Science.gov

Sample records for all-sky x-ray image

  1. LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station

    NASA Astrophysics Data System (ADS)

    Fraser, George W.; Brunton, Adam N.; Bannister, Nigel P.; Pearson, James F.; Ward, Martin; Stevenson, Tim J.; Watson, D. J.; Warwick, Bob; Whitehead, S.; O'Brian, Paul; White, Nicholas; Jahoda, Keith; Black, Kevin; Hunter, Stanley D.; Deines-Jones, Phil; Priedhorsky, William C.; Brumby, Steven P.; Borozdin, Konstantin N.; Vestrand, T.; Fabian, A. C.; Nugent, Keith A.; Peele, Andrew G.; Irving, Thomas H.; Price, Steve; Eckersley, Steve; Renouf, Ian; Smith, Mark; Parmar, Arvind N.; McHardy, I. M.; Uttley, P.; Lawrence, A.

    2002-01-01

    We describe the design of Lobster-ISS, an X-ray imaging all-sky monitor (ASM) to be flown as an attached payload on the International Space Station. Lobster-ISS is the subject of an ESA Phase-A study which will begin in December 2001. With an instantaneous field of view 162 x 22.5 degrees, Lobster-ISS will map almost the complete sky every 90 minute ISS orbit, generating a confusion-limited catalogue of ~250,000 sources every 2 months. Lobster-ISS will use focusing microchannel plate optics and imaging gas proportional micro-well detectors; work is currently underway to improve the MCP optics and to develop proportional counter windows with enhanced transmission and negligible rates of gas leakage, thus improving instrument throughput and reducing mass. Lobster-ISS provides an order of magnitude improvement in the sensitivity of X-ray ASMs, and will, for the first time, provide continuous monitoring of the sky in the soft X-ray region (0.1-3.5 keV). Lobster-ISS provides long term monitoring of all classes of variable X-ray source, and an essential alert facility, with rapid detection of transient X-ray sources such as Gamma-Ray Burst afterglows being relayed to contemporary pointed X-ray observatories. The mission, with a nominal lifetime of 3 years, is scheduled for launch on the Shuttle c.2009.

  2. INTEGRAL/IBIS 7-year All-Sky Hard X-ray Survey. I. Image reconstruction

    NASA Astrophysics Data System (ADS)

    Krivonos, R.; Revnivtsev, M.; Tsygankov, S.; Sazonov, S.; Vikhlinin, A.; Pavlinsky, M.; Churazov, E.; Sunyaev, R.

    2010-09-01

    This paper is the first in a series devoted to the hard X-ray whole sky survey performed by the INTEGRAL observatory over seven years. Here we present an improved method for image reconstruction with the IBIS coded mask telescope. The main improvements are related to the suppression of systematic effects that strongly limit sensitivity in the region of the Galactic plane (GP), especially in the crowded field of the Galactic center (GC). We extended the IBIS/ISGRI background model to take into account the Galactic ridge X-ray emission (GRXE). To suppress residual systematic artifacts on a reconstructed sky image, we applied nonparametric sky image filtering based on wavelet decomposition. The implemented modifications of the sky reconstruction method decrease the systematic noise in the ~20 Ms deep field of GC by ~44%, and practically remove it from the high-latitude sky images. New observational data sets, along with an improved reconstruction algorithm, allow us to conduct the hard X-ray survey with the best currently available minimal sensitivity 3.7 × 10-12 erg s-1 cm-2 ~ 0.26 mCrab in the 17-60 keV band at a 5σ detection level. The survey covers 90% of the sky down to the flux limit of 6.2 × 10-11 erg s-1 cm-2 (~4.32 mCrab) and 10% of the sky area down to the flux limit of 8.6 × 10-12 erg s-1 cm-2 (~0.60 mCrab). Based on observations with INTEGRAL, an ESA project with the instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic, and Poland, and with the participation of Russia and the USA.

  3. Next generation x-ray all-sky monitor

    SciTech Connect

    Priedhorsky, W. C.; Peele, A. G.; Nugent, K. A.

    1997-01-10

    We set forth a conceptual design for x-ray all-sky monitor based on lobster-eye wide-field telescopes. This instrument, suitable for a small satellite, would monitor the flux of objects as faint as 2x10{sup -15} W/m{sup 2} (0.5-2.4 keV) on a daily basis with a signal-to-noise of 5. Sources would be located to 1-2 arc-minutes. Detailed simulations show that crosstalk from the cruciform lobster images would not significantly compromise performance. At this sensitivity limit, we could monitor not just x-ray binaries but fainter classes of x-ray sources. Hundreds of active galactic nuclei, coronal sources, and cataclysmic variables could be tracked on a daily basis. Large numbers of fast transients should be visible, including gamma-ray bursts and the soft x-ray breakout of nearby type II supernovae. Long-term x-ray measurements will advance our understanding of the geometries and perhaps masses of AGN, and coronal energy sources in stars.

  4. The All-Sky Swift - INTEGRAL X-Ray Survey

    NASA Astrophysics Data System (ADS)

    Michelson, Peter

    All-sky surveys at hard X-ray energies (above 15 keV) have proven to be a powerful technique in detecting Galactic and extragalactic source populations. Most of the radiation at hard X-ray energies originates in non-thermal processes. These processes take place in extreme conditions of gravitational fields, of electromagnetic field, and also in explosive events. Such extreme conditions can be found in the Milk Way in the vicinity of neutron stars, black holes, and supernovae. Also extragalactic sources are known to be hard X-ray emitters like Active Galactic Nuclei (AGNs), blazars, and Clusters of Galaxies. Currently the most sensitive flying hard X-ray detectors are the Burst Alert Telescope (BAT) on board the NASA mission Swift and the INTEGRAL Soft-Gamma Ray Imager (IBIS/ISGRI) on board the ESA mission INTEGRAL. BAT and IBIS/ISGRI are coded- mask telescopes that shed continuously light on the Galactic and the extragalactic source populations. However, coded-mask telescopes suffer from heavy systematic effects (errors) preventing them from reaching their theoretical limiting sensitivity. Furthermore, by design, they block ~50% of the incident photons causing and increase of statistical noise. As a consequence BAT and IBIS/ISGRI are not sensitive enough to detect faint objects. In addition it has been proven that the Galactic survey of these instruments is limited by systematic uncertainties. Therefore, further observations on the Galactic plane will not improve the sensitivity of the survey of BAT and IBIS/ISGRI. In this project we show that it is possible to overcome the limits of BAT and of IBIS/ISGRI by combining their observations in the 18 55 keV energy range. We call it the SIX survey that stands for Swift - INTEGRAL X-ray survey. Two major advantages are obtained by merging the observations of BAT and IBIS/ISGRI: 1) the exposure is greatly enhanced (sum of BAT and IBIS/ISGRI) and therefore the sensitivity is improved; 2) the systematic errors of both

  5. THEMIS / All-Sky Imagers

    NASA Video Gallery

    A collection of ground-based All-Sky Imagers (ASI) make up another important component of the THEMIS mission. It is sometimes referred to as the sixth THEMIS satellite. Imagery from each camera is ...

  6. Measuring the X-ray luminosities of SDSS DR7 clusters from ROSAT All Sky Survey

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Xiaohu; Shen, Shiyin; Mo, H. J.; van den Bosch, Frank C.; Luo, Wentao; Wang, Yu; Lau, Erwin T.; Wang, Q. D.; Kang, Xi; Li, Ran

    2014-03-01

    We use ROSAT All Sky Survey broad-band X-ray images and the optical clusters identified from Sloan Digital Sky Survey Data Release 7 to estimate the X-ray luminosities around ˜65 000 candidate clusters with masses ≳ 1013 h- 1 M⊙ based on an optical to X-ray (OTX) code we develop. We obtain a catalogue with X-ray luminosity for each cluster. This catalogue contains 817 clusters (473 at redshift z ≤ 0.12) with signal-to-noise ratio >3 in X-ray detection. We find about 65 per cent of these X-ray clusters have their most massive member located near the X-ray flux peak; for the rest 35 per cent, the most massive galaxy is separated from the X-ray peak, with the separation following a distribution expected from a Navarro-Frenk-White profile. We investigate a number of correlations between the optical and X-ray properties of these X-ray clusters, and find that the cluster X-ray luminosity is correlated with the stellar mass (luminosity) of the clusters, as well as with the stellar mass (luminosity) of the central galaxy and the mass of the halo, but the scatter in these correlations is large. Comparing the properties of X-ray clusters of similar halo masses but having different X-ray luminosities, we find that massive haloes with masses ≳ 1014 h- 1 M⊙ contain a larger fraction of red satellite galaxies when they are brighter in X-ray. An opposite trend is found in central galaxies in relative low-mass haloes with masses ≲ 1014 h- 1 M⊙ where X-ray brighter clusters have smaller fraction of red central galaxies. Clusters with masses ≳ 1014 h- 1 M⊙ that are strong X-ray emitters contain many more low-mass satellite galaxies than weak X-ray emitters. These results are also confirmed by checking X-ray clusters of similar X-ray luminosities but having different characteristic stellar masses. A cluster catalogue containing the optical properties of member galaxies and the X-ray luminosity is available at http://gax.shao.ac.cn/data/Group.html.

  7. WATCHDOG: A Comprehensive All-sky Database of Galactic Black Hole X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-02-01

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.

  8. X ray observations of late-type stars using the ROSAT all-sky survey

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Fleming, Thomas A.

    1992-01-01

    The ROSAT mission made the first x ray survey of the entire sky using an imaging detector. Although ROSAT is a joint NASA/German project and involves direct American participation during its second phase of pointed observations, the all-sky survey remains the sole property of the German investigators. NASA grant represented the first use of ROSAT data analysis funds to support direct American participation in the ROSAT all-sky survey. The project involved a collaborative agreement between the Joint Institute for Laboratory Astrophysics (JILA) and the Max-Planck-Institut fur Extraterrestrische Physik (MPE) where JILA supplied MPE with a post-doctoral research associate with experience in the field of stellar (coronal) x ray emission to work within their ROSAT group. In return, members of the cool star research group at JILA were given the opportunity to collaborate on projects involving ROSAT all-sky survey data. Both sides have benefitted (and still benefit) from this arrangement since MPE suffers from a shortage of researchers who are interested in x ray emission from 'normal' stars and white dwarfs. MPE has also drawn upon experience in optical identification of x ray sources from the Einstein Extended Medium Sensitivity Survey in planning their own identification strategies for the ROSAT all-sky survey. The JILA cool stars group has benefitted since access to all-sky survey data has expanded the scope of their already extensive research programs involving multiwavelength observations of late-type stars. ROSAT was successfully launched on 1 June 1990 and conducted the bulk of the survey from 30 July 1990 to 25 January 1991. Data gaps in the survey have subsequently been made up. At the time of this writing (February 1992), the survey data have been processed once with the Standard Analysis Software System (SASS). A second processing will soon begin with improvements made to the SASS to correct errors and bugs found while carrying out scientific projects with data

  9. Implementing an all-sky x-ray camera on space station

    SciTech Connect

    Priedhorsky, W.; Brandt, S.; Borozdin, K.; Black, K.

    1999-01-22

    A pinhole camera is an elegant but effective approach to an x-ray all-sky monitor. It is an ideal astrophysical instrument for the Space Station, because it does not require pointing, is robust against contamination, and requires modest resources (120 kg, 50 Watts, 10 kpbs). Nonetheless, it would be more sensitive than any previous all-sky x-ray monitor. By continuously monitoring the entire unocculted sky, this instrument would be sensitive to changes at all timescales. Besides monitoring the brightest few hundred x-ray sources, including about a dozen active galactic nuclei, this instrument would be uniquely sensitive to fast transients, unlike any scanning instrument. We would expect to detect several hundred events per year with timescales from a minute to a day, and better understand their correlation with magnetic activity on nearby stars. We would also expect to detect about 50 gamma-ray bursts per year and locate them to 1 square degree, independently verifying the BATSE sky distribution. We discuss the issues involved in flying this instrument on the Space Station. These include the management of image data from a continuously scanning 2-dimensional field, autonomous determination of aspect using x-ray image data, the detection and exclusion of solar panel occultation from the data, the optimum integration of a very wide-field instrument onto an EXPRESS pallet, safety validation of already-built hardware, and thermal considerations for a very low-power instrument. We conclude that Space Station is an attractive platform to conduct wide-field x-ray astronomy.

  10. Implementing an all-sky x-ray camera on space station

    SciTech Connect

    Priedhorsky, W.; Brandt, S.; Borozdin, K. Black, K.

    1999-01-01

    A pinhole camera is an elegant but effective approach to an x-ray all-sky monitor. It is an ideal astrophysical instrument for the Space Station, because it does not require pointing, is robust against contamination, and requires modest resources (120 kg, 50 Watts, 10 kpbs). Nonetheless, it would be more sensitive than any previous all-sky x-ray monitor. By continuously monitoring the entire unocculted sky, this instrument would be sensitive to changes at all timescales. Besides monitoring the brightest few hundred x-ray sources, including about a dozen active galactic nuclei, this instrument would be uniquely sensitive to fast transients, unlike any scanning instrument. We would expect to detect several hundred events per year with timescales from a minute to a day, and better understand their correlation with magnetic activity on nearby stars. We would also expect to detect about 50 gamma-ray bursts per year and locate them to 1 square degree, independently verifying the BATSE sky distribution. We discuss the issues involved in flying this instrument on the Space Station. These include the management of image data from a continuously scanning 2-dimensional field, autonomous determination of aspect using x-ray image data, the detection and exclusion of solar panel occultation from the data, the optimum integration of a very wide-field instrument onto an EXPRESS pallet, safety validation of already-built hardware, and thermal considerations for a very low-power instrument. We conclude that Space Station is an attractive platform to conduct wide-field x-ray astronomy. {copyright} {ital 1999 American Institute of Physics.}

  11. High sensitivity all sky X-ray monitor and survey with MAXI

    SciTech Connect

    Isobe, N.; Mihara, T.; Kohama, M.; Suzuki, M.; Matsuoka, M.; Ueno, S.; Tomida, H.; Yoshida, A.; Yamaoka, K.; Tsunemi, H.; Miyata, E.; Negoro, H.; Nakajima, M.; Morii, M.

    2007-07-12

    MAXI is an all sky X-ray monitor to be mounted on the Japanese Experimental Module in the International Space Station (ISS). It scans almost all over the sky every 96 minutes, in the course of the orbital motion of the ISS. MAXI is designed to have a sensitivity, significantly higher than the previous X-ray monitors, and then, to detect X-ray sources as faint as 1 mCrab in a week observation. Therefore, MAXI is expected to create a novel catalogue of not only the stable X-ray sources but also the highly variable ones in the sky, especially active galactic nuclei for the first time. If MAXI detects X-ray phenomena, alerts will be quickly made through the Internet.

  12. MOXE: An x-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    SciTech Connect

    Priedhorsky, W.; Fenimore, E.E.; Moss, C.E.; Kelley, R.L.; Holt, S.S.

    1989-01-01

    We are developing a Monitoring X-Ray Equipment (MOXE) for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. Our objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5/sigma/) in 1 day, and cover the 2-20 keV band. 30 refs., 4 figs.

  13. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  14. X-RAY-EMITTING STARS IDENTIFIED FROM THE ROSAT ALL-SKY SURVEY AND THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Agueeros, Marcel A.; Newsom, Emily R.; Anderson, Scott F.; Hawley, Suzanne L.; Silvestri, Nicole M.; Szkody, Paula; Covey, Kevin R.; Posselt, Bettina; Margon, Bruce; Voges, Wolfgang

    2009-04-15

    The ROSAT All-Sky Survey (RASS) was the first imaging X-ray survey of the entire sky. Combining the RASS Bright and Faint Source Catalogs yields an average of about three X-ray sources per square degree. However, while X-ray source counterparts are known to range from distant quasars to nearby M dwarfs, the RASS data alone are often insufficient to determine the nature of an X-ray source. As a result, large-scale follow-up programs are required to construct samples of known X-ray emitters. We use optical data produced by the Sloan Digital Sky Survey (SDSS) to identify 709 stellar X-ray emitters cataloged in the RASS and falling within the SDSS Data Release 1 footprint. Most of these are bright stars with coronal X-ray emission unsuitable for SDSS spectroscopy, which is designed for fainter objects (g > 15 [mag]). Instead, we use SDSS photometry, correlations with the Two Micron All Sky Survey and other catalogs, and spectroscopy from the Apache Point Observatory 3.5 m telescope to identify these stellar X-ray counterparts. Our sample of 707 X-ray-emitting F, G, K, and M stars is one of the largest X-ray-selected samples of such stars. We derive distances to these stars using photometric parallax relations appropriate for dwarfs on the main sequence, and use these distances to calculate L{sub X} . We also identify a previously unknown cataclysmic variable (CV) as a RASS counterpart. Separately, we use correlations of the RASS and the SDSS spectroscopic catalogs of CVs and white dwarfs (WDs) to study the properties of these rarer X-ray-emitting stars. We examine the relationship between (f{sub X} /f{sub g} ) and the equivalent width of the H{beta} emission line for 46 X-ray-emitting CVs and discuss tentative classifications for a subset based on these quantities. We identify 17 new X-ray-emitting DA (hydrogen) WDs, of which three are newly identified WDs. We report on follow-up observations of three candidate cool X-ray-emitting WDs (one DA and two DB (helium) WDs

  15. Hyperspectral all-sky imaging of auroras.

    PubMed

    Sigernes, Fred; Ivanov, Yuriy; Chernouss, Sergey; Trondsen, Trond; Roldugin, Alexey; Fedorenko, Yury; Kozelov, Boris; Kirillov, Andrey; Kornilov, Ilia; Safargaleev, Vladimir; Holmen, Silje; Dyrland, Margit; Lorentzen, Dag; Baddeley, Lisa

    2012-12-01

    A prototype auroral hyperspectral all-sky camera has been constructed and tested. It uses electro-optical tunable filters to image the night sky as a function of wavelength throughout the visible spectrum with no moving mechanical parts. The core optical system includes a new high power all-sky lens with F-number equal to f/1.1. The camera has been tested at the Kjell Henriksen Observatory (KHO) during the auroral season of 2011/2012. It detects all sub classes of aurora above ~½ of the sub visual 1kR green intensity threshold at an exposure time of only one second. Supervised classification of the hyperspectral data shows promise as a new method to process and identify auroral forms. PMID:23262713

  16. The MOXE X-ray all-sky monitor for Spectrum-X-Gamma

    SciTech Connect

    In`t Zand, J.J.M.; Priedhorsky, W.C.; Moss, C.E.

    1994-08-01

    MOXE is an X-ray all-sky monitor to be flown on the Russian Spectrum-X-Gamma satellite, to be launched in a few years. It will monitor several hundred X-ray sources on a daily basis, and will be the first instrument to monitor most of the X-ray sky most of the time. MOXE will alert users of more sensitive instruments on Russia`s giant high energy astrophysics observatory and of other instruments to transient activity. MOXE consists of an array of 6 X-ray pinhole cameras, sensitive from 3 to 25 keV, which views 4{pi} steradians (except for a 20{degree} {times} 80{degree} patch which includes the Sun). The pinhole apertures of 0.625 {times} 2.556 cm{sup 2} imply an angular resolution of 2{degree}.4 {times} 9{degree}.7 (on-axis). The MOXE hardware program includes an engineering model, now delivered, and a flight model. The flight instrument will mass approximately 118 kg and draw 38 Watts. For a non-focusing all-sky instrument that is limited by sky background, the limiting sensitivity is a function only of detector area. MOXE, with 6,000 cm{sup 2} of detector area, will, for a 24 hrs exposure, have a sensitivity of approximately 2 mCrab. MOXE distinguishes itself with respect to other all-sky monitors in its high duty cycle, thus being particularly sensitive to transient phenomena with time scales between minutes and hours.

  17. Instrumentation for a next-generation x-ray all-sky monitor

    SciTech Connect

    Peele, A. G.

    1999-12-15

    We have proposed an x-ray all-sky monitor for a small satellite mission that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1-3.0 keV) for study. We discuss three approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates; this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. The third method, while still in its infancy, may yet prove to be the most powerful; this approach relies on photolithography to expose a substrate that can then be developed and replicated. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of hundreds of the brightest x-ray stars can be monitored. In addition the classical objectives of all-sky monitors--long-term all-sky archive and watchdog alert to new events--will be fulfilled at an unprecedented level. We also note that by opening up a little-explored band of the x-ray sky the opportunity for new discovery is presented. A satisfying example of entering new territory while still retaining the guarantee of expanding the domain of existing research.

  18. Instrumentation for a next-generation x-ray all-sky monitor

    NASA Astrophysics Data System (ADS)

    Peele, A. G.

    1999-12-01

    We have proposed an x-ray all-sky monitor for a small satellite mission that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1-3.0 keV) for study. We discuss three approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates; this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. The third method, while still in its infancy, may yet prove to be the most powerful; this approach relies on photolithography to expose a substrate that can then be developed and replicated. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of hundreds of the brightest x-ray stars can be monitored. In addition the classical objectives of all-sky monitors-long-term all-sky archive and watchdog alert to new events-will be fulfilled at an unprecedented level. We also note that by opening up a little-explored band of the x-ray sky the opportunity for new discovery is presented. A satisfying example of entering new territory while still retaining the guarantee of expanding the domain of existing research.

  19. Time Domain X-ray Astronomy with "All-Sky" Focusing Telescopes

    NASA Astrophysics Data System (ADS)

    Gorenstein, Paul

    2016-04-01

    The largest and most diverse types of temporal variations in all of astronomy occur in the soft, i.e. 0.5 to 10 keV, X-ray band. They range from millisecond QPO’s in compact binaries to year long flares from AGNs due to the absorption of a star by a SMBH, and the appearance of transient sources at decadal intervals. Models predict that at least some gravitational waves will be accompanied by an X-ray flare. A typical GRB produces more photons/sq. cm. in the soft band than it does in the Swift BAT 15 to 150 keV band. In addition the GRB X-ray fluence and knowledge of the details of the onset of the X-ray afterglow is obtained by observing the seamless transition from the active burst phase that has been attributed to internal shocks to the afterglow phases that has been attributed to external shocks. Detecting orphan X-ray afterglows will augment the event rate. With high sensitivity detectors some GRB identifications are likely to be with the youngest, most distant galaxies in the universe. Previous all-sky X-ray monitors have been non focusing limited field of view scanning instruments. An “All-Sky” (actually several ster FOV), focusing lobster-eye X-ray telescope will have much more grasp than the previous instruments and will allow a wide range of topics to be studied simultaneously. Two types of lobster-eye telescopes have been proposed. One type focuses in one dimension and uses a coded mask for resolution in the second. The other type focuses in two dimensions but has less effective area and less bandwidth. Both types are compatible with a Probe mission.

  20. THE 70 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    SciTech Connect

    Baumgartner, W. H.; Tueller, J.; Markwardt, C. B.; Skinner, G. K.; Barthelmy, S.; Gehrels, N.; Evans, P. A.

    2013-08-15

    We present the catalog of sources detected in 70 months of observations with the Burst Alert Telescope (BAT) hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as the previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8{sigma}, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 50% of the sky and 1.34 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 90% of the sky. The majority of new sources in the 70 month survey continue to be active galactic nuclei, with over 700 in the catalog. As part of this new edition of the Swift-BAT catalog, we also make available eight-channel spectra and monthly sampled light curves for each object detected in the survey in the online journal and at the Swift-BAT 70 month Web site.

  1. X-Ray Imaging

    MedlinePlus

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  2. Feasibility of polarized all-sky imaging for aerosol characterization

    NASA Astrophysics Data System (ADS)

    Kreuter, A.; Blumthaler, M.

    2012-12-01

    Polarized all-sky distribution measurements contain radiative information about aerosol properties. We investigate the method of all-sky imaging for aerosol property retrieval and propose a technical frame work for image processing and analysis. Using Zernike polynomials, we decompose the relative Stokes parameter distributions, which efficiently captures the information content. The resulting feature vector is well suited for all-sky imaging, independent of calibration and robust against noise. It can be directly used in existing algorithms or alternative types of retrieval methods of aerosol optical properties in the future. By modeling possible aerosol scenarios we investigate the influence of different aerosol types in terms of the first two principal components describing the maximal variances. In this representation we show that the feature vector from a polarized all-sky imager is suitable for aerosol classification with respect to size and single scatter albedo.

  3. Results from the Ariel-5 all-sky X-ray monitor

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1975-01-01

    A summary of results obtained from the first year of Ariel-5 all-sky monitor operation is presented. Transient source observations, as well as the results of long term studies of Sco X-1, Cyg X-3, and Cyg X-1 are described. By example, the included results are indicative of the temporal effects to which the all-sky monitor remains sensitive as it begins its second year of observation.

  4. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  5. All-sky x-ray & gamma-ray monitor (AXGAM)

    SciTech Connect

    Tuemer, T.O.; O`Neill, T.J.; Hurley, K.

    1996-12-31

    A wide field-of-view, arcsecond imaging, high energy resolution x-ray and low energy gamma ray detector is proposed for a future space mission. It is specifically designed to detect and find counterparts at other wavelengths for Gamma Ray Bursts (GRBs). Detection of GRBs require wide field-of-view ({pi} to 2 {pi} field-of-view) and high sensitivity. This will be achieved by using high quantum efficiency CdZnTe pixel detectors, low energy threshold (few keV) to observe larger flux levels that may be possible at lower energies and large effective area (625 to 1,000 cd) per coded aperture imaging module. Counterpart searches can only be done with ultra high angular resolution (10 to 30 arcsecond FWHM) which gives 1 to 5 arcsecond position determination especially for strong GRBs. A few arcsecond resolution error box is expected to contain only one counterpart observed at another wavelength. This will be achieved by using ultra high spatial resolution pixel detectors (50 x 50 to 100 X 100 micron) and a similar resolution coded aperture to achieve the required angular resolution. AXGAM also has two other important advantages over similar detectors: (1) excellent low energy response (> 1 keV) and (2) high energy resolution (<6% @ 5.9 keV, <3% @ 14 keV, <4% @ 122 keV). The low energy range may provide important new information on their cause and the high energy resolution is expected to help in the observation and identification of emission and absorption lines in the GRB spectrum. The effective energy range is planned to be 2 to 200 keV which is exceptionally wide for such a detector. AXGAM will be built in the form of a {open_quotes}Bucky Ball{close_quotes} using a coded aperture mask in a semi geodesic dome arrangement placed over a two-dimensional, high resolution CdZnTe pixel detector array using newly developed p-i-n detector technology. The p-i-n structure decreases the electron and hole trapping effect and increases energy resolution significantly.

  6. RXTE All-Sky Slew Survey. Catalog of X-Ray Sources at B Greater Than 10 deg

    NASA Technical Reports Server (NTRS)

    Revnivtsev, M.; Sazonov, S.; Jahoda, K.; Gilfanov, M.

    2004-01-01

    We report results of a serendipitous hard X-ray (3-20 keV), nearly all-sky (absolute value of b greater than l0 deg.) survey based on RXTE/PCA observations performed during satellite reorientations in 1996-2002. The survey is 80% (90%) complete to a 4(sigma) limiting flux of approx. = 1.8 (2.5) x 10(exp -l1) erg/s sq cm in the 3-20 keV band. The achieved sensitivity in the 3-8 keV and 8-20 keV subbands is similar to and an order of magnitude higher than that of the previously record HEAO-1 A1 and HEAO-1 A4 all-sky surveys, respectively. A combined 7 x 10(exp 3) sq. deg area of the sky is sampled to flux levels below l0(exp -11) erg/ s sq cm (3-20 keV). In total 294 sources are detected and localized to better than 1 deg. 236 (80%) of these can be confidently associated with a known astrophysical object; another 22 likely result from the superposition of 2 or 3 closely located known sources. 35 detected sources remain unidentified, although for 12 of these we report a likely soft X-ray counterpart from the ROSAT all-sky survey bright source catalog. Of the reliably identified sources, 63 have local origin (Milky Way, LMC or SMC), 64 are clusters of galaxies and 100 are active galactic nuclei (AGN). The fact that the unidentified X-ray sources have hard spectra suggests that the majority of them are AGN, including highly obscured ones (N(sub H) greater than l0(exp 23)/sq cm). For the first time we present a log N-log S diagram for extragalactic sources above 4 x l0(exp -12) erg/ s sq cm at 8-20 keV. Key words. cosmo1ogy:observations - diffuse radiation - X-rays general

  7. Studies of Transient X-Ray Sources with the Ariel 5 All-Sky Monitor. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.

    1977-01-01

    The All-Sky Monitor, an imaging X-ray detector launched aboard the Ariel 5 satellite, was used to obtain detailed light curves of three new sources. Additional data essential to the determination of the characteristic luminosities, rates of occurrence (and possible recurrence), and spatial distribution of these objects was also obtained. The observations are consistent with a roughly uniform galactic disk population consisting of at least two source sub-classes, with the second group (Type 2) at least an order of magnitude less luminous and correspondingly more frequent than the first (Type 1). While both subtypes are probably unrelated to the classical optical novae (or supernovae), they are most readily interpreted within the standard mass exchange X-ray binary model, with outbursts triggered by Roche-lobe overflow (Type 1) or enhancements in the stellar wind density of the companion (Type 2), respectively.

  8. Infrared and hard X-ray diagnostics of AGN identifications from the Swift/BAT and AKARI all sky surveys.

    NASA Astrophysics Data System (ADS)

    Matsuta, Keiko

    2011-11-01

    It is known that there is a good correlation between the mid-infrared and the intrinsic soft X-ray luminosities (<10 keV) of local active galactic nuclei (AGN). We now combine two complete all sky surveys in order to study the connection between the infrared and very hard X-ray (>10 keV) luminosities in AGN. We selected sources from the 22-month Swift/BAT hard X-ray survey catalogue which were also detected by Infrared Camera (IRC, 9 and 18 micron) and Far-Infrared Surveyor (FIS, 90 micron) on AKARI. The large sample allows us to include not only Seyfert 1 and 2 galaxies but also quasars, low luminosity AGN and radio-loud objects. We found a strong linear correlation for most of the AGN between the logarithms of the observed infrared and hard X-ray powers over four decades in luminosity, L(IR) vs. L(HX). Many Compton-thick sources show a large deviation from the correlation, probably because of the relatively low observed L(HX) due to the high column density. The observed luminosity correlation indicates that the various types of AGN may be occupying distinct regions of parameter space in the diagram. Color-color plots such as "L(90um)/L(9um) vs. L(HX)/L(9um)" are found to be useful redshift independent indicators for isolating Compton-thick AGN. Interestingly, starburst galaxies are also separated in this plane. This correlation can be a new and important tool for AGN classification, which may be useful for large upcoming surveys.

  9. The Sondrestrom Research Facility All-sky Imagers

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.; Grill, M.; Gudmundsson, E.; Stromme, A.

    2010-12-01

    The Sondrestrom Upper Atmospheric Research Facility is located near Kangerlussuaq, Greenland, just north of the Arctic Circle and 100 km inland from the west coast of Greenland. The facility is operated by SRI International in Menlo Park, California, under the auspices of the U.S. National Science Foundation. Operating in Greenland since 1983, the Sondrestrom facility is host to more than 20 instruments, the majority of which provide unique and complementary information about the arctic upper atmosphere. Together these instruments advance our knowledge of upper atmospheric physics and determine how the tenuous neutral gas interacts with the charged space plasma environment. The suite of instrumentation supports many disciplines of research - from plate tectonics to auroral physics and space weather. The Sondrestrom facility has recently acquired two new all-sky imagers. In this paper, we present images from both new imagers, placing them in context with other instruments at the site and detailing to the community how to gain access to this new data set. The first new camera replaces the intensified auroral system which has been on site for nearly three decades. This new all-sky imager (ASI), designed and assembled by Keo Scientific Ltd., employs a medium format 180° fisheye lens coupled to a set of five 3-inch narrowband interference filters. The current filter suite allows operation at the following wavelengths: 750 nm, 557.7 nm, 777.4 nm, 630.0 nm, and 732/3 nm. Monochromatic images from the ASI are acquired at a specific filter and integration time as determined by a unique configuration file. Integrations as short as 0.5 sec can be commanded for exceptionally bright features. Preview images are posted to the internet in near real-time, with final images posted weeks later. While images are continuously collected in a "patrol mode," users can request special collection sequences for targeted experiments. The second new imager installed at the Sondrestrom

  10. Rossi X-Ray Timing Explorer All-Sky Monitor Detection of the Orbital Period of Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Vanderlinde, Keith W.; Levine, Alan M.; Rappaport, Saul A.

    2003-06-01

    The orbital period of Scorpius X-1 has been accepted as 0.787313 days since its discovery in archival optical photometric data by Gottlieb, Wright, & Liller. This period has apparently been confirmed multiple times in the years since in both photometric and spectroscopic optical observations, although to date only marginal evidence has been reported for modulation of the X-ray intensity at that period. We have used data taken with the All Sky Monitor on board the Rossi X-Ray Timing Explorer over the past 6 years to search for such a modulation. A major difficulty in detecting the orbit in X-ray data is presented by the flaring behavior in this source, wherein the (1.5-12 keV) X-ray intensity can change by up to a factor of 2 within a fraction of a day. These flares contribute nearly white noise to Fourier transforms of the intensity time series and thereby tend to obscure weak modulations, i.e., of a few percent or less. We present herein a technique for substantially reducing the effects of the flaring behavior while, at the same time, retaining much of any periodic orbital modulation, provided only that the two temporal behaviors exhibit different spectral signatures. Through such a search, we have found evidence for orbital modulation at the ~1% level with a period of 0.78893 days. This period is equal within our accuracy to a period (0.78901 days) that differs by 1 cycle yr-1 from the accepted value and that was also detected by Gottlieb et al. at a strength nearly as great as that of the 0.787313 day periodicity. We note that many of the reported optical observations of Sco X-1 have been made within 1 or 2 months of early June, when Sco X-1 transits the meridian at midnight. All periodicity searches based only on such observations would have been subject to the same 1 cycle yr-1 alias that affected the search of Gottlieb and coworkers. These considerations lead us to suggest that the actual period may in fact be 0.78901 days and that further observations will

  11. Estimation of aerosol optical properties from all-sky imagers

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  12. All Sky Imager Network for Science and Education

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Kendall, E. A.; Zalles, D. R.; Baumgardner, J. L.; Marshall, R. A.; Kaltenbacher, E.

    2012-12-01

    A new all sky imager network for space weather monitoring and education outreach has been developed by SRI International. The goal of this program is to install sensitive, low-light all-sky imagers across the continental United States to observe upper atmospheric airglow and aurora in near real time. While aurora borealis is often associated with the high latitudes, during intense geomagnetic storms it can extend well into the continental United States latitudes. Observing auroral processes is instrumental in understanding the space weather, especially in the times of increasing societal dependence on space-based technologies. Under the THEMIS satellite program, Canada has installed a network of all-sky imagers across their country to monitor aurora in real-time. However, no comparable effort exists in the United States. Knowledge of the aurora and airglow across the entire United States in near real time would allow scientists to quickly assess the impact of a geomagnetic storm in concert with data from GPS networks, ionosondes, radars, and magnetometers. What makes this effort unique is that we intend to deploy these imagers at high schools across the country. Selected high-schools will necessarily be in rural areas as the instrument requires dark night skies. At the commencement of the school year, we plan to give an introductory seminar on space weather at each of these schools. Science nuggets developed by SRI International in collaboration with the Center for GeoSpace Studies and the Center for Technology in Learning will be available for high school teachers to use during their science classes. Teachers can use these nuggets as desired within their own curricula. We intend to develop a comprehensive web-based interface that will be available for students and scientific community alike to observe data across the network in near real time and also to guide students towards complementary space weather data sets. This interface will show the real time extent of

  13. INFRARED AND HARD X-RAY DIAGNOSTICS OF ACTIVE GALACTIC NUCLEUS IDENTIFICATION FROM THE SWIFT/BAT AND AKARI ALL-SKY SURVEYS

    SciTech Connect

    Matsuta, K.; Dotani, T.; Yamamura, I.; Gandhi, P.; Nakagawa, T.; Isobe, N.; Stawarz, L.; Ueda, Y.; Ichikawa, K.; Terashima, Y.; Oyabu, S.

    2012-07-10

    We combine data from two all-sky surveys in order to study the connection between the infrared and hard X-ray (>10 keV) properties for local active galactic nuclei (AGNs). The Swift Burst Alert Telescope all-sky survey provides an unbiased, flux-limited selection of hard X-ray-detected AGNs. Cross-correlating the 22 month hard X-ray survey with the AKARI all-sky survey, we studied 158 AGNs detected by the AKARI instruments. We find a strong correlation for most AGNs between the infrared (9, 18, and 90 {mu}m) and hard X-ray (14-195 keV) luminosities, and quantify the correlation for various subsamples of AGNs. Partial correlation analysis confirms the intrinsic correlation after removing the redshift contribution. The correlation for radio galaxies has a slope and normalization identical to that for Seyfert 1 galaxies, implying similar hard X-ray/infrared emission processes in both. In contrast, Compton-thick (CT) sources show a large deficit in the hard X-ray band, because high gas column densities diminish even their hard X-ray luminosities. We propose two photometric diagnostics for source classification: one is an X-ray luminosity versus infrared color diagram, in which type 1 radio-loud AGNs are well isolated from the others in the sample. The other uses the X-ray versus infrared color as a useful redshift-independent indicator for identifying CT AGNs. Importantly, CT AGNs and starburst galaxies in composite systems can also be differentiated in this plane based upon their hard X-ray fluxes and dust temperatures. This diagram may be useful as a new indicator to classify objects in new and upcoming surveys such as WISE and NuSTAR.

  14. Algorithms for ice halo detection in all-sky images

    NASA Astrophysics Data System (ADS)

    King, Michelle; Greenslit, Morton; Boyd, Sylke

    The effect of cirrus clouds on the radiation budget of the atmosphere depends not only on optical depth and frequency of occurrence, but also on the composition of the clouds. Ice halo phenomena signal the presence of hexagonal crystal habits. Long-term observations on frequency, duration, and type of halo appearances can give ground-based insight into the behavior of cirrus composition. We are capturing images of the entire sky at 30 second intervals using an all-sky camera. We have created a program that analyzes these images for the presence of halos. The algorithm removes the lens distortion, excludes low-level clouds from further analysis, measures the radial RGB color channel intensity, and uses this radial intensity to assess for ice halo presence. We will present our algorithms for image analysis, including removing the lens distortion and low-level clouds, as well as the algorithm to assign a halo probability. We will also present our observation results for the year 2015. Supported by HHMI and UROP.

  15. X-Ray Imaging System

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  16. Imaging X-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E.

    1984-09-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  17. Imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E. (Inventor)

    1984-01-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  18. Sealed position sensitive hard X-ray detector having large drift region for all sky camera with high angular resolution

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.

    1979-01-01

    A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.

  19. Instrument for the monochromatic observation of all sky auroral images.

    PubMed

    Mende, S B; Eather, R H; Aamodt, E K

    1977-06-01

    To investigate the dynamics of auroras and faint upper atmospheric emissions, a new type of imaging instrument was developed. The instrument is a wide field of view, narrow-spectral-band imaging system using an intensified S.E.C. TV camera in a time exposure mode. Pictures were taken at very low light levels of a few photons per exposure per resolution element. These pictures are displayed in the form of a pseudocolor presentation in which the color represents spectral ratios of two of the observed auroral spectral emission features. The spectral ratios play an important part in the interpretation of auroral particle dynamics. A digital picture processing facility is also part of the system which enables the digital manppulation of the pictures at standard TV rates. As an example, hydrogen auroras can be displayed having been corrected for nonspectral background by subtracting a picture obtained by a suitable background filter. The instrumentation was calibrated in the laboratory and was used in several field xperiments. Elaborate exposure sequences were developed to extend the dynamic range and to cover the large range of auroral brightnesses in a fairly linear manner. PMID:20168774

  20. X-ray backscatter imaging

    NASA Astrophysics Data System (ADS)

    Dinca, Dan-Cristian; Schubert, Jeffrey R.; Callerame, J.

    2008-04-01

    In contrast to transmission X-ray imaging systems where inspected objects must pass between source and detector, Compton backscatter imaging allows both the illuminating source as well as the X-ray detector to be on the same side of the target object, enabling the inspection to occur rapidly and in a wide variety of space-constrained situations. A Compton backscatter image is similar to a photograph of the contents of a closed container, taken through the container walls, and highlights low atomic number materials such as explosives, drugs, and alcohol, which appear as especially bright objects by virtue of their scattering characteristics. Techniques for producing X-ray images based on Compton scattering will be discussed, along with examples of how these systems are used for both novel security applications and for the detection of contraband materials at ports and borders. Differences between transmission and backscatter images will also be highlighted. In addition, tradeoffs between Compton backscatter image quality and scan speed, effective penetration, and X-ray source specifications will be discussed.

  1. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  2. Industrial X-Ray Imaging

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1990, Lewis Research Center jointly sponsored a conference with the U.S. Air Force Wright Laboratory focused on high speed imaging. This conference, and early funding by Lewis Research Center, helped to spur work by Silicon Mountain Design, Inc. to break the performance barriers of imaging speed, resolution, and sensitivity through innovative technology. Later, under a Small Business Innovation Research contract with the Jet Propulsion Laboratory, the company designed a real-time image enhancing camera that yields superb, high quality images in 1/30th of a second while limiting distortion. The result is a rapidly available, enhanced image showing significantly greater detail compared to image processing executed on digital computers. Current applications include radiographic and pathology-based medicine, industrial imaging, x-ray inspection devices, and automated semiconductor inspection equipment.

  3. Equatorial All Sky Imager Images from the Seychelles during the March 17th, 2015 geomagnetic storm.

    NASA Astrophysics Data System (ADS)

    Curtis, B.

    2015-12-01

    An all sky imager was installed in the Seychelles earlier this year. The Seychelles islands are located northeast of Madagascar and east of Somalia in the equatorial Indian Ocean. The all sky imager is located on the island of Mahe (4.6667°S, 55.4667°E geographic), (10.55°S, 127.07°E geomagnetic), with filters of 557.7, 620.0, 630.0, 765.0 and 777.4 nm. Images with a 90 second exposure from Seychelles in 777.4nm and 630.0nm from the night before and night of the March 17th geomagnetic storm are discussed in comparison to solar wind measurements at ACE and the disturbance storm time (Dst) index. These images show line-of-sight intensities of photons received dependent on each filters wavelength. A time series of these images sometimes will show the movement of relatively dark areas, or depletions, in each emission. The depletion regions are known to cause scintillation in GPS signals. The direction and speed of movement of these depletions are related to changes observed in the solar wind.

  4. All-sky imaging of transglobal thermospheric gravity waves generated by the March 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Smith, Steven M.; Martinis, Carlos R.; Baumgardner, Jeffrey; Mendillo, Michael

    2015-12-01

    We report on imaging measurements of thermospheric gravity wave signatures in 630 nm and 557.7 nm nightglow that suggest an association with the M = 9 Tohoku (Japan) earthquake on 11 March 2011. The propagating waves were recorded in all-sky images at the El Leoncito Observatory, Argentina (31.8°S, 69.3°W), which is located 17,080 km from the earthquake epicenter, almost at the global antipodal point.

  5. Validation of spectral sky radiance derived from all-sky camera images - a case study

    NASA Astrophysics Data System (ADS)

    Tohsing, K.; Schrempf, M.; Riechelmann, S.; Seckmeyer, G.

    2014-07-01

    Spectral sky radiance (380-760 nm) is derived from measurements with a hemispherical sky imager (HSI) system. The HSI consists of a commercial compact CCD (charge coupled device) camera equipped with a fish-eye lens and provides hemispherical sky images in three reference bands such as red, green and blue. To obtain the spectral sky radiance from these images, non-linear regression functions for various sky conditions have been derived. The camera-based spectral sky radiance was validated using spectral sky radiance measured with a CCD spectroradiometer. The spectral sky radiance for complete distribution over the hemisphere between both instruments deviates by less than 20% at 500 nm for all sky conditions and for zenith angles less than 80°. The reconstructed spectra of the wavelengths 380-760 nm between both instruments at various directions deviate by less than 20% for all sky conditions.

  6. Validation of spectral sky radiance derived from all-sky camera images - a case study

    NASA Astrophysics Data System (ADS)

    Tohsing, K.; Schrempf, M.; Riechelmann, S.; Seckmeyer, G.

    2014-01-01

    Spectral sky radiance (380-760 nm) is derived from measurements with a Hemispherical Sky Imager (HSI) system. The HSI consists of a commercial compact CCD (charge coupled device) camera equipped with a fish-eye lens and provides hemispherical sky images in three reference bands such as red, green and blue. To obtain the spectral sky radiance from these images non-linear regression functions for various sky conditions have been derived. The camera-based spectral sky radiance was validated by spectral sky radiance measured with a CCD spectroradiometer. The spectral sky radiance for complete distribution over the hemisphere between both instruments deviates by less than 20% at 500 nm for all sky conditions and for zenith angles less than 80°. The reconstructed spectra of the wavelength 380 nm to 760 nm between both instruments at various directions deviate by less then 20% for all sky conditions.

  7. Alaskan Auroral All-Sky Images on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.

    1997-01-01

    In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.

  8. Monitoring the Sky with the Prototype All-Sky Imager on the LWA1

    NASA Astrophysics Data System (ADS)

    Obenberger, K. S.; Taylor, G. B.; Hartman, J. M.; Clarke, T. E.; Dowell, J.; Dubois, A.; Dubois, D.; Henning, P. A.; Lazio, J.; Michalak, S.; Schinzel, F. K.

    2015-03-01

    We present a description of the Prototype All-Sky Imager (PASI), a backend correlator and imager of the first station of the Long Wavelength Array (LWA1). PASI cross-correlates a live stream of 260 dual-polarization dipole antennas of the LWA1, creates all-sky images, and uploads them to the LWA-TV website in near real time. PASI has recorded over 13,000hr of all-sky images at frequencies between 10 and 88MHz creating opportunities for new research and discoveries. We also report rate density and pulse energy density limits on transients at 38, 52, and 74MHz, for pulse widths of 5s. We limit transients at those frequencies with pulse energy densities of >2.7×10-23, >1.1×10-23, and >2.8×10-23Jm-2Hz-1 to have rate densities <1.2×10-4, <5.6×10-4, and <7.2×10-4 year-1deg-2.

  9. Monitoring the Low Frequency Sky with the LWA1 and the Prototype All-Sky Imager

    NASA Astrophysics Data System (ADS)

    Obenberger, Kenneth Steven; LWA Collaboration

    2015-01-01

    We present findings from the Prototype All-Sky Imager (PASI), a backend correlator of the first station of the Long Wavelength Array (LWA1). PASI cross-correlates a live stream of all 260 dual-polarization dipole antennas of the LWA1, creates all-sky images, and uploads them to the LWA-TV website in near real-time. PASI has recorded over 14,000 hours of all-sky images at frequencies between 10 and 88 MHz. These data have resulted in the discovery of radio emission from large meteors (Fireballs), and has been used to set improved limits on slow transients at 38, 52, and 74 MHz. PASI is also being used to characterize how the ionosphere affects low frequency transient astronomy. Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C-0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST-1139974 of the University Radio Observatory program.

  10. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  11. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  12. X-Ray Imaging Study

    NASA Technical Reports Server (NTRS)

    OBrien, Susan K.; Workman, Gary L.

    1996-01-01

    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 1O(exp 10) electrons/sq cm/day and the proton integral fluence is above 1 x 10(exp 9) protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionally less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. At the same time, there will be substantial potential for collisions between the space platforms and space debris. The current NASA catalogue contains over 4500 objects floating in space which are not considered payloads. This debris can have significant effects on collision with orbiting spacecraft. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are being performed to simulate at some level the effect of the environment. In particular the study of debris clouds produced by hypervelocity impact on the various surfaces anticipated on the Space Station is very important at this point in time. The need to assess the threat of such debris clouds on space structures is an on-going activity. The Space Debris Impact facility in Building 4612 provides a test facility to monitor the types of damage produced with hypervelocity impact. These facilities are used to simulate space environmental effects from energetic particles. Flash radiography or x-ray imaging has traditionally provided such information and as such has been an important tool for recording damage in situ with the event. The proper

  13. Imaging with x-ray lasers

    SciTech Connect

    Da Silva, L.B.; Cauble, B.; Frieders, G.; Koch, J.A.; MacGowan, B.J.; Matthews, D.L.; Mrowka, S.; Ress, D.; Trebes, J.E.; Weiland, T.L.

    1993-11-01

    Collisionally pumped soft x-ray lasers now operate over a wavelength range extending from 35--300 {Angstrom}. These sources have high peak brightness and are now being utilized for x-ray imaging and plasma interferometry. In this paper we will describe our efforts to probe long scalelength plasmas using Moire deflectrometry and soft x-ray imaging. The progress in the development of short pulse x-ray lasers using a double pulse irradiation technique which incorporates a travelling wave pump will also be presented.

  14. Hard X-ray imaging from Explorer

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Murray, S. S.

    1981-01-01

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  15. Perspectives of medical X-ray imaging

    NASA Astrophysics Data System (ADS)

    Freudenberger, J.; Hell, E.; Knüpfer, W.

    2001-06-01

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  16. AN XMM-NEWTON SURVEY OF THE SOFT X-RAY BACKGROUND. II. AN ALL-SKY CATALOG OF DIFFUSE O VII AND O VIII EMISSION INTENSITIES

    SciTech Connect

    Henley, David B.; Shelton, Robin L.

    2012-10-15

    We present an all-sky catalog of diffuse O VII and O VIII line intensities, extracted from archival XMM-Newton observations. This catalog supersedes our previous catalog, which covered the sky between l = 120 Degree-Sign and l = 240 Degree-Sign . We attempted to reduce the contamination from near-Earth solar wind charge exchange (SWCX) emission by excluding times of high solar wind proton flux from the data. Without this filtering, we were able to extract measurements from 1868 observations. With this filtering, nearly half of the observations became unusable, and only 1003 observations yielded measurements. The O VII and O VIII intensities are typically {approx}2-11 and {approx}<3 photons cm{sup -2} s{sup -1} sr{sup -1} (line unit, L.U.), respectively, although much brighter intensities were also recorded. Our data set includes 217 directions that have been observed multiple times by XMM-Newton. The time variation of the intensities from such directions may be used to constrain SWCX models. The O VII and O VIII intensities typically vary by {approx}<5 and {approx}<2 L.U. between repeat observations, although several intensity enhancements of >10 L.U. were observed. We compared our measurements with models of the heliospheric and geocoronal SWCX. The heliospheric SWCX intensity is expected to vary with ecliptic latitude and solar cycle. We found that the observed oxygen intensities generally decrease from solar maximum to solar minimum, both at high ecliptic latitudes (which is as expected) and at low ecliptic latitudes (which is not as expected). The geocoronal SWCX intensity is expected to depend on the solar wind proton flux incident on the Earth and on the sightline's path through the magnetosheath. The intensity variations seen in directions that have been observed multiple times are in poor agreement with the predictions of a geocoronal SWCX model. We found that the oxygen lines account for {approx}40%-50% of the 3/4 keV X-ray background that is not due to

  17. An Imaging X-Ray Polarimetry Mission

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Tennant, Allyn; Elsner, Ronald; Pavlov, George; Matt, Girogio; Kaspi, Vicky; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful - yet inexpensive - dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --- particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsiz:e the important physical and astrophysical questions such as mission would address.

  18. An Imaging X-Ray Polarimetry Mission

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Elsner, Ronald; Pavlov, George; Matt, Giorgio; Kaspi, Victoria; Tennant, Allyn; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful---yet inexpensive---dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

  19. Phased Contrast X-Ray Imaging

    ScienceCinema

    Erin Miller

    2012-12-31

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  20. PROPERTIES OF LARGE-AMPLITUDE VARIABLE STARS DETECTED WITH TWO MICRON ALL SKY SURVEY PUBLIC IMAGES

    SciTech Connect

    Kouzuma, Shinjirou; Yamaoka, Hitoshi

    2009-11-15

    We present a catalog of variable stars in the near-infrared wavelength detected with overlapping regions of the Two Micron All Sky Survey public images, and discuss their properties. The investigated region is in the direction of the Galactic center (-30 deg. {approx}< l {approx}< 20 deg., |b| {approx}< 20 deg.), which covers the entire bulge. We have detected 136 variable stars, of which six are already known and 118 are distributed in the |b| {<=} 5 deg. region. Additionally, 84 variable stars have optical counterparts in Digitized Sky Survey images. The three diagrams (color-magnitude, light variance, and color-color diagrams) indicate that most of the detected variable stars should be large-amplitude and long-period variables such as Mira variables or OH/IR stars. The number density distribution of the detected variable stars implies that they trace the bar structure of the Galactic bulge.

