.
Label-free all-electronic biosensing in microfluidic systems
NASA Astrophysics Data System (ADS)
Stanton, Michael A.
Label-free, all-electronic detection techniques offer great promise for advancements in medical and biological analysis. Electrical sensing can be used to measure both interfacial and bulk impedance changes in conducting solutions. Electronic sensors produced using standard microfabrication processes are easily integrated into microfluidic systems. Combined with the sensitivity of radiofrequency electrical measurements, this approach offers significant advantages over competing biological sensing methods. Scalable fabrication methods also provide a means of bypassing the prohibitive costs and infrastructure associated with current technologies. We describe the design, development and use of a radiofrequency reflectometer integrated into a microfluidic system towards the specific detection of biologically relevant materials. We developed a detection protocol based on impedimetric changes caused by the binding of antibody/antigen pairs to the sensing region. Here we report the surface chemistry that forms the necessary capture mechanism. Gold-thiol binding was utilized to create an ordered alkane monolayer on the sensor surface. Exposed functional groups target the N-terminus, affixing a protein to the monolayer. The general applicability of this method lends itself to a wide variety of proteins. To demonstrate specificity, commercially available mouse anti- Streptococcus Pneumoniae monoclonal antibody was used to target the full-length recombinant pneumococcal surface protein A, type 2 strain D39 expressed by Streptococcus Pneumoniae. We demonstrate the RF response of the sensor to both the presence of the surface decoration and bound SPn cells in a 1x phosphate buffered saline solution. The combined microfluidic sensor represents a powerful platform for the analysis and detection of cells and biomolecules.
Entropy condition satisfying approximations for the full potential equations of transonic flow
NASA Technical Reports Server (NTRS)
Osher, S.; Whitlow, W., Jr.; Hafez, M. M.
1984-01-01
A class of conservative difference approximations for the steady full potential equation was presented. They are, in general, easier to program than the usual density biasing algorithms, and in fact, differ only slightly from them. Rigorous proof indicated that these new schemes satisfied a new discrete entropy inequality, which ruled out expansion shocks, and that they have sharp, steady, discrete shocks. A key tool in the analysis is the construction of a new entropy inequality for the full potential equation itself. Results of some numerical experiments using the new schemes are presented.
Entropy condition satisfying approximations for the full potential equation of transonic flow
NASA Technical Reports Server (NTRS)
Osher, S.; Hafez, M.; Whitlow, W., Jr.
1985-01-01
A class of conservative difference approximations for the steady full potential equation was presented. They are, in general, easier to program than the usual density biasing algorithms, and in fact, differ only slightly from them. Rigorous proof indicated that these new schemes satisfied a new discrete entropy inequality, which ruled out expansion shocks, and that they have sharp, steady, discrete shocks. A key tool in the analysis is the construction of a new entropy inequality for the full potential equation itself. Results of some numerical experiments using the new schemes are presented.
How to Help Children with Learning Differences Reach Their Full Potential
ERIC Educational Resources Information Center
Lavoie, Theresa
2008-01-01
This article is the third part of a 10-part series that explores Attention Deficit Hyperactivity Disorder (ADHD). It offers and discusses tips on how to help children with learning differences reach their full potential. These include: (1) start with good nutrition; (2) be sure your child is exercising; (3) make sure your child is getting enough…
A new consistent spatial differencing scheme for the transonic full-potential equation
NASA Technical Reports Server (NTRS)
Flores, J.; Holst, T. L.; Kwak, D.; Batiste, D. M.
1983-01-01
A new spatial differencing scheme for the transonic full-potential equation in conservative form has been developed. This scheme guarantees zero truncation error on any curvilinear mesh for freestream flows in either two- or three-space dimensions. Solutions obtained with this new differencing scheme, away from freestream regions, exhibit greatly improved accuracy, especially for nonsmooth or singular meshes.
NASA Astrophysics Data System (ADS)
Ye, Lin-Hui
2015-09-01
Although the supercell method has been widely used for surface calculations, it only works well with short-ranged potentials, but meets difficulty when the potential decays very slowly into the vacuum. Unfortunately, the exact exchange-correlation potential of the density functional theory is asymptotically long ranged, and therefore is not easily handled by use of supercells. This paper illustrates that the authentic slab geometry, another technique for surface calculations, is not affected by this issue: It works equally well with both short- and long-ranged potentials, with the computational cost and the convergence speed being essentially the same. Using the asymptotically long-ranged Becke-Roussel'89 exchange potential as an example, we have calculated six surfaces of various types. We found that accurate potential values can be obtained even in extremely low density regions of more than 100 Å away from the surface. This high performance allows us to explore the asymptotic region, and prove with clean numerical evidence that the Becke-Roussel'89 potential satisfies the correct asymptotic behavior for slab surfaces, as it does for finite systems. Our finding further implies that the Slater component of the exact exchange optimized effective potential is responsible for the asymptotic behavior, not only for jellium slabs, but for slabs of any type. The Becke-Roussel'89 potential may therefore be used to build asymptotically correct model exchange potentials applicable to both finite systems and slab surfaces.
Numerical solution of the full potential equation using a chimera grid approach
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1995-01-01
A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.
Full potential methods for analysis/design of complex aerospace configurations
NASA Technical Reports Server (NTRS)
Shankar, Vijaya; Szema, Kuo-Yen; Bonner, Ellwood
1986-01-01
The steady form of the full potential equation, in conservative form, is employed to analyze and design a wide variety of complex aerodynamic shapes. The nonlinear method is based on the theory of characteristic signal propagation coupled with novel flux biasing concepts and body-fitted mapping procedures. The resulting codes are vectorized for the CRAY XMP and the VPS-32 supercomputers. Use of the full potential nonlinear theory is demonstrated for a single-point supersonic wing design and a multipoint design for transonic maneuver/supersonic cruise/maneuver conditions. Achievement of high aerodynamic efficiency through numerical design is verified by wind tunnel tests. Other studies reported include analyses of a canard/wing/nacelle fighter geometry.
A full-potential approach to the relativistic single-site Green's function.
Liu, Xianglin; Wang, Yang; Eisenbach, Markus; Malcolm Stocks, G
2016-09-01
One major purpose of studying the single-site scattering problem is to obtain the scattering matrices and differential equation solutions indispensable to multiple scattering theory (MST) calculations. On the other hand, the single-site scattering itself is also appealing because it reveals the physical environment experienced by electrons around the scattering center. In this paper we demonstrate a new formalism to calculate the relativistic full-potential single-site Green's function. We implement this method to calculate the single-site density of states and electron charge densities. The code is rigorously tested and with the help of Krein's theorem, the relativistic effects and full potential effects in group V elements and noble metals are thoroughly investigated. PMID:27388858
A full-potential approach to the relativistic single-site Green’s function
NASA Astrophysics Data System (ADS)
Liu, Xianglin; Wang, Yang; Eisenbach, Markus; Stocks, G. Malcolm
2016-09-01
One major purpose of studying the single-site scattering problem is to obtain the scattering matrices and differential equation solutions indispensable to multiple scattering theory (MST) calculations. On the other hand, the single-site scattering itself is also appealing because it reveals the physical environment experienced by electrons around the scattering center. In this paper we demonstrate a new formalism to calculate the relativistic full-potential single-site Green’s function. We implement this method to calculate the single-site density of states and electron charge densities. The code is rigorously tested and with the help of Krein’s theorem, the relativistic effects and full potential effects in group V elements and noble metals are thoroughly investigated.
Application of a Chimera Full Potential Algorithm for Solving Aerodynamic Problems
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Kwak, Dochan (Technical Monitor)
1997-01-01
A numerical scheme utilizing a chimera zonal grid approach for solving the three dimensional full potential equation is described. Special emphasis is placed on describing the spatial differencing algorithm around the chimera interface. Results from two spatial discretization variations are presented; one using a hybrid first-order/second-order-accurate scheme and the second using a fully second-order-accurate scheme. The presentation is highlighted with a number of transonic wing flow field computations.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Caradonna, F. X.
1980-01-01
An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.
Comparison of Euler and full potential marching techniques for flows over complex configurations
NASA Technical Reports Server (NTRS)
Szema, K. Y.; Chakravarthy, S. R.; Shankar, V.; Byerly, J.
1986-01-01
Two recently developed aerodynamic prediction techniques based on the steady full potential equation and the unsteady Euler equations have been applied to a variety of three-dimensional supersonic flow problems exhibiting embedded subsonic regions. Both techniques utilize planar Gauss-Seidel relaxation in the marching direction and approximate factorization in the cross-flow plane. A conservative switching scheme and flux bias technique are employed in the full potential method to transition from the supersonic marching procedure to a subsonic relaxation algorithm and vice versa. A new unified approach with finite volume, high accuracy (up to third order) Total Variation Diminishing formulation (based on Roe's scheme) is used in the Euler solver. In the supersonic regions of the flow an 'infinitely large' time step is employed, and a finite time step is applied in the subsonic regions of the flow to reach the steady-state as a time-asymptote. Numerical solutions are obtained for a number of complex configurations, including: (1) an elliptic waverider, (2) a realistic fighter configuration, (3) the Space Shuttle, and (4) a Shuttle-like configuration. Both the Full Potential and Euler numerical results are in good agreement with available experimental data.
All-electron GW quasiparticle band structures of group 14 nitride compounds
NASA Astrophysics Data System (ADS)
Chu, Iek-Heng; Kozhevnikov, Anton; Schulthess, Thomas C.; Cheng, Hai-Ping
2014-07-01
We have investigated the group 14 nitrides (M3N4) in the spinel phase (γ-M3N4 with M = C, Si, Ge, and Sn) and β phase (β-M3N4 with M = Si, Ge, and Sn) using density functional theory with the local density approximation and the GW approximation. The Kohn-Sham energies of these systems have been first calculated within the framework of full-potential linearized augmented plane waves (LAPW) and then corrected using single-shot G0W0 calculations, which we have implemented in the modified version of the Elk full-potential LAPW code. Direct band gaps at the Γ point have been found for spinel-type nitrides γ-M3N4 with M = Si, Ge, and Sn. The corresponding GW-corrected band gaps agree with experiment. We have also found that the GW calculations with and without the plasmon-pole approximation give very similar results, even when the system contains semi-core d electrons. These spinel-type nitrides are novel materials for potential optoelectronic applications because of their direct and tunable band gaps.
All-electron GW quasiparticle band structures of group 14 nitride compounds
Chu, Iek-Heng; Cheng, Hai-Ping; Kozhevnikov, Anton; Schulthess, Thomas C.
2014-07-28
We have investigated the group 14 nitrides (M{sub 3}N{sub 4}) in the spinel phase (γ-M{sub 3}N{sub 4} with M = C, Si, Ge, and Sn) and β phase (β-M{sub 3}N{sub 4} with M = Si, Ge, and Sn) using density functional theory with the local density approximation and the GW approximation. The Kohn-Sham energies of these systems have been first calculated within the framework of full-potential linearized augmented plane waves (LAPW) and then corrected using single-shot G{sub 0}W{sub 0} calculations, which we have implemented in the modified version of the Elk full-potential LAPW code. Direct band gaps at the Γ point have been found for spinel-type nitrides γ-M{sub 3}N{sub 4} with M = Si, Ge, and Sn. The corresponding GW-corrected band gaps agree with experiment. We have also found that the GW calculations with and without the plasmon-pole approximation give very similar results, even when the system contains semi-core d electrons. These spinel-type nitrides are novel materials for potential optoelectronic applications because of their direct and tunable band gaps.
NASA Technical Reports Server (NTRS)
Thomas, S. D.; Holst, T. L.
1985-01-01
A full-potential steady transonic wing flow solver has been modified so that freestream density and residual are captured in regions of constant velocity. This numerically precise freestream consistency is obtained by slightly altering the differencing scheme without affecting the implicit solution algorithm. The changes chiefly affect the fifteen metrics per grid point, which are computed once and stored. With this new method, the outer boundary condition is captured accurately, and the smoothness of the solution is especially improved near regions of grid discontinuity.
Artificial compressibility methods for numerical solutions of transonic full potential equation
NASA Technical Reports Server (NTRS)
Hafez, M.; Murman, E.; South, J.
1979-01-01
New methods for transonic flow computations based on the full potential equation in conservation form are presented. The idea is to modify slightly the density (due to the artificial viscosity in the supersonic region), and solve the resulting elliptic-like problem iteratively. It is shown that standard discretization techniques (central differencing) as well as some standard iterative procedures (SOR, ADI, and explicit methods) are applicable to the modified transonic mixed-type equation. Calculations of transonic flows around cylinders and airfoils are discussed with special emphasis on the explicit methods that are suitable for vector processing on the STAR 100 computer.
NASA Technical Reports Server (NTRS)
Van Dalsem, W. R.; Steger, J. L.
1983-01-01
A new, fast, direct-inverse, finite-difference boundary-layer code has been developed and coupled with a full-potential transonic airfoil analysis code via new inviscid-viscous interaction algorithms. The resulting code has been used to calculate transonic separated flows. The results are in good agreement with Navier-Stokes calculations and experimental data. Solutions are obtained in considerably less computer time than Navier-Stokes solutions of equal resolution. Because efficient inviscid and viscous algorithms are used, it is expected this code will also compare favorably with other codes of its type as they become available.
Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong
1989-01-01
Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.
Relativistic Green's Functions in Full-Potential Multiple-Scattering Theory
NASA Astrophysics Data System (ADS)
Liu, Xianglin; Wang, Yang; Eisenbach, Markus; Stocks, G. Malcolm
The Green's functions play a central role in MST based KKR method. Obtaining the Green's functions by solving the Dirac equation is appealing since it naturally incorporated the electron spin and the spin-orbit coupling effects. Here we implemented the full-potential relativistic KKR method using a technique called the sine and cosine matrices formalism. The charge density and the density of states of some pure element crystals have been calculated. Different expressions of the Green's functions have been investigated for numerical benefits.
NASA Technical Reports Server (NTRS)
Farrell, C.; Adamczyk, J.
1981-01-01
The three-dimensional flow in a turbomachinery blade row was approximated by correcting for streamtube convergence and radius change in the throughflow direction. The method is a fully conservative solution of the full potential equation incorporating the finite volume technique on body fitted periodic mesh, with an artificial density imposed in the transonic region to insure stability and the capture of shock waves. Comparison of results for several supercritical blades shows good agreement with their hodograph solutions. Other calculations for these profiles as well as standard NACA blade sections indicate that this is a useful scheme analyzing both the design and off-design performance of turbomachinery blading.
NASA Technical Reports Server (NTRS)
Elbanna, Hesham M.; Carlson, Leland A.
1992-01-01
The quasi-analytical approach is applied to the three-dimensional full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. Results are compared to those obtained by the direct finite difference approach and both methods are evaluated to determine their computational accuracy and efficiency. The quasi-analytical approach is shown to be accurate and efficient for large aerodynamic systems.
Full potential integral solution for transonic flows with and without embedded Euler domains
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Hu, Hong
1987-01-01
Two methods are presented to solve for the transonic airfoil flow problems. The first method is based on the integral equation solution of the full-potential equation in terms of the velocity field, and a Shock Capturing-Shock Fitting (SCSF) scheme has been developed. The SCSF-scheme consists of a shock-capturing part and a shock-fitting part in which shock panels are introduced at the shock location. The sock panels are fitted and crossed by using the Rankine-Hugoniot relations. The second method is based on coupling the integral equation of the full-potential equation with the pseudo time integration of Euler equations in a small embedded region around the shock. The integral solution provides the initial and boundary conditions for the Euler domain. This scheme is named as the Integral Equation-Embedded Euler (IEEE) scheme. The two methods are applied to NACA 0012 and NACA 64A010A over a wide range of Mach numbers, and the reults are in good agreement with the experimental data and other computational results. The schemes converge within a number of iterations which is one-order of magnitude less than the finite-difference schemes.
A full potential flow analysis with realistic wake influence for helicopter rotor airload prediction
NASA Technical Reports Server (NTRS)
Egolf, T. Alan; Sparks, S. Patrick
1987-01-01
A 3-D, quasi-steady, full potential flow solver was adapted to include realistic wake influence for the aerodynamic analysis of helicopter rotors. The method is based on a finite difference solution of the full potential equation, using an inner and outer domain procedure for the blade flowfield to accommodate wake effects. The nonlinear flow is computed in the inner domain region using a finite difference solution method. The wake is modeled by a vortex lattice using prescribed geometry techniques to allow for the inclusion of realistic rotor wakes. The key feature of the analysis is that vortices contained within the finite difference mesh (inner domain) were treated with a vortex embedding technique while the influence of the remaining portion of the wake (in the outer domain) is impressed as a boundary condition on the outer surface of the finite difference mesh. The solution procedure couples the wake influence with the inner domain solution in a consistent and efficient solution process. The method has been applied to both hover and forward flight conditions. Correlation with subsonic and transonic hover airload data is shown which demonstrates the merits of the approach.
On the Design of Lifting Airfoils with High Critical Mach Number Using Full Potential Theory
NASA Astrophysics Data System (ADS)
Kropinski, M. C. A.
