Science.gov

Sample records for allele repertoire increases

  1. Analysis of the vomeronasal receptor repertoire, expression and allelic diversity in swine.

    PubMed

    Dinka, Hunduma; Le, Minh Thong; Ha, Heekyun; Cho, Hyesun; Choi, Min-Kyeung; Choi, Hojun; Kim, Jin-Hoi; Soundarajan, Nagasundarapandian; Park, Jin-Ki; Park, Chankyu

    2016-05-01

    Here we report a comprehensive analysis of the vomeronasal receptor repertoire in pigs. We identified a total of 25 V1R sequences consisting of 10 functional genes, 3 pseudogenes, and 12 partial genes, while functional V2R and FPR genes were not present in the pig genome. Pig V1Rs were classified into three subfamilies, D, F, and J. Using direct high resolution sequencing-based typing of all functional V1Rs from 10 individuals of 5 different breeds, a total of 24 SNPs were identified, indicating that the allelic diversity of V1Rs is much lower than that of the olfactory receptors. A high expression level of V1Rs was detected in the vomeronasal organ (VNO) and testes, while a low expression level of V1Rs was observed in all other tissues examined. Our results showed that pigs could serve as an interesting large animal model system to study pheromone-related neurobiology because of their genetic simplicity. PMID:26482471

  2. Increase in NRAS mutant allele percentage during metastatic melanoma progression.

    PubMed

    Funck-Brentano, Elisa; Hélias-Rodzewicz, Zofia; Longvert, Christine; Mokhtari, Karima; Saiag, Philippe; Emile, Jean-François

    2016-06-01

    One-fifth of cutaneous melanomas have dominant gain-of-function mutations of the NRAS oncogene. We report the first two cases of increasing NRAS mutant allele frequency in melanoma metastases and show that the chromosomal mechanism of this homozygosity is an increased polysomy of chromosome 1. We observed an increase in NRAS mutant allele percentage (NRAS-MA%) in the metastatic melanoma progression from 2 patients with melanomas harbouring a NRAS mutation (p.Q61K in case 1 and p.Q61R in case 2). In case 1, we observed a NRAS-MA% increase from 18% within the first metastatic node to 81%, 92% and 85% respectively in the three subsequent metastases: lymph node, brain and subcutaneous metastases biopsied 1, 6 and 17 months, respectively, after the initial lymph node biopsy. In case 2, we observed an increase in NRAS-MA% from 40% within the primary melanoma to 63% within the metastatic lymph node. FISH analysis showed the same results in both cases: a frequent polysomy of chromosome 1 in metastasis samples with NRAS mutant allele percentage >60%, while most cells were disomic in the samples with well-balanced heterozygous mutations. The percentage of NRAS mutant allele may increase during metastatic progression and may be associated with chromosomal instability. Further studies are needed to evaluate the prognostic impact of the NRAS homozygous status and/or polyploidy in metastatic cutaneous melanomas. PMID:26990546

  3. Increasing long term response by selecting for favorable minor alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term response of genomic selection can be improved by considering allele frequencies of selected markers or quantitative trait loci (QTLs). A previous formula to weight allele frequency of favorable minor alleles was tested, and 2 new formulas were developed. The previous formula used nonlinear...

  4. Territory Tenure Increases with Repertoire Size in Brownish-Flanked Bush Warbler

    PubMed Central

    Xia, Canwei; Wei, Chentao; Zhang, Yanyun

    2015-01-01

    Song repertoire size is often cited as a classic example of a secondary sexual trait in birds. Models of sexual selection and empirical tests of their predictions have often related secondary sexual traits to longevity. However, the relationship between repertoire size and longevity is unclear. Using capture-mark-recapture studies in two populations of the brownish-flanked bush warbler Cettia fortipes, we found that males with a repertoire size of three maintained territory tenure for a longer duration than did males with a repertoire size of two. These results provide evidence that even a minimal difference in repertoire size can serve as a potential signal of territory tenure capability. PMID:25822524

  5. PUTATIVE ALLELES FOR INCREASED YIELD FROM SOYBEAN PLANT INTRODUCTIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving seed yield of soybean [Glycine max (L.) Merr.] cultivars is an important goal of breeding programs. The objective of this study was to evaluate two soybean plant introductions (PIs) as sources of alleles for the enhancement of seed yield in North American cultivars. A soybean population ...

  6. Genetically Determined Amerindian Ancestry Correlates with Increased Frequency of Risk Alleles for Systemic Lupus Erythematosus

    PubMed Central

    Sanchez, E; Webb, R; Rasmussen, A.; Kelly, J.A; Riba, L.; Kaufman, K.M.; Garcia-de la Torre, I.; Moctezuma, J.F.; Maradiaga-Ceceña, M.A.; Cardiel, M.; Acevedo, E.; Cucho-Venegas, M.; Garcia, M.A.; Gamron, S.; Pons-Estel, B.A.; Vasconcelos, C.; Martin, J.; Tusié-Luna, T.; Harley, J.B.; Richardson, B.; Sawalha, A.H.; Alarcón-Riquelme, M.E.

    2011-01-01

    Objectives To analyze if genetically determined Amerindian ancestry predicts the increased presence of risk alleles of known susceptibility genes for systemic lupus erythematosus. Methods Single nucleotide polymorphisms within 16 confirmed genetic susceptibility loci for SLE were genotyped in a set of 804 Mestizo lupus patients and 667 Mestizo normal healthy controls. In addition, 347 admixture informative markers were genotyped. Individual ancestry proportions were determined using STRUCTURE. Association analysis was performed using PLINK, and correlation of the presence of risk alleles with ancestry was done using linear regression. Results A meta-analysis of the genetic association of the 16 SNPs across populations showed that TNFSF4, STAT4, PDCD1, ITGAM, and IRF5 were associated with lupus in a Hispanic-Mestizo cohort enriched for European and Amerindian ancestry. In addition, two SNPs within the MHC region, previously associated in a genome-wide association study in Europeans, were also associated in Mestizos. Using linear regression we predict an average increase of 2.34 risk alleles when comparing a lupus patient with 100% Amerindian ancestry to an SLE patient with 0% American Indian Ancestry (p<0.0001). SLE patients with 43% more Amerindian ancestry are predicted to carry one additional risk allele. Conclusion Amerindian ancestry increased the number of risk alleles for lupus. PMID:20848568

  7. Myotonic Dystrophy: Increased expression of the normal allele in CDM infants muscle

    SciTech Connect

    Radvanyi, H.H.; Gourdon, G.; Junien, C. |

    1994-09-01

    Myotonic dystrophy (DM) is an autosomal dominant multisystemic disorder characterized by a highly variable clinical phenotype. The mutation has been identified as an unstable trinucleotide CTG repeat in the 3{prime} untranslated region of the myotonin-protein kinase (MT-PK) gene. Congenital myotonic dystrophy (CDM), which represents the most severe phenotype, is exclusively maternally inherited. Recent studies, analysis by Northern blots and RT-PCR provided apparently conflicting results on the mutated allele expression in samples from congenitally affected children. The level of expression of the mutant allele depends on the extent of the repeat in the adult form and is no longer expressed when over 800-1300 repeats, whether in adult forms or in CDM. Could this decrease account for the late onset forms? However, the differences between the two phenotypes cannot be explained by the same mechanism. Alternatively, these differences could be due to differences in expression of the normal allele. We analyzed by quantitative RT-PCR the expression of the MT-PK gene in muscle samples from four CDM infants and two aged-matched normal controls. In two of these, the mutant allele (3.3 and 8 kb) was undetectable on Northern blots. We observed an increased expression of the MT-PK gene (10- to 20-fold) in tissues of severely affected congenital patients which can be attributed to the normal allele. Since expression of the normal allele is either normal or slightly decreased in the adult form, the dramatic increase in the congenital form could reflect a disturbance in muscle differentiation. Expression studies of MT-PK at different stages of development and, especially after the 20th week, are therefore required.

  8. Allelic variation at a single gene increases food value in a drought-tolerant staple cereal.

    PubMed

    Gilding, Edward K; Frère, Celine H; Cruickshank, Alan; Rada, Anna K; Prentis, Peter J; Mudge, Agnieszka M; Mace, Emma S; Jordan, David R; Godwin, Ian D

    2013-01-01

    The production of adequate agricultural outputs to support the growing human population places great demands on agriculture, especially in light of ever-greater restrictions on input resources. Sorghum is a drought-adapted cereal capable of reliable production where other cereals fail, and thus represents a good candidate to address food security as agricultural inputs of water and arable land grow scarce. A long-standing issue with sorghum grain is that it has an inherently lower digestibility. Here we show that a low-frequency allele type in the starch metabolic gene, pullulanase, is associated with increased digestibility, regardless of genotypic background. We also provide evidence that the beneficial allele type is not associated with deleterious pleiotropic effects in the modern field environment. We argue that increasing the digestibility of an adapted crop is a viable way forward towards addressing food security while maximizing water and land-use efficiency. PMID:23403584

  9. Increasing long-term response by selecting for favorable minor alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term response of genomic selection can be improved by considering allele frequencies of selected markers or quantitative trait loci (QTLs). A previous formula to weight allele frequency of favorable minor alleles was tested, and 2 new formulas were developed. The previous formula used nonlinear...

  10. Evidence for increased olfactory receptor gene repertoire size in two nocturnal bird species with well-developed olfactory ability

    PubMed Central

    Steiger, Silke S; Fidler, Andrew E; Kempenaers, Bart

    2009-01-01

    Background In vertebrates, the molecular basis of the sense of smell is encoded by members of a large gene family, namely olfactory receptor (OR) genes. Both the total number of OR genes and the proportion of intact OR genes in a genome may indicate the importance of the sense of smell for an animal. There is behavioral, physiological, and anatomical evidence that some bird species, in particular nocturnal birds, have a well developed sense of smell. Therefore, we hypothesized that nocturnal birds with good olfactory abilities have evolved (i) more OR genes and (ii) more intact OR genes than closely related and presumably less 'olfaction-dependent' day-active avian taxa. Results We used both non-radioactive Southern hybridization and PCR with degenerate primers to investigate whether two nocturnal bird species that are known to rely on olfactory cues, the brown kiwi (Apteryx australis) and the kakapo (Strigops habroptilus), have evolved a larger OR gene repertoire than their day-active, closest living relatives (for kiwi the emu Dromaius novaehollandiae, rhea Rhea americana, and ostrich Struthio camelus and for kakapo the kaka Nestor meridionalis and kea Nestor notabilis). We show that the nocturnal birds did not have a significantly higher proportion of intact OR genes. However, the estimated total number of OR genes was larger in the two nocturnal birds than in their relatives. Conclusion Our results suggest that ecological niche adaptations such as daily activity patterns may have shaped avian OR gene repertoires. PMID:19467156

  11. Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast.

    PubMed Central

    Nickoloff, J A; Sweetser, D B; Clikeman, J A; Khalsa, G J; Wheeler, S L

    1999-01-01

    Spontaneous and double-strand break (DSB)-induced allelic recombination in yeast was investigated in crosses between ura3 heteroalleles inactivated by an HO site and a +1 frameshift mutation, with flanking markers defining a 3.4-kbp interval. In some crosses, nine additional phenotypically silent RFLP mutations were present at approximately 100-bp intervals. Increasing heterology from 0.2 to 1% in this interval reduced spontaneous, but not DSB-induced, recombination. For DSB-induced events, 75% were continuous tract gene conversions without a crossover in this interval; discontinuous tracts and conversions associated with a crossover each comprised approximately 7% of events, and 10% also converted markers in unbroken alleles. Loss of heterozygosity was seen for all markers centromere distal to the HO site in 50% of products; such loss could reflect gene conversion, break-induced replication, chromosome loss, or G2 crossovers. Using telomere-marked strains we determined that nearly all allelic DSB repair occurs by gene conversion. We further show that most allelic conversion results from mismatch repair of heteroduplex DNA. Interestingly, markers shared between the sparsely and densely marked interval converted at higher rates in the densely marked interval. Thus, the extra markers increased gene conversion tract lengths, which may reflect mismatch repair-induced recombination, or a shift from restoration- to conversion-type repair. PMID:10511547

  12. A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene.

    PubMed

    Yan, Rengna; Lai, Shanshan; Yang, Yang; Shi, Hongfei; Cai, Zhenming; Sorrentino, Vincenzo; Du, Hong; Chen, Huimei

    2016-01-01

    Genome-wide association studies have identified Ankyrin-1 (ANK1) as a common type 2 diabetes (T2D) susceptibility locus. However, the underlying causal variants and functional mechanisms remain unknown. We screened for 8 tag single nucleotide polymorphisms (SNPs) in ANK1 between 2 case-control studies. Genotype analysis revealed significant associations of 3 SNPs, rs508419 (first identified here), rs515071, and rs516946 with T2D (P < 0.001). These SNPs were in linkage disequilibrium (r(2) > 0.80); subsequent analysis indicated that the CCC haplotype associated with increased T2D susceptibility (OR 1.447, P < 0.001). Further mapping showed that rs508419 resides in the muscle-specific ANK1 gene promoter. Allele-specific mRNA and protein level measurements confirmed association of the C allele with increased small ANK1 (sAnk1) expression in human skeletal muscle (P = 0.018 and P < 0.001, respectively). Luciferase assays showed increased rs508419-C allele transcriptional activity in murine skeletal muscle C2C12 myoblasts, and electrophoretic mobility-shift assays demonstrated altered rs508419 DNA-protein complex formation. Glucose uptake was decreased with excess sAnk1 expression upon insulin stimulation. Thus, the ANK1 rs508419-C T2D-risk allele alters DNA-protein complex binding leading to increased promoter activity and sAnk1 expression; thus, increased sAnk1 expression in skeletal muscle might contribute to T2D susceptibility. PMID:27121283

  13. A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene

    PubMed Central

    Yan, Rengna; Lai, Shanshan; Yang, Yang; Shi, Hongfei; Cai, Zhenming; Sorrentino, Vincenzo; Du, Hong; Chen, Huimei

    2016-01-01

    Genome-wide association studies have identified Ankyrin-1 (ANK1) as a common type 2 diabetes (T2D) susceptibility locus. However, the underlying causal variants and functional mechanisms remain unknown. We screened for 8 tag single nucleotide polymorphisms (SNPs) in ANK1 between 2 case-control studies. Genotype analysis revealed significant associations of 3 SNPs, rs508419 (first identified here), rs515071, and rs516946 with T2D (P < 0.001). These SNPs were in linkage disequilibrium (r2 > 0.80); subsequent analysis indicated that the CCC haplotype associated with increased T2D susceptibility (OR 1.447, P < 0.001). Further mapping showed that rs508419 resides in the muscle-specific ANK1 gene promoter. Allele-specific mRNA and protein level measurements confirmed association of the C allele with increased small ANK1 (sAnk1) expression in human skeletal muscle (P = 0.018 and P < 0.001, respectively). Luciferase assays showed increased rs508419-C allele transcriptional activity in murine skeletal muscle C2C12 myoblasts, and electrophoretic mobility-shift assays demonstrated altered rs508419 DNA-protein complex formation. Glucose uptake was decreased with excess sAnk1 expression upon insulin stimulation. Thus, the ANK1 rs508419-C T2D-risk allele alters DNA-protein complex binding leading to increased promoter activity and sAnk1 expression; thus, increased sAnk1 expression in skeletal muscle might contribute to T2D susceptibility. PMID:27121283

  14. The past, present, and future of immune repertoire biology - the rise of next-generation repertoire analysis.

    PubMed

    Six, Adrien; Mariotti-Ferrandiz, Maria Encarnita; Chaara, Wahiba; Magadan, Susana; Pham, Hang-Phuong; Lefranc, Marie-Paule; Mora, Thierry; Thomas-Vaslin, Véronique; Walczak, Aleksandra M; Boudinot, Pierre

    2013-01-01

    T and B cell repertoires are collections of lymphocytes, each characterized by its antigen-specific receptor. We review here classical technologies and analysis strategies developed to assess immunoglobulin (IG) and T cell receptor (TR) repertoire diversity, and describe recent advances in the field. First, we describe the broad range of available methodological tools developed in the past decades, each of which answering different questions and showing complementarity for progressive identification of the level of repertoire alterations: global overview of the diversity by flow cytometry, IG repertoire descriptions at the protein level for the identification of IG reactivities, IG/TR CDR3 spectratyping strategies, and related molecular quantification or dynamics of T/B cell differentiation. Additionally, we introduce the recent technological advances in molecular biology tools allowing deeper analysis of IG/TR diversity by next-generation sequencing (NGS), offering systematic and comprehensive sequencing of IG/TR transcripts in a short amount of time. NGS provides several angles of analysis such as clonotype frequency, CDR3 diversity, CDR3 sequence analysis, V allele identification with a quantitative dimension, therefore requiring high-throughput analysis tools development. In this line, we discuss the recent efforts made for nomenclature standardization and ontology development. We then present the variety of available statistical analysis and modeling approaches developed with regards to the various levels of diversity analysis, and reveal the increasing sophistication of those modeling approaches. To conclude, we provide some examples of recent mathematical modeling strategies and perspectives that illustrate the active rise of a "next-generation" of repertoire analysis. PMID:24348479

  15. The Past, Present, and Future of Immune Repertoire Biology – The Rise of Next-Generation Repertoire Analysis

    PubMed Central

    Six, Adrien; Mariotti-Ferrandiz, Maria Encarnita; Chaara, Wahiba; Magadan, Susana; Pham, Hang-Phuong; Lefranc, Marie-Paule; Mora, Thierry; Thomas-Vaslin, Véronique; Walczak, Aleksandra M.; Boudinot, Pierre

    2013-01-01

    T and B cell repertoires are collections of lymphocytes, each characterized by its antigen-specific receptor. We review here classical technologies and analysis strategies developed to assess immunoglobulin (IG) and T cell receptor (TR) repertoire diversity, and describe recent advances in the field. First, we describe the broad range of available methodological tools developed in the past decades, each of which answering different questions and showing complementarity for progressive identification of the level of repertoire alterations: global overview of the diversity by flow cytometry, IG repertoire descriptions at the protein level for the identification of IG reactivities, IG/TR CDR3 spectratyping strategies, and related molecular quantification or dynamics of T/B cell differentiation. Additionally, we introduce the recent technological advances in molecular biology tools allowing deeper analysis of IG/TR diversity by next-generation sequencing (NGS), offering systematic and comprehensive sequencing of IG/TR transcripts in a short amount of time. NGS provides several angles of analysis such as clonotype frequency, CDR3 diversity, CDR3 sequence analysis, V allele identification with a quantitative dimension, therefore requiring high-throughput analysis tools development. In this line, we discuss the recent efforts made for nomenclature standardization and ontology development. We then present the variety of available statistical analysis and modeling approaches developed with regards to the various levels of diversity analysis, and reveal the increasing sophistication of those modeling approaches. To conclude, we provide some examples of recent mathematical modeling strategies and perspectives that illustrate the active rise of a “next-generation” of repertoire analysis. PMID:24348479

  16. Association of mitochondrial allele 4216C with increased risk for sepsis-related organ dysfunction and shock after burn injury.