  1. X-ray imaging: Status and trends

    SciTech Connect

    Ryon, R.W.; Martz, H.E.; Hernandez, J.M.; Haskins, J.J.; Day, R.A.; Brase, J.M.; Cross, B.; Wherry, D.

    1987-08-01

    There is a veritable renaissance occurring in x-ray imaging. X-ray imaging by radiography has been a highly developed technology in medicine and industry for many years. However, high resolution imaging has not generally been practical because sources have been relatively dim and diffuse, optical elements have been nonexistent for most applications, and detectors have been slow and of low resolution. Materials analysis needs have therefore gone unmet. Rapid progress is now taking place because we are able to exploit developments in microelectronics and related material fabrication techniques, and because of the availability of intense x-ray sources. This report describes the methods and uses of x-ray imaging along with a discussion of technology advances in these areas.

  2. Diffraction enhanced x-ray imaging

    SciTech Connect

    Thomlinson, W.; Zhong, Z.; Chapman, D.; Johnston, R.E.; Sayers, D.

    1997-09-01

    Diffraction enhanced imaging (DEI) is a new x-ray radiographic imaging modality using synchrotron x-rays which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantoms. The contrast is based not only on attenuation but also the refraction and diffraction properties of the sample. The diffraction component and the apparent absorption component (absorption plus extinction contrast) can each be determined independently. This imaging method may improve the image quality for medical applications such as mammography.

  3. Event Study of the Peak Auroral Emission Altitude from All-sky Images

    NASA Astrophysics Data System (ADS)

    Sangalli, L.; Gustavsson, B.; Partamies, N. J.; Kauristie, K.

    2011-12-01

    The MIRACLE network monitors auroral activity in the Fennoscandian sector of Europe. Network stations cover the range of 55° to 57° magnetic latitude North and span two hours in magnetic local time. Some of the MIRACLE network stations include digital all-sky cameras (ASC). Some of the ASCs currently in use are: systems with an image intensifier in front of a CCD (iCCD), systems with electron multiplying CCD (emCCD). Both iCCD and emCCD cameras in the MIRACLE network operate at three different wavelengths: 427.8 nm, 557.7 nm and 630.0 nm. Each wavelength is selected using narrow band filters on a filter wheel placed in front of the CCD. Our goal is to evaluate the peak auroral emission altitude using ASC images at different stations pairs for a set of auroral event in order to evaluate the altitude of peak auroral emissions for different auroral structures. We adapted the AIDA software package developed by Björn Gustavsson in Kiruna for ASC images. Position calibrated images at two (or more) ASC stations are for optical triangulation of a set of auroral structures.

  4. Imaging slitless spectrometer for X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Gursky, H.; Zehnpfennig, T.

    1968-01-01

    Imaging slitless spectrometer, a combination of an X ray transmission /or reflection/ grating and image-forming X ray telescope, is capable of obtaining simultaneous spatial and spectral information about celestial X ray sources.

  5. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm S.; Jacobsen, Chris

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  6. X-ray lithography using holographic images

    DOEpatents

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  7. Single Particle X-ray Diffractive Imaging

    SciTech Connect

    Bogan, M J; Benner, W H; Boutet, S; Rohner, U; Frank, M; Seibert, M; Maia, F; Barty, A; Bajt, S; Riot, V; Woods, B; Marchesini, S; Hau-Riege, S P; Svenda, M; Marklund, E; Spiller, E; Hajdu, J; Chapman, H N

    2007-10-01

    In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at sub-optical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

  8. Development of high throughput X-ray telescopes for X-ray imaging and dispersive spectrometers

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1986-01-01

    During the past year the technical approach to the realization of a high throughput Kirkpatrick-Baez X-ray mirror became better defined in terms of construction methodology and factors which affect maximum size. More progress was made than anticipated in the area of automatic figure formation. However, effort to improve the resolution of float glass by simple techniques were not successful. Mirror development, spectroscopy, all sky telescope, and explorer concept studies are discussed.

  9. Imaging science at Amazon rainforest, Brazil, using an all-sky imager

    NASA Astrophysics Data System (ADS)

    Calderaro, G. L.; Pimenta, A. A.; Manzi, A. O.

    2015-12-01

    Near-simultaneous all-sky (160 degrees field of view) observations of the OI 630.0 nm, OI777.4 nm, OI557.7 nm and 589 nm nightglow emissions are being carried out on a routine basis at ZF-2 Cuireiras Biological Reserve (2.59 degrees S, 60.22 degrees W, altitude 87 m), Amazonas state, Brazil, since July 2015. In the thermosphere-ionosphere, three types of phenomena are studied using 630.0 nm and 777.4 nm observations: (1) brightness waves (BW) associated with the midnight temperature maximum (MTM), (2) electron density enhancement associated with plasma blobs and MSTID with characteristics matching a Perkins-instability. In the mesosphere we study gravity waves events, probably generated by lower atmospheric due to treetops of the Amazon rainforest.

  10. A Survey of All-sky Imaging Measurements of Bore- and "Wall"-like Disturbances in Mesospheric Nightglow.

    NASA Astrophysics Data System (ADS)

    Smith, S. M.

    2004-05-01

    All-sky imagers regularly record quasi-monochromatic (QM) gravity wave activity in the various night-time mesospheric emissions (Taylor et al., 1995; Wu and Killeen, 1996; Swenson et al., 1999; Smith et al., 2000, for example). There is, however, a distinct class of uncommon events - sudden and very bright all-sky airglow emission enhancements or depletions followed by a series of propagating waves that are phase-locked to the leading front and lasting several hours. Very few cases have been reported in the literature and they appear to consist of two distinct types of disturbances: "wall" events and bores. This paper will present and discuss observations of these two types of wave events recorded by the Boston University all-sky imagers at four separate locations: Millstone Hill (MA), Arecibo Observatory (PR), McDonald Observatory (TX), and El Leoncito (Argentina). A comparison of these events with those reported in the literature will also be made.

  11. X-ray imaging: Perovskites target X-ray detection

    NASA Astrophysics Data System (ADS)

    Heiss, Wolfgang; Brabec, Christoph

    2016-05-01

    Single crystals of perovskites are currently of interest to help fathom fundamental physical parameters limiting the performance of perovskite-based polycrystalline solar cells. Now, such perovskites offer a technology platform for optoelectronic devices, such as cheap and sensitive X-ray detectors.

  12. Imaging plates calibration to X-rays

    NASA Astrophysics Data System (ADS)

    Curcio, A.; Andreoli, P.; Cipriani, M.; Claps, G.; Consoli, F.; Cristofari, G.; De Angelis, R.; Giulietti, D.; Ingenito, F.; Pacella, D.

    2016-05-01

    The growing interest for the Imaging Plates, due to their high sensitivity range and versatility, has induced, in the last years, to detailed characterizations of their response function in different energy ranges and kind of radiation/particles. A calibration of the Imaging Plates BAS-MS, BAS-SR, BAS-TR has been performed at the ENEA-Frascati labs by exploiting the X-ray fluorescence of different targets (Ca, Cu, Pb, Mo, I, Ta) and the radioactivity of a BaCs source, in order to cover the X-ray range between few keV to 80 keV.

  13. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  14. Imaging Schwarzschild multilayer X-ray microscope

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Baker, Phillip C.; Shealy, David L.; Core, David B.; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.; Kerstetter, Ted

    1993-01-01

    We have designed, analyzed, fabricated, and tested Schwarzschild multilayer X-ray microscopes. These instruments use flow-polished Zerodur mirror substrates which have been coated with multilayers optimized for maximum reflectivity at normal incidence at 135 A. They are being developed as prototypes for the Water Window Imaging X-Ray Microscope. Ultrasmooth mirror sets of hemlite grade sapphire have been fabricated and they are now being coated with multilayers to reflect soft X-rays at 38 A, within the biologically important 'water window'. In this paper, we discuss the fabrication of the microscope optics and structural components as well as the mounting of the optics and assembly of the microscopes. We also describe the optical alignment, interferometric and visible light testing of the microscopes, present interferometrically measured performance data, and provide the first results of optical imaging tests.

  15. X-ray image detection apparatus

    SciTech Connect

    Trepte, W.

    1980-11-11

    X-ray image detection apparatus in which an image detector is pivotally mounted on a carrier arm which in turn is pivotally mounted on a vertical column. A sprocket wheel and chain arrangement operatively interconnects the image detector, the carrier arm and the vertical column such that as the carrier arm is pivoted about a horizontal axis in one direction relative to the vertical column, the image detector is pivoted in an opposite direction.

  16. Some new features of ionospheric plasma depletions over the Indian zone using all sky optical imaging

    NASA Astrophysics Data System (ADS)

    Sinha, H. S. S.; Raizada, S.

    2000-08-01

    An all sky optical imaging system was operated from Sriharikota rocket range (SHAR) (14° N, 80° E, 5.5° N dip latitude) during January-March, 1993 to observe ionospheric plasma depletions through 630 nm and 777.4 nm night glow emissions. Strong plasma depletions were observed only on four nights viz., 14, 17, 19 and 21 February, 1993. Except the 17 February, which was a magnetically disturbed day, all the other nights pertained to magnetically quiet period. A number of plasma depletion parameters such as, degree of depletion, east-west extent, tilt with respect to the geomagnetic field, inter-depletion distance, drift velocity and plasma enhancements or brightness patterns were estimated. Some of the important results are: (a) It was found that the east-west extent of plasma depletions varied with the degree of depletion; for the 630 nm images the degree of depletion ranged between 6-9% per 100 km east-west extent and for 777.4 nm images it was 3% per 100 km east-west extent, (b) The average inter-depletion distance (IDD) was in the range of 1500±100 km during the magnetically disturbed period and 740±60 km during quiet periods. This is suggestive of gravity wave modulation of the bottom side of the F-region. While the large scale gravity waves (1500±100 km) of auroral origin could be responsible during magnetically disturbed period, smaller scale gravity waves (740±60 km) having their origin in the lower atmosphere could produce initial perturbation in the bottom side of the F-region, (c) Plasma depletions are observed to have an eastward tilt in the range of 10-15° with respect to the geomagnetic field. It has been suggested here that these tilts are associated with the variation of plasma drift with altitude, (d) plasma depletions are observed to be moving eastwards with drift velocities in the range of 40-190 ms-1, and (e) Strong plasma enhancements or brightness patterns were observed on three nights. The degree of enhancement was by a factor of 1

  17. Water window imaging x ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.

  18. X-ray magnetic circular dichroism imaging with hard X-rays.

    PubMed

    Sato, K; Ueji, Y; Okitsu, K; Matsushita, T; Amemiya, Y

    2001-05-01

    X-ray polarization-contrast images resulting from X-ray magnetic circular dichroism (XMCD) in the hard X-ray region have been successfully recorded for the first time. The apparatus used consisted of an X-ray polarizer, double X-ray phase retarders, and a high-spatial-resolution X-ray charge-coupled-device detector. The sample used was a hexagonal-close-packed cobalt polycrystal foil having a thickness of about 4 microns. The X-ray polarization-contrast image resulting from XMCD was observed at a photon energy of 10 eV above the cobalt K-absorption edge (7709 eV). The observed contrast in the image was reversed by inversion of the magnetic field. Furthermore, the contrast was reversed again at a photon energy of 32 eV above the cobalt K-absorption edge. PMID:11486407

  19. Derivation of sky quality indicators from photometrically calibrated all-sky image mosaics

    NASA Astrophysics Data System (ADS)

    Duriscoe, Dan M.; Moore, Chadwick A.; Luginbuhl, Christian B.

    2015-08-01

    A large database of high resolution all-sky measurements of V-band night sky brightness at sites in U.S. National Parks and astronomical observatories is utilized to describe sky quality over a wide geographic area. Mosaics of photometrically calibrated V-band imagery are processed with a semi-automated procedure to reveal the effects of artificial sky glow through graphical presentation and numeric indicators of artificial sky brightness. Comparison with simpler methods such as the use of the Unihedron SQM and naked eye limiting magnitude reveal that areas near the horizon, which are not typically captured with single-channel measurements, contribute significantly to the indicators maximum vertical illuminance, maximum sky luminance, and average all-sky luminance. Distant sources of sky glow may represent future threats to areas of the sky nearer the zenith. Timely identification and quantification of these threats may allow mitigating strategies to be implemented.

  20. Differential phase contrast X-ray imaging system and components

    DOEpatents

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  1. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    set of two major x-ray astronomy missions based on the concepts I developed and demonstrated under this SR&T grant. The first Maxim is to image the sky at 100 micro-arcsecond resolution. That is one thousand times higher resolution than Hubble. The full Maxim has the ultimate goal of imaging the event horizon of a black hole in an active galactic nucleus (ALAN). This will require 0.1 micro-arcsecond resolution - one million times higher than Hubble! Nonetheless, using the techniques developed under this grant, it has become possible. Maxim Pathfinder is now in the NASA planning for a new start in approximately 20 10. The full Maxim is carried as a vision mission for the post 2015 timeframe. Finally, this grant is the evolved version of the SR&T grant we carried during the 1980s and up to 1994. At that point in time this grant was also working on x-ray optics, but concentrating on x-ray spectroscopy. The techniques developed by 1990 were not chosen for use on Chandra or XMM-Newton because they were too new. During the last year, however, the Constellation-X mission recognized the need for better spectroscopy techniques and tapped our expertise. We were able to support the initial work on Con-X through this program. It now appears that the off-plane mount will be used in Con-X, increasing performance and decreasing cost and risk.

  2. X-ray imaging - Supernova remnants

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1981-01-01

    Consideration is given to imaging observations of supernova remnants (SNRs) obtained during the first year of the Einstein Observatory's operation. Inferences are drawn regarding models for stellar explosions, remnant evolution, neutron star formation and the interstellar medium. Because the X-ray emission traces the expanding shock boundary and dominates the radiative energy losses of an SNR over much of its lifetime, it can provide data on the possible collapsed remnants of the explosion, such as neutron stars and/or black holes. X-ray emission also allows a supernova shock to be used as a probe of interstellar medium structure. The imaging instrument aboard the Einstein satellite has been used to observe over 30 known Galactic remnants, and a similar number of objects in other galaxies, in the 0.15-4.5 keV band.

  3. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  4. New Mission Concept Study: Energetic X-Ray Imaging Survey Telescope (EXIST)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Report summarizes the activity carried out under the New Mission Concept (NMC) study for a mission to conduct a sensitive all-sky imaging survey in the hard x-ray (HX) band (approximately 10-600 keV). The Energetic X-ray Imaging Survey Telescope (EXIST) mission was originally proposed for this NMC study and was then subsequently proposed for a MIDEX mission as part of this study effort. Development of the EXIST (and related) concepts continues for a future flight proposal. The hard x-ray band (approximately 10-600 keV) is nearly the final band of the astronomical spectrum still without a sensitive imaging all-sky survey. This is despite the enormous potential of this band to address a wide range of fundamental and timely objectives - from the origin and physical mechanisms of cosmological gamma-ray bursts (GRBs) to the processes on strongly magnetic neutron stars that produce soft gamma-repeaters and bursting pulsars; from the study of active galactic nuclei (AGN) and quasars to the origin and evolution of the hard x-ray diffuse background; from the nature and number of black holes and neutron stars and the accretion processes onto them to the extreme non-thermal flares of normal stars; and from searches for expected diffuse (but relatively compact) nuclear line (Ti-44) emission in uncatalogued supernova remnants to diffuse non-thermal inverse Compton emission from galaxy clusters. A high sensitivity all-sky survey mission in the hard x-ray band, with imaging to both address source confusion and time-variable background radiations, is very much needed.

  5. All-sky imager observations near footprints of plasma sheet waves with kinetic ballooning-interchange signatures

    NASA Astrophysics Data System (ADS)

    Panov, E. V.; Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Kubyshkina, M. V.

    2015-12-01

    We collected several THEMIS observations of plasma sheet oscillations with kinetic ballooning/interchange instability (BICI) signatures. Using an adapted model to find the location of THEMIS footprints, we identified all-sky imager (ASI) observations that may be associated with the waves. The ASI observations reveal a reach activity often being diffuse patchy aurora. We investigate the brightness and motion of the auroral patches and compare them with the BICI activity in the plasma sheet.

  6. The flexible x-ray imager

    SciTech Connect

    Budil, K.S.; Perry, T.S.; Bell, P.M.; Hares, J.D.; Miller, P.L.; Peyser, T.A.; Wallace, R.; Louis, H.; Smith, D.E.

    1996-02-01

    A new gated x-ray framing camera has been developed at the Lawrence Livermore National Laboratory for use at the Nova laser facility. This diagnostic, the flexible x-ray imager, has been designed as a modular unit that can be rapidly reconfigured to change the spectral response, magnification, sensitivity, and spatial and temporal resolutions of the instrument. The electrical gate pulse width may be varied from 200 ps to 2 ns depending upon whether the experimental emphasis is on temporal resolution or sensitivity. The long integration times are particularly useful in experiments where motional blurring occurs over even longer time scales. A detailed description of the instrument and its varied uses is presented. {copyright} {ital 1996 American Institute of Physics.}

  7. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  8. Demonstration of X-ray linear dichroism imaging with hard X-rays.

    PubMed

    Sato, K; Okitsu, K; Ueji, Y; Matsushita, T; Amemiya, Y

    2000-11-01

    X-ray polarization-contrast images resulting from X-ray linear dichroism (XLD) in the hard X-ray region have been successfully recorded for the first time. The apparatus used consisted of an X-ray polarizer, double X-ray phase retarders and a high-spatial-resolution X-ray charge-coupled device (CCD) detector. The sample used was a hexagonal close packed (h.c.p.) cobalt single-crystal foil of thickness about 12 microm. The experiment was performed at X-ray energies of 23 and 29 eV above the cobalt K edge (7709 eV), at which the maximum linear dichroisms (approximately 3%) were observed, with their signs reversed, in the XLD spectrum measured with quadruple X-ray phase retarders. The contrasts in the images at the two X-ray energies were reversed as a result of the XLD in the sample. Furthermore, the values of the contrast in the images arising from the linear dichroism (approximately 3%) were in good agreement with those yielded by the XLD spectrum. PMID:16609223

  9. Images of single X-ray photons from X-ray phosphor screens

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1981-01-01

    Photographs show the efficiency and resolution characteristics of single X-ray photons converted to optical photons in a variety of commercial X-ray phosphor screens. The recording system uses a cooled, two-stage image intensifier system with fiber optics coupling to the phosphor screen. High efficiencies in the energy range 20-100 keV with position resolution of the order 200 microns are readily achievable, although the sensitive area is presently limited. Potential applications include X-ray astronomy, high-speed X-ray diffractometry, and extremely low dose radiography.

  10. Phosphor Scanner For Imaging X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  11. X-ray imaging for security applications

    NASA Astrophysics Data System (ADS)

    Evans, J. Paul

    2004-01-01

    The X-ray screening of luggage by aviation security personnel may be badly hindered by the lack of visual cues to depth in an image that has been produced by transmitted radiation. Two-dimensional "shadowgraphs" with "organic" and "metallic" objects encoded using two different colors (usually orange and blue) are still in common use. In the context of luggage screening there are no reliable cues to depth present in individual shadowgraph X-ray images. Therefore, the screener is required to convert the 'zero depth resolution' shadowgraph into a three-dimensional mental picture to be able to interpret the relative spatial relationship of the objects under inspection. Consequently, additional cognitive processing is required e.g. integration, inference and memory. However, these processes can lead to serious misinterpretations of the actual physical structure being examined. This paper describes the development of a stereoscopic imaging technique enabling the screener to utilise binocular stereopsis and kinetic depth to enhance their interpretation of the actual nature of the objects under examination. Further work has led to the development of a technique to combine parallax data (to calculate the thickness of a target material) with the results of a basis material subtraction technique to approximate the target's effective atomic number and density. This has been achieved in preliminary experiments with a novel spatially interleaved dual-energy sensor which reduces the number of scintillation elements required by 50% in comparison to conventional sensor configurations.

  12. The PERCIVAL soft X-ray imager

    NASA Astrophysics Data System (ADS)

    Wunderer, C. B.; Marras, A.; Bayer, M.; Correa, J.; Göttlicher, P.; Lange, S.; Shevyakov, I.; Smoljanin, S.; Tennert, M.; Viti, M.; Xia, Q.; Zimmer, M.; Das, D.; Guerrini, N.; Marsh, B.; Sedgwick, I.; Turchetta, R.; Cautero, G.; Gianoncelli, A.; Giuressi, D.; Menk, R.; Stebel, L.; Yousef, H.; Marchal, J.; Rees, N.; Tartoni, N.; Graafsma, H.

    2015-02-01

    With the increased brilliance of state-of-the-art Synchrotron radiation sources and the advent of Free Electron Lasers enabling revolutionary science on atomic length and time scales with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon counting capability with low probability of false positives, and (multi)-megapixels. PERCIVAL (``Pixelated Energy Resolving CMOS Imager, Versatile And Large'') is currently being developed by a collaboration of DESY, RAL, Elettra, DLS and Pohang to address this need for the soft X-ray regime. PERCIVAL is a monolithic active pixel sensor (MAPS), i.e. based on CMOS technology. It will be back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to its preliminary specifications, the roughly 10 × 10 cm2, 3.5k × 3.7k monolithic ``PERCIVAL13M'' sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within its 27 μm pixels to measure 1 to ~ 105 (500 eV) simultaneously-arriving photons. A smaller ``PERCIVAL2M'' with ~ 1.4k × 1.5k pixels is also planned. Currently, small-scale back-illuminated prototype systems (160 × 210 pixels of 25 μm pitch) are undergoing detailed testing with X-rays and optical photons. In March 2014, a prototype sensor was tested at 350 eV-2 keV at Elettra's TwinMic beamline. The data recorded include diffraction patterns at 350 eV and 400 eV, knife edge and sub-pixel pinhole illuminations, and comparisons of different pixel types. Another prototype chip will be submitted in fall 2014, first larger sensors could be in hand in late 2015.

  13. Aspergillosis - chest x-ray (image)

    MedlinePlus

    ... usually occurs in immunocompromised individuals. Here, a chest x-ray shows that the fungus has invaded the lung ... are usually seen as black areas on an x-ray. The cloudiness on the left side of this ...

  14. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    ... tissue, and can cause tissue death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light ... location of cavities within these light areas. The x-ray on the left clearly shows that the opacities ...

  15. A soft X-ray image of the moon

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Aschenbach, B.; Hasinger, G.; Pfeffermann, E.; Snowden, S. L.

    1991-01-01

    A soft X-ray image of the moon obtained by the Roentgen Observatory Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the moon's X-ray luminosity arises from backscattering of solar X-rays. The moon's optically dark side is also X-ray dark, and casts a distinct shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark side seems to emit X-rays at a level about one percent of that of the bright side; this emission very probably results from energetic solar-wind electrons striking the moon's surface.

  16. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  17. DEPMOS arrays for x-ray imaging

    NASA Astrophysics Data System (ADS)

    Lutz, Gerhard; Richter, Rainer H.; Strueder, Lothar

    2000-07-01

    For future x-ray satellite missions and other applications we propose a novel sensor which is based on the `DEPleted Field Effect Transistor (DEPFET)'. MOS-type DEPFETs (DEPMOS) are employed in prototype designs of pixel detectors ready for production. The device operated on a fully depleted silicon wafer allows an internal charge amplification directly above the position where the signal conversion takes place. A very low gate capacitance of the DEPMOS transistor leads to low noise amplification. In contrast to CCDs neither transfer loss nor `out of time events' can occur in a DEPFET-array. Fast imaging and low power consumption can be achieved by a row by row selection mode. The signal charge stored in a potential minimum below the transistor channel can be read out non destructively and repeatedly. By shifting the charge between two neighboring DEPMOS amplifiers the repeated signal readout leads to significant noise reduction. Concept, design and device simulations are presented and consequences of the expected properties for applications in x-ray imaging are discussed.

  18. Anisotropic imaging performance in indirect x-ray imaging detectors

    SciTech Connect

    Badano, Aldo; Kyprianou, Iacovos S.; Sempau, Josep

    2006-08-15

    We report on the variability in imaging system performance due to oblique x-ray incidence, and the associated transport of quanta (both x rays and optical photons) through the phosphor, in columnar indirect digital detectors. The analysis uses MANTIS, a combined x-ray, electron, and optical Monte Carlo transport code freely available. We describe the main features of the simulation method and provide some validation of the phosphor screen models considered in this work. We report x-ray and electron three-dimensional energy deposition distributions and point-response functions (PRFs), including optical spread in columnar phosphor screens of thickness 100 and 500 {mu}m, for 19, 39, 59, and 79 keV monoenergetic x-ray beams incident at 0 deg., 10 deg., and 15 deg. . In addition, we present pulse-height spectra for the same phosphor thickness, x-ray energies, and angles of incidence. Our results suggest that the PRF due to the phosphor blur is highly nonsymmetrical, and that the resolution properties of a columnar screen in a tomographic, or tomosynthetic imaging system varies significantly with the angle of x-ray incidence. Moreover, we find that the noise due to the variability in the number of light photons detected per primary x-ray interaction, summarized in the information or Swank factor, is somewhat independent of thickness and incidence angle of the x-ray beam. Our results also suggest that the anisotropy in the PRF is not less in screens with absorptive backings, while the noise introduced by variations in the gain and optical transport is larger. Predictions from MANTIS, after additional validation, can provide the needed understanding of the extent of such variations, and eventually, lead to the incorporation of the changes in imaging performance with incidence angle into the reconstruction algorithms for volumetric x-ray imaging systems.

  19. Coded Aperture Imaging for Fluorescent X-rays-Biomedical Applications

    SciTech Connect

    Haboub, Abdel; MacDowell, Alastair; Marchesini, Stefano; Parkinson, Dilworth

    2013-06-01

    Employing a coded aperture pattern in front of a charge couple device pixilated detector (CCD) allows for imaging of fluorescent x-rays (6-25KeV) being emitted from samples irradiated with x-rays. Coded apertures encode the angular direction of x-rays and allow for a large Numerical Aperture x- ray imaging system. The algorithm to develop the self-supported coded aperture pattern of the Non Two Holes Touching (NTHT) pattern was developed. The algorithms to reconstruct the x-ray image from the encoded pattern recorded were developed by means of modeling and confirmed by experiments. Samples were irradiated by monochromatic synchrotron x-ray radiation, and fluorescent x-rays from several different test metal samples were imaged through the newly developed coded aperture imaging system. By choice of the exciting energy the different metals were speciated.

  20. X-ray holographic microscopy: Improved images of zymogen granules

    SciTech Connect

    Jacobsen, C.; Howells, M.; Kirz, J.; McQuaid, K.; Rothman, S.

    1988-10-01

    Soft x-ray holography has long been considered as a technique for x-ray microscopy. It has been only recently, however, that sub-micron resolution has been obtained in x-ray holography. This paper will concentrate on recent progress we have made in obtaining reconstructed images of improved quality. 15 refs., 6 figs.

  1. Multimodal x-ray scatter imaging

    NASA Astrophysics Data System (ADS)

    Bunk, O.; Bech, M.; Jensen, T. H.; Feidenhans'l, R.; Binderup, T.; Menzel, A.; Pfeiffer, F.

    2009-12-01

    We describe a small-angle x-ray scattering-based imaging technique that reveals the distribution and orientation of nano-scale structures over extended areas. By combining two measurement and analysis schemes, complementary structural information is available which renders the technique suitable for a broad range of applications, e.g. in materials science and bio-imaging. Through a combination of current techniques and on-line analysis schemes, measurements with a so far unprecedented combination of speed, dynamic range and point density became feasible. This is illustrated by data recorded for a section of a mouse soleus muscle visualizing fine muscle and Achilles tendon structures down to the 10 nm range over a 10 mm2 sample area.

  2. The ITER core imaging x-ray spectrometer: x-ray calorimeter performance.

    PubMed

    Beiersdorfer, P; Brown, G V; Clementson, J; Dunn, J; Morris, K; Wang, E; Kelley, R L; Kilbourne, C A; Porter, F S; Bitter, M; Feder, R; Hill, K W; Johnson, D; Barnsley, R

    2010-10-01

    We describe the anticipated performance of an x-ray microcalorimeter instrument on ITER. As part of the core imaging x-ray spectrometer, the instrument will augment the imaging crystal spectrometers by providing a survey of the concentration of heavy ion plasma impurities in the core and possibly ion temperature values from the emission lines of different elemental ions located at various radial positions. PMID:21034021

  3. Point Source All Sky

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This panoramic view encompasses the entire sky as seen by Two Micron All-Sky Survey. The measured brightnesses of half a billion stars (points) have been combined into colors representing three distinct wavelengths of infrared light: blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns. This image is centered on the core of our own Milky Way galaxy, toward the constellation of Sagittarius. The reddish stars seemingly hovering in the middle of the Milky Way's disc -- many of them never observed before -- trace the densest dust clouds in our galaxy. The two faint smudges seen in the lower right quadrant are our neighboring galaxies, the Small and Large Magellanic Clouds.

  4. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    SciTech Connect

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-05-15

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  5. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  6. Simultaneous Observation of Wave Packet of the Atmospheric Gravity Waves by ISS-IMAP and All-sky Imager

    NASA Astrophysics Data System (ADS)

    Yukino, H.; Saito, A.; Sakanoi, T.; Otsuka, Y.

    2014-12-01

    The spatial scale of the atmospheric gravity wave in the mesosphere and the lower thermosphere was analyzed using the simultaneous observational data of ISS-IMAP and an all-sky imager at Hawaii. There are a plenty of previous studies that discuss the relationship between the wave structures of the mesospheric airglow and the tropospheric events. The problem of the ground-based observation of the airglow is that it cannot distinguish spatial variations from temporal variations for the structures whose scale size is larger than its field-of-view. ISS-IMAP started the observation in October, 2012 to survey the atmospheric gravity waves whose horizontal scale size is 50 km and longer. The spatial resolution of the VIsible-light and infrared Spectrum Imager (VISI) of ISS-IMAP/VISI imaging observation is from 10 km to 25 km. Simultaneous observations start from March 14, 2013. The atmospheric gravity waves that detected by VISI in 762 nm were compared with the observations of ground-based all-sky imagers in 557.7 nm. The generation and the propagation of the atmospheric gravity waves were investigated with this simultaneous observation. The relationship between the tropospheric events and the atmospheric gravity waves in the mesosphere is studied with the wide field-of-view observation by VISI/ISS-IMAP, and the continuous observation of the ground-based imagers. VISI frequently observed wave packets whose scale size is 1,000-2,000 km. These wave packets were observed by the ground-based imager as a series of waves whose wave length is 20-40 km, and that continue for 5-6 hours. The generation, the propagation and the distraction of the atmospheric gravity waves will be discussed in this presentation.

  7. Adenocarcinoma - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows adenocarcinoma of the lung. There is a rounded light spot in the right upper lung (left side ... density. Diseases that may cause this type of x-ray result would be tuberculous or fungal granuloma, and ...

  8. Coccidioidomycosis - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows the affects of a fungal infection, coccidioidomycosis. In the middle of the left lung (seen on the ... defined borders. Other diseases that may explain these x-ray findings include lung abscesses, chronic pulmonary tuberculosis, chronic ...

  9. Ionospheric Studies From Low to Sub-Auroral Latitudes Using Geomagnetic Conjugate All-Sky Imagers and Satellite Data

    NASA Astrophysics Data System (ADS)

    Martinis, C. R.; Macinnis, R.; Sullivan, C.; Baumgardner, J. L.; Pfaff, R. F., Jr.; Hairston, M. R.; Mendillo, M.; Taylor, M. J.; Moffat-Griffin, T.; Heelis, R. A.; Wroten, J.; Hickey, D.

    2014-12-01

    Magnetically conjugate all-sky imagers (ASIs) from low to sub-auroral latitudes are used to investigate inter-hemispheric coupling of ionospheric processes including medium scale travelling ionospheric disturbances (MSTIDs) and, at higher latitudes, stable auroral red (SAR) arcs. The chain of imagers operated by Boston University in the American sector provide thermosphere/ionosphere information through the observation of brightness patterns in 630.0 nm airglow simultaneously at both hemispheres. Complementary information was obtained from space-based satellite data (C/NOFS, DMSP, GPS and RBSP). This study aims to present a comprehensive analysis of thermosphere/ionosphere processes and their coupling mechanisms covering L-shell values from ~ 1.1 to ~3.

  10. A new x-ray scatter reduction method based on frequency division multiplexing x-ray imaging technique

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Chang, S.; Lu, J. P.; Zhou, O.

    2012-03-01

    X-ray scatter may significantly degrade imaging performance in x-ray radiography applications, including flatpanel detector-based x-ray imaging, tomosynthesis, and cone-beam CT (CBCT), primarily due to their large projection field sizes. It results in soft tissue contrast reduction, potentially severe image artifacts, and increased patient dose. Several different approaches have been developed to reject the scatter contributions, including analytical calculation, empirical algorithms, Monte-Carlo simulation, blocker based measurement, and slot scan technique. We recently developed a new x-ray scatter rejection method based on nanotechnology-enabled frequency division multiplexing x-ray (FDMX) imaging technique. The key enabling technology is the carbon nanotube (CNT)-based multi-beam field emission x-ray (MBFEX) source technology. The proposed FDMX imaging system has a MBFEX source with an array of x-ray tubes. The x-ray radiation from each individual x-ray tube is modulated at a certain given frequency. The collimated x-ray beams passed through the object and were captured by a high speed x-ray detector. A demultiplexing algorithm was applied to reject the scatter radiation from the primary radiation based on their different modulation frequencies. The x-ray images generated by the FDMX imaging technique clearly demonstrated improved imaging quality in terms of lower scatter-to-primary-ratio (SPR) and higher contrast-to-noise-ratio (CNR). It shows great potential of improving x-ray imaging performance and reducing patient dose.

  11. Coded aperture imaging for fluorescent x-rays

    SciTech Connect

    Haboub, A.; MacDowell, A. A.; Marchesini, S.; Parkinson, D. Y.

    2014-06-15

    We employ a coded aperture pattern in front of a pixilated charge couple device detector to image fluorescent x-rays (6–25 KeV) from samples irradiated with synchrotron radiation. Coded apertures encode the angular direction of x-rays, and given a known source plane, allow for a large numerical aperture x-ray imaging system. The algorithm to develop and fabricate the free standing No-Two-Holes-Touching aperture pattern was developed. The algorithms to reconstruct the x-ray image from the recorded encoded pattern were developed by means of a ray tracing technique and confirmed by experiments on standard samples.

  12. Quantitative Imaging of Single, Unstained Viruses with Coherent X Rays

    SciTech Connect

    Song Changyong; Jiang Huaidong; Mancuso, Adrian; Amirbekian, Bagrat; Miao Jianwei; Peng Li; Sun Ren; Shah, Sanket S.; Zhou, Z. Hong; Ishikawa, Tetsuya

    2008-10-10

    We report the recording and reconstruction of x-ray diffraction patterns from single, unstained viruses, for the first time. By separating the diffraction pattern of the virus particles from that of their surroundings, we performed quantitative and high-contrast imaging of a single virion. The structure of the viral capsid inside a virion was visualized. This work opens the door for quantitative x-ray imaging of a broad range of specimens from protein machineries and viruses to cellular organelles. Moreover, our experiment is directly transferable to the use of x-ray free electron lasers, and represents an experimental milestone towards the x-ray imaging of large protein complexes.

  13. CMOS APS detector characterization for quantitative X-ray imaging

    NASA Astrophysics Data System (ADS)

    Endrizzi, Marco; Oliva, Piernicola; Golosio, Bruno; Delogu, Pasquale

    2013-03-01

    An X-ray Imaging detector based on CMOS Active Pixel Sensor and structured scintillator is characterized for quantitative X-ray imaging in the energy range 11-30 keV. Linearity, dark noise, spatial resolution and flat-field correction are the characteristics of the detector subject of investigation. The detector response, in terms of mean Analog-to-Digital Unit and noise, is modeled as a function of the energy and intensity of the X-rays. The model is directly tested using monochromatic X-ray beams and it is also indirectly validated by means of polychromatic X-ray-tube spectra. Such a characterization is suitable for quantitative X-ray imaging and the model can be used in simulation studies that take into account the actual performance of the detector.

  14. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    Tuberculosis is an infectious disease that causes inflammation, the formation of tubercules and other growths within tissue, ... death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light areas (opacities) of varying ...

  15. Phase-contrast X-ray imaging of breast.

    PubMed

    Keyriläinen, Jani; Bravin, Alberto; Fernández, Manuel; Tenhunen, Mikko; Virkkunen, Pekka; Suortti, Pekka

    2010-10-01

    When an X-ray wave traverses an object, its amplitude and phase change, resulting in attenuation, interference, and refraction, and in phase-contrast X-ray imaging (PCI) these are converted to intensity changes. The relative change of the X-ray phase per unit path length is even orders of magnitude larger than that of the X-ray amplitude, so that the image contrast based on variation of the X-ray phase is potentially much stronger than the contrast based on X-ray amplitude (absorption contrast). An important medical application of PCI methods is soft-tissue imaging, where the absorption contrast is inherently weak. It is shown by in vitro examples that signs of malignant human breast tumor are enhanced in PCI images. Owing to the strong contrast, the radiation dose can be greatly reduced, so that a high-resolution phase-contrast X-ray tomography of the breast is possible with about 1 mGy mean glandular dose. Scattered radiation carries essential information on the atomic and molecular structure of the object, and particularly small-angle X-ray scattering can be used to trace cancer. The imaging methods developed at the synchrotron radiation facilities will become available in the clinical environment with the ongoing development of compact radiation sources, which produce intense X-ray beams of sufficient coherence. Several developments that are under way are described here. PMID:20799921

  16. Retrieval of Garstang's emission function from all-sky camera images

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Solano Lamphar, Héctor Antonio; Kundracik, František

    2015-10-01

    The emission function from ground-based light sources predetermines the skyglow features to a large extent, while most mathematical models that are used to predict the night sky brightness require the information on this function. The radiant intensity distribution on a clear sky is experimentally determined as a function of zenith angle using the theoretical approach published only recently in MNRAS, 439, 3405-3413. We have made the experiments in two localities in Slovakia and Mexico by means of two digital single lens reflex professional cameras operating with different lenses that limit the system's field-of-view to either 180º or 167º. The purpose of using two cameras was to identify variances between two different apertures. Images are taken at different distances from an artificial light source (a city) with intention to determine the ratio of zenith radiance relative to horizontal irradiance. Subsequently, the information on the fraction of the light radiated directly into the upward hemisphere (F) is extracted. The results show that inexpensive devices can properly identify the upward emissions with adequate reliability as long as the clear sky radiance distribution is dominated by a largest ground-based light source. Highly unstable turbidity conditions can also make the parameter F difficult to find or even impossible to retrieve. The measurements at low elevation angles should be avoided due to a potentially parasitic effect of direct light emissions from luminaires surrounding the measuring site.

  17. Dental x-ray image segmentation

    NASA Astrophysics Data System (ADS)

    Said, Eyad; Fahmy, Gamal F.; Nassar, Diaa; Ammar, Hany

    2004-08-01

    Law enforcement agencies have been exploiting biometric identifiers for decades as key tools in forensic identification. With the evolution in information technology and the huge volume of cases that need to be investigated by forensic specialists, it has become important to automate forensic identification systems. While, ante mortem (AM) identification, that is identification prior to death, is usually possible through comparison of many biometric identifiers, postmortem (PM) identification, that is identification after death, is impossible using behavioral biometrics (e.g. speech, gait). Moreover, under severe circumstances, such as those encountered in mass disasters (e.g. airplane crashers) or if identification is being attempted more than a couple of weeks postmortem, under such circumstances, most physiological biometrics may not be employed for identification, because of the decay of soft tissues of the body to unidentifiable states. Therefore, a postmortem biometric identifier has to resist the early decay that affects body tissues. Because of their survivability and diversity, the best candidates for postmortem biometric identification are the dental features. In this paper we present an over view about an automated dental identification system for Missing and Unidentified Persons. This dental identification system can be used by both law enforcement and security agencies in both forensic and biometric identification. We will also present techniques for dental segmentation of X-ray images. These techniques address the problem of identifying each individual tooth and how the contours of each tooth are extracted.

  18. Obtaining flat x-ray images from round objects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A technique to correct deficiencies in x-ray images of cylindrical or spherical objects that are a consequence of the geometry of the sample is derived, for both two-dimensional (2D) and linescan imaging. The methods described involve the use of attenuators specifically shaped to equalize the x-ray ...

  19. Characterization of low intensity X-ray imaging devices (Lixiscope)

    NASA Technical Reports Server (NTRS)

    Ferguson, G. A.

    1981-01-01

    Radioisotopic sources were used to excite the LIXISCOPE in preliminary experimental attempts to evaluate the usefulness of this instrument for industrial and medical applications. The characteristics of the LIXISCOPE when excited by x-ray produced by conventional electrically powered x-ray generators were studied. The optimum x-ray spectrum was determined and the mode of operation of the generator, which yields satisfactory LIXISCOPE images of medical and industrial specimens was investigated.

  20. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    SciTech Connect

    Chen, Dongmei; Zhu, Shouping Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  1. Chandra X-Ray Observatory Image of Black Hole

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This Chandra X-Ray Observatory (CXO) image is a spectrum of a black hole, which is similar to the colorful spectrum of sunlight produced by a prism. The x-rays of interest are shown here recorded in bright stripes that run rightward and leftward from the center of the image. These x-rays are sorted precisely according to their energy with the highest-energy x-rays near the center of the image and the lower-energy x-rays farther out. The spectrum was obtained by using the Low Energy Transmission Grating (LETG), which intercepts x-rays and changes their direction by the amounts that depend sensitively on the x-ray energy. The assembly holds 540 gold transmission gratings. When in place behind the mirrors, the gratings intercept the x-rays reflected from the telescope. The bright spot at the center is due to a fraction of the x-ray radiation that is not deflected by the LETG. The spokes that intersect the central spot and the faint diagonal rays that flank the spectrum itself are artifacts due to the structure that supports the LETG grating elements. (Photo credit: NASA Cfa/J. McClintock et al)

  2. Development of high resolution imaging detectors for x ray astronomy

    NASA Technical Reports Server (NTRS)

    Murray, S. S.; Schwartz, D. A.

    1992-01-01

    This final report summarizes our past activities and discusses the work performed over the period of 1 April 1990 through 1 April 1991 on x-ray optics, soft x-ray (0.1 - 10 KeV) imaging detectors, and hard x-ray (10 - 300 KeV) imaging detectors. If microchannel plates (MCPs) can be used to focus x-rays with a high efficiency and good angular resolution, they will revolutionize the field of x-ray optics. An x-ray image of a point source through an array of square MCP pores compared favorably with our ray tracing model for the MCP. Initial analysis of this image demonstrates the feasibility of MCPs for soft x-rays. Our work continues with optimizing the performance of our soft x-ray MCP imaging detectors. This work involves readout technology that should provide improved MCP readout devices (thin film crossed grid, curved, and resistive sheets), defect removal in MCPs, and photocathode optimization. In the area of hard x-ray detector development we have developed two different techniques for producing a CsI photocathode thickness of 10 to 100 microns, such that it is thick enough to absorb the high energy x-rays and still allow the photoelectrons to escape to the top MCP of a modified soft x-ray imaging detector. The methods involve vacuum depositing a thick film of CsI on a strong back, and producing a converter device that takes the place of the photocathode.

  3. Hard x-ray imaging system for XEUS

    NASA Astrophysics Data System (ADS)

    Kunieda, Hideyo; Takahashi, Tadayuki; Kokubun, Motohide; Nakazawa, Kazuhiro; Ogasaka, Yasushi

    2008-07-01

    One of the major sciences of XEUS is the evolution of massive black holes from early to current Universe. As is well known, considerable fraction of massive black holes harbored in active galactic nuclei are embedded in thick absorbing material. In order to observe black holes without any bias of absorption, we propose a hard X-ray imaging system to XEUS. The hard X-ray imaging system is consisted of super mirror X-ray telescopes with multilayer coating and of the position sensitive hard X-ray imaging CdTe detector. Under the current boundary conditions, the design parameters will be optimized for the telescope and the multilayers. Current achievements of hard X-ray imaging detectors are also presented.

  4. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr. Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed.

  5. X-ray Photon Counting and Two-Color X-ray Imaging Using Indirect Detection

    PubMed Central

    Dierickx, Bart; Yao, Qiang; Witvrouwen, Nick; Uwaerts, Dirk; Vandewiele, Stijn; Gao, Peng

    2016-01-01

    In this paper, we report on the design and performance of a 1 cm2, 90 × 92-pixel image sensor. It is made X-ray sensitive by the use of a scintillator. Its pixels have a charge packet counting circuit topology with two channels, each realizing a different charge packet size threshold and analog domain event counting. Here, the sensor’s performance was measured in setups representative of a medical X-ray environment. Further, two-energy-level photon counting performance is demonstrated, and its capabilities and limitations are documented. We then provide an outlook on future improvements. PMID:27240362

  6. X-ray Photon Counting and Two-Color X-ray Imaging Using Indirect Detection.

    PubMed

    Dierickx, Bart; Yao, Qiang; Witvrouwen, Nick; Uwaerts, Dirk; Vandewiele, Stijn; Gao, Peng

    2016-01-01

    In this paper, we report on the design and performance of a 1 cm², 90 × 92-pixel image sensor. It is made X-ray sensitive by the use of a scintillator. Its pixels have a charge packet counting circuit topology with two channels, each realizing a different charge packet size threshold and analog domain event counting. Here, the sensor's performance was measured in setups representative of a medical X-ray environment. Further, two-energy-level photon counting performance is demonstrated, and its capabilities and limitations are documented. We then provide an outlook on future improvements. PMID:27240362

  7. Digital imaging with solid state x-ray image intensifiers

    NASA Astrophysics Data System (ADS)

    Damento, Michael A.; Radspinner, Rachel; Roehrig, Hans

    1999-10-01

    X-ray cameras in which a CCD is lens coupled to a large phosphor screen are known to suffer from a loss of x-ray signal due to poor light collection from conventional phosphors, making them unsuitable for most medical imaging applications. By replacing the standard phosphor with a solid-state image intensifier, it may be possible to improve the signal-to-noise ratio of the images produced with these cameras. The solid-state x-ray image intensifier is a multi- layer device in which a photoconductor layer controls the light output from an electroluminescent phosphor layer. While prototype devices have been used for direct viewing and video imaging, they are only now being evaluated in a digital imaging system. In the present work, the preparation and evaluation of intensifiers with a 65 mm square format are described. The intensifiers are prepared by screen- printing or doctor blading the following layers onto an ITO coated glass substrate: ZnS phosphor, opaque layer, CdS photoconductor, and carbon conductor. The total thickness of the layers is approximately 350 micrometers , 350 VAC at 400 Hz is applied to the device for operation. For a given x-ray dose, the intensifiers produce up to three times the intensity (after background subtracting) of Lanex Fast Front screens. X-ray images produced with the present intensifiers are somewhat noisy and their resolution is about half that of Lanex screens. Modifications are suggested which could improve the resolution and noise of the intensifiers.

  8. Comparing neutron and X-ray images from NIF implosions

    NASA Astrophysics Data System (ADS)

    Wilson, D. C.; Aragonez, R. J.; Archuleta, T. N.; Atkinson, D. P.; Barrios, M. A.; Batha, S. H.; Bower, D. E.; Bradley, D. K.; Buckles, R. A.; Clark, D. D.; Clark, D. S.; Clark, D. J.; Cradick, J. R.; Danly, C. R.; Day, R. D.; Dzenitis, J. M.; Drury, O. B.; Fatherley, V. E.; Felker, B.; Finch, J. P.; Fittinghoff, D. N.; Frank, M.; Gallegos, R. A.; Garcia, F. P.; Glenn, S. M.; Grim, G. P.; Guler, N.; Hsu, A. H.; Izumi, N.; Jaramillo, S. A.; Jones, O. S.; Kaufman, M. I.; Kilkenny, J. D.; Kyrala, G. A.; Le Pape, S.; Liddick, S. N.; Loomis, E. N.; Lutz, S. S.; Ma, T.; Mackinnon, A. J.; Malone, R. M.; Mares, D.; Marinak, M. M.; Martinson, D. D.; McKenty, P.; Meezan, N. S.; Merrill, F. E.; Moran, M. J.; Morgan, G. L.; Munson, C.; Munro, D. H.; Murphy, T. J.; Oertel, J. A.; Patel, M. V.; Polk, P. J.; Regan, S.; Roberson, G. P.; Schmidt, D. W.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Town, R.; Traille, A.; Tregillis, I. L.; Valdez, A. C.; Volegov, P. L.; Wang, T.-S. F.; Weiss, P.; Wilde, C. H.; Wilke, M. D.

    2013-11-01

    Directly laser driven and X-radiation driven DT filled capsules differ in the relationship between neutron and X-ray images. Shot N110217, a directly driven DT-filled glass micro-balloon provided the first neutron images at the National Ignition Facility. As seen in implosions on the Omega laser, the neutron image can be enclosed inside time integrated X-ray images. HYDRA simulations show the X-ray image is dominated by emission from the hot glass shell while the neutron image arises from the DT fuel it encloses. In the absence of mix or jetting, X-ray images of a cryogenically layered THD fuel capsule should be dominated by emission from the hydrogen rather than the cooler plastic shell that is separated from the hot core by cold DT fuel. This cool, dense DT, invisible in X-ray emission, shows itself by scattering hot core neutrons. Germanium X-ray emission spectra and Ross pair filtered X-ray energy resolved images suggest that germanium doped plastic emits in the torus shaped hot spot, probably reducing the neutron yield.

  9. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    SciTech Connect

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  10. Infrared Radiography: Modeling X-ray Imaging without Harmful Radiation

    ERIC Educational Resources Information Center

    Zietz, Otto; Mylott, Elliot; Widenhorn, Ralf

    2015-01-01

    Planar x-ray imaging is a ubiquitous diagnostic tool and is routinely performed to diagnose conditions as varied as bone fractures and pneumonia. The underlying principle is that the varying attenuation coefficients of air, water, tissue, bone, or metal implants within the body result in non-uniform transmission of x-ray radiation. Through the…

  11. X-ray imaging by angular raster scanning.

    PubMed

    Valiev, K A; Velikov, L V; Dolgich, V T; Kalnov, V A; Protopopov, V V; Imamov, R M; Lebedev, O I; Lomov, A A

    1997-03-01

    The technology of x-ray W-Al multilayer mirrors with an angular reflection width of more than 0.4 degrees at a 1.54-A wavelength is developed. On this basis an x-ray scanner is constructed. We show experimentally the possibility of object-transfer imaging with a resolution of ~20 mum. PMID:18250840

  12. Comment on ``Perspectives of medical X-ray imaging''

    NASA Astrophysics Data System (ADS)

    Taibi, A.; Baldelli, P.; Tuffanelli, A.; Gambaccini, M.

    2002-07-01

    In the paper "Perspectives of medical X-ray imaging" (Nucl. Instr. and Meth. A 466 (2001) 99) the authors infer, from simple approximations, that the use of HOPG monochromator has no advantage in mammography compared to existing systems. We show that in order to compare imaging properties of different X-ray sources it is necessary to evaluate the spectra after the attenuation of the tissue to be imaged. Indeed, quasi-monochromatic X-ray sources have the potential to enhance image contrast and to reduce patient dose.