We wish to construct airfoils that have the highest free-stream Mach number for a given set of geometric constraints for which the flow is nowhere supersonic. Nonlifting airfoils that maximize the critical Mach number for a given cross-sectional area are known to possess long sonic segments at their critical speed. To construct lifting airfoils, we proceed under the conjecture that an airfoil with a high value of has the longest possible arc length of sonic velocity over its upper and lower surface. In Kropinski etal. (1995) the lifting problem was tackled in transonic small-disturbance theory. In this paper we numerically construct lifting airfoils with high using the full potential theory and we show that these airfoils have significantly higher than some standard airfoils. We also construct airfoils with higher values of the lift coefficient, by relaxing the speed constraint on the lower surface of the airfoil to have a value less than sonic.
Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation
NASA Technical Reports Server (NTRS)
Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.
1996-01-01
We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.
A full-potential approach to the relativistic single-site Green's function
Liu, Xianglin; Wang, Yang; Eisenbach, Markus; Stocks, George Malcolm
2016-07-07
One major purpose of studying the single-site scattering problem is to obtain the scattering matrices and differential equation solutions indispensable to multiple scattering theory (MST) calculations. On the other hand, the single-site scattering itself is also appealing because it reveals the physical environment experienced by electrons around the scattering center. In this study, we demonstrate a new formalism to calculate the relativistic full-potential single-site Green's function. We implement this method to calculate the single-site density of states and electron charge densities. Lastly, the code is rigorously tested and with the help of Krein's theorem, the relativistic effects and full potentialmore » effects in group V elements and noble metals are thoroughly investigated.« less
Numerical calculation of steady inviscid full potential compressible flow about wind turbine blades
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1980-01-01
The air flow through a propeller-type wind turbine rotor is characterized by three-dimensional rotating cascade effects about the inner portions of the rotor blades and compressibility effects about the tip regions of the blades. In the case of large rotor diameter and/or increased rotor angular speed, the existence of small supersonic zones terminated by weak shocks is possible. An exact nonlinear mathematical model (called a steady Full Potential Equation - FPE) that accounts for the above phenomena has been rederived. An artificially time dependent version of FPE was iteratively solved by a finite volume technique involving an artificial viscosity and a three-level consecutive mesh refinement. The exact boundary conditions were applied by generating a boundary conforming periodic computation mesh.
An entropy correction method for unsteady full potential flows with strong shocks
NASA Technical Reports Server (NTRS)
Whitlow, W., Jr.; Hafez, M. M.; Osher, S. J.
1986-01-01
An entropy correction method for the unsteady full potential equation is presented. The unsteady potential equation is modified to account for entropy jumps across shock waves. The conservative form of the modified equation is solved in generalized coordinates using an implicit, approximate factorization method. A flux-biasing differencing method, which generates the proper amounts of artificial viscosity in supersonic regions, is used to discretize the flow equations in space. Comparisons between the present method and solutions of the Euler equations and between the present method and experimental data are presented. The comparisons show that the present method more accurately models solutions of the Euler equations and experiment than does the isentropic potential formulation.
Hovering rotor airload prediction using a full potential flow analysis with realistic wake geometry
NASA Technical Reports Server (NTRS)
Egolf, T. A.; Sparks, S. P.
1985-01-01
A three-dimensional, full potential flow analysis with realistic hover wake geometry is presented for the prediction of hovering rotor airloads. The method of analysis is based on the concept of matching inner and outer domain solutions in three dimensions. The inner domain nonlinear solution is obtained using a finite difference analysis and the outer domain solution is based on prescribed wake methodology. This formulation which includes three-dimensional wake influence, was initially validated using a fixed-wing analysis, and has been extended to hovering rotor flight. Detailed chordwise and spanwise loading results are compared with subsonic and transonic test results from two rotor configurations to illustrate the predictive capabilities of the analysis. The extension of the method to steady-level forward flight is also discussed.
Transonic flow analysis for rotors. Part 2: Three-dimensional, unsteady, full-potential calculation
NASA Technical Reports Server (NTRS)
Chang, I. C.
1985-01-01
A numerical method is presented for calculating the three-dimensional unsteady, transonic flow past a helicopter rotor blade of arbitrary geometry. The method solves the full-potential equations in a blade-fixed frame of reference by a time-marching implicit scheme. At the far-field, a set of first-order radiation conditions is imposed, thus minimizing the reflection of outgoing wavelets from computational boundaries. Computed results are presented to highlight radial flow effects in three dimensions, to compare surface pressure distributions to quasi-steady predictions, and to predict the flow field on a swept-tip blade. The results agree well with experimental data for both straight- and swept-tip blade geometries.
NASA Technical Reports Server (NTRS)
Jones, K. M.
1983-01-01
A nonlinear aerodynamic prediction technique which solves the conservative full potential equation has been applied to the analysis of three waverider configurations. This technique was selected based on its capability to analyze the off-design characteristics of the waveriders. Very good correlations were achieved with surface pressure data for both the Mach 4 elliptic cone waverider and the Mach 6 caret-wing derivative. Off-design Mach number and angle-of-attack pressure correlations were very good for the elliptic cone waverider. The range of correlation with data exceeded that expected based on the theory limitations. A surface pressure integration routine was demonstrated and agreement between predicted aerodynamic forces and experimental force data for the Mach 4 waverider was excellent. Analysis of a nonconical waverider configuration was initiated where a discrete input option is used to achieve the computational gridding. Preliminary analysis of this configuration indicates the correct shock location will be predicted.
Transonic solutions for a multielement airfoil using the full-potential equation
NASA Technical Reports Server (NTRS)
Flores, J.; Holst, T. L.; Sorenson, R. L.
1984-01-01
Transonic flow solutions are obtained over a multielement airfoil (augmentor-wing) using the full-potential equation. Solutions obtained for a subcritical case and a strong shock case show good quantitative agreement with experiment in regions not dominated by viscous effects. In those regions where viscous effects are dominant, the results are still in good qualitative agreement. For the strong shock case, Mach number and angle-of-attack corrections were necessary to match experimental coefficient of lift. Typical results from the transonic augmentor-wing Potential Code on the Cray-1S computer require about 10 sec of CPU time for a three-order-of-magnitude drop in the maximum residual. The speed with which solutions can be generated, and the associated low cost, will make this code a practical tool for the design aerodynamicist.
Newton-Krylov-Schwarz algorithms for the 2D full potential equation
Cai, Xiao-Chuan; Gropp, W.D.; Keyes, D.E.
1996-12-31
We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The main algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, can be made robust for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report favorable choices for numerical convergence rate and overall execution time on a distributed-memory parallel computer.
Mizutani, U; Inukai, M; Sato, H; Zijlstra, E S; Lin, Q
2014-05-16
There are three key electronic parameters in elucidating the physics behind the Hume–Rothery electron concentration rule: the square of the Fermi diameter (2kF)2, the square of the critical reciprocal lattice vector and the electron concentration parameter or the number of itinerant electrons per atom e/a. We have reliably determined these three parameters for 10 Rhombic Triacontahedron-type 2/1–2/1–2/1 (N = 680) and 1/1–1/1–1/1 (N = 160–162) approximants by making full use of the full-potential linearized augmented plane wave-Fourier band calculations based on all-electron density-functional theory. We revealed that the 2/1–2/1–2/1 approximants Al13Mg27Zn45 and Na27Au27Ga31 belong to two different sub-groups classified in terms of equal to 126 and 109 and could explain why they take different e/a values of 2.13 and 1.76, respectively. Among eight 1/1–1/1–1/1 approximants Al3Mg4Zn3, Al9Mg8Ag3, Al21Li13Cu6, Ga21Li13Cu6, Na26Au24Ga30, Na26Au37Ge18, Na26Au37Sn18 and Na26Cd40Pb6, the first two, the second two and the last four compounds were classified into three sub-groups with = 50, 46 and 42; and were claimed to obey the e/a = 2.30, 2.10–2.15 and 1.70–1.80 rules, respectively.
Unlocking the full potential of Earth observation during the 2015 Texas flood disaster
NASA Astrophysics Data System (ADS)
Schumann, G. J.-P.; Frye, S.; Wells, G.; Adler, R.; Brakenridge, R.; Bolten, J.; Murray, J.; Slayback, D.; Policelli, F.; Kirschbaum, D.; Wu, H.; Cappelaere, P.; Howard, T.; Flamig, Z.; Clark, R.; Stough, T.; Chini, M.; Matgen, P.; Green, D.; Jones, B.
2016-05-01
Intense rainfall during late April and early May 2015 in Texas and Oklahoma led to widespread and sustained flooding in several river basins. Texas state agencies relevant to emergency response were activated when severe weather then ensued for 6 weeks from 8 May until 19 June following Tropical Storm Bill. An international team of scientists and flood response experts assembled and collaborated with decision-making authorities for user-driven high-resolution satellite acquisitions over the most critical areas; while experimental automated flood mapping techniques provided daily ongoing monitoring. This allowed mapping of flood inundation from an unprecedented number of spaceborne and airborne images. In fact, a total of 27,174 images have been ingested to the USGS Hazards Data Distribution System (HDDS) Explorer, except for the SAR images used. Based on the Texas flood use case, we describe the success of this effort as well as the limitations in fulfilling the needs of the decision-makers, and reflect upon these. In order to unlock the full potential for Earth observation data in flood disaster response, we suggest in a call for action (i) stronger collaboration from the onset between agencies, product developers, and decision-makers; (ii) quantification of uncertainties when combining data from different sources in order to augment information content; (iii) include a default role for the end-user in satellite acquisition planning; and (iv) proactive assimilation of methodologies and tools into the mandated agencies.
Aerodynamic analysis of three advanced configurations using the TranAir full-potential code
NASA Technical Reports Server (NTRS)
Madson, M. D.; Carmichael, R. L.; Mendoza, J. P.
1989-01-01
Computational results are presented for three advanced configurations: the F-16A with wing tip missiles and under wing fuel tanks, the Oblique Wing Research Aircraft, and an Advanced Turboprop research model. These results were generated by the latest version of the TranAir full potential code, which solves for transonic flow over complex configurations. TranAir embeds a surface paneled geometry definition in a uniform rectangular flow field grid, thus avoiding the use of surface conforming grids, and decoupling the grid generation process from the definition of the configuration. The new version of the code locally refines the uniform grid near the surface of the geometry, based on local panel size and/or user input. This method distributes the flow field grid points much more efficiently than the previous version of the code, which solved for a grid that was uniform everywhere in the flow field. TranAir results are presented for the three configurations and are compared with wind tunnel data.
Bourke, J D; Islam, M T; Best, S P; Tran, C Q; Wang, F; Chantler, C T
2016-07-21
Recent high-accuracy X-ray absorption measurements of the sandwich organometallics ferrocene (Fc) and decamethylferrocene (DmFc) at temperatures close to liquid helium are compared with new full-potential modeling of X-ray absorption fine structure (XAFS) covering the near-edge region (XANES) and above up to k = 7 Å(-1). The implementation of optimized calculations of the oscillatory part of the spectrum from the package FDMX allows detailed study of the spectra in regions of the photoelectron momentum most sensitive to differences in the molecular stereochemistry. For Fc and DmFc, this corresponds to the relative rotation of the cyclopentadienyl rings. When applied to high-accuracy XAFS of Fc and DmFc, the FDMX theory gives clear evidence for the eclipsed conformation for Fc and the staggered conformation for DmFc for frozen solutions at ca. 15 K. This represents the first clear experimental assignment of the solution structures of Fc and DmFc and reveals the potential of high-accuracy XAFS for structural analysis. PMID:27391765
Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten
2016-08-01
The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol. PMID:27323006
NASA Technical Reports Server (NTRS)
Farrell, C. A.
1994-01-01
A computer program, QSONIC, has been developed for calculating the full potential, transonic quasi-three-dimensional flow through a rotating turbomachinery blade row. The need for lighter, more efficient turbomachinery components has led to the consideration of machines with fewer stages, each with blades capable of higher speeds and higher loading. As speeds increase, the numerical problems inherent in the transonic regime have to be resolved. These problems include the calculation of imbedded shock discontinuities and the dual nature of the governing equations, which are elliptic in the subcritical flow regions but become hyperbolic for supersonic zones. QSONIC provides the flow analyst with a fast and reliable means of obtaining the transonic potential flow distribution on a blade-to-blade stream surface of a stationary or rotating turbomachine blade row. QSONIC combines several promising transonic analysis techniques. The full potential equation in conservative form is discretized at each point on a body-fitted period mesh. A mass balance is calculated through the finite volume surrounding each point. Each local volume is corrected in the third dimension for any change in stream-tube thickness along the stream tube. The nonlinear equations for all volumes are of mixed type (elliptic or hyperbolic) depending on the local Mach number. The final result is a block-tridiagonal matrix formulation involving potential corrections at each grid point as the unknowns. The residual of each system of equations is solved along each grid line. At points where the Mach number exceeds unity, the density at the forward (sweeping) edge of the volume is replaced by an artificial density. This method calculates the flow field about a cascade of arbitrary two-dimensional airfoils. Three-dimensional flow is approximated in a turbomachinery blade row by correcting for stream-tube convergence and radius change in the through flow direction. Several significant assumptions were made in
NASA Astrophysics Data System (ADS)
Betzinger, Markus; Friedrich, Christoph; Görling, Andreas; Blügel, Stefan
2012-06-01
The optimized-effective-potential method is a special technique to construct local Kohn-Sham potentials from general orbital-dependent energy functionals. In a recent publication [M. Betzinger, C. Friedrich, S. Blügel, A. Görling, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.045105 83, 045105 (2011)] we showed that uneconomically large basis sets were required to obtain a smooth local potential without spurious oscillations within the full-potential linearized augmented-plane-wave method. This could be attributed to the slow convergence behavior of the density response function. In this paper, we derive an incomplete-basis-set correction for the response, which consists of two terms: (1) a correction that is formally similar to the Pulay correction in atomic-force calculations and (2) a numerically more important basis response term originating from the potential dependence of the basis functions. The basis response term is constructed from the solutions of radial Sternheimer equations in the muffin-tin spheres. With these corrections the local potential converges at much smaller basis sets, at much fewer states, and its construction becomes numerically very stable. We analyze the improvements for rock-salt ScN and report results for BN, AlN, and GaN, as well as the perovskites CaTiO3, SrTiO3, and BaTiO3. The incomplete-basis-set correction can be applied to other electronic-structure methods with potential-dependent basis sets and opens the perspective to investigate a broad spectrum of problems in theoretical solid-state physics that involve response functions.
Hybrid functionals within the all-electron FLAPW method: Implementation and applications of PBE0
NASA Astrophysics Data System (ADS)
Betzinger, Markus; Friedrich, Christoph; Blügel, Stefan
2010-05-01
We present an efficient implementation of the Perdew-Burke-Ernzerhof hybrid functional PBE0 within the full-potential linearized augmented-plane-wave (FLAPW) method. The Hartree-Fock exchange term, which is a central ingredient of hybrid functionals, gives rise to a computationally expensive nonlocal potential in the one-particle Schrödinger equation. The matrix elements of this exchange potential are calculated with the help of an auxiliary basis that is constructed from products of FLAPW basis functions. By representing the Coulomb interaction in this basis the nonlocal exchange term becomes a Brillouin-zone sum over vector-matrix-vector products. The Coulomb matrix is calculated only once at the beginning of a self-consistent-field cycle. We show that it can be made sparse by a suitable unitary transformation of the auxiliary basis, which accelerates the computation of the vector-matrix-vector products considerably. Additionally, we exploit spatial and time-reversal symmetry to identify the nonvanishing exchange matrix elements in advance and to restrict the k summations for the nonlocal potential to an irreducible set of k points. Favorable convergence of the self-consistent-field cycle is achieved by a nested density-only and density-matrix iteration scheme. We discuss the convergence with respect to the parameters of our numerical scheme and show results for a variety of semiconductors and insulators, including the oxides ZnO, EuO, Al2O3 , and SrTiO3 , where the PBE0 hybrid functional improves the band gaps and the description of localized states in comparison with the PBE functional. Furthermore, we find that in contrast to conventional local exchange-correlation functionals ferromagnetic EuO is correctly predicted to be a semiconductor.
NASA Astrophysics Data System (ADS)
Rury, Aaron S.; Mansour, Kamjou; Yu, Nan
2015-07-01
This study examines the capability to significantly suppress the frequency noise of a semiconductor distributed feedback diode laser using a universally applicable approach: a combination of a high-Q crystalline whispering gallery mode microresonator reference and the Pound-Drever-Hall locking scheme using an all-electronic servo loop. An out-of-loop delayed self-heterodyne measurement system demonstrates the ability of this approach to reduce a test laser's absolute line width by nearly a factor of 100. In addition, in-loop characterization of the laser stabilized using this method demonstrates a 1-kHz residual line width with reference to the resonator frequency. Based on these results, we propose that utilization of an all-electronic loop combined with the use of the wide transparency window of crystalline materials enable this approach to be readily applicable to diode lasers emitting in other regions of the electromagnetic spectrum, especially in the UV and mid-IR.
NASA Technical Reports Server (NTRS)
Chang, I.-C.; Tung, C.