    PubMed

    Huebinger, Ryan M; Gomez, Ruben; McGee, Daphne; Chang, Ling-Yu; Bender, Jessica E; O'Keeffe, Terence; Burris, Agnes M; Friese, Susan M; Purdue, Gary F; Hunt, John L; Arnoldo, Brett D; Horton, Jureta W; Barber, Robert C

    2010-01-01

    Impaired mitochondrial activity has been linked to increased risk for clinical complications after injury. Furthermore, variant mitochondrial alleles have been identified and are thought to result in decreased mitochondrial activity. These include a nonsynonymous mitochondrial polymorphism (T4216C) in the nicotinamide adenine dinucleotide dehydrogenase 1 gene (ND1), encoding a key member of complex I within the electron transport chain, which is found almost exclusively among Caucasians. We hypothesized that burn patients carrying ND1 4216C are less able to generate the cellular energy necessary for an effective immune response and are at increased risk for infectious complications. The association between 4216C and outcome after burn injury was evaluated in a cohort of 175 Caucasian patients admitted to the Parkland Hospital with burns covering greater than or equal to 15% of their total body surface area or greater than or equal to 5% full-thickness burns under an institutional review board-approved protocol. To remove confounding unrelated to burn injury, individuals were excluded if they presented with significant non-burn-related trauma (Injury Severity Score > or =16), traumatic or anoxic brain injury, spinal cord injury, were HIV/AIDS positive, had active malignancy, or survived less than 48 h postadmission. Within this cohort of patients, carriage of the 4216C allele was significantly associated by unadjusted analysis with increased risk for sepsis-related organ dysfunction or septic shock (P = 0.011). After adjustment for full-thickness burn size, inhalation injury, age, and sex, carriage of the 4216C allele was associated with complicated sepsis (adjusted odds ratio = 3.7; 95% confidence interval, 1.5-9.1; P = 0.005), relative to carriers of the T allele. PMID:19487983

  17. Increased brain activity to unpleasant stimuli in individuals with the 7R allele of the DRD4 gene.

    PubMed

    Gehricke, Jean-G; Swanson, James M; Duong, Sophie; Nguyen, Jenny; Wigal, Timothy L; Fallon, James; Caburian, Cyrus; Muftuler, Lutfi Tugan; Moyzis, Robert K

    2015-01-30

    The aim of the study was to examine functional brain activity in response to unpleasant images in individuals with the 7-repeat (7R) allele compared to individuals with the 4-repeat (4R) allele of the dopamine receptor D4 (DRD4) gene (VNTR in exon 3). Based on the response ready hypothesis, individuals with the DRD4-4R/7R genotype were expected to show greater functional brain activity in response to unpleasant compared to neutral stimuli in specific regions of the frontal, temporal, parietal and limbic lobes, which form the networks involved in attentional, emotional, and preparatory responses. Functional Magnetic Resonance Imaging activity was studied in 26 young adults (13 with the DRD4-4R/7R genotype and 13 with the DRD4-4R/4R genotype). Participants were asked to look at and subjectively rate unpleasant and neutral images. Results showed increased brain activity in response to unpleasant images compared to neutral images in the right temporal lobe in participants with the DRD4-4R/7R genotype versus participants with the DRD4-4R/4R genotype. The increase in right temporal lobe activity in individuals with DRD4-4R/7R suggests greater involvement in processing negative emotional stimuli. Intriguingly, no differences were found between the two genotypes in the subjective ratings of the images. The findings corroborate the response ready hypothesis, which suggests that individuals with the 7R allele are more responsive to negative emotional stimuli compared to individuals with the 4R allele of the DRD4 gene. PMID:25481571

  18. Increased brain activity to unpleasant stimuli in individuals with the 7R allele of the DRD4 gene

    PubMed Central

    Gehricke, Jean-G.; Swanson, James; Duong, Sophie; Nguyen, Jenny; Wigal, Timothy; Fallon, James; Caburian, Cyrus; Muftuler, L. Tugan; Moyzis, Robert

    2014-01-01

    The aim of the study was to examine functional brain activity in response to unpleasant images in individuals with the 7-repeat (7R) allele compared to individuals with the 4-repeat (4R) allele of the dopamine receptor D4 (DRD4) gene (VNTR in exon 3). Based on the response ready hypothesis, individuals with the DRD4-4R/7R genotype were expected to show greater functional brain activity in response to unpleasant compared to neutral stimuli in specific regions of the frontal, temporal, parietal and limbic lobes, which form the networks involved in attentional, emotional, and preparatory responses. Functional Magnetic Resonance Imaging activity was studied in 26 young adults (13 with the DRD4-4R/7R genotype and 13 with the DRD4-4R/4R genotype). Participants were asked to look at and subjectively rate unpleasant and neutral images. Results showed increased brain activity in response to unpleasant images compared to neutral images in the right temporal lobe in participants with the DRD4-4R/7R genotype versus participants with the DRD4-4R/4R genotype. The increase in right temporal lobe activity in individuals with DRD4-4R/7R suggests greater involvement in processing negative emotional stimuli. Intriguingly, no differences were found between the two genotypes in the subjective ratings of the images. The findings corroborate the response ready hypothesis, which suggests that individuals with the 7R allele are more responsive to negative emotional stimuli compared to individuals with the 4R allele of the DRD4 gene. PMID:25481571

  19. Evidence that putative ADHD low risk alleles at SNAP25 may increase the risk of schizophrenia.

    PubMed

    Carroll, L S; Kendall, K; O'Donovan, M C; Owen, M J; Williams, N M

    2009-10-01

    Synaptosomal Associated Protein 25 kDa (SNAP25) has been implicated in the pathogenesis of schizophrenia by numerous neuropathological studies and genetic variation at SNAP25 has been reported to be associated with ADHD. Expression levels of the putative schizophrenia susceptibility gene DTNBP1 has been shown to influence the levels of SNAP25 in vitro. We undertook directed mutation screening of SNAP25 in UK schizophrenic cases followed by direct association analysis of all variants identified and identified known exonic SNPs that showed evidence for association (rs3746544 P = 0.004 OR = 1.26, rs8636 P = 0.003 OR = 1.27), although these SNPs are highly correlated (r(2) > 0.99). We additionally genotyped a further 31 tag SNPs spanning the SNAP25 locus and identified several independent SNPs that were nominally associated with schizophrenia (strongest association at rs3787283, P = 0.006, OR = 1.25) however, due to the number of tests performed no SNP met experiment-wise significance (minimum permuted P-value = 0.1). Post hoc analysis revealed that the SNPs nominally associated with schizophrenia (rs3787283, rs3746544) were the same as those previously demonstrated to be associated with ADHD but with the opposite alleles, allowing the intriguing hypothesis that genetic variation at SNAP25 may be differentially associated with both schizophrenia and ADHD. PMID:19132710

  20. A Teaching Repertoire

    ERIC Educational Resources Information Center

    Garrett, Joyce Lynn

    2007-01-01

    Building a repertoire of teaching skills means organizing instructional strategies in some meaningful way. In this brief essay, the author recommends that beginning teachers develop a repertoire comprised of a mix of strategies from each of Joyce, Weil, and Calhoun's (2004) categories: three strategies from the Cognitive Family (Concept…

  1. The Linguistic Repertoire Revisited

    ERIC Educational Resources Information Center

    Busch, Brigitta

    2012-01-01

    This article argues for the relevance of poststructuralist approaches to the notion of a linguistic repertoire and introduces the notion of language portraits as a basis for empirical study of the way in which speakers conceive and represent their heteroglossic repertoires. The first part of the article revisits Gumperz's notion of a linguistic…

  2. LSCHL4 from Japonica Cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11.

    PubMed

    Zhang, Guang-Heng; Li, Shu-Yu; Wang, Li; Ye, Wei-Jun; Zeng, Da-Li; Rao, Yu-Chun; Peng, You-Lin; Hu, Jiang; Yang, Yao-Long; Xu, Jie; Ren, De-Yong; Gao, Zhen-Yu; Zhu, Li; Dong, Guo-Jun; Hu, Xing-Ming; Yan, Mei-Xian; Guo, Long-Biao; Li, Chuan-You; Qian, Qian

    2014-08-01

    The basic premise of high yield in rice is to improve leaf photosynthetic efficiency and coordinate the source-sink relationship in rice plants. Quantitative trait loci (QTLs) related to morphological traits and chlorophyll content of rice leaves were detected at the stages of heading to maturity, and a major QTL (qLSCHL4) related to flag leaf shape and chlorophyll content was detected at both stages in recombinant inbred lines constructed using the indica rice cultivar 93-11 and the japonica rice cultivar Nipponbare. Map-based cloning and expression analysis showed that LSCHL4 is allelic to NAL1, a gene previously reported in narrow leaf mutant of rice. Overexpression lines transformed with vector carrying LSCHL4 from Nipponbare and a near-isogenic line of 93-11 (NIL-9311) had significantly increased leaf chlorophyll content, enlarged flag leaf size, and improved panicle type. The average yield of NIL-9311 was 18.70% higher than that of 93-11. These results indicate that LSCHL4 had a pleiotropic function. Exploring and pyramiding more high-yield alleles resembling LSCHL4 for super rice breeding provides an effective way to achieve new breakthroughs in raising rice yield and generate new ideas for solving the problem of global food safety. PMID:24795339

  3. The APC I1307K allele conveys a significant increased risk for cancer.

    PubMed

    Leshno, Ari; Shapira, Shiran; Liberman, Eliezer; Kraus, Sarah; Sror, Miri; Harlap-Gat, Amira; Avivi, Doran; Galazan, Lior; David, Maayan; Maharshak, Nitsan; Moanis, Serhan; Arber, Nadir; Moshkowitz, Menachem

    2016-03-15

    This study is the first attempt to evaluate the association between the APC I1307K variant and overall cancer risk. It is unique in both its large sample size and in the reliability of data in the control group. The findings described in this article have major implications in terms of identifying asymptomatic individuals who are at increased risk to harbor cancer and therefore targeted to be enrolled in specific early detection and prevention programs. The prevalence of the APC I1307K missense mutation among Ashkenazi Jews is ∼ 6%. Carriers are at an increased risk for colorectal neoplasia. In this study, we examined the association of this variant with non-colorectal cancers. Consecutive 13,013 healthy subjects who underwent screening at the Integrated Cancer Prevention Center between 2006 and 2014 were enrolled. This population was supplemented with 1,611 cancer patients from the same institution. Demographics, medical history, and pathological data were recorded. Mortality data were obtained from the Ministry of Health's registry. The prevalence of APC I1307K in cancer patients and healthy subjects was compared. The APC I1307K variant was detected in 189 (11.8%) cancer patients compared to 614 (4.7%) healthy subjects, reflecting an adjusted age and sex odds ratio (OR) of 2.53 (p < 0.0001). History of two or more cancer types was associated with a positive carrier prevalence (OR = 4.38 p < 0.0001). Males had significantly increased carrier prevalence in lung, urologic, pancreatic, and skin cancers. The carrier prevalence among females was significantly higher only in breast and skin cancers. Female carriers developed cancer at a significantly older age compared to non-carriers (average 62.7 years vs. 57.8, respectively, p = 0.027), had better survival rates (HR = 0.58, p = 0.022) and overall increased longevity (average age of death 78.8 vs. 70.4 years, respectively, p = 0.003). In conclusion, the APC I1307K variant is a reliable marker for overall cancer risk

  4. A high density of tertiary lymphoid structure B cells in lung tumors is associated with increased CD4+ T cell receptor repertoire clonality

    PubMed Central

    Zhu, Wei; Germain, Claire; Liu, Zheng; Sebastian, Yinong; Devi, Priyanka; Knockaert, Samantha; Brohawn, Philip; Lehmann, Kim; Damotte, Diane; Validire, Pierre; Yao, Yihong; Valge-Archer, Viia; Hammond, Scott A; Dieu-Nosjean, Marie-Caroline; Higgs, Brandon W

    2015-01-01

    T and B cell receptor (TCR and BCR, respectively) Vβ or immunoglobulin heavy chain complementarity-determining region 3 sequencing allows monitoring of repertoire changes through recognition, clonal expansion, affinity maturation, and T or B cell activation in response to antigen. TCR and BCR repertoire analysis can advance understanding of antitumor immune responses in the tumor microenvironment. TCR and BCR repertoires of sorted CD4+, CD8+ or CD19+ cells in tumor, non-tumoral distant tissue (NT), and peripheral compartments (blood/draining lymph node [P]) from 47 non-small cell lung cancer (NSCLC) patients (agemedian = 68 y) were sequenced. The clonotype spectra were assessed among different tissues and correlated with clinical and immunological parameters. In all tissues, CD4+ and CD8+ TCR repertoires had greater clonality relative to CD19+ BCR. CD4+ T cells exhibited greater clonality in NT compared to tumor (p = 0.002) and P (p < 0.001), concentrated among older patients (age > 68). Younger patients exhibited greater CD4+ T cell diversity in P compared to older patients (p = 0.05), and greater CD4+ T cell clonality in tumor relative to P (p < 0.001), with fewer shared clonotypes between tumor and P than older patients (p = 0.04). More interestingly, greater CD4+ and CD8+ T cell clonality in tumor and P, respectively (both p = 0.05), correlated with high density of tumor-associated tertiary lymphoid structure (TLS) B cells, a biomarker of higher overall survival in NSCLC. Results indicate distinct adaptive immune responses in NSCLC, where peripheral T cell diversity is modulated by age, and tumor T cell clonal expansion is favored by the presence of TLSs in the tumor microenvironment. PMID:26587322

  5. Transposon-based high sequence diversity in Avr-Pita alleles increases the potential for pathogenicity of Magnaporthe oryzae populations.

    PubMed

    Singh, P K; Thakur, S; Rathour, R; Variar, M; Prashanthi, S K; Singh, A K; Singh, U D; Sharma, V; Singh, N K; Sharma, T R

    2014-06-01

    Magnaporthe oryzae causes rice blast that is one of the most devastating diseases of rice worldwide. Highly variable nature of this fungus has evolved itself against major resistance genes in newly released rice varieties. Understanding the population structure of this fungus is essential for proper utilization of the rice blast resistance genes in rice crop plants. In the present study, we analyzed 133 isolates of M. oryzae from ten countries to find the allelic variation of Avr-Pita gene that is triggering Pita-mediated resistance in rice plant. The diversity analysis of these alleles showed higher level of nucleotide variation in the coding regions than the noncoding regions. Evolutionary analysis of these alleles indicates that Avr-Pita gene is under purifying selection to favor its major alleles in 133 isolates analyzed in this study. We hypothesize that the selection of favorable Avr-Pita allele in these isolates may occur through a genetic mechanism known as recurrent selective sweeps. A total of 22 functional Avr-Pita protein variants were identified in this study. Insertion of Pot3 transposable element into the promoter of Avr-Pita gene was identified in virulent isolates and was suggested that mobility of repeat elements in avirulence genes of M. oryzae seems to help in emergence of new virulent types of the pathogen. Allele-specific markers developed in this study will be helpful to identify a particular type of Avr-Pita allele from M. oryzae population which can form the basis for the deployment of Pita gene in different epidemiological regions. PMID:24633351

  6. Increased prevalence of the Taq I A1 allele of the dopamine receptor gene (DRD2) in obesity with comorbid substance use disorder: a preliminary report.

    PubMed

    Blum, K; Braverman, E R; Wood, R C; Gill, J; Li, C; Chen, T J; Taub, M; Montgomery, A R; Sheridan, P J; Cull, J G

    1996-08-01

    In order to investigate the prevalence of the Taq I A1 allele of the dopamine receptor gene (DRD2) in obesity with and without comorbid substance use disorder, a total of 40 patients, from an outpatient neuropsychiatric clinic in Princeton, New Jersey, were genotyped for presence or absence of the Taq I DRD2 A1 allele. The primary inclusion criterion for 40 obese subjects was a body mass index (BMI) equal to or over 25 (uncharacterized); 11 obese subjects had severe substance use disorder; 20 controls had a BMI below 25; and, 33 substance use disorder (less severe) patients had a BMI below 25. The data were statistically compared with three different sets of controls divided into three separate groups (Group I, n = 20; Group II, n = 286; Group III, n = 714). They differed according to screening criteria (drug, alcohol, nicotine abuse/dependence, BMI below 25 and other related behaviours including parental history of alcoholism or drug abuse and DSM IV, Axis I and Axis II diagnoses). Groups II and III were population controls derived from the literature. The prevalence of the Taq I A1D2 dopamine receptor (DRD2) alleles was determined in 40 Caucasian obese females and males. In this sample with a mean BMI of 32.35 +/- 1.02, the A1 allele of the DRD2 gene was present in 52.5% of these obese subjects. Furthermore, we found that in the 23 obese subjects possessing comorbid substance use disorder, the prevalence of the DRD2 A1 allele significantly increased compared to the 17 obese subjects without comorbid substance use disorder. The DRD2 A1 allele was present in 73.9% of the obese subjects with comorbid substance use disorder compared to 23.5% in obese subjects without comorbid substance use disorder. Moreover, when we assessed severity of substance usage (alcoholism, cocaine dependence, etc.) increasing severity of drug use increased the prevalence of the Taq I DRD2 A1 allele; where 66.67% (8/12) of less severe probands possessed the A1 allele compared to 82% (9

  7. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes

    PubMed Central

    Kofoed, Megan; Milbury, Karissa L.; Chiang, Jennifer H.; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C.

    2015-01-01

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. PMID:26175450

  8. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes.

    PubMed

    Kofoed, Megan; Milbury, Karissa L; Chiang, Jennifer H; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C

    2015-09-01

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. PMID:26175450

  9. Automated analysis of high-throughput B-cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles

    PubMed Central

    Gadala-Maria, Daniel; Yaari, Gur; Uduman, Mohamed; Kleinstein, Steven H.

    2015-01-01

    Individual variation in germline and expressed B-cell immunoglobulin (Ig) repertoires has been associated with aging, disease susceptibility, and differential response to infection and vaccination. Repertoire properties can now be studied at large-scale through next-generation sequencing of rearranged Ig genes. Accurate analysis of these repertoire-sequencing (Rep-Seq) data requires identifying the germline variable (V), diversity (D), and joining (J) gene segments used by each Ig sequence. Current V(D)J assignment methods work by aligning sequences to a database of known germline V(D)J segment alleles. However, existing databases are likely to be incomplete and novel polymorphisms are hard to differentiate from the frequent occurrence of somatic hypermutations in Ig sequences. Here we develop a Tool for Ig Genotype Elucidation via Rep-Seq (TIgGER). TIgGER analyzes mutation patterns in Rep-Seq data to identify novel V segment alleles, and also constructs a personalized germline database containing the specific set of alleles carried by a subject. This information is then used to improve the initial V segment assignments from existing tools, like IMGT/HighV-QUEST. The application of TIgGER to Rep-Seq data from seven subjects identified 11 novel V segment alleles, including at least one in every subject examined. These novel alleles constituted 13% of the total number of unique alleles in these subjects, and impacted 3% of V(D)J segment assignments. These results reinforce the highly polymorphic nature of human Ig V genes, and suggest that many novel alleles remain to be discovered. The integration of TIgGER into Rep-Seq processing pipelines will increase the accuracy of V segment assignments, thus improving B-cell repertoire analyses. PMID:25675496

  10. Programming in the Zone: Repertoire Selection for the Large Ensemble

    ERIC Educational Resources Information Center

    Hopkins, Michael

    2013-01-01

    One of the great challenges ensemble directors face is selecting high-quality repertoire that matches the musical and technical levels of their ensembles. Thoughtful repertoire selection can lead to increased student motivation as well as greater enthusiasm for the music program from parents, administrators, teachers, and community members. Common…

  11. Mutant Alleles of lptD Increase the Permeability of Pseudomonas aeruginosa and Define Determinants of Intrinsic Resistance to Antibiotics

    PubMed Central

    Grabowicz, Marcin

    2015-01-01

    Gram-negative bacteria provide a particular challenge to antibacterial drug discovery due to their cell envelope structure. Compound entry is impeded by the lipopolysaccharide (LPS) of the outer membrane (OM), and those molecules that overcome this barrier are often expelled by multidrug efflux pumps. Understanding how efflux and permeability affect the ability of a compound to reach its target is paramount to translating in vitro biochemical potency to cellular bioactivity. Herein, a suite of Pseudomonas aeruginosa strains were constructed in either a wild-type or efflux-null background in which mutations were engineered in LptD, the final protein involved in LPS transport to the OM. These mutants were demonstrated to be defective in LPS transport, resulting in compromised barrier function. Using isogenic strain sets harboring these newly created alleles, we were able to define the contributions of permeability and efflux to the intrinsic resistance of P. aeruginosa to a variety of antibiotics. These strains will be useful in the design and optimization of future antibiotics against Gram-negative pathogens. PMID:26596941

  12. The role of polymorphic amino acids of the MHC molecule in the selection of the T cell repertoire

    SciTech Connect

    Bhayani, H.R.; Hedrick, S.M. )

    1991-02-15

    Allelic variants of MHC molecules expressed on cells of the thymus affect the selection and the specificity of the T cell repertoire. The selection is based on either the direct recognition by the TCR of the MHC molecules, or the recognition of a complex determinant formed by self-peptides bound to MHC molecules. In an analysis of the T cell repertoire in bone marrow chimeras that express allelic forms of MHC class II molecules in the thymus epithelium, we find that amino acid substitutions that are predicted to affect peptide binding influence the selection of the T cell repertoire during thymic selection.

  13. Control of grain protein contents through SEMIDWARF1 mutant alleles: sd1 increases the grain protein content in Dee-geo-woo-gen but not in Reimei.

    PubMed

    Terao, Tomio; Hirose, Tatsuro

    2015-06-01

    A new possibility for genetic control of the protein content of rice grains was suggested by the allele differences of the SEMIDWARF1 (SD1) mutation. Two quantitative trait loci-qPROT1 and qPROT12-were found on chromosomes 1 and 12, respectively, using backcrossed inbred lines of Sasanishiki/Habataki//Sasanishiki///Sasanishiki. One of them, qPROT1, increased almost all grain proteins instead of only certain proteins in the recessive Habataki allele. Fine mapping of qPROT1 revealed that two gene candidates-Os01g0883800 and Os01g0883900-were included in this region. Os01g0883800 encoded Gibberellin 20 oxidase 2 as well as SD1, the dwarf gene used in the so-called 'Green Revolution'. Mutant analyses as well as sequencing analysis using the semi-dwarf mutant cultivars Dee-geo-woo-gen and Calrose 76 revealed that the sd1 mutant showed significantly higher grain protein contents than their corresponding wild-type cultivars, strongly suggesting that the high protein contents were caused by sd1 mutation. However, the sd1 mutant Reimei did not have high grain protein contents. It is possible to control the grain protein content and column length separately by selecting for sd1 alleles. From this finding, the genetic control of grain protein content, as well as the column length of rice cultivars, might be possible. This ability might be useful to improve rice nutrition, particularly in areas where the introduction of semi-dwarf cultivars is not advanced. PMID:25492221

  14. Opa Protein Repertoires of Disease-Causing and Carried Meningococci▿ †

    PubMed Central

    Callaghan, Martin J.; Buckee, Caroline; McCarthy, Noel D.; Ibarz Pavón, Ana Belén; Jolley, Keith A.; Faust, Saul; Gray, Stephen J.; Kaczmarski, Edward B.; Levin, Michael; Kroll, J. Simon; Maiden, Martin C. J.; Pollard, Andrew J.