  13. Interferometric X-Ray Imaging of Breast Cancer Specimens at 51 keV X-Ray Energy

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet Thet; Aiyoshi, Yuji; Zeniya, Tsutomu; Hyodo, Kazuyuki; Ueno, Ei

    2004-08-01

    The feasibility of the interferometric X-ray imaging technique is examined for revealing the features of breast cancer specimens. The interferometric X-ray imaging system consisted of an asymmetrically cut silicon crystal, a monolithic X-ray interferometer, a phase-shifter, an object cell, and an X-ray CCD camera. Ten 10-mm-thick formalin-fixed breast cancer specimens were imaged at 51 keV, and these images were compared with absorption-contrast X-ray images obtained at 18 keV monochromatic synchrotron X-ray. The interferometric X-ray images clearly depicted the essential features of the breast cancer such as microcalcification down to a size of 0.036 mm, spiculation, and detailed inner soft tissue structures closely matched with histopathological morphology, while the absorption-contrast X-ray images obtained using nearly the same X-ray dose only resolved microcalcification down to a size of 0.108 mm and spiculation. The interferometric X-ray imaging technique can be considered to be an innovative technique for the early and accurate diagnosis of breast cancer using an extremely low X-ray dose.

  14. Bronchial cancer - chest x-ray (image)

    MedlinePlus

    This is a chest x-ray of a person with bronchial cancer. This is a front view. The lungs are the two dark ... white areas visible in the middle of the chest. The light areas that appear as subtle branches ...

  15. Soft X-ray study of solar wind charge exchange from the Earth's magnetosphere : Suzaku observations and a future X-ray imaging mission concept

    NASA Astrophysics Data System (ADS)

    Ezoe, Y.; Ishisaki, Y.; Ohashi, T.; Ishikawa, K.; Miyoshi, Y.; Fujimoto, R.; Terada, N.; Kasahara, S.; Fujimoto, M.; Mitsuda, K.; Nishijo, K.; Noda, A.

    2013-12-01

    Soft X-ray observations of solar wind charge exchange (SWCX) emission from the Earth's magnetosphere using the Japanese X-ray astronomy satellite Suzaku are shown, together with our X-ray imaging mission concept to characterize the solar wind interaction with the magnetosphere. In recent years, the SWCX emission from the Earth's magnetosphere, originally discovered as unexplained noise during the soft X-ray all sky survey (Snowden et al. 1994), is receiving increased attention on studying geospace. The SWCX is a reaction between neutrals in exosphere and highly charged ions in the magnetosphere originated from solar wind. Robertson et al. (2005) modeled the SWCX emission as seen from an observation point 50 Re from Earth. In the resulting X-ray intensities, the magnetopause, bow shock and cusp were clearly visible. High sensitivity soft X-ray observation with CCDs onboard recent X-ray astronomy satellites enables us to resolve SWCX emission lines and investigate time correlation with solar wind as observed with ACE and WIND more accurately. Suzaku is the 5th Japanese X-ray astronomy satellite launched in 2005. The line of sight direction through cusp is observable, while constraints on Earth limb avoidance angle of other satellites often limits observable regions. Suzaku firstly detected the SWCX emission while pointing in the direction of the north ecliptic pole (Fujimoto et al. 2007). Using the Tsyganenko 1996 magnetic field model, the distance to the nearest SWCX region was estimated as 2-8 Re, implying that the line of sight direction can be through magnetospheric cusp. Ezoe et al. (2010) reported SWCX events toward the sub-solar side of the magnetosheath. These cusp and sub-solar side magnetosheath regions are predicted to show high SWCX fluxes by Robertson et al. (2005). On the other hand, Ishikawa et al. (2013) discovered a similarly strong SWCX event when the line of sight direction did not transverse these two regions. Motivated by these detections

  16. Observation of MSTIDs in Geomagnetic Conjugate Points, observed by all-sky images of OI 630.0 nm emission

    NASA Astrophysics Data System (ADS)

    Stefanello, Michel; Schuch, Nelson Jorge; Sarzi Machado, Cristiano; Pimenta, Alexandre; Vestena Bilibio, Anderson; Amorim, Danielle; Andrioli, Vania Fatima

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are characterized as wave-like structures which propagate in the ionospheric F region of low and medium latitudes. Its origin is attributed to electrodynamics instabilities processes explained by Perkins Plasma Instability Theory. This study presents an observation of simultaneous occurrence of Medium Scale Traveling Ionospheric Disturbance (MSTID) in both hemispheres, during geomagnetically quiet nights. All-sky images of OI 630.0 nm emission were obtained with two imagers localized in geomagnetic conjugate points: Southern Space Observatory (29.4ºS, 53.8ºW), in São Martinho da Serra, Southern Brazil, and Arecibo Observatory (18.3ºN, 66.7ºW), in Puerto Rico. Using two digisondes installed at Falkland Islands (51.4ºS, 57.5ºW) and Puerto Rico (18.5ºN, 67.1ºW), it was investigated the behavior of F region during the occurrence the MSTIDs. Data from GPS receivers installed at Santa Maria (29.7ºS, 53.7ºW) and Virgin Islands (17.7ºN, 64.7ºW) were employed to calculate the variation of the Total Electronic Content (TEC). The analysis of TEC allows to identify the occurrence of ionospheric irregularities, such as MSTIDs.

  17. A backscattered x-ray imager for medical applications

    NASA Astrophysics Data System (ADS)

    Morris, Eric Jude L.; Dibianca, Frank A.; Shukla, Hemant; Gulabani, Daya

    2005-04-01

    Conventional X-ray radiographic systems rely on transmitted photons for the production of images. Backscatter imaging makes use of the more abundant scattered photons for image formation. Specifically, incoherently (Compton) scattered X-ray photons are detected and used for image formation in this modality of medical imaging. However, additional information is obtained when the transmitted X-ray photons are also detected and used. Transmission radiography produces a two-dimensional image of a three dimensional system, therefore image information from a shallower object is often contaminated by image information from underlying objects. Backscattered x-ray imaging largely overcomes this deficiency by imaging depth selectively, which reduces corruption of shallow imaging information by information from deeper objects lying under it. Backscattered x-ray imaging may be particularly useful for examining anatomical structures at shallow depths beneath the skin. Some typical applications for such imaging might be breast imaging, middle ear imaging, imaging of skin melanomas, etc. Previous investigations, by way of theoretical calculations and computational simulations into the feasibility of this kind of imaging have uncovered high-contrast and SNR parameters. Simulations indicate that this method can be used for imaging relatively high-density objects at depths of up to approximately five centimeters below the surface. This paper presents both theoretical and experimental SNR results on this new medical imaging modality.

  18. AXIOM: Advanced X-ray imaging of the magnetosheath

    NASA Astrophysics Data System (ADS)

    Sembay, S.; Branduardi-Raymont, G.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S.; Owen, C. J.; Read, A. M.; Peacocke, L.; Arridge, C. S.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T.

    2012-04-01

    AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath, magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space.

  19. X-ray backscatter imaging for aerospace applications

    SciTech Connect

    Shedlock, Daniel; Edwards, Talion; Toh, Chin

    2011-06-23

    Scatter x-ray imaging (SXI) is a real time, digital, x-ray backscatter imaging technique that allows radiographs to be taken from one side of an object. This x-ray backscatter imaging technique offers many advantages over conventional transmission radiography that include single-sided access and extremely low radiation fields compared to conventional open source industrial radiography. Examples of some applications include the detection of corrosion, foreign object debris, water intrusion, cracking, impact damage and leak detection in a variety of material such as aluminum, composites, honeycomb structures, and titanium.

  20. X-Ray Backscatter Imaging for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Shedlock, Daniel; Edwards, Talion; Toh, Chin

    2011-06-01

    Scatter x-ray imaging (SXI) is a real time, digital, x-ray backscatter imaging technique that allows radiographs to be taken from one side of an object. This x-ray backscatter imaging technique offers many advantages over conventional transmission radiography that include single-sided access and extremely low radiation fields compared to conventional open source industrial radiography. Examples of some applications include the detection of corrosion, foreign object debris, water intrusion, cracking, impact damage and leak detection in a variety of material such as aluminum, composites, honeycomb structures, and titanium.

  1. AXIOM: Advanced X-Ray Imaging Of the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Sembay, S.; Branduardi-Rayrnont, G.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C; Kataria, D.; Kemble, S.; Milan, S.; Owen, C. J.; Read, A. M.; Peacocke, L.; Arridge, C. S.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.

    2012-01-01

    AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space.

  2. Simultaneous DMSP, all-sky camera, and IMAGE FUV observations of the brightening arc at a substorm pseudo-breakup

    NASA Astrophysics Data System (ADS)

    Yago, K.; Shiokawa, K.; Yumoto, K.; Baishev, D. G.; Solovyev, S. I.; Rich, F. J.

    2007-01-01

    Auroral particles, field-aligned currents, and plasma convections in the vicinity of the brightening arc at substorm onset are still not well understood, since it is very rare to have conjugate satellite measurements above the brightening arc. In this paper, we investigate the characteristics of auroral particles and fields associated with the brightening arc at a pseudo-onset of substorm on October 31, 2000, using ground all-sky TV images, IMAGE FUV auroral images, and particle, magnetic field, and plasma flow data obtained by the DMSP F12 satellite. The arc brightening at Tixie (66.0°MLAT), Russia, occurred at 1004 UT (18.75 MLT) coincident with a coherent Pi 2 pulsation at midlatitudes and with the DMSP crossing above the arc. The brightening arc did not develop on a global scale, indicating that this event is a pseudo auroral breakup, which occurred ~16 min before the major substorm expansion onset. IMAGE auroral images indicate that the longitude of the brightening center was ~2.5 h nightside of Tixie. The DMSP data show that the precipitating particles associated with the brightening arc correspond to an electron inverted-V structure at the equatorward edge of the electron precipitation region. The arc was located in the energetic (>1 keV) ion precipitation region, near the equatorward boundary of the upward region 1 field-aligned current, and at the peak of the sunward convection velocity. These facts indicate that the brightening arc at duskside of the onset local time was located in the inner plasma sheet at the inner edge of the region 1 current source in the sunward convection region.

  3. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment.

    PubMed

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; Xu, Ruqing; Fuoss, Paul H; Hruszkewycz, Stephan O

    2016-09-01

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load. PMID:27577782

  4. Application of X-ray imaging techniques to auroral monitoring

    NASA Astrophysics Data System (ADS)

    Rust, D. M.; Burstein, P.

    The precipitation of energetic particles into the ionosphere produces bremsstrahlung X-rays and K-alpha line emission from excited oxygen and nitrogen. If viewed from a spacecraft in a highly elliptical polar orbit, this soft (0.3 - 3.0 keV) X-radiation will provide an almost uninterrupted record of dayside and nightside auroras. A grazing incidence X-ray telescope especially designed for such auroral monitoring is described. High photon collection efficiency will permit exposure times of approximately 100 seconds during substorms. Spectrophotometry will allow users to derive the energy spectrum of the precipitating particles. If placed in a 15 earth-radius orbit, the telescope can produce auroral X-ray images with 30 km resolution. Absolute position of X-ray auroras can be established with a small optical telescope co-aligned with the X-ray telescope. Comparison of X-ray and optical images will establish the height and global distribution of X-ray aurorae, relative to well-known optical auroras, thus melding the new X-ray results with knowledge of optical auroras.

  5. Cloud Screening and Quality Control Algorithm for Star Photometer Data: Assessment with Lidar Measurements and with All-sky Images

    NASA Technical Reports Server (NTRS)

    Ramirez, Daniel Perez; Lyamani, H.; Olmo, F. J.; Whiteman, D. N.; Navas-Guzman, F.; Alados-Arboledas, L.

    2012-01-01

    This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, delta Ae(lambda), and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of delta Ae() and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable Ae(lambda) and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16 N, 3.60 W, 680 ma.s.l.; South-East of Spain) for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.

  6. Statistical characteristics of gravity waves observed by an all-sky airglow imager at Maui, HI and Cerro Pachon, Chile

    NASA Astrophysics Data System (ADS)

    Cao, Bing; Liu, Alan Z.

    2016-07-01

    Many long-term observations, such as airglow imaging, have shown that gravity waves exist in the mesopause region most of the time. These waves deposit momentum and energy into the background atmosphere when dissipating, and thus exert strong influence to the atmosphere. In this study, we focus on (1) the climatology of gravity waves characteristics, (2) the intermittency of gravity wave momentum flux and (3) the duration/lifespan of gravity wave events. These properties have important implications for gravity wave parameterizations. This study is based on multi-year all sky OH airglow observations obtained at Maui, HI (20.7° N, 156.3° W) and the Andes Lidar Observatory in Chile (30.3° S, 70.7° W). The statistical distribution of intrinsic wave parameters and the momentum flux are analyzed. The probability density functions of gravity wave momentum flux and duration can be described by simple functions and are related to the gravity wave intermittency. The probability distributions of the two sites have some similarity but with noticeable differences, indicating different effects of the background flow and wave source on the gravity wave intermittency in the mesopause region.

  7. Imaging microwell detectors for x-ray and gamma-ray applications

    NASA Astrophysics Data System (ADS)

    Black, J. Kevin; Deines-Jones, Phil; Hunter, Stanley D.; Jahoda, Keith; Huang, J.; Jackson, Thomas N.; Klauk, H.; Qian, W.

    2000-12-01

    Gas proportional counter arrays based on the micro-well are an example of a new generation of detectors that exploit narrow anode-cathode gaps, rather than fine anodes, to create gas gain. These are inherently imaging pixel detectors that can be made very large for reasonable costs. Because of their intrinsic gain and room-temperature operation, they can be instrumented at very low power per unit area, making them valuable for a variety of space-flight applications where large-area X-ray imaging or particle tracking is required. We discuss micro-well detectors as focal plane imager for Lobster-ISS, a proposed soft X-ray all-sky monitor, and as electron trackers for the Next Generation High-Energy Gamma Ray mission. We have developed a fabrication technique using a masked UV laser that allows us both to machine micro-wells in polymer substrates and to pattern metal electrodes. We have used this technique to fabricate detectors which image X-rays by simultaneously reading out orthogonal anode and cathode strips. We present imaging results from these detectors, as well as gain and energy resolution measurements that agree well with results from other groups.

  8. Coherent X-ray Imaging Techniques for Shock Physics

    NASA Astrophysics Data System (ADS)

    Montgomery, David

    2015-06-01

    X-ray radiography has been used for several decades in dynamic experiments to measure material flow in extreme conditions via absorption of x-rays propagating through the materials. Image contrast in traditional radiography is determined by the absorption coefficients and areal densities of the materials at a given x-ray wavelength, and often limits these measurements to materials with sufficiently high atomic numbers and areal density, while low-Z materials and small areal density variations are completely transparent and not visible in the image. Coherent x-ray sources, such as those found at synchrotrons and x-ray free-electron lasers, provide new opportunities for imaging dynamic experiments due to their high spatial and spectral coherence, high brightness and short temporal duration (<100 ps). Phase-sensitive techniques, such as phase contrast imaging (PCI), rely on the overlap and interference of the x-rays due to spatial variations in their transmitted phase, and are enabled primarily by high spatial coherence of the x-ray source. Objects that are otherwise transparent to x-rays can be imaged with PCI, and small variations in areal density become visible that would be not observable with traditional radiography. In this talk an overview of PCI will be given, and current applications of this technique in high-energy density physics, shock physics and material dynamics will be presented. Other future uses of imaging using coherent x-ray sources in dynamic high-pressure experiments will be discussed. Work performed under the auspices of DOE by LANL under Contract DE-AC52-06NA25396.

  9. X-ray diffraction topography image materials by molecular probe

    NASA Astrophysics Data System (ADS)

    Hentschel, Manfred P.; Lange, Axel; Schors, Joerg; Wald, Oliver

    2005-05-01

    Crystallinity, composition, homogeneity and anisotropy determine the mechanical properties of materials significantly, but the performance of most non-destructive techniques is too poor for measuring these micro structures as they are optimized for finding individual flaws/defects. X-ray (wide angle) Diffraction Topography by single beam scanning images molecular information at a spatial resolution of several ten micrometers even in three dimensions. Especially for the non-destructive characterization of composite materials, they provide additional capabilities by crystallographic contrast by the molecular/atomic probe. The different material phases of compounds and their molecular orientation can be imaged e.g. fibers or polymer chain orientation in composites: A sample is scanned or rotated, while only part of the scattering pattern is pointing at an X-ray detector area. Three different methods have been developed: i) planar X-ray Scanning Topography at one or more pre-selected scattering angles provides high contrast of different phases of components. ii) X-Ray Rotation Topography reveals the texture angle of composite fibers and chain polymers. iii) X-ray Diffraction Microscopy images the texture and phase distribution of transversal sections of the material. The principles of Wide Angle X-Ray Diffraction Topography are explained and examples of investigations will be presented. They combine the advantages of radiographic imaging and crystal structure information. The applied X-ray energies are much lower than in NDT radiography, which recommends preferably the application to light weight materials.

  10. New sensors for dental X-ray imaging

    NASA Astrophysics Data System (ADS)

    Fröjdh, C.; Andersson, J.; Bates, R.; Heuken, M.; Irsigler, R.; Petersson, C. S.; O'Shea, V.; Smith, K.; Stamatakis, H.; Welander, U.

    1999-09-01

    Digital systems for dental X-ray imaging are rapidly replacing conventional film techniques. The major advantages of digital systems are reduced X-ray doses due to increased sensitivity, time savings since no development is needed and reduced use of chemicals for film development. Most of the currently available digital systems are based on a silicon CCD coated with a scintillating material. In this paper we present some of the research going on in order to develop new X-ray imaging sensors with improved sensitivity.

  11. Chandra X-Ray Observatory Image of Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Chandra X-Ray Observatory took this first x-ray picture of the Andromeda Galaxy (M31) on October 13, 1999. The blue dot in the center of the image is a 'cool' million-degree x-ray source where a supermassive black hole with the mass of 30-million suns is located. The x-rays are produced by matter furneling toward the black hole. Numerous other hotter x-ray sources are also apparent. Most of these are probably due to x-ray binary systems, in which a neutron star or black hole is in close orbit around a normal star. While the gas falling into the central black hole is cool, it is only cool by comparison to the 100 other x-ray sources in the Andromeda Galaxy. To be detected by an x-ray telescope, the gas must have a temperature of more than a million degrees. The Andromeda Galaxy is our nearest neighbor spiral galaxy at a distance of two million light years. It is similar to our own Milky Way in size, shape, and also contains a supermassive black hole at the center. (Photo Credit: NASA/CXC/SAO/S. Murray, M. Garcia)

  12. Image responses to x-ray radiation in ICCD camera

    NASA Astrophysics Data System (ADS)

    Ma, Jiming; Duan, Baojun; Song, Yan; Song, Guzhou; Han, Changcai; Zhou, Ming; Du, Jiye; Wang, Qunshu; Zhang, Jianqi

    2013-08-01

    When used in digital radiography, ICCD camera will be inevitably irradiated by x-ray and the output image will degrade. In this research, we separated ICCD camera into two optical-electric parts, CCD camera and MCP image intensifier, and irradiated them respectively on Co-60 gamma ray source and pulsed x-ray source. By changing time association between radiation and the shutter of CCD camera, the state of power supply of MCP image intensifier, significant differences have been observed in output images. A further analysis has revealed the influence of the CCD chip, readout circuit in CCD camera, and the photocathode, microchannel plate and fluorescent screen in MCP image intensifier on image quality of an irradiated ICCD camera. The study demonstrated that compared with other parts, irradiation response of readout circuit is very slight and in most cases negligible. The interaction of x-ray with CCD chip usually behaves as bright spots or rough background in output images, which depends on x-ray doses. As to the MCP image intensifier, photocathode and microchannel plate are the two main steps that degrade output images. When being irradiated by x-ray, microchannel plate in MCP image intensifier tends to contribute a bright background in output images. Background caused by the photocathode looks more bright and fluctuant. Image responses of fluorescent screen in MCP image intensifier in ICCD camera and that of a coupling fiber bundle are also evaluated in this presentation.

  13. Image simulation system for flash x-ray diagnosis

    NASA Astrophysics Data System (ADS)

    Takahashi, Kei; Sato, Eiichi; Oizumi, Teiji; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1993-10-01

    Radiographic image simulations using a spectrum simulation system SPECTRA are presented. SPECTRA calculated the x-ray spectra using the data of tube voltage and current obtained from a soft flash x-ray generator. The x-ray generator used in the present work consisted of a high-voltage power supply, an oil condenser of 10 nF, a turbo molecular pump, a thyristor pulser as a trigger device, and a cold-cathode triode. After the main condenser was charged from 60 to 80 kV, the electric charges in the condenser were discharged. We obtained the maximum tube voltage which was equivalent to the initial charged voltage in the condenser. Bremsstrahlung x-ray intensities were derived from the Kramers' empirical equation and the intensities of the characteristic x rays were approximately calculated on the basis of the experimental results by Birch and Marshall. In the present work, we used two 3-dimensional models provided by SPECTRA as radiographed objects. We saved the measured data of the tube voltage and current for the flash x rays with charged voltages of 60, 70, and 80 kV. Then, assuming that these flash x rays were applied to the above models at a distance of 1 m, we obtained simulated images with filtration of aluminum. The obtained images fairly agreed with real radiographs which were achieved with a Computed Radiography system.

  14. The low intensity X-ray imaging scope /Lixiscope/

    NASA Technical Reports Server (NTRS)

    Yin, L. I.; Trombka, J. I.; Seltzer, S. M.; Webber, R. L.; Farr, M. R.; Rennie, J.

    1978-01-01

    A fully portable, small-format X-ray imaging system, Lixiscope (low intensity X-ray imaging scope) is described. In the prototype, which has been built to demonstrate the feasibility of the Lixiscope concept, only well-developed and available components have been used. Consideration is given to the principles of operation of the device, some of its performance characteristics as well as possible dental, medical and industrial applications.

  15. Dose optimization in cardiac x-ray imaging

    SciTech Connect

    Gislason-Lee, Amber J.; McMillan, Catherine; Cowen, Arnold R.; Davies, Andrew G.

    2013-09-15

    Purpose: The aim of this research was to optimize x-ray image quality to dose ratios in the cardiac catheterization laboratory. This study examined independently the effects of peak x-ray tube voltage (kVp), copper (Cu), and gadolinium (Gd) x-ray beam filtration on the image quality to radiation dose balance for adult patient sizes.Methods: Image sequences of polymethyl methacrylate (PMMA) phantoms representing two adult patient sizes were captured using a modern flat panel detector based x-ray imaging system. Tin and copper test details were used to simulate iodine-based contrast medium and stents/guide wires respectively, which are used in clinical procedures. Noise measurement for a flat field image and test detail contrast were used to calculate the contrast to noise ratio (CNR). Entrance surface dose (ESD) and effective dose measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose. This FOM determined the dose efficiency of x-ray spectra investigated. Images were captured with 0.0, 0.1, 0.25, 0.4, and 0.9 mm Cu filtration and with a range of gadolinium oxysulphide (Gd{sub 2}O{sub 2}S) filtration.Results: Optimum x-ray spectra were the same for the tin and copper test details. Lower peak tube voltages were generally favored. For the 20 cm phantom, using 2 Lanex Fast Back Gd{sub 2}O{sub 2}S screens as x-ray filtration at 65 kVp provided the highest FOM considering ESD and effective dose. Considering ESD, this FOM was only marginally larger than that from using 0.4 mm Cu at 65 kVp. For the 30 cm phantom, using 0.25 mm copper filtration at 80 kVp was most optimal; considering effective dose the FOM was highest with no filtration at 65 kVp.Conclusions: These settings, adjusted for x-ray tube loading limits and clinically acceptable image quality, should provide a useful option for optimizing patient dose to image quality in cardiac x-ray imaging. The same optimal x-ray beam spectra were found for both the tin and copper details, suggesting

  16. Analysis of close conjunctions between dayside polar cap airglow patches and flow channels by all-sky imager and DMSP

    NASA Astrophysics Data System (ADS)

    Wang, Boyi; Nishimura, Yukitoshi; Lyons, Larry R.; Zou, Ying; Carlson, Herbert C.; Frey, Harald U.; Mende, Stephen B.

    2016-09-01

    Recent imager and radar observations in the nightside polar cap have shown evidence that polar cap patches are associated with localized flow channels. To understand how flow channels propagate from the dayside auroral oval into the polar cap, we use an all-sky imager in Antarctica and DMSP (F13, F15, F16, F17 and F18) to determine properties of density and flows associated with dayside polar cap patches. We identified 50 conjunction events during the southern winter seasons of 2007-2011. In a majority (45) of events, longitudinally narrow flow enhancements directed anti-sunward are found to be collocated with the patches, have velocities (up to a few km/s) substantially larger than the large-scale background flows (~500 m/s) and have widths comparable to patch widths (~400 km). While the patches start with poleward moving auroral forms (PMAFs) as expected, many PMAFs propagate azimuthally away from the noon over a few hours of MLT, resulting in formation of polar cap patches quite far away from the noon, as early as ~6 MLT. The MLT separation from the noon is found to be proportional to the IMF |By|. Fast polar cap flows of >~1500 m/s are predominantly seen during large IMF |By| and small |Bz|. The presence of fast, anti-sunward flow channels associated with the polar cap patches suggests that the flow channels form in the dayside auroral oval through transient reconnection and can be the source of flow channels propagating into the polar cap.

  17. Phase contrast imaging with micro focus x-ray tube

    NASA Astrophysics Data System (ADS)

    Shovkun, V. Y.; Kumakhov, M. A.

    2005-07-01

    Now the phase-contrast (PC) radiography with monochromatic synchmtron radiation sources is very promising for use in non-destructive industrial control, medical and biological X-ray imaging. Unfortunately synchrotron sources are rather expensive for laboratory practice. We are developing a phase-contrast imaging with a micro focus X-ray tube. We performed numerical calculations with Fresnel-Kirchhgoff formalism to obtain values of PC-signals taking into account polychromatic nature of X-ray radiation, a finite size of a source, and a finite resolution of a detector including spectral sensitivity of the detector. We conducted experiments with a micro focus X-ray tube to find absolute values of PC signals for some models of biological tissue and technical materials in presence of scattering X-rays that emerge from the object. By means of simple set of the experimental arrangement it is possible to obtain the phase-contrast image map of the boundaries between regions with the density difference of order ~1 g/cm3. Under experimental conditions the minimal detected PC-signal is found for the plastic fiber 45 tm in diameter. Examples ofthe X-ray PC-images of fishes, images of air bubbles and ribs, slag inclusions in joint weld of Al-Li alloy materials, and images of sapphire microspheres for cellular metallic structures are presented.

  18. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.

    2009-12-01

    The Focusing Optics x-ray Solar Imager is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager provides excellent spatial (2 arcseconds) and spectral (1~keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The foxsi project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  19. X-ray-generated ultrasonic signals - Characteristics and imaging applications

    NASA Astrophysics Data System (ADS)

    Sachse, W.; Kim, K. Y.; Pierce, W. F.

    1986-09-01

    Experiments dealing with the characterization of X-ray-generated ultrasonic signals in materials and their application to the imaging of material inhomogeneities are described. A linear relationship is established between the X-ray photon power and the generated ultrasonic signals. The directivity of the X-ray/acoustic source was found to resemble that of other thermoelastic sources. A new double-modulation measurement technique is described in which the magnitude and phase of the modulated acoustic signals are measured. Use of the technique is explored with various materials, incident beam sizes, and inclusions. The results of preliminary imaging experiments are described which were carried out with direct and double-modulated X-ray/acoustic signals. It is shown from these results that using the images generated at two modulation frequencies, identification of the spatial inhomogeneities in a specimen is possible.

  20. Combining X-Ray Imaging And Machine Vision

    NASA Astrophysics Data System (ADS)

    Wagner, Gary G.

    1988-02-01

    The use of x-rays as a light source for medical diagnosis has been around since the early 20th century. The use of x-rays as a tool in nondestructive testing (for industrial use) has been around almost as long. Photographic film has been the medium that converts the x-ray energy that it encounters into areas of light and dark depending on the amount of energy absorbed. Referring to industrial use of x-rays only, many systems have been manufactured that replaced the photographic film with a combination of x-rays, fluorescent screen, and a television camera. This type of system was mainly used as a nondestructive testing tool to inspect various products (such as tires) for internal flaws and always used an operator to make the decisions. In general, the images produced by such systems were poor in nature due to lack of contrast and noise. The improvements in digital image processing and complex algorithms have made it possible to combine machine vision and x-rays to address a whole new spectrum of applications that require automatic analysis for flaw inspection. The objective of this presentation will be to familiarize the audience with some of the techniques used to solve automatic real-time x-ray problems. References will be made to real applications in the aerospace, pharmaceutical, food, and automotive industries.

  1. Pi2 modulation of aurora as observed by all-sky TV image and magnetometers on board two geosynchronous satellites

    NASA Astrophysics Data System (ADS)

    Saka, O.; Hayashi, K.

    2007-12-01

    We analyzed the auroral event of January 24 1986 using all-sky TV images and magnetometer data from two geosynchronous satellites (Goes5 and Goes6) separated by 2 hours of local time. From those analyses we found that poleward expansion of aurora following the auroral onset by 1 min was accompanied by surface waves excited in the midnight sector. The surface waves demonstrated out-of-phase relation in the D component (dipole east) and in-phase relation in the V component (radial outward) at GOES5 and GOES6 meridians, respectively. The oscillations in V-D plane led to CCW polarizations in the dawn side of aurora and CW polarizations in the dusk side. Simultaneous observations of those polarization patterns by ground magnetometers in auroral zone suggested an FLR structure in the midnight magnetosphere. We found that auroras ignited between GOES5 and GOES6 meridians were intensified when the largest eastward and westward bending of field lines occurred in the dawn and dusk side of aurora. The latitudinal extent of auroral modulations by surface waves expanded in geomagnetic latitudes up to 70N. Surface waves excited in the midnight magnetosphere might act as possible wave energy sources for auroral acceleration regions in lower altitudes. Those surface waves may also be a driving source of slow shock that supplies kinetic energies (bulk plasma flow) directly to the acceleration regions. A slow shock model based on double adiabatic equations of state was constructed. This theoretical model showed that although slow shock cannot carry particles having pitch angle distributions that are peaked perpendicular to the field lines, slow shock carry particles having isotropic pitch angle distributions. It is supposed that magnetic mirror force is responsible for this effect.

  2. [The application of X-ray imaging in forensic medicine].

    PubMed

    Kučerová, Stěpánka; Safr, Miroslav; Ublová, Michaela; Urbanová, Petra; Hejna, Petr

    2014-07-01

    X-ray is the most common, basic and essential imaging method used in forensic medicine. It serves to display and localize the foreign objects in the body and helps to detect various traumatic and pathological changes. X-ray imaging is valuable in anthropological assessment of an individual. X-ray allows non-invasive evaluation of important findings before the autopsy and thus selection of the optimal strategy for dissection. Basic indications for postmortem X-ray imaging in forensic medicine include gunshot and explosive fatalities (identification and localization of projectiles or other components of ammunition, visualization of secondary missiles), sharp force injuries (air embolism, identification of the weapon) and motor vehicle related deaths. The method is also helpful for complex injury evaluation in abused victims or in persons where abuse is suspected. Finally, X-ray imaging still remains the gold standard method for identification of unknown deceased. With time modern imaging methods, especially computed tomography and magnetic resonance imaging, are more and more applied in forensic medicine. Their application extends possibilities of the visualization the bony structures toward a more detailed imaging of soft tissues and internal organs. The application of modern imaging methods in postmortem body investigation is known as digital or virtual autopsy. At present digital postmortem imaging is considered as a bloodless alternative to the conventional autopsy. PMID:25186776

  3. Lensless x-ray imaging in reflection geometry

    SciTech Connect

    Roy, S.; Parks, D.H.; Seu, K.A.; Turner, J.J.; Chao, W.; Anderson, E.H.; Cabrini, S.; Kevan, S.D.; Su, R.

    2011-02-03

    Lensless X-ray imaging techniques such as coherent diffraction imaging and ptychography, and Fourier transform holography can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal.

  4. Advances in photographic X-ray imaging for solar astronomy

    NASA Technical Reports Server (NTRS)

    Moses, J. Daniel; Schueller, R.; Waljeski, K.; Davis, John M.

    1989-01-01

    The technique of obtaining quantitative data from high resolution soft X-ray photographic images produced by grazing incidence optics was successfully developed to a high degree during the Solar Research Sounding Rocket Program and the S-054 X-Ray Spectrographic Telescope Experiment Program on Skylab. Continued use of soft X-ray photographic imaging in sounding rocket flights of the High Resolution Solar Soft X-Ray Imaging Payload has provided opportunities to further develop these techniques. The developments discussed include: (1) The calibration and use of an inexpensive, commercially available microprocessor controlled drum type film processor for photometric film development; (2) The use of Kodak Technical Pan 2415 film and Kodak SO-253 High Speed Holographic film for improved resolution; and (3) The application of a technique described by Cook, Ewing, and Sutton for determining the film characteristics curves from density histograms of the flight film. Although the superior sensitivity, noise level, and linearity of microchannel plate and CCD detectors attracts the development efforts of many groups working in soft X-ray imaging, the high spatial resolution and dynamic range as well as the reliability and ease of application of photographic media assures the continued use of these techniques in solar X-ray astronomy observations.

  5. Advances in photographic X-ray imaging for solar astronomy

    NASA Technical Reports Server (NTRS)

    Moses, D.; Schueller, R.; Waljeski, K.; Davis, J. M.

    1989-01-01

    The technique of obtaining quantitative data from high resolution soft X-ray photographic images produced by grazing incidence optics was successfully developed to a high degree during the AS&E Solar Research Sounding Rocket Program and the S-054 X-Ray Spectrographic Telescope Experiment Program on Skylab. Continued use of soft X-Ray photographic imaging in sounding rocket flights of the AS&E High Resolution Solar Soft X-Ray Imaging Payload has provided opportunities to further develop these techniques. The developments discussed include: (1) the calibration and use of an inexpensive, commercially available microprocessor controlled drum type film processor for photometric film development, (2) the use of Kodak Technical Pan 2415 film and Kodak SO-253 High Speed Holographic film for improved resolution, and (3) the application of a technique described by Cook, Ewing, and Sutton (1988) for determining the film characteristics curves from density histograms of the flight film. Although the superior sensitivity, noise level, and linearity of microchannel plate and CCD detectors attracts the development efforts of many groups working in soft X-ray imaging, the high spatial resolution and dynamic range as well as the reliability and ease of application of photographic media assures the continued use of these techniques in solar X-ray astronomy observations.

  6. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    SciTech Connect

    Not Available

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.

  7. Towards hard X-ray imaging at GHz frame rate

    SciTech Connect

    Wang, Zhehui; Morris, Christopher; Luo, Shengnian; Kwiatkowski, Kris K.; Kapustinsky, Jon S.

    2012-05-02

    Gigahertz (GHz) imaging using hard X-rays ({approx}> 10 keV) can be useful to high-temperature plasma experiments, as well as research using coherent photons from synchrotron radiation and X-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one X-ray photon is detected per pixel, are given. Two possible paths towards X-ray imaging at GHz frame rates using a single camera are (a) Avalanche photodiode arrays of high-Z materials and (b) Microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

  8. Towards hard x-ray imaging at GHz frame rate

    SciTech Connect

    Wang Zhehui; Morris, C. L.; Kapustinsky, J. S.; Kwiatkowski, K.; Luo, S.-N.

    2012-10-15

    Gigahertz (GHz) imaging using hard x-rays ( Greater-Than-Or-Equivalent-To 10 keV) can be useful to high-temperature plasma experiments, as well as research and applications using coherent photons from synchrotron radiation and x-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one x-ray photon is detected per pixel, are given. Two possible paths towards x-ray imaging at GHz frame rates using a single camera are: (a) avalanche photodiode arrays of high-Z materials and (b) microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

  9. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  10. X-ray properties of an anthropomorphic breast phantom for MRI and x-ray imaging

    NASA Astrophysics Data System (ADS)

    Freed, Melanie; Badal, Andreu; Jennings, Robert J.; de las Heras, Hugo; Myers, Kyle J.; Badano, Aldo

    2011-06-01

    The purpose of this study is to characterize the x-ray properties of a dual-modality, anthropomorphic breast phantom whose MRI properties have been previously evaluated. The goal of this phantom is to provide a platform for optimization and standardization of two- and three-dimensional x-ray and MRI breast imaging modalities for the purpose of lesion detection and discrimination. The phantom is constructed using a mixture of lard and egg whites, resulting in a variable, tissue-mimicking structure with separate adipose- and glandular-mimicking components. The phantom can be produced with either a compressed or uncompressed shape. Mass attenuation coefficients of the phantom materials were estimated using elemental compositions from the USDA National Nutrient Database for Standard Reference and the atomic interaction models from the Monte Carlo code PENELOPE and compared with human values from the literature. The image structure was examined quantitatively by calculating and comparing spatial covariance matrices of the phantom and patient mammography images. Finally, a computerized version of the phantom was created by segmenting a computed tomography scan and used to simulate x-ray scatter of the phantom in a mammography geometry. Mass attenuation coefficients of the phantom materials were within 20% and 15% of the values for adipose and glandular tissues, respectively, which is within the estimation error of these values. Matching was improved at higher energies (>20 keV). Tissue structures in the phantom have a size similar to those in the patient data, but are slightly larger on average. Correlations in the patient data appear to be longer than those in the phantom data in the anterior-posterior direction; however, they are within the error bars of the measurement. Simulated scatter-to-primary ratio values of the phantom images were as high as 85% in some areas and were strongly affected by the heterogeneous nature of the phantom. Key physical x-ray properties of

  11. Dilation x-ray imager a new/faster gated x-ray imager for the NIF

    SciTech Connect

    Nagel, S. R.; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Barrios, M. A.; Felker, B.; Smith, R. F.; Collins, G. W.; Jones, O. S.; Piston, K.; Raman, K. S.; Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B.; Hares, J. D.; Dymoke-Bradshaw, A. K. L.

    2012-10-15

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for {approx}7 Multiplication-Sign 10{sup 18} neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  12. Frontiers in imaging magnetism with polarized x-rays

    SciTech Connect

    Fischer, Peter

    2015-01-08

    Although magnetic imaging with polarized x-rays is a rather young scientific discipline, the various types of established x-ray microscopes have already taken an important role in state-of-the-art characterization of the properties and behavior of spin textures in advanced materials. The opportunities ahead will be to obtain in a unique way indispensable multidimensional information of the structure, dynamics and composition of scientifically interesting and technologically relevant magnetic materials.

  13. Soft x-ray imaging using Polaroid Land films

    SciTech Connect

    Wong, C.S.; Choi, P.; Deeney, C.

    1988-02-01

    It is demonstrated in this note that optical Polaroid Land films can be used as a convenient detector in the soft x-ray region. The performance of Polaroid 667 film has been found to be comparable to that of the Kodak direct exposure film (DEF) for soft x-ray pinhole imaging. By a suitable choice of multiple filters, qualitative information about a dense plasma has been obtained.

  14. X-ray imaging and microspectroscopy of plants and fungi.

    SciTech Connect

    Yun, W.; Pratt, S. T.; Miller, R. M.; Cai, Z.; Hunter, D. B.; Jarstfer, A. G.; Kemner, K. M.; Lai, B.; Lee, H.-R.; Legnini, D. G.; Rodrigues, W.; Smith, C. I.; Univ. of Georgia; LeTourneau Univ.

    1998-01-01

    X-ray fluorescence microscopy and microspectroscopy with micrometer spatial resolution and unprecedented capabilities for the study of biological and environmental samples are reported. These new capabilities are a result of both the combination of high-brilliance synchrotron radiation and high-performance X-ray microfocusing optics and the intrinsic advantages of X-rays for elemental mapping and chemical-state imaging. In this paper, these capabilities are illustrated by experimental results on hard X-ray phase-contrast imaging, X-ray fluorescence (XRF) imaging and microspectroscopy of mycorrhizal plant roots and fungi in their natural hydrated state. The XRF microprobe is demonstrated by the simultaneous mapping of the elemental distributions of P, S, K, Ca, Mn, Fe, Ni, Cu and Zn with a spatial resolution of approximately 1 x 3 {micro}m and with an elemental sensitivity of approximately 500 p.p.b. Microspectroscopy with the same spatial resolution is demonstrated by recording near-edge X-ray absorption (XANES) spectra of Mn at a concentration of approximately 3 p.p.m.

  15. Coherent diffraction imaging using focused hard X-rays

    NASA Astrophysics Data System (ADS)

    Kim, Sunam; Kim, Sangsoo; Lee, Su Yong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Marathe, Shashidhara; Song, Changyong; Gallagher-Jones, Marcus; Kang, Hyon Chol

    2016-05-01

    A quantitative height profile image of a silicon nano-trench structure was obtained via coherent diffraction imaging (CDI) utilizing focused X-rays at a photon energy of 5.5 keV. The ability to optimize the spatial coherence and the photon flux density of a focused X-ray beam was the key technique for achieving such technical progress at a given X-ray photon flux. This was achieved by investigating the tunability of the focused beam's optical properties and performing a CDI experiment with the focused X-rays. The relationship between the focused X-rays' optical properties ( e.g., photon flux density and spatial coherence length) and the incident beam's size, which can be tuned by adjusting the slits in front of the Fresnel zone plate (FZP) was elucidated. We also obtained a quantitative image of a nano-trench sample produced via the reconstruction process of CDI, which utilizes carefully tuned, focused X-rays.

  16. GEO-X: GEOspace X-ray imager

    NASA Astrophysics Data System (ADS)

    Ezoe, Yuichiro

    We introduce a soft X-ray mission GEO-X (GEOspace X-ray imager), in order to image Earth’s magnetosphere. The aimed launch year of GEO-X is around 2020. A wide-field of view (10 deg x 10 deg) of the soft X-ray imaging spectrometer onboard GEO-X enables us to visualize location, size and shape of the magneotopause, cusp and bowshock, as well as their responses to solar wind condition. Recent observations with Earth-orbiting X-ray astronomy satellites have revealed time-variable X-ray emission from Earth’s magnetosphere via charge exchange reaction between solar wind and exospheric neutrals (e.g., Snowden et al. 1994, ApJ, Fujimoto et al. 2007 PASJ, Cater et al. 2011 A&A, Ezoe et al. 2011 ASR). The X-ray intensity is expected to be enhanced at magnetospheric boundaries such as magnetosheath and cusps because of high solar wind and exospheric neutral densities (Robertson et al. 2006, JGR). Therefore, the X-ray emission can be a new tool to image Earth’s magnetosphere with high time resolution in principle. However, narrow field of view of the instruments and unoptimized satellites’ orbit hinder us from using this emission for imaging of Earth’s magnetosphere. GEO-X promises to open a new window of the X-ray imaging and to provide yet another new and complementary tool to characterize response of Earth’s magnetosphere to solar wind condition. A field of view will cover 5 Re x 5 Re, a image resolution of <5 arcmin will correspond to <0.1 Re and a grasp of >10 cm(2) deg(2) at 0.6 keV will allow high sensitivity detection of time variable X-ray emission with the time resolution of <1 hr for bright X-ray events. In this presentation, we will present concept and status of the GEO-X mission.

  17. Segmentation and image navigation in digitized spine x rays

    NASA Astrophysics Data System (ADS)

    Long, L. Rodney; Thoma, George R.

    2000-06-01

    The National Library of Medicine has archived a collection of 17,000 digitized x-rays of the cervical and lumbar spines. Extensive health information has been collected on the subjects of these x-rays, but no information has been derived from the image contents themselves. We are researching algorithms to segment anatomy in these images and to derive from the segmented data measurements useful for indexing this image set for characteristics important to researchers in rheumatology, bone morphometry, and related areas. Active Shape Modeling is currently being investigated for use in location and boundary definition for the vertebrae in these images.

  18. Imaging cochlear soft tissue displacement with coherent x-rays

    NASA Astrophysics Data System (ADS)

    Rau, Christoph; Richter, Claus-Peter

    2015-10-01

    At present, imaging of cochlear mechanics at mid-cochlear turns has not been accomplished. Although challenging, this appears possible with partially coherent hard x-rays. The present study shows results from stroboscopic x-ray imaging of a test object at audio frequencies. The vibration amplitudes were quantified. In a different set of experiments, an intact and calcified gerbil temporal bone was used to determine displacements of the reticular lamina, tectorial membrane, and Reissner’s membrane with the Lucas and Kanade video flow algorithm. The experiments validated high frequency x-ray imaging and imaging in a calcified cochlea. The present work is key for future imaging of cochlear micromechanics at a high spatial resolution.

  19. Simultaneous dual-energy X-ray stereo imaging

    PubMed Central

    Mokso, Rajmund; Oberta, Peter

    2015-01-01

    Dual-energy or K-edge imaging is used to enhance contrast between two or more materials in an object and is routinely realised by acquiring two separate X-ray images each at different X-ray wavelength. On a broadband synchrotron source an imaging system to acquire the two images simultaneously was realised. The single-shot approach allows dual-energy and stereo imaging to be applied to dynamic systems. Using a Laue–Bragg crystal splitting scheme, the X-ray beam was split into two and the two beam branches could be easily tuned to either the same or to two different wavelengths. Due to the crystals’ mutual position, the two beam branches intercept each other under a non-zero angle and create a stereoscopic setup. PMID:26134814

  20. Soft x-ray imager onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Tsunemi, Hiroshi; Hayashida, Kiyoshi; Nakajima, Hiroshi; Tsuru, Takeshi Go; Tanaka, Takaaki; Dotani, Tadayasu; Ozaki, Masayuki; Natsukari, Chikara; Tomida, Hiroshi; Hiraga, Junko S.; Kohmura, Takayoshi; Murakami, Hiroshi; Mori, Koji; Yamauchi, Makoto; Hatsukade, Isamu; Bamba, Aya

    2013-09-01

    The Soft X-ray Imager, SXI, is an X-ray CCD camera onboard the ASTRO-H satellite to be launched in 2015. ASTRO-H will carry two types of soft X-ray detector. The X-ray calorimeter, SXS, has an excellent energy resolution with a narrow field of view while the SXI has a medium energy resolution with a large field of view, 38' square. We employ 4 CCDs of P-channel type with a depletion layer of 200 μm. Having passed the CDR, we assemble the FM so that we can join the final assembly. We present here the SXI status and its expected performance in orbit.

  1. Image restoration of line-scanned x-ray images

    NASA Astrophysics Data System (ADS)

    Haff, Ron P.; Schatzki, Thomas F.

    1997-12-01

    Six specific defects in images captured on line-scan x-ray machines are discussed and software corrections are addressed. The corrections are intended to optimize the machine for the inspection of food products for hidden defects or contaminants. The defects include effects due to time constants in the preamplifier, decays (short and long term) of the phosphor in the detectors, gaps in the images at detector module boundaries, analog to digital converter clipping of the photodiode signal, varying response between detectors to the low-energy end of the incident energy spectrum, and x-ray scattering. Of these, all but the long-term phosphor decay and scattering are corrected with software. While the long-term phosphor decay is of little consequence for food inspection, effects due to scattering are serious and must be addressed in the design of the detectors. The restored image is more suitable for image processing and thus for real-time sorting than the original image.

  2. Biological imaging by soft x-ray diffraction microscopy

    DOE PAGESBeta

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; et al

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore » microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  3. Biological imaging by soft x-ray diffraction microscopy

    SciTech Connect

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; Sayre, D.

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  4. Ancient administrative handwritten documents: X-ray analysis and imaging

    PubMed Central

    Albertin, F.; Astolfo, A.; Stampanoni, M.; Peccenini, Eva; Hwu, Y.; Kaplan, F.; Margaritondo, G.

    2015-01-01

    Handwritten characters in administrative antique documents from three centuries have been detected using different synchrotron X-ray imaging techniques. Heavy elements in ancient inks, present even for everyday administrative manuscripts as shown by X-ray fluorescence spectra, produce attenuation contrast. In most cases the image quality is good enough for tomography reconstruction in view of future applications to virtual page-by-page ‘reading’. When attenuation is too low, differential phase contrast imaging can reveal the characters from refractive index effects. The results are potentially important for new information harvesting strategies, for example from the huge Archivio di Stato collection, objective of the Venice Time Machine project. PMID:25723946

  5. The Einstein All-Sky IPC slew survey

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Plummer, David; Fabbiano, G.

    1989-01-01

    The construction of the Einstein All-Sky Imaging Proportional Counter (IPC) slew survey is considered. It contains approximately 1000 sources between 10(exp -12) and 10(exp -10) erg/sq cm/s with a concentration toward the ecliptic poles and away from the galactic plane. Several sizable samples of bright soft X-ray selected objects for follow-up ROSAT and ASTRO-D observations and statistical study are presented. The survey source list is expected to be available by late 1989. Both paper and remote access online data base versions are to be available. An identification program is considered.

  6. Dynamic x-ray imaging of laser-driven nanoplasmas

    NASA Astrophysics Data System (ADS)

    Fennel, Thomas

    2016-05-01

    A major promise of current x-ray science at free electron lasers is the realization of unprecedented imaging capabilities for resolving the structure and ultrafast dynamics of matter with nanometer spatial and femtosecond temporal resolution or even below via single-shot x-ray diffraction. Laser-driven atomic clusters and nanoparticles provide an ideal platform for developing and demonstrating the required technology to extract the ultrafast transient spatiotemporal dynamics from the diffraction images. In this talk, the perspectives and challenges of dynamic x-ray imaging will be discussed using complete self-consistent microscopic electromagnetic simulations of IR pump x-ray probe imaging for the example of clusters. The results of the microscopic particle-in-cell simulations (MicPIC) enable the simulation-assisted reconstruction of corresponding experimental data. This capability is demonstrated by converting recently measured LCLS data into a ultrahigh resolution movie of laser-induced plasma expansion. Finally, routes towards reaching attosecond time resolution in the visualization of complex dynamical processes in matter by x-ray diffraction will be discussed.

  7. Analyser-based x-ray imaging for biomedical research

    NASA Astrophysics Data System (ADS)

    Suortti, Pekka; Keyriläinen, Jani; Thomlinson, William

    2013-12-01

    Analyser-based imaging (ABI) is one of the several phase-contrast x-ray imaging techniques being pursued at synchrotron radiation facilities. With advancements in compact source technology, there is a possibility that ABI will become a clinical imaging modality. This paper presents the history of ABI as it has developed from its laboratory source to synchrotron imaging. The fundamental physics of phase-contrast imaging is presented both in a general sense and specifically for ABI. The technology is dependent on the use of perfect crystal monochromator optics. The theory of the x-ray optics is developed and presented in a way that will allow optimization of the imaging for specific biomedical systems. The advancement of analytical algorithms to produce separate images of the sample absorption, refraction angle map and small-angle x-ray scattering is detailed. Several detailed applications to biomedical imaging are presented to illustrate the broad range of systems and body sites studied preclinically to date: breast, cartilage and bone, soft tissue and organs. Ultimately, the application of ABI in clinical imaging will depend partly on the availability of compact sources with sufficient x-ray intensity comparable with that of the current synchrotron environment.

  8. Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Marshall, Herman; ODell, Stephen L.; Pavlov, George; Ramsey, Brian; Romani, Roger

    2014-01-01

    Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.

  9. Automatic focus algorithms for TDI X-Ray image reconstruction

    NASA Astrophysics Data System (ADS)

    Dörr, J.; Rosenbaum, M.; Sauer-Greff, W.; Urbansky, R.

    2012-09-01

    In food industry, most products are checked by X-rays for contaminations. These X-ray machines continuously scan the product passing through. To minimize the required X-ray power, a Time, Delay and Integration (TDI) CCD-sensor is used to capture the image. While the product moves across the sensor area, the X-ray angle changes during the pass. As a countermeasure, adjusting the sensor shift speed on a single focal plane of the product can be selected. However, the changing angle result in a blurred image in dependance to the thickness of the product. This so-called ''laminographic effect'' can be compensated individually for one plane by inverse filtering. As the plane of contamination is unknown, the blurred image will be inversely filtered for different planes, but only one of these images shows the correctly focussed object. If the correct image can be found, the plane containing the contamination is identified. In this contribution we demonstrate how the correctly focussed images can be found by analyzing the images of all planes. Different characteristics for correctly and incorrectly focussed planes like sharpness, number of objects and edges are investigated by using image processing algorithms.

  10. Lensless imaging of nanoporous glass with soft X-rays

    DOE PAGESBeta

    Turner, Joshua J.; Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Jacobsen, Chris

    2013-06-01

    Coherent soft X-ray diffraction has been used to image nanoporous glass structure in two dimensions using different methods. The merit of the reconstructions was judged using a new method of Fourier phase correlation with a final, refined image. The porous structure was found to have a much larger average size then previously believed.