1985-01-01
A three-dimensional, full-potential, quasi-steady code TFAR1 is proposed for calculating the transonic flow past a lifting helicopter rotor blade and oblique wing. The TFAR1 uses a two-dimensional nonlinear wake-model that allows a jump in velocity potential to propagate with the local fluid flow in the wake. Rotor calculations were made for a single blade at an advance ratio of 0.3, a rotational tip Mach number of 0.7, and at 0-degree incidence. A 1/7-scale model of the Cobra Operational Load Survey (OLS) rotor blade is calculated, and the pressure distributions are compared to the measurements for azimuth angles 0, 30, 60, 90, 120, and 150 degrees at the 95 percent spanwise station of the OLS blade. Furthermore, an oblique wing with Korn airfoil was calculated at the high transonic free-stream Mach number of 0.9791, zero incidence, and yaw angle of 40 degrees. The TFAR1, coupled with a helicopter performance code CAMRAD (Johnson, 1981), provides a full-potential code for calculating the entire flow field for a multiple-bladed rotor in transonic lifting forward flight.
NASA Technical Reports Server (NTRS)
Jones, Henry E.
1997-01-01
A study of the full-potential modeling of a blade-vortex interaction was made. A primary goal of this study was to investigate the effectiveness of the various methods of modeling the vortex. The model problem restricts the interaction to that of an infinite wing with an infinite line vortex moving parallel to its leading edge. This problem provides a convenient testing ground for the various methods of modeling the vortex while retaining the essential physics of the full three-dimensional interaction. A full-potential algorithm specifically tailored to solve the blade-vortex interaction (BVI) was developed to solve this problem. The basic algorithm was modified to include the effect of a vortex passing near the airfoil. Four different methods of modeling the vortex were used: (1) the angle-of-attack method, (2) the lifting-surface method, (3) the branch-cut method, and (4) the split-potential method. A side-by-side comparison of the four models was conducted. These comparisons included comparing generated velocity fields, a subcritical interaction, and a critical interaction. The subcritical and critical interactions are compared with experimentally generated results. The split-potential model was used to make a survey of some of the more critical parameters which affect the BVI.
Locally Refined Multigrid Solution of the All-Electron Kohn-Sham Equation.
Cohen, Or; Kronik, Leeor; Brandt, Achi
2013-11-12
We present a fully numerical multigrid approach for solving the all-electron Kohn-Sham equation in molecules. The equation is represented on a hierarchy of Cartesian grids, from coarse ones that span the entire molecule to very fine ones that describe only a small volume around each atom. This approach is adaptable to any type of geometry. We demonstrate it for a variety of small molecules and obtain high accuracy agreement with results obtained previously for diatomic molecules using a prolate-spheroidal grid. We provide a detailed presentation of the numerical methodology and discuss possible extensions of this approach. PMID:26583393
NASA Astrophysics Data System (ADS)
Reshak, Ali Hussain; Auluck, S.
2005-04-01
The band structure, density of states and anisotropic frequency-dependent optical properties have been calculated for the 1 T and 2 H phases of TaS 2 and TaSe 2 using the full-potential linear augmented plane wave (FPLAPW) method. In the 1 T and 2 H phases, when S is replaced by Se, the unoccupied Ta-5d and chalcogen-p bands move closer to the Fermi energy EF and the bandwidth of the chalcogen-s group decreases. Compared to the 1 T phase, in the 2 H phase the occupied/unoccupied bands move towards higher/lower energies with respect to EF. In the 1 T phase, when S is replaced by Se, the peak positions in the imaginary part of the frequency-dependent dielectric function ε2(ω) move towards lower energies by 0.5 eV. The single peak at 6 eV in ε2(ω) of the 1 T phase is split into two peaks in the 2 H phase. We make a detailed comparison of the frequency-dependent reflectivity and absorption coefficient with the available experimental data. The linear muffin tin orbital method within the atomic sphere approximation (LMTO-ASA) shows poor agreement with the experimental data while our FPLAPW results give excellent agreement with the experimental data suggesting that a better representation of the potential is essential for calculating optical properties accurately.
NASA Astrophysics Data System (ADS)
Zhu, C. G.; Chang, J.; Wang, P. P.; Wang, Q.; Wei, W.; Tian, J. Q.; Chang, H. T.; Liu, X. Z.; Zhang, S. S.
2014-03-01
Single-beam balanced radiometric detection (BRD) system with all-electronic feedback stabilization has been proposed for high reliability water vapor detection under rough environmental conditions, which is insensitive to the fluctuation of transmission loss of light. The majority of photocurrent attenuation caused by the optical loss can be effectively compensated by automatically adjusting the splitting ratio of probe photocurrent. Based on the Ebers-Moll model, we present a theoretical analysis which can be suppressed the photocurrent attenuation caused by optical loss from 0.5552 dB to 0.0004 dB by using the all-electronic feedback stabilization. The deviation of the single-beam BRD system is below 0.29% with the bending loss of 0.31 dB in fiber, which is obviously lower than the dual-beam BRD system (5.96%) and subtraction system (11.3%). After averaging and filtering, the absorption sensitivity of water vapor at 1368.597 nm has been demonstrated, which is 7.368×10-6.
Zeller, Rudolf
2013-03-13
Although the full-potential Korringa-Kohn-Rostoker Green function method yields accurate results for many physical properties, the convergence of calculated total energies with respect to the angular momentum cutoff is usually considered to be less satisfactory. This is surprising because accurate single-particle energies are expected if they are calculated by Lloyd's formula and because accurate densities and hence accurate double-counting energies should result from the total energy variational principle. It is shown how the concept of projection potentials can be used as a tool to analyse the convergence behaviour. The key factor blocking fast convergence is identified and it is illustrated how total energies can be improved with only a modest increase of computing time. PMID:23396831
NASA Technical Reports Server (NTRS)
Farrell, C. A.
1982-01-01
A fast, reliable computer code is described for calculating the flow field about a cascade of arbitrary two dimensional airfoils. The method approximates the three dimensional flow in a turbomachinery blade row by correcting for stream tube convergence and radius change in the throughflow direction. A fully conservative solution of the full potential equation is combined with the finite volume technique on a body-fitted periodic mesh, with an artificial density imposed in the transonic region to insure stability and the capture of shock waves. The instructions required to set up and use the code are included. The name of the code is QSONIC. A numerical example is also given to illustrate the output of the program.
All-electron mixed basis G W calculations of TiO2 and ZnO crystals
NASA Astrophysics Data System (ADS)
Zhang, Ming; Ono, Shota; Nagatsuka, Naoki; Ohno, Kaoru
2016-04-01
In transition metal oxide systems, there exists a serious discrepancy between the theoretical quasiparticle energies and the experimental photoemission energies. To improve the accuracy of electronic structure calculations for these systems, we use the all-electron mixed basis GW method, in which single-particle wave functions are accurately described by the linear combinations of plane waves and atomic orbitals. We adopt the full ω integration to evaluate the correlation part of the self-energy and compare the results with those obtained by plasmon pole models. We present the quasiparticle energies and band gap of titanium dioxide (TiO2) and zinc oxide (ZnO) within the one-shot GW approximation. The results are in reasonable agreement with experimental data in the case of TiO2 but underestimated by about 0.6-1.4 eV from experimental data in the case of ZnO, although our results are comparable to previous one-shot GW calculations. We also explain a new approach to perform ω integration very efficiently and accurately.
Storchi, Loriano; Rampino, Sergio; Belpassi, Leonardo; Tarantelli, Francesco; Quiney, Harry M
2013-12-10
We propose a new complete memory-distributed algorithm, which significantly improves the parallel implementation of the all-electron four-component Dirac-Kohn-Sham (DKS) module of BERTHA (J. Chem. Theory Comput. 2010, 6, 384). We devised an original procedure for mapping the DKS matrix between an efficient integral-driven distribution, guided by the structure of specific G-spinor basis sets and by density fitting algorithms, and the two-dimensional block-cyclic distribution scheme required by the ScaLAPACK library employed for the linear algebra operations. This implementation, because of the efficiency in the memory distribution, represents a leap forward in the applicability of the DKS procedure to arbitrarily large molecular systems and its porting on last-generation massively parallel systems. The performance of the code is illustrated by some test calculations on several gold clusters of increasing size. The DKS self-consistent procedure has been explicitly converged for two representative clusters, namely Au20 and Au34, for which the density of electronic states is reported and discussed. The largest gold cluster uses more than 39k basis functions and DKS matrices of the order of 23 GB. PMID:26592273
Code of Federal Regulations, 2010 CFR
2010-07-01
... Public Debt accept all electronically signed transaction requests? An electronic signature will not be... accept all electronically signed transaction requests? 370.35 Section 370.35 Money and Finance: Treasury... PUBLIC DEBT ELECTRONIC TRANSACTIONS AND FUNDS TRANSFERS RELATING TO UNITED STATES SECURITIES...
Increasing the detection speed of an all-electronic real-time biosensor.
Leyden, Matthew R; Messinger, Robert J; Schuman, Canan; Sharf, Tal; Remcho, Vincent T; Squires, Todd M; Minot, Ethan D
2012-03-01
Biosensor response time, which depends sensitively on the transport of biomolecules to the sensor surface, is a critical concern for future biosensor applications. We have fabricated carbon nanotube field-effect transistor biosensors and quantified protein binding rates onto these nanoelectronic sensors. Using this experimental platform we test the effectiveness of a protein repellent coating designed to enhance protein flux to the all-electronic real-time biosensor. We observe a 2.5-fold increase in the initial protein flux to the sensor when upstream binding sites are blocked. Mass transport modelling is used to calculate the maximal flux enhancement that is possible with this strategy. Our results demonstrate a new methodology for characterizing nanoelectronic biosensor performance, and demonstrate a mass transport optimization strategy that is applicable to a wide range of microfluidic based biosensors. PMID:22252647
Magnetic susceptibility of semiconductors by an all-electron first-principles approach
Ohno, K. |; Mauri, F.; Louie, S.G. |
1997-07-01
The magnetic susceptibility ({chi}) of the semiconductors (diamond, Si, GaAs, and GaP) and of the inert-gas solids (Ne, Ar, and Kr) are evaluated within density-functional theory in the local-density approximation, using a mixed-basis all-electron approach. In Si, GaAs, GaP, Ar, and Kr, the contribution of core electrons to {chi} is comparable to that of valence electrons. However, our results show that the contribution associated with the core states is independent of the chemical environment and can be computed from the isolated atoms. Moreover, our results indicate that the use of a {open_quotes}scissor operator{close_quotes} does not improve the agreement of the theoretical {chi} with experiments. {copyright} {ital 1997} {ital The American Physical Society}
All-electron Kohn–Sham density functional theory on hierarchic finite element spaces
Schauer, Volker; Linder, Christian
2013-10-01
In this work, a real space formulation of the Kohn–Sham equations is developed, making use of the hierarchy of finite element spaces from different polynomial order. The focus is laid on all-electron calculations, having the highest requirement onto the basis set, which must be able to represent the orthogonal eigenfunctions as well as the electrostatic potential. A careful numerical analysis is performed, which points out the numerical intricacies originating from the singularity of the nuclei and the necessity for approximations in the numerical setting, with the ambition to enable solutions within a predefined accuracy. In this context the influence of counter-charges in the Poisson equation, the requirement of a finite domain size, numerical quadratures and the mesh refinement are examined as well as the representation of the electrostatic potential in a high order finite element space. The performance and accuracy of the method is demonstrated in computations on noble gases. In addition the finite element basis proves its flexibility in the calculation of the bond-length as well as the dipole moment of the carbon monoxide molecule.
Norm-conserving pseudopotentials with chemical accuracy compared to all-electron calculations
NASA Astrophysics Data System (ADS)
Willand, Alex; Kvashnin, Yaroslav O.; Genovese, Luigi; Vázquez-Mayagoitia, Álvaro; Deb, Arpan Krishna; Sadeghi, Ali; Deutsch, Thierry; Goedecker, Stefan
2013-03-01
By adding a nonlinear core correction to the well established dual space Gaussian type pseudopotentials for the chemical elements up to the third period, we construct improved pseudopotentials for the Perdew-Burke-Ernzerhof [J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), 10.1103/PhysRevLett.77.3865] functional and demonstrate that they exhibit excellent accuracy. Our benchmarks for the G2-1 test set show average atomization energy errors of only half a kcal/mol. The pseudopotentials also remain highly reliable for high pressure phases of crystalline solids. When supplemented by empirical dispersion corrections [S. Grimme, J. Comput. Chem. 27, 1787 (2006), 10.1002/jcc.20495; S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010), 10.1063/1.3382344] the average error in the interaction energy between molecules is also about half a kcal/mol. The accuracy that can be obtained by these pseudopotentials in combination with a systematic basis set is well superior to the accuracy that can be obtained by commonly used medium size Gaussian basis sets in all-electron calculations.
Kuang, Xiang-Jun; Wang, Xin-Qiang; Liu, Gao-Bin
2015-02-01
Under the framework of DFT, an all-electron scalar relativistic calculation on the adsorption of Aun (n = 1-13) clusters toward methanol molecule has been performed with the generalized gradient approximation at PW91 level. Our calculation results reveal that the small gold cluster would like to bond with oxygen of methanol molecule at the edge of gold cluster plane. After adsorption, the chemical activities of hydroxyl group and methyl group are enhanced to some extent. The even-numbered AunCH3OH cluster with closed-shell electronic configuration is relatively more stable than the neighboring odd-numbered AunCH3OH cluster with open-shell electronic configuration. All the AunCH3OH clusters prefer low spin multiplicity (M = 1 for even-numbered AuNCH3OH clusters, M = 2 for odd-numbered AunCH3OH clusters) and the magnetic moments are mainly contributed by gold atoms. The odd-even alterations of magnetic moments and electronic configurations can be observed clearly and may be simply understood in terms of the electron pairing effect. PMID:26353643
Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set.
Paschoal, D; Guerra, C Fonseca; de Oliveira, M A L; Ramalho, T C; Dos Santos, H F
2016-10-01
Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc. PMID:27510431
All-electron GW quasiparticle band structures of group 14 nitride compounds
NASA Astrophysics Data System (ADS)
Chu, Iek-Heng; Kozhenikov, Anton; Schulthess, Thomas; Cheng, Hai-Ping
2014-03-01
We have investigated the group 14 nitrides (M3N4) in both the spinel phase (with M =C, Si, Ge and Sn) and the beta phase (with M =Si, Ge and Sn) using density functional theory (DFT) with the local density approximation (LDA). The Kohn-Sham energies of these systems are first calculated within the framework of full-potential LAPW and then corrected using single-shot G0W0 calculations, which we have implemented in the Exciting-Plus code. Direct bands gap at the Γ point are found for all spinel-type nitrides. The calculated band gaps of Si3N4, Ge3N4 and Sn3N4 agree with experiment. We also find that for all systems studied, our GW calculations with and without the plasmon-pole approximation give very similar results, even when the system contains semi-core 3d electrons. These spinel-type nitrides are novel materials for potential optoelectronic applications. This work is supported by NSF/DMR-0804407 and DOE/BES-DE-FG02-02ER45995. Computations are performed using facilities at NERSC.
Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations
Webster, R. Harrison, N. M.; Bernasconi, L.
2015-06-07
We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.
Safety assessment of the conversion of toll plazas to all-electronic toll collection system.
Abuzwidah, Muamer; Abdel-Aty, Mohamed
2015-07-01
Traditional mainline toll plaza (TMTP) is considered the most high-risk location on the toll roads. Conversion from TMTP or hybrid mainline toll plaza (HMTP) to an all-electronic toll collection (AETC) system has demonstrated measured improvement in traffic operations and environmental issues. However, there is a lack of research that quantifies the safety impacts of these new tolling systems. This study evaluated the safety effectiveness of the conversion from TMTP or HMTP to AETC system. An extensive data collection was conducted that included hundred mainline toll plazas located on more than 750 miles of toll roads in Florida. Various observational before-after studies including the empirical Bayes method were applied. The results indicated that the conversion from the TMTP to an AETC system resulted in an average crash reduction of 76, 75, and 68% for total, fatal-and-injury and property damage only (PDO) crashes, respectively; for rear end and lane change related (LCR) crashes the average reductions were 80 and 74%, respectively. The conversion from HMTP to AETC system enhanced traffic safety by reducing crashes by 24, 28 and 20% of total, fatal-and-injury, and PDO crashes respectively; also, for rear end and LCR crashes, the average reductions were 15 and 22%, respectively. Overall, this paper provided an up-to-date safety impact of using different toll collection systems. The results proved that the AETC system significantly improved traffic safety for all crash categories; and changed toll plazas from the highest risk on Expressways to be similar to regular segments. PMID:25909391
All-electron scalar relativistic calculation of water molecule adsorption onto small gold clusters.