    2008-01-01

    The meningococcal Opa proteins play an important role in pathogenesis by mediating invasion of human cells. The aim of this investigation was to determine whether carried and disease-associated meningococci possess different Opa repertoires and whether the diversity of these proteins is associated with clinical severity of disease. Opa repertoires in 227 disease-associated meningococci, isolated in the United Kingdom over a period of 6 years, were compared to the repertoires in 190 asymptomatically carried meningococci isolated in the United Kingdom from a contemporary, nonepidemic period. Multidimensional scaling (MDS) was employed to investigate the association between Opa repertoires and multilocus sequence typing (MLST) genotypes. Associations with clinical severity were also analyzed statistically. High levels of diversity were observed in opa alleles, variable regions, and repertoires, and MDS revealed that MLST genotypes were strongly associated with particular Opa repertoires. Individual Opa proteins or repertoires were not associated with clinical severity, though there was a trend toward an association with the opaD locus. Meningococcal Opa repertoire is strongly linked to MLST genotype irrespective of epidemiological sampling and therefore correlates with invasiveness. It is not, however, strongly associated with severity of meningococcal disease. PMID:18508936

  15. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation

    PubMed Central

    Lahiri, Amit; Hedl, Matija; Abraham, Clara

    2015-01-01

    Inflammatory bowel disease (IBD) is characterized by dysregulated host:microbial interactions and cytokine production. Host pattern recognition receptors (PRRs) are critical in regulating these interactions. Multiple genetic loci are associated with IBD, but altered functions for most, including in the rs713875 MTMR3/HORMAD2/LIF/OSM region, are unknown. We identified a previously undefined role for myotubularin-related protein 3 (MTMR3) in amplifying PRR-induced cytokine secretion in human macrophages and defined MTMR3-initiated mechanisms contributing to this amplification. MTMR3 decreased PRR-induced phosphatidylinositol 3-phosphate (PtdIns3P) and autophagy levels, thereby increasing PRR-induced caspase-1 activation, autocrine IL-1β secretion, NFκB signaling, and, ultimately, overall cytokine secretion. This MTMR3-mediated regulation required the N-terminal pleckstrin homology-GRAM domain and Cys413 within the phosphatase domain of MTMR3. In MTMR3-deficient macrophages, reducing the enhanced autophagy or restoring NFκB signaling rescued PRR-induced cytokines. Macrophages from rs713875 CC IBD risk carriers demonstrated increased MTMR3 expression and, in turn, decreased PRR-induced PtdIns3P and autophagy and increased PRR-induced caspase-1 activation, signaling, and cytokine secretion. Thus, the rs713875 IBD risk polymorphism increases MTMR3 expression, which modulates PRR-induced outcomes, ultimately leading to enhanced PRR-induced cytokines. PMID:26240347

  16. Addition of the immunostimulatory oligonucleotide IMT504 to a seasonal flu vaccine increases hemagglutinin antibody titers in young adult and elder rats, and expands the anti-hemagglutinin antibody repertoire.

    PubMed

    Montaner, Alejandro Daniel; Denichilo, Analía; Rodríguez, Juan Manuel; Fló, Juan; López, Ricardo Agustin; Pontoriero, Andrea; Savy, Vilma; Baumeister, Elsa; Frank, Ronald; Zorzopulos, Jorge; Elías, Fernanda

    2011-08-01

    Flu vaccines are partially protective in infants and elder people. New adjuvants such as immunostimulatory oligonucleotides (ODNs) are strong candidates to solve this problem, because a combination with several antigens has demonstrated effectiveness. Here, we report that IMT504, the prototype of a major class of immunostimulatory ODNs, is a potent adjuvant of the influenza vaccine in young adult and elderly rats. Flu vaccines that use virosomes or whole viral particles as antigens were combined with IMT504 and injected in rats. Young adult and elderly animals vaccinated with IMT504-adjuvated preparations reached antibody titers 20-fold and 15-fold higher than controls, respectively. Antibody titers remained high throughout a 120 day-period. Animals injected with the IMT504-adjuvated vaccine showed expansion of the anti-hemagglutinin antibody repertoire and a significant increase in the antibody titer with hemagglutination inhibition capacity when confronted to viral strains included or not in the vaccine. This indicates that the addition of IMT504 in flu vaccines may contribute to the development of significant cross-protective immune response against shifted or drifted flu strains. PMID:21793787

  17. Preschoolers' Prosocial Repertoires: Parents' Perspectives.

    ERIC Educational Resources Information Center

    Bergin, Christi A. C.; And Others

    1995-01-01

    Two studies had parents describe the characteristics of the most prosocial two- and five-year olds they knew and rate the relative importance of each attribute in defining a child as prosocial. Results indicated more similarities than differences between the two age groups and suggested that research has underrepresented the rich repertoire of…

  18. Increased Risk of Psoriasis due to combined effect of HLA-Cw6 and LCE3 risk alleles in Indian population.

    PubMed

    Chandra, Aditi; Lahiri, Anirudhya; Senapati, Swapan; Basu, Baidehi; Ghosh, Saurabh; Mukhopadhyay, Indranil; Behra, Akhilesh; Sarkar, Somenath; Chatterjee, Gobinda; Chatterjee, Raghunath

    2016-01-01

    HLA-Cw6 is one of the most associated alleles in psoriasis. Recently, Late Cornified Envelop 3 (LCE3) genes were identified as a susceptibility factor for psoriasis. Some population showed epistatic interaction of LCE3 risk variants with HLA-Cw6, while some population failed to show any association. We determined the associations of a 32.2 kb deletion comprising LCE3C-3B genes and three SNPs (rs1886734, rs4112788; rs7516108) at the LCE3 gene cluster among the psoriasis patients in India. All three SNPs at the LCE3 gene cluster failed to show any association. In contrary, for patients with HLA-Cw6 allele, all three SNPs and the LCE3C-3B deletion showed significant associations. While, all five LCE3 genes were upregulated in psoriatic skin, only LCE3A showed significant overexpression with homozygous risk genotype compared to the non-risk genotype. LCE3B also showed significant overexpression in patients with HLA-Cw6 allele. Moreover, LCE3A showed significantly higher expression in patients bearing homozygous risk genotype in presence of HLA-Cw6 allele but not in those having non-risk genotype, demonstrating the combined effect of HLA-Cw6 allele and risk associated genotype near LCE3A gene. Integration of genetic and gene expression data thus allowed us to identify the actual disease variants at the LCE3 cluster among the psoriasis patients in India. PMID:27048876

  19. Increased Risk of Psoriasis due to combined effect of HLA-Cw6 and LCE3 risk alleles in Indian population

    PubMed Central

    Chandra, Aditi; Lahiri, Anirudhya; Senapati, Swapan; Basu, Baidehi; Ghosh, Saurabh; Mukhopadhyay, Indranil; Behra, Akhilesh; Sarkar, Somenath; Chatterjee, Gobinda; Chatterjee, Raghunath

    2016-01-01

    HLA-Cw6 is one of the most associated alleles in psoriasis. Recently, Late Cornified Envelop 3 (LCE3) genes were identified as a susceptibility factor for psoriasis. Some population showed epistatic interaction of LCE3 risk variants with HLA-Cw6, while some population failed to show any association. We determined the associations of a 32.2 kb deletion comprising LCE3C-3B genes and three SNPs (rs1886734, rs4112788; rs7516108) at the LCE3 gene cluster among the psoriasis patients in India. All three SNPs at the LCE3 gene cluster failed to show any association. In contrary, for patients with HLA-Cw6 allele, all three SNPs and the LCE3C-3B deletion showed significant associations. While, all five LCE3 genes were upregulated in psoriatic skin, only LCE3A showed significant overexpression with homozygous risk genotype compared to the non-risk genotype. LCE3B also showed significant overexpression in patients with HLA-Cw6 allele. Moreover, LCE3A showed significantly higher expression in patients bearing homozygous risk genotype in presence of HLA-Cw6 allele but not in those having non-risk genotype, demonstrating the combined effect of HLA-Cw6 allele and risk associated genotype near LCE3A gene. Integration of genetic and gene expression data thus allowed us to identify the actual disease variants at the LCE3 cluster among the psoriasis patients in India. PMID:27048876

  20. The KMO allele encoding Arg452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression.

    PubMed

    Lavebratt, C; Olsson, S; Backlund, L; Frisén, L; Sellgren, C; Priebe, L; Nikamo, P; Träskman-Bendz, L; Cichon, S; Vawter, M P; Osby, U; Engberg, G; Landén, M; Erhardt, S; Schalling, M

    2014-03-01

    The kynurenine pathway metabolite kynurenic acid (KYNA), modulating glutamatergic and cholinergic neurotransmission, is increased in cerebrospinal fluid (CSF) of patients with schizophrenia or bipolar disorder type 1 with psychotic features. KYNA production is critically dependent on kynurenine 3-monooxygenase (KMO). KMO mRNA levels and activity in prefrontal cortex (PFC) are reduced in schizophrenia. We hypothesized that KMO expression in PFC would be reduced in bipolar disorder with psychotic features and that a functional genetic variant of KMO would associate with this disease, CSF KYNA level and KMO expression. KMO mRNA levels were reduced in PFC of bipolar disorder patients with lifetime psychotic features (P=0.005, n=19) or schizophrenia (P=0.02, n=36) compared with nonpsychotic patients and controls. KMO genetic association to psychotic features in bipolar disorder type 1 was studied in 493 patients and 1044 controls from Sweden. The KMO Arg(452) allele was associated with psychotic features during manic episodes (P=0.003). KMO Arg(452) was studied for association to CSF KYNA levels in an independent sample of 55 Swedish patients, and to KMO expression in 717 lymphoblastoid cell lines and 138 hippocampal biopsies. KMO Arg(452) associated with increased levels of CSF KYNA (P=0.03) and reduced lymphoblastoid and hippocampal KMO expression (P≤0.05). Thus, findings from five independent cohorts suggest that genetic variation in KMO influences the risk for psychotic features in mania of bipolar disorder patients. This provides a possible mechanism for the previous findings of elevated CSF KYNA levels in those bipolar patients with lifetime psychotic features and positive association between KYNA levels and number of manic episodes. PMID:23459468

  1. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty.

    PubMed

    Ribeiro, Tiago L; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation. PMID:27047341

  2. The molecular evolution of the vertebrate behavioural repertoire.

    PubMed

    Grant, Seth G N

    2016-01-01

    How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations. PMID:26598730

  3. The molecular evolution of the vertebrate behavioural repertoire

    PubMed Central

    2016-01-01

    How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations. PMID:26598730

  4. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty

    PubMed Central

    Ribeiro, Tiago L.; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation. PMID:27047341

  5. Assigning and visualizing germline genes in antibody repertoires.

    PubMed

    Frost, Simon D W; Murrell, Ben; Hossain, A S Md Mukarram; Silverman, Gregg J; Pond, Sergei L Kosakovsky

    2015-09-01

    Identifying the germline genes involved in immunoglobulin rearrangements is an essential first step in the analysis of antibody repertoires. Based on our prior work in analysing diverse recombinant viruses, we present IgSCUEAL (Immunoglobulin Subtype Classification Using Evolutionary ALgorithms), a phylogenetic approach to assign V and J regions of immunoglobulin sequences to their corresponding germline alleles, with D regions assigned using a simple pairwise alignment algorithm. We also develop an interactive web application for viewing the results, allowing the user to explore the frequency distribution of sequence assignments and CDR3 region length statistics, which is useful for summarizing repertoires, as well as a detailed viewer of rearrangements and region alignments for individual query sequences. We demonstrate the accuracy and utility of our method compared with sequence similarity-based approaches and other non-phylogenetic model-based approaches, using both simulated data and a set of evaluation datasets of human immunoglobulin heavy chain sequences. IgSCUEAL demonstrates the highest accuracy of V and J assignment amongst existing approaches, even when the reassorted sequence is highly mutated, and can successfully cluster sequences on the basis of shared V/J germline alleles. PMID:26194754

  6. Assigning and visualizing germline genes in antibody repertoires

    PubMed Central

    Frost, Simon D. W.; Murrell, Ben; Hossain, A. S. Md. Mukarram; Silverman, Gregg J.; Pond, Sergei L. Kosakovsky

    2015-01-01

    Identifying the germline genes involved in immunoglobulin rearrangements is an essential first step in the analysis of antibody repertoires. Based on our prior work in analysing diverse recombinant viruses, we present IgSCUEAL (Immunoglobulin Subtype Classification Using Evolutionary ALgorithms), a phylogenetic approach to assign V and J regions of immunoglobulin sequences to their corresponding germline alleles, with D regions assigned using a simple pairwise alignment algorithm. We also develop an interactive web application for viewing the results, allowing the user to explore the frequency distribution of sequence assignments and CDR3 region length statistics, which is useful for summarizing repertoires, as well as a detailed viewer of rearrangements and region alignments for individual query sequences. We demonstrate the accuracy and utility of our method compared with sequence similarity-based approaches and other non-phylogenetic model-based approaches, using both simulated data and a set of evaluation datasets of human immunoglobulin heavy chain sequences. IgSCUEAL demonstrates the highest accuracy of V and J assignment amongst existing approaches, even when the reassorted sequence is highly mutated, and can successfully cluster sequences on the basis of shared V/J germline alleles. PMID:26194754

  7. Chromosome substitution lines (CS-B) revealed the presence of cryptic beneficial alleles in G. barbadense with potential to increase lint and seedcotton yield in Upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most promising opportunities to improve the genetic diversity of Upland cotton is from interspecific germplasm introgression from the other tetraploid species. The untapped potential of the beneficial alleles of the wild unadapted species has not been well utilized because of the paucit...

  8. Using Lag Schedules to Strengthen the Intraverbal Repertoires of Children with Autism

    ERIC Educational Resources Information Center

    Contreras, Bethany P.; Betz, Alison M.

    2016-01-01

    Previous research has demonstrated the utility of using lag schedules of reinforcement to increase response variability of children with autism. However, little research has evaluated whether the lag schedule promotes variability from within an already-established repertoire or expands the current repertoire by promoting the use of new responses…

  9. Endoplasmic reticulum aminopeptidase-1 alleles associated with increased risk of Ankylosing Spondylitis reduce HLA-B27 mediated presentation of multiple antigens

    PubMed Central

    Seregin, Sergey S.; Rastall, David P.W.; Evnouchidou, Irini; Aylsworth, Charles F.; Quiroga, Dionisia; Kamal, Ram P.; Godbehere-Roosa, Sarah; Blum, Christopher F.; York, Ian A.; Stratikos, Efstratios; Amalfitano, Andrea

    2014-01-01

    Ankylosing spondylitis (AS) is a chronic systemic arthritic disease that leads to significant disability and loss of quality of life in the ~0.5% of the worldwide human population it affects. There is currently no cure for AS and mechanisms underlying its pathogenesis remain unclear. AS is highly genetic, with over 70% of the genetic risk being associated with the presence of HLA-B27 and endoplasmic reticulum aminopeptidase-1 (ERAP1) alleles. Furthermore, gene-gene interactions between HLA-B27 and ERAP1 AS risk alleles have recently been confirmed. Here, we demonstrate that various ERAP1 alleles can differentially mediate surface expression of antigens presented by HLA-B27 on human cells. Specifically, for all peptides tested, we found that an ERAP1 variant containing high AS risk SNPs reduced the amount of the peptide presented by HLA-B27, relative to low AS risk ERAP1 variants. These results were further validated using peptide catalysis assays in vitro, suggesting that high AS risk alleles have an enhanced catalytic activity that more rapidly destroys many HLA-B27-destined peptides, a result that correlated with decreased HLA-B27 presentation of the same peptides. These findings suggest that one mechanism underlying AS pathogenesis may involve an altered ability for AS patients harboring both HLA-B27 and high AS risk ERAP1 alleles to correctly display a variety of peptides to the adaptive arm of the immune system, potentially exposing such individuals to higher AS risk due to abnormal display of pathogen or self derived peptides by the adaptive immune system. PMID:24028501

  10. Endoplasmic reticulum aminopeptidase-1 alleles associated with increased risk of ankylosing spondylitis reduce HLA-B27 mediated presentation of multiple antigens.

    PubMed

    Seregin, Sergey S; Rastall, David P W; Evnouchidou, Irini; Aylsworth, Charles F; Quiroga, Dionisia; Kamal, Ram P; Godbehere-Roosa, Sarah; Blum, Christopher F; York, Ian A; Stratikos, Efstratios; Amalfitano, Andrea

    2013-12-01

    Ankylosing spondylitis (AS) is a chronic systemic arthritic disease that leads to significant disability and loss of quality of life in the ∼0.5% of the worldwide human population it affects. There is currently no cure for AS and mechanisms underlying its pathogenesis remain unclear. AS is highly genetic, with over 70% of the genetic risk being associated with the presence of HLA-B27 and endoplasmic reticulum aminopeptidase-1 (ERAP1) alleles. Furthermore, gene-gene interactions between HLA-B27 and ERAP1 AS risk alleles have recently been confirmed. Here, we demonstrate that various ERAP1 alleles can differentially mediate surface expression of antigens presented by HLA-B27 on human cells. Specifically, for all peptides tested, we found that an ERAP1 variant containing high AS risk SNPs reduced the amount of the peptide presented by HLA-B27, relative to low AS risk ERAP1 variants. These results were further validated using peptide catalysis assays in vitro, suggesting that high AS risk alleles have an enhanced catalytic activity that more rapidly destroys many HLA-B27-destined peptides, a result that correlated with decreased HLA-B27 presentation of the same peptides. These findings suggest that one mechanism underlying AS pathogenesis may involve an altered ability for AS patients harboring both HLA-B27 and high AS risk ERAP1 alleles to correctly display a variety of peptides to the adaptive arm of the immune system, potentially exposing such individuals to higher AS risk due to abnormal display of pathogen or self-derived peptides by the adaptive immune system. PMID:24028501

  11. A Review of Training Intraverbal Repertoires: Can Precision Teaching Help?

    ERIC Educational Resources Information Center

    Cihon, Traci M.

    2007-01-01

    Intraverbal behavior is common in conversation and academic and professional settings. Many individuals with disabilities fail to acquire intraverbal repertoires. Some individuals who do acquire intraverbal behavior fail to acquire responses that are functional and complete. Research has examined procedures to establish or increase intraverbal…

  12. Tracking human migrations by the analysis of the distribution of HLA alleles, lineages and haplotypes in closed and open populations

    PubMed Central

    Vina, Marcelo A. Fernandez; Hollenbach, Jill A.; Lyke, Kirsten E.; Sztein, Marcelo B.; Maiers, Martin; Klitz, William; Cano, Pedro; Mack, Steven; Single, Richard; Brautbar, Chaim; Israel, Shosahna; Raimondi, Eduardo; Khoriaty, Evelyne; Inati, Adlette; Andreani, Marco; Testi, Manuela; Moraes, Maria Elisa; Thomson, Glenys; Stastny, Peter; Cao, Kai

    2012-01-01

    The human leucocyte antigen (HLA) system shows extensive variation in the number and function of loci and the number of alleles present at any one locus. Allele distribution has been analysed in many populations through the course of several decades, and the implementation of molecular typing has significantly increased the level of diversity revealing that many serotypes have multiple functional variants. While the degree of diversity in many populations is equivalent and may result from functional polymorphism(s) in peptide presentation, homogeneous and heterogeneous populations present contrasting numbers of alleles and lineages at the loci with high-density expression products. In spite of these differences, the homozygosity levels are comparable in almost all of them. The balanced distribution of HLA alleles is consistent with overdominant selection. The genetic distances between outbred populations correlate with their geographical locations; the formal genetic distance measurements are larger than expected between inbred populations in the same region. The latter present many unique alleles grouped in a few lineages consistent with limited founder polymorphism in which any novel allele may have been positively selected to enlarge the communal peptide-binding repertoire of a given population. On the other hand, it has been observed that some alleles are found in multiple populations with distinctive haplotypic associations suggesting that convergent evolution events may have taken place as well. It appears that the HLA system has been under strong selection, probably owing to its fundamental role in varying immune responses. Therefore, allelic diversity in HLA should be analysed in conjunction with other genetic markers to accurately track the migrations of modern humans. PMID:22312049

  13. Discovery of Novel Bmy1 Alleles Increasing β-Amylase Activity in Chinese Landraces and Tibetan Wild Barley for Improvement of Malting Quality via MAS

    PubMed Central

    Gong, Xue; Westcott, Sharon; Zhang, Xiao-Qi; Yan, Guijun; Lance, Reg; Zhang, Guoping; Sun, Dongfa; Li, Chengdao

    2013-01-01

    China has a large barley germplasm collection which has not been well characterized and is therefore underutilized. The Bmy1 locus encoding the β-amylase enzyme on chromosome 4H has been well characterized in the worldwide barley germplasm collections due to its importance in the malting and brewing industry. The Bmy1 locus was chosen as an indicator to understand genetic potential for improvement of malting quality in Chinese landraces and Tibetan wild barley. The genetic diversity of 91 barley accessions was assessed using allele specific Multiplex-ready molecular markers. Eight accessions were further sequenced, based on the Multiplex-ready marker diversity for Bmy1 in the germplasm. Six of the eight accessions clustered together in a unique group, and showed similarities to ‘Haruna Nijo’, wild barley accession PI296896 and ‘Ashqelon’. Sequence comparisons with the known Bmy1 alleles identified not only the existing 13 amino acid substitutions, but also a new substitution positioned at A387T from a Chinese landrace W127, which has the highest β-amylase activity. Two new alleles/haplotypes namely Bmy1-Sd1c and Bmy1-Sd5 were designated based on different amino acid combinations. We identified new amino acid combination of C115, D165, V233, S347 and V430 in the germplasm. The broad variation in both β-amylase activity and amino acid composition provides novel alleles for the improvement of malting quality for different brewing styles, which indicates the high potential value of the Chinese landraces and Tibetan wild barley. PMID:24019884

  14. The Minor Allele of rs7574865 in the STAT4 Gene Is Associated with Increased mRNA and Protein Expression

    PubMed Central

    Lamana, Amalia; López-Santalla, Mercedes; Castillo-González, Raquel; Ortiz, Ana María; Martín, Javier; García-Vicuña, Rosario; González-Álvaro, Isidoro

    2015-01-01

    Objective The T allele of rs7574865 in STAT4 confers risk of developing autoimmune disorders. However, its functional significance remains unclear. Here we analyze how rs7574865 affects the transcription of STAT4 and its protein expression. Methods We studied 201 patients (80% female; median age, 54 years; median disease duration, 5.4 months) from PEARL study. Demographic, clinical, laboratory and therapeutic data were collected at each visit. IL-6 serum levels were measured by enzyme immune assay. The rs7574865 was genotyped using TaqMan probes. The expression levels of STAT4 mRNA were determined at 182 visits from 69 patients using quantitative real-time polymerase chain reaction. STAT4 protein was assessed by western blot in 62 samples from 34 patients. To determine the effect of different variables on the expression of STAT4 mRNA and protein, we performed multivariate longitudinal analyses using generalized linear models. Results After adjustment for age, disease activity and glucocorticoid dose as confounders, the presence of at least one copy of the T allele of rs7574865 was significantly associated with higher levels of STAT4 mRNA. Similarly, TT patients showed significantly higher levels of STAT4 protein than GG patients. IL-6 induced STAT4 and STAT5 phosphorylation in peripheral blood lymphocytes. Patients carrying at least one T allele of rs7574865 displayed lower levels of serum IL-6 compared to GG homozygous; by contrast the production of C-reactive protein was similar in both populations. Conclusion Our data suggest that the presence of the rs7574865 T allele enhances STAT4 mRNA transcription and protein expression. It may enhance the signaling of molecules depending on the STAT4 pathway. PMID:26569609

  15. IgM Repertoire Biodiversity is Reduced in HIV-1 Infection and Systemic Lupus Erythematosus

    PubMed Central

    Yin, Li; Hou, Wei; Liu, Li; Cai, Yunpeng; Wallet, Mark Andrew; Gardner, Brent Paul; Chang, Kaifen; Lowe, Amanda Catherine; Rodriguez, Carina Adriana; Sriaroon, Panida; Farmerie, William George; Sleasman, John William; Goodenow, Maureen Michels

    2013-01-01

    Background: HIV-1 infection or systemic lupus erythematosus (SLE) disrupt B cell homeostasis, reduce memory B cells, and impair function of IgG and IgM antibodies. Objective: To determine how disturbances in B cell populations producing polyclonal antibodies relate to the IgM repertoire, the IgM transcriptome in health and disease was explored at the complementarity determining region 3 (CDRH3) sequence level. Methods: 454-deep pyrosequencing in combination with a novel analysis pipeline was applied to define populations of IGHM CDRH3 sequences based on absence or presence of somatic hypermutations (SHM) in peripheral blood B cells. Results: HIV or SLE subjects have reduced biodiversity within their IGHM transcriptome compared to healthy subjects, mainly due to a significant decrease in the number of unique combinations of alleles, although recombination machinery was intact. While major differences between sequences without or with SHM occurred among all groups, IGHD and IGHJ allele use, CDRH3 length distribution, or generation of SHM were similar among study cohorts. Antiretroviral therapy failed to normalize IGHM biodiversity in HIV-infected individuals. All subjects had a low frequency of allelic combinations within the IGHM repertoire similar to known broadly neutralizing HIV-1 antibodies. Conclusion: Polyclonal expansion would decrease overall IgM biodiversity independent of other mechanisms for development of the B cell repertoire. Applying deep sequencing as a strategy to follow development of the IgM repertoire in health and disease provides a novel molecular assessment of multiple points along the B cell differentiation pathway that is highly sensitive for detecting perturbations within the repertoire at the population level. PMID:24298273

  16. Lineage Structure of the Human Antibody Repertoire in Response to Influenza Vaccination

    PubMed Central

    Jiang, Ning; He, Jiankui; Weinstein, Joshua A.; Penland, Lolita; Sasaki, Sanae; He, Xiao-Song; Dekker, Cornelia L.; Zheng, Nai-ying; Huang, Min; Sullivan, Meghan; Wilson, Patrick C.; Greenberg, Harry B.; Davis, Mark M.; Fisher, Daniel S.; Quake, Stephen R.