  11. Model-based segmentation of medical x-ray images

    NASA Astrophysics Data System (ADS)

    Hoare, Frederick; de Jager, Gerhard

    1994-03-01

    This paper discusses the methods used to model the structure of x-ray images of the human body and the individual organs within the body. A generic model of a region is built up from x-ray images to aid in automatic segmentation. By using the ribs from a chest x-ray image as an example, it is shown how models of the different organs can be generated. The generic model of the chest region is built up by using a priori knowledge of the physical structure of the human body. The models of the individual organs are built up by using knowledge of the structure of the organs as well as other information contained within each image. Each image is unique and therefore information from the region surrounding the organs in the image has to be taken into account when adapting the generic model to individual images. Results showing the application of these techniques to x-ray images of the chest region, the labelling of individual organs, and the generation of models of the ribs are presented.

  12. Are human peripheral nerves sensitive to X-ray imaging?

    PubMed

    Scopel, Jonas Francisco; de Souza Queiroz, Luciano; O'Dowd, Francis Pierce; Júnior, Marcondes Cavalcante França; Nucci, Anamarli; Hönnicke, Marcelo Gonçalves

    2015-01-01

    Diagnostic imaging techniques play an important role in assessing the exact location, cause, and extent of a nerve lesion, thus allowing clinicians to diagnose and manage more effectively a variety of pathological conditions, such as entrapment syndromes, traumatic injuries, and space-occupying lesions. Ultrasound and nuclear magnetic resonance imaging are becoming useful methods for this purpose, but they still lack spatial resolution. In this regard, recent phase contrast x-ray imaging experiments of peripheral nerve allowed the visualization of each nerve fiber surrounded by its myelin sheath as clearly as optical microscopy. In the present study, we attempted to produce high-resolution x-ray phase contrast images of a human sciatic nerve by using synchrotron radiation propagation-based imaging. The images showed high contrast and high spatial resolution, allowing clear identification of each fascicle structure and surrounding connective tissue. The outstanding result is the detection of such structures by phase contrast x-ray tomography of a thick human sciatic nerve section. This may further enable the identification of diverse pathological patterns, such as Wallerian degeneration, hypertrophic neuropathy, inflammatory infiltration, leprosy neuropathy and amyloid deposits. To the best of our knowledge, this is the first successful phase contrast x-ray imaging experiment of a human peripheral nerve sample. Our long-term goal is to develop peripheral nerve imaging methods that could supersede biopsy procedures. PMID:25757086

  13. Are Human Peripheral Nerves Sensitive to X-Ray Imaging?

    PubMed Central

    Scopel, Jonas Francisco; de Souza Queiroz, Luciano; O’Dowd, Francis Pierce; Júnior, Marcondes Cavalcante França; Nucci, Anamarli; Hönnicke, Marcelo Gonçalves

    2015-01-01

    Diagnostic imaging techniques play an important role in assessing the exact location, cause, and extent of a nerve lesion, thus allowing clinicians to diagnose and manage more effectively a variety of pathological conditions, such as entrapment syndromes, traumatic injuries, and space-occupying lesions. Ultrasound and nuclear magnetic resonance imaging are becoming useful methods for this purpose, but they still lack spatial resolution. In this regard, recent phase contrast x-ray imaging experiments of peripheral nerve allowed the visualization of each nerve fiber surrounded by its myelin sheath as clearly as optical microscopy. In the present study, we attempted to produce high-resolution x-ray phase contrast images of a human sciatic nerve by using synchrotron radiation propagation-based imaging. The images showed high contrast and high spatial resolution, allowing clear identification of each fascicle structure and surrounding connective tissue. The outstanding result is the detection of such structures by phase contrast x-ray tomography of a thick human sciatic nerve section. This may further enable the identification of diverse pathological patterns, such as Wallerian degeneration, hypertrophic neuropathy, inflammatory infiltration, leprosy neuropathy and amyloid deposits. To the best of our knowledge, this is the first successful phase contrast x-ray imaging experiment of a human peripheral nerve sample. Our long-term goal is to develop peripheral nerve imaging methods that could supersede biopsy procedures. PMID:25757086

  14. Synchrotron X-ray imaging applied to solar photovoltaic silicon

    NASA Astrophysics Data System (ADS)

    Lafford, T. A.; Villanova, J.; Plassat, N.; Dubois, S.; Camel, D.

    2013-03-01

    Photovoltaic (PV) cell performance is dictated by the material of the cell, its quality and purity, the type, quantity, size and distribution of defects, as well as surface treatments, deposited layers and contacts. A synchrotron offers unique opportunities for a variety of complementary X-ray techniques, given the brilliance, spectrum, energy tunability and potential for (sub-) micron-sized beams. Material properties are revealed within in the bulk and at surfaces and interfaces. X-ray Diffraction Imaging (X-ray Topography), Rocking Curve Imaging and Section Topography reveal defects such as dislocations, inclusions, misorientations and strain in the bulk and at surfaces. Simultaneous measurement of micro-X-Ray Fluorescence (μ-XRF) and micro-X-ray Beam Induced Current (μ-XBIC) gives direct correlation between impurities and PV performance. Together with techniques such as microscopy and Light Beam Induced Current (LBIC) measurements, the correlation between structural properties and photovoltaic performance can be deduced, as well as the relative influence of parameters such as defect type, size, spatial distribution and density (e.g [1]). Measurements may be applied at different stages of solar cell processing in order to follow the evolution of the material and its properties through the manufacturing process. Various grades of silicon are under study, including electronic and metallurgical grades in mono-crystalline, multi-crystalline and mono-like forms. This paper aims to introduce synchrotron imaging to non-specialists, giving example results on selected solar photovoltaic silicon samples.

  15. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.; Tajima, H.

    2010-05-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  16. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Krucker, Sam; Christe, Steven; Glesener, Lindsay; McBride, Steve; Turin, Paul; Glaser, David; Saint-Hilaire, Pascal; Delory, Gregory; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Terada, Yukikatsu; Ishikawa, Shin-Nosuke; Kokubun, Motohide; Saito, Shinya; Takahashi, Tadayuki; Watanabe, Shin; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Masuda, Satoshi; Minoshima, Takashi; Shomojo, Masumi

    2009-08-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  17. Thin scintillators for ultrafast hard X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Barnes, Cris W.; Kapustinsky, Jon S.; Morris, Chris L.; Nelson, Ron O.; Yang, Fan; Zhang, Liyuan; Zhu, Ren-Yuan

    2015-05-01

    A multilayer thin-scintillator concept is described for ultrafast imaging. The individual layer thickness is determined by the spatial resolution and light attenuation length, the number of layers is determined by the overall efficiency. By coating the scintillators with a high quantum-efficiency photocathode, single X-ray photon detection can be achieved using fast scintillators with low light yield. The fast, efficient sensors, when combined with MCP and novel nanostructed electron amplification schemes, is a possible way towards GHz hard X-ray cameras for a few frames of images.

  18. Advantages of monochromatic x-rays for imaging

    NASA Astrophysics Data System (ADS)

    Hoheisel, M.; Lawaczeck, R.; Pietsch, H.; Arkadiev, V.

    2005-04-01

    The contrast of X-ray imaging depends on the radiation energy and acquires its maximum value at a certain optimum energy typical for the object under investigation. Usually, higher energies result in reduced contrast, lower energies are absorbed in the object thus having a smaller probability of reaching the detector. Therefore, broad X-ray spectra contain non-optimal quanta to a large extent and deliver images with deteriorated contrast. Since investigations with monochromatic X-rays using synchrotrons are too complex and expensive for routine diagnostic imaging procedures, we propose a simpler approach. A conventional mammography system (Siemens Mammomat 300) with an X-ray tube with a molybdenum anode was supplemented with an X-ray HOPG monochromator (HOPG = Highly Oriented Pyrolytic Graphite) and an exit slit selecting those rays fulfilling Bragg"s condition. The detector is a CCD (Thales TH9570), 4092 x 200 pixels, 54 μm in size. At this slot-scan setup1, measurements have been carried out at 17.5 keV as well as with a polychromatic spectrum with 35 kV tube voltage. The modulation transfer function (MTF) and the detective quantum efficiency (DQE) have been determined from images of a lead bar pattern and flat-field images. Both MTF and DQE depend on orientation (scan or detector direction) for the 17.5 keV monochromatic case. Above 3 mm-1 the DQE values are smaller than those for polychromatic radiation. The contrast yielded by foils of different materials (Al, Cu, Y, Ag) has been studied. In all cases the monochromatic X-rays give rise to about twice the contrast of a polychromatic spectrum.

  19. The High Energy X-ray Imager Technology (HEXITEC) for Solar Hard X-ray Observations

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Shih, Albert Y.; Gaskin, Jessica; Wilson-Hodge, Colleen; Seller, Paul; Wilson, Matthew

    2015-04-01

    High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For current high resolution X-ray mirrors, the HPD is about 25 arcsec. Over a 6-m focal length this converts to 750 µm, the optimum pixel size is around 250 µm. Annother requirement are that the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage. For solar observations, the ability to handle high counting rates is also extremely desirable. The Rutherford Appleton Laboratory (RAL) in the UK has been developing the electronics for such a detector. Dubbed HEXITEC, for High Energy X-Ray Imaging Technology, this Application Specific Integrated Circuit (ASIC), can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT), to create a fine (250 µm pitch) HXR detector. The NASA Marshall Space Flight CenterMSFC and the Goddard Space Flight Center (GSFC) has been working with RAL over the past few years to develop these detectors to be used with HXR focusing telescopes. We present on recent results and capabilities as applied to solar observations.

  20. Imaging magnetic structures with a transmission X-ray microscope

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Eimüller, T.; Schütz, G.; Guttmann, P.; Schmahl, G.; Bayreuther, G.

    2000-05-01

    The X-ray magnetic circular dichroism (X-MCD), i.e., the dependence of the absorption of circularly polarized X-rays on the magnetization of the absorber exhibits at L-edges of transition metals values up to 25%. This can serve as a huge magnetic contrast mechanism in combination with a transmission X-ray microscope (TXM) to image magnetic domains providing a lateral resolution down to about 30 nm. The inherent element-specificity, the possibility to record images in varying external fields within a complete hysteresis loop, the relation of the contrast to local magnetic spin and orbital moments, etc. demonstrate the unique applicability to study the magnetic domain structure in current technical relevant systems like magneto-optics for high density storage media, multilayers for GMR applications or nanostructures for MRAM technology.

  1. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect

    Gamboa, E.J.; Huntington, C.M.; Trantham, M.R.; Keiter, P.A; Drake, R.P.; Montgomery, David; Benage, John F.; Letzring, Samuel A.

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  2. The Imaging X-Ray Polarimetry Explorer (IXPE)

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Ramsey, Brian; O’Dell, Stephen; Tennant, Allyn; Elsner, Ronald; Soffita, Paolo; Bellazzini, Ronaldo; Costa, Enrico; Kolodziejczak, Jeffery; Kaspi, Victoria; Mulieri, Fabio; Marshall, Herman; Matt, Giorgio; Romani, Roger

    2016-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is an exciting international collaboration for a scientific mission that dramatically brings together the unique talents of the partners to expand observation space by simultaneously adding polarization measurements to the array of source properties currently measured (energy, time, and location). IXPE uniquely brings to the table polarimetric imaging. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially systems under extreme physical conditions-such as neutron stars and black holes. Polarization singularly probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. Hence, IXPE complements all other investigations in high-energy astrophysics by adding important and relatively unexplored information to the parameter space for studying cosmic X-ray sources and processes, as well as for using extreme astrophysical environments as laboratories for fundamental physics.

  3. XIPE The X-ray Imaging Polarimetry Explorer

    NASA Astrophysics Data System (ADS)

    Soffitta, Paolo

    2016-07-01

    XIPE (the X-ray Imaging Polarimetry Explorer) is now in the study phase for ESA M4 down-selection in mid-2017. XIPE will be operated as a conventional X-ray observatory but providing polarimetry simultaneously to the usual imaging, temporal and spectral information. 75 % of the time will be available through a competitive Guest Observer Program This is made possible by its unique payload configuration consisting of three GPDs at the focus of three large, albeit low-weight, X-ray telescopes and fitting in the Vega launcher. In this talk I will review the major aspects involved with this kind of measurement, the scientific target, the mission and payload profile of XIPE.

  4. Imaging X-Ray Polarimeter for Solar Flares (IXPS)

    NASA Technical Reports Server (NTRS)

    Hosack, Michael; Black, J. Kevin; Deines-Jones, Philip; Dennis, Brian R.; Hill, Joanne E.; Jahoda, Keith; Shih, Albert Y.; Urba, Christian E.; Emslie, A. Gordon

    2011-01-01

    We describe the design of a balloon-borne Imaging X-ray Polarimeter for Solar flares (IX PS). This novel instrument, a Time Projection Chamber (TPC) for photoelectric polarimetry, will be capable of measuring polarization at the few percent level in the 20-50 keV energy range during an M- or X class flare, and will provide imaging information at the approx.10 arcsec level. The primary objective of such observations is to determine the directivity of nonthermal high-energy electrons producing solar hard X-rays, and hence to learn about the particle acceleration and energy release processes in solar flares. Secondary objectives include the separation of the thermal and nonthermal components of the flare X-ray emissions and the separation of photospheric albedo fluxes from direct emissions.

  5. X-ray Images of Rocket-Triggered Lightning (Invited)

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.; Schaal, M.; Rassoul, H. K.; Uman, M. A.; Jordan, D. M.; Hill, J. D.

    2010-12-01

    We report the first, high-time resolution images of the x-ray emissions from lightning, made at the UF/Florida Tech International Center for Lightning Research and Testing (ICLRT). The images were taken at a rate of 10 million frames per second using a new pinhole-type camera, located 44-m from rocket-and-wire-triggered lightning. The camera, which consists of 30 NaI/photomultiplier tube detectors, was pointed 50 m above the ground over the rocket-launcher used to trigger lightning. The field of view of the camera was ±38° in both the vertical and horizontal directions with an angular resolution of about 14°. During the summer of 2010, several triggered lightning flashes were observed by the x-ray camera. For these flashes, the lightning channels were clearly visible in the x-ray emissions. Furthermore, as the lightning dart leaders propagated downward to ground, as measured by high speed optical cameras, the x-ray sources were also observed to descend at the same speed, demonstrating that the lightning dart leader was the source of the x-ray emission. Overall, these results provide new insight into the production of energetic radiation and the propagation and attachment of lightning, all of which remain poorly understood.

  6. RELEVANT ASPECTS OF MEDIUM-SCALE TIDs RELATED WITH MIDLATITUDES SPREAD- F OBSERVED BY ALL-SKY IMAGING SYSTEM IN THE SOUTHERN HEMISPHERE OVER TWO FULL SOLAR CYCLES

    NASA Astrophysics Data System (ADS)

    Pimenta, A. A.

    2009-12-01

    Using ground-based measurements we investigate the occurrence of medium-scale TIDs (MSTIDs) in the OI 630 nm nightglow emission all-sky images in the Brazilian low latitudes region related with midlatitude Spread F, during over two full solar cycles. The OI 630 nm images obtained during these periods show thermospheric dark band structures (MSTIDs) in low latitudes region propagating from southeast to northwest. These dark patches moved with average speed of about 50-200 m/s. Only during low solar activity period (LSA), ascending solar activity period (ASA) and descending solar activity period the DBS occurrences were observed in the OI630 nm nightglow emission all-sky images. However, during high solar activity (HAS) we didn’t observe the DBS in the all-sky images. In addition, ionospheric data over two stations in Brazil, one at the magnetic equator (São Luís) and the other close to the southern crest of the equatorial ionization anomaly (Cachoeira Paulista) were used to study this kind of structures during high and low solar activity periods. It should be pointed out that these thermospheric/ionospheric events are not related to geomagnetic disturbed conditions. In this work, we present and discuss this phenomenon in the Brazilian sector over two full solar cycles under different solar activity conditions. A possible mechanism for generation of these dark band structures is presented.

  7. Phase contrast imaging with coherent high energy X-rays

    SciTech Connect

    Snigireva, I.

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  8. Dose optimization in pediatric cardiac x-ray imaging

    SciTech Connect

    Gislason, Amber J.; Davies, Andrew G.; Cowen, Arnold R.

    2010-10-15

    Purpose: The aim of this research was to explore x-ray beam parameters with intent to optimize pediatric x-ray settings in the cardiac catheterization laboratory. This study examined the effects of peak x-ray tube voltage (kVp) and of copper (Cu) x-ray beam filtration independently on the image quality to dose balance for pediatric patient sizes. The impact of antiscatter grid removal on the image quality to dose balance was also investigated. Methods: Image sequences of polymethyl methacrylate phantoms approximating chest sizes typical of pediatric patients were captured using a modern flat-panel receptor based x-ray imaging system. Tin was used to simulate iodine-based contrast medium used in clinical procedures. Measurements of tin detail contrast and flat field image noise provided the contrast to noise ratio. Entrance surface dose (ESD) and effective dose (E) measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose, which evaluated the dose efficiency of the x-ray parameters investigated. The kVp, tube current (mA), and pulse duration were set manually by overriding the system's automatic dose control mechanisms. Images were captured with 0, 0.1, 0.25, 0.4, and 0.9 mm added Cu filtration, for 50, 55, 60, 65, and 70 kVp with the antiscatter grid in place, and then with it removed. Results: For a given phantom thickness, as the Cu filter thickness was increased, lower kVp was favored. Examining kVp alone, lower values were generally favored, more so for thinner phantoms. Considering ESD, the 8.5 cm phantom had the highest FOM at 50 kVp using 0.4 mm of Cu filtration. The 12 cm phantom had the highest FOM at 55 kVp using 0.9 mm Cu, and the 16 cm phantom had highest FOM at 55 kVp using 0.4 mm Cu. With regard to E, the 8.5 and 12 cm phantoms had the highest FOM at 50 kVp using 0.4 mm of Cu filtration, and the 16 cm phantom had the highest FOM at 50 kVp using 0.25 mm Cu. Antiscatter grid removal improved the FOM for a given set of x-ray

  9. Gravity wave activity observed in the mesosphere and ionosphere on September 16th 2015 by an all-sky imager and dTEC maps over Brazil

    NASA Astrophysics Data System (ADS)

    Wrasse, Cristiano M.; Gobbi, Delano; Buriti, Ricardo; Bageston, José Valentin; Medeiros, Amauri; Paulino, Igo; Cosme Alexandre Figueiredo, M.; Takahashi, Hisao; Azambuja, Rodrigo

    2016-07-01

    All-sky imager was used to observe the wave activity in the mesosphere and a ground network of GPS receivers were used to make detrended Total Electron Content (dTEC) maps to monitor the ionosphere. The wave activity was observed on September 16th 2015 over the southeast region in Brazil. The gravity wave characteristics and the atmospheric conditions for wave propagation will be presented and discussed. The gravity wave source was associated with strong tropospheric convection.

  10. Detecting X-ray Emission from Cometary Atmospheres Using the Suzaku X-ray Imaging Spectrometer

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Bodewits, D; Porter, F S; Ezoe, Y; Hamaguchi, K; Hanya, M; Itoh, M; Kilbourne, C A; Kohmura, T; Maeda, Y; Negoro, H; Tsuboi, Y; Tsunemi, H; Urata, Y

    2009-11-16

    The Suzaku X-ray imaging spectrometer has been used to observe the X-ray emission from comets 73P/Schwassmann-Wachmann 3C and 8P/Tuttle. Comet 73P/Schwassmann-Wachmann 3C was observed during May and June of 2006, while it was near perihelion and passed within 0.1 AU of the Earth. Comet 8P/Tuttle was observed during January of 2008 when it was at its closest approach to the Earth at 0.25 AU, and again near perihelion at a distance of 0.5 Au from Earth. In the case of comet 73P/Schwassmann Wachmann 3C, the XIS spectra show line emission from highly charged oxygen and carbon ions as well as emission from what is most likely L-shell transitions from Mg, Si, and S ions. This line emission is caused by charge exchange recombination between solar wind ions and cometary neutrals, and can be used as a diagnostic of the solar wind. Here we present some of the results of the observation of the comet 73P/Schwassmann-Wachmann 3C.

  11. Hard X-ray Imaging Polarimeter for PolariS

    NASA Astrophysics Data System (ADS)

    Hayashida, Kiyoshi

    2016-07-01

    We present the current status of development of hard X-ray imaging polarimeters for the small satellite mission PolariS. The primary aim of PolariS is hard X-ray (10-80keV) polarimetry of sources brighter than 10mCrab. Its targets include stellar black holes, neutron stars, super nova remnants, and active galactic nuclei. This aim is enabled with three sets of hard X-ray telescopes and imaging polarimeters installed on their focal planes. The imaging polarimeter consists of two kinds of (plastic and GSO) scintillator pillars and multi-anode photo multiplier tubes (MAPMTs). When an X-ray photon incident to a plastic scintillator cause a Compton scattering, a recoiled electron makes a signal on the corresponding MAPMT pixel, and a scatted X-rays absorbed in surrounding GSO makes another signal. This provide information on the incident position and the scattered direction. The latter information is employed for polarimetry. For 20keV X-ray incidence, the recoiled electron energy is as low as 1keV. Thus, the performance of this imaging polarimeter is primarily determined by the efficiency that we can detect low level signal of recoiled electrons generated in plastic scintillators. The efficiency could depend on multiple factors, e.g. quenching of light in scintillators, electric noise, pedestal error, cross talk of the lights to adjacent MAPMT pixels, MAPMT dark current etc. In this paper, we examined these process experimentally and optimize the event selection algorithm, in which single photo-electron events are selected. We then performed an X-ray (10-80keV monochromatic polarized beam) irradiation test at a synchrotron facility. The modulation contrast (M) is about 60% in 15-80keV range. We succeeded in detecting recoiled electrons for 10-80keV X-ray incidence, though detection efficiency is lower at lowest end of the energy range. Expected MDP will also be shown.

  12. Infrared Radiography: Modeling X-ray Imaging Without Harmful Radiation

    NASA Astrophysics Data System (ADS)

    Zietz, Otto; Mylott, Elliot; Widenhorn, Ralf

    2015-01-01

    Planar x-ray imaging is a ubiquitous diagnostic tool and is routinely performed to diagnose conditions as varied as bone fractures and pneumonia. The underlying principle is that the varying attenuation coefficients of air, water, tissue, bone, or metal implants within the body result in non-uniform transmission of x-ray radiation. Through the detection of transmitted radiation, the spatial organization and composition of materials in the body can be ascertained. In this paper, we describe an original apparatus that teaches these concepts by utilizing near infrared radiation and an up-converting phosphorescent screen to safely probe the contents of an opaque enclosure.

  13. Diffraction enhanced X-ray imaging of mammals crystalline lens

    NASA Astrophysics Data System (ADS)

    Antunes, A.; Hönnicke, M. G.; Safatle, A. M. V.; Cusatis, C.; Moraes Barros, P. S.; Morelhão, S. L.

    2005-08-01

    Crystalline lenses are transparent biological materials where the organization of the lens fibers can also be affected by changes at molecular level, and therefore the structure and morphology of the tissue can be correlated to the loss of transparency of the lens. In this work, internal structure of mammal lenses regarding the long-range ordering of the fibers are investigated by diffraction enhanced X-ray imaging (DEI) radiography. Moreover, DEI and absorption X-ray synchrotron radiographs for healthy and cataractous crystalline lenses are compared. Significant differences in healthy and cataractous crystalline lenses are observed.

  14. Imaging Microscope For "Water-Window" X Rays

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    1991-01-01

    Proposed microscope operates in "water-window" part of x-ray spectrum. Contains spherical-mirror substrates coated with multiple thin layers of material exhibiting Bragg reflection at wavelength at which water transparent. Suited for making high-resolution, high-contrast images for microbiological research.

  15. The hard x-ray imager onboard IXO

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Limousin, Olivier; Kokubun, Motohide; Watanabe, Shin; Laurent, Philippe; Arnaud, Monique; Tajima, Hiroyasu

    2010-07-01

    The Hard X-ray Imager (HXI) is one of the instruments onboard International X-ray Observatory (IXO), to be launched into orbit in 2020s. It covers the energy band of 10-40 keV, providing imaging-spectroscopy with a field of view of 8 x 8 arcmin2. The HXI is attached beneath the Wide Field Imager (WFI) covering 0.1-15 keV. Combined with the super-mirror coating on the mirror assembly, this configuration provides observation of X-ray source in wide energy band (0.1-40.0 keV) simultaneously, which is especially important for varying sources. The HXI sensor part consists of the semiconductor imaging spectrometer, using Si in the medium energy detector and CdTe in the high energy detector as its material, and an active shield covering its back to reduce background in orbit. The HXI technology is based on those of the Japanese-lead new generation X-ray observatory ASTRO-H, and partly from those developed for Simbol-X. Therefore, the technological development is in good progress. In the IXO mission, HXI will provide a major assets to identify the nature of the object by penetrating into thick absorbing materials and determined the inherent spectral shape in the energy band well above the structure around Fe-K lines and edges.

  16. Bright Semiconductor Scintillator for High Resolution X-Ray Imaging

    SciTech Connect

    Nagarkar, Vivek V.; Gaysinskiy, Valeriy; Ovechkina, Olena E.; Miller, Stuart; Singh, Bipin; Guo, Liang; Irving, Thomas

    2011-08-16

    We report on a novel approach to produce oxygen-doped zinc telluride (ZnTe:O), a remarkable group II-VI semiconductor scintillator, fabricated in the columnar-structured or polycrystalline forms needed to fulfill the needs of many demanding X-ray and {gamma}-ray imaging applications. ZnTe:O has one of the highest conversion efficiencies among known scintillators, emission around 680 nm (which is ideally suited for CCD sensors), high density of 6.4 g/cm{sup 3}, fast decay time of {approx}1 {micro}s with negligible afterglow, and orders of magnitude higher radiation resistance compared to commonly used scintillators. These properties allow the use of ZnTe:O in numerous applications, including X-ray imaging, nuclear medicine (particularly SPECT), room temperature radioisotope identification, and homeland security. Additionally, ZnTe:O offers distinct advantages for synchrotron-based high resolution imaging due to the absence of atomic absorption edges in the low energy range, which otherwise reduce resolution due to secondary X-ray formations. We have fabricated films of ZnTe:O using a vapor deposition technique that allows large-area structured scintillator fabrication in a time- and cost-efficient manner, and evaluated its performance for small-angle X-ray scattering (SAXS) at an Argonne National Laboratory synchrotron beamline. Details of the fabrication and characterization of the optical, scintillation and imaging properties of the ZnTe:O films are presented in this paper.

  17. The Focusing Optics X-Ray Solar Imager: FOXSI

    NASA Technical Reports Server (NTRS)

    Krucker, Saem; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Saito, Shinya; Tanaka, Yasuyuki; Takahashi, Tadayuki; Watanabe, Shin; Tajima, Takaaki; Tajima, Hiroyasu; Masuda, Satoshi

    2011-01-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazing-incidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  18. X-ray imaging using digital cameras

    NASA Astrophysics Data System (ADS)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  19. X-ray imaging in advanced studies of ophthalmic diseases

    SciTech Connect

    Antunes, Andrea; Safatle, Angelica M. V.; Barros, Paulo S. M.; Morelhao, Sergio L.

    2006-07-15

    Microscopic characterization of pathological tissues has one major intrinsic limitation, the small sampling areas with respect to the extension of the tissues. Mapping possible changes on vast tissues and correlating them with large ensembles of clinical cases is not a feasible procedure for studying most diseases, as for instance vision loss related diseases and, in particular, the cataract. Although intraocular lens implants are successful treatments, cataract still is a leading public-health issue that grows in importance as the population increases and life expectancy is extended worldwide. In this work we have exploited the radiation-tissue interaction properties of hard x-rays--very low absorption and scattering--to map distinct lesions on entire eye lenses. At the used synchrotron x-ray photon energy of 20 keV (wavelength {lambda}=0.062 nm), scattering and refraction are angular resolved effects. It allows the employed x-ray image technique to efficiently characterize two types of lesions in eye lenses under cataractogenesis: distributions of tiny scattering centers and extended areas of fiber cell compaction. The data collection procedure is relatively fast; allowing dozens of samples to be totally imaged (scattering, refraction, and mass absorption images) in a single day of synchrotron beam time. More than 60 cases of canine cataract, not correlated to specific causes, were investigated in this first application of x-rays to image entire lenses. Cortical opacity cases, or partial opacity, could be related to the presence of calcificated tissues at the cortical areas, clearly visible in the images, whose elemental contents were verified by micro x-ray fluorescence as very rich in calcium. Calcificated tissues were also observed at nuclear areas in some cases of hypermature cataract. Total opacity cases without distinguishable amount of scattering centers consist in 70% of the analyzed cases, where remarkable fissure marks owing to extended areas of fiber

  20. Imaging and nondispersive spectroscopy of soft X rays using a laboratory X-ray charge-coupled-device system

    NASA Technical Reports Server (NTRS)

    Luppino, Gerard A.; Doty, John P.; Ricker, George R.; Vallerga, John V.; Ceglio, Natale M.

    1987-01-01

    This paper describes the design and performance of a laboratory instrument for imaging and nondispersive spectroscopy of soft X-rays (300 eV to 10 keV) utilizing a virtual-phase CCD. This instrument has achieved a spatial resolution of 22 microns (limited by pixel size) with an overall array area of 584 x 390 pixels. It has achieved an energy resolution of about 140 eV FWHM for single-pixel Fe-55 X-ray events (5.9 keV) with the CCD operated at -30 C. The CCD has been operated in photon-counting mode at room temperature, and X-ray spectra with an energy resolution of about 450 eV at 5.9 keV have been obtained. The low energy X-ray sensitivity of the CCD also has been demonstrated by detecting carbon K-alpha X-rays (277eV).

  1. X-ray fluorescence microprobe imaging in biology and medicine.

    PubMed

    Paunesku, Tatjana; Vogt, Stefan; Maser, Jörg; Lai, Barry; Woloschak, Gayle

    2006-12-15

    Characteristic X-ray fluorescence is a technique that can be used to establish elemental concentrations for a large number of different chemical elements simultaneously in different locations in cell and tissue samples. Exposing the samples to an X-ray beam is the basis of X-ray fluorescence microscopy (XFM). This technique provides the excellent trace element sensitivity; and, due to the large penetration depth of hard X-rays, an opportunity to image whole cells and quantify elements on a per cell basis. Moreover, because specimens prepared for XFM do not require sectioning, they can be investigated close to their natural, hydrated state with cryogenic approaches. Until several years ago, XFM was not widely available to bio-medical communities, and rarely offered resolution better then several microns. This has changed drastically with the development of third-generation synchrotrons. Recent examples of elemental imaging of cells and tissues show the maturation of XFM imaging technique into an elegant and informative way to gain insight into cellular processes. Future developments of XFM-building of new XFM facilities with higher resolution, higher sensitivity or higher throughput will further advance studies of native elemental makeup of cells and provide the biological community including the budding area of bionanotechnology with a tool perfectly suited to monitor the distribution of metals including nanovectors and measure the results of interactions between the nanovectors and living cells and tissues. PMID:17006954

  2. Phase Effects on Mesoscale Object X-ray Absorption Images

    SciTech Connect

    Martz, Jr., H E; Aufderheide, M B; Barty, A; Lehman, S K; Kozioziemski, B J; Schneberk, D J

    2004-09-24

    At Lawrence Livermore National Laboratory particular emphasis is being placed on the nondestructive characterization (NDC) of 'mesoscale' objects.[Martz and Albrecht 2003] We define mesoscale objects as objects that have mm extent with {micro}m features. Here we confine our discussions to x-ray imaging methods applicable to mesoscale object characterization. The goal is object recovery algorithms including phase to enable emerging high-spatial resolution x-ray imaging methods to ''see'' inside or image mesoscale-size materials and objects. To be successful our imaging characterization effort must be able to recover the object function to one micrometer or better spatial resolution over a few millimeters field-of-view with very high contrast.

  3. Point symmetry in x-ray shadow imaging systems

    SciTech Connect

    Aristov, V.V.; Shabel'nikov, L.G.

    1988-04-01

    General geometrical features have been examined to identify point-group symmetries in x-ray imaging systems. In a stereospecific system, the group is the b/w antisymmetry group 2/m'. In a computerized tomography system, the symmetry is described by the limiting Curie group /infinity//m/center dot/m, while for a tomosynthesis system (transaxial tomography), it is /infinity//m. The operations in these groups have been examined in the production of shadow images involving distributed attenuation coefficients, particularly for stereospecific images recorded with an MIR-3 x-ray microscope. Curie's principle is used to show that reconstructed paired images for two intersecting objects can be considered as the equivalent of stereoscopic pairs for computer-aided tomography, which is not so for transaxial tomography.

  4. MAXI: all-sky observation from the International Space Station

    NASA Astrophysics Data System (ADS)

    Mihara, Tatehiro; Sugizaki, Mutsumi; Matsuoka, Masaru; Tomida, Hiroshi; Ueno, Shiro; Negoro, Hitoshi; Yoshida, Atsumasa; Tsunemi, Hiroshi; Nakajima, Motoki; Ueda, Yoshihiro; Yamauchi, Makoto

    2014-07-01

    Monitor of All-sky X-ray Image (MAXI) is mounted on the International Space Station (ISS). Since 2009 it has been scanning the whole sky in every 92 minutes with ISS rotation. Due to high particle background at high latitude regions the carbon anodes of three GSC cameras were broken. We limit the GSC operation to low-latitude region around equator. GSC is suffering a double high background from Gamma-ray altimeter of Soyuz spacecraft. MAXI issued the 37-month catalog with 500 sources above ~0.6 mCrab in 4-10 keV. MAXI issued 133 to Astronomers Telegram and 44 to Gammaray burst Coordinated Network so far. One GSC camera had a small gas leak by a micrometeorite. Since 2013 June, the 1.4 atm Xe pressure went down to 0.6 atm in 2014 May 23. By gradually reducing the high voltage we keep using the proportional counter. SSC with X-ray CCD has detected diffuse soft X-rays in the all-sky, such as Cygnus super bubble and north polar spur, as well as it found a fast soft X-ray nova MAXI J0158-744. Although we operate CCD with charge-injection, the energy resolution is degrading. In the 4.5 years of operation MAXI discovered 6 of 12 new black holes. The long-term behaviors of these sources can be classified into two types of the outbursts, 3 Fast Rise Exponential Decay (FRED) and 3 Fast Rise and Flat Top (FRFT). The cause of types is still unknown.

  5. X-ray volume imaging in bladder radiotherapy verification

    SciTech Connect

    Henry, Ann M. . E-mail: amhenry@doctors.net.uk; Stratford, Julia; McCarthy, Claire; Davies, Julie; Sykes, Jonathan R.; Amer, Ali; Marchant, Tom; Cowan, Richard; Wylie, James; Logue, John; Livsey, Jacqueline; Khoo, Vincent S.; Moore, Chris; Price, Pat

    2006-03-15

    Purpose: To assess the clinical utility of X-ray volume imaging (XVI) for verification of bladder radiotherapy and to quantify geometric error in bladder radiotherapy delivery. Methods and Materials: Twenty subjects undergoing conformal bladder radiotherapy were recruited. X-ray volume images and electronic portal images (EPIs) were acquired for the first 5 fractions and then once weekly. X-ray volume images were co-registered with the planning computed tomography scan and clinical target volume coverage assessed in three dimensions (3D). Interfraction bladder volume change was described by quantifying changes in bladder volume with time. Bony setup errors were compared from both XVI and EPI. Results: The bladder boundary was clearly visible on coronal XVI views in nearly all images, allowing accurate 3D treatment verification. In 93.5% of imaged fractions, the clinical target volume was within the planning target volume. Most subjects displayed consistent bladder volumes, but 25% displayed changes that could be predicted from the first three XVIs. Bony setup errors were similar whether calculated from XVI or EPI. Conclusions: Coronal XVI can be used to verify 3D bladder radiotherapy delivery. Image-guided interventions to reduce geographic miss and normal tissue toxicity are feasible with this technology.

  6. Chest x-ray

    MedlinePlus

    ... Images Aortic rupture, chest x-ray Lung cancer, frontal chest x-ray Adenocarcinoma - chest x-ray Coal ... cancer - chest x-ray Lung nodule, right middle lobe - chest x-ray Lung mass, right upper lung - ...

  7. MiXI: The Miniature X-ray Imager

    NASA Astrophysics Data System (ADS)

    Martinez Oliveros, Juan Carlos; Glesener, L.; Hurford, G. J.; Sundkvist, D.; Krucker, S.; Bale, S.

    2013-07-01

    The Miniature X-ray Imager (MiXI) is an ambitious, innovative, small, and fully functional solar X-ray observatory concept designed to fit within a 6U CubeSat platform. MiXI will provide the community with X-ray imaging and spectroscopy of solar flares, but at a small fraction of the cost of a conventional mission. MiXI will observe from 3 to 50 keV. It includes rotation modulation collimators and layered Si/CdTe detectors, providing routine observations of both soft and hard X-ray emission with low background. If selected for funding, MiXI could launch in 2017 to coincide with the launch of Solar Orbiter. In the next solar cycle, coordinated observations between the STIX instrument onboard Solar Orbiter and a future version of MiXI will enable solar flare observation from two vantage points. This will provide new insight into the directivity of flare HXR emission and will allow detailed study of both coronal and footpoint sources in the same flare. These results may have profound implications for theories of flare acceleration processes. We describe here the MiXI concept and its usefulness to the solar and heliophysics communities.

  8. MiXI: The Miniature X-ray Imager

    NASA Astrophysics Data System (ADS)

    Martinez Oliveros, J. C.; Glesener, L.; Sundkvist, D. J.; Saint-Hilaire, P.; Bain, H. M.; Fivian, M. D.; Hurford, G. J.; Sample, J. G.; Bale, S. D.; Krucker, S.

    2014-12-01

    The Miniature X-ray Imager (MiXI) is an innovative, small, and fully functional solar X-ray observatory concept designed to fit within a 6U CubeSat platform. MiXI will provide the community with X-ray imaging in the energy range from ~6 to 40-50 keV and spectroscopy up to 100 keV of solar flares at a small fraction of the cost of a conventional mission. It includes rotation modulation collimators and layered Si/CdTe detectors, providing routine observations of both soft and hard X-ray emission with low background. Coordinated observations between MiXI and the STIX instrument onboard Solar Orbiter will enable solar flare observation from two vantage points, providing new insights into the directivity of flare HXR emission and will allow detailed study of both coronal and footpoint sources within the same flare. These results may have profound implications for theories of flare acceleration processes.

  9. Hard x ray imaging graphics development and literature search

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1991-01-01

    This report presents work performed between June 1990 and June 1991 and has the following objectives: (1) a comprehensive literature search of imaging technology and coded aperture imaging as well as relevant topics relating to solar flares; (2) an analysis of random number generators; and (3) programming simulation models of hard x ray telescopes. All programs are compatible with NASA/MSFC Space Science LAboratory VAX Cluster and are written in VAX FORTRAN and VAX IDL (Interactive Data Language).

  10. Design, Fabrication and Testing of Multilayer Coated X-Ray Optics for the Water Window Imaging X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Dwight C.

    1996-01-01

    Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.

  11. Evidence for beamed electrons in a limb X-ray flare observed by Hard X-Ray Imaging Spectrometer (HXIS)

    NASA Technical Reports Server (NTRS)

    Haug, Eberhard; Elwert, Gerhard

    1986-01-01

    The limb flare of November 18, 1980, 14:51 UT, was investigated on the basis of X-ray images taken by the Hard X-ray Imaging Spectrometer (HXIS) and of X-ray spectra from the Hard X-Ray Burst Spectrometer (HXRBS) aboard the Solar Maximum Mission (SMM). The impulsive burst was also recorded at microwave frequencies between 2 and 20 GHz whereas no optical flare and no radio event at frequencies below 1 GHz were reported. The flare occurred directly at the SW limb of the solar disk. Taking advantage of the spatial resolution of HXIS images, the time evolution of the X-radiation originating from relatively small source regions can be studied. Using Monte Carlo computations of the energy distribution of energetic electrons traversing the solar plasma, the bremsstrahlung spectra produced by the electrons were derived.

  12. Proton-induced x-ray fluorescence CT imaging

    SciTech Connect

    Bazalova-Carter, Magdalena Xing, Lei; Ahmad, Moiz; Matsuura, Taeko; Takao, Seishin; Shirato, Hiroki; Umegaki, Kikuo; Matsuo, Yuto; Fahrig, Rebecca

    2015-02-15

    Purpose: To demonstrate the feasibility of proton-induced x-ray fluorescence CT (pXFCT) imaging of gold in a small animal sized object by means of experiments and Monte Carlo (MC) simulations. Methods: First, proton-induced gold x-ray fluorescence (pXRF) was measured as a function of gold concentration. Vials of 2.2 cm in diameter filled with 0%–5% Au solutions were irradiated with a 220 MeV proton beam and x-ray fluorescence induced by the interaction of protons, and Au was detected with a 3 × 3 mm{sup 2} CdTe detector placed at 90° with respect to the incident proton beam at a distance of 45 cm from the vials. Second, a 7-cm diameter water phantom containing three 2.2-diameter vials with 3%–5% Au solutions was imaged with a 7-mm FWHM 220 MeV proton beam in a first generation CT scanning geometry. X-rays scattered perpendicular to the incident proton beam were acquired with the CdTe detector placed at 45 cm from the phantom positioned on a translation/rotation stage. Twenty one translational steps spaced by 3 mm at each of 36 projection angles spaced by 10° were acquired, and pXFCT images of the phantom were reconstructed with filtered back projection. A simplified geometry of the experimental data acquisition setup was modeled with the MC TOPAS code, and simulation results were compared to the experimental data. Results: A linear relationship between gold pXRF and gold concentration was observed in both experimental and MC simulation data (R{sup 2} > 0.99). All Au vials were apparent in the experimental and simulated pXFCT images. Specifically, the 3% Au vial was detectable in the experimental [contrast-to-noise ratio (CNR) = 5.8] and simulated (CNR = 11.5) pXFCT image. Due to fluorescence x-ray attenuation in the higher concentration vials, the 4% and 5% Au contrast were underestimated by 10% and 15%, respectively, in both the experimental and simulated pXFCT images. Conclusions: Proton-induced x-ray fluorescence CT imaging of 3%–5% gold solutions in a

  13. AXIOM: advanced X-ray imaging of the magnetosphere

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella; Sembay, Steve F.; Eastwood, Jonathan P.; Sibeck, David G.; Abbey, Tony A.; Brown, Patrick; Carter, Jenny A.; Carr, Chris M.; Forsyth, Colin; Kataria, Dhiren; Kemble, Steve; Milan, Steve E.; Owen, Chris J.; Peacocke, Lisa; Read, Andy M.; Coates, Andrew J.; Collier, Michael R.; Cowley, Stan W. H.; Fazakerley, Andrew N.; Fraser, George W.; Jones, Geraint H.; Lallement, Rosine; Lester, Mark; Porter, F. Scott; Yeoman, Tim K.

    2012-04-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose `AXIOM: Advanced X-ray Imaging of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth-Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and

  14. AXIOM: Advanced X-ray Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S. E.; Owen, C. J.; Peacocke, L.; Read, A. M.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G. W.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T. K.

    2012-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways - by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques. which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located. X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock. with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose 'AXIOM: Advanced X-ray Imaging Of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth - Moon Ll point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and

  15. Proton-induced x-ray fluorescence CT imaging

    PubMed Central

    Bazalova-Carter, Magdalena; Ahmad, Moiz; Matsuura, Taeko; Takao, Seishin; Matsuo, Yuto; Fahrig, Rebecca; Shirato, Hiroki; Umegaki, Kikuo; Xing, Lei

    2015-01-01

    Purpose: To demonstrate the feasibility of proton-induced x-ray fluorescence CT (pXFCT) imaging of gold in a small animal sized object by means of experiments and Monte Carlo (MC) simulations. Methods: First, proton-induced gold x-ray fluorescence (pXRF) was measured as a function of gold concentration. Vials of 2.2 cm in diameter filled with 0%–5% Au solutions were irradiated with a 220 MeV proton beam and x-ray fluorescence induced by the interaction of protons, and Au was detected with a 3 × 3 mm2 CdTe detector placed at 90° with respect to the incident proton beam at a distance of 45 cm from the vials. Second, a 7-cm diameter water phantom containing three 2.2-diameter vials with 3%–5% Au solutions was imaged with a 7-mm FWHM 220 MeV proton beam in a first generation CT scanning geometry. X-rays scattered perpendicular to the incident proton beam were acquired with the CdTe detector placed at 45 cm from the phantom positioned on a translation/rotation stage. Twenty one translational steps spaced by 3 mm at each of 36 projection angles spaced by 10° were acquired, and pXFCT images of the phantom were reconstructed with filtered back projection. A simplified geometry of the experimental data acquisition setup was modeled with the MC TOPAS code, and simulation results were compared to the experimental data. Results: A linear relationship between gold pXRF and gold concentration was observed in both experimental and MC simulation data (R2 > 0.99). All Au vials were apparent in the experimental and simulated pXFCT images. Specifically, the 3% Au vial was detectable in the experimental [contrast-to-noise ratio (CNR) = 5.8] and simulated (CNR = 11.5) pXFCT image. Due to fluorescence x-ray attenuation in the higher concentration vials, the 4% and 5% Au contrast were underestimated by 10% and 15%, respectively, in both the experimental and simulated pXFCT images. Conclusions: Proton-induced x-ray fluorescence CT imaging of 3%–5% gold solutions in a small animal

  16. AXIOM: Advanced X-Ray Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S. E.; Owen, C. J.; Peacocke, L.; Read, A. M.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G. W.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T. K.

    2011-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose AXIOM: Advanced X-ray Imaging Of the Magnetosphere, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction

  17. Soft x-ray coherent diffraction imaging on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team

    2014-03-01

    Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).

  18. Trends in NOAA Solar X-ray Imager Performance

    NASA Astrophysics Data System (ADS)

    Hill, Steven M.; Darnell, John A.; Seaton, Daniel B.

    2016-05-01

    NOAA has provided operational soft X-ray imaging of the sun since the early 2000’s. After 15 years of observations by four different telescopes, it is appropriate to examine the data in terms of providing consistent context for scientific missions. In particular, this presentation examines over 7 million GOES Solar X-ray Imager (SXI) images for trends in performance parameters including dark current, response degradation, and inter-calibration. Because observations from the instrument have overlapped not only with each other, but also with research observations like Yohkoh SXT and Hinode XRT, relative performance comparisons can be made. The first GOES Solar X-ray Imager was launched in 2001 and entered operations in 2003. The current SXIs will remain in operations until approximately 2020, when a new series of Solar (extreme-)Ultraviolet Imagers (SUVIs) will replace them as the current satellites reach their end of life. In the sense that the SXIs are similar to Yokoh’s SXT and Hinode’s XRT, the SUVI instruments will be similar to SOHO’s EIT and SDO’s AIA. The move to narrowband EUV imagers will better support eventual operational estimation of plasma conditions. While NOAA’s principal use of these observations is real-time space weather forecasting, they will continue to provide a reliable context measurement for researchers for decades to come.

  19. Phase Sensitive X-Ray Imaging: Towards its Interdisciplinary Applications

    NASA Astrophysics Data System (ADS)

    Kottler, C.; Revol, V.; Kaufmann, R.; Urban, C.; Knop, K.; Sennhauser, U.; Jerjen, I.; Lüthi, T.; Cardot, F.; Niedermann, P.; Morel, J.-P.; Maake, C.; Walt, H.; Knop, E.; Blanc, N.

    2010-04-01

    X-ray phase imaging including phase tomography has been attracting increasing attention during the past few decades. The advantage of X-ray phase imaging is that an extremely high sensitivity is achieved for weakly absorbing materials, such as biological soft tissues, which generate a poor contrast by conventional schemes. Especially for such living samples, where the reduction of the applied dose is of paramount interest, phase sensitive measurements schemes have an inherent potential for a significant dose reduction combined with an image quality enhancement. Several methods have been invented for x-ray phase contrast imaging that either use an approach based on interferometry, diffraction or wave-field propagation. Some of these techniques have a potential for commercial applications, such as in medicine, non-destructive testing, security and inspection. The scope of this manuscript thus deals with one particular such technique that measures the diffraction caused by the specimen by means of a grating interferometer. Examples of measurements are shown that depict the potential of phase contrast imaging for future commercial applications, such as in medical imaging, non-destructive testing and inspection for quality control. The current state of the technology is briefly reviewed as well as its shortcomings to be overcome with regard to the applications.

  20. Second ROSAT all-sky survey (2RXS) source catalogue

    NASA Astrophysics Data System (ADS)

    Boller, Th.; Freyberg, M. J.; Trümper, J.; Haberl, F.; Voges, W.; Nandra, K.

    2016-04-01

    Aims: We present the second ROSAT all-sky survey source catalogue, hereafter referred to as the 2RXS catalogue. This is the second publicly released ROSAT catalogue of point-like sources obtained from the ROSAT all-sky survey (RASS) observations performed with the position-sensitive proportional counter (PSPC) between June 1990 and August 1991, and is an extended and revised version of the bright and faint source catalogues. Methods: We used the latest version of the RASS processing to produce overlapping X-ray images of 6.4° × 6.4° sky regions. To create a source catalogue, a likelihood-based detection algorithm was applied to these, which accounts for the variable point-spread function (PSF) across the PSPC field of view. Improvements in the background determination compared to 1RXS were also implemented. X-ray control images showing the source and background extraction regions were generated, which were visually inspected. Simulations were performed to assess the spurious source content of the 2RXS catalogue. X-ray spectra and light curves were extracted for the 2RXS sources, with spectral and variability parameters derived from these products. Results: We obtained about 135 000 X-ray detections in the 0.1-2.4 keV energy band down to a likelihood threshold of 6.5, as adopted in the 1RXS faint source catalogue. Our simulations show that the expected spurious content of the catalogue is a strong function of detection likelihood, and the full catalogue is expected to contain about 30% spurious detections. A more conservative likelihood threshold of 9, on the other hand, yields about 71 000 detections with a 5% spurious fraction. We recommend thresholds appropriate to the scientific application. X-ray images and overlaid X-ray contour lines provide an additional user product to evaluate the detections visually, and we performed our own visual inspections to flag uncertain detections. Intra-day variability in the X-ray light curves was quantified based on the

  1. Elemental imaging of cartilage by scanning x-ray microscopy

    SciTech Connect

    Buckley, C.J.; Foster, G.F.; Burge, R.E. ); Ali, S.Y.; Scotchford, C.A. , Royal National Orthopaedic Hospital, Stanmore, Middlesex ); Kirz, J. ); Rivers, M.L. )

    1992-01-01

    Elemental imaging via scanning transmission x-ray microscopy (STXM) and scanning fluorescence x-ray microscopy (SFXM) has been used to image calcium deposits in cartilage. In the case of STXM, 0.1 {mu}m thick sections were imaged to investigate the proximity of calcium deposits in relation to chondrocyte cells. The resolution available was 0.5 {mu}m, and field widths of up to 25 {mu}m were used at this resolution. The resolution available in SFXM was 10 {mu}m, and field widths of up to 2 mm were used at this resolution on 5-{mu}m thick specimens. Together these techniques were used to map calcium deposits at the cellular level, and at the full tissue size level.

  2. High Resolution Energetic X-ray Imager (HREXI)

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  3. The Spectrometer Telescope for Imaging X-rays (STIX)

    NASA Astrophysics Data System (ADS)

    Krucker, Sam; STIX Team

    2013-07-01

    The Spectrometer Telescope for Imaging X-rays (STIX) is one of 10 instruments on board Solar Orbiter, a confirmed M-class mission of the European Space Agency (ESA) within the Cosmic Vision program scheduled to be launched in 2017. STIX applies a Fourier-imaging technique using a set of tungsten grids (at pitches from 0.038 to 1 mm) in front of 32 pixelized CdTe detectors to provide imaging spectroscopy of solar thermal and non-thermal hard X-ray emissions from 4 to 150 keV. The status of the instrument that will be presented at the Critical Design Review (CDR) later this year will be discussed in this poster.