Kuang, Xiang-Jun; Wang, Xin-Qiang; Liu, Gao-Bin
2011-08-01
An all-electron scalar relativistic calculation was performed on Au( n )H(2)O (n = 1-13) clusters using density functional theory (DFT) with the generalized gradient approximation at PW91 level. The calculation results reveal that, after adsorption, the small gold cluster would like to bond with oxygen and the H(2)O molecule prefers to occupy the single fold coordination site. Reflecting the strong scalar relativistic effect, Au( n ) geometries are distorted slightly but still maintain a planar structure. The Au-Au bond is strengthened and the H-O bond is weakened, as manifested by the shortening of the Au-Au bond-length and the lengthening of the H-O bond-length. The H-O-H bond angle becomes slightly larger. The enhancement of reactivity of the H(2)O molecule is obvious. The Au-O bond-lengths, adsorption energies, VIPs, HLGs, HOMO (LUMO) energy levels, charge transfers and the highest vibrational frequencies of the Au-O mode for Au( n )H(2)O clusters exhibit an obvious odd-even oscillation. The most favorable adsorption between small gold clusters and the H(2)O molecule takes place when the H(2)O molecule is adsorbed onto an even-numbered Au( n ) cluster and becomes an Au( n )H(2)O cluster with an even number of valence electrons. The odd-even alteration of magnetic moments is observed in Au( n )H(2)O clusters and may serve as material with a tunable code capacity of "0" and "1" by adsorbing a H(2)O molecule onto an odd or even-numbered small gold cluster. PMID:21140279
All-electronic biosensing in microfluidics: bulk and surface impedance sensing
NASA Astrophysics Data System (ADS)
Fraikin, Jean-Luc
All-electronic, impedance-based sensing techniques offer promising new routes for probing nanoscale biological processes. The ease with which electrical probes can be fabricated at the nanoscale and integrated into microfluidic systems, combined with the large bandwidth afforded by radiofrequency electrical measurement, gives electrical detection significant advantages over other sensing approaches. We have developed two microfluidic devices for impedance-based biosensing. The first is a novel radiofrequency (rf) field-effect transistor which uses the electrolytic Debye layer as its active element. We demonstrate control of the nm-thick Debye layer using an external gate voltage, with gate modulation at frequencies as high 5 MHz. We use this sensor to make quantitative measurements of the electric double-layer capacitance, including determining and controlling the potential of zero charge of the electrodes, a quantity of importance for electrochemistry and impedance-based biosensing. The second device is a microfluidic analyzer for high-throughput, label-free measurement of nanoparticles suspended in a fluid. We demonstrate detection and volumetric analysis of individual synthetic nanoparticles (<100 nm dia.) with sufficient throughput to analyze >500,000 particles/second, and are able to distinguish subcomponents of a polydisperse particle mixture with diameters larger than about 30-40 nm. We also demonstrate the rapid (seconds) size and titer analysis of unlabeled bacteriophage T7 (55-65 nm dia.) in both salt solution and mouse blood plasma, using ˜ 1 muL of analyte. Surprisingly, we find that the background of naturally-occurring nanoparticles in plasma have a power-law size distribution. The scalable fabrication of these instruments, and the simple electronics required for readout make them well-suited for practical applications.
NASA Technical Reports Server (NTRS)
Mostrel, M. M.
1988-01-01
New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.
Ishida, Toyokazu
2008-09-17
To further understand the catalytic role of the protein environment in the enzymatic process, the author has analyzed the reaction mechanism of the Claisen rearrangement of Bacillus subtilis chorismate mutase (BsCM). By introducing a new computational strategy that combines all-electron QM calculations with ab initio QM/MM modelings, it was possible to simulate the molecular interactions between the substrate and the protein environment. The electrostatic nature of the transition state stabilization was characterized by performing all-electron QM calculations based on the fragment molecular orbital technique for the entire enzyme.
Full Parallel Implementation of an All-Electron Four-Component Dirac-Kohn-Sham Program.
Rampino, Sergio; Belpassi, Leonardo; Tarantelli, Francesco; Storchi, Loriano
2014-09-01
A full distributed-memory implementation of the Dirac-Kohn-Sham (DKS) module of the program BERTHA (Belpassi et al., Phys. Chem. Chem. Phys. 2011, 13, 12368-12394) is presented, where the self-consistent field (SCF) procedure is replicated on all the parallel processes, each process working on subsets of the global matrices. The key feature of the implementation is an efficient procedure for switching between two matrix distribution schemes, one (integral-driven) optimal for the parallel computation of the matrix elements and another (block-cyclic) optimal for the parallel linear algebra operations. This approach, making both CPU-time and memory scalable with the number of processors used, virtually overcomes at once both time and memory barriers associated with DKS calculations. Performance, portability, and numerical stability of the code are illustrated on the basis of test calculations on three gold clusters of increasing size, an organometallic compound, and a perovskite model. The calculations are performed on a Beowulf and a BlueGene/Q system. PMID:26588521
NASA Technical Reports Server (NTRS)
Goodsell, Aga M.; Madson, Michael D.; Melton, John E.
1989-01-01
The TranAir full-potential code and the FLO57 Euler code were used to calculate transonic flow solutions over two configurations of a generic fighter model. The results were computed at Mach numbers of 0.60 and 0.80 for angles of attack between 0 and 12 deg for TranAir and between 4 and 20 deg for FLO57. Due to the fact that TranAir solves the full-potential equations for transonic flow, TranAir is only accurate to about alpha = 8 deg, at which point the experimental results show the formation of a vortex at the leading edge. Euler results show good agreement with experimental results until vortex breakdown occurs in the solutions.
NASA Technical Reports Server (NTRS)
Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.
1992-01-01
The TranAir computer program calculates transonic flow about arbitrary configurations at subsonic, transonic, and supersonic freestream Mach numbers. TranAir solves the nonlinear full potential equations subject to a variety of boundary conditions modeling wakes, inlets, exhausts, porous walls, and impermeable surfaces. Regions with different total temperature and pressure can be represented. The user's manual describes how to run the TranAir program and its graphical support programs.
NASA Astrophysics Data System (ADS)
Jorge, F. E.; Martins, L. S. C.; Franco, M. L.
2016-01-01
Segmented all-electron basis sets of valence double zeta quality plus polarization functions (DZP) for the elements from Ce to Lu are generated to be used with the non-relativistic and Douglas-Kroll-Hess (DKH) Hamiltonians. At the B3LYP level, the DZP-DKH atomic ionization energies and equilibrium bond lengths and atomization energies of the lanthanide trifluorides are evaluated and compared with benchmark theoretical and experimental data reported in the literature. In general, this compact size set shows to have a regular, efficient, and reliable performance. It can be particularly useful in molecular property calculations that require explicit treatment of the core electrons.
Chantler, C T; Bourke, J D
2014-04-01
X-ray absorption fine structure (XAFS) spectroscopy is one of the most robust, adaptable, and widely used structural analysis tools available for a range of material classes from bulk solids to aqueous solutions and active catalytic structures. Recent developments in XAFS theory have enabled high-accuracy calculations of spectra over an extended energy range using full-potential cluster modelling, and have demonstrated particular sensitivity in XAFS to a fundamental electron transport property-the electron inelastic mean free path (IMFP). We develop electron IMFP theory using a unique hybrid model that simultaneously incorporates second-order excitation losses, while precisely accounting for optical transitions dictated by the complex band structure of the solid. These advances are coupled with improved XAFS modelling to determine wide energy-range absorption spectra for molybdenum. This represents a critical test case of the theory, as measurements of molybdenum K-edge XAFS represent the most accurate determinations of XAFS spectra for any material. We find that we are able to reproduce an extended range of oscillatory structure in the absorption spectrum, and demonstrate a first-time theoretical determination of the absorption coefficient of molybdenum over the entire extended XAFS range utilizing a full-potential cluster model. PMID:24651638
NASA Astrophysics Data System (ADS)
Knuth, Franz; Carbogno, Christian; Atalla, Viktor; Blum, Volker; Scheffler, Matthias
2015-05-01
We derive and implement the strain derivatives of the total energy of solids, i.e., the analytic stress tensor components, in an all-electron, numeric atom-centered orbital based density-functional formalism. We account for contributions that arise in the semi-local approximation (LDA/GGA) as well as in the generalized Kohn-Sham case, in which a fraction of exact exchange (hybrid functionals) is included. In this work, we discuss the details of the implementation including the numerical corrections for sparse integrations grids which allow to produce accurate results. We validate the implementation for a variety of test cases by comparing to strain derivatives performed via finite differences. Additionally, we include the detailed definition of the overlapping atom-centered integration formalism used in this work to obtain total energies and their derivatives.
NASA Astrophysics Data System (ADS)
Blum, Volker
This talk describes recent advances of a general, efficient, accurate all-electron electronic theory approach based on numeric atom-centered orbitals; emphasis is placed on developments related to materials for energy conversion and their discovery. For total energies and electron band structures, we show that the overall accuracy is on par with the best benchmark quality codes for materials, but scalable to large system sizes (1,000s of atoms) and amenable to both periodic and non-periodic simulations. A recent localized resolution-of-identity approach for the Coulomb operator enables O (N) hybrid functional based descriptions of the electronic structure of non-periodic and periodic systems, shown for supercell sizes up to 1,000 atoms; the same approach yields accurate results for many-body perturbation theory as well. For molecular systems, we also show how many-body perturbation theory for charged and neutral quasiparticle excitation energies can be efficiently yet accurately applied using basis sets of computationally manageable size. Finally, the talk highlights applications to the electronic structure of hybrid organic-inorganic perovskite materials, as well as to graphene-based substrates for possible future transition metal compound based electrocatalyst materials. All methods described here are part of the FHI-aims code. VB gratefully acknowledges contributions by numerous collaborators at Duke University, Fritz Haber Institute Berlin, TU Munich, USTC Hefei, Aalto University, and many others around the globe.
NASA Astrophysics Data System (ADS)
Rivelino, Roberto; Malaspina, Thaciana; Fileti, Eudes E.
2009-01-01
We have investigated the stability, electronic properties, Rayleigh (elastic), and Raman (inelastic) depolarization ratios, infrared and Raman absorption vibrational spectra of fullerenols [C60(OH)n] with different degrees of hydroxylation by using all-electron density-functional-theory (DFT) methods. Stable arrangements of these molecules were found by means of full geometry optimizations using Becke’s three-parameter exchange functional with the Lee, Yang, and Parr correlation functional. This DFT level has been combined with the 6-31G(d,p) Gaussian-type basis set, as a compromise between accuracy and capability to treat highly hydroxylated fullerenes, e.g., C60(OH)36 . Thus, the molecular properties of fullerenols were systematically analyzed for structures with n=1 , 2, 3, 4, 8, 10, 16, 18, 24, 32, and 36. From the electronic structure analysis of these molecules, we have evidenced an important effect related to the weak chemical reactivity of a possible C60(OH)24 isomer. To investigate Raman scattering and the vibrational spectra of the different fullerenols, frequency calculations are carried out within the harmonic approximation. In this case a systematic study is only performed for n=1-4 , 8, 10, 16, 18, and 24. Our results give good agreements with the expected changes in the spectral absorptions due to the hydroxylation of fullerenes.
Gong, Jian; Kim, Chang-Jin “CJ”
2009-01-01
Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabricaion and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1:x (x < 1) mixing, in comparison to the previously considered n:m mixing (i.e., n and m unit droplets). PMID:18497909
Kuwahara, Riichi; Tadokoro, Yoichi; Ohno, Kaoru
2014-08-28
In this paper, we calculate kinetic and potential energy contributions to the electronic ground-state total energy of several isolated atoms (He, Be, Ne, Mg, Ar, and Ca) by using the local density approximation (LDA) in density functional theory, the Hartree-Fock approximation (HFA), and the self-consistent GW approximation (GWA). To this end, we have implemented self-consistent HFA and GWA routines in our all-electron mixed basis code, TOMBO. We confirm that virial theorem is fairly well satisfied in all of these approximations, although the resulting eigenvalue of the highest occupied molecular orbital level, i.e., the negative of the ionization potential, is in excellent agreement only in the case of the GWA. We find that the wave function of the lowest unoccupied molecular orbital level of noble gas atoms is a resonating virtual bound state, and that of the GWA spreads wider than that of the LDA and thinner than that of the HFA. PMID:25173006
NASA Technical Reports Server (NTRS)
Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.
1992-01-01
A new computer program, called TranAir, for analyzing complex configurations in transonic flow (with subsonic or supersonic freestream) was developed. This program provides accurate and efficient simulations of nonlinear aerodynamic flows about arbitrary geometries with the ease and flexibility of a typical panel method program. The numerical method implemented in TranAir is described. The method solves the full potential equation subject to a set of general boundary conditions and can handle regions with differing total pressure and temperature. The boundary value problem is discretized using the finite element method on a locally refined rectangular grid. The grid is automatically constructed by the code and is superimposed on the boundary described by networks of panels; thus no surface fitted grid generation is required. The nonlinear discrete system arising from the finite element method is solved using a preconditioned Krylov subspace method embedded in an inexact Newton method. The solution is obtained on a sequence of successively refined grids which are either constructed adaptively based on estimated solution errors or are predetermined based on user inputs. Many results obtained by using TranAir to analyze aerodynamic configurations are presented.
NASA Astrophysics Data System (ADS)
Xu, Junqing; Krüger, Peter; Natoli, Calogero R.; Hayakawa, Kuniko; Wu, Ziyu; Hatada, Keisuke
2015-09-01
The x-ray absorption near-edge structure of graphene, graphene oxide, and diamond is studied by the recently developed real-space full potential multiple scattering (FPMS) theory with space-filling cells. It is shown how accurate potentials for FPMS can be generated from self-consistent charge densities obtained with other schemes, especially the projector augmented wave method. Compared to standard multiple scattering calculations in the muffin-tin approximation, FPMS gives much better agreement with experiment. The effects of various structural modifications on the graphene spectra are well reproduced. (1) Stacking of graphene layers increases the peak intensity in the higher energy region. (2) The spectrum of the C atom located at the edge of a graphene sheet shows a prominent pre-edge structure. (3) Adsorption of oxygen gives rise to the so-called interlayer-state peak. Moreover, O K-edge spectra of graphene oxide are calculated for three types of bonding, C-OH, C-O-C, and C-O, and the proportions of these bondings at 800 ∘C are deduced by fitting them to the experimental spectrum.
NASA Astrophysics Data System (ADS)
Amari, S.; Bouhafs, B.
2016-09-01
Based on the first-principles methods, the structural, elastic, electronic, properties and magnetic ordering of californium monopnictides CfX (X = P) have been studied using the full-potential augmented plane wave plus local orbitals (FP-L/APW + lo) method within the framework of density functional theory (DFT). The electronic exchange correlation energy is described by generalized gradient approximation GGA and GGA+U (U is the Hubbard correction). The GGA+U method is applied to the rare-earth 5f states. We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii. The elastic properties of the studied compounds are only investigated in the most stable calculated phase. In order to gain further information, we have calculated Young's modulus, shear modulus, anisotropy factor and Kleinman parameter by the aid of the calculated elastic constants. The results mainly show that californium monopnictides CfX (X = P) have an antiferromagnetic spin ordering. Density of states (DOS) and charge densities for both compounds are also computed in the NaCl (B1) structure.
NASA Astrophysics Data System (ADS)
Chu, Iek-Heng; Trinastic, Jonathan P.; Wang, Yun-Peng; Eguiluz, Adolfo G.; Kozhevnikov, Anton; Schulthess, Thomas C.; Cheng, Hai-Ping
2016-03-01
The G W approximation is a well-known method to improve electronic structure predictions calculated within density functional theory. In this work, we have implemented a computationally efficient G W approach that calculates central properties within the Matsubara-time domain using the modified version of elk, the full-potential linearized augmented plane wave (FP-LAPW) package. Continuous-pole expansion (CPE), a recently proposed analytic continuation method, has been incorporated and compared to the widely used Padé approximation. Full crystal symmetry has been employed for computational speedup. We have applied our approach to 18 well-studied semiconductors/insulators that cover a wide range of band gaps computed at the levels of single-shot G0W0 , partially self-consistent G W0 , and fully self-consistent G W (full-G W ), in conjunction with the diagonal approximation. Our calculations show that G0W0 leads to band gaps that agree well with experiment for the case of simple s -p electron systems, whereas full-G W is required for improving the band gaps in 3 d electron systems. In addition, G W0 almost always predicts larger band gap values compared to full-G W , likely due to the substantial underestimation of screening effects as well as the diagonal approximation. Both the CPE method and Padé approximation lead to similar band gaps for most systems except strontium titantate, suggesting that further investigation into the latter approximation is necessary for strongly correlated systems. Moreover, the calculated cation d band energies suggest that both full-G W and G W0 lead to results in good agreement with experiment. Our computed band gaps serve as important benchmarks for the accuracy of the Matsubara-time G W approach.
NASA Astrophysics Data System (ADS)
Reshak, A. H.; Auluck, S.
2014-12-01
The dispersion of the linear and nonlinear optical susceptibilities of bismuth subcarbonate Bi2O2CO3 are calculated using density functional theory (DFT). We have employed the state-of-art all-electron full potential linearized augmented plane wave (FP-LAPW) method. Calculations are performed within the recently modified Becke-Johnson potential (mBJ) to obtain the self consistency conditions. The calculated linear optical susceptibilities exhibit a considerable anisotropy which is useful for second harmonic generation (SHG) and optical parametric oscillation (OPO). The calculated absorption coefficient show good agreement with the available experimental data. The values of calculated uniaxial anisotropy δɛ = -0.168 and the birefringence Δn(0) = 0.166 indicate considerable anisotropy. The calculated SHG of the dominant component |χ322(2) (ω) | is about d32 = 5.3 pm/V at λ = 1064 nm (1.165 eV) which is in excellent agreement with the available experimental data (d32 = 5.49 pm/V) obtained using pulsed Nd:YAG laser at wavelength λ = 1064 nm (10 ns, 3 mj 10 kHz). To analyze the origin of the high SHG of bismuth subcarbonate Bi2O2CO3 we have correlated the features of |χ322(2) (ω) | spectra with the features of ɛ2(ω) spectra as a function of ω/2 and ω.