    2013-01-01

    The human antibody repertoire is one of the most important defenses against infectious disease, and the development of vaccines has enabled the conferral of targeted protection to specific pathogens. However, there are many challenges to measuring and analyzing the immunoglobulin sequence repertoire, such as the fact that each B cell contains a distinct antibody sequence encoded in its genome, that the antibody repertoire is not constant but changes over time, and the high similarity between antibody sequences. We have addressed this challenge by using high-throughput long read sequencing to perform immunogenomic characterization of expressed human antibody repertoires in the context of influenza vaccination. Informatic analysis of 5 million antibody heavy chain sequences from healthy individuals allowed us to perform global characterizations of isotype distributions, determine the lineage structure of the repertoire and measure age and antigen related mutational activity. Our analysis of the clonal structure and mutational distribution of individuals’ repertoires shows that elderly subjects have a decreased number of lineages but an increased pre-vaccination mutation load in their repertoire and that some of these subjects have an oligoclonal character to their repertoire in which the diversity of the lineages is greatly reduced relative to younger subjects. We have thus shown that global analysis of the immune system’s clonal structure provides direct insight into the effects of vaccination and provides a detailed molecular portrait of age-related effects. PMID:23390249

  17. Praxis and Poiesis in Piano Repertoire Preparation

    ERIC Educational Resources Information Center

    Dos Santos, Regina Antunes Teixeira; Hentschke, Liane

    2011-01-01

    The piano repertoire preparation of three undergraduate students at three different academic levels--the first, fifth and eighth semesters--was followed during an academic semester. A phenomenological approach was used to collect data in three stages: an introductory interview, observations of the repertoire under preparation and a final…

  18. Deep sequencing and human antibody repertoire analysis.

    PubMed

    Boyd, Scott D; Crowe, James E

    2016-06-01

    In the past decade, high-throughput DNA sequencing (HTS) methods and improved approaches for isolating antigen-specific B cells and their antibody genes have been applied in many areas of human immunology. This work has greatly increased our understanding of human antibody repertoires and the specific clones responsible for protective immunity or immune-mediated pathogenesis. Although the principles underlying selection of individual B cell clones in the intact immune system are still under investigation, the combination of more powerful genetic tracking of antibody lineage development and functional testing of the encoded proteins promises to transform therapeutic antibody discovery and optimization. Here, we highlight recent advances in this fast-moving field. PMID:27065089

  19. Increased Prevalance of the −211 T Allele of Follicle Stimulating Hormone (FSH) β Subunit Promoter Polymorphism and Lower Serum FSH in Infertile Men

    PubMed Central

    Grigorova, Marina; Punab, Margus; Poolamets, Olev; Kelgo, Piret; Ausmees, Kristo; Korrovits, Paul; Vihljajev, Vladimir; Laan, Maris

    2010-01-01

    Context: The human FSHB promoter polymorphism (rs10835638; −211 G/T) has been associated with serum FSH in a cohort of young Estonian men. The minor allele carriers had reduced serum FSH (15.7% in GT heterozygotes; 40% in TT homozygotes) compared with GG homozygotes. Objective: Because FSH is essential for normal spermatogenesis and fertility, we speculated that abnormalities in FSH action could contribute to male infertility. We sought to study whether genetically inherited constitutively reduced FSH levels may affect male reproduction and replicate the association between rs10835638 and serum FSH among infertile male patients. Design: Genotyping of rs10835638 in a cohort of infertile men (n = 1029; Andrology Center of the Tartu University Clinics, Estonia), including idiopathic infertility cases (IIFC; n = 750). Patients: Patients included male partners (sperm concentration <20 × 106/ml) of infertile couples failing to conceive a child for 12 months or longer. Results: A significant excess of TT homozygotes (1.1 vs. 2.4%) as well as GT heterozygotes (22.4 vs. 25.1%) was detected among infertile men compared with the young male cohort (χ2 test, P < 0.05). The T allele of rs10835638 was associated with reduced serum FSH (analysis of covariance; full cohort: P = 1.20 × 10−6, F = 13.8; IIFC: P = 7.70 × 10−7, F = 14.3) as well as with low FSH to LH ratio (full cohort: P = 1.52 × 10−11, F = 25.6; IIFC: P = 3.25 × 10−9, F = 20.4). The median serum FSH levels differed between the GG and TT carriers by 48.5%. All IIFC with TT genotype exhibited low (<1.8) FSH to LH ratio. Conclusions: In perspective, this genetic marker may have clinical significance in molecular diagnostics of male reproductive success and a potential to identify positive responders to FSH treatment. PMID:19897680

  20. Ability to develop broadly neutralizing HIV-1 antibodies is not restricted by the germline Ig gene repertoire.

    PubMed

    Scheepers, Cathrine; Shrestha, Ram K; Lambson, Bronwen E; Jackson, Katherine J L; Wright, Imogen A; Naicker, Dshanta; Goosen, Mark; Berrie, Leigh; Ismail, Arshad; Garrett, Nigel; Abdool Karim, Quarraisha; Abdool Karim, Salim S; Moore, Penny L; Travers, Simon A; Morris, Lynn

    2015-05-01

    The human Ig repertoire is vast, producing billions of unique Abs from a limited number of germline Ig genes. The IgH V region (IGHV) is central to Ag binding and consists of 48 functional genes. In this study, we analyzed whether HIV-1-infected individuals who develop broadly neutralizing Abs show a distinctive germline IGHV profile. Using both 454 and Illumina technologies, we sequenced the IGHV repertoire of 28 HIV-infected South African women from the Centre for the AIDS Programme of Research in South Africa (CAPRISA) 002 and 004 cohorts, 13 of whom developed broadly neutralizing Abs. Of the 259 IGHV alleles identified in this study, approximately half were not found in the International Immunogenetics Database (IMGT). This included 85 entirely novel alleles and 38 alleles that matched rearranged sequences in non-IMGT databases. Analysis of the rearranged H chain V region genes of mAbs isolated from seven of these women, as well as previously isolated broadly neutralizing Abs from other donors, provided evidence that at least eight novel or non-IMGT alleles contributed to functional Abs. Importantly, we found that, despite a wide range in the number of IGHV alleles in each individual, including alleles used by known broadly neutralizing Abs, there were no significant differences in germline IGHV repertoires between individuals who do and do not develop broadly neutralizing Abs. This study reports novel IGHV repertoires and highlights the importance of a fully comprehensive Ig database for germline gene usage prediction. Furthermore, these data suggest a lack of genetic bias in broadly neutralizing Ab development in HIV-1 infection, with positive implications for HIV vaccine design. PMID:25825450

  1. Ability to develop broadly neutralizing HIV-1 antibodies is not restricted by the germline immunoglobulin gene repertoire1

    PubMed Central

    Scheepers, Cathrine; Shrestha, Ram K.; Lambson, Bronwen E.; Jackson, Katherine J. L.; Wright, Imogen A.; Naicker, Dshanta; Goosen, Mark; Berrie, Leigh; Ismail, Arshad; Garrett, Nigel; Karim, Quarraisha Abdool; Karim, Salim S. Abdool; Moore, Penny L.; Travers, Simon A.; Morris, Lynn

    2015-01-01

    The human immunoglobulin repertoire is vast, producing billions of unique antibodies from a limited number of germline immunoglobulin genes. The immunoglobulin heavy chain variable region (IGHV) is central to antigen binding and is comprised of 48 functional genes. Here we analyzed whether HIV-1 infected individuals who develop broadly neutralizing antibodies show a distinctive germline IGHV profile. Using both 454 and Illumina technologies we sequenced the IGHV repertoire of 28 HIV-infected South African women from the Center for the AIDS Programme of Research in South African (CAPRISA) 002 and 004 cohorts, 13 of whom developed broadly neutralizing antibodies. Of the 259 IGHV alleles identified in this study, approximately half were not found in the International Immunogenetics Database (IMGT). This included 85 entirely novel alleles and 38 alleles that matched rearranged sequences in non-IMGT databases. Analysis of the rearranged H chain V region genes of monoclonal antibodies isolated from 7 of the CAPRISA women and previously isolated broadly neutralizing antibodies from other donors provided evidence that at least 8 novel or non-IMGT alleles contributed to functional antibodies. Importantly, we found that despite a wide range in the number of IGHV alleles in each individual, including alleles used by known broadly neutralizing antibodies, there were no significant differences in germline IGHV repertoires between individuals who do and do not develop broadly neutralizing antibodies. This study reports novel IGHV repertoires and highlights the importance of a fully comprehensive immunoglobulin database for germline gene usage prediction. Furthermore, these data suggest a lack of genetic bias in broadly neutralizing antibody development in HIV-1 infection, with implications for HIV vaccine design. PMID:25825450

  2. The human olfactory receptor repertoire

    PubMed Central

    Zozulya, Sergey; Echeverri, Fernando; Nguyen, Trieu

    2001-01-01

    Background The mammalian olfactory apparatus is able to recognize and distinguish thousands of structurally diverse volatile chemicals. This chemosensory function is mediated by a very large family of seven-transmembrane olfactory (odorant) receptors encoded by approximately 1,000 genes, the majority of which are believed to be pseudogenes in humans. Results The strategy of our sequence database mining for full-length, functional candidate odorant receptor genes was based on the high overall sequence similarity and presence of a number of conserved sequence motifs in all known mammalian odorant receptors as well as the absence of introns in their coding sequences. We report here the identification and physical cloning of 347 putative human full-length odorant receptor genes. Comparative sequence analysis of the predicted gene products allowed us to identify and define a number of consensus sequence motifs and structural features of this vast family of receptors. A new nomenclature for human odorant receptors based on their chromosomal localization and phylogenetic analysis is proposed. We believe that these sequences represent the essentially complete repertoire of functional human odorant receptors. Conclusions The identification and cloning of all functional human odorant receptor genes is an important initial step in understanding receptor-ligand specificity and combinatorial encoding of odorant stimuli in human olfaction. PMID:11423007

  3. Fit to play: the fitness effect on physically challenging flute repertoire.

    PubMed

    Borkowski, Jennifer A

    2011-03-01

    This case study was done to determine whether physical fitness plays a part in performing flute repertoire. Most repertoire allows performers the choice of where to breathe. However, there exists a "brute" repertoire where breathing is prescribed by the composer, which poses physical challenges for performers. The author contrasted pieces from traditional repertoire with Heinz Holliger's (t)air(e), which requires passages of breath-holding and measured inhalations. The author was tested for cardiovascular fitness (VO2max) and corresponded these levels to pulse rates while playing at baseline and 6 months after undertaking a physical fitness program. After the exercise program, expertise with standard repertoire combined with the unmeasured variables of resonance, openness of the chest and oral cavities, embouchure size, and air speed saw little improvement with increased fitness levels. However, when air regulation is out of the performer's control, the effect of cardiovascular training brought the "brute" repertoire into the same range of difficulty as the standard repertoire. PMID:21442138

  4. Origin and evolution of the T cell repertoire after posttransplantation cyclophosphamide

    PubMed Central

    Kanakry, Christopher G.; Coffey, David G.; Towlerton, Andrea M.H.; Vulic, Ante; Storer, Barry E.; Chou, Jeffrey; Yeung, Cecilia C.S.; Gocke, Christopher D.; Robins, Harlan S.; O’Donnell, Paul V.; Luznik, Leo; Warren, Edus H.

    2016-01-01

    Posttransplantation cyclophosphamide (PTCy) effectively prevents graft-versus-host disease (GVHD), but its immunologic impact is poorly understood. We assessed lymphocyte reconstitution via flow cytometry (n = 74) and antigen receptor sequencing (n = 35) in recipients of myeloablative, HLA-matched allogeneic BM transplantation using PTCy. Recovering T cells were primarily phenotypically effector memory with lower T cell receptor β (TRB) repertoire diversity than input donor repertoires. Recovering B cells were predominantly naive with immunoglobulin heavy chain locus (IGH) repertoire diversity similar to donors. Numerical T cell reconstitution and TRB diversity were strongly associated with recipient cytomegalovirus seropositivity. Global similarity between input donor and recipient posttransplant repertoires was uniformly low at 1–2 months after transplant but increased over the balance of the first posttransplant year. Blood TRB repertoires at ≥3 months after transplant were often dominated by clones present in the donor blood/marrow memory CD8+ compartment. Limited overlap was observed between the TRB repertoires of T cells infiltrating the skin or gastrointestinal tract versus the blood. Although public TRB sequences associated with herpesvirus- or alloantigen-specific CD8+ T cells were detected in some patients, posttransplant TRB and IGH repertoires were unique to each individual. These data define the immune dynamics occurring after PTCy and establish a benchmark against which immune recovery after other transplantation approaches can be compared. PMID:27213183

  5. DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model

    PubMed Central

    Vargas-Sanchez, Karina; Vekris, Antonios; Petry, Klaus G.

    2016-01-01

    To streamline in vivo biomarker discovery, we developed a suppression subtractive DNA hybridization technique adapted for phage-displayed combinatorial libraries of 12 amino acid peptides (PhiSSH). Physical DNA subtraction is performed in a one-tube-all-reactions format by sequential addition of reagents, producing the enrichment of specific clones of one repertoire. High-complexity phage repertoires produced by in vivo selections in the multiple sclerosis rat model (experimental autoimmune encephalomyelitis, EAE) and matched healthy control rats were used to evaluate the technique. The healthy repertoire served as a physical DNA subtractor from the EAE repertoire to produce the subtraction repertoire. Full next-generation sequencing (NGS) of the three repertoires was performed to evaluate the efficiency of the subtraction technique. More than 96% of the clones common to the EAE and healthy repertoires were absent from the subtraction repertoire, increasing the probability of randomly selecting various specific peptides for EAE pathology to about 70%. Histopathology experiments were performed to confirm the quality of the subtraction repertoire clones, producing distinct labeling of the blood–brain barrier (BBB) affected by inflammation among healthy nervous tissue or the preferential binding to IL1-challenged vs. resting human BBB model. Combining PhiSSH with NGS will be useful for controlled in vivo screening of small peptide combinatorial libraries to discover biomarkers of specific molecular alterations interspersed within healthy tissues. PMID:26917946

  6. μ-Calpain, calpastatin, and growth hormone receptor genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in Angus cattle selected to increase minor haplotype and allele frequencies.

    PubMed

    Tait, R G; Shackelford, S D; Wheeler, T L; King, D A; Casas, E; Thallman, R M; Smith, T P L; Bennett, G L

    2014-02-01

    Genetic marker effects and interactions are estimated with poor precision when minor marker allele frequencies are low. An Angus population was subjected to marker assisted selection for multiple years to increase divergent haplotype and minor marker allele frequencies to 1) estimate effect size and mode of inheritance for previously reported SNP on targeted beef carcass quality traits; 2) estimate effects of previously reported SNP on nontarget performance traits; and 3) evaluate tenderness SNP specific residual variance models compared to a single residual variance model for tenderness. Divergent haplotypes within µ-calpain (CAPN1), and SNP within calpastatin (CAST) and growth hormone receptor (GHR) were successfully selected to increase their frequencies. Traits evaluated were birth BW, weaning BW, final BW, fat thickness, LM area, USDA marbling score, yield grade, slice shear force (SSF), and visible and near infrared predicted slice shear force. Both CAPN1 and CAST exhibited additive (P < 0.001) modes of inheritance for SSF and neither exhibited dominance (P ≥ 0.19). Furthermore, the interaction between CAPN1 and CAST for SSF was not significant (P = 0.55). Estimated additive effects of CAPN1 (1.049 kg) and CAST (1.257 kg) on SSF were large in this study. Animals homozygous for tender alleles at both CAPN1 and CAST would have 4.61 kg lower SSF (38.6% of the mean) than animals homozygous tough for both markers. There was also an effect of CAST on yield grade (P < 0.02). The tender CAST allele was associated with more red meat yield and less trimmable fat. There were no significant effects (P ≥ 0.23) for GHR on any of the traits evaluated in this study. Furthermore, CAST specific residual variance models were found to fit significantly better (P < 0.001) than single residual variance models for SSF, with the tougher genotypes having larger residual variance. Thus, the risk of a tough steak from the undesired CAST genotype is increased through both an

  7. Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes

    PubMed Central

    Kambere, Marijo B; Lane, Robert P

    2007-01-01

    The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system. PMID:17903278

  8. Natural antibody repertoires: development and functional role in inhibiting allergic airway disease.

    PubMed

    Kearney, John F; Patel, Preeyam; Stefanov, Emily K; King, R Glenn

    2015-01-01

    In this review we discuss the effects of microbial exposure on the B cell repertoire. Neonatal exposure to conserved bacterial carbohydrates and phospholipids permanently reprograms the natural antibody repertoire directed toward these antigens by clonal expansion, alterations in clonal dominance, and increased serum antibody levels. These epitopes are present not only in bacterial cell walls, but also in common environmental allergens. Neonatal immunization with bacterial polysaccharide vaccines results in attenuated allergic airway responses to fungi-, house dust mite-, and cockroach-associated allergens in mouse models. The similarities between mouse and human natural antibody repertoires suggest that reduced microbial exposure in children may have the opposite effect, providing a potential mechanistic explanation for the hygiene hypothesis. We propose that understanding the effects of childhood infections on the natural antibody repertoire and the mechanisms of antibody-mediated immunoregulation observed in allergy models will lead to the development of prevention/interventional strategies for treatment of allergic asthma. PMID:25622195

  9. Human Gut Microbiota: Repertoire and Variations

    PubMed Central

    Lagier, Jean-Christophe; Million, Matthieu; Hugon, Perrine; Armougom, Fabrice; Raoult, Didier

    2012-01-01

    The composition of human gut microbiota and their relationship with the host and, consequently, with human health and disease, presents several challenges to microbiologists. Originally dominated by culture-dependent methods for exploring this ecosystem, the advent of molecular tools has revolutionized our ability to investigate these relationships. However, many biases that have led to contradictory results have been identified. Microbial culturomics, a recent concept based on a use of several culture conditions with identification by MALDI-TOF followed by the genome sequencing of the new species cultured had allowed a complementarity with metagenomics. Culturomics allowed to isolate 31 new bacterial species, the largest human virus, the largest bacteria, and the largest Archaea from human. Moreover, some members of this ecosystem, such as Eukaryotes, giant viruses, Archaea, and Planctomycetes, have been neglected by the majority of studies. In addition, numerous factors, such as age, geographic provenance, dietary habits, antibiotics, or probiotics, can influence the composition of the microbiota. Finally, in addition to the countless biases associated with the study techniques, a considerable limitation to the interpretation of studies of human gut microbiota is associated with funding sources and transparency disclosures. In the future, studies independent of food industry funding and using complementary methods from a broad range of both culture-based and molecular tools will increase our knowledge of the repertoire of this complex ecosystem and host-microbiota mutualism. PMID:23130351

  10. Increased risk of severe fluoropyrimidine-associated toxicity in patients carrying a G to C substitution in the first 28-bp tandem repeat of the thymidylate synthase 2R allele.