  4. Soft x-ray holographic computerized tomography imaging: experimental research

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxuan; Jiang, Shiping; Zhang, Xinyi

    2003-03-01

    A high-resolution three-dimensional (3D) imaging technology has been developed, which is a combination of x-ray holography and computerized tomography (CT) technology called holographic computerized tomography (HCT). The theory and experimental techniques on biological specimens with the use of synchrotron radiation are discussed. Projections at different angles are reconstructed with the numerical method of in-line holography, and then the reconstructed data with a higher lateral resolution are used to restore the 3D image by the CT technique. With this method, the degradation caused by the diffraction of x rays is canceled, and 3D images with high resolution of micrometer magnitude in both the lateral and the longitudinal directions are obtained.

  5. Imaging experiments of Ne-like x-ray lasers

    SciTech Connect

    Moreno, J.C., Nilsen, J.; Barbee, T.W.; Da Silva, L.B.; Fill, E.; Li, Y,; Lu, P.

    1997-06-01

    We discuss high resolution two-dimensional near-field images of the neon-like nickel and germanium x-ray laser obtained using the Asterix laser at the Max-Planck-Institute and the Nova laser at Lawrence Livermore National Laboratory. Our imaging diagnostic consisted of a concave multilayer mirror that imaged the output end of the x-ray laser line onto a backside illuminated x-ray CCD detector. A 25 microm thick wire positioned at the end of the target provided a spatial fiducial. With the Asterix iodine laser, a prepulse 5.23 ns before the main pulse, was used to irradiate slab targets. A great deal of structure was observed in the near field images, particularly in the J=0-1 emission. We observed a large difference in the spatial dependence of the J=0-1 and J=2-1 lines of germanium, with the J=2-1 emission peaking farther away from the original target surface. A larger prepulse moved the peak emission farther away from the target surface. For the Nova experiments we used a series of 100 ps pulses spaced 400 ps apart to illuminate a germanium target. We obtained high resolution images of both the J=0-1 and J=2-1 lines of Ge. These measurements are compared to hydrodynamic simulations coupled with atomic kinetics and including refraction effects.

  6. Lens-coupled x-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Fan, Helen Xiang

    Digital radiography systems are important diagnostic tools for modern medicine. The images are produced when x-ray sensitive materials are coupled directly onto the sensing element of the detector panels. As a result, the size of the detector panels is the same size as the x-ray image. An alternative to the modern DR system is to image the x-ray phosphor screen with a lens onto a digital camera. Potential advantages of this approach include rapid readout, flexible magnification and field of view depending on applications. We have evaluated lens-coupled DR systems for the task of signal detection by analyzing the covariance matrix of the images for three cases, using a perfect detector and lens, when images are affected by blurring due to the lens and screen, and for a signal embedded in a complex random background. We compared the performance of lens-coupled DR systems using three types of digital cameras. These include a scientific CCD, a scientific CMOS, and a prosumer DSLR camera. We found that both the prosumer DSLR and the scientific CMOS have lower noise than the scientific CCD camera by looking at their noise power spectrum. We have built two portable low-cost DR systems, which were used in the field in Nepal and Utah. We have also constructed a lens-coupled CT system, which included a calibration routine and an iterative reconstruction algorithm written in CUDA.

  7. Ptychographic coherent x-ray surface scattering imaging

    NASA Astrophysics Data System (ADS)

    Kim, Jong Woo; Jiang, Zhang; Sun, Tao; Wang, Jin

    Lensless x-ray coherent diffraction imaging enables the determination of nano-scaled structures in physical and biological sciences. Several coherent diffractive imaging (CDI) methods have been developed in both transmission and reflection modes such as Bragg CDI, plane-wave CDI, Fresnel CDI, coherent surface scattering imaging (CSSI) and so on. The grazing-incidence coherent surface scattering (CSSI) technique, which is recently developed by T. Sun et al., takes advantage of enhanced x-ray surface scattering and interference near total external reflection, and thereby overcomes some limitations that the transmission mode have. However, the sample size can be investigated is limited by x-ray beam size because the sample is supposed to be isolated. We incorporated ptychographic algorithm with coherent surface scattering imaging to overcome this limitation and make it more useful and applicable. The ptychographic coherent surface scattering imaging technique enables us to measure 2D roughness of the flat surface such as thin film and silicon wafer regardless of the surface area. LDRD.

  8. Incoherent imaging with the soft X-ray microscope

    PubMed

    Burge; Yuan; Morrison; Charalambous; Browne; An

    2000-05-01

    The imaging characteristics for X-ray wavelengths in the "water window" under incoherent imaging conditions (large detector aperture) are examined for the King's College London scanning transmission X-ray microscope with zone-plate objective installed at the Daresbury (UK) synchrotron. The principal consideration was to express image theory, incorporating wave aberrations and apodised zone plates, and to apply the theory to experimental data. Comparisons are made, showing reasonable agreement, for a range of defocus values and two wavelengths. Due to problems in fabrication it was necessary to determine the effective, or operational, zone-plate parameters (radius of outermost active zone rN, width of outermost active zone drN); this was accomplished by through-focus series. Calculated point spread functions were used to deblurr images, in through-focus series of two-dimensional scanned X-ray images of specimen holes and test grating patterns. Significant contrast enhancement is achieved after deconvolution with a best point-to-point resolution of about 35 nm. PMID:10805394

  9. Confocal full-field X-ray microscope for novel three-dimensional X-ray imaging.

    PubMed

    Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio; Uesugi, Kentaro; Aoki, Sadao

    2009-09-01

    A confocal full-field X-ray microscope has been developed for use as a novel three-dimensional X-ray imaging method. The system consists of an X-ray illuminating ;sheet-beam' whose beam shape is micrified only in one dimension, and an X-ray full-field microscope whose optical axis is normal to the illuminating sheet beam. An arbitral cross-sectional region of the object is irradiated by the sheet-beam, and secondary X-ray emission such as fluorescent X-rays from this region is imaged simultaneously using the full-field microscope. This system enables a virtual sliced image of a specimen to be obtained as a two-dimensional magnified image, and three-dimensional observation is available only by a linear translation of the object along the optical axis of the full-field microscope. A feasibility test has been carried out at beamline 37XU of SPring-8. Observation of the three-dimensional distribution of metallic inclusions in an artificial diamond was performed. PMID:19713634

  10. Distributed source x-ray tube technology for tomosynthesis imaging

    PubMed Central

    Sprenger, F.; Calderon-Colon, X.; Cheng, Y.; Englestad, K.; Lu, J.; Maltz, J.; Paidi, A.; Qian, X.; Spronk, D.; Sultana, S.; Yang, G.; Zhou, O.

    2011-01-01

    Tomosynthesis imaging requires projection images from different viewing angles. Conventional systems use a moving xray source to acquire the individual projections. Using a stationary distributed x-ray source with a number of sources that equals the number of required projections, this can be achieved without any mechanical motion. Advantages are a potentially faster image acquisition speed, higher spatial and temporal resolution and simple system design. We present distributed x-ray sources based on carbon nanotube (CNT) field emission cathodes. The field emission cathodes deliver the electrons required for x-ray production. CNT emitters feature a stable emission at high current density, a cold emission, excellent temporal control of the emitted electrons and good configurability. We discuss the use of stationary sources for two applications: (i) a linear tube for stationary digital breast tomosynthesis (sDBT), and (ii) a square tube for on-board tomosynthesis image-guided radiation therapy (IGRT). Results from high energy distributed sources up to 160kVp are also presented. PMID:21785671

  11. Imaging of magnetic domains by transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Eimüller, T.; Schütz, G.; Guttmann, P.; Schmahl, G.; Pruegl, K.; Bayreuther, G.

    1998-03-01

    The combination of the high-resolution transmission x-ray microscope (TXM) based on the zone plate technique with the x-ray magnetic circular dichroism (X-MCD) providing a huge magnetic contrast is a new technique to image magnetic domain structures. It is inherently element specific and contains information on the local spin and orbital moments of the absorbing species that can be obtained by applying magneto-optical sum rules. A lateral spatial resolution depending on the quality of the zone plates down to 30 nm can be achieved. We report on first results at the Fe 0022-3727/31/6/012/img9 edges of Fe both in amorphous and in multilayered Gd-Fe systems. With a TXM set-up at BESSY I adapted to record magnetic images in varying magnetic fields the evolution of magnetic domains within a complete hysteresis loop and magnetic aftereffects have been studied.

  12. Design considerations for soft X-ray television imaging detectors

    NASA Technical Reports Server (NTRS)

    Kalata, Kenneth; Golub, Leon

    1988-01-01

    Television sensors for X-rays can be coupled to converters and image intensifiers to obtain active areas, high flux capabilities, quantum efficiency, high time resolution, or ease of construction and operation that may not be obtained with a directly illuminated sensor. A general purpose system which makes use of these capabilities for a number of applications is decribed. Some of the performance characteristics of this type of system are examined, and the expected future developments for such systems are briefly addressed.

  13. Phase dispersion X-ray imaging of murine soft tissue

    NASA Astrophysics Data System (ADS)

    Ingal, V. N.; Ingal, E. A.

    2013-12-01

    The generation of phase-contrast (PC) images in the phase-dispersion introscopy (PDI) technique is the subject of this paper. Conditions for extreme sensitivity to murine soft-tissue anatomy are discussed. The unique information content and good contrast of the minutest details of anatomy, together with the high brilliance of X-ray optics, give the authors confidence that the PDI method can be successfully applied for medical diagnostics.

  14. Fabrication of an X-Ray Imaging Detector

    NASA Technical Reports Server (NTRS)

    Alcorn, G. E.; Burgess, A. S.

    1986-01-01

    X-ray detector array yields mosaic image of object emitting 1- to 30-keV range fabricated from n-doped silicon wafer. In proposed fabrication technique, thin walls of diffused n+ dopant divide wafer into pixels of rectangular cross section, each containing central electrode of thermally migrated p-type metal. This pnn+ arrangement reduces leakage current by preventing transistor action caused by pnp structure of earlier version.

  15. Computer assisted analysis of medical x-ray images

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ewert

    1996-01-01

    X-rays were originally used to expose film. The early computers did not have enough capacity to handle images with useful resolution. The rapid development of computer technology over the last few decades has, however, led to the introduction of computers into radiology. In this overview paper, the various possible roles of computers in radiology are examined. The state of the art is briefly presented, and some predictions about the future are made.

  16. NASA Unveils First Images From Chandra X-Ray Observatory

    NASA Astrophysics Data System (ADS)

    1999-08-01

    Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability

  17. Evaluation of gratings for X-ray and neutron phase imaging techniques by using x-ray projection microscope

    SciTech Connect

    Minami, Katsunori; Yashiro, Wataru; Olbinado, Margie; Momose, Atsushi

    2012-07-31

    In the X-ray and neutron Talbot (-Lau) interferometry, fabrication of phase or amplitude grating with a high-aspect ratio is a key factor to obtain high quality images. To improve the ability of the grating, evaluation of shape and thickness variation and feed-back to the fabrication process are essential. Here, it is shown that X-ray projection microscope with a spatial resolution of sub-micrometer is a powerful tool for the purpose. Three kinds of gratings have been evaluated by using a projection X-ray microscope with X-ray source size of 0.6 micrometer. Uniformity of thickness of the grating has been visualized nondestructively.

  18. 3D registration through pseudo x-ray image generation.

    PubMed

    Domergue, G; Viant, W J

    2000-01-01

    One of the less effective processes within current Computer Assisted Surgery systems, utilizing pre-operative planning, is the registration of the plan with the intra-operative position of the patient. The technique described in this paper requires no digitisation of anatomical features or fiducial markers but instead relies on image matching between pseudo and real x-ray images generated by a virtual and a real image intensifier respectively. The technique is an extension to the work undertaken by Weese [1]. PMID:10977585

  19. Resolution-Tunable Angle-Resolved X-ray Imaging

    SciTech Connect

    Hirano, Keiichi

    2004-05-12

    A resolution-tunable double-crystal device was successfully applied to angle-resolved x-ray imaging. The angular resolution of a Si (220) double-crystal analyzer was tuned between 0.5'' and 2.3'' through the offset angle at {lambda} = 0.0733nm. The throughput of the analyzer was higher than 90%. The angle-resolved images of a spider were recorded on nuclear emulsion plates at various angular resolutions. It was clearly observed that the quality of the angle-resolved image varies with the angular resolution of the analyzer.

  20. X-ray characterization of CMOS imaging detector with high resolution for fluoroscopic imaging application

    NASA Astrophysics Data System (ADS)

    Cha, Bo Kyung; Kim, Cho Rong; Jeon, Seongchae; Kim, Ryun Kyung; Seo, Chang-Woo; Yang, Keedong; Heo, Duchang; Lee, Tae-Bum; Shin, Min-Seok; Kim, Jong-Boo; Kwon, Oh-Kyung

    2013-12-01

    This paper introduces complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS)-based X-ray imaging detectors with high spatial resolution for medical imaging application. In this study, our proposed X-ray CMOS imaging sensor has been fabricated by using a 0.35 μm 1 Poly 4 Metal CMOS process. The pixel size is 100 μm×100 μm and the pixel array format is 24×96 pixels, which provide a field-of-view (FOV) of 9.6 mm×2.4 mm. The 14.3-bit extend counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. Both thallium-doped CsI (CsI:Tl) and Gd2O2S:Tb scintillator screens were used as converters for incident X-rays to visible light photons. The optical property and X-ray imaging characterization such as X-ray to light response as a function of incident X-ray exposure dose, spatial resolution and X-ray images of objects were measured under different X-ray energy conditions. The measured results suggest that our developed CMOS-based X-ray imaging detector has the potential for fluoroscopic imaging and cone-beam computed tomography (CBCT) imaging applications.

  1. X-ray Imaging Spectroscopy for Planetary Science

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph P.; Kenter, A.; Murray, S.; Elvis, M.; Branduardi-Raymont, G.; Garcia, M.; Forman, W.; Geary, J.; McCoy, T.; Smith, R.

    2012-10-01

    We are developing monolithic backside illuminated CMOS detectors as soft X-ray imaging spectrometers for high energy astrophysics missions. These devices represent a significant advance over CCD technology and have unique properties that would make them ideal sensors for various planetary mission concepts. The benefits of CMOS include higher levels of integration which provide maximum pixel gain and therefore very low noise, very fast parallel output signal chains for high frame rates. CMOS imaging detectors have zero or one charge transfer so that they can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs provide near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines. Possible mission concepts for these sensors include X-ray fluorescence studies of rocky bodies, and investigation of the magnetospheres of the gas giants and their moons. In this presentation, we discuss the current state of our technology development and outline its scientific potential for planetary physics with particular emphasis on studies of the Jovian magnetosphere. We contrast the capabilities of our instrument with that which has been achieved by the current generation of Earth-orbiting X-ray observatories.

  2. The Imaging X-ray Polarimetry Explorer (IXPE)

    NASA Astrophysics Data System (ADS)

    Ramsey, Brian

    2016-07-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is a mission undergoing an 11-month Phase A study for possible selection as a NASA Small Explorer. As the name implies, IXPE will uses X-ray imaging polarimetry to dramatically expand observation space and to provide new input to our understanding as to how X-ray emission is produced in objects where physics under extreme conditions dominates: neutron stars, pulsar wind nebulae, and stellar and supermassive black holes. IXPE will combine 30-arcseond half-power-diameter optics with polarization-sensitive gas pixel detectors to provide two-orders of magnitude improvement in sensitivity over past instruments. After launch, the first year of operation would be devoted to a survey of representative samples of various categories of targets. More detailed studies of selected individual sources would then follow. If selected, IXPE would be flight ready by late 2020. This presentation will describe the IXPE payload, its expected sensitivity, and its science objectives.

  3. Fiber fed x-ray/gamma ray imaging apparatus

    DOEpatents

    Hailey, Charles J.; Ziock, Klaus-Peter

    1992-01-01

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation.

  4. Fiber fed x-ray/gamma ray imaging apparatus

    DOEpatents

    Hailey, C.J.; Ziock, K.P.

    1992-06-02

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

  5. IXPE - The Imaging X-Ray Polarimetry Explorer

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2014-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is a Small Explorer Mission that will be proposed in response to NASA's upcoming Announcement of Opportunity. IXPE will transform our understanding of the most energetic and exotic astrophysical objects, especially neutron stars and black holes, by measuring the linear polarization of astronomical objects as a function of energy, time and, where relevant, position. As the first dedicated polarimetry observatory IXPE will add a new dimension to the study of cosmic sources, enlarging the observational phase space and providing answers to fundamental questions. IXPE will feature x-ray optics fabricated at NASA/MSFC and gas pixel focal plane detectors provided by team members in Italy (INAF and INFN). This presentation will give an overview of the proposed IXPE mission, detailing the payload configuration, the expected sensitivity, and a typical observing program.

  6. Time Resolved X-ray Imaging of a Detonation Front

    NASA Astrophysics Data System (ADS)

    Vantine, Harry; Aufderheide, Maurice; Egan, Patrick; Morgan, David

    1998-03-01

    A one inch diameter cylinder of LX-14 was detonated at one end. The detonation was then made to propagate around an obstacle, in this case a one-half inch diameter lucite sphere. The detonation front was imaged at three times per shot with an array of three Scandiflash-450 Flash X-ray heads, spaced 2.1m from the explosive. The spectrum was 450 keV brehmstrahlung with a strong contribution from W K-radiation. The x-ray pulse width was approximately 20ns, and the tme between pulses was adjustable (typically 1-2 μs). Data were recorded on screened film (LANEX-fine and TMAT H) located 0.6m from the explosive. The film was digitized on a PDS microdensitometer for subsequent analysis. Tomagraphic reconstruction and comparison with CALE numerical simulations will be shown.

  7. X-ray imaging performance of structured cesium iodide scintillators.

    PubMed

    Zhao, Wei; Ristic, Goran; Rowlands, J A

    2004-09-01

    Columnar structured cesium iodide (CsI) scintillators doped with Thallium (Tl) have been used extensively for indirect x-ray imaging detectors. The purpose of this paper is to develop a methodology for systematic investigation of the inherent imaging performance of CsI as a function of thickness and design type. The results will facilitate the optimization of CsI layer design for different x-ray imaging applications, and allow validation of physical models developed for the light channeling process in columnar CsI layers. CsI samples of different types and thicknesses were obtained from the same manufacturer. They were optimized either for light output (HL) or image resolution (HR), and the thickness ranged between 150 and 600 microns. During experimental measurements, the CsI samples were placed in direct contact with a high resolution CMOS optical sensor with a pixel pitch of 48 microns. The modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) of the detector with different CsI configurations were measured experimentally. The aperture function of the CMOS sensor was determined separately in order to estimate the MTF of CsI alone. We also measured the pulse height distribution of the light output from both the HL and HR CsI at different x-ray energies, from which the x-ray quantum efficiency, Swank factor and x-ray conversion gain were determined. Our results showed that the MTF at 5 cycles/mm for the HR type was 50% higher than for the HL. However, the HR layer produces approximately 36% less light output. The Swank factor below K-edge was 0.91 and 0.93 for the HR and HL types, respectively, thus their DQE(0) were essentially identical. The presampling MTF decreased as a function of thickness L. The universal MTF, i.e., MTF plotted as a function of the product of spatial frequency f and CsI thickness L, increased as a function of L. This indicates that the light channeling process in CsI improved the MTF of

  8. Detection of soft X-rays from Alpha Lyrae and Eta Bootis with an imaging X-ray telescope

    NASA Technical Reports Server (NTRS)

    Topka, K.; Fabricant, D.; Harnden, F. R., Jr.; Gorenstein, P.; Rosner, R.

    1979-01-01

    Results are presented for observations of Alpha Lyr (Vega) and Eta Boo with an imaging X-ray telescope during two rocket flights. It is found that Vega and Eta Boo are soft X-ray sources with respective luminosities of approximately 3 x 10 to the 28th erg/s (0.15-0.8 keV) and 1 x 10 to the 29th erg/s (0.15-1.5 keV). Surface X-ray luminosities of about 640,000 erg/sq cm per sec for Vega and 300,000 erg/sq cm per sec for Eta Boo are estimated and shown to fall within the range of solar coronal X-ray emission. It is concluded that in view of the substantially larger surface areas of these stars, the relatively large total soft X-ray luminosity (as compared with that of the sun) can in both cases be understood as resulting from a moderately active corona, although the Vega observation is in severe conflict with simple models for X-ray emission from single main-sequence stars.

  9. An image focusing means by using an opaque object to diffract x-rays

    DOEpatents

    Sommargren, Gary E.; Weaver, H. Joseph

    1991-01-01

    The invention provides a method and apparatus for focusing and imaging x-rays. An opaque sphere is used as a diffractive imaging element to diffract x-rays from an object so that the divergent x-ray wavefronts are transformed into convergent wavefronts and are brought to focus to form an image of the object with a large depth of field.

  10. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Image-intensified fluoroscopic x-ray system. 892... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1650 Image-intensified fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a...

  11. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Image-intensified fluoroscopic x-ray system. 892... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1650 Image-intensified fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a...

  12. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Non-image-intensified fluoroscopic x-ray system... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1660 Non-image-intensified fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a...

  13. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Non-image-intensified fluoroscopic x-ray system... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1660 Non-image-intensified fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a...

  14. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Image-intensified fluoroscopic x-ray system. 892... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1650 Image-intensified fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a...

  15. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Non-image-intensified fluoroscopic x-ray system... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1660 Non-image-intensified fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a...

  16. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Image-intensified fluoroscopic x-ray system. 892... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1650 Image-intensified fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a...

  17. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Non-image-intensified fluoroscopic x-ray system... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1660 Non-image-intensified fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a...

  18. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Image-intensified fluoroscopic x-ray system. 892... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1650 Image-intensified fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a...

  19. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Non-image-intensified fluoroscopic x-ray system... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1660 Non-image-intensified fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a...

  20. Moving-Article X-Ray Imaging System and Method for 3-D Image Generation

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R. (Inventor)

    2012-01-01

    An x-ray imaging system and method for a moving article are provided for an article moved along a linear direction of travel while the article is exposed to non-overlapping x-ray beams. A plurality of parallel linear sensor arrays are disposed in the x-ray beams after they pass through the article. More specifically, a first half of the plurality are disposed in a first of the x-ray beams while a second half of the plurality are disposed in a second of the x-ray beams. Each of the parallel linear sensor arrays is oriented perpendicular to the linear direction of travel. Each of the parallel linear sensor arrays in the first half is matched to a corresponding one of the parallel linear sensor arrays in the second half in terms of an angular position in the first of the x-ray beams and the second of the x-ray beams, respectively.

  1. Phase Contrast X-ray Imaging Signatures for Security Applications

    SciTech Connect

    Miller, Erin A.; White, Timothy A.; McDonald, Benjamin S.; Seifert, Allen

    2013-02-01

    Abstract: Differential phase contrast imaging with a grating interferometer is a promising new radiographic technique providing three distinct contrast mechanisms - absorption, phase, and scatter (or dark field) - using a conventional x-ray tube source. We investigate the signatures available in these three contrast mechanisms with attention towards potential security applications. We find that the scatter mode in particular is sensitive to textured materials, enabling lowered detection limits than absorption for materials such as powders. We investigate the length scales to which our imaging system is sensitive.

  2. Imaging the Magnetosphere in Soft X-Rays

    NASA Astrophysics Data System (ADS)

    Sibeck, David; Connor, Hyunju K.; Collier, MIchael; Kuntz, Kip

    2015-04-01

    The charge exchange that occurs when high charge state solar wind ions encounter exospheric neutrals in the Earth's magnetosheath and cusps results in the emission of soft (0.1 to 1 keV) x-rays that have been observed by a number of astrophysics telescopes with narrow fields of view. A global imager would be able to visualize and diagnose the state of the solar wind-magnetosphere interaction, including the characteristics of reconnection on the dayside magnetopause. This talk presents our current efforts to develop such an imager, including both hardware and simulations of the expected signatures.

  3. An X-ray image of the large magellanic cloud

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Petre, R.

    1994-01-01

    We have used archival ROSAT Position Sensitive Proportional Counter (PSPC) pointed observations to construct maps of the Large Magellanic Cloud (LMC) in four energy bands between 0.5 and 2.0 keV. These represent the most complete, deepest, and most detailed X-ray images of the LMC to date. While confirming the general morphology of the diffuse LMC emission observed by Wang et al. with Einstein IPC data, these images reveal a wealth of detailed structure of high statistical significance on angular scales from a few arcminutes to a few degrees. In addition, at least twice as many discrete sources are detected as were found using the IPC.

  4. Chandra X-Ray Observatory Image of Crab Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky

  5. Nanoscale x-ray imaging of deep carbon

    NASA Astrophysics Data System (ADS)

    Mao, W. L.; Lin, Y.; Yang, W.; Wang, J.

    2012-12-01

    Pure carbon exists in many forms under varying synthesis conditions, and when all the oxidized and reduced types are included, this represents a huge range of structures and bonding and interesting physics and chemistry. However, a lot is still unknown about their behavior at extreme conditions. For example, we still lack fundamental equation of state data for amorphous and poorly crystalline materials at high pressure. Nanoscale x-ray microscopy allows visualization of 3D shapes and textures and direct volume determination (including melts). Development of synchrotron transmission x-ray microscopes (TXM) with 30 nm spatial resolution has enabled volume determination by imaging with accuracy rivaling x-ray diffraction of crystalline solids. We will present recent TXM measurements provide accurate P-V determination of glassy carbon compressed to above 40 GPa in a diamond anvil cell, where we previously observed a new carbon allotrope with an amorphous structure and diamond-like strength. These results demonstrate the potential for improving our understanding the mechanisms of the structure and bonding changes in these materials at high pressure.

  6. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    NASA Astrophysics Data System (ADS)

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.

  7. A Highly Sensitive X-ray Imaging Modality for Hepatocellular Carcinoma Detection in Vitro

    PubMed Central

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities. PMID:25559398

  8. Study of nighttime Medium Scale Travelling Ionospheric Disturbances (MSTID's) in the ionospheric F-region using all-sky imager and digisonde data

    NASA Astrophysics Data System (ADS)

    Stefanello, M. B.; Machado, C. S.; Pimenta, A. A.; Schuch, N. J.

    2013-05-01

    The plasma irregularities are characterized by an abrupt variation in the ionospheric plasma density at F-region. The ionospheric irregularities may manifest as Travelling Ionospheric Disturbances (TID's), Plasma Bubbles, Blobs and Brightness Waves. Some irregularities can affect the propagation of electromagnetic waves in the ionosphere, interfering in the transmission of radio signals used in telecommunications and positioning systems such as GPS and satellite navigation. This work presents a study of nighttime Medium Scale Travelling Ionospheric Disturbances (MSTID's) using all-sky images in the OI 630.0 nm emission obtained with an all-sky imager installed at the Southern Space Observatory (29.4° S, 53.8° W) in São Martinho da Serra, RS. Also, data of a digisonde installed at Cachoeira Paulista Observatory (22.7° S, 45.0° W) and other at Falkland Islands (51.4° S, 57.5° W), were used in the present study. In this work we present events of MSTID's and the effects of the ionization on its propagation in the nighttime ionosphere.

  9. X-ray micrography and imaging of Escherichia coli cell shape using laser plasma pulsed point x-ray sources.

    PubMed Central

    Rajyaguru, J M; Kado, M; Richardson, M C; Muszynski, M J

    1997-01-01

    High-resolution x-ray microscopy is a relatively new technique and is performed mostly at a few large synchrotron x-ray sources that use exposure times of seconds. We utilized a bench-top source of single-shot laser (ns) plasma to generate x-rays similar to synchrotron facilities. A 5 microlitres suspension of Escherichia coli ATCC 25922 in 0.9% phosphate buffered saline was placed on polymethylmethyacrylate coated photoresist, covered with a thin (100 nm) SiN window and positioned in a vacuum chamber close to the x-ray source. The emission spectrum was tuned for optimal absorption by carbon-rich material. Atomic force microscope scans provided a surface and topographical image of differential x-ray absorption corresponding to specimen properties. By using this technique we observed a distinct layer around whole cells, possibly representing the Gram-negative envelope, darker stained areas inside the cell corresponding to chromosomal DNA as seen by thin section electron microscopy, and dent(s) midway through one cell, and 1/3- and 2/3-lengths in another cell, possibly representing one or more division septa. This quick and high resolution with depth-of-field microscopy technique is unmatched to image live hydrated ultrastructure, and has much potential for application in the study of fragile biological specimens. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:9083658

  10. Dark-field hyperspectral X-ray imaging.

    PubMed

    Egan, Christopher K; Jacques, Simon D M; Connolley, Thomas; Wilson, Matthew D; Veale, Matthew C; Seller, Paul; Cernik, Robert J

    2014-05-01

    In recent times, there has been a drive to develop non-destructive X-ray imaging techniques that provide chemical or physical insight. To date, these methods have generally been limited; either requiring raster scanning of pencil beams, using narrow bandwidth radiation and/or limited to small samples. We have developed a novel full-field radiographic imaging technique that enables the entire physio-chemical state of an object to be imaged in a single snapshot. The method is sensitive to emitted and scattered radiation, using a spectral imaging detector and polychromatic hard X-radiation, making it particularly useful for studying large dense samples for materials science and engineering applications. The method and its extension to three-dimensional imaging is validated with a series of test objects and demonstrated to directly image the crystallographic preferred orientation and formed precipitates across an aluminium alloy friction stir weld section. PMID:24808753

  11. Dark-field hyperspectral X-ray imaging

    PubMed Central

    Egan, Christopher K.; Jacques, Simon D. M.; Connolley, Thomas; Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul; Cernik, Robert J.

    2014-01-01

    In recent times, there has been a drive to develop non-destructive X-ray imaging techniques that provide chemical or physical insight. To date, these methods have generally been limited; either requiring raster scanning of pencil beams, using narrow bandwidth radiation and/or limited to small samples. We have developed a novel full-field radiographic imaging technique that enables the entire physio-chemical state of an object to be imaged in a single snapshot. The method is sensitive to emitted and scattered radiation, using a spectral imaging detector and polychromatic hard X-radiation, making it particularly useful for studying large dense samples for materials science and engineering applications. The method and its extension to three-dimensional imaging is validated with a series of test objects and demonstrated to directly image the crystallographic preferred orientation and formed precipitates across an aluminium alloy friction stir weld section. PMID:24808753

  12. Characterization of an indirect X-ray imaging detector by simulation and experiment.

    PubMed

    Doshi, C; van Riessen, G; Balaur, E; de Jonge, M D; Peele, A G

    2015-01-01

    We describe a comprehensive model of a commercial indirect X-ray imaging detector that accurately predicts the detector point spread function and its dependence on X-ray energy. The model was validated by measurements using monochromatic synchrotron radiation and extended to polychromatic X-ray sources. Our approach can be used to predict the performance of an imaging detector and can be used to optimize imaging experiments with broad-band X-ray sources. PMID:25203971

  13. X-Ray Absorption Spectroscopy Imaging of Biological Tissues

    NASA Astrophysics Data System (ADS)

    Pickering, Ingrid J.; George, Graham N.

    2007-02-01

    X-ray absorption spectroscopy (XAS) is proving invaluable in determining the average chemical form of metals or metalloids in intact biological tissues. As most tissues have spatial structure, there is great additional interest in visualizing the spatial location of the metal(loid) as well as its chemical forms. XAS imaging gives the opportunity of producing maps of specific chemical types of elements in vivo in dilute biological systems. X-ray fluorescence microprobe techniques are routinely used to study samples with spatial heterogeneity. Microprobe produces elemental maps, with chemical sensitivity obtained by recording micro-XAS spectra at selected point locations on the map. Unfortunately, using these procedures spatial detail may be lost as the number of point spectra recorded generally is limited. A powerful extension of microprobe is XAS imaging or chemically specific imaging. Here, the incident energy is tuned to features in the near-edge which are characteristic of the expected chemical forms of the element. With a few simple assumptions, these XAS images can then be converted to quantitative images of specific chemical form, yielding considerable clarity in the distributions.

  14. Hybrid Pixel Detectors for gamma/X-ray imaging

    NASA Astrophysics Data System (ADS)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  15. Diffraction imaging of crystals with focused x-ray beams

    SciTech Connect

    Kazimirov, A.; Kohn, V. G.; Cai, Z.-H.

    2010-06-01

    We describe an imaging technique based on diffraction of a focused x-ray beam in crystals. A focused beam is formed by a zone plate and Bragg diffracted from a crystalline sample positioned between the zone plate and the focus. The intensity pattern is recorded by a high-resolution charge-coupled-device detector placed in the focus. Diffraction images recorded from perfect Si and GaAs crystals for various reflections demonstrate the broadening of the focused beam due to a finite scattering length. The images from semiconductor epitaxial films and heterostructures show additional peaks originating from the interfaces with their spatial position corresponding to the depth from the surface. Diffraction images from isolated defects in Si crystal demonstrate capabilities to study bulk defects. Theoretical simulations for perfect crystals show excellent agreement with experiments. We demonstrate that the new imaging technique is depth sensitive and combines structural sensitivity of traditional x-ray topography methods with spatial in-plane resolution provided by focusing.

  16. The imaging of nanostructures with novel x-ray methods

    NASA Astrophysics Data System (ADS)

    Dietze, Sebastian

    The use of x-rays to probe matter is an ever increasing popular technique due to their short wavelength that can achieve better than atomic resolution; chemical selectivity that permit the separation of material contributions; and tunable interaction strength allowing a wide class of materials to be probed including interfaced and bulk structures. As more powerful sources of x-rays have become available in the form of synchrotrons and linear accelerators, new and inventive experimental method have emerged to access the unknown. In this dissertation, three novel uses of x-rays are advanced to study a wide class materials. Since the next generation of x-ray sources will feature highly brilliant x-ray beams, they will enable the imaging of local nanoscale structures with unprecedented resolution. A general formalism to predict the achievable spatial resolution in coherent diffractive imaging (CDI), based solely on diffracted intensities, is provided. The coherent dose necessary to reach atomic resolution depends significantly on the atomic scale structure, where amorphous materials or disordered materials require less dose than crystalline materials. A reduction in dose can be larger than three-orders of magnitude as compared to the expected scaling for uniform density materials. Additionally, dose reduction for crystalline materials are predicted at certain resolutions based only on their unit cell dimensions and structure factors. An extension of dichroic coherent diffractive imaging of thin films with perpendicular magnetic anisotropy is made from a uniform case to one that contains charge contributions. With the use of linear polarized x-rays near resonant edges, the charge and magnetic scattering can be reconstructed. First, an approximate manual separation is made before reconstruction to obtain the magnetic domains of a Au patterned GdFe multilayer thin film. This is then compared to a direct reconstruction using the two coherent modes contributed by the right

  17. 3D registration through pseudo x-ray image generation.

    PubMed

    Viant, W J; Barnel, F

    2001-01-01

    Registration of a pre operative plan with the intra operative position of the patient is still a largely unsolved problem. Current techniques generally require fiducials, either artificial or anatomic, to achieve the registration solution. Invariably these fiducials require implantation and/or direct digitisation. The technique described in this paper requires no digitisation or implantation of fiducials, but instead relies on the shape and form of the anatomy through a fully automated image comparison process. A pseudo image, generated from a virtual image intensifier's view of a CT dataset, is intra operatively compared with a real x-ray image. The principle is to align the virtual with the real image intensifier. The technique is an extension to the work undertaken by Domergue [1] and based on original ideas by Weese [4]. PMID:11317805

  18. AXAF-1 High Resolution Assembly Image Model and Comparison with X-Ray Ground Test Image

    NASA Technical Reports Server (NTRS)

    Zissa, David E.

    1999-01-01

    The x-ray ground test of the AXAF-I High Resolution Mirror Assembly was completed in 1997 at the X-ray Calibration Facility at Marshall Space Flight Center. Mirror surface measurements by HDOS, alignment results from Kodak, and predicted gravity distortion in the horizontal test configuration are being used to model the x-ray test image. The Marshall Space Flight Center (MSFC) image modeling serves as a cross check with Smithsonian Astrophysical observatory modeling. The MSFC image prediction software has evolved from the MSFC model of the x-ray test of the largest AXAF-I mirror pair in 1991. The MSFC image modeling software development is being assisted by the University of Alabama in Huntsville. The modeling process, modeling software, and image prediction will be discussed. The image prediction will be compared with the x-ray test results.

  19. Imaging properties and its improvements of scanning/imaging x-ray microscope

    NASA Astrophysics Data System (ADS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with the linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination.

  20. Development of the water window imaging X-ray microscope utilizing normal-incidence multilayer optics

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    A water-window imaging X-ray telescope configured with normal-incidence multilayer X-ray mirrors has been developed to obtain images with unprecedented spatial resolution and contrast of carbon-based microstructures within living cells. The narrow bandpass response inherent in multilayer X-ray optics is accurately tuned to wavelengths within the water window.

  1. Global X-ray Imaging of the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, G.

    2012-04-01

    Plasma and magnetic field environments can be studied in situ, or by remote sensing. In situ measurements return precise information about plasma composition, instabilities and dynamics, but cannot provide the global view necessary to understand the overall behaviour and evolution of the plasma, which instead can be explored by remote imaging. We propose a new approach by remote global X-ray imaging, now possible thanks to the relatively recent discovery of solar wind charge-exchange X-ray emission; this has been found, by observatories such as XMM-Newton, to occur in the vicinity of the Earth's magnetosphere and to peak in the sub-solar magnetosheath, where both solar wind and neutral exospheric densities are high. We describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the Earth's dayside magnetosphere, magnetosheath and bow shock, with temporal and spatial resolutions sufficient to address key outstanding questions concerning how the solar wind interacts with planetary magnetospheres. This medium-size mission incorporates a wide-field soft X-ray telescope, using micropore optics and CCD detectors, for imaging and spectroscopy, a proton and alpha particle sensor designed to measure the bulk properties of the solar wind, an ion composition analyser which aims to characterise the populations of minor ions in the solar wind, and a magnetometer for accurate measurements of the strength and direction of the magnetic field. Details of the mission profile will be presented, as well as simulations of the expected performance for possible mission configurations. The AXIOM Team: G. Branduardi-Raymont(1), S. F. Sembay(2), J. P. Eastwood(3), D. G. Sibeck(4), A. Abbey(2), P. Brown(3), J. A. Carter(2), C. M. Carr(3), C. Forsyth(1), D. Kataria(1), S. Milan(2), C. J. Owen(1), A. M. Read(2), C. S. Arridge(1), A. J. Coates(1), M. R. Collier(4), S. W. H. Cowley(2), G. Fraser(2), G

  2. Scattering imaging method in transmission x-ray microscopy.

    PubMed

    Chen, Jian; Gao, Kun; Ge, Xin; Wang, Zhili; Zhang, Kai; Hong, Youli; Pan, Zhiyun; Wu, Zhao; Zhu, Peiping; Yun, Wenbing; Wu, Ziyu

    2013-06-15

    We present a x-ray microscopy technique based on structured illumination in a microscope that characterizes the size of the subresolution-limit features. The technique is effective for characterizing fine structures substantially beyond the Rayleigh resolution of the microscope. We carried out optical experiments to demonstrate the basic principle of this new technique. Experimental results show good agreement with theoretical predictions. This technique should find a wide range of important imaging applications with a feature size down to nanometer scale, such as oil and gas reservoir rocks, advanced composites, and functional nanodevices and materials. PMID:23938979

  3. The need for hard X-ray imaging observations at the next solar maximum

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1988-01-01

    Canonical models of solar hard X-ray bursts; associated length and time scales; the adequacies and inadequacies of previous observations; theoretical modeling predictions; arcsecond imaging of solar hard X-rays are outlined.

  4. Time-resolved x-ray imaging of x-ray induced dynamics in Xe clusters

    NASA Astrophysics Data System (ADS)

    Bucher, M.; Ferguson, K.; Gorkhover, T.; Carron, S.; Cryan, J.; Krzywinski, J.; Lutman, A.; Marinelli, A.; Bacellar, C.; Chatterley, A.; Ziemkiewicz, M.; Bernando, C.; Gomez, L.; Jones, C.; Kwok, J.; Tanyag, R. M. P.; Mueller, M.; Rupp, D.; Möller, T.; Gessner, O.; Vilesov, A.; Bostedt, C.

    2016-05-01

    Nanoparticles irradiated by intense x-ray pulses from the LCLS free-electron laser are immediately transformed into a highly excited nanoplasma. Within the first few femtoseconds of the x-ray pulse the particles are ionized and on longer time scales they disintegrate due to Coulomb forces. We performed an x-ray pump / x-ray probe experiment to investigate how the nanoplasma creation and disintegration changes the particle's diffraction response. As samples we used pristine Xe clusters as well as Xe clusters embedded in He droplets. The data show that for pristine clusters the higher diffraction orders diminish first and vanish completely as the nanoplasma expansion progresses. This effect is less prominent in the embedded clusters. We compare our results to previous studies on optically pumped clusters (T. Gorkhover et al., Nat. Photonics, 2016). This work is funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC02-06CH11357.

  5. Implications of stimulated resonant X-ray scattering for spectroscopy, imaging, and diffraction in the regime from soft to hard X-rays

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Beye, Martin; Föhlisch, Alexander

    2015-12-01

    The ultrahigh peak brilliance available at X-ray free-electron lasers opens the possibility to transfer nonlinear spectroscopic techniques from the optical and infrared into the X-ray regime. Here, we present a conceptual treatment of nonlinear X-ray processes with an emphasis on stimulated resonant X-ray scattering as well as a quantitative estimate for the scaling of stimulated X-ray scattering cross sections. These considerations provide the order of magnitude for the required X-ray intensities to experimentally observe stimulated resonant X-ray scattering for photon energies ranging from the extreme ultraviolet to the soft and hard X-ray regimes. At the same time, the regime where stimulated processes can safely be ignored is identified. With this basis, we discuss prospects and implications for spectroscopy, scattering, and imaging experiments at X-ray free-electron lasers.

  6. Nanoscale X-ray microscopic imaging of mammalian mineralized tissue.

    PubMed

    Andrews, Joy C; Almeida, Eduardo; van der Meulen, Marjolein C H; Alwood, Joshua S; Lee, Chialing; Liu, Yijin; Chen, Jie; Meirer, Florian; Feser, Michael; Gelb, Jeff; Rudati, Juana; Tkachuk, Andrei; Yun, Wenbing; Pianetta, Piero

    2010-06-01

    A novel hard transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Lightsource operating from 5 to 15 keV X-ray energy with 14 to 30 microm2 field of view has been used for high-resolution (30-40 nm) imaging and density quantification of mineralized tissue. TXM is uniquely suited for imaging of internal cellular structures and networks in mammalian mineralized tissues using relatively thick (50 microm), untreated samples that preserve tissue micro- and nanostructure. To test this method we performed Zernike phase contrast and absorption contrast imaging of mouse cancellous bone prepared under different conditions of in vivo loading, fixation, and contrast agents. In addition, the three-dimensional structure was examined using tomography. Individual osteocytic lacunae were observed embedded within trabeculae in cancellous bone. Extensive canalicular networks were evident and included processes with diameters near the 30-40 nm instrument resolution that have not been reported previously. Trabecular density was quantified relative to rod-like crystalline apatite, and rod-like trabecular struts were found to have 51-54% of pure crystal density and plate-like areas had 44-53% of crystal density. The nanometer resolution of TXM enables future studies for visualization and quantification of ultrastructural changes in bone tissue resulting from osteoporosis, dental disease, and other pathologies. PMID:20374681

  7. Nanoscale X-Ray Microscopic Imaging of Mammalian Mineralized Tissue

    PubMed Central

    Andrews, Joy C.; Almeida, Eduardo; van der Meulen, Marjolein C.H.; Alwood, Joshua S.; Lee, Chialing; Liu, Yijin; Chen, Jie; Meirer, Florian; Feser, Michael; Gelb, Jeff; Rudati, Juana; Tkachuk, Andrei; Yun, Wenbing; Pianetta, Piero

    2010-01-01

    A novel hard transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Light-source operating from 5 to 15 keV X-ray energy with 14 to 30 µm2 field of view has been used for high-resolution (30–40 nm) imaging and density quantification of mineralized tissue. TXM is uniquely suited for imaging of internal cellular structures and networks in mammalian mineralized tissues using relatively thick (50 µm), untreated samples that preserve tissue micro- and nanostructure. To test this method we performed Zernike phase contrast and absorption contrast imaging of mouse cancellous bone prepared under different conditions of in vivo loading, fixation, and contrast agents. In addition, the three-dimensional structure was examined using tomography. Individual osteocytic lacunae were observed embedded within trabeculae in cancellous bone. Extensive canalicular networks were evident and included processes with diameters near the 30–40 nm instrument resolution that have not been reported previously. Trabecular density was quantified relative to rod-like crystalline apatite, and rod-like trabecular struts were found to have 51–54% of pure crystal density and plate-like areas had 44–53% of crystal density. The nanometer resolution of TXM enables future studies for visualization and quantification of ultrastructural changes in bone tissue resulting from osteoporosis, dental disease, and other pathologies. PMID:20374681

  8. Rodent Brain Imaging with X-ray CT

    NASA Astrophysics Data System (ADS)

    Seo, Youngho; Hashimoto, Tomoki; Nuki, Yoshitsugu; Hasegawa, Bruce; Franc, Benjamin

    2007-03-01

    High resolution compact computed tomography (CT) systems have become increasingly important for examining morphology in small animal models of human biology and disease. However, functional measurements of blood flow and tissue perfusion are more challenging due to limited temporal resolution and need for x-ray absorptive contrast media. We therefore have developed methodologies which use x-ray CT for imaging hemorrhagic stroke in the brain of the intact rat. The head of the anesthetized rat was secured in an immobilization device, followed by in vivo imaging with a dedicated small animal CT scanner (X-O, Gamma Medica-Ideas, Northridge, CA). Imaging was performed without iodine contrast to visualize a very small volume (less than 0.1 ml) of arterial blood in a rat model of intracranial hemorrhage, and with iodine contrast (iopromide, 300 mgI/ml) to visualize carotid and cerebral arteries in order to study aneurysms and other vascular formations that may precede or indicate intracranial hemorrhage.

  9. Monochromatic Mammographic Imaging Using X-Ray Polycapillary Optics

    NASA Astrophysics Data System (ADS)

    Sugiro, Francisca

    2002-06-01

    Monochromatic imaging is typically done with synchrotron sources. These sources are expensive and not practical for clinical settings. However, conventional laboratory sources normally have insufficient intensity. Polycapillary x-ray optics can be used to efficiently produce an intense parallel beam, which can be diffracted from a crystal to create monochromatic radiation. Monochromatic parallel beam imaging produces high subject contrast, high resolution, and low patient dose. Contrast, resolution, and intensity measurements were performed with both high and low angular acceptance crystals. Testing was first done at 8 keV with an intense copper rotating anode source. Preliminary l7.5 kev measurements were then made with a molybdenum source. At 8 keV, contrast enhancement was a factor of five relative to the polychromatic case, in good agreement with theoretical values. At l7.5 kev, monochromatic subject contrast was a factor of two times greater than the conventional polychromatic contrast. The measured angular resolution with a silicon crystal is 0.6 mrad at 8 keV, and 0.2 - 0.3 mrad at 17.5 keV. For a 50-mm thick patient, this angle corresponds to 50 lp/mm with an ideal detector. The use of polychromatic collimating optics allow monochromatic mammographic imaging measurements with a conventional x-ray source in a practical clinical setting.

  10. Coordinated airglow observations between IMAP/VISI and a ground-based all-sky imager on concentric gravity wave in the mesopause

    NASA Astrophysics Data System (ADS)

    Perwitasari, S.; Sakanoi, T.; Yamazaki, A.; Otsuka, Y.; Hozumi, Y.; Akiya, Y.; Saito, A.; Shiokawa, K.; Kawamura, S.

    2015-11-01

    We present a study of concentric gravity waves (CGWs) event from the coordinated observation between Ionosphere, Mesosphere, upper Atmosphere, and Plasmasphere mapping (IMAP)/Visible and near-Infrared Spectral Imager (VISI), all-sky camera at Rikubetsu, Multi-functional Transport Satellite (MTSAT), Tropical Rainfall Measuring Mission, and MF radar at Wakkanai combined with Modern-Era Retrospective Analysis for Research and Application data. IMAP/VISI is the first space-based imager that capable of imaging the airglow in the mesosphere and lower thermosphere region in the nadir-looking direction. Therefore, it has a unique ability to observe a great extend of CGWs propagation. Arc-like shaped, part of CGWs pattern was observed around the mesopause (~95 km) in the O2 762 nm airglow emission obtained by IMAP/VISI at 1204 UT on 18 October 2012. Similar patterns were also observed by the all-sky imager at Rikubetsu (43.5°N, 143.8°E) in OI 557.7 nm and OH band airglow emissions from ~1100 to 1200 UT. Horizontal wavelengths of the observed small-scale gravity waves are ~50 km (OH band and OI 557.7 nm) and ~67 km (O2 762 nm). The source is suggested to be a deep convective activity over Honshu Island which likely was an enhanced convective activity related to a typhoon in the south of Japan. The data showed that the CGWs could propagate up to ~1400-1500 km horizontally from the source to the mesopause but not farther away. Using atmospheric temperature profiles obtained by Thermospheric Ionosphere Mesosphere Energetics Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry, we conclude that this long-distance propagation of the waves could be caused by thermal duct in the middle atmosphere. The arc-like shaped instead of full circle pattern points out that the wind filtering effect is significant for the particular direction of wave propagation.

  11. X-ray phase sensitive imaging methods: basic physical principles and potential medical applications

    PubMed Central

    Chen, Guang-Hong; Zambelli, Joseph; Bevins, Nicholas; Qi, Zhihua; Li, Ke

    2013-01-01

    Phase sensitive imaging theoretically allows for a drastic reduction in x-ray dose while simultaneously achieving comparable or better spatial and contrast resolution compared to traditional x-ray absorption based imaging. Several techniques exist to extract the phase information from an x-ray signal, including x-ray interferometry, diffraction enhanced imaging, in-line holography, coded aperture x-ray imaging, and grating-based interferometry. The physics of each method is reviewed, along with the potential clinical applications. PMID:23970846

  12. Hard X-ray Imaging Microscopy using X-ray Guide Tube as Beam Condenser for Field Illumination

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshio; Takeuchi, Akihisa; Uesugi, Kentaro; Terada, Yasuko; Nakazawa, Hiromoto; Ohzawa, Sumito; Aoyama, Tomoki; Nii, Hajime; Handa, Katsumi

    2013-10-01

    An optical system for illumination of object in x-ray imaging microscopy is developed. The optical system is a beam condenser consisting of a single-bounce conical-shape mono-capillary (x-ray guide tube: XGT) made of Pyrex glass. The XGT condenser was tested at the beam line 47XU of SPring-8 using a Fresnel zone plate as an objective lens. Comparing with the microscope without beam condenser, the flux density is improved by a factor of 12-20 in the x-ray energy range of 6-8 keV. Test patterns with a 50 nm-structure are clearly resolved at 8 keV with an exposure time less than 1 s.

  13. Application of imaging plate to x-ray imaging and spectroscopy in laser plasma experiments

    SciTech Connect

    Izumi, N; Snavely, R; Gregori, G; Koch, J A; Park, H; Remington, B A

    2006-04-25

    We report recent progress of x-ray diagnostic techniques in laser plasma experiment with using imaging plates. Imaging plate is a photo-stimulable phosphor screen (BaF(Br0.85,10.15):Eu{sup 2+}) deposited on flexible metal or plastic substrate. We applied the imaging plate to x-ray microscopy in laser fusion experiment experiments. Self-emission x-ray images of imploded core were obtained successfully with using imaging plate and high magnification target mounted pinhole arrays. The imaging plates were applied also in ultra-intense laser experiment at the Rutherford Appleton Laboratory. Small samarium foil was irradiated by high intensity laser pulse from the Vulcan laser system. The k shell x-rays from the foil ({approx}40keV) was used as a line x-ray source for microscopic radiography. Performance of imaging plate on high-energy x-ray backlit radiography was demonstrated by imaging sinusoidal grooves of 6um amplitude on a Au foil. Detailed spectrum of k shell x-ray from Cu embedded foil target was successfully observed by fully coupling imaging plate with a highly ordered pyrolytic graphite crystal spectrometer. The performances of the imaging plates evaluated in actual laser plasma experiments will be presented.