NASA Astrophysics Data System (ADS)
Levchenko, Sergey V.; Ren, Xinguo; Wieferink, Jürgen; Johanni, Rainer; Rinke, Patrick; Blum, Volker; Scheffler, Matthias
2015-07-01
We describe a framework to evaluate the Hartree-Fock exchange operator for periodic electronic-structure calculations based on general, localized atom-centered basis functions. The functionality is demonstrated by hybrid-functional calculations of properties for several semiconductors. In our implementation of the Fock operator, the Coulomb potential is treated either in reciprocal space or in real space, where the sparsity of the density matrix can be exploited for computational efficiency. Computational aspects, such as the rigorous avoidance of on-the-fly disk storage, and a load-balanced parallel implementation, are also discussed. We demonstrate linear scaling of our implementation with system size by calculating the electronic structure of a bulk semiconductor (GaAs) with up to 1,024 atoms per unit cell without compromising the accuracy.
Semari, F.; Khenata, R.; Rabah, M.; Bouhemadou, A.; Bin Omran, S.; Reshak, Ali H.; Rached, D.
2010-12-15
The structural, elastic, electronic, and optical properties of cubic spinel MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4} compounds have been calculated using a full relativistic version of the full-potential linearized-augmented plane wave with the mixed basis FP/APW+lo method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism is also applied to optimize the corresponding potential for band structure calculations. The ground state properties, including the lattice constants, the internal parameter, the bulk modulus, and the pressure derivative of the bulk modulus are in reasonable agreement with the available data. Using the total energy-strain technique, we have determined the full set of first-order elastic constants C{sub ij} and their pressure dependence, which have not been calculated or measured yet. The shear modulus, Young's modulus, and Poisson's ratio are calculated for polycrystalline XIn{sub 2}S{sub 4} aggregates. The Debye temperature is estimated from the average sound velocity. Electronic band structures show a direct band gap ({Gamma}-{Gamma}) for MgIn{sub 2}S{sub 4} and an indirect band gap (K-{Gamma}) for CdIn{sub 2}S{sub 4}. The calculated band gaps with EVGGA show a significant improvement over the GGA. The optical constants, including the dielectric function {epsilon}({omega}), the refractive index n({omega}), the reflectivity R({omega}), and the energy loss function L({omega}) were calculated for radiation up to 30 eV. -- Graphical abstract: Calculated total and partial densities of states for MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4}
NASA Astrophysics Data System (ADS)
Sidorin, Anatoly
2010-01-01
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
Sidorin, Anatoly
2010-01-05
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
ERIC Educational Resources Information Center
Walkiewicz, T. A.; Newby, N. D., Jr.
1972-01-01
A discussion of linear collisions between two or three objects is related to a junior-level course in analytical mechanics. The theoretical discussion uses a geometrical approach that treats elastic and inelastic collisions from a unified point of view. Experiments with a linear air track are described. (Author/TS)
NASA Astrophysics Data System (ADS)
Tsumuraya, Takao; Song, Jung-Hwan; Freeman, Arthur J.
2012-08-01
Linear optical properties of regio-regular-poly(3-hexythiophene) (rr-P3HT) and regio-regular-poly(3-hexyselenophene) (rr-P3HS) are investigated in relation to their anisotropic crystal structure by means of first-principles density functional calculations. The optical spectra are evaluated by calculating its dielectric functions, focusing on the frequency dependence of the imaginary part. The optical transition along the π conjugation-connecting backbone direction is found to be the most significant at the band edges. A group-theoretical analysis of the matrix elements is given to explain the interband transitions. The optical spectra, electronic structures, and structural stabilities are calculated using the all-electron full-potential linearized augmented plane wave (FLAPW) method within the local-density approximation. We proposed several possible crystal structures of rr-P3HT and performed structural optimizations to determine a stable structure. Comparing the total energy differences among these relaxed structures, a base-centered monoclinic structure belonging to the space group A2 is found to be the most stable structure. In the electronic structure, C and S orbitals belonging to polythiophene backbones are the biggest contributors at the valence band maximum and conduction band minimum, but there is almost no contribution from the hexyl side chains. Last, the differences in electronic and optical properties between rr-P3HT and rr-P3HS are discussed.
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
Sharkey, Keeper L.; Pavanello, Michele; Bubin, Sergiy; Adamowicz, Ludwik
2009-12-15
A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with two p electrons or a single d electron have been derived and implemented. The Hamiltonian used in the approach was obtained by rigorously separating the center-of-mass motion and it explicitly depends on the finite mass of the nucleus. The approach was employed to perform test calculations on the isotopes of the carbon atom in their ground electronic states and to determine the finite-nuclear-mass corrections for these states.
Realising the Full Potential of the Web.
ERIC Educational Resources Information Center
Berners-Lee, Tim
1999-01-01
Argues that the first phase of the Web is communication through shared knowledge. Predicts that the second side to the Web, yet to emerge, is that of machine-understandable information, with humans providing the inspiration and the intuition. (CR)
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.
1991-01-01
Dirac-Hartree-Fock calculations have been carried out on the ground states of the group IV monoxides GeO, SnO and PbO. Geometries, dipole moments and infrared data are presented. For comparison, nonrelativistic, first-order perturbation and relativistic effective core potential calculations have also been carried out. Where appropriate the results are compared with the experimental data and previous calculations. Spin-orbit effects are of great importance for PbO, where first-order perturbation theory including only the mass-velocity and Darwin terms is inadequate to predict the relativistic corrections to the properties. The relativistic effective core potential results show a larger deviation from the all-electron values than for the hydrides, and confirm the conclusions drawn on the basis of the hydride calculations.
Sharkey, Keeper L; Kirnosov, Nikita; Adamowicz, Ludwik
2013-03-14
A new algorithm for quantum-mechanical nonrelativistic calculation of the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for atoms with an arbitrary number of s electrons and with three p electrons, or one p electron and one d electron, or one f electron is developed and implemented. In particular the implementation concerns atomic states with L = 3 and M = 0. The Hamiltonian used in the approach is obtained by rigorously separating the center-of-mass motion from the laboratory-frame all particle Hamiltonian, and thus it explicitly depends on the finite mass of the nucleus. The approach is employed to perform test calculations on the lowest (2)F state of the two main isotopes of the lithium atom, (7)Li and (6)Li. PMID:23514465
ATAT@WIEN2k: An interface for cluster expansion based on the linearized augmented planewave method
NASA Astrophysics Data System (ADS)
Chakraborty, Monodeep; Spitaler, Jürgen; Puschnig, Peter; Ambrosch-Draxl, Claudia
2010-05-01
We have developed an interface between the all-electron density functional theory code WIEN2k, and the MIT Ab-initio Phase Stability (MAPS) code of the Alloy-Theoretic Automated Toolkit (ATAT). WIEN2k is an implementation of the full-potential linearized augmented planewave method which yields highly accurate total energies and optimized geometries for any given structure. The ATAT package consists of two parts. The first one is the MAPS code, which constructs a cluster expansion (CE) in conjunction with a first-principles code. These results form the basis for the second part, which computes the thermodynamic properties of the alloy. The main task of the CE is to calculate the many-body potentials or effective cluster interactions (ECIs) from the first-principles total energies of different structures or supercells using the structure-inversion technique. By linking MAPS seamlessly with WIEN2k we have created a tool to obtain the ECIs for any lattice type of an alloy. We have chosen fcc Al-Ti and bcc W-Re to evaluate our implementation. Our calculated ECIs exhibit all features of a converged CE and compare well with literature results.
Colgate, S.A.
1958-05-27
An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds
These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.
Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.
Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.
NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
Evarestov, R A; Losev, M V
2009-12-01
For the first time the convergence of the phonon frequencies and dispersion curves in terms of the supercell size is studied in ab initio frozen phonon calculations on LiF crystal. Helmann-Feynman forces over atomic displacements are found in all-electron calculations with the localized atomic functions (LCAO) basis using CRYSTAL06 program. The Parlinski-Li-Kawazoe method and FROPHO program are used to calculate the dynamical matrix and phonon frequencies of the supercells. For fcc lattice, it is demonstrated that use of the full supercell space group (including the supercell inner translations) enables to reduce essentially the number of the displacements under consideration. For Hartree-Fock (HF), PBE and hybrid PBE0, B3LYP, and B3PW exchange-correlation functionals the atomic basis set optimization is performed. The supercells up to 216 atoms (3 x 3 x 3 conventional unit cells) are considered. The phonon frequencies using the supercells of different size and shape are compared. For the commensurate with supercell k-points the best agreement of the theoretical results with the experimental data is found for B3PW exchange-correlation functional calculations with the optimized basis set. The phonon frequencies at the most non-commensurate k-points converged for the supercell consisting of 4 x 4 x 4 primitive cells and ensures the accuracy 1-2% in the thermodynamic properties calculated (the Helmholtz free energy, entropy, and heat capacity at the room temperature). PMID:19382176
NASA Astrophysics Data System (ADS)
Witek, Henryk A.; Nakijima, Takahito; Hirao, Kimihiko
2000-11-01
We report relativistic all-electron multireference based perturbation calculations on the low-lying excited states of gold and silver hydrides. For AuH, we consider all molecular states dissociating to the Au(2S)+H(2S) and Au(2D)+H(2S) atomic limits, and for AgH, the states corresponding to the Ag(2S)+H(2S), Ag(2P)+H(2S), and Ag(2D)+H(2S) dissociation channels. Spin-free relativistic effects and the correlation effects are treated on the same footing through the relativistic scheme of eliminating small components (RESC). Spin-orbit effects are included perturbatively. The calculated potential energy curves for AgH are the first reported in the literature. The computed spectroscopic properties agree well with experimental findings; however, the assignment of states does not correspond to our calculations. Therefore, we give a reinterpretation of the experimentally observed C 1Π, a 3Π, B 1Σ+, b(3Δ1)1, D 1Π, c13Π1, and c0(3Π0) states. A labeling suggested by us is a1, C0+, b0-, c2, B3Π0+, d3Π1, e1, f1 and g1, respectively. The spin-orbit states corresponding to Ag(2D)+H(2S) have not well defined the Λ and S quantum numbers, and therefore, they probably correspond to Hund's coupling case c. For AuH, we present a comparison of the calculated potential energy curves and spectroscopic parameters with the previous configuration interaction study and the experiment.
NASA Astrophysics Data System (ADS)
Reshak, Ali Hussain; Chen, Xuean; Auluck, S.; Kamarudin, H.
2012-09-01
LiNaB4O7 was synthesized by employing high-temperature reaction methods. The purity of the sample was checked by x-ray powder diffraction. The optical properties were measured by analyzing the diffuse reflectance data which showed a band gap of about 3.88 eV. Linear and nonlinear optical susceptibility calculations have been performed using the all-electron full potential linearized augmented plane wave method using four different exchange correlation potentials. It was found that the title compound possesses an optical gap of about 2.80 eV using the local density approximation, 2.91 eV by generalized gradient approximation, 3.21 eV for the Engel-Vosko generalized gradient approximation (EVGGA), and 3.81 eV using modified Becke-Johnson potential (mBJ). This compares well with our experimentally measured energy band gap of 3.88 eV. Our calculations show that EVGGA and mBJ cause a blue spectral shift with significant changes in the whole spectra. The observed spectral shifts are in agreement with the calculated band structure and corresponding electron density of states. The tensor χijk(2) describes the second-order nonlinear optical effect and the symmetry allows only five nonzero components, namely, the 113, 232, 311, 322, and 333 components with 322 being the dominant one with a value 0.15 pm/V (d32 = 0.0733 pm/V) at static limit and 0.16 pm/V (d32 = 0.0795 pm/V) at λ = 1064 nm. For the dominant component, the microscopic second order hyperpolarizability, β322, was found to be 0.306 × 10-30 esu at static limit and 0.332 × 10-30 esu at λ = 1064 nm.
NASA Technical Reports Server (NTRS)
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
NASA Astrophysics Data System (ADS)
Young, T.
This book is intended to be used as a textbook in a one-semester course at a variety of levels. Because of self-study features incorporated, it may also be used by practicing electronic engineers as a formal and thorough introduction to the subject. The distinction between linear and digital integrated circuits is discussed, taking into account digital and linear signal characteristics, linear and digital integrated circuit characteristics, the definitions for linear and digital circuits, applications of digital and linear integrated circuits, aspects of fabrication, packaging, and classification and numbering. Operational amplifiers are considered along with linear integrated circuit (LIC) power requirements and power supplies, voltage and current regulators, linear amplifiers, linear integrated circuit oscillators, wave-shaping circuits, active filters, DA and AD converters, demodulators, comparators, instrument amplifiers, current difference amplifiers, analog circuits and devices, and aspects of troubleshooting.
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
NASA Astrophysics Data System (ADS)
Sharkey, Keeper L.; Bubin, Sergiy; Adamowicz, Ludwik
2014-11-01
Accurate variational nonrelativistic quantum-mechanical calculations are performed for the five lowest 1D and four lowest 3D states of the 9Be isotope of the beryllium atom. All-electron explicitly correlated Gaussian (ECG) functions are used in the calculations and their nonlinear parameters are optimized with the aid of the analytical energy gradient determined with respect to these parameters. The effect of the finite nuclear mass is directly included in the Hamiltonian used in the calculations. The singlet-triplet energy gaps between the corresponding 1D and 3D states, are reported.
Wiedemann, H.
1981-11-01
Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.
Linear phase compressive filter
McEwan, T.E.
1995-06-06
A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.
Linear phase compressive filter
McEwan, Thomas E.
1995-01-01
A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.
Fault tolerant linear actuator
Tesar, Delbert
2004-09-14
In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.
Powerful Electromechanical Linear Actuator
NASA Technical Reports Server (NTRS)
Cowan, John R.; Myers, William N.
1994-01-01
Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.
Richter, B.
1985-12-01
A report is given on the goals and progress of the SLAC Linear Collider. The status of the machine and the detectors are discussed and an overview is given of the physics which can be done at this new facility. Some ideas on how (and why) large linear colliders of the future should be built are given.
Linear Equations: Equivalence = Success
ERIC Educational Resources Information Center
Baratta, Wendy
2011-01-01
The ability to solve linear equations sets students up for success in many areas of mathematics and other disciplines requiring formula manipulations. There are many reasons why solving linear equations is a challenging skill for students to master. One major barrier for students is the inability to interpret the equals sign as anything other than…
Linearly polarized fiber amplifier
Kliner, Dahv A.; Koplow, Jeffery P.
2004-11-30
Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.
Linear models: permutation methods
Cade, B.S.
2005-01-01
Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...
NASA Technical Reports Server (NTRS)
Clancy, John P.
1988-01-01
The object of the invention is to provide a mechanical force actuator which is lightweight and manipulatable and utilizes linear motion for push or pull forces while maintaining a constant overall length. The mechanical force producing mechanism comprises a linear actuator mechanism and a linear motion shaft mounted parallel to one another. The linear motion shaft is connected to a stationary or fixed housing and to a movable housing where the movable housing is mechanically actuated through actuator mechanism by either manual means or motor means. The housings are adapted to releasably receive a variety of jaw or pulling elements adapted for clamping or prying action. The stationary housing is adapted to be pivotally mounted to permit an angular position of the housing to allow the tool to adapt to skewed interfaces. The actuator mechanisms is operated by a gear train to obtain linear motion of the actuator mechanism.
Imaginative Play during Childhood: Required for Reaching Full Potential
ERIC Educational Resources Information Center
Stephens, Karen
2009-01-01
At a brisk pace, research findings focused on children's play are finally reaching the light of day in popular media. No longer left sitting in archives of academic journals, the benefits of play to lifelong success have been touted in radio, television, magazines, and newspapers. It gives early childhood professionals a powerful, credible…
Examining the Full Potential of the Extended School
ERIC Educational Resources Information Center
Orchard, Linda
2007-01-01
This paper describes a project aimed at helping children and their families achieve their potential. It is based in an area of high social disadvantage. The authors explain how parenting classes held at a community college (a comprehensive school with provision for adult education), have led to the development of a suite of courses leading to…
Wake coupling to full potential rotor analysis code
NASA Technical Reports Server (NTRS)
Torres, Francisco J.; Chang, I-Chung; Oh, Byung K.
1990-01-01
The wake information from a helicopter forward flight code is coupled with two transonic potential rotor codes. The induced velocities for the near-, mid-, and far-wake geometries are extracted from a nonlinear rigid wake of a standard performance and analysis code. These, together with the corresponding inflow angles, computation points, and azimuth angles, are then incorporated into the transonic potential codes. The coupled codes can then provide an improved prediction of rotor blade loading at transonic speeds.
Full-potential modeling of blade-vortex interactions
NASA Technical Reports Server (NTRS)
Jones, H. E.; Caradonna, F. X.