    PubMed

    Meulendijks, Didier; Jacobs, Bart A W; Aliev, Abidin; Pluim, Dick; van Werkhoven, Erik; Deenen, Maarten J; Beijnen, Jos H; Cats, Annemieke; Schellens, Jan H M

    2016-01-01

    The fluoropyrimidines act by inhibiting thymidylate synthase (TS). Recent studies have shown that patients' risk of severe fluoropyrimidine-associated toxicity is affected by polymorphisms in the 5'-untranslated region of TYMS, the gene encoding TS. A G>C substitution in the promoter enhancer region of TYMS, rs183205964 (known as the 2RC allele), markedly reduces TS activity in vitro, but its clinical relevance is unknown. We determined rs183205964 in 1605 patients previously enrolled in a prospective multicenter study. Associations between putative low TS expression genotypes (3RC/2RC, 2RG/2RC, and 2RC/2RC) and severe toxicity were investigated using univariable and multivariable logistic regression. Activity of TS and TYMS gene expression were determined in peripheral blood mononuclear cells (PBMCs) of a patient carrying genotype 2RC/2RC and of a control group of healthy individuals. Among 1,605 patients, 28 patients (1.7%) carried the 2RC allele. Twenty patients (1.2%) carried a risk-associated genotype (2RG/2RC, n=13; 3RC/2RC, n=6; and 2RC/2RC, n=1), the eight remaining patients had genotype 3RG/2RC. Early severe toxicity and toxicity-related hospitalization were significantly more frequent in risk-associated genotype carriers (OR 3.0, 95%CI 1.04-8.93, p=0.043 and OR 3.8, 95%CI 1.19-11.9, p=0.024, respectively, in multivariable analysis). The patient with genotype 2RC/2RC was hospitalized twice and had severe febrile neutropenia, diarrhea, and hand-foot syndrome. Baseline TS activity and gene expression in PBMCs of this patient, and a healthy individual with the 2RC allele, were found to be within the normal range. Our study suggests that patients carrying rs183205964 are at strongly increased risk of severe, potentially life-threatening, toxicity when treated with fluoropyrimidines. PMID:26189437

  11. Determinism and stochasticity during maturation of the zebrafish antibody repertoire

    PubMed Central

    Jiang, Ning; Weinstein, Joshua A.; Penland, Lolita; White, Richard A.; Fisher, Daniel S.; Quake, Stephen R.

    2011-01-01

    It is thought that the adaptive immune system of immature organisms follows a more deterministic program of antibody creation than is found in adults. We used high-throughput sequencing to characterize the diversifying antibody repertoire in zebrafish over five developmental time points. We found that the immune system begins in a highly stereotyped state with preferential use of a small number of V (variable) D (diverse) J (joining) gene segment combinations, but that this stereotypy decreases dramatically as the zebrafish mature, with many of the top VDJ combinations observed in 2-wk-old zebrafish virtually disappearing by 1 mo. However, we discovered that, in the primary repertoire, there are strong correlations in VDJ use that increase with zebrafish maturity, suggesting that VDJ recombination involves a level of deterministic programming that is unexpected. This stereotypy is masked by the complex diversification processes of antibody maturation; the variation and lack of correlation in full repertoires between individuals appears to be derived from randomness in clonal expansion during the affinity maturation process. These data provide a window into the mechanisms of VDJ recombination and diversity creation and allow us to better understand how the adaptive immune system achieves diversity. PMID:21393572

  12. Mutant maize variety containing the glt1-1 allele

    DOEpatents

    Nelson, O.E.; Pan, D.

    1994-07-19

    A maize plant has in its genome a non-mutable form of a mutant allele designated vitX-8132. The allele is located at a locus designated as glt which conditions kernels having an altered starch characteristic. Maize plants including such a mutant allele produce a starch that does not increase in viscosity on cooling, after heating. 2 figs.

  13. Mutant maize variety containing the glt1-1 allele

    DOEpatents

    Nelson, Oliver E.; Pan, David

    1994-01-01

    A maize plant has in its genome a non-mutable form of a mutant allele designated vitX-8132. The allele is located at a locus designated as glt which conditions kernels having an altered starch characteristic. Maize plants including such a mutant allele produce a starch that does not increase in viscosity on cooling, after heating.

  14. Englishized Style Repertoire in Modern Japanese Literature.

    ERIC Educational Resources Information Center

    Ono, Reiko

    1992-01-01

    The roles played by English borrowings in modern Japanese literary works are examined. After a brief summary of previous studies, this paper describes the style repertoire and the kinds of stylistic effects produced in Japanese literature by English borrowings, such as attention attractors and in-group-identity markers. (23 references) (Author/LB)

  15. Increased J774 macrophage cytotoxicity of late postprandial triglyceride-rich lipoproteins from normolipidemic young men expressing an apolipoprotein epsilon 4 allele.

    PubMed

    Ragogna, F; Angeli, A; Corazza, S; Tettamanti, C; Faggiotto, A; Grassi, A; Ruotolo, G

    1997-07-25

    It has been demonstrated that normolipidemic young men with apolipoprotein E4/3 phenotype have a prolonged postprandial clearance of triglyceride-rich lipoproteins following a high-fat diet. In the present study, we isolated fasting and postprandial (3 and 8 h) lipoprotein fraction from normolipidemic young men with E3/3 and E4/3 phenotypes and examined the in vitro cytotoxicity of these lipoproteins towards J774 macrophages. 8 h E4/3 very low density lipoprotein (VLDL) were significantly more cytotoxic than either 8 h E3/3 VLDL or fasting and 3 h E4/3 VLDL (lactate dehydrogenase (LDH) released: 161 +/- 21, 107 +/- 9, 88 +/- 16 and 101 +/- 12 I.U./l, respectively). Fasting E4/3 intermediate density lipoprotein (IDL) were also significantly more cytotoxic than either fasting E3/3 IDL or 3 h and 8 h E4/3 IDL (LDH released: 105 +/- 23, 60 +/- 9, 37 +/- 5 and 53 +/- 16 I.U./l, respectively), whereas either fasting or postprandial low density lipoprotein (LDL) and high density lipoprotein (HDL) samples did not show any difference in cytotoxicity between the two groups studied. 8 h E4/3 VLDL samples incubated with J774 macrophages had a lower esterified cholesterol (40 +/- 3 versus 52 +/- 3 micrograms), and higher triglyceride (783 +/- 133 versus 418 +/- 64 micrograms) and free fatty acid (FFA) (2.0 +/- 0.4 versus 0.9 +/- 0.1 microgram) content than fasting E4/3 VLDL. The increased macrophage cytotoxicity of late postprandial triglyceride-rich lipoproteins seems to be related to the FFA content of E4/3 VLDL. PMID:9242961

  16. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires.

    PubMed

    DeKosky, Brandon J; Lungu, Oana I; Park, Daechan; Johnson, Erik L; Charab, Wissam; Chrysostomou, Constantine; Kuroda, Daisuke; Ellington, Andrew D; Ippolito, Gregory C; Gray, Jeffrey J; Georgiou, George

    2016-05-10

    Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19(+)CD20(+)CD27(-) IgM-naive B cells, >120,000 antibody clusters from CD19(+)CD20(+)CD27(+) antigen-experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ-Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease. PMID:27114511

  17. The diversity of the HLA-E-restricted peptide repertoire explains the immunological impact of the Arg107Gly mismatch.

    PubMed

    Celik, Alexander A; Kraemer, Thomas; Huyton, Trevor; Blasczyk, Rainer; Bade-Döding, Christina

    2016-01-01

    Human leukocyte antigen (HLA)-E molecules are potent inhibitors of NK cell-mediated killing. Low in polymorphisms, two alleles are widely expressed among diverse populations: HLA-E*01:01 and HLA-E*01:03. Both alleles are distinguished by one SNP resulting in the substitution Arg107Gly. Both alleles present a limited set of peptides derived from class I leader sequences physiologically; however, HLA-E*01:01 presents non-canonical peptides in the absence of HLA class I molecules. To further assess the functional differences between both alleles, we analyzed the peptide repertoire of HLA-E*01:03 by applying soluble HLA technology followed by mass-spectrometric peptide sequencing. HLA-E*01:03 restricted peptides showed a length of 9-17 amino acids and differed in their biophysical properties, no overlap in the peptide repertoire of both allelic variants could be observed; however, both alleles shared marginal peptides from the same proteomic content. Artificial APCs expressing empty HLA-E*01:01 or E*01:03 molecules were generated and stabilized using cognate HLA class I-derived peptide ligands to analyze the impact of residue 107 within the HLA-E heavy chain on the NKG2/CD94 receptor engagement. Differences in peptide stabilization could be translated to the density and half-life time of peptide-HLA-E molecules on the cell surface that subsequently impacted NK cell inhibition as verified by cytotoxicity assays. Taken together, these data illustrate functional differences of HLA-E allelic variants induced by a single amino acid. Furthermore, the function of HLA-E in pathophysiologic situations when the HLA processing machinery is interrupted seems to be more emphasized than previously described, implying a crucial role for HLA-E in tumor or viral immune episodes. PMID:26552660

  18. Vocal repertoire of the social giant otter.

    PubMed

    Leuchtenberger, Caroline; Sousa-Lima, Renata; Duplaix, Nicole; Magnusson, William E; Mourão, Guilherme

    2014-11-01

    According to the "social intelligence hypothesis," species with complex social interactions have more sophisticated communication systems. Giant otters (Pteronura brasiliensis) live in groups with complex social interactions. It is likely that the vocal communication of giant otters is more sophisticated than previous studies suggest. The objectives of the current study were to describe the airborne vocal repertoire of giant otters in the Pantanal area of Brazil, to analyze call types within different behavioral contexts, and to correlate vocal complexity with level of sociability of mustelids to verify whether or not the result supports the social intelligence hypothesis. The behavior of nine giant otters groups was observed. Vocalizations recorded were acoustically and statistically analyzed to describe the species' repertoire. The repertoire was comprised by 15 sound types emitted in different behavioral contexts. The main behavioral contexts of each sound type were significantly associated with the acoustic variable ordination of different sound types. A strong correlation between vocal complexity and sociability was found for different species, suggesting that the communication systems observed in the family mustelidae support the social intelligence hypothesis. PMID:25373985

  19. IgRepertoireConstructor: a novel algorithm for antibody repertoire construction and immunoproteogenomics analysis

    PubMed Central

    Safonova, Yana; Bonissone, Stefano; Kurpilyansky, Eugene; Starostina, Ekaterina; Lapidus, Alla; Stinson, Jeremy; DePalatis, Laura; Sandoval, Wendy; Lill, Jennie; Pevzner, Pavel A.

    2015-01-01

    The analysis of concentrations of circulating antibodies in serum (antibody repertoire) is a fundamental, yet poorly studied, problem in immunoinformatics. The two current approaches to the analysis of antibody repertoires [next generation sequencing (NGS) and mass spectrometry (MS)] present difficult computational challenges since antibodies are not directly encoded in the germline but are extensively diversified by somatic recombination and hypermutations. Therefore, the protein database required for the interpretation of spectra from circulating antibodies is custom for each individual. Although such a database can be constructed via NGS, the reads generated by NGS are error-prone and even a single nucleotide error precludes identification of a peptide by the standard proteomics tools. Here, we present the IgRepertoireConstructor algorithm that performs error-correction of immunosequencing reads and uses mass spectra to validate the constructed antibody repertoires. Availability and implementation: IgRepertoireConstructor is open source and freely available as a C++ and Python program running on all Unix-compatible platforms. The source code is available from http://bioinf.spbau.ru/igtools. Contact: ppevzner@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26072509

  20. Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project

    PubMed Central

    2010-01-01

    Background In the last hundred years, the development of improved wheat cultivars has led to the replacement of landraces and traditional varieties by modern cultivars. This has resulted in a decline in the genetic diversity of agriculturally used wheat. However, the diversity lost in the elite material is somewhat preserved in crop gene banks. Therefore, the gene bank accessions provide the basis for genetic improvement of crops for specific traits and and represent rich sources of novel allelic variation. Results We have undertaken large scale molecular allele mining to isolate new alleles of the powdery mildew resistance gene Pm3 from wheat gene bank accessions. The search for new Pm3 alleles was carried out on a geographically diverse set of 733 wheat accessions originating from 20 countries. Pm3 specific molecular tools as well as classical pathogenicity tests were used to characterize the accessions. Two new functional Pm3 alleles were identified out of the eight newly cloned Pm3 sequences. These new resistance alleles were isolated from accessions from China and Nepal. Thus, the repertoire of functional Pm3 alleles now includes 17 genes, making it one of the largest allelic series of plant resistance genes. The combined information on resistant and susceptible Pm3 sequences will allow to study molecular function and specificity of functional Pm3 alleles. Conclusions This study demonstrates that molecular allele mining on geographically defined accessions is a useful strategy to rapidly characterize the diversity of gene bank accessions at a specific genetic locus of agronomical importance. The identified wheat accessions with new resistance specificities can be used for marker-assisted transfer of the Pm3 alleles to modern wheat lines. PMID:20470444

  1. The repertoire and intentionality of gestural communication in wild chimpanzees.

    PubMed

    Roberts, Anna Ilona; Roberts, Samuel George Bradley; Vick, Sarah-Jane

    2014-03-01

    A growing body of evidence suggests that human language may have emerged primarily in the gestural rather than vocal domain, and that studying gestural communication in great apes is crucial to understanding language evolution. Although manual and bodily gestures are considered distinct at a neural level, there has been very limited consideration of potential differences at a behavioural level. In this study, we conducted naturalistic observations of adult wild East African chimpanzees (Pan troglodytes schweinfurthii) in order to establish a repertoire of gestures, and examine intentionality of gesture production, use and comprehension, comparing across manual and bodily gestures. At the population level, 120 distinct gesture types were identified, consisting of 65 manual gestures and 55 bodily gestures. Both bodily and manual gestures were used intentionally and effectively to attain specific goals, by signallers who were sensitive to recipient attention. However, manual gestures differed from bodily gestures in terms of communicative persistence, indicating a qualitatively different form of behavioural flexibility in achieving goals. Both repertoire size and frequency of manual gesturing were more affiliative than bodily gestures, while bodily gestures were more antagonistic. These results indicate that manual gestures may have played a significant role in the emergence of increased flexibility in great ape communication and social bonding. PMID:23999801

  2. Allele variants of enterotoxigenic Escherichia coli heat-labile toxin are globally transmitted and associated with colonization factors.

    PubMed

    Joffré, Enrique; von Mentzer, Astrid; Abd El Ghany, Moataz; Oezguen, Numan; Savidge, Tor; Dougan, Gordon; Svennerholm, Ann-Mari; Sjöling, Åsa

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a significant cause of morbidity and mortality in the developing world. ETEC-mediated diarrhea is orchestrated by heat-labile toxin (LT) and heat-stable toxins (STp and STh), acting in concert with a repertoire of more than 25 colonization factors (CFs). LT, the major virulence factor, induces fluid secretion after delivery of a monomeric ADP-ribosylase (LTA) and its pentameric carrier B subunit (LTB). A study of ETEC isolates from humans in Brazil reported the existence of natural LT variants. In the present study, analysis of predicted amino acid sequences showed that the LT amino acid polymorphisms are associated with a geographically and temporally diverse set of 192 clinical ETEC strains and identified 12 novel LT variants. Twenty distinct LT amino acid variants were observed in the globally distributed strains, and phylogenetic analysis showed these to be associated with different CF profiles. Notably, the most prevalent LT1 allele variants were correlated with major ETEC lineages expressing CS1 + CS3 or CS2 + CS3, and the most prevalent LT2 allele variants were correlated with major ETEC lineages expressing CS5 + CS6 or CFA/I. LTB allele variants generally exhibited more-stringent amino acid sequence conservation (2 substitutions identified) than LTA allele variants (22 substitutions identified). The functional impact of LT1 and LT2 polymorphisms on virulence was investigated by measuring total-toxin production, secretion, and stability using GM1-enzyme-linked immunosorbent assays (GM1-ELISA) and in silico protein modeling. Our data show that LT2 strains produce 5-fold more toxin than LT1 strains (P < 0.001), which may suggest greater virulence potential for this genetic variant. Our data suggest that functionally distinct LT-CF variants with increased fitness have persisted during the evolution of ETEC and have spread globally. PMID:25404692

  3. Analysis of B Cell Repertoire Dynamics Following Hepatitis B Vaccination in Humans, and Enrichment of Vaccine-specific Antibody Sequences

    PubMed Central

    Galson, Jacob D.; Trück, Johannes; Fowler, Anna; Clutterbuck, Elizabeth A.; Münz, Márton; Cerundolo, Vincenzo; Reinhard, Claudia; van der Most, Robbert; Pollard, Andrew J.; Lunter, Gerton; Kelly, Dominic F.

    2015-01-01

    Generating a diverse B cell immunoglobulin repertoire is essential for protection against infection. The repertoire in humans can now be comprehensively measured by high-throughput sequencing. Using hepatitis B vaccination as a model, we determined how the total immunoglobulin sequence repertoire changes following antigen exposure in humans, and compared this to sequences from vaccine-specific sorted cells. Clonal sequence expansions were seen 7 days after vaccination, which correlated with vaccine-specific plasma cell numbers. These expansions caused an increase in mutation, and a decrease in diversity and complementarity-determining region 3 sequence length in the repertoire. We also saw an increase in sequence convergence between participants 14 and 21 days after vaccination, coinciding with an increase of vaccine-specific memory cells. These features allowed development of a model for in silico enrichment of vaccine-specific sequences from the total repertoire. Identifying antigen-specific sequences from total repertoire data could aid our understanding B cell driven immunity, and be used for disease diagnostics and vaccine evaluation. PMID:26844287

  4. Experimentally Testing the Hypothesis of a Limited Amino Acid Repertoire in Primitive Proteins

    NASA Astrophysics Data System (ADS)

    Akanuma, S.; Nakajima, Y.; Yokobori, S.; Yamagishi, A.

    2013-11-01

    It has been argued that a fewer amino acids were used in primitive proteins and later the repertoire increased up to 20. To test this hypothesis experimentally, we restricted the amino acid usage of a reconstructed, ancestral protein to reduced sets.

  5. Use of Cultural Styles or Repertoires of Experience to Guide Instruction: What Difference Does It Make?

    ERIC Educational Resources Information Center

    Maccleave, Anne; Eghan, Felicia

    2010-01-01

    Educators are seeking to meet student needs in increasingly diverse university classrooms. Two contrasting ways of responding to cultural difference are planning instruction on the basis of cultural styles or repertoires of culturally-based experiences (Gutierrez & Rogoff, 2003). Use of learning styles to address individual differences in learning…

  6. Application of circular consensus sequencing and network analysis to characterize the bovine IgG repertoire

    PubMed Central

    2012-01-01

    Background Vertebrate immune systems generate diverse repertoires of antibodies capable of mediating response to a variety of antigens. Next generation sequencing methods provide unique approaches to a number of immuno-based research areas including antibody discovery and engineering, disease surveillance, and host immune response to vaccines. In particular, single-molecule circular consensus sequencing permits the sequencing of antibody repertoires at previously unattainable depths of coverage and accuracy. We approached the bovine immunoglobulin G (IgG) repertoire with the objective of characterizing diversity of expressed IgG transcripts. Here we present single-molecule real-time sequencing data of expressed IgG heavy-chain repertoires of four individual cattle. We describe the diversity observed within antigen binding regions and visualize this diversity using a network-based approach. Results We generated 49,945 high quality cDNA sequences, each spanning the entire IgG variable region from four Bos taurus calves. From these sequences we identified 49,521 antigen binding regions using the automated Paratome web server. Approximately 9% of all unique complementarity determining 2 (CDR2) sequences were of variable lengths. A bimodal distribution of unique CDR3 sequence lengths was observed, with common lengths of 5–6 and 21–25 amino acids. The average number of cysteine residues in CDR3s increased with CDR3 length and we observed that cysteine residues were centrally located in CDR3s. We identified 19 extremely long CDR3 sequences (up to 62 amino acids in length) within IgG transcripts. Network analyses revealed distinct patterns among the expressed IgG antigen binding repertoires of the examined individuals. Conclusions We utilized circular consensus sequencing technology to provide baseline data of the expressed bovine IgG repertoire that can be used for future studies important to livestock research. Somatic mutation resulting in base insertions and

  7. An Annotated Guide and Interactive Database for Solo Horn Repertoire

    ERIC Educational Resources Information Center

    Schouten, Sarah

    2012-01-01

    Given the horn's lengthy history, it is not surprising that many scholars have examined the evolution of the instrument from the natural horn to the modern horn and its expansive repertoire. Numerous dissertations, theses, and treatises illuminate specific elements of the horn's solo repertoire; however, no scholar has produced a…

  8. African Glucose-6-Phosphate Dehydrogenase Alleles Associated with Protection from Severe Malaria in Heterozygous Females in Tanzania

    PubMed Central

    Manjurano, Alphaxard; Sepulveda, Nuno; Nadjm, Behzad; Mtove, George; Wangai, Hannah; Maxwell, Caroline; Olomi, Raimos; Reyburn, Hugh; Riley, Eleanor M.; Drakeley, Christopher J.; Clark, Taane G.