  14. Dimensionality and noise in energy selective x-ray imaging

    SciTech Connect

    Alvarez, Robert E.

    2013-11-15

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 10{sup 3}. With the soft tissue component, it is 2.7 × 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases

  15. High energy X-ray phase and dark-field imaging using a random absorption mask

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  16. Imaging bacterial spores by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  17. Water window ptychographic imaging with characterized coherent X-rays.

    PubMed

    Rose, Max; Skopintsev, Petr; Dzhigaev, Dmitry; Gorobtsov, Oleg; Senkbeil, Tobias; von Gundlach, Andreas; Gorniak, Thomas; Shabalin, Anatoly; Viefhaus, Jens; Rosenhahn, Axel; Vartanyants, Ivan

    2015-05-01

    A ptychographical coherent diffractive imaging experiment in the water window with focused soft X-rays at 500 eV is reported. An X-ray beam with high degree of coherence was selected for ptychography at the P04 beamline of PETRA III synchrotron radiation source. The beam coherence was measured with the newly developed non-redundant array method, and a coherence length of 4.1 µm and global degree of coherence of 35% at 100 µm exit slit opening in the vertical direction were determined. A pinhole, 2.6 µm in size, selected the coherent part of the beam that was used to obtain ptychographic reconstruction results of a lithographically manufactured test sample and a fossil diatom. The achieved resolution was 53 nm for the test sample and was only limited by the size of the detector. The diatom was imaged at a resolution better than 90 nm. PMID:25931102

  18. Water window ptychographic imaging with characterized coherent X-rays

    PubMed Central

    Rose, Max; Skopintsev, Petr; Dzhigaev, Dmitry; Gorobtsov, Oleg; Senkbeil, Tobias; von Gundlach, Andreas; Gorniak, Thomas; Shabalin, Anatoly; Viefhaus, Jens; Rosenhahn, Axel; Vartanyants, Ivan

    2015-01-01

    A ptychographical coherent diffractive imaging experiment in the water window with focused soft X-rays at 500 eV is reported. An X-ray beam with high degree of coherence was selected for ptychography at the P04 beamline of PETRA III synchrotron radiation source. The beam coherence was measured with the newly developed non-redundant array method, and a coherence length of 4.1 µm and global degree of coherence of 35% at 100 µm exit slit opening in the vertical direction were determined. A pinhole, 2.6 µm in size, selected the coherent part of the beam that was used to obtain ptychographic reconstruction results of a lithographically manufactured test sample and a fossil diatom. The achieved resolution was 53 nm for the test sample and was only limited by the size of the detector. The diatom was imaged at a resolution better than 90 nm. PMID:25931102

  19. Single grating x-ray imaging for dynamic biological systems

    NASA Astrophysics Data System (ADS)

    Morgan, Kaye S.; Paganin, David M.; Parsons, David W.; Donnelley, Martin; Yagi, Naoto; Uesugi, Kentaro; Suzuki, Yoshio; Takeuchi, Akihisa; Siu, Karen K. W.

    2012-07-01

    Biomedical studies are already benefiting from the excellent contrast offered by phase contrast x-ray imaging, but live imaging work presents several challenges. Living samples make it particularly difficult to achieve high resolution, sensitive phase contrast images, as exposures must be short and cannot be repeated. We therefore present a single-exposure, high-flux method of differential phase contrast imaging [1, 2, 3] in the context of imaging live airways for Cystic Fibrosis (CF) treatment assessment [4]. The CF study seeks to non-invasively observe the liquid lining the airways, which should increase in depth in response to effective treatments. Both high spatial resolution and sensitivity are required in order to track micron size changes in a liquid that is not easily differentiated from the tissue on which it lies. Our imaging method achieves these goals by using a single attenuation grating or grid as a reference pattern, and analyzing how the sample deforms the pattern to quantitatively retrieve the phase depth of the sample. The deformations are mapped at each pixel in the image using local cross-correlations comparing each 'sample and pattern' image with a reference 'pattern only' image taken before the sample is introduced. This produces a differential phase image, which may be integrated to give the sample phase depth.

  20. A plasma bulk motion in the midnight magnetosphere during auroral breakup inferred from all-sky image and magnetic field observations at geosynchronous altitudes

    NASA Astrophysics Data System (ADS)

    Saka, O.; Koga, D.; Hayashi, K.

    2007-07-01

    Auroral events that occurred on January 24, 1986 in central Canada were recorded by an all-sky TV imager. During these events, auroral breakup was confined to a region between two foot points of neighboring geosynchronous satellites, GOES5 and GOES6. We examined field line signatures at satellite locations in unique station distributions and concluded that field line observation indicated plasma motion in the equatorial plane. The plasma motion showed an earthward compression combined with bifurcation (duskward or dawnward displacement in dusk/dawn sectors). In addition, we were able to infer an elliptical circulation of plasmas in the equatorial plane at Pi2 periods. Appearance in opposite rotation beside the auroral region indicated excitation of surface waves. We were able to show that auroral breakups occurred at a meridian of bifurcation. We suggest that a high plasma pressure region occurring tailward of geosynchronous altitudes may drive those plasma motions.

  1. Image query and indexing for digital x rays

    NASA Astrophysics Data System (ADS)

    Long, L. Rodney; Thoma, George R.

    1998-12-01

    The web-based medical information retrieval system (WebMIRS) allows interned access to databases containing 17,000 digitized x-ray spine images and associated text data from National Health and Nutrition Examination Surveys (NHANES). WebMIRS allows SQL query of the text, and viewing of the returned text records and images using a standard browser. We are now working (1) to determine utility of data directly derived from the images in our databases, and (2) to investigate the feasibility of computer-assisted or automated indexing of the images to support image retrieval of images of interest to biomedical researchers in the field of osteoarthritis. To build an initial database based on image data, we are manually segmenting a subset of the vertebrae, using techniques from vertebral morphometry. From this, we will derive and add to the database vertebral features. This image-derived data will enhance the user's data access capability by enabling the creation of combined SQL/image-content queries.

  2. X-ray CT and NMR imaging of rocks

    SciTech Connect

    Vinegar, H.J.

    1986-03-01

    In little more than a decade, X-ray computerized tomography (CT) and nuclear magnetic resonance (NMR) imaging have become the premier modalities of medical radiology. Both of these imaging techniques also promise to be useful tools in petrophysics and reservoir engineering, because CT and NMR can nondestructively image a host of physical and chemical properties of porous rocks and multiple fluid phases contained within their pores. The images are taken within seconds to minutes, at reservoir temperatures and pressures, with spatial resolution on the millimeter and submillimeter level. The physical properties imaged by the two techniques are complementary. CT images bulk density and effective atomic number. NMR images the nuclide concentration, M/sub 0/, of a variety of nuclei (/sup 1/H, /sup 19/F, /sup 23/Na, /sup 31/P, etc.), their longitudinal and transverse relaxation-time curves (t/sub 1/ and t/sub 2/), and their chemical shift spectra. In rocks, CT images both rock matrix and pore fluids, while NMR images only mobile fluids and the interactions of these mobile fluids with the confining surfaces of the pores.

  3. Microwave Kinetic Inductance Detectors: Large Format X-ray Spectral Imagers for the Next Generation of X-ray Telescopes

    NASA Astrophysics Data System (ADS)

    Eckart, Megan E.; Mazin, B. A.; Bumble, B.; Golwala, S. R.; Zmuidzinas, J.; Day, P. K.; Harrison, F. A.

    2006-09-01

    Microwave Kinetic Inductance Detectors (MKIDs) have the potential to provide megapixel imagers with few eV spectral resolution for future X-ray missions such as Gen-X. MKIDs offer the advantage over many other cryogenic detector technologies that they can be easily multiplexed, so that arrays with many thousand pixels are readily achievable. In addition, the readout electronics can be operated at room temperature, a significant advantage for space applications. MKIDs exploit the dependence of surface impedance of a superconductorwith the quasiparticle density. Quasiparticles are created by absorption of X-rays, with number proportional to the X-ray energy. The impedance change may be sensitively measured using a thin-film resonant circuit. The practical application of MKIDs for photon detection requires a method of efficiently coupling the photon energy to the MKID. To apply the MKID scheme to X-ray detection we pattern tantalum strips with aluminum MKIDs attached at each end. An incident X-ray is absorbed in the Ta and creates millions of quasiparticle excitations, which diffuse to each end of the strip, finally entering the Al resonators where they are trapped and sensed. Simultaneous monitoring of the signal at both ends of the strip allow position and energy determination for each photon. We have demonstrated working strip detectors in the laboratory, and will present our measurements of the quasiparticle diffusion constant and the quasiparticle lifetime in tantalum, the aluminum quasiparticle lifetime, and the energy resolution of the detector. We will also discuss ideas for future detector designs and suggest ultimate performance goals for X-ray astronomy applications.

  4. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  5. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  6. Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering

    SciTech Connect

    Trigo, M.; Chen, J.; Vishwanath, V.H.; Sheu, Y.M.; Graber, T.; Henning, R.; Reis, D; /SLAC /Stanford U., Appl. Phys. Dept.

    2011-03-03

    We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.

  7. Soft x-ray imager (SXI) onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi Go; Dotani, Tadayasu; Hiraga, Junko S.; Anabuki, Naohisa; Bamba, Aya; Hatsukade, Isamu; Kohmura, Takayoshi; Mori, Koji; Murakami, Hiroshi; Nakajima, Hiroshi; Ozaki, Masanobu; Uchida, Hiroyuki; Yamauchi, Makoto

    2010-07-01

    We are designing an X-ray CCD camera (SXI) for ASTRO-H, including many new items. We have developed the CCD, CCD-NeXT4, that is a P-channel type CCD. It has a thick depletion layer of 200μm with an imaging area of 30mm square. Since it is back-illuminated, it has a good low energy response and is robust against the impact of micro-meteorites. We will employ 4 chips to cover the area of 60mm square. A mechanical rather than peltier cooler will be employed so that we can cool the CCD to -120°C. We will also introduce an analog ASIC that is placed very close to the CCD. It performs well, having a similar noise level to that assembled by using individual parts used on SUZAKU. We also employ a modulated X-ray source (MXS), that improves the accuracy of the calibration. The SXI will have one of the largest SΩ among various satellites.

  8. Industrial X-ray imaging based on scintillators and CMOS APS array: direct X-ray irradiation effects

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hyun; Jeon, Sung Chae; Kim, Young Soo; Cho, Gyuseong

    2005-01-01

    To see the effects of the direct X-ray in a Lanex screen-coupled CMOS APS imager, we measured modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). These measurements were performed under the condition of non-destructive test (NDT). By increasing the cumulative exposure on the imager, the MTF was degraded, and also leading to the DQE degradation. Each parameter changed by the exposure is described in detail.

  9. The ADS All Sky Survey

    NASA Astrophysics Data System (ADS)

    Goodman, Alyssa

    images can be extracted from articles, we will attempt to "astroreference" those images in order allow for their overlay on the sky. "Astroreferencing" is the analog of "georeferencing," where coordinate information is used to overlay information on maps. Our first pass at astroreferencing will be made using the astrometry.net program, in collaboration with one of its creators. If enough optically-visible stars are present in an image, astrometry.net can place it where it goes on the sky. Only a small fraction of ADS holdings contain images solvable by astrometry.net, but for the articles which do, reviving the data in this way holds tremendous value-especially in the case of historically important observations. Lastly, we will also astroreference images by text-mining to extract "metadata" buried in the figure captions and text. As it is built, the ADSASS will effectively create dynamic data layers of astrotags and astroreferenced images. Users will be able to explore these layers using a wide variety of free all-sky data viewers. Our group and our collaborators have been involved in the development of the WorldWide Telescope and Aladin programs, so we will use those to develop examples of how we intend for the ADSASS to be used. But, we plan to ensure that the data feed represented by the ADSASS will be ingestible by any program capable of understanding sky coordinates and all-sky views. Our proposal can only give a glimpse into the wealth of science it will enable, which includes everything from observation-planning to data discovery to studying the sky distributions of classes of objects. Just as it would have been hard to predict the full and amazing impact of GIS and GPS on society, it is similarly hard to gauge the full impact of the NASA ADSASS. The ADS on its own is already the envy of other sciences as a unified research tool, with the advent of the ADSASS, NASA will have led the way to the future once again.

  10. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research. PMID:21307411

  11. Flash imaging of fine structures of cellular organelles by contact x-ray microscopy with a high intensity laser plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Kishimoto, Maki; Tamotsu, Satoshi; Yasuda, Keiko; Kinjo, Yasuhito; Shinohara, Kunio

    2011-09-01

    X-ray flash imaging by contact microscopy with a highly intense laser-plasma x-ray source was achieved for the observation of wet biological cells. The exposure time to obtain a single x-ray image was about 600 ps as determined by the pulse duration of the driving laser pulse. The x-ray flash imaging makes it possible to capture an x-ray image of living biological cells without any artificial treatment such as staining, fixation, freezing, and so on. The biological cells were cultivated directly on the surface of the silicon nitride membranes, which are used for the x-ray microscope. Before exposing the cells to x-rays they were observed by a conventional fluorescent microscope as reference, since the fluorescent microscopes can visualize specific organelles stained with fluorescent dye. Comparing the x-ray images with the fluorescent images of the exact same cells, each cellular organelle observed in the x-ray images was identified one by one and actin filaments and mitochondria were clearly identified in the x-ray images.

  12. Eigen analysis for classifying chest x-ray images

    NASA Astrophysics Data System (ADS)

    Bones, Philip J.; Butler, Anthony P. H.

    2004-10-01

    A method first employed for face recognition has been employed to analyse a set of chest x-ray images. After marking certain common features on the images, they are registered by means of an affine transformation. The differences between each registered image and the mean of all images in the set are computed and the first K principal components are found, where K is less than or equal to the number of images in the set. These form eigenimages (we have coined the term 'eigenchests') from which an approximation to any one of the original images can be reconstructed. Since the method effectively treats each pixel as a dimension in a hyperspace, the matrices concerned are huge; we employ the method developed by Turk and Pentland for face recognition to make the computations tractable. The K coefficients for the eigenimages encode the variation between images and form the basis for discriminating normal from abnormal. Preliminary results have been obtained for a set of eigenimages formed from a set of normal chests and tested on separate sets of normals and patients with pneumonia. The distributions of coefficients have been observed to be different for the two test sets and work is continuing to determine the most sensitive method for detecting the differences.

  13. All-sky imaging of meteor trails at 55.25 MHz with the first station of the Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Helmboldt, J. F.; Ellingson, S. W.; Hartman, J. M.; Lazio, T. J. W.; Taylor, G. B.; Wilson, T. L.; Wolfe, C. N.

    2014-03-01

    A new capability for high-sensitivity, all-sky monitoring of VHF meteor trail reflections with the first station of the Long Wavelength Array, or "LWA1," is described. LWA1 is a ˜100 m diameter HF/VHF array of 256 crossed-dipole antennas with a unique transient buffer mode that allows it to monitor for meteor trails via all-sky imaging with the same sensitivity as a single-dish antenna ≳ 40 m in diameter. To demonstrate this capability, we have used a 2 h observing run conducted in August 2012 aimed at detecting and characterizing meteor trail reflections of analog TV transmissions at 55.25 MHz. The analysis techniques described here allowed for a detection rate of ˜9500 trails per hour, including the detection of two meteor streams with radiants in the Aries/Perseus and Aquila/Hercules regions that were not previously reported in the literature. In addition, we have found a population of relatively long-duration (˜1 to a few minutes), typically faint trails. These trails have implied horizontal speeds of 15-130 m s-1, with a typical speed of ˜30 m s-1. We have also used high-resolution time series of the brightest trails to characterize decay times over a relatively large geographical area (10°×7° in longitude and latitude) and on short (˜5 min) time scales. Potential enhancements that could be enabled by the addition of more LWA stations are discussed.

  14. X-ray and extreme ultraviolet imaging using layered synthetic microstructures

    NASA Technical Reports Server (NTRS)

    Underwood, J. H.; Barbee, T. W.; Shealy, D. L.

    1982-01-01

    Up to now designers of X-ray optical instruments such as microscopes and telescopes have been compelled to use mirrors operating at small glancing angles. However, using vapor deposition techniques, it is now possible to build multilayered thin film structures in which the individual layers have thicknesses comparable with a wavelength of X-rays. These devices operate in a manner exactly analogous to multilayer dielectric coatings at visible wavelengths and can be used to increase the X-ray and extreme ultraviolet reflectivity of surfaces at large glancing angles. These X-ray mirrors have numerous potential applications in X-ray optics. Attention is given to X-ray images with a normal incidence mirror, and applications of multilayer optics. Single-mirror telescopes for solar/stellar astronomy are discussed, taking into account solar corona and transition region studies, and X-ray and extreme ultraviolet astronomy. Hybrid X-ray telescopes are also considered.

  15. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging.

    PubMed

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs-Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure. PMID:26931918

  16. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  17. Simulation of scattering x rays for improving image quality in SR coronary angiography

    NASA Astrophysics Data System (ADS)

    Oku, Y.; Aizawa, K.; Hyodo, K.; Ando, M.

    1995-02-01

    Coronary angiography by intravenous injection of contrast material using synchrotron radiation (SR) is a safe and easy method for diagnosis of coronary arteries. In Japan, a two-dimensional imaging system for coronary angiography is being developed. In that case, there exists a problem: Image contrast and visibility deteriorate due to harmful scattering x rays which are made when passing through a patient's body. Therefore, we have developed a simulation program in order to study the x-ray scattering behavior in a subject using monochromatic x rays and to find a method to decrease the scattering x rays in images using x-ray grids. The calculated results concerning the scattering x rays using the simulation program were compared with experimental results using monochromatic x rays at 33.17 keV from synchrotron radiation.

  18. Detection of dangerous objects in x-ray images

    NASA Astrophysics Data System (ADS)

    Bermbach, Rainer; Vey, Stefan

    1993-04-01

    An automated detection and recognition system is described for use with x-ray images of luggage inspection systems. The development goal was to achieve an automated analysis which may support operator-based control of luggage. The focus of attention lies on the recognition and checking of specified objects to which the system has been adapted during a training phase. The system trained so far concentrates on the detection of detonators and fire- arms. The segmentation gives various objects from which several features are extracted. These features are presented to a classifier which assigns the objects to predetermined categories. For classification a specially trained neural network (multilayer perceptron) is used. For detection of weapons first performance data are available. Detection of detonators is in the laboratory stage and shown first results.

  19. X-Ray Imaging-Spectroscopy of Abell 1835

    NASA Technical Reports Server (NTRS)

    Peterson, J. R.; Paerels, F. B. S.; Kaastra, J. S.; Arnaud, M.; Reiprich T. H.; Fabian, A. C.; Mushotzky, R. F.; Jernigan, J. G.; Sakelliou, I.

    2000-01-01

    We present detailed spatially-resolved spectroscopy results of the observation of Abell 1835 using the European Photon Imaging Cameras (EPIC) and the Reflection Grating Spectrometers (RGS) on the XMM-Newton observatory. Abell 1835 is a luminous (10(exp 46)ergs/s), medium redshift (z = 0.2523), X-ray emitting cluster of galaxies. The observations support the interpretation that large amounts of cool gas are present in a multi-phase medium surrounded by a hot (kT(sub e) = 8.2 keV) outer envelope. We detect O VIII Ly(alpha) and two Fe XXIV complexes in the RGS spectrum. The emission measure of the cool gas below kT(sub e) = 2.7 keV is much lower than expected from standard cooling-flow models, suggesting either a more complicated cooling process than simple isobaric radiative cooling or differential cold absorption of the cooler gas.

  20. Hard X-ray Microscopic Images of the Human Hair

    SciTech Connect

    Goo, Jawoong; Jeon, Soo Young; Oh, Tak Heon; Hong, Seung Phil; Lee, Won-Soo; Yon, Hwa Shik

    2007-01-19

    The better visualization of the human organs or internal structure is challenging to the physicist and physicians. It can lead to more understanding of the morphology, pathophysiology and the diagnosis. Conventionally used methods to investigate cells or architectures, show limited value due to sample processing procedures and lower resolution. In this respect, Zernike type phase contrast hard x-ray microscopy using 6.95keV photon energy has advantages. We investigated hair fibers of the normal healthy persons. Coherence based phase contrast images revealed three distinct structures of hair, medulla, cortex, and cuticular layer. Some different detailed characters of each sample were noted. And further details would be shown and these results would be utilized as basic data of morphologic study of human hair.

  1. XIPE: the X-ray imaging polarimetry explorer

    NASA Astrophysics Data System (ADS)

    Soffitta, Paolo; Barcons, Xavier; Bellazzini, Ronaldo; Braga, João; Costa, Enrico; Fraser, George W.; Gburek, Szymon; Huovelin, Juhani; Matt, Giorgio; Pearce, Mark; Poutanen, Juri; Reglero, Victor; Santangelo, Andrea; Sunyaev, Rashid A.; Tagliaferri, Gianpiero; Weisskopf, Martin; Aloisio, Roberto; Amato, Elena; Attiná, Primo; Axelsson, Magnus; Baldini, Luca; Basso, Stefano; Bianchi, Stefano; Blasi, Pasquale; Bregeon, Johan; Brez, Alessandro; Bucciantini, Niccoló; Burderi, Luciano; Burwitz, Vadim; Casella, Piergiorgio; Churazov, Eugene; Civitani, Marta; Covino, Stefano; Curado da Silva, Rui Miguel; Cusumano, Giancarlo; Dadina, Mauro; D'Amico, Flavio; De Rosa, Alessandra; Di Cosimo, Sergio; Di Persio, Giuseppe; Di Salvo, Tiziana; Dovciak, Michal; Elsner, Ronald; Eyles, Chris J.; Fabian, Andrew C.; Fabiani, Sergio; Feng, Hua; Giarrusso, Salvatore; Goosmann, René W.; Grandi, Paola; Grosso, Nicolas; Israel, Gianluca; Jackson, Miranda; Kaaret, Philip; Karas, Vladimir; Kuss, Michael; Lai, Dong; Rosa, Giovanni La; Larsson, Josefin; Larsson, Stefan; Latronico, Luca; Maggio, Antonio; Maia, Jorge; Marin, Frédéric; Massai, Marco Maria; Mineo, Teresa; Minuti, Massimo; Moretti, Elena; Muleri, Fabio; O'Dell, Stephen L.; Pareschi, Giovanni; Peres, Giovanni; Pesce, Melissa; Petrucci, Pierre-Olivier; Pinchera, Michele; Porquet, Delphine; Ramsey, Brian; Rea, Nanda; Reale, Fabio; Rodrigo, Juana Maria; Różańska, Agata; Rubini, Alda; Rudawy, Pawel; Ryde, Felix; Salvati, Marco; de Santiago, Valdivino Alexandre; Sazonov, Sergey; Sgró, Carmelo; Silver, Eric; Spandre, Gloria; Spiga, Daniele; Stella, Luigi; Tamagawa, Toru; Tamborra, Francesco; Tavecchio, Fabrizio; Teixeira Dias, Teresa; van Adelsberg, Matthew; Wu, Kinwah; Zane, Silvia

    2013-12-01

    Abstract X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2-10 keV band in 105 s for pointed observations, and 0.6 % for an X10 class solar flare in the 15-35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of

  2. Blind source separation based x-ray image denoising from an image sequence

    NASA Astrophysics Data System (ADS)

    Yu, Chun-Yu; Li, Yan; Fei, Bin; Li, Wei-Liang

    2015-09-01

    Blind source separation (BSS) based x-ray image denoising from an image sequence is proposed. Without priori knowledge, the useful image signal can be separated from an x-ray image sequence, for original images are supposed as different combinations of stable image signal and random image noise. The BSS algorithms such as fixed-point independent component analysis and second-order statistics singular value decomposition are used and compared with multi-frame averaging which is a common algorithm for improving image's signal-to-noise ratio (SNR). Denoising performance is evaluated in SNR, standard deviation, entropy, and runtime. Analysis indicates that BSS is applicable to image denoising; the denoised image's quality will get better when more frames are included in an x-ray image sequence, but it will cost more time; there should be trade-off between denoising performance and runtime, which means that the number of frames included in an image sequence is enough.

  3. The "All Sky Camera Network"

    ERIC Educational Resources Information Center

    Caldwell, Andy

    2005-01-01

    In 2001, the "All Sky Camera Network" came to life as an outreach program to connect the Denver Museum of Nature and Science (DMNS) exhibit "Space Odyssey" with Colorado schools. The network is comprised of cameras placed strategically at schools throughout Colorado to capture fireballs--rare events that produce meteorites. Meteorites have great…

  4. Space station application of CCD image sensors for x-ray imaging

    SciTech Connect

    Lowrance, John L.

    1997-01-10

    Charge Coupled Device (CCD) type solid state image sensors are employed in a number of space based imaging experiments and will be the basis for a camera system to acquire x-ray diffraction images on board the Space Station. This paper will present the system engineering considerations that led to the selection of CCDs over other x-ray imaging technologies and the design of the camera system. This will include discussion of the special requirements imposed by the space environment and this x-ray crystallography mission. This systems engineering discussion will be followed by a summary of high spatial resolution CCDs that are candidates for this camera, what may become available in the future, and what improvements would make CCDs even more suited to such X-ray imaging applications on the ground as well as in space.

  5. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Garcia, Michael

    2012-01-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe 5MBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a micro calorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arc sec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer-review.

  6. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    NASA Astrophysics Data System (ADS)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Bregman, Joel; Garcia, Michael; Zhang, W.; Kelley, R.; Kilbourne, C.; Bandler, S.

    2012-09-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe SMBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a microcalorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high-resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arcsec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer- review.

  7. Investigation of the hard x-ray background in backlit pinhole imagers

    SciTech Connect

    Fein, J. R. Holloway, J. P.; Peebles, J. L.; Keiter, P. A.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Drake, R. P.

    2014-11-15

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  8. Resolution enhancement in digital x-ray imaging

    NASA Astrophysics Data System (ADS)

    Gravel, Pierre; Després, Philippe; Beaudoin, Gilles; de Guise, Jacques A.

    2006-05-01

    We have developed a restoration method for radiographs that enhances image sharpness and reveals bone microstructures that were initially hidden in the soft-tissue glare. The method is two fold: the image is first deconvolved using the Richardson-Lucy algorithm and is then divided with a signal modelling the soft-tissue distribution to increase the overall contrast. Each step has its own merits but the power of the restoration method lies in their combination. The originality of the method is its reliance on a priori information at each step in the processing. We have measured and modelled analytically the point-spread function of a low-dose gas microstrip x-ray detector at several beam energies. We measured the relationship between the local image intensity and the noise variance for these images. The soft-tissue signal was also modelled using a minimum-curvature filtering technique. These results were then combined into an image deconvolution procedure that uses wavelet filtering to reduce restoration noise while keeping the enhanced small-scale features. The method was applied successfully to images of a human-torso phantom and improved the contrast of small details on the bones and in the soft tissues. We measured a mean 54% increase in signal to noise ratio and a mean 105% increase in contrast to noise ratio in the 70 and 140 kVp images we analysed. The method was designed to facilitate the analysis of radiographs by relying on two levels of visual inspection. The contrast of the full image is first enhanced by division with the signal modelling the soft-tissue distribution. Based on the result, a radiologist might decide to zoom in on a given image section. The full restoration method is then applied to that region of interest. Indeed, full image deconvolution is often unnecessary since enhanced small-scale details are not visible at large scale; only the section of interest is processed which is more efficient.

  9. Soft x-ray contact imaging of biological specimens using a laser-produced plasma as an x-ray source

    SciTech Connect

    Cheng, P.C.

    1990-01-01

    The use of a laser-produced plasma as an x-ray source provides significant advantages over other types of sources for x-ray microradiography of, particularly, living biological specimens. The pulsed nature of the x-rays enables imaging of the specimen in a living state, and the small source size minimizes penumbral blurring. This makes it possible to make an exposure close to the source, thereby increasing the x-ray intensity. In this article, we will demonstrate the applications of x-ray contact microradiography in structural and developmental botany such as the localization of silica deposition and the floral morphologenesis of maize.

  10. Dark-field X-ray imaging of unsaturated water transport in porous materials

    SciTech Connect

    Yang, F. E-mail: michele.griffa@empa.ch; Di Bella, C.; Lura, P.; Prade, F.; Herzen, J.; Sarapata, A.; Pfeiffer, F.; Griffa, M. E-mail: michele.griffa@empa.ch; Jerjen, I.

    2014-10-13

    We introduce in this Letter an approach to X-ray imaging of unsaturated water transport in porous materials based upon the intrinsic X-ray scattering produced by the material microstructural heterogeneity at a length scale below the imaging system spatial resolution. The basic principle for image contrast creation consists in a reduction of such scattering by permeation of the porosity by water. The implementation of the approach is based upon X-ray dark-field imaging via Talbot-Lau interferometry. The proof-of-concept is provided by performing laboratory-scale dark-field X-ray radiography of mortar samples during a water capillary uptake experiment. The results suggest that the proposed approach to visualizing unsaturated water transport in porous materials is complementary to neutron and magnetic resonance imaging and alternative to standard X-ray imaging, the latter requiring the use of contrast agents because based upon X-ray attenuation only.

  11. Effect of repeated x-ray exposure on the resolution of amorphous selenium based x-ray imagers

    SciTech Connect

    Kabir, M. Z.; Chowdhury, L.; DeCrescenzo, G.; Tousignant, O.; Kasap, S. O.; Rowlands, J. A.

    2010-03-15

    Purpose: A numerical model and the experimental methods to study the x-ray exposure dependent change in the modulation transfer function (MTF) of amorphous selenium (a-Se) based active matrix flat panel imagers (AMFPIs) are described. The physical mechanisms responsible for the x-ray exposure dependent change in MTF are also investigated. Methods: A numerical model for describing the x-ray exposure dependent MTF of a-Se based AMFPIs has been developed. The x-ray sensitivity and MTF of an a-Se AMFPI have been measured as a function of exposure. The instantaneous electric field and free and trapped carrier distributions in the photoconductor layer are obtained by numerically solving the Poisson's equation, continuity equations, and trapping rate equations using the backward Euler finite difference method. From the trapped carrier distributions, a method for calculating the MTF due to incomplete charge collection is proposed. Results: The model developed in this work and the experimental data show a reasonably good agreement. The model is able to simultaneously predict the dependence of the sensitivity and MTF on accumulated exposure at different applied fields and bias polarities, with the same charge transport parameters that are typical of the particular a-Se photoconductive layer that is used in these AMFPIs. Under negative bias, the MTF actually improves with the accumulated x-ray exposure while the sensitivity decreases. The MTF enhancement with exposure decreases with increasing applied field. Conclusions: The most prevalent processes that control the MTF under negative bias are the recombination of drifting holes with previously trapped electrons (electrons remain in deep traps due to their long release times compared with the time scale of the experiments) and the deep trapping of drifting holes and electrons.

  12. Assessment of Restoration Methods of X-Ray Images with Emphasis on Medical Photogrammetric Usage

    NASA Astrophysics Data System (ADS)

    Hosseinian, S.; Arefi, H.

    2016-06-01

    Nowadays, various medical X-ray imaging methods such as digital radiography, computed tomography and fluoroscopy are used as important tools in diagnostic and operative processes especially in the computer and robotic assisted surgeries. The procedures of extracting information from these images require appropriate deblurring and denoising processes on the pre- and intra-operative images in order to obtain more accurate information. This issue becomes more considerable when the X-ray images are planned to be employed in the photogrammetric processes for 3D reconstruction from multi-view X-ray images since, accurate data should be extracted from images for 3D modelling and the quality of X-ray images affects directly on the results of the algorithms. For restoration of X-ray images, it is essential to consider the nature and characteristics of these kinds of images. X-ray images exhibit severe quantum noise due to limited X-ray photons involved. The assumptions of Gaussian modelling are not appropriate for photon-limited images such as X-ray images, because of the nature of signal-dependant quantum noise. These images are generally modelled by Poisson distribution which is the most common model for low-intensity imaging. In this paper, existing methods are evaluated. For this purpose, after demonstrating the properties of medical X-ray images, the more efficient and recommended methods for restoration of X-ray images would be described and assessed. After explaining these approaches, they are implemented on samples from different kinds of X-ray images. By considering the results, it is concluded that using PURE-LET, provides more effective and efficient denoising than other examined methods in this research.

  13. Featured Image: A Supernova Remnant in X-Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    This is a three-color X-ray image taken by Chandra of the supernova remnant RCW 103. This supernova remnant is an unusual system: its young, but unlike other remnants of its age, metal-rich ejecta hadnt previously been discovered in it. In this paper, Kari Frank (Pennsylvania State University) and collaborators analyze the three deepest Chandra observations of RCW 103 and find the first evidence for metal-rich ejecta emission scattered throughout the remnant. Their analyses also help to constrain the identity of the mysterious compact stellar object powering the remnant. In this image, red = 0.30.85 keV, green = 0.851.70 keV, and blue = 1.73.0 keV; click on the image for the full view. For more information and the original image, see the paper here:Kari A. Frank et al 2015 ApJ 810 113 doi:10.1088/0004-637X/810/2/113.

  14. Method and apparatus for molecular imaging using x-rays at resonance wavelengths

    DOEpatents

    Chapline, G.F. Jr.

    Holographic x-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent x-rays upon the object to produce scattering of the x-rays by the object, producing interference on a recording medium between the scattered x-rays from the object and unscattered coherent x-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent x-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent x-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  15. Method and apparatus for molecular imaging using X-rays at resonance wavelengths

    DOEpatents

    Chapline, Jr., George F.

    1985-01-01

    Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  16. A flying spot x-ray system for Compton backscatter imaging

    SciTech Connect

    Herr, M.D.; McInerney, J.J.; Copenhaver, G.L. ); Lamser, D.G. )

    1994-09-01

    A Compton x-ray backscatter imaging (CBI) system using a single detector and a mechanically rastered flying spot'' x-ray beam has been designed, built, and tested. While retaining the essential noninvasive imaging capability of previous multiple detector CBI devices, this single detector system incorporates several advances over earlier CBI devices: more efficient detection of scattered x-rays, reduced x-ray exposure, and a simplified scan protocol more suitable for use with humans. This new CBI system also has specific design features to permit automating data acquisition from multiple two-dimensional image planes for integration into a 3-D dynamic surface image. A simulated multislice scan study of a human thorax phantom provided x-ray dosimetry data verifying a very low x-ray dose delivered by this imaging device. Validation experiments with mechanical models show that surface displacement of typical heart beam frequencies can be measured to the nearest 0.1 mm (SD).

  17. Coal worker's lungs - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows coal worker's lungs. There are diffuse, small, light areas on both sides (1 to 3 mm) in ... the lungs. Diseases that may result in an x-ray like this include: simple coal workers pneumoconiosis (CWP) - ...

  18. Lung mass, right upper lung - chest x-ray (image)

    MedlinePlus

    This picture is a chest x-ray of a person with a lung mass. This is a front view, where the lungs are the two dark areas and ... visible in the middle of the chest. The x-ray shows a mass in the right upper lung, ...

  19. Ethanol fixed brain imaging by phase-contrast X-ray technique

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Thet-Thet-Lwin; Kunii, Takuya; Sirai, Ryota; Ohizumi, Takahito; Maruyama, Hiroko; Hyodo, Kazuyuki; Yoneyama, Akio; Ueda, Kazuhiro

    2013-03-01

    The two-crystal phase-contrast X-ray imaging technique using an X-ray crystal interferometer can depict the fine structures of rat's brain such as cerebral cortex, white matter, and basal ganglia. Image quality and contrast by ethanol fixed brain showed significantly better than those by usually used formalin fixation at 35 keV X-ray energy. Image contrast of cortex by ethanol fixation was more than 3-times higher than that by formalin fixation. Thus, the technique of ethanol fixation might be better suited to image cerebral structural detail at 35 keV X-ray energy.

  20. An inherent anti-scatter detector for megavoltage x-ray imaging

    NASA Astrophysics Data System (ADS)

    Teymurazyan, A.; Pang, G.

    2013-03-01

    Scattered x-rays are detrimental to the image quality of x-ray transmission radiography. Anti-scatter grids have been developed for kilovoltage (kV) x-ray imaging but are impractical to use for megavoltage (MV) x-ray imaging in radiation therapy. Our goal is to develop a new approach that uses an inherent anti-scatter detector for scatter reduction in MV x-ray imaging. A Monte Carlo simulation has been conducted to evaluate the response of a recently proposed Čerenkov electronic portal imaging device (CPID) to scattered x-rays. The proposed detector consists of a matrix of optical fibers aligned with the incident x-rays and coupled to an active matrix flat panel imager for image readout. The effects of scatter on the signal and noise of the CPID in comparison with those of conventional electronic portal imaging devices (EPIDs) have been investigated. It has been found that the CPID is ∼50% less sensitive to scattered x-rays than conventional EPIDs at 6 MV. The differential signal to noise ratio is also improved by up to 30% in the CPID. The results of our simulations have demonstrated that the recently proposed CPID system is an inherent anti-scatter detector, the first of this kind, for MV x-ray imaging.

  1. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.

    PubMed

    Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi

    2015-07-01

    Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles. PMID:25745031

  2. Comparative evaluation of single crystal scintillators under x-ray imaging conditions

    NASA Astrophysics Data System (ADS)

    Valais, I. G.; David, S.; Michail, C.; Nomicos, C. D.; Panayiotakis, G. S.; Kandarakis, I. S.

    2009-06-01

    The present study is a comparative investigation of the luminescence properties of (Lu,Y)2SiO5: Ce (LYSO: Ce), YAlO3: Ce (YAP: Ce), Gd2SiO5: Ce (GSO: Ce) and (Bi4Ge3O12) BGO single crystal scintillators under x-ray excitation. Results will be of value in designing dual modality tomographic systems (PET/CT, SPECT/CT) based on a common scintillator crystal. All scintillating crystals have dimensions of 10 × 10 × 10 cm3 are non-hygroscopic exhibiting high radiation absorption efficiency in the energy range used in medical imaging applications. The comparative investigation was performed by determining the x-ray luminescence efficiency (emitted light flux over incident x-ray energy flux) in the range of x-ray energies employed in: (i) general x-ray imaging (40-140 kV, using a W/Al x-ray spectrum) and (ii) x-ray mammography imaging (22-49 kV, using a Mo/Mo x-ray spectrum). Additionally, light emission spectra of crystals at various x-ray energies were measured, in order to determine the intrinsic conversion efficiency and the spectral compatibility to optical photon detectors incorporated in medical imaging systems. The light emission performance of LYSO:Ce scintillator studied was found very high for x-ray imaging.

  3. Biological imaging by soft X-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Shapiro, David

    We have developed a microscope for soft x-ray diffraction imaging of dry or frozen hydrated biological specimens. This lensless imaging system does not suffer from the resolution or specimen thickness limitations that other short wavelength microscopes experience. The microscope, currently situated at beamline 9.0.1 of the Advanced Light Source, can collect diffraction data to 12 nm resolution with 750 eV photons and 17 nm resolution with 520 eV photons. The specimen can be rotated with a precision goniometer through an angle of 160 degrees allowing for the collection of nearly complete three-dimensional diffraction data. The microscope is fully computer controlled through a graphical user interface and a scripting language automates the collection of both two-dimensional and three-dimensional data. Diffraction data from a freeze-dried dwarf yeast cell, Saccharomyces cerevisiae carrying the CLN3-1 mutation, was collected to 12 run resolution from 8 specimen orientations spanning a total rotation of 8 degrees. The diffraction data was phased using the difference map algorithm and the reconstructions provide real space images of the cell to 30 nm resolution from each of the orientations. The agreement of the different reconstructions provides confidence in the recovered, and previously unknown, structure and indicates the three dimensionality of the cell. This work represents the first imaging of the natural complex refractive contrast from a whole unstained cell by the diffraction microscopy method and has achieved a resolution superior to lens based x-ray tomographic reconstructions of similar specimens. Studies of the effects of exposure to large radiation doses were also carried out. It was determined that the freeze-dried cell suffers from an initial collapse, which is followed by a uniform, but slow, shrinkage. This structural damage to the cell is not accompanied by a diminished ability to see small features in the specimen. Preliminary measurements on frozen

  4. A ROSAT high resolution x ray image of NGC 1068

    NASA Technical Reports Server (NTRS)

    Halpern, J.

    1993-01-01

    The soft x ray properties of the Seyfert 2 galaxy NGC 1068 are a crucial test of the 'hidden Seyfert 1' model. It is important to determine whether the soft x rays come from the nucleus, or from a number of other possible regions in the circumnuclear starburst disk. We present preliminary results of a ROSAT HRI observation of NGC 1068 obtained during the verification phase. The fraction of x rays that can be attributed to the nucleus is about 70 percent so the 'soft x ray problem' remains. There is also significant diffuse x ray flux on arcminute scales, which may be related to the 'diffuse ionized medium' seen in optical emission lines, and the highly ionized Fe K(alpha) emission seen by BBXRT.

  5. Quantitative biological imaging by ptychographic x-ray diffraction microscopy

    PubMed Central

    Giewekemeyer, Klaus; Thibault, Pierre; Kalbfleisch, Sebastian; Beerlink, André; Kewish, Cameron M.; Dierolf, Martin; Pfeiffer, Franz; Salditt, Tim

    2010-01-01

    Recent advances in coherent x-ray diffractive imaging have paved the way to reliable and quantitative imaging of noncompact specimens at the nanometer scale. Introduced a year ago, an advanced implementation of ptychographic coherent diffractive imaging has removed much of the previous limitations regarding sample preparation and illumination conditions. Here, we apply this recent approach toward structure determination at the nanoscale to biological microscopy. We show that the projected electron density of unstained and unsliced freeze-dried cells of the bacterium Deinococcus radiodurans can be derived from the reconstructed phase in a straightforward and reproducible way, with quantified and small errors. Thus, the approach may contribute in the future to the understanding of the highly disputed nucleoid structure of bacterial cells. In the present study, the estimated resolution for the cells was 85 nm (half-period length), whereas 50-nm resolution was demonstrated for lithographic test structures. With respect to the diameter of the pinhole used to illuminate the samples, a superresolution of about 15 was achieved for the cells and 30 for the test structures, respectively. These values should be assessed in view of the low dose applied on the order of ≃1.3·105 Gy, and were shown to scale with photon fluence. PMID:20018650

  6. Radiopaque iodinated copolymeric nanoparticles for X-ray imaging applications.

    PubMed

    Aviv, Hagit; Bartling, Sonke; Kieslling, Fabian; Margel, Shlomo

    2009-10-01

    Recently we described iodinated homopolymeric radiopaque nanoparticles of 28.9+/-6.3 nm dry diameter synthesized by emulsion polymerization of 2-methacryloyloxyethyl(2,3,5-triiodobenzoate) (MAOETIB). The nanoparticle aqueous dispersion, however, was not stable and tended to agglomerate, particularly at weight concentration of dispersed nanoparticles above approximately 0.3%. The agglomeration rate increases as the concentration of nanoparticles in aqueous phase rises and prevents the potential in vivo use as contrast agent for medical X-ray imaging. Here we describe efforts to overcome this limitation by synthesis of iodinated copolymeric nanoparticles of 25.5+/-4.2 nm dry diameter, by emulsion copolymerization of the monomer, MAOETIB, with a low concentration of glycidyl methacrylate (GMA). The surface of resulting copolymeric nanoparticles is far more hydrophilic than that of polyMAOETIB (PMAOETIB) nanoparticles. Therefore, P(MAOETIB-GMA) nanoparticles are significantly more stable against agglomeration in aqueous continuous phase. After intravenous injection of P(MAOETIB-GMA) nanoparticles in rats and mice (including those with a liver cancer model) CT-imaging revealed a significant enhanced visibility of the blood pool for 30 min after injection. Later, lymph nodes, liver and spleen strongly enhanced due to nanoparticle uptake by the reticuloendothelial system. This favorably enabled the differentiation of cancerous from healthy liver tissue and suggests our particles for tumor imaging in liver and lymph nodes. PMID:19592085

  7. Enhancing Tabletop X-Ray Phase Contrast Imaging with Nano-Fabrication

    NASA Astrophysics Data System (ADS)

    Miao, Houxun; Gomella, Andrew A.; Harmon, Katherine J.; Bennett, Eric E.; Chedid, Nicholas; Znati, Sami; Panna, Alireza; Foster, Barbara A.; Bhandarkar, Priya; Wen, Han

    2015-08-01

    X-ray phase-contrast imaging is a promising approach for improving soft-tissue contrast and lowering radiation dose in biomedical applications. While current tabletop imaging systems adapt to common x-ray tubes and large-area detectors by employing absorptive elements such as absorption gratings or monolithic crystals to filter the beam, we developed nanometric phase gratings which enable tabletop x-ray far-field interferometry with only phase-shifting elements, leading to a substantial enhancement in the performance of phase contrast imaging. In a general sense the method transfers the demands on the spatial coherence of the x-ray source and the detector resolution to the feature size of x-ray phase masks. We demonstrate its capabilities in hard x-ray imaging experiments at a fraction of clinical dose levels and present comparisons with the existing Talbot-Lau interferometer and with conventional digital radiography.

  8. Enhancing Tabletop X-Ray Phase Contrast Imaging with Nano-Fabrication.

    PubMed

    Miao, Houxun; Gomella, Andrew A; Harmon, Katherine J; Bennett, Eric E; Chedid, Nicholas; Znati, Sami; Panna, Alireza; Foster, Barbara A; Bhandarkar, Priya; Wen, Han

    2015-01-01

    X-ray phase-contrast imaging is a promising approach for improving soft-tissue contrast and lowering radiation dose in biomedical applications. While current tabletop imaging systems adapt to common x-ray tubes and large-area detectors by employing absorptive elements such as absorption gratings or monolithic crystals to filter the beam, we developed nanometric phase gratings which enable tabletop x-ray far-field interferometry with only phase-shifting elements, leading to a substantial enhancement in the performance of phase contrast imaging. In a general sense the method transfers the demands on the spatial coherence of the x-ray source and the detector resolution to the feature size of x-ray phase masks. We demonstrate its capabilities in hard x-ray imaging experiments at a fraction of clinical dose levels and present comparisons with the existing Talbot-Lau interferometer and with conventional digital radiography. PMID:26315891

  9. Enhancing Tabletop X-Ray Phase Contrast Imaging with Nano-Fabrication

    PubMed Central

    Miao, Houxun; Gomella, Andrew A.; Harmon, Katherine J.; Bennett, Eric E.; Chedid, Nicholas; Znati, Sami; Panna, Alireza; Foster, Barbara A.; Bhandarkar, Priya; Wen, Han

    2015-01-01

    X-ray phase-contrast imaging is a promising approach for improving soft-tissue contrast and lowering radiation dose in biomedical applications. While current tabletop imaging systems adapt to common x-ray tubes and large-area detectors by employing absorptive elements such as absorption gratings or monolithic crystals to filter the beam, we developed nanometric phase gratings which enable tabletop x-ray far-field interferometry with only phase-shifting elements, leading to a substantial enhancement in the performance of phase contrast imaging. In a general sense the method transfers the demands on the spatial coherence of the x-ray source and the detector resolution to the feature size of x-ray phase masks. We demonstrate its capabilities in hard x-ray imaging experiments at a fraction of clinical dose levels and present comparisons with the existing Talbot-Lau interferometer and with conventional digital radiography. PMID:26315891

  10. Human thyroid specimen imaging by fluorescent x-ray computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Yu, Quanwen; Yashiro, Toru; Yuasa, Tetsuya; Hasegawa, Yasuo; Itai, Yuji; Akatsuka, Takao

    1999-09-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT system consists of a silicon (111) channel cut monochromator, an x-ray slit and a collimator for fluorescent x ray detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the fluorescent K(alpha) line, incident monochromatic x-ray was set at 37 keV. The FXCT clearly imaged a human thyroid gland and iodine content was estimated quantitatively. In a case of hyperthyroidism, the two-dimensional distribution of iodine content was not uniform, and thyroid cancer had a small amount of iodine. FXCT can be used to detect iodine within thyroid gland quantitatively and to delineate its distribution.

  11. In-line phase-contrast imaging based on Tsinghua Thomson scattering x-ray source.

    PubMed

    Zhang, Zhen; Du, Yingchao; Yan, Lixin; Hua, Jianfei; Yang, Jin; Xiao, Yongshun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2014-08-01

    Thomson scattering x-ray sources can produce ultrashort, energy tunable x-ray pulses characterized by high brightness, quasi-monochromatic, and high spatial coherence, which make it an ideal source for in-line phase-contrast imaging. We demonstrate the capacity of in-line phase-contrast imaging based on Tsinghua Thomson scattering X-ray source. Clear edge enhancement effect has been observed in the experiment. PMID:25173262

  12. X-Ray Grating Interferometry for Phase-Contrast Imaging and Optics Metrology Applications

    NASA Astrophysics Data System (ADS)

    David, Christian; Rutishauser, Simon; Thüring, Thomas; Donath, Tilman; Stampanoni, Marco

    2010-04-01

    We report on a hard x-ray interferometry technique based on diffraction gratings fabricated using microlithography techniques. Compared to other x-ray phase-contrast imaging methods, the grating interferometer only has very moderate requirements in terms of coherence. This makes it possible to use the method with standard x-ray tubes, which opens up a huge range of applications e.g. in medical imaging.

  13. The Lixiscope: a Pocket-size X-ray Imaging System

    NASA Technical Reports Server (NTRS)

    Yin, L. I.; Seltzer, S. M.

    1978-01-01

    A Low Intensity X ray Imaging device with the acronym LIXISCOPE is described. The Lixiscope has a small format and is powered only by a 2.7V battery. The high inherent gain of the Lixiscope permits the use of radioactive sources in lieu of X-ray machines in some fluoroscopic applications. In this mode of operation the complete X ray imaging system is truly portable and pocket-sized.

  14. Extended Source/Galaxy All Sky 2

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This panoramic view encompasses the entire sky and reveals the distribution of galaxies beyond the Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is assembled from a database of over 1.6 million galaxies listed in the survey's All-Sky Survey Extended Source Catalog,; more than half of the galaxies have never before been catalogued. The colors represent how the many galaxies appear at three distinct wavelengths of infrared light (blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns). Quite evident are the many galactic clusters and superclusters, as well as some streamers composing the large-scale structure of the nearby universe. The blue overlay represents the very close and bright stars from our own Milky Way galaxy. In this projection, the bluish Milky Way lies predominantly toward the upper middle and edges of the image.

  15. X-ray Imaging and Spectroscopy in Space

    NASA Astrophysics Data System (ADS)

    Schnopper, Herbert

    2002-04-01

    Extra-solar X-ray astronomy became a reality in 1962 after a successful rocket flight discovered an X-ray source in the constellation Scorpius. The X-ray "telescope" consisted of a roughly collimated Geiger counter. New sources were discovered by many groups in a rapid series of rocket flights that were characterized by finer angular and spectral measurements made with better mechanical collimators and proportional detectors. These discoveries led to the association of the newly discovered X-ray sources with objects already know in other wavelength bands. It was quickly understood that high precision measurements of angular position, spectral features and timing fluctuations were needed to make physical sense of the X-ray data and to put it into the context of the wealth of data obtained from other wavelength bands. These needs were met by a succession of major missions that began with UHURU (1970) and followed with the X-ray telescopes on EINSTEIN (1977), EXOSAT (1983), ROSAT (1990), GINGA (1987), ASCA (1993), CHANDRA (1999) and XMM.(1999). Each brought greater precision to measurements that allowed highly refined interpretations of the properties of x-ray sources. Several of the technical milestones that made these advances possible will be discussed.