1986-01-01
A comparison is made of four different models for predicting the unsteady loading induced by a vortex passing close to an airfoil. (1) The first model approximates the vortex effect as a change in the airfoil angle of attack. (2) The second model is related to the first but, instead of imposing only a constant velocity on the airfoil, the distributed effect of the vortex is computed and used. This is analogous to a lifting surface method. (3) The third model is to specify a branch cut discontinuity in the potential field. The vortex is modeled as a jump in potential across the branch cut, the edge of which represents the center of the vortex. (4) The fourth method models the vortex expressing the potential as the sum of a known potential due to the vortex and an unknown perturbation due to the airfoil. The purpose of the current study is to investigate the four vortex models described above and to determine their relative merits and suitability for use in large three-dimensional codes.
NASA Technical Reports Server (NTRS)
Studer, P. A. (Inventor)
1983-01-01
A linear magnetic bearing system having electromagnetic vernier flux paths in shunt relation with permanent magnets, so that the vernier flux does not traverse the permanent magnet, is described. Novelty is believed to reside in providing a linear magnetic bearing having electromagnetic flux paths that bypass high reluctance permanent magnets. Particular novelty is believed to reside in providing a linear magnetic bearing with a pair of axially spaced elements having electromagnets for establishing vernier x and y axis control. The magnetic bearing system has possible use in connection with a long life reciprocating cryogenic refrigerator that may be used on the space shuttle.
... is the device most commonly used for external beam radiation treatments for patients with cancer. The linear ... shape of the patient's tumor and the customized beam is directed to the patient's tumor. The beam ...
NASA Technical Reports Server (NTRS)
Callier, Frank M.; Desoer, Charles A.
1991-01-01
The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.
Shetty, Shricharith; Rao, Raghavendra; Kudva, R Ranjini; Subramanian, Kumudhini
2016-01-01
Alopecia areata (AA) over scalp is known to present in various shapes and extents of hair loss. Typically it presents as circumscribed patches of alopecia with underlying skin remaining normal. We describe a rare variant of AA presenting in linear band-like form. Only four cases of linear alopecia have been reported in medical literature till today, all four being diagnosed as lupus erythematosus profundus. PMID:27625568
NASA Technical Reports Server (NTRS)
Laughlin, Darren
1995-01-01
Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.
Linear optoacoustic underwater communication.
Blackmon, Fletcher; Estes, Lee; Fain, Gilbert
2005-06-20
The linear mechanism for optical-to-acoustic energy conversion is explored for optoacoustic communication from an in-air platform or surface vessel to a submerged vessel such as a submarine or unmanned undersea vehicle. The communication range that can be achieved is addressed. A number of conventional signals used in underwater acoustic telemetry applications are shown to be capable of being generated experimentally through the linear optoacoustic regime conversion process. These results are in agreement with simulation based on current theoretical models. A number of practical issues concerning linear optoacoustic communication are addressed that lead to a formulation of a linear-regime optoacoustic communication scheme. The use of oblique laser beam incidence at the air-water interface to obtain considerable in-air range from the laser source to the in-water receiver is addressed. Also, the effect of oblique incidence on in-water range is examined. Next, the optimum and suboptimum linear optoacoustic sound-generation techniques for selecting the optical wavelength and signaling frequency for optimizing in-water range are addressed and discussed. Optoacoustic communication techniques employing M-ary frequency shift keying and multifrequency shift keying are then compared with regard to communication parameters such as bandwidth, data rate, range coverage, and number of lasers employed. PMID:15989059
Superconducting linear actuator
NASA Technical Reports Server (NTRS)
Johnson, Bruce; Hockney, Richard
1993-01-01
Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.
Designing linear systolic arrays
Kumar, V.K.P.; Tsai, Y.C. . Dept. of Electrical Engineering)
1989-12-01
The authors develop a simple mapping technique to design linear systolic arrays. The basic idea of the technique is to map the computations of a certain class of two-dimensional systolic arrays onto one-dimensional arrays. Using this technique, systolic algorithms are derived for problems such as matrix multiplication and transitive closure on linearly connected arrays of PEs with constant I/O bandwidth. Compared to known designs in the literature, the technique leads to modular systolic arrays with constant hardware in each PE, few control lines, lexicographic data input/output, and improved delay time. The unidirectional flow of control and data in this design assures implementation of the linear array in the known fault models of wafer scale integration.
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
1993-01-01
A Linear Motion Encoding device for measuring the linear motion of a moving object is disclosed in which a light source is mounted on the moving object and a position sensitive detector such as an array photodetector is mounted on a nearby stationary object. The light source emits a light beam directed towards the array photodetector such that a light spot is created on the array. An analog-to-digital converter, connected to the array photodetector is used for reading the position of the spot on the array photodetector. A microprocessor and memory is connected to the analog-to-digital converter to hold and manipulate data provided by the analog-to-digital converter on the position of the spot and to compute the linear displacement of the moving object based upon the data from the analog-to-digital converter.
Linear quantum feedback networks
NASA Astrophysics Data System (ADS)
Gough, J. E.; Gohm, R.; Yanagisawa, M.
2008-12-01
The mathematical theory of quantum feedback networks has recently been developed [J. Gough and M. R. James, e-print arXiv:0804.3442v2] for general open quantum dynamical systems interacting with bosonic input fields. In this article we show, for the special case of linear dynamical Markovian systems with instantaneous feedback connections, that the transfer functions can be deduced and agree with the algebraic rules obtained in the nonlinear case. Using these rules, we derive the transfer functions for linear quantum systems in series, in cascade, and in feedback arrangements mediated by beam splitter devices.
Linearly Adjustable International Portfolios
Fonseca, R. J.; Kuhn, D.; Rustem, B.
2010-09-30
We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.
Sharkey, Keeper L; Adamowicz, Ludwik
2014-05-01
An algorithm for quantum-mechanical nonrelativistic variational calculations of L = 0 and M = 0 states of atoms with an arbitrary number of s electrons and with three p electrons have been implemented and tested in the calculations of the ground (4)S state of the nitrogen atom. The spatial part of the wave function is expanded in terms of all-electrons explicitly correlated Gaussian functions with the appropriate pre-exponential Cartesian angular factors for states with the L = 0 and M = 0 symmetry. The algorithm includes formulas for calculating the Hamiltonian and overlap matrix elements, as well as formulas for calculating the analytic energy gradient determined with respect to the Gaussian exponential parameters. The gradient is used in the variational optimization of these parameters. The Hamiltonian used in the approach is obtained by rigorously separating the center-of-mass motion from the laboratory-frame all-particle Hamiltonian, and thus it explicitly depends on the finite mass of the nucleus. With that, the mass effect on the total ground-state energy is determined. PMID:24811630
ERIC Educational Resources Information Center
Dobbs, David E.
2013-01-01
A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.
Improved Electrohydraulic Linear Actuators
NASA Technical Reports Server (NTRS)
Hamtil, James
2004-01-01
A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.
Resistors Improve Ramp Linearity
NASA Technical Reports Server (NTRS)
Kleinberg, L. L.
1982-01-01
Simple modification to bootstrap ramp generator gives more linear output over longer sweep times. New circuit adds just two resistors, one of which is adjustable. Modification cancels nonlinearities due to variations in load on charging capacitor and due to changes in charging current as the voltage across capacitor increases.
Linear Classification Functions.
ERIC Educational Resources Information Center
Huberty, Carl J.; Smith, Jerry D.
Linear classification functions (LCFs) arise in a predictive discriminant analysis for the purpose of classifying experimental units into criterion groups. The relative contribution of the response variables to classification accuracy may be based on LCF-variable correlations for each group. It is proved that, if the raw response measures are…
NASA Technical Reports Server (NTRS)
Chandler, J. A. (Inventor)
1985-01-01
The linear motion valve is described. The valve spool employs magnetically permeable rings, spaced apart axially, which engage a sealing assembly having magnetically permeable pole pieces in magnetic relationship with a magnet. The gap between the ring and the pole pieces is sealed with a ferrofluid. Depletion of the ferrofluid is minimized.
NASA Astrophysics Data System (ADS)
Tzeli, Demeter; Mavridis, Aristides
2008-01-01
The electronic structure and bonding of the ground and some low-lying states of all first row transition metal borides (MB), ScB, TiB, VB, CrB, MnB, FeB, CoB, NiB, and CuB have been studied by multireference configuration interaction (MRCI) methods employing a correlation consistent basis set of quintuple cardinality (5Z). It should be stressed that for all the above nine molecules, experimental results are essentially absent, whereas with the exception of ScB and CuB the remaining seven species are studied theoretically for the first time. We have constructed full potential energy curves at the MRCI/5Z level for a total of 27 low-lying states, subsequently used to extract binding energies, spectroscopic parameters, and bonding schemes. In addition, some 20 or more states for every MB species have been examined at the MRCI/4Z level of theory. The ground state symmetries and corresponding binding energies (in kcal/mol) are Σ-5(ScB), 76; Δ6(TiB), 65; Σ+7(VB), 55; Σ+6(CrB), 31; Π5(MnB), 20; Σ-4(FeB), 54; Δ3(CoB), 66; Σ+2(NiB), 79; and Σ+1(CuB), 49.
The International Linear Collider
NASA Astrophysics Data System (ADS)
List, Benno
2014-04-01
The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.
Banks, R.M.
1986-01-14
This patent describes a linear output nitinol engine consisting of a number of integrated communicating parts. The engine has an external support framework which is described in detail. The patent further describes a wire transport mechanism, a pair of linkage levers with a loom secured to them, a number of nitinol wires strung between the looms, and a power takeoff block secured to the linkage levers. A pulley positioned in a flip-flop supporting bracket and a power takeoff modality including a tension member connected to a power output cable in order to provide linear power output transmission is described. A method for biasing the timing and the mechanism for timing the synchronization of the throw over arms and the flip-flop of the pulley are also described.
NASA Technical Reports Server (NTRS)
Goldowsky, Michael P. (Inventor)
1987-01-01
A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.
General linear chirplet transform
NASA Astrophysics Data System (ADS)
Yu, Gang; Zhou, Yiqi
2016-03-01
Time-frequency (TF) analysis (TFA) method is an effective tool to characterize the time-varying feature of a signal, which has drawn many attentions in a fairly long period. With the development of TFA, many advanced methods are proposed, which can provide more precise TF results. However, some restrictions are introduced inevitably. In this paper, we introduce a novel TFA method, termed as general linear chirplet transform (GLCT), which can overcome some limitations existed in current TFA methods. In numerical and experimental validations, by comparing with current TFA methods, some advantages of GLCT are demonstrated, which consist of well-characterizing the signal of multi-component with distinct non-linear features, being independent to the mathematical model and initial TFA method, allowing for the reconstruction of the interested component, and being non-sensitivity to noise.
Eberly, Lynn E
2007-01-01
This chapter describes multiple linear regression, a statistical approach used to describe the simultaneous associations of several variables with one continuous outcome. Important steps in using this approach include estimation and inference, variable selection in model building, and assessing model fit. The special cases of regression with interactions among the variables, polynomial regression, regressions with categorical (grouping) variables, and separate slopes models are also covered. Examples in microbiology are used throughout. PMID:18450050
NASA Technical Reports Server (NTRS)
Johnston, D. D.
1972-01-01
An evaluation of the precise linear sun sensor relating to future mission applications was performed. The test procedures, data, and results of the dual-axis, solid-state system are included. Brief descriptions of the sensing head and of the system's operational characteristics are presented. A unique feature of the system is that multiple sensor heads with various fields of view may be used with the same electronics.
Relativistic Linear Restoring Force
ERIC Educational Resources Information Center
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
Buttram, M.T.; Ginn, J.W.
1988-06-21
A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.
Combustion powered linear actuator
Fischer, Gary J.
2007-09-04
The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.
Sensors for linear referencing
NASA Astrophysics Data System (ADS)
Goodwin, Cecil W. H.; Lau, John W.
1998-01-01
Two solutions to the vehicle location problem are commonly discussed for Intelligent Transportation Systems (ITS): active roadside beacons and global positioning system (GPS) satellites. This paper present requirements for new linear referencing sensors, defined as sensors that will identify a vehicle's location along a roadway in terms of distance along the roadway from known points or by the automatic identification of known points. Requirements for linear referencing sensors come from new national location referencing standards being developed by initiatives of the US Department of Transportation, and from international location referencing standardization activities. Linear referencing sensors can extract information from the visual scene presented by the roadside environment, or from the environment illuminated by laser or microwave radiation. They can also be based on new, low cost techniques for labeling roads or by modulating lane reflectors or other regular road infrastructure components. Such sensors, singly and in combination, avoid the map matching problem common to vehicle navigation systems that rely on GPS, and can be deployed at much lower cost than roadside beacons, particularly when designed as one function of multi-purpose in-vehicle sensors and computers.
Villante, F. L.; Ricci, B.
2010-05-01
We present a new approach to studying the properties of the Sun. We consider small variations of the physical and chemical properties of the Sun with respect to standard solar model predictions and we linearize the structure equations to relate them to the properties of the solar plasma. By assuming that the (variation of) present solar composition can be estimated from the (variation of) nuclear reaction rates and elemental diffusion efficiency in the present Sun, we obtain a linear system of ordinary differential equations which can be used to calculate the response of the Sun to an arbitrary modification of the input parameters (opacity, cross sections, etc.). This new approach is intended to be a complement to the traditional methods for solar model (SM) calculation and allows us to investigate in a more efficient and transparent way the role of parameters and assumptions in SM construction. We verify that these linear solar models recover the predictions of the traditional SMs with a high level of accuracy.
Linearized Kernel Dictionary Learning
NASA Astrophysics Data System (ADS)
Golts, Alona; Elad, Michael
2016-06-01
In this paper we present a new approach of incorporating kernels into dictionary learning. The kernel K-SVD algorithm (KKSVD), which has been introduced recently, shows an improvement in classification performance, with relation to its linear counterpart K-SVD. However, this algorithm requires the storage and handling of a very large kernel matrix, which leads to high computational cost, while also limiting its use to setups with small number of training examples. We address these problems by combining two ideas: first we approximate the kernel matrix using a cleverly sampled subset of its columns using the Nystr\\"{o}m method; secondly, as we wish to avoid using this matrix altogether, we decompose it by SVD to form new "virtual samples," on which any linear dictionary learning can be employed. Our method, termed "Linearized Kernel Dictionary Learning" (LKDL) can be seamlessly applied as a pre-processing stage on top of any efficient off-the-shelf dictionary learning scheme, effectively "kernelizing" it. We demonstrate the effectiveness of our method on several tasks of both supervised and unsupervised classification and show the efficiency of the proposed scheme, its easy integration and performance boosting properties.
NASA Astrophysics Data System (ADS)
Uhlmann, Armin
2016-03-01
This is an introduction to antilinear operators. In following Wigner the terminus antilinear is used as it is standard in Physics. Mathematicians prefer to say conjugate linear. By restricting to finite-dimensional complex-linear spaces, the exposition becomes elementary in the functional analytic sense. Nevertheless it shows the amazing differences to the linear case. Basics of antilinearity is explained in sects. 2, 3, 4, 7 and in sect. 1.2: Spectrum, canonical Hermitian form, antilinear rank one and two operators, the Hermitian adjoint, classification of antilinear normal operators, (skew) conjugations, involutions, and acq-lines, the antilinear counterparts of 1-parameter operator groups. Applications include the representation of the Lagrangian Grassmannian by conjugations, its covering by acq-lines. As well as results on equivalence relations. After remembering elementary Tomita-Takesaki theory, antilinear maps, associated to a vector of a two-partite quantum system, are defined. By allowing to write modular objects as twisted products of pairs of them, they open some new ways to express EPR and teleportation tasks. The appendix presents a look onto the rich structure of antilinear operator spaces.
Richter, B.; Bell, R.A.; Brown, K.L.
1980-06-01
The SLAC LINEAR COLLIDER is designed to achieve an energy of 100 GeV in the electron-positron center-of-mass system by accelerating intense bunches of particles in the SLAC linac and transporting the electron and positron bunches in a special magnet system to a point where they are focused to a radius of about 2 microns and made to collide head on. The rationale for this new type of colliding beam system is discussed, the project is described, some of the novel accelerator physics issues involved are discussed, and some of the critical technical components are described.
Ultrasonic linear measurement system
NASA Technical Reports Server (NTRS)
Marshall, Scot H. (Inventor)
1991-01-01
An ultrasonic linear measurement system uses the travel time of surface waves along the perimeter of a three-dimensional curvilinear body to determine the perimeter of the curvilinear body. The system can also be used piece-wise to measure distances along plane surfaces. The system can be used to measure perimeters where use of laser light, optical means or steel tape would be extremely difficult, time consuming or impossible. It can also be used to determine discontinuities in surfaces of known perimeter or dimension.
NASA Technical Reports Server (NTRS)
Perkins, Gerald S. (Inventor)
1980-01-01
A linear actuator which can apply high forces is described, which includes a reciprocating rod having a threaded portion engaged by a nut that is directly coupled to the rotor of an electric motor. The nut is connected to the rotor in a manner that minimizes loading on the rotor, by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded rod portion, with an oilcarrying groove in the nut being interrupted.