    2015-01-01

    X-linked Glucose-6-phosphate dehydrogenase (G6PD) A- deficiency is prevalent in sub-Saharan Africa populations, and has been associated with protection from severe malaria. Whether females and/or males are protected by G6PD deficiency is uncertain, due in part to G6PD and malaria phenotypic complexity and misclassification. Almost all large association studies have genotyped a limited number of G6PD SNPs (e.g. G6PD202 / G6PD376), and this approach has been too blunt to capture the complete epidemiological picture. Here we have identified 68 G6PD polymorphisms and analysed 29 of these (i.e. those with a minor allele frequency greater than 1%) in 983 severe malaria cases and controls in Tanzania. We establish, across a number of SNPs including G6PD376, that only female heterozygotes are protected from severe malaria. Haplotype analysis reveals the G6PD locus to be under balancing selection, suggesting a mechanism of protection relying on alleles at modest frequency and avoiding fixation, where protection provided by G6PD deficiency against severe malaria is offset by increased risk of life-threatening complications. Our study also demonstrates that the much-needed large-scale studies of severe malaria and G6PD enzymatic function across African populations require the identification and analysis of the full repertoire of G6PD genetic markers. PMID:25671784

  9. A quantifiably complete repertoire of C. elegans locomotion

    NASA Astrophysics Data System (ADS)

    Brown, Andre; Schwarz, Roland; Branicky, Robyn; Schafer, William

    2014-03-01

    Visible phenotypes have played a critical role in understanding the molecular basis of behaviour in model organisms. However, most current descriptions of behaviour are based on manually identified events or a limited set of quantitative parameters. Here we report an extension of the concept of behavioural motifs to exhaustively catalogue C. elegans locomotion and derive a repertoire that is quantifiably complete. A repertoire learned for spontaneous behaviour in wild-type worms can be used to fit data from mutants or worms in different environmental conditions and provides a sensitive measure of phenotypic similarity. Repertoire comparison can also be used to assess inter-individual variation and the compositionality of behaviour, that is, the extent to which behavioural adaptation involves the creation of novel repertoire elements or the reuse of existing elements in novel sequences. Repertoire derivation is general, so that given a representation of posture, our approach will apply to other organisms.

  10. Naive Donor NK Cell Repertoires Associated with Less Leukemia Relapse after Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Björklund, Andreas T; Clancy, Trevor; Goodridge, Jodie P; Béziat, Vivien; Schaffer, Marie; Hovig, Eivind; Ljunggren, Hans-Gustaf; Ljungman, Per T; Malmberg, Karl-Johan

    2016-02-01

    Acute and latent human CMV cause profound changes in the NK cell repertoire, with expansion and differentiation of educated NK cells expressing self-specific inhibitory killer cell Ig-like receptors. In this study, we addressed whether such CMV-induced imprints on the donor NK cell repertoire influenced the outcome of allogeneic stem cell transplantation. Hierarchical clustering of high-resolution immunophenotyping data covering key NK cell parameters, including frequencies of CD56(bright), NKG2A(+), NKG2C(+), and CD57(+) NK cell subsets, as well as the size of the educated NK cell subset, was linked to clinical outcomes. Clusters defining naive (NKG2A(+)CD57(-)NKG2C(-)) NK cell repertoires in the donor were associated with decreased risk for relapse in recipients with acute myeloid leukemia and myelodysplastic syndrome (hazard ratio [HR], 0.09; 95% confidence interval [CI]: 0.03-0.27; p < 0.001). Furthermore, recipients with naive repertoires at 9-12 mo after hematopoietic stem cell transplantation had increased disease-free survival (HR, 7.2; 95% CI: 1.6-33; p = 0.01) and increased overall survival (HR, 9.3; 95% CI: 1.1-77, p = 0.04). Conversely, patients with a relative increase in differentiated NK cells at 9-12 mo displayed a higher rate of late relapses (HR, 8.41; 95% CI: 6.7-11; p = 0.02), reduced disease-free survival (HR, 0.12; 95% CI: 0.12-0.74; p = 0.02), and reduced overall survival (HR, 0.07; 95% CI: 0.01-0.69; p = 0.02). Thus, our data suggest that naive donor NK cell repertoires are associated with protection against leukemia relapse after allogeneic HSCT. PMID:26746188

  11. Distinctive properties of identical twins' TCR repertoires revealed by high-throughput sequencing.

    PubMed

    Zvyagin, Ivan V; Pogorelyy, Mikhail V; Ivanova, Marina E; Komech, Ekaterina A; Shugay, Mikhail; Bolotin, Dmitry A; Shelenkov, Andrey A; Kurnosov, Alexey A; Staroverov, Dmitriy B; Chudakov, Dmitriy M; Lebedev, Yuri B; Mamedov, Ilgar Z

    2014-04-22

    Adaptive immunity in humans is provided by hypervariable Ig-like molecules on the surface of B and T cells. The final set of these molecules in each organism is formed under the influence of two forces: individual genetic traits and the environment, which includes the diverse spectra of alien and self-antigens. Here we assess the impact of individual genetic factors on the formation of the adaptive immunity by analyzing the T-cell receptor (TCR) repertoires of three pairs of monozygous twins by next-generation sequencing. Surprisingly, we found that an overlap between the TCR repertoires of monozygous twins is similar to an overlap between the TCR repertoires of nonrelated individuals. However, the number of identical complementary determining region 3 sequences in two individuals is significantly increased for twin pairs in the fraction of highly abundant TCR molecules, which is enriched by the antigen-experienced T cells. We found that the initial recruitment of particular TCR V genes for recombination and subsequent selection in the thymus is strictly determined by individual genetic factors. J genes of TCRs are selected randomly for recombination; however, the subsequent selection in the thymus gives preference to some α but not β J segments. These findings provide a deeper insight into the mechanism of TCR repertoire generation. PMID:24711416

  12. Immune repertoire: A potential biomarker and therapeutic for hepatocellular carcinoma.

    PubMed

    Han, Yingxin; Li, Hongmei; Guan, Yanfang; Huang, Jian

    2016-09-01

    The immune repertoire (IR) refers to the sum of B cells and T cells with functional diversity in the circulatory system of one individual at any given time. Immune cells, which reside within microenvironments and are responsible for protecting the human body, include T cells, B cells, macrophages, and dendritic cells. These dedicated immune cells have a characteristic structure and function. T and B cells are the main lymphocytes and are responsible for cellular immunity and humoral immunity, respectively. The T cell receptor (TCR) and B cell receptor (BCR) are composed of multiple peptide chains with antigen specificity. The amino acid composition and sequence order are more diverse in the complementarity-determining regions (including CDR1, CDR2 and CDR3) of each peptide chain, allowing a vast library of TCRs and BCRs. IR research is becoming increasingly focused on the study of CDR3 diversity. Deep profiling of CDR3s using high-throughput sequencing is a powerful approach for elucidating the composition and distribution of the CDR3s in a given sample, with in-depth information at the sequence level. Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world. To identify novel biomarkers for diagnosis and drug targets for therapeutic interventions, several groups attempted to describe immune repertoire characteristics of the liver in the physiological environment or/and pathological conditions. This paper reviews the recent progress in IR research on human diseases, including hepatocellular carcinoma, attempting to depict the relationships between hepatocellular carcinogenesis and the IR, and discusses the possibility of IR as a potential biomarker and therapeutic for hepatocellular carcinoma. PMID:26188280

  13. Complement receptors and the shaping of the natural antibody repertoire.

    PubMed

    Holers, V Michael

    2005-03-01

    Complement and complement receptors have been known for several decades to play important roles in immune effector mechanisms related to pathogen elimination and tissue inflammation. In addition, studies over the last 10 years have clearly demonstrated a key role for the complement C3d activation fragment receptor designated CR2 (complement receptor type 2) in the switched-isotype, high-affinity and memory humoral immune responses to T-dependent foreign antigens. More recent studies have extended those observations to include a key role for CR2 and C3d in the humoral immune response to T-independent foreign antigens. Conversely, as these studies have proceeded, a parallel series of analyses have linked defects in expression or function of complement C4 and other classical pathway activation pathway proteins, as well as CR2 and the closely related CR1, to the loss of self tolerance to nuclear antigens such as double-stranded DNA and chromatin in systemic lupus erythematosus. With regard to the topic of this issue, it is now becoming increasingly clear that CR2 also plays a major role in the development of the natural antibody repertoire. Specifically, in the absence of this receptor natural IgM and IgG develop in the naïve animal that demonstrate clearly altered recognition patterns for specific natural antibody targets. This repertoire change is important physiologically in at least one setting because these CR2-dependent natural antibodies are necessary for the recognition of ischemic self tissues. In addition, it is possible that certain of the phenotypes manifest by CR2-deficient mice may be strongly influenced not only by effects on later stages of B cell activation and maturation, as commonly thought, but also by alterations in the pre-existing pool of natural antibodies that are influenced by this receptor. This review will examine the evidence that has accumulated over the last few years supporting these hypotheses. PMID:15614507

  14. The effect of deleterious alleles on adaptation in asexual populations.

    PubMed Central

    Johnson, Toby; Barton, Nick H

    2002-01-01

    We calculate the fixation probability of a beneficial allele that arises as the result of a unique mutation in an asexual population that is subject to recurrent deleterious mutation at rate U. Our analysis is an extension of previous works, which make a biologically restrictive assumption that selection against deleterious alleles is stronger than that on the beneficial allele of interest. We show that when selection against deleterious alleles is weak, beneficial alleles that confer a selective advantage that is small relative to U have greatly reduced probabilities of fixation. We discuss the consequences of this effect for the distribution of effects of alleles fixed during adaptation. We show that a selective sweep will increase the fixation probabilities of other beneficial mutations arising during some short interval afterward. We use the calculated fixation probabilities to estimate the expected rate of fitness improvement in an asexual population when beneficial alleles arise continually at some low rate proportional to U. We estimate the rate of mutation that is optimal in the sense that it maximizes this rate of fitness improvement. Again, this analysis relaxes the assumption made previously that selection against deleterious alleles is stronger than on beneficial alleles. PMID:12242249

  15. A link between increased transforming activity of lymphoma-derived MYC mutant alleles, their defective regulation by p107, and altered phosphorylation of the c-Myc transactivation domain.

    PubMed Central

    Hoang, A T; Lutterbach, B; Lewis, B C; Yano, T; Chou, T Y; Barrett, J F; Raffeld, M; Hann, S R; Dang, C V

    1995-01-01

    The c-Myc protein is a transcription factor with an N-terminal transcriptional regulatory domain and C-terminal oligomerization and DNA-binding motifs. Previous studies have demonstrated that p107, a protein related to the retinoblastoma protein, binds to the c-Myc transcriptional activation domain and suppresses its activity. We sought to characterize the transforming activity and transcriptional properties of lymphoma-derived mutant MYC alleles. Alleles encoding c-Myc proteins with missense mutations in the transcriptional regulatory domain were more potent than wild-type c-Myc in transforming rodent fibroblasts. Although the mutant c-Myc proteins retained their binding to p107 in in vitro and in vivo assays, p107 failed to suppress their transcriptional activation activities. Many of the lymphoma-derived MYC alleles contain missense mutations that result in substitution for the threonine at codon 58 or affect sequences flanking this amino acid. We observed that in vivo phosphorylation of Thr-58 was absent in a lymphoma cell line with a mutant MYC allele containing a missense mutation flanking codon 58. Our in vitro studies suggest that phosphorylation of Thr-58 in wild-type c-Myc was dependent on cyclin A and required prior phosphorylation of Ser-62 by a p107-cyclin A-CDK complex. In contrast, Thr-58 remained unphosphorylated in two representative mutant c-Myc transactivation domains in vitro. Our studies suggest that missense mutations in MYC may be selected for during lymphomagenesis, because the mutant MYC proteins have altered functional interactions with p107 protein complexes and fail to be phosphorylated at Thr-58. PMID:7623799

  16. Increased Prevalence of Mutant Allele Pfdhps 437G and Pfdhfr Triple Mutation in Plasmodium falciparum Isolates from a Rural Area of Gabon, Three Years after the Change of Malaria Treatment Policy

    PubMed Central

    Ndong Ngomo, Jacques-Mari; Mawili-Mboumba, Denise Patricia; M'Bondoukwe, Noé Patrick; Nikiéma Ndong Ella, Rosalie; Bouyou Akotet, Marielle Karine

    2016-01-01

    In Gabon, sulfadoxine-pyrimethamine (SP) is recommended for intermittent preventive treatment during pregnancy (IPTp-SP) and for uncomplicated malaria treatment through ACTs drug. P. falciparum strains resistant to SP are frequent in areas where this drug is highly used and is associated with the occurrence of mutations on Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthetase (Pfdhps) genes. The aim of the study was to compare the proportion of mutations on Pfdhfr and Pfdhps genes in isolates collected at Oyem in northern Gabon, in 2005 at the time of IPTp-SP introduction and three years later. Point mutations were analyzed by nested PCR-RFLP method. Among 91 isolates, more than 90% carried Pfdhfr 108N and Pfdhfr 59R alleles. Frequencies of Pfdhfr 51I (98%) and Pfdhps 437G (67.7%) mutant alleles were higher in 2008. Mutations at codons 164, 540, and 581 were not detected. The proportion of the triple Pfdhfr mutation and quadruple mutation including A437G was high: 91.9% in 2008 and 64.8% in 2008, respectively. The present study highlights an elevated frequency of Pfdhfr and Pfdhps mutant alleles, although quintuple mutations were not found in north Gabon. These data suggest the need of a continuous monitoring of SP resistance in Gabon. PMID:27190671

  17. Increased Prevalence of Mutant Allele Pfdhps 437G and Pfdhfr Triple Mutation in Plasmodium falciparum Isolates from a Rural Area of Gabon, Three Years after the Change of Malaria Treatment Policy.

    PubMed

    Ndong Ngomo, Jacques-Mari; Mawili-Mboumba, Denise Patricia; M'Bondoukwe, Noé Patrick; Nikiéma Ndong Ella, Rosalie; Bouyou Akotet, Marielle Karine

    2016-01-01

    In Gabon, sulfadoxine-pyrimethamine (SP) is recommended for intermittent preventive treatment during pregnancy (IPTp-SP) and for uncomplicated malaria treatment through ACTs drug. P. falciparum strains resistant to SP are frequent in areas where this drug is highly used and is associated with the occurrence of mutations on Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthetase (Pfdhps) genes. The aim of the study was to compare the proportion of mutations on Pfdhfr and Pfdhps genes in isolates collected at Oyem in northern Gabon, in 2005 at the time of IPTp-SP introduction and three years later. Point mutations were analyzed by nested PCR-RFLP method. Among 91 isolates, more than 90% carried Pfdhfr 108N and Pfdhfr 59R alleles. Frequencies of Pfdhfr 51I (98%) and Pfdhps 437G (67.7%) mutant alleles were higher in 2008. Mutations at codons 164, 540, and 581 were not detected. The proportion of the triple Pfdhfr mutation and quadruple mutation including A437G was high: 91.9% in 2008 and 64.8% in 2008, respectively. The present study highlights an elevated frequency of Pfdhfr and Pfdhps mutant alleles, although quintuple mutations were not found in north Gabon. These data suggest the need of a continuous monitoring of SP resistance in Gabon. PMID:27190671

  18. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots.

    PubMed

    Baker, Christopher L; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M; Paigen, Kenneth

    2015-09-01

    Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape. PMID:26368021

  19. Immunoglobulins, antibody repertoire and B cell development.

    PubMed

    Butler, J E; Zhao, Y; Sinkora, M; Wertz, N; Kacskovics, I

    2009-03-01

    Swine share with most placental mammals the same five antibody isotypes and same two light chain types. Loci encoding lambda, kappa and Ig heavy chains appear to be organized as they are in other mammals. Swine differ from rodents and primates, but are similar to rabbits in using a single VH family (VH3) to encode their variable heavy chain domain, but not the family used by cattle, another artiodactyl. Distinct from other hoofed mammals and rodents, Ckappa:Clambda usage resembles the 1:1 ratio seen in primates. Since IgG subclasses diversified after speciation, same name subclass homologs do not exist among swine and other mammals unless very closely related. Swine possess six putative IgG subclasses that appear to have diversified by gene duplication and exon shuffle while retaining motifs that can bind to FcgammaRs, FcRn, C1q, protein A and protein G. The epithelial chorial placenta of swine and the precosial nature of their offspring have made piglets excellent models for studies on fetal antibody repertoire development and on the postnatal role of gut colonization, maternal colostrum and neonatal infection on the development of adaptive immunity during the "critical window" of immunological development. This chapter traces the study of the humoral immune system of this species through its various eras of discovery and compiles the results in tables and figures that should be a useful reference for educators and investigators. PMID:18804488

  20. IGHV1-69 polymorphism modulates anti-influenza antibody repertoires, correlates with IGHV utilization shifts and varies by ethnicity

    PubMed Central

    Avnir, Yuval; Watson, Corey T.; Glanville, Jacob; Peterson, Eric C.; Tallarico, Aimee S.; Bennett, Andrew S.; Qin, Kun; Fu, Ying; Huang, Chiung-Yu; Beigel, John H.; Breden, Felix; Zhu, Quan; Marasco, Wayne A.

    2016-01-01

    IGHV polymorphism provides a rich source of humoral immune system diversity. One important example is the IGHV1-69 germline gene where the biased use of alleles that encode the critical CDR-H2 Phe54 (F-alleles) to make broadly neutralizing antibodies (HV1-69-sBnAb) to the influenza A hemagglutinin stem domain has been clearly established. However, whether IGHV1-69 polymorphism can also modulate B cell function and Ab repertoire expression through promoter and copy number (CN) variations has not been reported, nor has whether IGHV1-69 allelic distribution is impacted by ethnicity. Here we studied a cohort of NIH H5N1 vaccinees and demonstrate for the first time the influence of IGHV1-69 polymorphism on V-segment usage, somatic hypermutation and B cell expansion that elucidates the dominance of F-alleles in HV1-69-sBnAbs. We provide evidence that Phe54/Leu54 (F/L) polymorphism correlates with shifted repertoire usage of other IGHV germline genes. In addition, we analyzed ethnically diverse individuals within the 1000 genomes project and discovered marked variations in F- and L- genotypes and CN among the various ethnic groups that may impact HV1-69-sBnAb responses. These results have immediate implications for understanding HV1-69-sBnAb responses at the individual and population level and for the design and implementation of “universal” influenza vaccine. PMID:26880249

  1. Inferring processes underlying B-cell repertoire diversity.

    PubMed

    Elhanati, Yuval; Sethna, Zachary; Marcou, Quentin; Callan, Curtis G; Mora, Thierry; Walczak, Aleksandra M

    2015-09-01

    We quantify the VDJ recombination and somatic hypermutation processes in human B cells using probabilistic inference methods on high-throughput DNA sequence repertoires of human B-cell receptor heavy chains. Our analysis captures the statistical properties of the naive repertoire, first after its initial generation via VDJ recombination and then after selection for functionality. We also infer statistical properties of the somatic hypermutation machinery (exclusive of subsequent effects of selection). Our main results are the following: the B-cell repertoire is substantially more diverse than T-cell repertoires, owing to longer junctional insertions; sequences that pass initial selection are distinguished by having a higher probability of being generated in a VDJ recombination event; somatic hypermutations have a non-uniform distribution along the V gene that is well explained by an independent site model for the sequence context around the hypermutation site. PMID:26194757

  2. Inferring processes underlying B-cell repertoire diversity

    PubMed Central

    Elhanati, Yuval; Sethna, Zachary; Marcou, Quentin; Callan, Curtis G.; Mora, Thierry; Walczak, Aleksandra M.

    2015-01-01

    We quantify the VDJ recombination and somatic hypermutation processes in human B cells using probabilistic inference methods on high-throughput DNA sequence repertoires of human B-cell receptor heavy chains. Our analysis captures the statistical properties of the naive repertoire, first after its initial generation via VDJ recombination and then after selection for functionality. We also infer statistical properties of the somatic hypermutation machinery (exclusive of subsequent effects of selection). Our main results are the following: the B-cell repertoire is substantially more diverse than T-cell repertoires, owing to longer junctional insertions; sequences that pass initial selection are distinguished by having a higher probability of being generated in a VDJ recombination event; somatic hypermutations have a non-uniform distribution along the V gene that is well explained by an independent site model for the sequence context around the hypermutation site. PMID:26194757

  3. What Is a Recessive Allele?

    ERIC Educational Resources Information Center

    American Biology Teacher, 1991

    1991-01-01

    Presents four misconceptions students have concerning the concepts of recessive and dominant alleles. Discusses the spectrum of dominant-recessive relationships, different levels of analysis between phenotype and genotype, possible causes of dominance, and an example involving wrinkled peas. (MDH)

  4. Thinking through Text Comprehension II: Analysis of Verbal and Investigative Repertoires

    ERIC Educational Resources Information Center

    Sota, Melinda; Leon, Marta; Layng, T. V. Joe

    2011-01-01

    Reading comprehension can be considered a complex human performance involving two integrated repertoires: a verbal repertoire and an investigative (generative) repertoire. This paper describes an analysis of these repertoires in terms which can ultimately inform the design of programs to teach them, using the analysis and design of Headsprout[R]…

  5. Thinking through Text Comprehension III: The Programing of Verbal and Investigative Repertoires

    ERIC Educational Resources Information Center

    Leon, Marta; Layng, T. V. Joe; Sota, Melinda

    2011-01-01

    Reading comprehension can be considered a complex human performance involving two integrated repertoires: a verbal repertoire and an investigative (generative) repertoire. The analytical and reasoning skills necessary to demonstrate reading comprehension can be systematically taught by analyzing the verbal and investigative repertoires involved…

  6. Interrogating the repertoire: broadening the scope of peptide-MHC multimer analysis.

    PubMed

    Davis, Mark M; Altman, John D; Newell, Evan W

    2011-08-01

    Labelling antigen-specific T cells with peptide-MHC multimers has provided an invaluable way to monitor T cell-mediated immune responses. A number of recent developments in this technology have made these multimers much easier to make and use in large numbers. Furthermore, enrichment techniques have provided a greatly increased sensitivity that allows the analysis of the naive T cell repertoire directly. Thus, we can expect a flood of new information to emerge in the coming years. PMID:21760610

  7. Accurate and High-Coverage Immune Repertoire Sequencing Reveals Characteristics of Antibody Repertoire Diversification in Young Children with Malaria

    NASA Astrophysics Data System (ADS)

    Jiang, Ning

    Accurately measuring the immune repertoire sequence composition, diversity, and abundance is important in studying repertoire response in infections, vaccinations, and cancer immunology. Using molecular identifiers (MIDs) to tag mRNA molecules is an effective method in improving the accuracy of immune repertoire sequencing (IR-seq). However, it is still difficult to use IR-seq on small amount of clinical samples to achieve a high coverage of the repertoire diversities. This is especially challenging in studying infections and vaccinations where B cell subpopulations with fewer cells, such as memory B cells or plasmablasts, are often of great interest to study somatic mutation patterns and diversity changes. Here, we describe an approach of IR-seq based on the use of MIDs in combination with a clustering method that can reveal more than 80% of the antibody diversity in a sample and can be applied to as few as 1,000 B cells. We applied this to study the antibody repertoires of young children before and during an acute malaria infection. We discovered unexpectedly high levels of somatic hypermutation (SHM) in infants and revealed characteristics of antibody repertoire development in young children that would have a profound impact on immunization in children.