  16. Chandra X-Ray Observatory Image of Eta Carinae

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Chandra X-Ray Observatory image of the mysterious superstar Eta Carinae reveals a surprising hot irner core, creating more questions than answers for astronomers. The image shows three distinct structures: An outer, horseshoe shaped ring about 2 light-years in diameter, a hot inner core about 3 light-months in diameter, and a hot central source less than a light-month in diameter which may contain the superstar. In 1 month, light travels a distance of approximately 489 billion miles (about 788 billion kilometers). All three structures are thought to represent shock waves produced by matter rushing away from the superstar at supersonic speeds. The temperature of the shock-heated gas ranges from 60 million degrees Kelvin in the central regions to 7 million degrees Kelvin on the outer structure. Eta Carinae is one of the most enigmatic and intriguing objects in our galaxy. Between 1837 and 1856, it increased dramatically in brightness to become the most prominent star in the sky except for Sirius, even through it is 7,500 light-years away, more than 80 times the distance to Sirius. This 'Great Eruption,' as it is called, had an energy comparable to a supernova, yet did not destroy the star, which faded to become a dim star, invisible to the naked eye. Since 1940, Eta Carinae has begun to brighten again, becoming visible to the naked eye. Photo credit: NASA/CXC/SAO

  17. Towards magnetic 3D x-ray imaging

    NASA Astrophysics Data System (ADS)

    Fischer, Peter; Streubel, R.; Im, M.-Y.; Parkinson, D.; Hong, J.-I.; Schmidt, O. G.; Makarov, D.

    2014-03-01

    Mesoscale phenomena in magnetism will add essential parameters to improve speed, size and energy efficiency of spin driven devices. Multidimensional visualization techniques will be crucial to achieve mesoscience goals. Magnetic tomography is of large interest to understand e.g. interfaces in magnetic multilayers, the inner structure of magnetic nanocrystals, nanowires or the functionality of artificial 3D magnetic nanostructures. We have developed tomographic capabilities with magnetic full-field soft X-ray microscopy combining X-MCD as element specific magnetic contrast mechanism, high spatial and temporal resolution due to the Fresnel zone plate optics. At beamline 6.1.2 at the ALS (Berkeley CA) a new rotation stage allows recording an angular series (up to 360 deg) of high precision 2D projection images. Applying state-of-the-art reconstruction algorithms it is possible to retrieve the full 3D structure. We will present results on prototypic rolled-up Ni and Co/Pt tubes and glass capillaries coated with magnetic films and compare to other 3D imaging approaches e.g. in electron microscopy. Supported by BES MSD DOE Contract No. DE-AC02-05-CH11231 and ERC under the EU FP7 program (grant agreement No. 306277).

  18. Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging

    SciTech Connect

    Dong Xue; Niu Tianye; Jia Xun; Zhu Lei

    2012-10-15

    Purpose: X-ray cone-beam CT (CBCT) is being increasingly used for various clinical applications, while its performance is still hindered by image artifacts. This work investigates a new source of reconstruction error, which is often overlooked in the current CBCT imaging. The authors find that the x-ray flat field intensity (I{sub 0}) varies significantly as the illumination volume size changes at different collimator settings. A wrong I{sub 0} value leads to inaccurate CT numbers of reconstructed images as well as wrong scatter measurements in the CBCT research. Methods: The authors argue that the finite size of x-ray focal spot together with the detector glare effect cause the I{sub 0} variation at different illumination sizes. Although the focal spot of commercial x-ray tubes typically has a nominal size of less than 1 mm, the off-focal-spot radiation covers an area of several millimeters on the tungsten target. Due to the large magnification factor from the field collimator to the detector, the penumbra effects of the collimator blades result in different I{sub 0} values for different illumination field sizes. Detector glare further increases the variation, since one pencil beam of incident x-ray is scattered into an area of several centimeters on the detector. In this paper, the authors study these two effects by measuring the focal spot distribution with a pinhole assembly and the detector point spread function (PSF) with an edge-spread function method. The authors then derive a formula to estimate the I{sub 0} value for different illumination field sizes, using the measured focal spot distribution and the detector PSF. Phantom studies are carried out to investigate the accuracy of scatter measurements and CT images with and without considering the I{sub 0} variation effects. Results: On our tabletop system with a Varian Paxscan 4030CB flat-panel detector and a Varian RAD-94 x-ray tube as used on a clinical CBCT system, the focal spot distribution has a

  19. Imaging the sun in hard x rays using Fourier telescopes

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1993-01-01

    For several years, solar flares have been observed with a variety of instruments confirming that tremendous amounts of energy are locally stored in the solar magnetic field and then rapidly released during the life of the flare. In concert with observations, theorists have attempted to describe the means by which these energetic events occur and evolve. Two competing theories have emerged and have stood the test of time. One theory describes the flare in terms of nonthermal, electron beam injection into a thick target while the other uses a thermal approach. Both theories provide results which are reasonably consistent with current observations; but to date, none have been able to provide conclusive evidence as to the validity of either model. Imaging on short time scales (1 s) and/or small size scales (1 arc s) should give definitive answers to these questions. In order to test whether a realistic telescope can indeed discriminate between models, we construct model sources based upon the thermal and the nonthermal models and calculate the emission as a function of time and energy in the range from 10 to 100 keV. In addition, we construct model telescopes representing both the spatial modulation collimator (SMC) and the rotating modulation collimator (RMC) techniques of observation using random photon counting statistics. With these two types of telescopes we numerically simulate the instrument response to the above two model flares to see if there are distinct x-ray signatures which may be discernable. We find that theoretical descriptions of the primary models of solar flares do indeed predict different hard x-ray signatures for 1 sec time scales and at 1-5 arc sec spatial resolution. However, these distinguishing signatures can best be observed early in the impulsive phase and from a position perpendicular to the plane of the loop. Furthermore, we find that Fourier telescopes with reasonable and currently attainable design characteristics can image these

  20. X-ray backscatter imaging of nuclear materials

    SciTech Connect

    Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

    2014-09-30

    The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

  1. Passive all-sky imaging radar in the HF regime with WWV and the first station of the Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Helmboldt, J. F.; Clarke, T. E.; Craig, J.; Dowell, J. D.; Ellingson, S. W.; Hartman, J. M.; Hicks, B. C.; Kassim, N. E.; Taylor, G. B.; Wolfe, C. N.

    2013-09-01

    We present a new passive, bistatic high-frequency (HF) radar system consisting of the transmitters for the radio station WWV and the dipole antenna array that comprises the first station of the Long Wavelength Array (LWA) or "LWA1." We demonstrate that these two existing facilities, which are operated for separate purposes, can be used together as a unique HF radar imager, capable of monitoring the entire visible sky. In this paper, we describe in detail the techniques used to develop all-sky radar capability at 10, 15, and 20 MHz. We show that this radar system can be a useful tool for probing ionospheric structure and its effect on over-the-horizon (OTH) geolocation. The LWA1+WWV radar system appears to be especially adept at detecting and characterizing structures associated with sporadic-E. In addition, we also demonstrate how this system may be used for long-distance, OTH mapping of terrain/ocean HF reflectivity. Finally, we discuss the potential improvements in the utility of these applications as more LWA stations are added.

  2. Transmission X-ray microscopy for full-field nano imaging of biomaterials.

    PubMed

    Andrews, Joy C; Meirer, Florian; Liu, Yijin; Mester, Zoltan; Pianetta, Piero

    2011-07-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure imaging. These techniques are discussed and compared in light of results from the imaging of biological materials including microorganisms, bone and mineralized tissue, and plants, with a focus on hard X-ray TXM at ≤ 40-nm resolution. PMID:20734414

  3. X-ray phase imaging using a Gd-based absorption grating fabricated by imprinting technique

    NASA Astrophysics Data System (ADS)

    Yashiro, Wataru; Kato, Kosuke; Sadeghilaridjani, Maryam; Momose, Atsushi; Shinohara, Takenao; Kato, Hidemi

    2016-04-01

    A high-aspect-ratio absorption grating with a pitch of several µm is a key component of X-ray grating interferometery, which is an X-ray phase imaging technique that allows for highly sensitive X-ray imaging with a compact laboratory X-ray source. Here, we report that X-ray phase imaging was successfully performed at 15 keV by using a 23 ± 1-µm-height, 9-µm-pitch absorption grating (10 × 10 mm2) based on Gd (Gd60Cu25Al15) fabricated by a metallic glass imprinting technique. The imprinting technique is cost-efficient and has a high-production rate, and will be widely used for fabricating gratings not only for X-rays but also neutrons in the near future.

  4. Transmission X-ray microscopy for full-field nano-imaging of biomaterials

    PubMed Central

    ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO

    2010-01-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414

  5. Resolution enhancement in digital x-ray imaging.

    PubMed

    Gravel, Pierre; Després, Philippe; Beaudoin, Gilles; de Guise, Jacques A

    2006-05-21

    We have developed a restoration method for radiographs that enhances image sharpness and reveals bone microstructures that were initially hidden in the soft-tissue glare. The method is two fold: the image is first deconvolved using the Richardson-Lucy algorithm and is then divided with a signal modelling the soft-tissue distribution to increase the overall contrast. Each step has its own merits but the power of the restoration method lies in their combination. The originality of the method is its reliance on a priori information at each step in the processing. We have measured and modelled analytically the point-spread function of a low-dose gas microstrip x-ray detector at several beam energies. We measured the relationship between the local image intensity and the noise variance for these images. The soft-tissue signal was also modelled using a minimum-curvature filtering technique. These results were then combined into an image deconvolution procedure that uses wavelet filtering to reduce restoration noise while keeping the enhanced small-scale features. The method was applied successfully to images of a human-torso phantom and improved the contrast of small details on the bones and in the soft tissues. We measured a mean 54% increase in signal to noise ratio and a mean 105% increase in contrast to noise ratio in the 70 and 140 kVp images we analysed. The method was designed to facilitate the analysis of radiographs by relying on two levels of visual inspection. The contrast of the full image is first enhanced by division with the signal modelling the soft-tissue distribution. Based on the result, a radiologist might decide to zoom in on a given image section. The full restoration method is then applied to that region of interest. Indeed, full image deconvolution is often unnecessary since enhanced small-scale details are not visible at large scale; only the section of interest is processed which is more efficient. PMID:16675861

  6. OI 630.0 nm all-sky image observations of medium-scale traveling ionospheric disturbances at geomagnetic conjugate points

    NASA Astrophysics Data System (ADS)

    Stefanello, M. B.; Muella, M. T. A. H.; Amorim, D. C. M.; Machado, C. S.; Bageston, J. V.; Pimenta, A. A.; Martinis, C.; Sullivan, C.; Bittencourt, J. A.; Schuch, N. J.

    2015-06-01

    This paper presents a medium-scale traveling ionospheric disturbance (MSTID) occurrence detected through the OI 630.0 nm emission all-sky images, obtained by ground-based imaging systems installed at close geomagnetic conjugate locations: one at the Southern Space Observatory-SSO/CRS/INPE-MCTI, (29.4°S, 53.8°W), in Sao Martinho da Serra, RS, Brazil, and another at the Arecibo Observatory (18.3°N, 66.7°W), in Puerto Rico. The images obtained show the optical signature of MSTIDs (low intensity regions of 630.0 nm airglow emission), propagating simultaneously in both hemispheres, during geomagnetically quiet conditions (Kp<3). Observations using digital ionosonde installed at Falkland Islands (51.4°S, 57.5°W) and Ramey, Puerto Rico (18.5°N, 67.1°W) show an abrupt upward motion of the ionospheric F region plasma and the occurrence of frequency-type spread-F that could be related to the MSTIDs observed optically. Using Global Positioning System (GPS) receiver data, we also obtained the rate of the Total Electronic Content (TEC) change (ROT) for two geomagnetically conjugated sites-Santa Maria (29.7°S, 53.7°W) and Virgin Islands (17.7° N, 64.7°W). The analysis of TEC allows us to identify an irregular ionization in the F layer associated with the passage of an MSTID. The possible effects of the South America Magnetic Anomaly (SAMA) on the electrodynamic processes that control the inter-hemispheric coupling that give origin to the conjugate MSTIDs are highlighted and discussed.

  7. X-ray fluorescence imaging with synchrotron radiation

    SciTech Connect

    Rivers, M.L.

    1987-01-01

    The micro-distribution of trace elements is of great interest in fields such as geochemistry, biology and material science. The synchrotron x-ray fluorescence microprobe provides a technique to quantitatively measure trace element compositions at individual points and to construct semiquantitative two dimensional maps of trace element compositions. This paper describes an x-ray fluorescence system used at the National Synchrotron Light Source.

  8. Apparatus for obtaining an X-ray image

    DOEpatents

    Watanabe, Eiji

    1979-01-01

    A computed tomography apparatus in which a fan-shaped X-ray beam is caused to pass through a section of an object, enabling absorption detection on the opposite side of the object by a detector comprising a plurality of discrete detector elements. An electron beam generating the X-ray beam by impacting upon a target is caused to rotate over the target.

  9. Federated repositories of X-ray diffraction images.

    PubMed

    Androulakis, Steve; Schmidberger, Jason; Bate, Mark A; DeGori, Ross; Beitz, Anthony; Keong, Cyrus; Cameron, Bob; McGowan, Sheena; Porter, Corrine J; Harrison, Andrew; Hunter, Jane; Martin, Jennifer L; Kobe, Bostjan; Dobson, Renwick C J; Parker, Michael W; Whisstock, James C; Gray, Joan; Treloar, Andrew; Groenewegen, David; Dickson, Neil; Buckle, Ashley M

    2008-07-01

    There is a pressing need for the archiving and curation of raw X-ray diffraction data. This information is critical for validation, methods development and improvement of archived structures. However, the relatively large size of these data sets has presented challenges for storage in a single worldwide repository such as the Protein Data Bank archive. This problem can be avoided by using a federated approach, where each institution utilizes its institutional repository for storage, with a discovery service overlaid. Institutional repositories are relatively stable and adequately funded, ensuring persistence. Here, a simple repository solution is described, utilizing Fedora open-source database software and data-annotation and deposition tools that can be deployed at any site cheaply and easily. Data sets and associated metadata from federated repositories are given a unique and persistent handle, providing a simple mechanism for search and retrieval via web interfaces. In addition to ensuring that valuable data is not lost, the provision of raw data has several uses for the crystallographic community. Most importantly, structure determination can only be truly repeated or verified when the raw data are available. Moreover, the availability of raw data is extremely useful for the development of improved methods of image analysis and data processing. PMID:18566516

  10. Coronary x-ray angiographic reconstruction and image orientation

    SciTech Connect

    Sprague, Kevin; Drangova, Maria; Lehmann, Glen

    2006-03-15

    We have developed an interactive geometric method for 3D reconstruction of the coronary arteries using multiple single-plane angiographic views with arbitrary orientations. Epipolar planes and epipolar lines are employed to trace corresponding vessel segments on these views. These points are utilized to reconstruct 3D vessel centerlines. The accuracy of the reconstruction is assessed using: (1) near-intersection distances of the rays that connect x-ray sources with projected points, (2) distances between traced and projected centerlines. These same two measures enter into a fitness function for a genetic search algorithm (GA) employed to orient the angiographic image planes automatically in 3D avoiding local minima in the search for optimized parameters. Furthermore, the GA utilizes traced vessel shapes (as opposed to isolated anchor points) to assist the optimization process. Differences between two-view and multiview reconstructions are evaluated. Vessel radii are measured and used to render the coronary tree in 3D as a surface. Reconstruction fidelity is demonstrated via (1) virtual phantom, (2) real phantom, and (3) patient data sets, the latter two of which utilize the GA. These simulated and measured angiograms illustrate that the vessel centerlines are reconstructed in 3D with accuracy below 1 mm. The reconstruction method is thus accurate compared to typical vessel dimensions of 1-3 mm. The methods presented should enable a combined interpretation of the severity of coronary artery stenoses and the hemodynamic impact on myocardial perfusion in patients with coronary artery disease.

  11. High-resolution X-ray imaging by polycapillary optics and lithium fluoride detectors combination

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Della Ventura, G.; Bellatreccia, F.; Magi, M.; Bonfigli, F.; Montereali, R. M.

    2011-12-01

    Novel results on high-resolution X-ray imaging by a table-top laboratory system based on lithium fluoride (LiF) imaging radiation detectors and a X-ray tube combined with polycapillary optics are reported for the first time. In this paper, imaging experiments of reference objects, as well as thick geological samples, show some of the potentialities of this approach for the development of a compact laboratory X-ray microscopy apparatus. The high spatial resolution and dynamic range of versatile LiF imaging detectors, based on optical reading of photoluminescence from X-ray-induced color centers in LiF crystals and films, allow us to use very simple contact imaging techniques. Promising applications can be foreseen in the fields of bio-medical imaging diagnostics, characterization of X-ray sources and optical elements, material science and photonics.

  12. Image segmentation of nanoscale Zernike phase contrast X-ray computed tomography images

    SciTech Connect

    Kumar, Arjun S.; Mandal, Pratiti; Zhang, Yongjie; Litster, Shawn

    2015-05-14

    Zernike phase contrast is a useful technique for nanoscale X-ray computed tomography (CT) imaging of materials with a low X-ray absorption coefficient. It enhances the image contrast by phase shifting X-ray waves to create changes in amplitude. However, it creates artifacts that hinder the use of traditional image segmentation techniques. We propose an image restoration method that models the X-ray phase contrast optics and the three-dimensional image reconstruction method. We generate artifact-free images through an optimization problem that inverts this model. Though similar approaches have been used for Zernike phase contrast in visible light microscopy, this optimization employs an effective edge detection method tailored to handle Zernike phase contrast artifacts. We characterize this optics-based restoration method by removing the artifacts in and thresholding multiple Zernike phase contrast X-ray CT images to produce segmented results that are consistent with the physical specimens. We quantitatively evaluate and compare our method to other segmentation techniques to demonstrate its high accuracy.

  13. X-ray imaging II; Proceedings of the Meeting, San Diego, CA, Aug. 21, 22, 1986

    NASA Astrophysics Data System (ADS)

    Knight, Larry V.; Bowen, D. Keith

    1986-01-01

    Recent advances in the technology of X-ray imaging are discussed in reviews and reports. Topics addressed include component characteristics, detectors, optics, and applications. Consideration is given to the 1-40-keV photoabsorption cross sections of Fe, Ni, Sn, Ta, Pt, Au, Pb, and U; metal reflectors in the EUV; high-gain microchannel plate detectors for imaging at soft X-ray wavelengths; optics for X-ray astronomy; and the measured performance of a grazing-incidence relay-optics telescope for solar X-ray astronomy.

  14. X-ray imaging and controlled solidification of Al-Cu alloys toward microstructures by design

    DOE PAGESBeta

    Clarke, Amy J.; Tourret, Damien; Imhoff, Seth D.; Gibbs, Paul J.; Fezzaa, Kamel; Cooley, Jason C.; Lee, Wah -Keat; Deriy, Alex; Patterson, Brian M.; Papin, Pallas A.; et al

    2015-01-30

    X-ray imaging, which permits the microscopic visualization of metal alloy solidification dynamics, can be coupled with controlled solidification to create microstructures by design. This x-ray image shows a process-derived composite microstructure being made from a eutectic Al-17.1 at.%Cu alloy by successive solidification and remelting steps.

  15. An Automatic Algorithm for Detection of Inclusions in X-ray Images of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An automatic recognition algorithm was developed and tested for detection of certain defects or contaminants in x-ray images of agricultural commodities. Testing of the algorithm on x-ray images of wheat kernels infested with larvae of the granary weevil yielded comparable results to those obtained ...

  16. X-Ray Microscopy at BESSY: From Nano-Tomography to Fs-Imaging

    SciTech Connect

    Schneider, G.; Heim, S.; Rehbein, S.; Eichert, D.; Guttmann, P.

    2007-01-19

    The BESSY X-ray microscopy group has developed a new full-field x-ray microscope with glass capillary condenser. It permits tomography and spectromicroscopy of cryogenic as well as heated samples. Correlative light and x-ray microscopy is supported by an incorporated high resolution light microscope. Spectromicroscopy with polarized x-rays from a helical undulator can be performed with E/{delta}E = 104. With the planned BESSY High Gain Harmonic Generation Free Electron Laser (HGHG-FEL) x-ray imaging with ultra-short pulses and an integral photon flux of about 1011 photons/pulse in an energy bandwidth of 0.1% will be possible. Single shot imaging with a full field Transmission X-ray Microscope (TXM) employing a beam shaper as a condenser will be feasible with 20 fs pulses.

  17. X-Ray Microscopy at BESSY: From Nano-Tomography to Fs-Imaging

    NASA Astrophysics Data System (ADS)

    Schneider, G.; Guttmann, P.; Heim, S.; Rehbein, S.; Eichert, D.; Niemann, B.

    2007-01-01

    The BESSY X-ray microscopy group has developed a new full-field x-ray microscope with glass capillary condenser. It permits tomography and spectromicroscopy of cryogenic as well as heated samples. Correlative light and x-ray microscopy is supported by an incorporated high resolution light microscope. Spectromicroscopy with polarized x-rays from a helical undulator can be performed with E/ΔE = 104. With the planned BESSY High Gain Harmonic Generation Free Electron Laser (HGHG-FEL) x-ray imaging with ultra-short pulses and an integral photon flux of about 1011 photons/pulse in an energy bandwidth of 0.1% will be possible. Single shot imaging with a full field Transmission X-ray Microscope (TXM) employing a beam shaper as a condenser will be feasible with 20 fs pulses.

  18. First refraction contrast imaging via Laser-Compton Scattering X-ray at KEK

    SciTech Connect

    Sakaue, Kazuyuki; Aoki, Tatsuro; Washio, Masakazu; Araki, Sakae; Fukuda, Masafumi; Terunuma, Nobuhiro; Urakawa, Junji

    2012-07-31

    Laser-Compton Scattering (LCS) is one of the most feasible techniques for high quality, high brightness, and compact X-ray source. High energy electron beam produced by accelerators scatters off the laser photon at a small spot. As a laser target, we have been developing a pulsedlaser storage cavity for increasing an X-ray flux. The X-ray flux was still inadequate that was 2.1 Multiplication-Sign 10{sup 5}/sec, however, we performed first refraction contrast imaging in order to evaluate the quality of LCS X-ray. Edge enhanced contrast imaging was achieved by changing the distance from sample to detector. The edge enhancement indicates that the LCS X-ray has small source size, i.e. high brightness. We believe that the result has demonstrated good feasibility of linac-based high brightness X-ray sources via laser-electron Compton scatterings.

  19. Ultrafast phase contrast imaging of laser driven shocks using betatron X-rays

    NASA Astrophysics Data System (ADS)

    Chapman, D. J.; Rutherford, M. E.; White, T. G.; Eakins, D. E.; Wood, J. C.; Poder, K.; Lopes, N. C.; Bryant, J. S. J.; Mangles, S. P. D.; Najmudin, Z.; Cole, J. S.; Albert, F.; Pollack, B. B.; Behm, K. T.; Zhao, Z.; Thomas, A. G. R.; Krushelnick, K.; Schumaker, W.; Glenzer, S.

    2015-06-01

    Bright, high-energy photon sources, such as synchrotrons and more recently the new generation of X-ray free-electron lasers, offer the attractive combination of high brilliance, short pulse duration and high-energy X-rays. Betatron X-rays produced within a laser-plasma wakefield accelerator provide an exciting complementary energetic photon source to these large scale facilities. We describe the first proof-of-principle experiments imaging shock-front evolution in laser driven targets using wakefield betatron X-rays. These pioneering experiments were performed on the 400TW Gemini laser at the Rutherford Appleton Laboratory, UK. Shock waves were driven into silicon wafers along the [100] direction, and stroboscopically imaged perpendicular to the shock propagation direction using a ~ 40 fs betatron X-ray pulse. These initial results showcase a promising, potentially table top sized X-ray source suitable for probing the response of materials under extreme condition.

  20. Practical energy response estimation of photon counting detectors for spectral X-ray imaging

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Goo; Lee, Jongha; Sung, Younghun; Lee, SeongDeok

    2010-04-01

    Spectral X-ray imaging is a promising technique to drastically improve the diagnostic quality of radiography and computed tomography (CT), since it enables material decomposition and/or identification based on the energy dependency of material-specific X-ray attenuation. Unlike the charge-integration based X-ray detectors, photon counting X-ray detectors (PCXDs) can discriminate the energies of incident X-ray photons and thereby multi-energy images can be obtained in single exposure. However, the measured data are not accurate since the spectra of incident X-rays are distorted according to the energy response function (ERF) of a PCXD. Thus ERF should be properly estimated in advance for accurate spectral imaging. This paper presents a simple method for ERF estimation based on a polychromatic X-ray source that is widely used for medical imaging. The method consists of three steps: source spectra measurement, detector spectra reconstruction, and ERF inverse estimation. Real spectra of an X-ray tube are first measured at all kVs by using an X-ray spectrometer. The corresponding detector spectra are obtained by threshold scans. The ERF is then estimated by solving the inverse problem. Simulations are conducted to demonstrate the concept of the proposed method.

  1. Context sensitive cardiac x-ray imaging: a machine vision approach to x-ray dose control

    NASA Astrophysics Data System (ADS)

    Kengyelics, Stephen M.; Gislason-Lee, Amber J.; Keeble, Claire; Magee, Derek R.; Davies, Andrew G.

    2015-09-01

    Modern cardiac x-ray imaging systems regulate their radiation output based on the thickness of the patient to maintain an acceptable signal at the input of the x-ray detector. This approach does not account for the context of the examination or the content of the image displayed. We have developed a machine vision algorithm that detects iodine-filled blood vessels and fits an idealized vessel model with the key parameters of contrast, diameter, and linear attenuation coefficient. The spatio-temporal distribution of the linear attenuation coefficient samples, when appropriately arranged, can be described by a simple linear relationship, despite the complexity of scene information. The algorithm was tested on static anthropomorphic chest phantom images under different radiographic factors and 60 dynamic clinical image sequences. It was found to be robust and sensitive to changes in vessel contrast resulting from variations in system parameters. The machine vision algorithm has the potential of extracting real-time context sensitive information that may be used for augmenting existing dose control strategies.

  2. X-ray microscopy and imaging of Caenorhabditis elegans nematode using a laser-plasma-pulsed x-ray source

    NASA Astrophysics Data System (ADS)

    Poletti, Giulio; Orsini, Franceasco; Ullschmied, Jiri; Skala, Jiri; Kralikova, Bozena; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomas; Prag, A. R.; Cotelli, F.; Lora Lamia, C.; Batani, Dimitri; Bernardinello, A.; Desai, Tara; Zullini, A.

    2004-01-01

    An experiment on Soft X-ray Contact Microscopy (SXCM) performed on Caenorhabditis elegans nematodes is discussed. This sample has been selected since it is a well studied case used as model in many biological contexts. The experiment has been performed using the iodine PALS laser source to generate pulsed soft X-rays from laser-plasma interaction, using molybdenum and gold as targets. Typical intensities on the targets exceeded 1014 W/cm2. The SXCM imprints have been recorded on Polymethilmetacrylate (PMMA) photo resists which have been chemically developed and analyzed with an Atomic Force Microscope (AFM) operating in constant force mode. The use of error signal AFM images together with topography AFM images, did allow an easier recognition of biological patterns, and the identification of observed structures with internal organs. Several organs were identified in the SXCM images, including cuticle annuli, alae, pharynx, and three different types of cell nuclei. These are the first SXCM images of multi-cellular complex organisms.

  3. Calibration of x-ray digital tomosynthesis system including the compensation for image distortion

    NASA Astrophysics Data System (ADS)

    Roh, Young Jun; Koh, Kuk Won; Cho, Hyungsuck; Kim, Jin-Young; Kim, Hyung C.; Byun, Jong-Eun

    1998-10-01

    X-ray laminography and DT (digital tomosynthesis) are promising technologies to form a cross-section image of 3D objects and can be a good solution for inspection interior defects of industrial products. It has been known that digital tomosynthesis method has several advantages over laminography method in that it can overcome the problems such as blurring effect or artifact. The DT system consists of a scanning x-ray tube, an image intensifier as an x-ray image detector, and a CCD camera. To acquire an x-ray image of an arbitrary plane of objects, a set of images (8 images or more) should be synthesized by averaging or minimally calculating point by point. The images, however are distorted according to the configurations of the image intensifier and the x-ray source position. To get a clear and accurate synthesized image, the corresponding points in the distorted images should be accurately determined, and therefore, precise calibration of the DT system is needed to map the corresponding points correctly. In this work, a series of calibration methods for the DT system are presented including the correction of the center offset between the x-ray and the image intensifer, the x-ray steering calibration, and the correction of the distortion of the image. The calibration models are implemented to the DT system and the experiment results are presented and discussed in detail.

  4. Magnetic soft x-ray microscopy-imaging fast spin dynamics inmagnetic nanostructures

    SciTech Connect

    Fischer, Peter; Kim, Dong-Hyun; Mesler, Brooke L.; Chao, Weilun; Sakdinawat, Anne E.; Anderson, Erik H.

    2007-06-01

    Magnetic soft X-ray microscopy combines 15nm spatial resolution with 70ps time resolution and elemental sensitivity. Fresnel zone plates are used as X-ray optics and X-ray magnetic circular dichroism serves as magnetic contrast mechanism. Thus scientifically interesting and technologically relevant low dimensional nanomagnetic systems can be imaged at fundamental length and ultrafast time scales in a unique way. Studies include magnetization reversal in magnetic multilayers, nanopatterned systems, vortex dynamics in nanoelements and spin current induced phenomena.

  5. Directional x-ray dark-field imaging of strongly ordered systems

    SciTech Connect

    Jensen, Torben Haugaard; Feidenhans'l, Robert; Bech, Martin; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Rutishauser, Simon; Deyhle, Hans; Reznikova, Elena; Mohr, Juergen

    2010-12-01

    Recently a novel grating based x-ray imaging approach called directional x-ray dark-field imaging was introduced. Directional x-ray dark-field imaging yields information about the local texture of structures smaller than the pixel size of the imaging system. In this work we extend the theoretical description and data processing schemes for directional dark-field imaging to strongly scattering systems, which could not be described previously. We develop a simple scattering model to account for these recent observations and subsequently demonstrate the model using experimental data. The experimental data includes directional dark-field images of polypropylene fibers and a human tooth slice.

  6. Use of x-ray imaging for evaluation of superconducting ceramics fabricated by PIT method

    SciTech Connect

    Ingerly, D.B.; Ellingson, W.A.; Vasanthamohan, N.; Wu, C.

    1993-08-01

    High-spatial-resolution microfocus-based X-ray imaging technology, both real-time and film, has been used to study the thickness variation that occurs in the oxide core of silver-sheathed BSCCO ribbons produced by the powder-in-tube method. This thickness variation (also called ``sausaging``) occurs during incremental rolling and degrades the critical current densities of the ribbons. Using X-ray image data the authors determined the onset and severity of sausaging. Onset occurred at a ribbon thickness of 203 {micro}m, and the severity increased with subsequent rolling reductions. Scanning electron microscopy was used to confirm the X-ray image data. X-ray imaging provides several advantages over more traditional methods for characterizing the superconductors such as optical or scanning electron microscopy. The X-ray imaging provides nondestructive information about the entire width of the ribbon, with far greater speed, lower cost, and more flexibility than the traditional techniques.

  7. Hard X-ray Observation of Cygnus X-1 By the Marshall Imaging X-ray Experiment (MIXE2)

    NASA Technical Reports Server (NTRS)

    Minamitani, Takahisa; Apple, J. A.; Austin, R. A.; Dietz, K. L.; Koloziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.

    1998-01-01

    The second generation of the Marshall Imaging X-ray Experiment (MIXE2) was flown from Fort Sumner, New Mexico on May 7-8, 1997. The experiment consists of coded-aperture telescope with a field of view of 1.8 degrees (FWHM) and an angular resolution of 6.9 arcminutes. The detector is a large (7.84x10(exp 4) sq cm) effective area microstrip proportional counter filled with 2.0x10(exp5) Pascals of xenon with 2% isobutylene. We present MIXE2 observation of the 20-80keV spectrum and timing variability of Cygnus X-1 made during balloon flight.

  8. X-ray spectroscopy and imaging of a plasma collision

    SciTech Connect

    Chenais-Popovics, C.; Rancu, O.; Renaudin, P.

    1995-07-14

    The collision of laser-produced plasmas has been diagnosed by x-ray spectroscopy and imaging. The two colliding plasmas are produced on Al thin foils at a distance of 200 to 900 {mu}m irradiated at {lambda} = 0.53 {mu}m with laser intensities of 3 {times} 10{sup 13} to 6 {times} 10{sup 13} W/cm{sup 2}. Interpenetration of the plasmas was visualized by replacing one of the foils material by magnesium. The main diagnostics viewing the inter-target space were time-resolved monochromatic imaging of the 1s{sup 2} 1s3p aluminum line (He{Beta} at {lambda} {minus} 6.635 {Angstrom}). Doppler broadening measurement with a vertical Johann very high resolution spectrograph in the range 6.5--6.7{Angstrom}, space-resolved high resolution spectra of the dielectronic satellites of the 1s-2p 1 yman, space-resolved spectra with a flat-crystal spectrograph in the range 5--7 {Angstrom} and in the range of 43--48 {Angstrom} obtained with a new OHM crystal spectrograph and a pinhole camera. A multifluid eulerian monodimensional hydrodynamic code coupled with a radiative-atomic package provided simulations of the experiments. Hydrodynamic 2D simulations calculating the lateral expansion of the plasma enabled a reliable treatment of reabsorption along the line of sight of the spectrographs. The size the time duration of the collision, the plasma parameters (Te,Ti and ne) in the collision region and interpenetration were measured. The hydrocode simulations give a good understanding of the behavior of the collision in function of intertarget distance and laser intensity.

  9. Analysis and interpretation of diffuse x-ray emission using data from the Einstein satellite

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1991-01-01

    An ambitious program to create a powerful and accessible archive of the HEAO-2 Imaging Proportional Counter (IPC) database was outlined. The scientific utility of that database for studies of diffuse x ray emissions was explored. Technical and scientific accomplishments are reviewed. Three papers were presented which have major new scientific findings relevant to the global structure of the interstellar medium and the origin of the cosmic x ray background. An all-sky map of diffuse x ray emission was constructed.

  10. Numerical simulation of x-ray luminescence optical tomography for small-animal imaging.

    PubMed

    Li, Changqing; Martínez-Dávalos, Arnulfo; Cherry, Simon R

    2014-04-01

    X-ray luminescence optical tomography (XLOT) is an emerging hybrid imaging modality in which x-ray excitable particles (phosphor particles) emit optical photons when stimulated with a collimated x-ray beam. XLOT can potentially combine the high sensitivity of optical imaging with the high spatial resolution of x-ray imaging. For reconstruction of XLOT data, we compared two reconstruction algorithms, conventional filtered backprojection (FBP) and a new algorithm, x-ray luminescence optical tomography with excitation priors (XLOT-EP), in which photon propagation is modeled with the diffusion equation and the x-ray beam positions are used as reconstruction priors. Numerical simulations based on dose calculations were used to validate the proposed XLOT imaging system and the reconstruction algorithms. Simulation results showed nanoparticle concentrations reconstructed with XLOT-EP are much less dependent on scan depth than those obtained with FBP. Measurements at just two orthogonal projections are sufficient for XLOT-EP to reconstruct an XLOT image for simple source distributions. The heterogeneity of x-ray energy deposition is included in the XLOT-EP reconstruction and improves the reconstruction accuracy, suggesting that there is a need to calculate the x-ray energy distribution for experimental XLOT imaging. PMID:24695846

  11. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Franz; Weitkamp, Timm; Bunk, Oliver; David, Christian

    2006-04-01

    X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics and materials science. For biological tissue samples, polymers or fibre composites, however, the use of conventional X-ray radiography is limited due to their weak absorption. This is resolved at highly brilliant X-ray synchrotron or micro-focus sources by using phase-sensitive imaging methods to improve the contrast. However, the requirements of the illuminating radiation mean that hard-X-ray phase-sensitive imaging has until now been impractical with more readily available X-ray sources, such as X-ray tubes. In this letter, we report how a setup consisting of three transmission gratings can efficiently yield quantitative differential phase-contrast images with conventional X-ray tubes. In contrast with existing techniques, the method requires no spatial or temporal coherence, is mechanically robust, and can be scaled up to large fields of view. Our method provides all the benefits of contrast-enhanced phase-sensitive imaging, but is also fully compatible with conventional absorption radiography. It is applicable to X-ray medical imaging, industrial non-destructive testing, and to other low-brilliance radiation, such as neutrons or atoms.

  12. Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging.

    PubMed

    Zhang, Aili; Tu, Yu; Qin, Songbing; Li, Yan; Zhou, Juying; Chen, Na; Lu, Qiang; Zhang, Bingbo

    2012-04-15

    Multimodal imaging technique is an alternative approach to improve sensitivity of early cancer diagnosis. In this study, highly fluorescent and strong X-ray absorption coefficient gold nanoclusters (Au NCs) are synthesized as dual-modality imaging contrast agents (CAs) for fluorescent and X-ray dual-modality imaging. The experimental results show that the as-prepared Au NCs are well constructed with ultrasmall sizes, reliable fluorescent emission, high computed tomography (CT) value and fine biocompatibility. In vivo imaging results indicate that the obtained Au NCs are capable of fluorescent and X-ray enhanced imaging. PMID:22289255

  13. Tissue Visualization Using X-Ray Dark-Field Imaging towards Pathological Goal

    NASA Astrophysics Data System (ADS)

    Ando, Masami; Chikaura, Yoshinori; Endo, Tokiko; Gupta, Rajiv; Huo, Qingkai; Hyodo, Kazuyuki; Ichihara, Shu; Mori, Kensaku; Nakao, Yuki; Ohura, Norihiko; Sunaguchi, Naoki; Sugiyama, Hiroshi; Suzuki, Yoshifumi; Wu, Yanlin; Yuasa, Tetsuya; Xiaowei, Zhang

    2013-03-01

    In XDFI (x-ray dark-field imaging) LAA (Laue-case angle analyzer) simultaneously provides two x-ray images; one corresponds to a FD forward diffracted beam and a separate D diffracted beam. When this is applied to biomedical specimens x-ray images are very high contrast and very high spatial resolution. We constructed XDFI system at the vertical wiggler beamline BL-14C in KEK Photon Factory and performed imaging experiment of breast tissues and an excised human femoral artery. In this paper, we discuss a tissue visualization and pathological goal using 2D, 3D-CT and 2.5D image (tomosynthesis) with XDFI.

  14. Molecular Imaging Using X-Ray Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Barty, Anton; Küpper, Jochen; Chapman, Henry N.

    2013-04-01

    The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 1013 transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 1018 to 1021 W cm-2 or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available.

  15. Quantitative Mass Density Image Reconstructed from the Complex X-Ray Refractive Index.

    PubMed

    Mukaide, Taihei; Iida, Atsuo; Watanabe, Masatoshi; Takada, Kazuhiro; Noma, Takashi

    2015-01-01

    We demonstrate a new analytical X-ray computed tomography technique for visualizing and quantifying the mass density of materials comprised of low atomic number elements with unknown atomic ratios. The mass density was obtained from the experimentally observed ratio of the imaginary and real parts of the complex X-ray refractive index. An empirical linear relationship between the X-ray mass attenuation coefficient of the materials and X-ray energy was found for X-ray energies between 8 keV and 30 keV. The mass density image of two polymer fibers was quantified using the proposed technique using a scanning-type X-ray microbeam computed tomography system equipped with a wedge absorber. The reconstructed mass density agrees well with the calculated one. PMID:26114770

  16. Quantitative Mass Density Image Reconstructed from the Complex X-Ray Refractive Index

    PubMed Central

    Mukaide, Taihei; Iida, Atsuo; Watanabe, Masatoshi; Takada, Kazuhiro; Noma, Takashi

    2015-01-01

    We demonstrate a new analytical X-ray computed tomography technique for visualizing and quantifying the mass density of materials comprised of low atomic number elements with unknown atomic ratios. The mass density was obtained from the experimentally observed ratio of the imaginary and real parts of the complex X-ray refractive index. An empirical linear relationship between the X-ray mass attenuation coefficient of the materials and X-ray energy was found for X-ray energies between 8 keV and 30 keV. The mass density image of two polymer fibers was quantified using the proposed technique using a scanning-type X-ray microbeam computed tomography system equipped with a wedge absorber. The reconstructed mass density agrees well with the calculated one. PMID:26114770

  17. ZnTe:O phosphor development for x-ray imaging applications

    SciTech Connect

    Kang, Z.T.; Summers, C.J.; Menkara, H.; Wagner, B.K.; Durst, R.; Diawara, Y.; Mednikova, G.; Thorson, T.

    2006-03-13

    An efficient ZnTe:O x-ray powder phosphor was prepared by a dry synthesis process using gaseous doping and etching medias. The x-ray luminescent properties were evaluated and compared to standard commercial phosphors exhibited an x-ray luminescent efficiency equivalent to 76% of Gd{sub 2}O{sub 2}S:Tb and an equal resolution of 2.5 lines/mm. In addition, the fast decay time, low afterglow, and superior spectral match to conventional charge-coupled devices-indicate that ZnTe:O is a very promising phosphor candidate for x-ray imaging applications.

  18. First Images from HERO: A Hard-X-Ray Focusing Telescope

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Benson, Carl M.; Dietz, Kurtis L.; Elsner, Ronald F.; Engelhaupt, Darell E.; Ghosh, Kajal K.; Kolodziejczak, Jeffery J.; ODell, Stephen L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We are developing a balloon-borne hard-x-ray telescope that utilizes grazing incidence optics. Termed HERO, for High-Energy Replicated Optics, the instrument will provide unprecented sensitivity in the hard-x-ray region and will achieve milliCrab-level sensitivity in a typical 3-hour balloon-flight observation and 50 microCrab sensitivity on ultra-long-duration flights. A recent proof-of-concept flight, featuring a small number of mirror shells captured the first focused hard-x-ray images of galactic x-ray sources. Full details of the payload, its expected future performance and its recent measurements are provided.

  19. X-ray vector radiography imaging for biomedical applications

    NASA Astrophysics Data System (ADS)

    Potdevin, Guillaume; Malecki, Andreas; Biernath, Thomas; Bech, Martin; Pfeiffer, Franz

    2012-07-01

    The non-invasive estimation of fracture risk in osteoporosis remains a challenge in the clinical routine and is mainly based on an assessment of bone density by dual X-ray absorption (DXA) although bone micro-architecture is known to play an important role for bone fragility. Here we report on 'X-ray vector Radiography' measurements able to provide a direct bone microstructure diagnostics on human bone samples, which we compare qualitatively and quantitatively with numerical analysis of high resolution radiographs.

  20. X-ray vector radiography imaging for biomedical applications

    SciTech Connect

    Potdevin, Guillaume; Malecki, Andreas; Biernath, Thomas; Bech, Martin; Pfeiffer, Franz

    2012-07-31

    The non-invasive estimation of fracture risk in osteoporosis remains a challenge in the clinical routine and is mainly based on an assessment of bone density by dual X-ray absorption (DXA) although bone micro-architecture is known to play an important role for bone fragility. Here we report on 'X-ray vector Radiography' measurements able to provide a direct bone microstructure diagnostics on human bone samples, which we compare qualitatively and quantitatively with numerical analysis of high resolution radiographs.

  1. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  2. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    NASA Astrophysics Data System (ADS)

    Revesz, Peter; Temnykh, Alexander B.; Pauling, Alan K.

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  3. Hard X-ray imaging of Cyg X-1 using balloon borne Fresnel Zone plates imager

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.

    Imaging in hard X-rays above 20 keV is a well known technological challenge. Coded aperture mask have been used in the past, but these require position sensitive detectors. However, the scintillation counters which form the bulk of hard X-ray detectors as these offer high detection efficiency, do not have intrinsic position sensitivity. Pixilated solid state detectors CZT and CdTe are being developed as the detectors for imaging telescope with coded mask. Alternatively, a combination of Fresnel Zone Plates (FZP) can also be used for imaging in the hard X-ray band. We have developed a new imaging telescope using a pair of tungsten FZP and tiny hard X-ray imager, made with thin NaI(Tl) viewed by a position sensitive photomultiplier. The instrument was launched as a piggyback on the Large Area Scintillation counter Experiment (LASE) in a balloon flight conducted on April 25, 2008 and reached a ceiling altitude 2.8 mb. Cyg X-1, was observed during the flight to study the imaging efficacy of FZP imager. This paper describes the details of the experiment, digital reconstruction of the imaged data.

  4. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  5. Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction.

    PubMed

    Wilke, R N; Priebe, M; Bartels, M; Giewekemeyer, K; Diaz, A; Karvinen, P; Salditt, T

    2012-08-13

    Ptychographic coherent X-ray diffractive imaging (PCDI) has been combined with nano-focus X-ray diffraction to study the structure and density distribution of unstained and unsliced bacterial cells, using a hard X-ray beam of 6.2keV photon energy, focused to about 90nm by a Fresnel zone plate lens. While PCDI provides images of the bacteria with quantitative contrast in real space with a resolution well below the beam size at the sample, spatially resolved small angle X-ray scattering using the same Fresnel zone plate (cellular nano-diffraction) provides structural information at highest resolution in reciprocal space up to 2nm(-1). We show how the real and reciprocal space approach can be used synergistically on the same sample and with the same setup. In addition, we present 3D hard X-ray imaging of unstained bacterial cells by a combination of ptychography and tomography. PMID:23038565

  6. High-energy x-ray backlighter spectrum measurements using calibrated image plates

    SciTech Connect

    Maddox, B.R.; Park, H.S.; Remington, B.A.; Izumi, N.; Chen, S.; Chen, C.; Kimminau, G.; Ali, Z.; Haugh, M.J.; Ma, Q.

    2012-10-10

    The x-ray spectrum between 18 and 88 keV generated by a petawatt laser driven x-ray backlighter target was measured using a 12-channel differential filter pair spectrometer. The spectrometer consists of a series of filter pairs on a Ta mask coupled with an x-ray sensitive image plate. A calibration of Fuji{trademark} MS and SR image plates was conducted using a tungsten anode x-ray source and the resulting calibration applied to the design of the Ross pair spectrometer. Additionally, the fade rate and resolution of the image plate system were measured for quantitative radiographic applications. The conversion efficiency of laser energy into silver K{alpha} x rays from a petawatt laser target was measured using the differential filter pair spectrometer and compared to measurements using a single photon counting charge coupled device.

  7. Interferometric and optical tests of water window imaging x ray microscopes

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1993-01-01

    Interferometric tests of Schwarzchild X-ray Microscope are performed to evaluate the optical properties and alignment of the components. Photographic measurements of the spatial resolution, focal properties, and vignetting characteristics of the prototype Water Window Imaging X-ray Microscope are made and analyzed.

  8. X-ray holographic imaging of magnetic order in meander domain structures

    NASA Astrophysics Data System (ADS)

    Spezzani, Carlo; Popescu, Horia; Fortuna, Franck; Delaunay, Renaud; Tortarolo, Marina; Jaouen, Nicolas; Sacchi, Maurizio

    2013-01-01

    We performed x-ray holography experiments using synchrotron radiation. By analyzing the scattering of coherent circularly polarized x-rays tuned at the Co-2p resonance, we imaged perpendicular magnetic domains in a Co/Pd multilayer. We compare results obtained for continuous and laterally confined films.

  9. ANL CT Image Reconstruction Algorithm for Utilizing Digital X-ray Detector Array

    Energy Science and Technology Software Center (ESTSC)

    2004-08-05

    Reconstructs X-ray computed tomographic images from large data sets known as 16-bit binary sinograms. The algorithm uses the concept of generation of an image from carefully obtained multiple l-D or 2-0 X-ray projections. The individual projections are filtered using a digital Fast Fourier Transform. The literature refers to this as filtered back projection. The software is capable of processing a large file for reconstructing single images or volumetnc (3-D) images from large area high resolutionmore » digital X-ray detectors.« less

  10. Pseudo-color enhanced x-ray fluorescence imaging of the Archimedes Palimpsest

    NASA Astrophysics Data System (ADS)

    Bergmann, Uwe; Knox, Keith T.

    2009-01-01

    A combination of x-ray fluorescence and image processing has been shown to recover text characters written in iron gall ink on parchment, even when obscured by gold paint. Several leaves of the Archimedes Palimpsest were imaged using rapid-scan, x-ray fluorescence imaging performed at the Stanford Synchrotron Radiation Lightsource of the SLAC National Accelerator Laboratory. A simple linear show-through model is shown to successfully separate different layers of text in the x-ray images, making the text easier to read by the scholars.

  11. Lung mass, right upper lung - chest x-ray (image)

    MedlinePlus

    ... chest x-ray of a person with a lung mass. This is a front view, where the lungs are the two dark areas and the heart ... ray shows a mass in the right upper lung, indicated with the arrow (seen on the left ...

  12. Image quality based x-ray dose control in cardiac imaging

    NASA Astrophysics Data System (ADS)

    Davies, Andrew G.; Kengyelics, Stephen M.; Gislason-Lee, Amber J.

    2015-03-01

    An automated closed-loop dose control system balances the radiation dose delivered to patients and the quality of images produced in cardiac x-ray imaging systems. Using computer simulations, this study compared two designs of automatic x-ray dose control in terms of the radiation dose and quality of images produced. The first design, commonly in x-ray systems today, maintained a constant dose rate at the image receptor. The second design maintained a constant image quality in the output images. A computer model represented patients as a polymethylmetacrylate phantom (which has similar x-ray attenuation to soft tissue), containing a detail representative of an artery filled with contrast medium. The model predicted the entrance surface dose to the phantom and contrast to noise ratio of the detail as an index of image quality. Results showed that for the constant dose control system, phantom dose increased substantially with phantom size (x5 increase between 20 cm and 30 cm thick phantom), yet the image quality decreased by 43% for the same thicknesses. For the constant quality control, phantom dose increased at a greater rate with phantom thickness (>x10 increase between 20 cm and 30 cm phantom). Image quality based dose control could tailor the x-ray output to just achieve the quality required, which would reduce dose to patients where the current dose control produces images of too high quality. However, maintaining higher levels of image quality for large patients would result in a significant dose increase over current practice.

  13. Compton coincidence volumetric imaging: a new x-ray volumetric imaging modality based on Compton scattering

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochao

    2014-03-01

    Compton scattering is a dominant interaction during radiography and computed tomography x-ray imaging. However, the scattered photons are not used for extracting imaging information, but seriously degrade image quality. Here we introduce a new scheme that overcomes most of the problems associated with existing Compton scattering imaging schemes and allows Compton scattered photons to be effectively used for imaging. In our scheme, referred as Compton coincidence volumetric imaging (CCVI), a collimated monoenergetic x-ray beam is directed onto a thin semiconductor detector. A small portion of the photons is Compton scattered by the detector and their energy loss is detected. Some of the scattered photons intersect the imaging object, where they are Compton scattered a second time. The finally scattered photons are recorded by an areal energy resolving detector panel around the object. The two detectors work in coincidence mode. CCVI images the spatial electron density distribution in the imaging object. Similar to PET imaging, the event location can be located within a curve; therefore the imaging reconstruction algorithms are also similar to those of PET. Two statistical iterative imaging reconstruction algorithms are tested. Our study verifies the feasibility of CCVI in imaging acquisition and reconstruction. Various aspects of CCVI are discussed. If successfully implemented, it will offer a great potential for imaging dose reduction compared with x-ray CT. Furthermore, a CCVI modality will have no moving parts, which potentially offers cost reduction and faster imaging speed.

  14. Image Alignment for Tomography Reconstruction from Synchrotron X-Ray Microscopic Images

    PubMed Central

    Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai

    2014-01-01

    A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the “projected feature points” in the sequence of images. The matched projected feature points in the - plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx. PMID:24416264

  15. Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.

    PubMed

    Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai

    2014-01-01

    A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx. PMID:24416264

  16. Elemental biological imaging by differential absorption with a laser-produced x-ray source

    NASA Astrophysics Data System (ADS)

    Tillman, C.; Mercer, I.; Svanberg, S.; Herrlin, K.

    1996-01-01

    We demonstrate the novel application of hard x rays emitted by a laser-produced plasma for differential imaging of elements. An x-ray-emitting laser-produced plasma, obtained by the focusing of radiation from a 10-Hz terawatt laser, is used for biological imaging. The x-ray source can be arranged to yield characteristic x-ray emission lines with photon energies that bridge the K absorption edge of a chosen atomic species. One can obtain element-specific radiographs by recording transillumination images for different target materials on digital image plates and by subsequently subtracting or dividing the images. Successful phantom and experimental animal imaging are performed utilizing tantalum and gadolinium as target materials for the terawatt laser and gadolinium as the imaged contrast agent.