Sparse linear programming subprogram
Hanson, R.J.; Hiebert, K.L.
1981-12-01
This report describes a subprogram, SPLP(), for solving linear programming problems. The package of subprogram units comprising SPLP() is written in Fortran 77. The subprogram SPLP() is intended for problems involving at most a few thousand constraints and variables. The subprograms are written to take advantage of sparsity in the constraint matrix. A very general problem statement is accepted by SPLP(). It allows upper, lower, or no bounds on the variables. Both the primal and dual solutions are returned as output parameters. The package has many optional features. Among them is the ability to save partial results and then use them to continue the computation at a later time.
NASA Astrophysics Data System (ADS)
Hüttmann, Gereon; Koch, Peter; Birngruber, Reginald
Linear OCT (L-OCT) employs a parallel detection scheme to measure the interference pattern which is formed by the superposition of sample and reference light. L-OCT is one of four basic measurement implementations for OCT. It operates in the time domain like traditional TD-OCT systems but uses a parallel detection scheme by utilizing an image sensor. Therefore, the detection scheme has similarities with FD-OCT. L-OCT shares the lack of the twin-image and autocorrelation artefacts with FD-OCT and the increased noise with time-domain OCT. No moving parts and a simple optical design make L-OCT attractive for optically stable low-cost instruments. One of the main draw-backs is the large number of detector elements, which are needed to achieve a clinically relevant depth range. Gratings offer an elegant solution to reduce the fringe frequency of the interference pattern without influencing the image information. This chapter discusses, theory, implementation and performance of linear OCT systems, together with possible applications and extension, such as non-continuous depth range or line-field versions.
Pseudo Linear Gyro Calibration
NASA Technical Reports Server (NTRS)
Harman, Richard; Bar-Itzhack, Itzhack Y.
2003-01-01
Previous high fidelity onboard attitude algorithms estimated only the spacecraft attitude and gyro bias. The desire to promote spacecraft and ground autonomy and improvements in onboard computing power has spurred development of more sophisticated calibration algorithms. Namely, there is a desire to provide for sensor calibration through calibration parameter estimation onboard the spacecraft as well as autonomous estimation on the ground. Gyro calibration is a particularly challenging area of research. There are a variety of gyro devices available for any prospective mission ranging from inexpensive low fidelity gyros with potentially unstable scale factors to much more expensive extremely stable high fidelity units. Much research has been devoted to designing dedicated estimators such as particular Extended Kalman Filter (EKF) algorithms or Square Root Information Filters. This paper builds upon previous attitude, rate, and specialized gyro parameter estimation work performed with Pseudo Linear Kalman Filter (PSELIKA). The PSELIKA advantage is the use of the standard linear Kalman Filter algorithm. A PSELIKA algorithm for an orthogonal gyro set which includes estimates of attitude, rate, gyro misalignments, gyro scale factors, and gyro bias is developed and tested using simulated and flight data. The measurements PSELIKA uses include gyro and quaternion tracker data.
Linearly Forced Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Lundgren, T. S.
2003-01-01
Stationary isotropic turbulence is often studied numerically by adding a forcing term to the Navier-Stokes equation. This is usually done for the purpose of achieving higher Reynolds number and longer statistics than is possible for isotropic decaying turbulence. It is generally accepted that forcing the Navier-Stokes equation at low wave number does not influence the small scale statistics of the flow provided that there is wide separation between the largest and smallest scales. It will be shown, however, that the spectral width of the forcing has a noticeable effect on inertial range statistics. A case will be made here for using a broader form of forcing in order to compare computed isotropic stationary turbulence with (decaying) grid turbulence. It is shown that using a forcing function which is directly proportional to the velocity has physical meaning and gives results which are closer to both homogeneous and non-homogeneous turbulence. Section 1 presents a four part series of motivations for linear forcing. Section 2 puts linear forcing to a numerical test with a pseudospectral computation.
Bonding a linearly piezoelectric patch on a linearly elastic body
NASA Astrophysics Data System (ADS)
Licht, Christian; Orankitjaroen, Somsak; Viriyasrisuwattana, Patcharakorn; Weller, Thibaut
2014-04-01
A rigorous study of the asymptotic behavior of the system constituted by a very thin linearly piezoelectric plate bonded on a linearly elastic body supplies various models for an elastic body monitored by a piezoelectric patch. xml:lang="fr"
Energy Science and Technology Software Center (ESTSC)
2006-11-17
Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.« less
NASA Astrophysics Data System (ADS)
Hagedorn, P.
The mathematical pendulum is used to provide a survey of free and forced oscillations in damped and undamped systems. This simple model is employed to present illustrations for and comparisons between the various approximation schemes. A summary of the Liapunov stability theory is provided. The first and the second method of Liapunov are explained for autonomous as well as for nonautonomous systems. Here, a basic familiarity with the theory of linear oscillations is assumed. La Salle's theorem about the stability of invariant domains is explained in terms of illustrative examples. Self-excited oscillations are examined, taking into account such oscillations in mechanical and electrical systems, analytical approximation methods for the computation of self-excited oscillations, analytical criteria for the existence of limit cycles, forced oscillations in self-excited systems, and self-excited oscillations in systems with several degrees of freedom. Attention is given to Hamiltonian systems and an introduction to the theory of optimal control is provided.
[Linear accelerator radiosurgery].
Brandt, R A; Salvajoli, J V; Oliveira, V C; Carmignani, M; da Cruz, J C; Leal, H D; Ferraz, L
1995-03-01
Radiosurgery is the precise radiation of a known intracranial target with a high dose of energy, sparing the adjacent nervous tissue. Technological advances in the construction of linear accelerators, stereotactic instruments and in computer sciences made this technique easier to perform and affordable. The main indications for radiosurgery are inoperable cerebral vascular malformations, vestibular and other cranial schwannomas, skull base meningiomas, deep seated gliomas and cerebral metastases. More recently, the development of fraccionated stereotactic radiotherapy increased the spectrum of indications to bigger lesions and to those adjacent to critical nervous structures. We present our initial experience in the treatment of 31 patients. An adequate control of the neoplastic lesions was obtained and the adequate time of observation is still needed to evaluate the results in arteriovenous malformations. PMID:7575207
Van Atta, C.M.; Beringer, R.; Smith, L.
1959-01-01
A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.
Positrons for linear colliders
Ecklund, S.
1987-11-01
The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)
Fast Censored Linear Regression
HUANG, YIJIAN
2013-01-01
Weighted log-rank estimating function has become a standard estimation method for the censored linear regression model, or the accelerated failure time model. Well established statistically, the estimator defined as a consistent root has, however, rather poor computational properties because the estimating function is neither continuous nor, in general, monotone. We propose a computationally efficient estimator through an asymptotics-guided Newton algorithm, in which censored quantile regression methods are tailored to yield an initial consistent estimate and a consistent derivative estimate of the limiting estimating function. We also develop fast interval estimation with a new proposal for sandwich variance estimation. The proposed estimator is asymptotically equivalent to the consistent root estimator and barely distinguishable in samples of practical size. However, computation time is typically reduced by two to three orders of magnitude for point estimation alone. Illustrations with clinical applications are provided. PMID:24347802
NASA Technical Reports Server (NTRS)
Holloway, Sidney E., III
1994-01-01
This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.
NASA Technical Reports Server (NTRS)
Holloway, S. E., III
1995-01-01
This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Recursive Algorithm For Linear Regression
NASA Technical Reports Server (NTRS)
Varanasi, S. V.
1988-01-01
Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.
LINEAR - DERIVATION AND DEFINITION OF A LINEAR AIRCRAFT MODEL
NASA Technical Reports Server (NTRS)
Duke, E. L.
1994-01-01
The Derivation and Definition of a Linear Model program, LINEAR, provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models. LINEAR was developed to provide a standard, documented, and verified tool to derive linear models for aircraft stability analysis and control law design. Linear system models define the aircraft system in the neighborhood of an analysis point and are determined by the linearization of the nonlinear equations defining vehicle dynamics and sensors. LINEAR numerically determines a linear system model using nonlinear equations of motion and a user supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. LINEAR is capable of extracting both linearized engine effects, such as net thrust, torque, and gyroscopic effects and including these effects in the linear system model. The point at which this linear model is defined is determined either by completely specifying the state and control variables, or by specifying an analysis point on a trajectory and directing the program to determine the control variables and the remaining state variables. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to provide easy selection of state, control, and observation variables to be used in a particular model. Thus, the order of the system model is completely under user control. Further, the program provides the flexibility of allowing alternate formulations of both the state and observation equations. Data describing the aircraft and the test case is input to the program through a terminal or formatted data files. All data can be modified interactively from case to case. The aerodynamic model can be defined in two ways: a set of nondimensional stability and control derivatives for the flight point of
Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.
1989-01-01
A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.
Generalized Linear Covariance Analysis
NASA Technical Reports Server (NTRS)
Carpenter, James R.; Markley, F. Landis
2014-01-01
This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.
Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.
1989-08-22
A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.
Berkeley Proton Linear Accelerator
DOE R&D Accomplishments Database
Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.
1953-10-13
A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.
NASA Astrophysics Data System (ADS)
Johanning, Michael
2016-04-01
We describe the statical and dynamical properties of strings of ions stored in segmented electrodynamical Paul traps with a uniform ion separation. In this work, this specific ion arrangement is achieved by a smooth anharmonic effective potential generated by suitable voltages applied to segmented dc electrodes or by appropriate electrode shaping. We find analytic expressions for the required field, potential and normal mode matrix and find that even finite systems closely reproduce the critical radial binding strength of an infinite size system at the transition from linear to zigzag configuration. From the normal mode matrix, we find that such strings exhibit a solid-state-like band of normal modes and determine the effective spin-spin coupling when the ion string is exposed to a magnetic gradient. We show how the potential, modes and couplings can be altered while still maintaining a homogeneous spacing and present numerical examples, for how this potential can be achieved in either segmented Paul traps or by using an optimized electrode geometry.
Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.
1985-03-19
Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.
Generalized Linear Covariance Analysis
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Markley, F. Landis
2008-01-01
We review and extend in two directions the results of prior work on generalized covariance analysis methods. This prior work allowed for partitioning of the state space into "solve-for" and "consider" parameters, allowed for differences between the formal values and the true values of the measurement noise, process noise, and a priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and a priori solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator s anchor time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the "variance sandpile" and the "sensitivity mosaic," and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.
NASA Astrophysics Data System (ADS)
Theofilis, Vassilios
2011-01-01
This article reviews linear instability analysis of flows over or through complex two-dimensional (2D) and 3D geometries. In the three decades since it first appeared in the literature, global instability analysis, based on the solution of the multidimensional eigenvalue and/or initial value problem, is continuously broadening both in scope and in depth. To date it has dealt successfully with a wide range of applications arising in aerospace engineering, physiological flows, food processing, and nuclear-reactor safety. In recent years, nonmodal analysis has complemented the more traditional modal approach and increased knowledge of flow instability physics. Recent highlights delivered by the application of either modal or nonmodal global analysis are briefly discussed. A conscious effort is made to demystify both the tools currently utilized and the jargon employed to describe them, demonstrating the simplicity of the analysis. Hopefully this will provide new impulses for the creation of next-generation algorithms capable of coping with the main open research areas in which step-change progress can be expected by the application of the theory: instability analysis of fully inhomogeneous, 3D flows and control thereof.
Use and characterization of linear nozzles for spray forming
Leon, D.D.; Kozarek, R.L.
1995-11-01
Commercial production of aluminum sheet and plate by spray atomization and deposition is a potentially attractive manufacturing alternative to conventional ingot metallurgy/hot-milling, and to continuous casting processes because of reduced energy requirements and reduced cost. To realize the full potential of this technology the Aluminum Company of America (Alcoa), under a cooperative agreement with the U.S. Department of Energy, has investigated currently available state-of-the-art atomization devices to develop nozzle design concepts whose spray characteristics are tailored for continuous sheet production. This paper will discuss Alcoa`s research and development work on three linear nozzle designs. The effect of geometry and process parameters on spray pattern and particle size distribution will be presented. The discussion will focus on the final spray formed deposit produced by these deposition systems.
Linear Algebraic Method for Non-Linear Map Analysis
Yu,L.; Nash, B.
2009-05-04
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
Correlation and simple linear regression.
Eberly, Lynn E
2007-01-01
This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression. PMID:18450049
Linear collider development at SLAC
Irwin, J.
1993-08-01
Linear collider R&D at SLAC comprises work on the present Stanford Linear Collider (SLC) and work toward the next linear collider (NLC). Recent SLC developments are summarized. NLC studies are divided into hardware-based and theoretical. We report on the status of the NLC Test Accelerator (NLCTA) and the final focus test beam (FFTB), describe plans for ASSET, an installation to measure accelerator structure wakefields, and mention IR design developments. Finally we review recent NLC theoretical studies, ending with the author`s view of next linear collider parameter sets.
Quantization of general linear electrodynamics
Rivera, Sergio; Schuller, Frederic P.
2011-03-15
General linear electrodynamics allow for an arbitrary linear constitutive relation between the field strength 2-form and induction 2-form density if crucial hyperbolicity and energy conditions are satisfied, which render the theory predictive and physically interpretable. Taking into account the higher-order polynomial dispersion relation and associated causal structure of general linear electrodynamics, we carefully develop its Hamiltonian formulation from first principles. Canonical quantization of the resulting constrained system then results in a quantum vacuum which is sensitive to the constitutive tensor of the classical theory. As an application we calculate the Casimir effect in a birefringent linear optical medium.
Optical Scanner for Linear Arrays
NASA Technical Reports Server (NTRS)
Finkel, M. W.
1986-01-01
Optical scanner instantaneously reads contiguous lines forming scene or target in object plane. Reading active or passive and scans, continuous or discrete. Scans essentially linear with scan angle and symmetric about axial ray. Nominal focal error, resulting from curvature of scan, well within Rayleigh limit. Scanner specifically designed to be fully compatible with general requirements of linear arrays.
Passive linearization of nonlinear resonances
NASA Astrophysics Data System (ADS)
Habib, G.; Grappasonni, C.; Kerschen, G.
2016-07-01
The objective of this paper is to demonstrate that the addition of properly tuned nonlinearities to a nonlinear system can increase the range over which a specific resonance responds linearly. Specifically, we seek to enforce two important properties of linear systems, namely, the force-displacement proportionality and the invariance of resonance frequencies. Numerical simulations and experiments are used to validate the theoretical findings.
Linear Algebra and Image Processing
ERIC Educational Resources Information Center
Allali, Mohamed
2010-01-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)
Linear Programming across the Curriculum
ERIC Educational Resources Information Center
Yoder, S. Elizabeth; Kurz, M. Elizabeth
2015-01-01
Linear programming (LP) is taught in different departments across college campuses with engineering and management curricula. Modeling an LP problem is taught in every linear programming class. As faculty teaching in Engineering and Management departments, the depth to which teachers should expect students to master this particular type of…
Spatial Processes in Linear Ordering
ERIC Educational Resources Information Center
von Hecker, Ulrich; Klauer, Karl Christoph; Wolf, Lukas; Fazilat-Pour, Masoud
2016-01-01
Memory performance in linear order reasoning tasks (A > B, B > C, C > D, etc.) shows quicker, and more accurate responses to queries on wider (AD) than narrower (AB) pairs on a hypothetical linear mental model (A -- B -- C -- D). While indicative of an analogue representation, research so far did not provide positive evidence for spatial…
NASA Technical Reports Server (NTRS)
Ferencz, Donald C.; Viterna, Larry A.
1991-01-01
ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.
Linear control design for guaranteed stability of uncertain linear systems
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1986-01-01
In this paper, a linear control design algorithm based on the elemental perturbation bounds developed recently is presented for a simple second order linear uncertain system satisfying matching conditions. The proposed method is compared with Guaranteed Cost Control (GCC), Multistep Guaranteed Cost Control (MGCC) and the Matching Condition (MC) methods and is shown to give guaranteed stability with lesser values for the control gains than some of the existing methods for the example considered.
Practical Session: Simple Linear Regression
NASA Astrophysics Data System (ADS)
Clausel, M.; Grégoire, G.
2014-12-01
Two exercises are proposed to illustrate the simple linear regression. The first one is based on the famous Galton's data set on heredity. We use the lm R command and get coefficients estimates, standard error of the error, R2, residuals …In the second example, devoted to data related to the vapor tension of mercury, we fit a simple linear regression, predict values, and anticipate on multiple linear regression. This pratical session is an excerpt from practical exercises proposed by A. Dalalyan at EPNC (see Exercises 1 and 2 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_4.pdf).
Manipulator control by exact linearization
NASA Technical Reports Server (NTRS)
Kruetz, K.
1987-01-01
Comments on the application to rigid link manipulators of geometric control theory, resolved acceleration control, operational space control, and nonlinear decoupling theory are given, and the essential unity of these techniques for externally linearizing and decoupling end effector dynamics is discussed. Exploiting the fact that the mass matrix of a rigid link manipulator is positive definite, a consequence of rigid link manipulators belonging to the class of natural physical systems, it is shown that a necessary and sufficient condition for a locally externally linearizing and output decoupling feedback law to exist is that the end effector Jacobian matrix be nonsingular. Furthermore, this linearizing feedback is easy to produce.