  8. Delimiting Allelic Imbalance of TYMS by Allele-Specific Analysis

    PubMed Central

    Balboa-Beltrán, Emilia; Cruz, Raquel; Carracedo, Angel; Barros, Francisco

    2015-01-01

    Abstract Allelic imbalance of thymidylate synthase (TYMS) is attributed to polymorphisms in the 5′- and 3′-untranslated region (UTR). These polymorphisms have been related to the risk of suffering different cancers, for example leukemia, breast or gastric cancer, and response to different drugs, among which are methotrexate glutamates, stavudine, and specifically 5-fluorouracil (5-FU), as TYMS is its direct target. A vast literature has been published in relation to 5-FU, even suggesting the sole use of these polymorphisms to effectively manage 5-FU dosage. Estimates of the extent to which these polymorphisms influence in TYMS expression have in the past been based on functional analysis by luciferase assays and quantification of TYMS mRNA, but both these studies, as the association studies with cancer risk or with toxicity or response to 5-FU, are very contradictory. Regarding functional assays, the artificial genetic environment created in luciferase assay and the problems derived from quantitative polymerase chain reactions (qPCRs), for example the use of a reference gene, may have distorted the results. To avoid these sources of interference, we have analyzed the allelic imbalance of TYMS by allelic-specific analysis in peripheral blood mononuclear cells (PBMCs) from patients. Allelic imbalance in PBMCs, taken from 40 patients with suspected myeloproliferative haematological diseases, was determined by fluorescent fragment analysis (for the 3′-UTR polymorphism), Sanger sequencing and allelic-specific qPCR in multiplex (for the 5′-UTR polymorphisms). For neither the 3′- nor the 5′-UTR polymorphisms did the observed allelic imbalance exceed 1.5 fold. None of the TYMS polymorphisms is statistically associated with allelic imbalance. The results acquired allow us to deny the previously established assertion of an influence of 2 to 4 fold of the rs45445694 and rs2853542 polymorphisms in the expression of TYMS and narrow its allelic imbalance to 1.5 fold

  9. Clonal Characteristics of Circulating B Lymphocyte Repertoire in Primary Biliary Cholangitis.

    PubMed

    Tan, Yan-Guo; Wang, Yu-Qi; Zhang, Ming; Han, Ying-Xin; Huang, Chun-Yang; Zhang, Hai-Ping; Li, Zhuo-Min; Wu, Xiao-Lei; Wang, Xiao-Feng; Dong, Yan; Zhu, Hong-Mei; Zhu, Shi-da; Li, Hong-Mei; Li, Ning; Yan, Hui-Ping; Gao, Zu-Hua

    2016-09-01

    Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by elevated serum anti-mitochondrial Ab and lymphocyte-mediated bile duct damage. This study was designed to reveal the clonal characteristics of B lymphocyte repertoire in patients with PBC to facilitate better understanding of its pathogenesis and better management of these patients. Using high-throughput sequencing of Ig genes, we analyzed the repertoire of circulating B lymphocytes in 43 patients with PBC, and 34 age- and gender-matched healthy controls. Compared with healthy controls, PBC patients showed 1) a gain of 14 new clones and a loss of 8 clones; 2) a significant clonal expansion and increased relative IgM abundance, which corresponded with the elevated serum IgM level; 3) a significant reduction of clonal diversity and somatic hypermutations in class-switched sequences, which suggested a general immunocompromised status; 4) the reduction of clonal diversity and enhancement of clonal expansion were more obvious at the cirrhotic stage; and 5) treatment with ursodeoxycholic acid could increase the clonal diversity and reduce clonal expansion of the IgM repertoire, with no obvious effect on the somatic hypermutation level. Our data suggest that PBC is a complex autoimmune disease process with evidence of B lymphocyte clonal gains and losses, Ag-dependent ogligoclonal expansion, and a generally compromised immune reserve. This new insight into the pathogenesis of PBC opens up the prospect of studying disease-relevant B cells to better diagnose and treat this devastating disease. PMID:27430717

  10. A comprehensive repertoire of prokaryotic species identified in human beings.

    PubMed

    Hugon, Perrine; Dufour, Jean-Charles; Colson, Philippe; Fournier, Pierre-Edouard; Sallah, Kankoe; Raoult, Didier

    2015-10-01

    The compilation of the complete prokaryotic repertoire associated with human beings as commensals or pathogens is a major goal for the scientific and medical community. The use of bacterial culture techniques remains a crucial step to describe new prokaryotic species. The large number of officially acknowledged bacterial species described since 1980 and the recent increase in the number of recognised pathogenic species have highlighted the absence of an exhaustive compilation of species isolated in human beings. By means of a thorough investigation of several large culture databases and a search of the scientific literature, we built an online database containing all human-associated prokaryotic species described, whether or not they had been validated and have standing in nomenclature. We list 2172 species that have been isolated in human beings. They were classified in 12 different phyla, mostly in the Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes phyla. Our online database is useful for both clinicians and microbiologists and forms part of the Human Microbiome Project, which aims to characterise the whole human microbiota and help improve our understanding of the human predisposition and susceptibility to infectious agents. PMID:26311042

  11. Human KIR repertoires: shaped by genetic diversity and evolution.

    PubMed

    Manser, Angela R; Weinhold, Sandra; Uhrberg, Markus

    2015-09-01

    Killer cell immunoglobulin-like receptors (KIRs) on natural killer (NK) cells are crucially involved in the control of cancer development and virus infection by probing cells for proper expression of HLA class I. The clonally distributed expression of KIRs leads to great combinatorial diversity that develops in the presence of the evolutionary older CD94/NKG2A receptor to create highly stochastic but tolerant repertoires of NK cells. These repertoires are present at birth and are subsequently shaped by an individuals' immunological history toward recognition of self. The single most important factor that shapes functional NK cell repertoires is the genetic diversity of KIR, which is characterized by the presence of group A and B haplotypes with complementary gene content that are present in all human populations. Group A haplotypes constitute the minimal genetic entity that provides high affinity recognition of all major human leukocyte antigen class I-encoded ligands, whereas group B haplotypes contribute to the diversification of NK cell repertoires by providing sets of stimulatory KIR genes that modify NK cell responses. We suggest a cooperative model for the balancing selection of A and B haplotypes, which is driven by the need to provide a suitable corridor of repertoire complexity in which A/A individuals with only 16 different KIR combinations coexist with A/B and B/B donors expressing up to 2048 different clone types. PMID:26284478

  12. A TCRβ Repertoire Signature Can Predict Experimental Cerebral Malaria

    PubMed Central

    Dulauroy, Sophie; Gorgette, Olivier; Klatzmann, David; Cazenave, Pierre-André; Pied, Sylviane; Six, Adrien

    2016-01-01

    Cerebral Malaria (CM) is associated with a pathogenic T cell response. Mice infected by P. berghei ANKA clone 1.49 (PbA) developing CM (CM+) present an altered PBL TCR repertoire, partly due to recurrently expanded T cell clones, as compared to non-infected and CM- infected mice. To analyse the relationship between repertoire alteration and CM, we performed a kinetic analysis of the TRBV repertoire during the course of the infection until CM-related death in PbA-infected mice. The repertoires of PBL, splenocytes and brain lymphocytes were compared between infected and non-infected mice using a high-throughput CDR3 spectratyping method. We observed a modification of the whole TCR repertoire in the spleen and blood of infected mice, from the fifth and the sixth day post-infection, respectively, while only three TRBV were significantly perturbed in the brain of infected mice. Using multivariate analysis and statistical modelling, we identified a unique TCRβ signature discriminating CM+ from CTR mice, enriched during the course of the infection in the spleen and the blood and predicting CM onset. These results highlight a dynamic modification and compartmentalization of the TCR diversity during the course of PbA infection, and provide a novel method to identify disease-associated TCRβ signature as diagnostic and prognostic biomarkers. PMID:26844551

  13. Opsin gene repertoires in northern archaic hominids.

    PubMed

    Taylor, John S; Reimchen, Thomas E

    2016-08-01

    The Neanderthals' northern distribution, hunting techniques, and orbit breadths suggest that they were more active in dim light than modern humans. We surveyed visual opsin genes from four Neanderthals and two other archaic hominids to see if they provided additional support for this hypothesis. This analysis was motivated by the observation that alleles responsible for anomalous trichromacy in humans are more common in northern latitudes, by data suggesting that these variants might enhance vision in mesopic conditions, and by the observation that dim light active species often have fewer opsin genes than diurnal relatives. We also looked for evidence of convergent amino acid substitutions in Neanderthal opsins and orthologs from crepuscular or nocturnal species. The Altai Neanderthal, the Denisovan, and the Ust'-Ishim early modern human had opsin genes that encoded proteins identical to orthologs in the human reference genome. Opsins from the Vindija Cave Neanderthals (three females) had many nonsynonymous substitutions, including several predicted to influence colour vision (e.g., stop codons). However, the functional implications of these observations were difficult to assess, given that "control" loci, where no substitutions were expected, differed from humans to the same extent. This left unresolved the test for colour vision deficiencies in Vindija Cave Neanderthals. PMID:27463216

  14. Contrasted evolution of the vomeronasal receptor repertoires in mammals and squamate reptiles.

    PubMed

    Brykczynska, Urszula; Tzika, Athanasia C; Rodriguez, Ivan; Milinkovitch, Michel C

    2013-01-01

    The vomeronasal organ (VNO) is an olfactory structure that detects pheromones and environmental cues. It consists of sensory neurons that express evolutionary unrelated groups of transmembrane chemoreceptors. The predominant V1R and V2R receptor repertoires are believed to detect airborne and water-soluble molecules, respectively. It has been suggested that the shift in habitat of early tetrapods from water to land is reflected by an increase in the ratio of V1R/V2R genes. Snakes, which have a very large VNO associated with a sophisticated tongue delivery system, are missing from this analysis. Here, we use RNA-seq and RNA in situ hybridization to study the diversity, evolution, and expression pattern of the corn snake vomeronasal receptor repertoires. Our analyses indicate that snakes and lizards retain an extremely limited number of V1R genes but exhibit a large number of V2R genes, including multiple lineages of reptile-specific and snake-specific expansions. We finally show that the peculiar bigenic pattern of V2R vomeronasal receptor gene transcription observed in mammals is conserved in squamate reptiles, hinting at an important but unknown functional role played by this expression strategy. Our results do not support the hypothesis that the shift to a vomeronasal receptor repertoire dominated by V1Rs in mammals reflects the evolutionary transition of early tetrapods from water to land. This study sheds light on the evolutionary dynamics of the vomeronasal receptor families in vertebrates and reveals how mammals and squamates differentially adapted the same ancestral vomeronasal repertoire to succeed in a terrestrial environment. PMID:23348039

  15. Dynamic Repertoire of Intrinsic Brain States Is Reduced in Propofol-Induced Unconsciousness

    PubMed Central

    Liu, Xiping; Pillay, Siveshigan

    2015-01-01

    Abstract The richness of conscious experience is thought to scale with the size of the repertoire of causal brain states, and it may be diminished in anesthesia. We estimated the state repertoire from dynamic analysis of intrinsic functional brain networks in conscious sedated and unconscious anesthetized rats. Functional resonance images were obtained from 30-min whole-brain resting-state blood oxygen level-dependent (BOLD) signals at propofol infusion rates of 20 and 40 mg/kg/h, intravenously. Dynamic brain networks were defined at the voxel level by sliding window analysis of regional homogeneity (ReHo) or coincident threshold crossings (CTC) of the BOLD signal acquired in nine sagittal slices. The state repertoire was characterized by the temporal variance of the number of voxels with significant ReHo or positive CTC. From low to high propofol dose, the temporal variances of ReHo and CTC were reduced by 78%±20% and 76%±20%, respectively. Both baseline and propofol-induced reduction of CTC temporal variance increased from lateral to medial position. Group analysis showed a 20% reduction in the number of unique states at the higher propofol dose. Analysis of temporal variance in 12 anatomically defined regions of interest predicted that the largest changes occurred in visual cortex, parietal cortex, and caudate-putamen. The results suggest that the repertoire of large-scale brain states derived from the spatiotemporal dynamics of intrinsic networks is substantially reduced at an anesthetic dose associated with loss of consciousness. PMID:24702200

  16. Timely and spatially regulated maturation of B and T cell repertoire during human fetal development.

    PubMed

    Rechavi, Erez; Lev, Atar; Lee, Yu Nee; Simon, Amos J; Yinon, Yoav; Lipitz, Schlomo; Amariglio, Ninette; Weisz, Boaz; Notarangelo, Luigi D; Somech, Raz

    2015-02-25

    Insights into the ontogeny of the human fetal adaptive immune system are of great value for understanding immunocompetence of the developing fetus. However, to date, this has remained largely uncharted territory, in large part because blood samples from healthy, early gestation fetuses have been hard to come by. In a comprehensive study, we analyzed levels of T cell receptor excision circles (TRECs), signal-joint κ receptor excision circles (sjKRECs), and intron recombination signal sequence-K-deleting element (iRSS-Kde) rearrangement, and T and B lymphocyte repertoire clonality in human fetuses from 12 to 26 weeks of gestational age. Using next-generation sequencing, we analyzed the diversity and complexity of T cell receptor β (TRB) and immunoglobulin heavy chain (IGH) repertoires in four fetuses at 12, 13, 22, and 26 weeks of gestation and in healthy full-term infants. We report the progressive increase of TREC, sjKREC, and iRSS-Kde levels over time and confirm that B cell development precedes T cell development in the human fetus. Temporally and spatially regulated maturation of B and T cell repertoire diversity and complexity during human fetal development was observed, including evidence that immunoglobulin somatic hypermutation and class switch recombination occur already during intrauterine life. Our results help define physiological levels of immunodeficiency in premature infants and may serve as a reference for future studies aimed at investigating the impact of intrauterine pathologies on fetal immune development and function. PMID:25717098

  17. Allele frequencies at microsatellite loci: The stepwise mutation model revisited

    SciTech Connect

    Valdes, A.M.; Slatkin, M. ); Freimer, N.B. )

    1993-03-01

    The authors summarize available data on the frequencies of alleles at microsatellite loci in human populations and compare observed distributions of allele frequencies to those generated by a simulation of the stepwise mutation model. They show that observed frequency distributions at 108 loci are consistent with the results of the model under the assumption that mutations cause an increase or decrease in repeat number by one and under the condition that the product Nu, where N is the effective population size and u is the mutation rate, is larger than one. It is also shown that the variance of the distribution of allele sizes is a useful estimator of Nu and performs much better than previously suggested estimators for the stepwise mutation model. In the data, there is no correlation between the mean and variance in allele size at a locus or between the number of alleles and mean allele size, which suggests that the mutation rate at these loci is independent of allele size. 39 refs., 6 figs., 4 tabs.

  18. Allele-Independent Turnover of Human Leukocyte Antigen (HLA) Class Ia Molecules

    PubMed Central

    Prevosto, Claudia; Usmani, M. Farooq; McDonald, Sarah; Gumienny, Aleksandra M.; Key, Tim; Goodman, Reyna S.; Gaston, J. S. Hill; Deery, Michael J.; Busch, Robert

    2016-01-01

    Major histocompatibility complex class I (MHCI) glycoproteins present cytosolic peptides to CD8+ T cells and regulate NK cell activity. Their heavy chains (HC) are expressed from up to three MHC gene loci (human leukocyte antigen [HLA]-A, -B, and -C in humans), whose extensive polymorphism maps predominantly to the antigen-binding groove, diversifying the bound peptide repertoire. Codominant expression of MHCI alleles is thus functionally critical, but how it is regulated is not fully understood. Here, we have examined the effect of polymorphism on the turnover rates of MHCI molecules in cell lines with functional MHCI peptide loading pathways and in monocyte-derived dendritic cells (MoDCs). Proteins were labeled biosynthetically with heavy water (2H2O), folded MHCI molecules immunoprecipitated, and tryptic digests analysed by mass spectrometry. MHCI-derived peptides were assigned to specific alleles and isotypes, and turnover rates quantified by 2H incorporation, after correcting for cell growth. MHCI turnover half-lives ranged from undetectable to a few hours, depending on cell type, activation state, donor, and MHCI isotype. However, in all settings, the turnover half-lives of alleles of the same isotype were similar. Thus, MHCI protein turnover rates appear to be allele-independent in normal human cells. We propose that this is an important feature enabling the normal function and codominant expression of MHCI alleles. PMID:27529174

  19. Allele-Independent Turnover of Human Leukocyte Antigen (HLA) Class Ia Molecules.

    PubMed

    Prevosto, Claudia; Usmani, M Farooq; McDonald, Sarah; Gumienny, Aleksandra M; Key, Tim; Goodman, Reyna S; Gaston, J S Hill; Deery, Michael J; Busch, Robert

    2016-01-01

    Major histocompatibility complex class I (MHCI) glycoproteins present cytosolic peptides to CD8+ T cells and regulate NK cell activity. Their heavy chains (HC) are expressed from up to three MHC gene loci (human leukocyte antigen [HLA]-A, -B, and -C in humans), whose extensive polymorphism maps predominantly to the antigen-binding groove, diversifying the bound peptide repertoire. Codominant expression of MHCI alleles is thus functionally critical, but how it is regulated is not fully understood. Here, we have examined the effect of polymorphism on the turnover rates of MHCI molecules in cell lines with functional MHCI peptide loading pathways and in monocyte-derived dendritic cells (MoDCs). Proteins were labeled biosynthetically with heavy water (2H2O), folded MHCI molecules immunoprecipitated, and tryptic digests analysed by mass spectrometry. MHCI-derived peptides were assigned to specific alleles and isotypes, and turnover rates quantified by 2H incorporation, after correcting for cell growth. MHCI turnover half-lives ranged from undetectable to a few hours, depending on cell type, activation state, donor, and MHCI isotype. However, in all settings, the turnover half-lives of alleles of the same isotype were similar. Thus, MHCI protein turnover rates appear to be allele-independent in normal human cells. We propose that this is an important feature enabling the normal function and codominant expression of MHCI alleles. PMID:27529174

  20. Characterizing immune repertoires by high throughput sequencing: strategies and applications

    PubMed Central

    Calis, Jorg J.A.; Rosenberg, Brad R.

    2014-01-01

    As the key cellular effectors of adaptive immunity, T and B lymphocytes utilize specialized receptors to recognize, respond to, and neutralize a diverse array of extrinsic threats. These receptors (immunoglobulins in B lymphocytes, T cell receptors in T lymphocytes) are incredibly variable, the products of specialized genetic diversification mechanisms that generate complex lymphocyte repertoires with extensive collections of antigen specificities. Recent advances in high throughput sequencing (HTS) technologies have transformed our ability to examine antigen receptor repertoires at single nucleotide, and more recently, single cell, resolution. Here we review current approaches to examining antigen receptor repertoires by HTS, and discuss inherent biological and technical challenges. We further describe emerging applications of this powerful methodology for exploring the adaptive immune system. PMID:25306219

  1. Mindful relating: exploring mindfulness and emotion repertoires in intimate relationships.

    PubMed

    Wachs, Karen; Cordova, James V

    2007-10-01

    This study tested the theory that mindfulness contributes to greater intimate relationship satisfaction by fostering more relationally skillful emotion repertoires. A sample of married couples was administered measures of mindful awareness, emotion skills, and marital quality. We hypothesized that mindfulness would be associated with both marital quality and partners' emotion skills and that the association between mindfulness and marital quality would be mediated by emotion repertoire skill. Findings suggested that emotion skills and mindfulness are both related to marital adjustment, and that skilled emotion repertoires, specifically those associated with identifying and communicating emotions, as well as the regulation of anger expression, fully mediate the association between mindfulness and marital quality. Theoretical implications are discussed. PMID:17935530

  2. A «Repertoire for Repertoire» Hypothesis: Repertoires of Type Three Effectors are Candidate Determinants of Host Specificity in Xanthomonas

    PubMed Central

    Hajri, Ahmed; Brin, Chrystelle; Hunault, Gilles; Lardeux, Frédéric; Lemaire, Christophe; Manceau, Charles

    2009-01-01

    Background The genetic basis of host specificity for animal and plant pathogenic bacteria remains poorly understood. For plant pathogenic bacteria, host range is restricted to one or a few host plant species reflecting a tight adaptation to specific hosts. Methodology/Principal Findings Two hypotheses can be formulated to explain host specificity: either it can be explained by the phylogenetic position of the strains, or by the association of virulence genes enabling a pathological convergence of phylogenically distant strains. In this latter hypothesis, host specificity would result from the interaction between repertoires of bacterial virulence genes and repertoires of genes involved in host defences. To challenge these two hypotheses, we selected 132 Xanthomonas axonopodis strains representative of 18 different pathovars which display different host range. First, the phylogenetic position of each strain was determined by sequencing the housekeeping gene rpoD. This study showed that many pathovars of Xanthomonas axonopodis are polyphyletic. Second, we investigated the distribution of 35 type III effector genes (T3Es) in these strains by both PCR and hybridization methods. Indeed, for pathogenic bacteria T3Es were shown to trigger and to subvert host defences. Our study revealed that T3E repertoires comprise core and variable gene suites that likely have distinct roles in pathogenicity and different evolutionary histories. Our results showed a correspondence between composition of T3E repertoires and pathovars of Xanthomonas axonopodis. For polyphyletic pathovars, this suggests that T3E genes might explain a pathological convergence of phylogenetically distant strains. We also identified several DNA rearrangements within T3E genes, some of which correlate with host specificity of strains. Conclusions/Significance These data provide insight into the potential role played by T3E genes for pathogenic bacteria and support a “repertoire for repertoire” hypothesis

  3. VDJtools: Unifying Post-analysis of T Cell Receptor Repertoires

    PubMed Central

    Bolotin, Dmitriy A.; Britanova, Olga V.; Putintseva, Ekaterina V.; Pogorelyy, Mikhail V.; Nazarov, Vadim I.; Zvyagin, Ivan V.; Kirgizova, Vitalina I.; Kirgizov, Kirill I.; Skorobogatova, Elena V.; Chudakov, Dmitriy M.