  17. Analysis of the 23 June 1988 flare using NIXT multilayer X-ray images. [normal incidence X-ray telescope

    NASA Technical Reports Server (NTRS)

    Golub, Leon; Herant, Marc

    1989-01-01

    Results obtained during the June 23, 1988 flight of the normal incidence X-ray telescope (NIXT) sounding rocket payload are reported. The telescope primary is 25 cm in diameter, in a 750 cm e.f.l. (f/30) Ritchey-Chretien configuration, with multilayer coatings on the optics designed to image the Fe XVI and Mg X coronal emission lines near 63.5 A. Images of the onset phase of a large (M8) Solar flare were recorded during the flight on a modified T-max 400 film manufactured by Kodak. Some of the results obtained by comparison of the NIXT data with ground-based observations of the sun obtained simultaneously to the flight are also reported.

  18. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    NASA Astrophysics Data System (ADS)

    Yoon, Kwon-Ha; Ryu, Jong Hyun; Jung, Chang Won; Ryu, Cheol Woo; Kim, Young Jo; Kwon, Young Man; Park, Miran; Cho, Seungryong; Chon, Kwon Su

    2014-12-01

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics.

  19. Novel multi-beam X-ray source for vacuum electronics enabled medical imaging applications

    NASA Astrophysics Data System (ADS)

    Neculaes, V. Bogdan

    2013-10-01

    For almost 100 of years, commercial medical X-ray applications have relied heavily on X-ray tube architectures based on the vacuum electronics design developed by William Coolidge at the beginning of the twentieth century. Typically, the Coolidge design employs one hot tungsten filament as the electron source; the output of the tube is one X-ray beam. This X-ray source architecture is the state of the art in today's commercial medical imaging applications, such as Computed Tomography. Recently, GE Global Research has demonstrated the most dramatic extension of the Coolidge vacuum tube design for Computed Tomography (CT) in almost a century: a multi-beam X-ray source containing thirty two cathodes emitting up to 1000 mA, in a cathode grounded - anode at potential architecture (anode up to 140 kV). This talk will present the challenges of the X-ray multi-beam vacuum source design - space charge electron gun design, beam focusing to compression ratios needed in CT medical imaging applications (image resolution is critically dependent on how well the electron beam is focused in vacuum X-ray tubes), electron emitter choice to fit the aggressive beam current requirements, novel electronics for beam control and focusing, high voltage and vacuum solutions, as well as vacuum chamber design to sustain the considerable G forces typically encountered on a CT gantry (an X-ray vacuum tube typically rotates on the CT gantry at less than 0.5 s per revolution). Consideration will be given to various electron emitter technologies available for this application - tungsten emitters, dispenser cathodes and carbon nano tubes (CNT) - and their tradeoffs. The medical benefits potentially enabled by this unique vacuum multi-beam X-ray source are: X-ray dose reduction, reduction of image artifacts and improved image resolution. This work was funded in part by NIH grant R01EB006837.

  20. High energy X-ray phase and dark-field imaging using a random absorption mask

    PubMed Central

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-01-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science. PMID:27466217

  1. High energy X-ray phase and dark-field imaging using a random absorption mask.

    PubMed

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-01-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science. PMID:27466217

  2. Potential for Imaging Engineered Tissues with X-Ray Phase Contrast

    PubMed Central

    Appel, Alyssa; Anastasio, Mark A.

    2011-01-01

    As the field of tissue engineering advances, it is crucial to develop imaging methods capable of providing detailed three-dimensional information on tissue structure. X-ray imaging techniques based on phase-contrast (PC) have great potential for a number of biomedical applications due to their ability to provide information about soft tissue structure without exogenous contrast agents. X-ray PC techniques retain the excellent spatial resolution, tissue penetration, and calcified tissue contrast of conventional X-ray techniques while providing drastically improved imaging of soft tissue and biomaterials. This suggests that X-ray PC techniques are very promising for evaluation of engineered tissues. In this review, four different implementations of X-ray PC imaging are described and applications to tissues of relevance to tissue engineering reviewed. In addition, recent applications of X-ray PC to the evaluation of biomaterial scaffolds and engineered tissues are presented and areas for further development and application of these techniques are discussed. Imaging techniques based on X-ray PC have significant potential for improving our ability to image and characterize engineered tissues, and their continued development and optimization could have significant impact on the field of tissue engineering. PMID:21682604

  3. Imaging nanoscale magnetic structures with polarized soft x-ray photons

    SciTech Connect

    Fischer, P.; Im, M.-Y.

    2010-01-18

    Imaging nanoscale magnetic structures and their fast dynamics is scientifically interesting and technologically of highest relevance. The combination of circularly polarized soft X-ray photons which provide a strong X-ray magnetic circular dichroism effect at characteristic X-ray absorption edges, with a high resolution soft X-ray microscope utilizing Fresnel zone plate optics allows to study in a unique way the stochastical behavior in the magnetization reversal process of thin films and the ultrafast dynamics of magnetic vortices and domain walls in confined ferromagnetic structures. Future sources of fsec short and high intense soft X-ray photon pulses hold the promise of magnetic imaging down to fundamental magnetic length and time scales.

  4. Radiation hardening of gated x-ray imagers for the National Ignition Facility (invited)

    SciTech Connect

    Bell, P. M.; Bradley, D. K.; Conder, A.; Cerjan, C.; Hagmann, C.; Hey, D.; Izumi, N.; Moody, J.; Teruya, A.; Celeste, J.; Kimbrough, J.; Khater, H.; Eckart, M. J.; Ayers, J.; Kilkenny, J. D.

    2010-10-15

    The National Ignition Facility will soon be producing x-ray flux and neutron yields higher than any produced in laser driven implosion experiments in the past. Even a non-igniting capsule will require x-ray imaging of near burning plasmas at 10{sup 17} neutrons, requiring x-ray recording systems to work in more hostile conditions than we have encountered in past laser facilities. We will present modeling, experimental data and design concepts for x-ray imaging with electronic recording systems for this environment (ARIANE). A novel instrument, active readout in a nuclear environment, is described which uses the time-of-flight difference between the gated x-ray signal and the neutron which induces a background signal to increase the yield at which gated cameras can be used.

  5. The Hard X-ray Imager (HXI) for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Harayama, Atsushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shinichiro; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yatsu, Yoichi; Yuasa, Takayuki

    2014-07-01

    The 6th Japanese X-ray satellite, ASTRO-H, is scheduled for launch in 2015. The hard X-ray focusing imaging system will observe astronomical objects with the sensitivity for detecting point sources with a brightness of 1/100,000 times fainter than the Crab nebula at > 10 keV. The Hard X-ray Imager (HXI) is a focal plane detector 12 m below the hard X-ray telescope (HXT) covering the energy range from 5 to 80 keV. The HXI is composed of a stacked Si/CdTe semiconductor detector module and surrounding BGO scintillators. The latter work as active shields for efficient reduction of background events caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we describe the detector system, and present current status of flight model development, and performance of HXI using an engineering model of HXI.

  6. Development of microperiodic mirrors for hard x-ray phase-contrast imaging

    SciTech Connect

    Stutman, Dan; Finkenthal, Michael; Moldovan, Nicolae

    2010-09-01

    Differential phase-contrast imaging with hard x rays can have important applications in medicine, material sciences, and energy research. Phase-contrast methods based on microperiodic optics, such as shearing interferometry, are particularly attractive because they allow the use of conventional x-ray tubes. To enable shearing interferometry with x rays up to 100 keV, we propose using grazing-incidence microperiodic mirrors. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors, based on the difference in grazing-incidence reflectivity between a low-Z substrate and a high-Z film. Using this method, we produced prototype mirrors with 5-100 {mu}m periods and 90 mm active length. Experimental tests with x rays up to 60 keV indicate good microperiodic mirror reflectivity and high-contrast fringe patterns, encouraging further development of the proposed imaging concept.

  7. Matrix inversion tomosynthesis improvements in longitudinal x-ray slice imaging

    SciTech Connect

    Dobbines, J.T. III.

    1990-02-20

    This patent describes a tomosynthesis apparatus. It comprises: an x-ray tomography machine for producing a plurality of x-ray projection images of a subject including an x-ray source, and detection means; and processing means, connected to receive the plurality of projection images, for: shifting and reconstructing the projection x-ray images to obtain a tomosynthesis matrix of images T; acquiring a blurring matrix F having components which represent out-of-focus and in-focus components of the matrix T; obtaining a matrix P representing only in-focus components of the imaged subject by solving a matrix equation including the matrix T and the matrix F; correcting the matrix P for low spatial frequency components; and displaying images indicative of contents of the matrix P.

  8. Pulse requirements for x-ray diffraction imaging of single biological molecules

    SciTech Connect

    Hau-Riege, S; London, R; Huldt, G; Chapman, H

    2005-01-05

    It has been suggested that x-ray free electron lasers will enable single-particle diffraction imaging of biological molecules. In this paper we present a model to estimate the required pulse parameters based on a trade-off between minimizing image degradation due to damage and maximizing the image signal-to-noise ratio. We discuss several means to alleviate the photon requirements, and compare the requirements with existing or planned x-ray sources such as short-pulse x-ray free-electron lasers.

  9. Microchannel plate pinhole camera for 20 to 100 keV x-ray imaging

    SciTech Connect

    Wang, C.L.; Leipelt, G.R.; Nilson, D.G.

    1984-10-03

    We present the design and construction of a sensitive pinhole camera for imaging suprathermal x-rays. Our device is a pinhole camera consisting of four filtered pinholes and microchannel plate electron multiplier for x-ray detection and signal amplification. We report successful imaging of 20, 45, 70, and 100 keV x-ray emissions from the fusion targets at our Novette laser facility. Such imaging reveals features of the transport of hot electrons and provides views deep inside the target.

  10. Fresnel zone plates for Achromatic Imaging Survey of X-ray sources

    SciTech Connect

    Palit, Sourav; Chakrabarti, S. K.; Debnath, D.; Yadav, Vipin; Nandi, Anuj

    2008-10-08

    A telescope with Fresnel Zone Plates has been contemplated to be an excellent imaging mask in X-rays and gamma-rays for quite some time. With a proper choice of zone plate material, spacing and an appropriate readout system it is possible to achieve any theoretical angular resolution. We provide the results of numerical simulations of how a large number of X-ray sources could be imaged at a high resolution. We believe that such an imager would be an excellent tool for a future survey mission for X-ray and gamma-ray sources which we propose.

  11. Nanoscale Imaging of Buried Structures with Elemental Specificity Using Resonant X-Ray Diffraction Microscopy

    SciTech Connect

    Song, Changyong; Bergstrom, Raymond; Ramunno-Johnson, Damien; Jiang, Huaidong; Miao, Jianwei; Paterson, David; Jonge, Martin D. de; McNulty, Ian; Lee, Jooyoung; Wang, Kang L.

    2008-01-18

    We report the first demonstration of resonant x-ray diffraction microscopy for element specific imaging of buried structures with a pixel resolution of {approx}15 nm by exploiting the abrupt change in the scattering cross section near electronic resonances. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent x-ray diffraction patterns acquired below and above the Bi M{sub 5} edge. We anticipate that resonant x-ray diffraction microscopy will be applied to element and chemical state specific imaging of a broad range of systems including magnetic materials, semiconductors, organic materials, biominerals, and biological specimens.

  12. CALIBRATION OF X-RAY IMAGING DEVICES FOR ACCURATE INTENSITY MEASUREMENT

    SciTech Connect

    Haugh, M J; Charest, M R; Ross, P W; Lee, J J; Schneider, M B; Palmer, N E; Teruya, A T

    2012-02-16

    National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) is used to calibrate silicon photodiodes over the energy range from 50 eV to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources have included quantum efficiency averaged over all pixels, camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. X-ray energies ranged from 720 eV to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back illuminated and front illuminated CCD (charge coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID camera types differ significantly in some of their properties that affect the accuracy of X-ray intensity measurements. All cameras discussed here are silicon based. The measurements of quantum efficiency variation with X-ray energy are compared to models for the sensor structure. Cameras that are not back-thinned are compared to those that are.

  13. Capillary Optics Based X-Ray Micro-Imaging Elemental Analysis

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Cappuccio, G.; Longoni, A.; Frizzi, T.; Cibin, G.

    2010-04-01

    A rapidly developed during the last few years micro-X-ray fluorescence spectrometry (μXRF) is a promising multi-elemental technique for non-destructive analysis. Typically it is rather hard to perform laboratory μXRF analysis because of the difficulty of producing an original small-size X-ray beam as well as its focusing. Recently developed for X-ray beam focusing polycapillary optics offers laboratory X-ray micro probes. The combination of polycapillary lens and fine-focused micro X-ray tube can provide high intensity radiation flux on a sample that is necessary in order to perform the elemental analysis. In comparison to a pinhole, an optimized "X-ray source-op tics" system can result in radiation density gain of more than 3 orders by the value. The most advanced way to get that result is to use the confocal configuration based on two X-ray lenses, one for the fluorescence excitation and the other for the detection of secondary emission from a sample studied. In case of X-ray capillary microfocusing a μXRF instrument designed in the confocal scheme allows us to obtain a 3D elemental mapping. In this work we will show preliminary results obtained with our prototype, a portable X-ray microscope for X-ray both imaging and fluorescence analysis; it enables μXRF elemental mapping simultaneously with X-ray imaging. A prototype of compact XRF spectrometer with a spatial resolution less than 100 μm has been designed.

  14. X-ray imaging using the thermoluminescent properties of commercial Al2O3 ceramic plates.

    PubMed

    Shinsho, Kiyomitsu; Kawaji, Yasuyuki; Yanagisawa, Shin; Otsubo, Keisuke; Koba, Yusuke; Wakabayashi, Genichiro; Matsumoto, Kazuki; Ushiba, Hiroaki

    2016-05-01

    This research demonstrated that commercially available alumina is well-suited for use in large area X-ray detectors. We discovered a new radiation imaging device that has a high spatial resolution, high sensitivity, wide dynamic range, large imaging area, repeatable results, and low operating costs. The high thermoluminescent (TL) properties of Al2O3 ceramic plates make them useful for X-ray imaging devices. PMID:26972627

  15. AN ALL-SKY CATALOG OF BRIGHT M DWARFS

    SciTech Connect

    Lepine, Sebastien; Gaidos, Eric

    2011-10-15

    We present an all-sky catalog of M dwarf stars with apparent infrared magnitude J < 10. The 8889 stars are selected from the ongoing SUPERBLINK survey of stars with proper motion {mu} > 40 mas yr{sup -1}, supplemented on the bright end with the Tycho-2 catalog. Completeness tests which account for kinematic (proper motion) bias suggest that our catalog represents {approx}75% of the estimated {approx}11, 900 M dwarfs with J < 10 expected to populate the entire sky. Our catalog is, however, significantly more complete for the northern sky ({approx}90%) than it is for the south ({approx}60%). Stars are identified as cool, red M dwarfs from a combination of optical and infrared color cuts, and are distinguished from background M giants and highly reddened stars using either existing parallax measurements or, if such measurements are lacking, using their location in an optical-to-infrared reduced proper motion diagram. These bright M dwarfs are all prime targets for exoplanet surveys using the Doppler radial velocity or transit methods; the combination of low-mass and bright apparent magnitude should make possible the detection of Earth-size planets on short-period orbits using currently available techniques. Parallax measurements, when available, and photometric distance estimates are provided for all stars, and these place most systems within 60 pc of the Sun. Spectral type estimated from V - J color shows that most of the stars range from K7 to M4, with only a few late M dwarfs, all within 20 pc. Proximity to the Sun also makes these stars good targets for high-resolution exoplanet imaging searches, especially if younger objects can be identified on the basis of X-ray or UV excess. For that purpose, we include X-ray flux from ROSAT and FUV/NUV ultraviolet magnitudes from GALEX for all stars for which a counterpart can be identified in those catalogs. Additional photometric data include optical magnitudes from Digitized Sky Survey plates and infrared magnitudes from

  16. Hybrid x-ray/optical luminescence imaging: Characterization of experimental conditions

    SciTech Connect

    Carpenter, C. M.; Sun, C.; Pratx, G.; Rao, R.; Xing, L.

    2010-08-15

    Purpose: The feasibility of x-ray luminescence imaging is investigated using a dual-modality imaging system that merges x-ray and optical imaging. This modality utilizes x-ray activated nanophosphors that luminesce when excited by ionizing photons. By doping phosphors with lanthanides, which emit light in the visible and near infrared range, the luminescence is suitable for biological applications. This study examines practical aspects of this new modality including phosphor concentration, light emission linearity, detector damage, and spectral emission characteristics. Finally, the contrast produced by these phosphors is compared to that of x-ray fluoroscopy. Methods: Gadolinium and lanthanum oxysulfide phosphors doped with terbium (green emission) or europium (red emission) were studied. The light emission was imaged in a clinical x-ray scanner with a cooled CCD camera and a spectrophotometer; dose measurements were determined with a calibrated dosimeter. Using these properties, in addition to luminescence efficiency values found in the literature for a similar phosphor, minimum concentration calculations are performed. Finally, a 2.5 cm agar phantom with a 1 cm diameter cylindrical phosphor-filled inclusion (diluted at 10 mg/ml) is imaged to compare x-ray luminescence contrast with x-ray fluoroscopic contrast at a superficial location. Results: Dose to the CCD camera in the chosen imaging geometry was measured at less than 0.02 cGy/s. Emitted light was found to be linear with dose (R{sup 2}=1) and concentration (R{sup 2}=1). Emission peaks for clinical x-ray energies are less than 3 nm full width at half maximum, as expected from lanthanide dopants. The minimum practical concentration necessary to detect luminescent phosphors is dependent on dose; it is estimated that subpicomolar concentrations are detectable at the surface of the tissue with typical mammographic doses, with the minimum detectable concentration increasing with depth and decreasing with dose. In

  17. X-ray phase imaging-From static observation to dynamic observation-

    SciTech Connect

    Momose, A.; Yashiro, W.; Olbinado, M. P.; Harasse, S.

    2012-07-31

    We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase images and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.

  18. Bendable X-ray Optics for High Resolution Imaging

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  19. Gasoline Spray Imaging By Polycapillary X-Ray Technique

    SciTech Connect

    Allocca, L.; Marchitto, L.; Alfuso, S.; Hampai, D.; Cappuccio, G.; Dabagov, S. B.

    2010-04-06

    First use of a Cu X-ray source in combination with polycapillary halflens (or semilens) and a Photonic Science CCD detector for investigating highly dense jet injection sprays are reported. It is shown that in the energy range used the absorption signal is above the background level indicating but interaction of the beam with the fuel is weak. These preliminary results offers new research opportunities within various Italian research centers.

  20. Advances in functional X-ray imaging techniques and contrast agents

    PubMed Central

    Chen, Hongyu; Rogalski, Melissa M.

    2012-01-01

    X-rays have been used for non-invasive high-resolution imaging of thick biological specimens since their discovery in 1895. They are widely used for structural imaging of bone, metal implants, and cavities in soft tissue. Recently, a number of new contrast methodologies have emerged which are expanding X-ray’s biomedical applications to functional as well as structural imaging. These techniques are promising to dramatically improve our ability to study in situ biochemistry and disease pathology. In this review, we discuss how X-ray absorption, X-ray fluorescence, and X-ray excited optical luminescence can be used for physiological, elemental, and molecular imaging of vasculature, tumours, pharmaceutical distribution, and the surface of implants. Imaging of endogenous elements, exogenous labels, and analytes detected with optical indicators will be discussed. PMID:22962667

  1. Tokamak T-10 soft x-ray imaging diagnostic

    NASA Astrophysics Data System (ADS)

    Bobrovskij, G. A.; Kislov, D. A.; Lyadina, E. S.; Savrukhin, P. V.

    1991-04-01

    Three arrays of silicon surface-barrier diodes were recently installed on T-10 (R=1.5 m, a=0.3 m). The detectors view the plasma cross section along 58 chords spaced in the poloidal direction at one toroidal location. The tomographic reconstruction technique allows one to obtain the time evolution of the two-dimensional soft x-ray intensity profiles in the energy range of 2.5-15 keV. The field of view covered the main part of the plasma (r/a<0.7) with a spatial resolution as small as 2 cm, which is consistent with the scale of the processes under study. The signals are digitized at rates up to 100 kHz and stored in 464K (total) memory (8K per channel). The measured soft x-ray emission was applicable for investigation of the magnetohydrodynamic instabilities, heat and particle transport, and plasma position control. Studies of the evolution of soft x-ray perturbations were made in ohmically and ECRH heated plasmas. It was shown that the effect of ECRH on the plasma parameters (transport coefficients, sawtooth activity, modification of the electron temperature profiles) depends on the position of the EC resonance zone within the plasma cross section. The tomographic reconstruction revealed the different mechanisms of sawtooth crashes in the T-10 plasma.

  2. X-ray Imaging and preliminary studies of the X-ray self-emission from an innovative plasma-trap based on the Bernstein waves heating mechanism

    NASA Astrophysics Data System (ADS)

    Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.

  3. The all sky automated survey

    NASA Astrophysics Data System (ADS)

    Pojmański, G.

    2014-03-01

    The All Sky Automated Survey (ASAS) is a realization of a Bohdan Paczynski idea of using small and inexpensive telescopes to survey and monitor bright objects in the sky. ASAS uses off-the-shelf telephoto lenses and CCD cameras attached to the custom made parallactic mounts to investigate as many objects in the sky as feasible with current technology and the available funds. We have demonstrated that among stars brighter than 13 magnitude 80% of variable stars remained unknown. Most of these stars are too bright for a 1-meter class telescopes, so 7-15 cm diameter lenses are ideal tools for detecting and monitoring them. During over ten years of observations a huge number of photometric measurements of almost 40,000,000 stars has been collected. Only part of this dataset has been analyzed so far - we have released catalogs of 50,000 variable stars south of declination +28. Recently, we have expanded ASAS towards fainter objects - the ASAS-SN project aims for detecting in real time supernovae in nearby galaxies as well as many transient events in the Milky Way.

  4. X-Ray Imaging of MHD Activity in the Text Tokamak

    NASA Astrophysics Data System (ADS)

    Smith, Brackin Allen

    Soft x-ray emission from a tokamak plasma may he used to obtain information about the electron temperature, density and impurity content of the plasma. Since the plasma is optically thin to x-rays, any measurement of x-ray emission is the sum of x-rays emitted all along the line of sight of the detector. It is useful to find a way to unfold the local values of x-ray emission from such a set of chord-integrated measurements. In this work, we implement a tomographic technique to invert the signals from two arrays of x-ray detectors that yields a two dimensional picture of x-ray emission from a poloidal slice of the plasma. This imaging method is applied to studies of magnetohydrodynamic motion in two separate discharges. One type of discharge is prepared so that a large amplitude m = 2 island persists throughout the discharge without causing a disruption. X -ray imaging is used to directly determine the location and width of the island. In another type of discharge, impurity pellet injection occasionally results in the suppression of sawteeth and the formation of a persistent m = 1 mode with the absence of sawteeth. X-ray imaging is used to determine the size of the m = 1 perturbation. The x-ray emissivity profiles are found to peak in the center, in the absence of sawteeth, implying accumulation of impurities. The m = 1 may be described as an internal kink-tearing mode which grows and saturates, but sawteeth do not occur because increased impurity radiation keeps the central thermal energy lower than necessary to trigger a sawtooth crash.

  5. FIRST IMAGES FROM THE FOCUSING OPTICS X-RAY SOLAR IMAGER

    SciTech Connect

    Krucker, Säm; Glesener, Lindsay; Turin, Paul; McBride, Stephen; Glaser, David; Fermin, Jose; Lin, Robert; Christe, Steven; Ishikawa, Shin-nosuke; Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee; Takahashi, Tadayuki; Watanabe, Shin; Saito, Shinya; Tanaka, Takaaki; White, Stephen

    2014-10-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November 2, producing the first focused images of the Sun above 5 keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.

  6. First Images from the Focusing Optics X-Ray Solar Imager

    NASA Astrophysics Data System (ADS)

    Krucker, Säm; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; Ramsey, Brian; Takahashi, Tadayuki; Watanabe, Shin; Saito, Shinya; Gubarev, Mikhail; Kilaru, Kiranmayee; Tajima, Hiroyasu; Tanaka, Takaaki; Turin, Paul; McBride, Stephen; Glaser, David; Fermin, Jose; White, Stephen; Lin, Robert

    2014-10-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November 2, producing the first focused images of the Sun above 5 keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.

  7. A vehicle threat detection system using correlation analysis and synthesized x-ray images

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Elmaghraby, Adel

    2013-06-01

    The goal of the proposed research is to automate the vehicle threat detection with X-ray images when a vehicle crosses the country border or the gateway of a secured facility (military base). The proposed detection system requires two inputs: probe images (from X-ray machine) and gallery images (from database). For each vehicle, the gallery images include the X-ray images of fully-loaded (with typical cargo) and unloaded (empty) vehicle. The proposed system produces two types of outputs for threat detection: the detected anomalies and the synthesized images (e.g., grayscale fusion, color fusion, and differential images). The anomalies are automatically detected with the block-wise correlation analysis between two temporally aligned images (probe versus gallery). The locations of detected anomalies can be marked with small rectangles on the probe X-ray images. The several side-view images can be combined into one fused image in gray scale and in colors (color fusion) that provides more comprehensive information to the operator. The fused images are suitable for human analysis and decision. We analyzed a set of vehicle X-ray images, which consists of 4 images generated from AS and E OmniView Gantry™. The preliminary results of detected anomalies and synthesized images are very promising; meanwhile the processing speed is very fast.

  8. Large Imaging X-ray MKID Arrays for Astrophysics

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin

    Microwave Kinetic Inductance Detectors, or MKIDs, are a relatively new type of superconducting detector with built-in frequency domain multiplexing (FDM). Like Transition Edge Sensors (TESs), MKIDs can count single X-ray photons over a wide energy range and determine their energy and arrival time. Unlike TESs, MKIDs allow very large pixel counts with a fairly simple room temperature readout. MKIDs currently are being used for submillimeter/millimeter and optical/UV astronomy. They are a mature technology, and our group has recently demonstrated very promising X-ray MKIDs. The uncertain state of future NASA X-ray missions makes fundamental detector research even more important. New detector capabilities are one of the best ways to increase mission performance without increasing cost. We propose to continue our existing ROSES-funded program to develop X-ray MKIDs with the ultimate goal of developing large, sensitive focal plane arrays for future X-ray missions. In particular, we will focus on making a hybrid array with a core of high count rate, high energy resolution single pixels, and a very large (up to 50 mm x 50 mm, megapixel or larger) extended array with a moderate 5-15 eV energy resolution R=E/FWHM(E) at 6 keV. For the single pixel core of the array we propose a new type of "calorimetric" MKID that uses the temperature rise of a membrane suspended MKID and absorber, very similar in design to the TES detectors that have achieved an energy resolution of 1.8 eV at 5.9 keV. For the outer array the ability of absorber-coupled MKIDs to trap quasiparticles in a lower gap material allows the separation of the function of photon absorption from detection, and also allows distributed "strip detector/DROID" configurations that can drastically increase the size of the arrays. MKID arrays using rectangular 2-D detectors could quickly reach megapixel pixel counts and cover 25 cm^2. The science potential of a CCD-scale array but with 10-20 times better energy resolution is

  9. Phase-contrast X-ray imaging with synchrotron radiation for materials science applications

    NASA Astrophysics Data System (ADS)

    Stevenson, A. W.; Gureyev, T. E.; Paganin, D.; Wilkins, S. W.; Weitkamp, T.; Snigirev, A.; Rau, C.; Snigireva, I.; Youn, H. S.; Dolbnya, I. P.; Yun, W.; Lai, B.; Garrett, R. F.; Cookson, D. J.; Hyodo, K.; Ando, M.

    2003-01-01

    Since Röntgen's discovery of X-rays just over a century ago the vast majority of radiographs have been collected and interpreted on the basis of absorption contrast and geometrical (ray) optics. Recently the possibility of obtaining new and complementary information in X-ray images by utilizing phase-contrast effects has received considerable attention, both in the laboratory context and at synchrotron sources (where much of this activity is a consequence of the highly coherent X-ray beams which can be produced). Phase-contrast X-ray imaging is capable of providing improved information from weakly absorbing features in a sample, together with improved edge definition. Four different experimental arrangements for achieving phase contrast in the hard X-ray regime, for the purpose of non-destructive characterization of materials, will be described. Two of these, demonstrated at ESRF in France and AR in Japan, are based on parallel-beam geometry; the other two, demonstrated at PLS in Korea and APS in USA, are based on spherical-beam geometry. In each case quite different X-ray optical arrangements were used. Some image simulations will be employed to demonstrate salient features of hard X-ray phase-contrast imaging and examples of results from each of the experiments will be shown.

  10. Phase-contrast imaging using ultrafast x-rays in laser-shocked materials

    SciTech Connect

    Workman, Jonathan B; Cobble, James A; Flippo, Kirk; Gautier, Donald C; Montgomery, David S; Offermann, Dustin T

    2010-01-01

    High-energy x-rays, > 10-keV, can be efficiently produced from ultrafast laser target interactions with many applications to dense target materials in Inertial Confinement Fusion (ICF) and High-Energy Density Physics (HEDP). These same x-rays can also be applied to measurements of low-density materials inside high-density hohlraum environments. In the experiments presented, high-energy x-ray images of laser-shocked polystyrene are produced through phase contrast imaging. The plastic targets are nominally transparent to traditional x-ray absorption but show detailed features in regions of high density gradients due to refractive effects often called phase contrast imaging. The 200-TW Trident laser is used both to produce the x-ray source and to shock the polystyrene target. X-rays at 17-keV produced from 2-ps, 100-J laser interactions with a 12-micron molybdenum wire are used to produce a small source size, required for optimizing refractive effects. Shocks are driven in the 1-mm thick polystyrene target using 2-ns, 250-J, 532-nm laser drive with phase plates. X-ray images of shocks compare well to 1-D hydro calculations, HELIOS-CR.

  11. Improvement of automated image stitching system for DR X-ray images.

    PubMed

    Yang, Fan; He, Yan; Deng, Zhen Sheng; Yan, Ang

    2016-04-01

    The full bone structure of X-ray images cannot be captured in a single scan with Digital radiography (DR) system. The stitching method of X-ray images is very important for scoliosis or lower limb malformation diagnosing and pre-surgical planning. Based on the image registration technology, this paper proposes a new automated image stitching method for full-spine and lower limb X-ray images. The stitching method utilized down-sampling to decrease the size of image and reduce the amount of computation; improved phase correlation algorithm was adopted to find the overlapping region; correlation coefficient was used to evaluate the similarity of overlapping region; weighted blending is brought in to produce a panorama image. The performance of the proposed method was evaluated by 40 pairs of images from patients with scoliosis or lower limb malformation. The stitching method was fully automated without any user input required. The experimental results were compared with previous methods by analyzing the same database. It is demonstrated that the improved phase correlation has higher accuracy and shorter average stitching time than previous methods. It could tackle problems including image translation, rotation and small overlapping in image stitching. PMID:26914239

  12. Non-convexly constrained image reconstruction from nonlinear tomographic X-ray measurements

    PubMed Central

    Blumensath, Thomas; Boardman, Richard

    2015-01-01

    The use of polychromatic X-ray sources in tomographic X-ray measurements leads to nonlinear X-ray transmission effects. As these nonlinearities are not normally taken into account in tomographic reconstruction, artefacts occur, which can be particularly severe when imaging objects with multiple materials of widely varying X-ray attenuation properties. In these settings, reconstruction algorithms based on a nonlinear X-ray transmission model become valuable. We here study the use of one such model and develop algorithms that impose additional non-convex constraints on the reconstruction. This allows us to reconstruct volumetric data even when limited measurements are available. We propose a nonlinear conjugate gradient iterative hard thresholding algorithm and show how many prior modelling assumptions can be imposed using a range of non-convex constraints. PMID:25939619

  13. In-vivo dark-field and phase-contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Bech, M.; Tapfer, A.; Velroyen, A.; Yaroshenko, A.; Pauwels, B.; Hostens, J.; Bruyndonckx, P.; Sasov, A.; Pfeiffer, F.

    2013-11-01

    Novel radiography approaches based on the wave nature of x-rays when propagating through matter have a great potential for improved future x-ray diagnostics in the clinics. Here, we present a significant milestone in this imaging method: in-vivo multi-contrast x-ray imaging of a mouse using a compact scanner. Of particular interest is the enhanced contrast in regions related to the respiratory system, indicating a possible application in diagnosis of lung diseases (e.g. emphysema).

  14. Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams

    SciTech Connect

    Sandberg, Richard L.; Paul, Ariel; Raymondson, Daisy A.; Haedrich, Steffen; Gaudiosi, David M.; Holtsnider, Jim; Tobey, Ra'anan I.; Cohen, Oren; Murnane, Margaret M.; Kapteyn, Henry C.; Song, Changyong; Miao Jianwei; Liu Yanwei; Salmassi, Farhad

    2007-08-31

    We present the first experimental demonstration of lensless diffractive imaging using coherent soft x rays generated by a tabletop soft-x-ray source. A 29 nm high harmonic beam illuminates an object, and the subsequent diffraction is collected on an x-ray CCD camera. High dynamic range diffraction patterns are obtained by taking multiple exposures while blocking small-angle diffraction using beam blocks of varying size. These patterns reconstruct to images with 214 nm resolution. This work demonstrates a practical tabletop lensless microscope that promises to find applications in materials science, nanoscience, and biology.

  15. In-vivo dark-field and phase-contrast x-ray imaging

    PubMed Central

    Bech, M.; Tapfer, A.; Velroyen, A.; Yaroshenko, A.; Pauwels, B.; Hostens, J.; Bruyndonckx, P.; Sasov, A.; Pfeiffer, F.

    2013-01-01

    Novel radiography approaches based on the wave nature of x-rays when propagating through matter have a great potential for improved future x-ray diagnostics in the clinics. Here, we present a significant milestone in this imaging method: in-vivo multi-contrast x-ray imaging of a mouse using a compact scanner. Of particular interest is the enhanced contrast in regions related to the respiratory system, indicating a possible application in diagnosis of lung diseases (e.g. emphysema). PMID:24220606

  16. All-Sky Monitoring of Variable Sources with Fermi GBM

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Finger, Mark; Camero-Arranz, Ascension; Becklen, Elif; Jenke, Peter; Cpe. K/ K/; Steele, Iain; Case, Gary; Cherry, Mike; Rodi, James; Bhat, Narayana

    2011-01-01

    Using the Gamma ray Burst Monitor (GBM) on Fermi, we monitor the transient hard X-ray/soft gamma ray sky. The twelve GBM NaI detectors span 8 keV to 1 MeV, while the two BGO detectors span 150 keV to 40 MeV. We use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. Our monitoring reveals predictable and unpredictable phenomena such as transient outbursts and state changes. With GBM we also track the pulsed flux and spin frequency of accretion powered pulsars using epoch-folding techniques. Searches for quasi-periodic oscillations and X-ray bursts are also possible with GBM all-sky monitoring. Highlights from the Earth Occultation and Pulsar projects will be presented including our recent surprising discovery of variations in the total flux from the Crab. Inclusion of an all-sky monitor is crucial for a successful future X-ray timing mission.

  17. Cryo X-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging.

    PubMed

    Schneider, Gerd; Guttmann, Peter; Rehbein, Stefan; Werner, Stephan; Follath, Rolf

    2012-02-01

    X-ray imaging offers a new 3-D view into cells. With its ability to penetrate whole hydrated cells it is ideally suited for pairing fluorescence light microscopy and nanoscale X-ray tomography. In this paper, we describe the X-ray optical set-up and the design of the cryo full-field transmission X-ray microscope (TXM) at the electron storage ring BESSY II. Compared to previous TXM set-ups with zone plate condenser monochromator, the new X-ray optical layout employs an undulator source, a spherical grating monochromator and an elliptically shaped glass capillary mirror as condenser. This set-up improves the spectral resolution by an order of magnitude. Furthermore, the partially coherent object illumination improves the contrast transfer of the microscope compared to incoherent conditions. With the new TXM, cells grown on flat support grids can be tilted perpendicular to the optical axis without any geometrical restrictions by the previously required pinhole for the zone plate monochromator close to the sample plane. We also developed an incorporated fluorescence light microscope which permits to record fluorescence, bright field and DIC images of cryogenic cells inside the TXM. For TXM tomography, imaging with multi-keV X-rays is a straightforward approach to increase the depth of focus. Under these conditions phase contrast imaging is necessary. For soft X-rays with shrinking depth of focus towards 10nm spatial resolution, thin optical sections through a thick specimen might be obtained by deconvolution X-ray microscopy. As alternative 3-D X-ray imaging techniques, the confocal cryo-STXM and the dual beam cryo-FIB/STXM with photoelectron detection are proposed. PMID:22273540

  18. Quantitative digital X-ray imaging using frozen hydrated and frozen dried tissue sections.

    PubMed

    Saubermann, A J; Heyman, R V

    1987-05-01

    Application of quantitative X-ray imaging to frozen hydrated tissue sections has presented a number of major problems including lack of a suitable algorithm which could deal effectively with mass loss due to radiation damage, problems of low characteristic X-ray signal to background ratios, and provide a means of analysis of the same location in both hydrated and dried states. This paper presents details of the application of our algorithm for analysis of frozen hydrated, then dried cryosections applied to quantitative X-ray imaging, which provides relatively high precision quantitative measurement of elemental content (related to both wet and dry weight) and water content of each pixel. This algorithm largely circumvents many of the problems of analysis of frozen hydrated tissue sections. Our algorithm for X-ray imaging obtains reasonably precise quantitative measurements coupled with morphological information by trading speed and image resolution. PMID:3612771

  19. X-Ray Micro-Computed Tomography Imaging of the Buzzard Coulee Chondrite

    NASA Astrophysics Data System (ADS)

    Melanson, D.; Samson, C.; Herd, R. K.; Fry, C.; McCausland, P. J. A.; Umoh, J.; Holdsworth, D. W.

    2012-03-01

    This abstract outlines research and some results of X-ray micro-computed tomography imaging of the Buzzard Coulee H4 chondrite. A comparison of bulk density results and an analysis of radio-density profile curves are discussed.

  20. eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility

    DOE PAGESBeta

    Doppner, T.; Bachmann, B.; Albert, F.; Bell, P.; Burns, S.; Celeste, J.; Chow, R.; Divol, L.; Dewald, E. L.; Hohenberger, M.; et al

    2016-06-14

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information onmore » hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.« less

  1. Evaluating the quality of images produced by soft X-ray units.

    PubMed

    Bradley, D A; Wong, C S; Ng, K H

    2000-01-01

    For broad-beam soft X-ray sources, assessment of the quality of image produced by such units is made complex by the low penetration capabilities of the radiation. In the present study we have tested the utility of several types of test tool, some of which have been fabricated by us, as part of an effort to evaluate several key image defining parameters. These include the film characteristic, focal-spot size, image resolution and detail detectability. The two sources of X-rays used in present studies were the University of Malaya flash X-ray device (UMFX1) and a more conventional soft X-ray tube (Softex, Tokyo), the latter operating at peak accelerating potentials of 20 kVp. We have established, for thin objects, that both systems produce images of comparable quality and, in particular, objects can be resolved down to better than 45 microm. PMID:11003508

  2. eHXI: a permanently installed, hard x-ray imager for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Döppner, T.; Bachmann, B.; Albert, F.; Bell, P.; Burns, S.; Celeste, J.; Chow, R.; Divol, L.; Dewald, E. L.; Hohenberger, M.; Huntington, C. M.; Izumi, N.; LaCaille, G.; Landen, O. L.; Palmer, N.; Park, H.-S.; Thomas, C. A.

    2016-06-01

    We have designed and built a multi-pinhole imaging system for high energy x-rays (>= 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. eHXI provides valuable information on hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.

  3. Tamper to delay motion and decrease ionization of a sample during short pulse x-ray imaging

    DOEpatents

    London, Richard A.; Szoke; Abraham , Hau-Riege; Stefan P. , Chapman; Henry N.

    2007-06-26

    A system for x-ray imaging of a small sample comprising positioning a tamper so that it is operatively connected to the sample, directing short intense x-ray pulses onto the tamper and the sample, and detecting an image from the sample. The tamper delays the explosive motion of the sample during irradiation by the short intense x-ray pulses, thereby extending the time to obtain an x-ray image of the original structure of the sample.

  4. Multispectral X-Ray Imaging With A Pinhole Array And A Flat Bragg Mirror

    SciTech Connect

    Koch, J A; Barbee, Jr., T W; Izumi, N; Tommasini, R; Welser, L A; Mancini, R C; Marshall, F J

    2005-03-17

    We describe a multiple monochromatic x-ray imager designed for implosion experiments. This instrument uses an array of pinholes in front of a flat multilayered Bragg mirror to provide many individual quasi-monochromatic x-ray pinhole images spread over a wide spectral range. We discuss design constraints and optimizations, and we discuss the specific details of the instrument we have used to obtain temperature and density maps of implosion plasmas.

  5. X-ray imaging with ``edge-on'' microchannel plate detector: first experimental results

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Molloi, Sabee

    2003-09-01

    A novel scanning slit X-ray imaging system based on an "edge-on" microchannel plate detector was developed and tested. Images were acquired at 50 kV(p) X-ray tube voltage with a limiting spatial resolution of 7 lp/mm. The pixel noise was measured to be 0.3 count/pixel/s for a 50×70 μm 2 pixel size. This photon counting detector can be considered to be virtually noise free.

  6. X-Ray Diffraction and Imaging Study of Imperfections of Crystallized Lysozyme with Coherent X-Rays

    NASA Technical Reports Server (NTRS)

    Hu, Zheng-Wei; Chu, Y. S.; Lai, B.; Cai, Z.; Thomas, B. R.; Chernov, A. A.

    2003-01-01

    Phase-sensitive x-ray diffraction imaging and high angular-resolution diffraction combined with phase contrast radiographic imaging are employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in symmetric Laue case. The fill width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal is approximately 16.7 arcseconds, and defects, which include point defects, line defects, and microscopic domains, have been clearly observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front, and they have been found to originate mostly at a central growth area and occasionally at outer growth regions. Individual point defects trapped at a crystal nucleus are resolved in the images of high sensitivity to defects. Slow dehydration has led to the broadening of the 4 4 0 rocking curve by a factor of approximately 2.4. A significant change of the defect structure and configuration with drying has been revealed, which suggests the dehydration induced migration and evolution of dislocations and lattice rearrangements to reduce overall strain energy. The sufficient details of the observed defects shed light upon perfection, nucleation and growth, and properties of protein crystals.

  7. Combining x-ray and photoacoustics for in vivo tumor imaging with gold nanorods

    NASA Astrophysics Data System (ADS)

    Huang, Guojia; Yang, Sihua; Yuan, Yi; Xing, Da

    2011-09-01

    We have demonstrated a new hybrid cancer imaging method combining x-ray and photoacoustic imaging with multifunctional gold nanorods as contrast agents. The two imaging modalities provide complementary contrast mechanisms. X-ray imaging exploits the high attenuation coefficient of gold nanorods, while photoacoustic imaging takes advantage of the strong optical absorption of the nanorods. The fused image has presented both location and vasculature of the tumor. Our experimental results demonstrate that this combined modality has the capability to provide anatomical and functional information of tumor for accurate medical diagnosis and imaging-guided therapy.

  8. Micro-structural characterization of materials using synchrotron hard X-ray imaging techniques

    SciTech Connect

    Agrawal, Ashish Singh, Balwant; Kashyap, Yogesh; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2015-06-24

    X-ray imaging has been an important tool to study the materials microstructure with the laboratory based sources however the advent of third generation synchrotron sources has introduced new concepts in X-ray imaging such as phase contrast imaging, micro-tomography, fluorescence imaging and diffraction enhance imaging. These techniques are being used to provide information of materials about their density distribution, porosity, geometrical and morphological characteristics at sub-micron scalewith improved contrast. This paper discusses the development of various imaging techniques at synchrotron based imaging beamline Indus-2 and few recent experiments carried out at this facility.

  9. Ultrastructural and elemental imaging of biological specimens by soft x-ray contact microscopy

    SciTech Connect

    Panessa, B.J.; Hoffman, P. . Dept. of Orthopedics); Warren, J.B. ); Feder, R.; Sayre, D. . Thomas J. Watson Research Center)

    1980-01-01

    Soft X-ray contact microscopy offers a means of visualizing unstained as well as stained biological materials at better than 6 nm resolution. Soft X-ray imaging depends on differential absorption of incident soft (1--10nm wavelength) X-rays by the endogenous elements within a specimen. The advantages of using soft X-rays for imaging are: (1) reduced specimen damage during exposure; (2) ability to image hydrated specimens at atmospheric pressure; (3) ability to image specimens ranging in thickness from less than 40 nm to as much as 10{mu}m; and (4) ability to map the elemental composition of the specimen through observation of the differential absorption of properly chosen incident x-ray wavelengths. This paper explains the principles of image formation and demonstrates the use of soft X-ray contact microscopy with biological samples which could not readily be imaged in their natural form using conventional electron microscopy methods. Data are also presented on the recognition of compositional features in histochemically treated articular joint tissues. 30 refs., 15 figs.

  10. A comparison of ultrasonic and X-ray methods for imaging the growth plate.

    PubMed

    Han, S M; Kim, S H

    2005-07-01

    The purpose of this study was to assess a systematic and scientific method for measuring children's growth development, in which the accuracy of the existing diagnostic method has not yet been concretely examined. The most popular method for diagnosis of children's growth is to analyse the opening degree of the growth plate in each joint by an X-ray image. However, the X-ray method has some disadvantages; it is impossible to measure the diagnosis of growth periodically and repeatedly due to the radiation problem. Hence, this study introduced a profile analysis and the algorithm of analysing the image of the growth plate using the broadband ultrasound attenuation (BUA) of calcaneus, to verify the possibility of using an alternative ultrasonic method harmless to the human body. The images of the growth plate in the proximal tibiae, phalanges, and calcanei of 269 children (7-16 years old) were obtained using X-ray. The image of the growth plate in the calcanei was also obtained from these children using ultrasound. The results showed that the time of the opening degree of the growth plate in each joint was almost consistent between X-ray and ultrasonic images. Also, the images of the growth plate measured using X-ray and ultrasound showed a high correlation. Therefore, it is expected that the algorithm of ultrasonic profile analysis introduced in this study can replace the existing X-ray method to measure the growth plate correctly. PMID:16050219

  11. X-ray tomographic image magnification process, system and apparatus therefor

    DOEpatents

    Kinney, J.H.; Bonse, U.K.; Johnson, Q.C.; Nichols, M.C.; Saroyan, R.A.; Massey, W.N.; Nusshardt, R.

    1993-09-14

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: (a) source means for providing a source of parallel x-ray beams, (b) staging means for staging and sequentially rotating a sample to be positioned in the path of the (c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, (d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and (e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor. 25 figures.

  12. X-ray tomographic image magnification process, system and apparatus therefor

    DOEpatents

    Kinney, John H.; Bonse, Ulrich K.; Johnson, Quintin C.; Nichols, Monte C.; Saroyan, Ralph A.; Massey, Warren N.; Nusshardt, Rudolph

    1993-01-01

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: a) source means for providing a source of parallel x-ray beams, b) staging means for staging and sequentially rotating a sample to be positioned in the path of the c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor.

  13. Low voltage imaging and X-ray microanalysis in the SEM: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Wuhrer, R.; Moran, K.

    2016-02-01

    Low voltage imaging, X-ray microanalysis and X-ray mapping has become very important for the investigation of nanomaterials and their surfaces. This is especially true for low voltage imaging of non-conductive samples and beam sensitive samples. Operating the SEM at lower accelerating voltage allows for greater surface sensitivity, the ability to minimize charging effects, nanometre scale lateral X-ray spatial resolution and nanoscale X-ray depth sensitivity. Determining the correct accelerating voltage for imaging in a SEM is dependent on the instrument's operating performance at low voltage, the material being viewed, and other factors that limit effectiveness of low voltage microanalysis, which will be discussed in this paper.

  14. Ultrafast secondary emission X-ray imaging detectors: A possible application to TRD

    NASA Astrophysics Data System (ADS)

    Akkerman, A.; Breskin, A.; Chechik, R.; Elkind, V.; Gibrekhterman, A.; Majewski, S.

    1992-05-01

    Fist high accuracy, X-ray imaging at high photon flux can be achieved when coupling thin solid convertors to gaseous electron multipliers, operating at low gas pressures. Secondary electrons emitted from the convertor foil are multiplied in several successive amplification elements. The obvious advantages of solid X-ray convertors, as compared to gaseous conversion, are the production of parallax-free images and the fast (subnanosecond) response. These X-ray detectors have many potential applications in basic and applied research. Of particular interest is the possibility of an efficient and ultrafast high resolution imaging of transition radiation (TR), with a reduced d E/d x background. We present experimental results on the operation of secondary emission X-ray (SEX) detectors, their detection efficiency, localization and time resolution. The experimental work is accompanied by mathematical modelling and computer simulation of transition radiation detectors (TRDs) based on CsI TR convertors.

  15. X-ray tomographic image magnification process, system and apparatus therefor

    SciTech Connect

    Kinney, J.H.; Bonse, U.K.; Johnson, Q.C.; Nichols, M.C.; Saroyan, R.A.; Massey, W.N.; NuBhardt, R.

    1991-12-31

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: (a) source means for providing a source of parallel x-ray beams; (b) staging means for staging and sequentially rotating a sample to be positioned in the path of the beams; (c) x-ray image magnifier means positioned in the path of the beams downstream from the sample; (d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means; and (e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor.

  16. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect

    Lu, L.; Fan, D.; Luo, S. N.; Bie, B. X.; Ran, X. X.; Qi, M. L.; Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Fezzaa, K.; Sun, T.; Chen, W.; Gong, X. L.

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  17. Coherent x-ray diffraction imaging of paint pigment particles by scanning a phase plate modulator

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Zhang, Fucai; Berenguer, Felisa; Bean, Richard J.; Kewish, Cameron M.; Vila-Comamala, Joan; Chu, Yong S.; Rodenburg, John M.; Robinson, Ian K.

    2011-10-01

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  18. Coherent x-ray diffraction imaging of paint pigmentparticles by scanning a phase plate modulator

    SciTech Connect

    Chu Y. S.; Chen B.; Zhang F.; Berenguer F.; Bean R.; Kewish C.; Vila-Comamala J.; Rodenburg J.; Robinson I.

    2011-10-19

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  19. Spatial harmonic imaging of X-ray scattering--initial results.

    PubMed

    Wen, Han; Bennett, Eric E; Hegedus, Monica M; Carroll, Stefanie C

    2008-08-01

    Coherent X-ray scattering is related to the electron density distribution by a Fourier transform, and therefore a window into the microscopic structures of biological samples. Current techniques of scattering rely on small-angle measurements from highly collimated X-ray beams produced from synchrotron light sources. Imaging of the distribution of scattering provides a new contrast mechanism which is different from absorption radiography, but is a lengthy process of raster or line scans of the beam over the object. Here, we describe an imaging technique in the spatial frequency domain capable of acquiring both the scattering and absorption distributions in a single exposure. We present first results obtained with conventional X-ray equipment. This method interposes a grid between the X-ray source and the imaged object, so that the grid-modulated image contains a primary image and a grid harmonic image. The ratio between the harmonic and primary images is shown to be a pure scattering image. It is the auto-correlation of the electron density distribution at a specific distance. We tested a number of samples at 60-200 nm autocorrelation distance, and found the scattering images to be distinct from the absorption images and reveal new features. This technique is simple to implement, and should help broaden the imaging applications of X-ray scattering. PMID:18672418

  20. X-ray imaging with amorphous silicon active matrix flat-panel imagers (AMFPIs)

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Jee, Kyung-Wook; Maolinbay, Manat; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Verma, Manav; Zhao, Qihua

    1997-07-01

    Recent advances in thin-film electronics technology have opened the way for the use of flat-panel imagers in a number of medical imaging applications. These novel imagers offer real time digital readout capabilities (˜30 frames per second), radiation hardness (>106cGy), large area (30×40 cm2) and compactness (˜1 cm). Such qualities make them strong candidates for the replacement of conventional x-ray imaging technologies such as film-screen and image intensifier systems. In this report, qualities and potential of amorphous silicon based active matrix flat-panel imagers are outlined for various applications such as radiation therapy, radiography, fluoroscopy and mammography.