Precision magnetic suspension linear bearing
NASA Technical Reports Server (NTRS)
Trumper, David L.; Queen, Michael A.
1992-01-01
We have shown the design and analyzed the electromechanics of a linear motor suitable for independently controlling two suspension degrees of freedom. This motor, at least on paper, meets the requirements for driving an X-Y stage of 10 Kg mass with about 4 m/sq sec acceleration, with travel of several hundred millimeters in X and Y, and with reasonable power dissipation. A conceptual design for such a stage is presented. The theoretical feasibility of linear and planar bearings using single or multiple magnetic suspension linear motors is demonstrated.
Linearization algorithms for line transfer
Scott, H.A.
1990-11-06
Complete linearization is a very powerful technique for solving multi-line transfer problems that can be used efficiently with a variety of transfer formalisms. The linearization algorithm we describe is computationally very similar to ETLA, but allows an effective treatment of strongly-interacting lines. This algorithm has been implemented (in several codes) with two different transfer formalisms in all three one-dimensional geometries. We also describe a variation of the algorithm that handles saturable laser transport. Finally, we present a combination of linearization with a local approximate operator formalism, which has been implemented in two dimensions and is being developed in three dimensions. 11 refs.
kṡp formula for use with linearized augmented plane waves
NASA Astrophysics Data System (ADS)
Shishidou, Tatsuya; Oguchi, Tamio
2008-12-01
We provide kṡp formalism within the full-potential linearized augmented plane-wave (LAPW) method. Unlike the pure plane waves, the LAPW functions do not behave trivially in moving from k to k+q and their incompleteness as a basis set should be taken into account. Derivatives of the sphere matching coefficients play the key role, for which we find a simple formula. Concrete formula for the kṡp matrix elements is derived and numerically tested. Generalized second-order perturbation theory allowing for a degenerate case is presented and the literally exact electronic band gradients and curvatures are accessible.
Self-consistent field theory based molecular dynamics with linear system-size scaling
Richters, Dorothee; Kühne, Thomas D.
2014-04-07
We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.
Acoustic emission linear pulse holography
Collins, H.D.; Busse, L.J.; Lemon, D.K.
1983-10-25
This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.
Overdetermined Systems of Linear Equations.
ERIC Educational Resources Information Center
Williams, Gareth
1990-01-01
Explored is an overdetermined system of linear equations to find an appropriate least squares solution. A geometrical interpretation of this solution is given. Included is a least squares point discussion. (KR)
[New technology for linear colliders
McIntyre, P.M.
1992-08-12
This report discusses the following topics on research of microwave amplifiers for linear colliders: Context in current microwave technology development; gated field emission for microwave cathodes; cathode fabrication and tests; microwave cathode design using field emitters; and microwave localization.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
Spacetime metric from linear electrodynamics
NASA Astrophysics Data System (ADS)
Obukhov, Yuri N.; Hehl, Friedrich W.
1999-07-01
The Maxwell equations are formulated on an arbitrary (1+3)-dimensional manifold. Then, imposing a (constrained) linear constitutive relation between electromagnetic field (E,B) and excitation (D,ℌ), we derive the metric of spacetime therefrom.
Linear Back-Drive Differentials
NASA Technical Reports Server (NTRS)
Waydo, Peter
2003-01-01
Linear back-drive differentials have been proposed as alternatives to conventional gear differentials for applications in which there is only limited rotational motion (e.g., oscillation). The finite nature of the rotation makes it possible to optimize a linear back-drive differential in ways that would not be possible for gear differentials or other differentials that are required to be capable of unlimited rotation. As a result, relative to gear differentials, linear back-drive differentials could be more compact and less massive, could contain fewer complex parts, and could be less sensitive to variations in the viscosities of lubricants. Linear back-drive differentials would operate according to established principles of power ball screws and linear-motion drives, but would utilize these principles in an innovative way. One major characteristic of such mechanisms that would be exploited in linear back-drive differentials is the possibility of designing them to drive or back-drive with similar efficiency and energy input: in other words, such a mechanism can be designed so that a rotating screw can drive a nut linearly or the linear motion of the nut can cause the screw to rotate. A linear back-drive differential (see figure) would include two collinear shafts connected to two parts that are intended to engage in limited opposing rotations. The linear back-drive differential would also include a nut that would be free to translate along its axis but not to rotate. The inner surface of the nut would be right-hand threaded at one end and left-hand threaded at the opposite end to engage corresponding right- and left-handed threads on the shafts. A rotation and torque introduced into the system via one shaft would drive the nut in linear motion. The nut, in turn, would back-drive the other shaft, creating a reaction torque. Balls would reduce friction, making it possible for the shaft/nut coupling on each side to operate with 90 percent efficiency.
Linear superposition in nonlinear equations.
Khare, Avinash; Sukhatme, Uday
2002-06-17
Several nonlinear systems such as the Korteweg-de Vries (KdV) and modified KdV equations and lambda phi(4) theory possess periodic traveling wave solutions involving Jacobi elliptic functions. We show that suitable linear combinations of these known periodic solutions yield many additional solutions with different periods and velocities. This linear superposition procedure works by virtue of some remarkable new identities involving elliptic functions. PMID:12059300
Transformation matrices between non-linear and linear differential equations
NASA Technical Reports Server (NTRS)
Sartain, R. L.
1983-01-01
In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.
A nanoscale linear-to-linear motion converter of graphene.
Dai, Chunchun; Guo, Zhengrong; Zhang, Hongwei; Chang, Tienchong
2016-08-14
Motion conversion plays an irreplaceable role in a variety of machinery. Although many macroscopic motion converters have been widely used, it remains a challenge to convert motion at the nanoscale. Here we propose a nanoscale linear-to-linear motion converter, made of a flake-substrate system of graphene, which can convert the out-of-plane motion of the substrate into the in-plane motion of the flake. The curvature gradient induced van der Waals potential gradient between the flake and the substrate provides the driving force to achieve motion conversion. The proposed motion converter may have general implications for the design of nanomachinery and nanosensors. PMID:27335206
A nanoscale linear-to-linear motion converter of graphene
NASA Astrophysics Data System (ADS)
Dai, Chunchun; Guo, Zhengrong; Zhang, Hongwei; Chang, Tienchong
2016-07-01
Motion conversion plays an irreplaceable role in a variety of machinery. Although many macroscopic motion converters have been widely used, it remains a challenge to convert motion at the nanoscale. Here we propose a nanoscale linear-to-linear motion converter, made of a flake-substrate system of graphene, which can convert the out-of-plane motion of the substrate into the in-plane motion of the flake. The curvature gradient induced van der Waals potential gradient between the flake and the substrate provides the driving force to achieve motion conversion. The proposed motion converter may have general implications for the design of nanomachinery and nanosensors.
Henry, J.J.
1961-09-01
A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.
Linear Synchronous Motor Repeatability Tests
Ward, C.R.
2002-10-18
A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility.
QUANTUM OPTICS. Universal linear optics.
Carolan, Jacques; Harrold, Christopher; Sparrow, Chris; Martín-López, Enrique; Russell, Nicholas J; Silverstone, Joshua W; Shadbolt, Peter J; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Marshall, Graham D; Thompson, Mark G; Matthews, Jonathan C F; Hashimoto, Toshikazu; O'Brien, Jeremy L; Laing, Anthony
2015-08-14
Linear optics underpins fundamental tests of quantum mechanics and quantum technologies. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons, and their measurement with a 12-single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with an average fidelity of 0.999 ± 0.001. Our system can be rapidly reprogrammed to implement these and any other linear optical protocol, pointing the way to applications across fundamental science and quantum technologies. PMID:26160375
Belos Block Linear Solvers Package
Energy Science and Technology Software Center (ESTSC)
2004-03-01
Belos is an extensible and interoperable framework for large-scale, iterative methods for solving systems of linear equations with multiple right-hand sides. The motivation for this framework is to provide a generic interface to a collection of algorithms for solving large-scale linear systems. Belos is interoperable because both the matrix and vectors are considered to be opaque objects--only knowledge of the matrix and vectors via elementary operations is necessary. An implementation of Balos is accomplished viamore » the use of interfaces. One of the goals of Belos is to allow the user flexibility in specifying the data representation for the matrix and vectors and so leverage any existing software investment. The algorithms that will be included in package are Krylov-based linear solvers, like Block GMRES (Generalized Minimal RESidual) and Block CG (Conjugate-Gradient).« less
The linear multiplet and ectoplasm
NASA Astrophysics Data System (ADS)
Butter, Daniel; Kuzenko, Sergei M.; Novak, Joseph
2012-09-01
In the framework of the superconformal tensor calculus for 4D {N} = {2} super-gravity, locally supersymmetric actions are often constructed using the linear multiplet. We provide a superform formulation for the linear multiplet and derive the corresponding action functional using the ectoplasm method (also known as the superform approach to the construction of supersymmetric invariants). We propose a new locally supersymmetric action which makes use of a deformed linear multiplet. The novel feature of this multiplet is that it corresponds to the case of a gauged central charge using a one-form potential not annihilated by the central charge (unlike the standard {N} = {2} vector multiplet). Such a gauge one-form can be chosen to describe a variant nonlinear vector-tensor multiplet. As a byproduct of our construction, we also find a variant realization of the tensor multiplet in supergravity where one of the auxiliaries is replaced by the field strength of a gauge three-form.
Permafrost Hazards and Linear Infrastructure
NASA Astrophysics Data System (ADS)
Stanilovskaya, Julia; Sergeev, Dmitry
2014-05-01
The international experience of linear infrastructure planning, construction and exploitation in permafrost zone is being directly tied to the permafrost hazard assessment. That procedure should also consider the factors of climate impact and infrastructure protection. The current global climate change hotspots are currently polar and mountain areas. Temperature rise, precipitation and land ice conditions change, early springs occur more often. The big linear infrastructure objects cross the territories with different permafrost conditions which are sensitive to the changes in air temperature, hydrology, and snow accumulation which are connected to climatic dynamics. One of the most extensive linear structures built on permafrost worldwide are Trans Alaskan Pipeline (USA), Alaska Highway (Canada), Qinghai-Xizang Railway (China) and Eastern Siberia - Pacific Ocean Oil Pipeline (Russia). Those are currently being influenced by the regional climate change and permafrost impact which may act differently from place to place. Thermokarst is deemed to be the most dangerous process for linear engineering structures. Its formation and development depend on the linear structure type: road or pipeline, elevated or buried one. Zonal climate and geocryological conditions are also of the determining importance here. All the projects are of the different age and some of them were implemented under different climatic conditions. The effects of permafrost thawing have been recorded every year since then. The exploration and transportation companies from different countries maintain the linear infrastructure from permafrost degradation in different ways. The highways in Alaska are in a good condition due to governmental expenses on annual reconstructions. The Chara-China Railroad in Russia is under non-standard condition due to intensive permafrost response. Standards for engineering and construction should be reviewed and updated to account for permafrost hazards caused by the
Vanilla technicolor at linear colliders
NASA Astrophysics Data System (ADS)
Frandsen, Mads T.; Järvinen, Matti; Sannino, Francesco
2011-08-01
We analyze the reach of linear colliders for models of dynamical electroweak symmetry breaking. We show that linear colliders can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, until the maximum energy in the center of mass of the colliding leptons. In particular we analyze the Drell-Yan processes involving spin-one intermediate heavy bosons decaying either leptonically or into two standard model gauge bosons. We also analyze the light Higgs production in association with a standard model gauge boson stemming also from an intermediate spin-one heavy vector.
Preconditioned quantum linear system algorithm.
Clader, B D; Jacobs, B C; Sprouse, C R
2013-06-21
We describe a quantum algorithm that generalizes the quantum linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] to arbitrary problem specifications. We develop a state preparation routine that can initialize generic states, show how simple ancilla measurements can be used to calculate many quantities of interest, and integrate a quantum-compatible preconditioner that greatly expands the number of problems that can achieve exponential speedup over classical linear systems solvers. To demonstrate the algorithm's applicability, we show how it can be used to compute the electromagnetic scattering cross section of an arbitrary target exponentially faster than the best classical algorithm. PMID:23829722
Parameterized Linear Longitudinal Airship Model
NASA Technical Reports Server (NTRS)
Kulczycki, Eric; Elfes, Alberto; Bayard, David; Quadrelli, Marco; Johnson, Joseph
2010-01-01
A parameterized linear mathematical model of the longitudinal dynamics of an airship is undergoing development. This model is intended to be used in designing control systems for future airships that would operate in the atmospheres of Earth and remote planets. Heretofore, the development of linearized models of the longitudinal dynamics of airships has been costly in that it has been necessary to perform extensive flight testing and to use system-identification techniques to construct models that fit the flight-test data. The present model is a generic one that can be relatively easily specialized to approximate the dynamics of specific airships at specific operating points, without need for further system identification, and with significantly less flight testing. The approach taken in the present development is to merge the linearized dynamical equations of an airship with techniques for estimation of aircraft stability derivatives, and to thereby make it possible to construct a linearized dynamical model of the longitudinal dynamics of a specific airship from geometric and aerodynamic data pertaining to that airship. (It is also planned to develop a model of the lateral dynamics by use of the same methods.) All of the aerodynamic data needed to construct the model of a specific airship can be obtained from wind-tunnel testing and computational fluid dynamics
Linear accelerators of the future
Loew, G.A.
1986-07-01
Some of the requirements imposed on future linear accelerators to be used in electron-positron colliders are reviewed, as well as some approaches presently being examined for meeting those requirements. RF sources for use in these linacs are described, as well as wakefields, single bunches, and multiple-bunch trains. (LEW)
Phycotoxicity of linear alkylbenzene sulfonate
Chawla, G.; Viswanathan, P.N.; Devi, S.
1988-04-01
Dose- and time-dependent effects of linear alkylbenzene sulfonate, a major component of synthetic detergent, to the blue-green alga Nostoc muscorum, were studied under laboratory conditions. Toxicity was evident, at doses above 0.001%, from the decrease in biomass, heterocyst number, and protein content and pathomorphological alterations.
LINEAR HYDROLOGY COVERAGE AND DATABASE
This coverage contains linear hydrology (streams, creeks, rivers, etc.) for EPA Region 8. These data were derived from the USGS Digital Line Graph (DLG) files. For a complete copy of the USGS metadata for the DLG information at the 1:100,000 scale refer to http://edcwww.cr.usgs....
A novel linear displacement sensor
NASA Astrophysics Data System (ADS)
Yang, Ji-sen; Zhang, Jing; Chen, Xi-hou; Zhang, Tian-heng
2011-12-01
With development of time grating technology in the past 10 years, the theory of using time to measure spatial displacement has been completed greatly. In the study of time grating, one novel linear displacement sensor is proposed based on the measurement principles of time grating. The measurement principles of linear displacement are similar to that of angular displacement. Both of them need one endless coordinate with uniform velocity. The theory of linear AC motor is used, and the three-phase winding with equal division space of 120° and three-phase exciting signal with uniform time are utilized to generate the endless moving coordinate with uniform velocity. The magnetic traveling wave arises from the left endpoint and disappears in the right endpoint, and it travels pole pitch distance of W during the periodic time of T with the uniform velocity. When magnetic traveling wave passes by the static probe and the moving probe, the electric signals will be induced on the winding, respectively. Therefore, the linear displacement can be achieved by comparing the phase between the two output induced signals from he static probe and the moving probe. Furthermore, in order to improve the machining technique, four kinds of winding framework are designed to employ. The experimental results show that advantages and disadvantages both exist in the design methods and the precision of experiment results reaches +/-2µm. The next study plan is to choose the most excellent design method through further experiments and improve the precision of displacement sensor greatly.
Linear electric field mass spectrometry
McComas, D.J.; Nordholt, J.E.
1992-12-01
A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.
Linear electric field mass spectrometry
McComas, David J.; Nordholt, Jane E.
1992-01-01
A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.
Linear or Exponential Number Lines
ERIC Educational Resources Information Center
Stafford, Pat
2011-01-01
Having decided to spend some time looking at one's understanding of numbers, the author was inspired by "Alex's Adventures in Numberland," by Alex Bellos to look at one's innate appreciation of number. Bellos quotes research studies suggesting that an individual's natural appreciation of numbers is more likely to be exponential rather than linear,…
NASA Astrophysics Data System (ADS)
Bognet, B.; Leygue, A.; Chinesta, F.; Poitou, A.
2011-01-01
In this paper, we focus on the simulation of linear elastic behaviour of plates using a 3D approach which numerical cost only scales like a 2D one. In the case of plates, the kinematic hypothesis introduced in plate theories to go from 3D to 2D is usually unsatisfactory where one cannot rely on St Venant's principle (usually close to the plate edges). We propose to apply the PGD (Proper Generalized Decomposition) method [1] to the simulation of the linear elastic behavior of plates. This method allows us to separately search for the in-plane and the out-of plane contributions to the 3D solution, yielding significant savings in computational cost. The method is validated on a simple case and its full potential is then presented for the simulation of the behavior of laminated composite plates.
NASA Technical Reports Server (NTRS)
Vranish, John
2009-01-01
T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off