    2015-01-01

    Despite the growing number of immune repertoire sequencing studies, the field still lacks software for analysis and comprehension of this high-dimensional data. Here we report VDJtools, a complementary software suite that solves a wide range of T cell receptor (TCR) repertoires post-analysis tasks, provides a detailed tabular output and publication-ready graphics, and is built on top of a flexible API. Using TCR datasets for a large cohort of unrelated healthy donors, twins, and multiple sclerosis patients we demonstrate that VDJtools greatly facilitates the analysis and leads to sound biological conclusions. VDJtools software and documentation are available at https://github.com/mikessh/vdjtools. PMID:26606115

  4. Enhanced repertoire of brain dynamical states during the psychedelic experience.

    PubMed

    Tagliazucchi, Enzo; Carhart-Harris, Robin; Leech, Robert; Nutt, David; Chialvo, Dante R

    2014-11-01

    The study of rapid changes in brain dynamics and functional connectivity (FC) is of increasing interest in neuroimaging. Brain states departing from normal waking consciousness are expected to be accompanied by alterations in the aforementioned dynamics. In particular, the psychedelic experience produced by psilocybin (a substance found in "magic mushrooms") is characterized by unconstrained cognition and profound alterations in the perception of time, space and selfhood. Considering the spontaneous and subjective manifestation of these effects, we hypothesize that neural correlates of the psychedelic experience can be found in the dynamics and variability of spontaneous brain activity fluctuations and connectivity, measurable with functional Magnetic Resonance Imaging (fMRI). Fifteen healthy subjects were scanned before, during and after intravenous infusion of psilocybin and an inert placebo. Blood-Oxygen Level Dependent (BOLD) temporal variability was assessed computing the variance and total spectral power, resulting in increased signal variability bilaterally in the hippocampi and anterior cingulate cortex. Changes in BOLD signal spectral behavior (including spectral scaling exponents) affected exclusively higher brain systems such as the default mode, executive control, and dorsal attention networks. A novel framework enabled us to track different connectivity states explored by the brain during rest. This approach revealed a wider repertoire of connectivity states post-psilocybin than during control conditions. Together, the present results provide a comprehensive account of the effects of psilocybin on dynamical behavior in the human brain at a macroscopic level and may have implications for our understanding of the unconstrained, hyper-associative quality of consciousness in the psychedelic state. PMID:24989126

  5. Characterizing changes in the immune repertoire of cattle using next-gen sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vertebrate immune systems generate diverse repertoires of antibodies capable of mediating response to a variety of antigens. Next-gen sequencing permits characterization of expressed antibody repertoires at previously unattainable depths of coverage and accuracy. We examined the bovine immunoglobul...

  6. Deep sequencing of immune repertoires during bovine development and in response to respiratory pathogen challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vertebrate immune systems generate diverse repertoires of antibodies capable of mediating response to a variety of antigens. Single-molecule circular consensus sequencing permits the sequencing of expressed antibody repertoires at previously unattainable depths of coverage and accuracy. We examined...

  7. The Communicative Response Repertoire of Children's Television Cartoon Characters.

    ERIC Educational Resources Information Center

    Dobkins, David H.; And Others

    In order to determine some of the effects of children's television, a study investigated the communicative response repertoire of primary female characters in Saturday morning children's cartoons as perceived by children. Those perceptions were then compared with those of the researchers, formulated through previous studies, showing a relationship…

  8. Hamilton and Zuk meet heterozygosity? Song repertoire size indicates inbreeding and immunity in song sparrows (Melospiza melodia).

    PubMed

    Reid, Janem; Arcese, Peter; Cassidy, Alicel E V; Marr, Amyb; Smith, Jamesn M; Keller, Lukasf

    2005-03-01

    Hamilton and Zuk's influential hypothesis of parasite-mediated sexual selection proposes that exaggerated secondary sexual ornaments indicate a male's addictive genetic immunity to parasites. However, genetic correlated of ornaments and immunity have rarely been explicitly identified. Evidence supporting Hamilton and Zuk's hypothesis has instead been gathered by looking for positive phenotypic correlations between ornamentation and immunity; such correlations are assumed to reflect causal, addictive relationships between these traits. We show that in a song sparrows, Melospiza melodia, male's song repertoire size, a secondary sexual trait, increased with his cell-mediated immune response (CMI) to an experimental challenge. However, this phenotypic correlation could be explained because both repertoire size and CMI declined with a male's inbreeding level. Repertoire size therefore primarily indicated a male's relative heterozygosity, a non-addictive genetic predictor of immunity. Caution may therefore be required when interpreting phenotypic correlations as support for Hamilton and Zuk's addictive model of sexual selection. However, our results suggest that female song sparrows choosing with large repertoires would on average acquire more outbred and therefore more heterozygous mates. Such genetic dominance effects on ornamentation are likely to influence evolutionary trajectories of female choice, and should be explicitly incorporated into genetic models of sexual selection. PMID:15799943

  9. Next Generation Sequencing Reveals Skewing of the T and B Cell Receptor Repertoires in Patients with Wiskott–Aldrich Syndrome

    PubMed Central

    O’Connell, Amy E.; Volpi, Stefano; Dobbs, Kerry; Fiorini, Claudia; Tsitsikov, Erdyni; de Boer, Helen; Barlan, Isil B.; Despotovic, Jenny M.; Espinosa-Rosales, Francisco J.; Hanson, I. Celine; Kanariou, Maria G.; Martínez-Beckerat, Roxana; Mayorga-Sirera, Alvaro; Mejia-Carvajal, Carmen; Radwan, Nesrine; Weiss, Aaron R.; Pai, Sung-Yun; Lee, Yu Nee; Notarangelo, Luigi D.

    2014-01-01

    The Wiskott–Aldrich syndrome (WAS) is due to mutations of the WAS gene encoding for the cytoskeletal WAS protein, leading to abnormal downstream signaling from the T cell and B cell antigen receptors (TCR and BCR). We hypothesized that the impaired signaling through the TCR and BCR in WAS would subsequently lead to aberrations in the immune repertoire of WAS patients. Using next generation sequencing (NGS), the T cell receptor β and B cell immunoglobulin heavy chain (IGH) repertoires of eight patients with WAS and six controls were sequenced. Clonal expansions were identified within memory CD4+ cells as well as in total, naïve and memory CD8+ cells from WAS patients. In the B cell compartment, WAS patient IGH repertoires were also clonally expanded and showed skewed usage of IGHV and IGHJ genes, and increased usage of IGHG constant genes, compared with controls. To our knowledge, this is the first study that demonstrates significant abnormalities of the immune repertoire in WAS patients using NGS. PMID:25101082

  10. Accelerated Loss of TCR Repertoire Diversity in Common Variable Immunodeficiency

    PubMed Central

    Wong, Gabriel K.; Millar, David; Penny, Sarah; Heather, James M.; Mistry, Punam; Buettner, Nico; Bryon, Jane; Huissoon, Aarnoud P.

    2016-01-01

    Although common variable immunodeficiency (CVID) has long been considered as a group of primary Ab deficiencies, growing experimental data now suggest a global disruption of the entire adaptive immune response in a segment of patients. Oligoclonality of the TCR repertoire was previously demonstrated; however, the manner in which it relates to other B cell and T cell findings reported in CVID remains unclear. Using a combination approach of high-throughput TCRβ sequencing and multiparametric flow cytometry, we compared the TCR repertoire diversity between various subgroups of CVID patients according to their B cell immunophenotypes. Our data suggest that the reduction in repertoire diversity is predominantly restricted to those patients with severely reduced class-switched memory B cells and an elevated level of CD21lo B cells (Freiburg 1a), and may be driven by a reduced number of naive T cells unmasking underlying memory clonality. Moreover, our data indicate that this loss in repertoire diversity progresses with advancing age far exceeding the expected physiological rate. Radiological evidence supports the loss in thymic volume, correlating with the decrease in repertoire diversity. Evidence now suggests that primary thymic failure along with other well-described B cell abnormalities play an important role in the pathophysiology in Freiburg group 1a patients. Clinically, our findings emphasize the integration of combined B and T cell testing to identify those patients at the greatest risk for infection. Future work should focus on investigating the link between thymic failure and the severe reduction in class-switched memory B cells, while gathering longitudinal laboratory data to examine the progressive nature of the disease. PMID:27481850

  11. Accelerated Loss of TCR Repertoire Diversity in Common Variable Immunodeficiency.

    PubMed

    Wong, Gabriel K; Millar, David; Penny, Sarah; Heather, James M; Mistry, Punam; Buettner, Nico; Bryon, Jane; Huissoon, Aarnoud P; Cobbold, Mark

    2016-09-01

    Although common variable immunodeficiency (CVID) has long been considered as a group of primary Ab deficiencies, growing experimental data now suggest a global disruption of the entire adaptive immune response in a segment of patients. Oligoclonality of the TCR repertoire was previously demonstrated; however, the manner in which it relates to other B cell and T cell findings reported in CVID remains unclear. Using a combination approach of high-throughput TCRβ sequencing and multiparametric flow cytometry, we compared the TCR repertoire diversity between various subgroups of CVID patients according to their B cell immunophenotypes. Our data suggest that the reduction in repertoire diversity is predominantly restricted to those patients with severely reduced class-switched memory B cells and an elevated level of CD21(lo) B cells (Freiburg 1a), and may be driven by a reduced number of naive T cells unmasking underlying memory clonality. Moreover, our data indicate that this loss in repertoire diversity progresses with advancing age far exceeding the expected physiological rate. Radiological evidence supports the loss in thymic volume, correlating with the decrease in repertoire diversity. Evidence now suggests that primary thymic failure along with other well-described B cell abnormalities play an important role in the pathophysiology in Freiburg group 1a patients. Clinically, our findings emphasize the integration of combined B and T cell testing to identify those patients at the greatest risk for infection. Future work should focus on investigating the link between thymic failure and the severe reduction in class-switched memory B cells, while gathering longitudinal laboratory data to examine the progressive nature of the disease. PMID:27481850

  12. Allele-specific MMP-3 transcription under in vivo conditions

    SciTech Connect

    Zhu Chaoyong; Odeberg, Jacob; Hamsten, Anders; Eriksson, Per . E-mail: Per.Eriksson@ki.se

    2006-09-29

    A common matrix metalloproteinases-3 (MMP-3) -1612 5A/6A promoter polymorphism is associated with risk for cardiovascular disease, rheumatoid arthritis, and other diseases. Here we used the haplotype chromatin immunoprecipitation method to study allele-specific MMP-3 expression under in vivo conditions in heterozygous THP-1 cells. Pyrosequencing was used to analyse the ratio of 5A-allele to 6A-allele after chromatin immunoprecipitation using an antibody against phosphorylated active RNA polymerase II. There was no allele-specific difference in transcriptional activity during basal conditions, i.e., in unstimulated monocytic THP-1 cells. However, after stimulation of MMP-3 expression by monocyte differentiation or incubation with IL-1{beta}, the haplotype containing the 5A-allele was associated with higher transcriptional activity compared with the 6A-containing haplotype. Electromobility shift assay demonstrated increased binding of nuclear proteins to the 5A-allele after monocyte differentiation. In conclusion, the common MMP-3 5A/6A promoter polymorphism appears to be functional only during specific environmental conditions involving inflammation.

  13. Invasive Allele Spread under Preemptive Competition

    NASA Astrophysics Data System (ADS)

    Yasi, J. A.; Korniss, G.; Caraco, T.

    We study a discrete spatial model for invasive allele spread in which two alleles compete preemptively, initially only the "residents" (weaker competitors) being present. We find that the spread of the advantageous mutation is well described by homogeneous nucleation; in particular, in large systems the time-dependent global density of the resident allele is well approximated by Avrami's law.

  14. The repertoire of MHC class I genes in the common marmoset: evidence for functional plasticity.

    PubMed

    van der Wiel, Marit K; Otting, Nel; de Groot, Natasja G; Doxiadis, Gaby G M; Bontrop, Ronald E

    2013-12-01

    In humans, the classical antigen presentation function of major histocompatibility complex (MHC) class I molecules is controlled by the human leukocyte antigen HLA -A, HLA-B and HLA-C loci. A similar observation has been made for great apes and Old World monkey species. In contrast, a New World monkey species such as the cotton-top tamarin (Saguinus oedipus) appears to employ the G locus for its classical antigen presentation function. At present, little is known about the classical MHC class I repertoire of the common marmoset (Callithrix jacchus), another New World monkey that is widely used in biomedical research. In the present population study, no evidence has been found for abundant transcription of classical I class genes. However, in each common marmoset, four to seven different G-like alleles were detected, suggesting that the ancestral locus has been subject to expansion. Segregation studies provided evidence for at least two G-like genes present per haplotype, which are transcribed by a variety of cell types. The alleles of these Caja-G genes cluster in separate lineages, suggesting that the loci diversified considerably after duplication. Phylogenetic analyses of the introns confirm that the Caja-G loci cluster in the vicinity of HLA-G, indicating that both genes shared an ancestor. In contrast to HLA-G, Caja-G shows considerable polymorphism at the peptide-binding sites. This observation, together with the lack of detectable transcripts of A and B-like genes, indicates that Caja-G genes have taken over the function of classical class I genes. These data highlight the extreme plasticity of the MHC class I gene system. PMID:24018468

  15. The effects of response cost and response restriction on a multiple-response repertoire with humans

    PubMed Central

    Crosbie, John

    1993-01-01

    In two experiments a multiple-response repertoire of four free-operant responses was developed with university students as subjects using monetary gain as reinforcement. Following baseline, one of the responses was reduced either by making monetary loss contingent upon it (response cost) or by removing it from the repertoire (response restriction). In Experiment 1 a multielement baseline design was employed in which baseline and restriction or response-cost contingencies alternated semirandomly every 3 minutes. In Experiment 2 a reversal design was employed (i.e., baseline, restriction or response cost, then baseline), and each response required a different amount of effort. Both experiments had the following results: (a) The target response decreased substantially; (b) most nontarget responses increased, and the rest remained near their baseline levels; and (c) no support was found for Dunham's hierarchical, most frequent follower, or greatest temporal similarity rules. For several subjects, the least probable responses during baseline increased most, and the most probable responses increased least. Furthermore, in Experiment 2, responses with the lowest frequency of reinforcement increased most (for all 7 subjects), and those with the greatest frequency of reinforcement increased least (for 5 subjects). PMID:16812683

  16. Naturally occurring ERAP1 haplotypes encode functionally distinct alleles with fine substrate specificity.

    PubMed

    Reeves, Emma; Edwards, Christopher J; Elliott, Tim; James, Edward

    2013-07-01

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims peptides for MHC class I presentation, influencing the degree and specificity of CD8(+) T cell responses. Single-nucleotide polymorphisms within the exons encoding ERAP1 are associated with autoimmune diseases and cervical carcinoma, but it is not known whether they act independently or as disease-associated haplotypes. We sequenced ERAP1 from 20 individuals and show that single-nucleotide polymorphisms occur as distinct haplotypes in the human population and that these haplotypes encode functionally distinct ERAP1 alleles. Using a wide range of substrates, we are able to demonstrate that for any given substrate distinct ERAP1 alleles can be "normal," "hypofunctional," or "hyperfunctional" and that each allele has a trend bias toward one of these three activities. Thus, the repertoire of peptides presented at the cell surface for recognition by CTL is likely to depend on the precise combination of both MHC class I and ERAP1 alleles expressed within an individual, and has important implications for predisposition to disease. PMID:23733883

  17. A common allele on chromosome 9 associated with coronary heartdisease

    SciTech Connect

    McPherson, Ruth; Pertsemlidis, Alexander; Kavaslar, Nihan; Stewart, Alexandre; Roberts, Robert; Cox, David R.; Hinds, David; Pennachio, Len; Tybjaerg-Hansen, Anne; Folsom, Aaron R.; Boerwinkle,Eric; Hobbs, Helen H.; Cohen, Jonathan C.

    2007-03-01

    Coronary heart disease (CHD) is a major cause of death in Western countries. Here we used genome-wide association scanning to identify a 58 kb interval on chromosome 9 that was consistently associated with CHD in six independent samples. The interval contains no annotated genes and is not associated with established CHD risk factors such as plasma lipoproteins, hypertension or diabetes. Homozygotes for the risk allele comprise 20-25% of Caucasians and have a {approx}30-40% increased risk of CHD. These data indicate that the susceptibility allele acts through a novel mechanism to increase CHD risk in a large fraction of the population.

  18. Linking experiences with emotions and the development of interpretive repertoires

    NASA Astrophysics Data System (ADS)

    McRae, Norah I.

    2010-03-01

    In this paper I consider the case of one student, Todd Alexander, through analyzing the transcripts of his interviews between him and his teacher (Wolff-Michael Roth). I examine the role that emotions play in the development of the interpretive repertoires that Todd employed as he talked about his scientific and his religious beliefs. I identify how lived experiences support the development of emotions and what educational conditions are necessary to allow for appropriate lived experiences. In so doing we might be able to support educational conditions that result in interpretive repertoires that allow for acceptance of multiple perspectives with a moral grounding, leading to students who are well positioned to be valuable contributors to society.

  19. High-throughput sequencing of immune repertoires in multiple sclerosis.

    PubMed

    Lossius, Andreas; Johansen, Jorunn N; Vartdal, Frode; Holmøy, Trygve

    2016-04-01

    T cells and B cells are crucial in the initiation and maintenance of multiple sclerosis (MS), and the activation of these cells is believed to be mediated through specific recognition of antigens by the T- and B-cell receptors. The antigen receptors are highly polymorphic due to recombination (T- and B-cell receptors) and mutation (B-cell receptors) of the encoding genes, which can therefore be used as fingerprints to track individual T- and B-cell clones. Such studies can shed light on mechanisms driving the immune responses and provide new insights into the pathogenesis. Here, we summarize studies that have explored the T- and B-cell receptor repertoires using earlier methodological approaches, and we focus on how high-throughput sequencing has provided new knowledge by surveying the immune repertoires in MS in even greater detail and with unprecedented depth. PMID:27081660

  20. Highly sensitive and unbiased approach for elucidating antibody repertoires.

    PubMed

    Lin, Sherry G; Ba, Zhaoqing; Du, Zhou; Zhang, Yu; Hu, Jiazhi; Alt, Frederick W

    2016-07-12

    Developing B lymphocytes undergo V(D)J recombination to assemble germ-line V, D, and J gene segments into exons that encode the antigen-binding variable region of Ig heavy (H) and light (L) chains. IgH and IgL chains associate to form the B-cell receptor (BCR), which, upon antigen binding, activates B cells to secrete BCR as an antibody. Each of the huge number of clonally independent B cells expresses a unique set of IgH and IgL variable regions. The ability of V(D)J recombination to generate vast primary B-cell repertoires results from a combinatorial assortment of large numbers of different V, D, and J segments, coupled with diversification of the junctions between them to generate the complementary determining region 3 (CDR3) for antigen contact. Approaches to evaluate in depth the content of primary antibody repertoires and, ultimately, to study how they are further molded by secondary mutation and affinity maturation processes are of great importance to the B-cell development, vaccine, and antibody fields. We now describe an unbiased, sensitive, and readily accessible assay, referred to as high-throughput genome-wide translocation sequencing-adapted repertoire sequencing (HTGTS-Rep-seq), to quantify antibody repertoires. HTGTS-Rep-seq quantitatively identifies the vast majority of IgH and IgL V(D)J exons, including their unique CDR3 sequences, from progenitor and mature mouse B lineage cells via the use of specific J primers. HTGTS-Rep-seq also accurately quantifies DJH intermediates and V(D)J exons in either productive or nonproductive configurations. HTGTS-Rep-seq should be useful for studies of human samples, including clonal B-cell expansions, and also for following antibody affinity maturation processes. PMID:27354528

  1. Registration of TIL:383.13, TIL:625 and TIL:634, three long grain tropical Japonica Rice (Oryza sativa L.) germplasm lines containing novel Indica Alleles that increase tiller production and grain yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    These three breeding lines were from a set of 123 progeny lines that were released by the USDA-ARS in 2012 as a mapping population. Chromosomal regions containing genes for increased tiller number under greenhouse conditions were subsequently identified in this population. We used the molecular an...

  2. Impact of clonal competition for peptide-MHC complexes on the CD8[superscript +] T-cell repertoire selection in a persistent viral infection

    SciTech Connect

    Wynn, Katherine K.; Fulton, Zara; Cooper, Leanne; Silins, Sharon L.; Gras, Stephanie; Archbold, Julia K.; Tynan, Fleur E.; Miles, John J.; McCluskey, James; Burrows, Scott R.; Rossjohn, Jamie; Khanna, Rajiv

    2008-04-29

    CD8{sup +} T-cell responses to persistent viral infections are characterized by the accumulation of an oligoclonal T-cell repertoire and a reduction in the naive T-cell pool. However, the precise mechanism for this phenomenon remains elusive. Here we show that human cytomegalovirus (HCMV)-specific CD8{sup +} T cells recognizing distinct epitopes from the pp65 protein and restricted through an identical HLA class I allele (HLA B*3508) exhibited either a highly conserved public T-cell repertoire or a private, diverse T-cell response, which was uniquely altered in each donor following in vitro antigen exposure. Selection of a public T-cell receptor (TCR) was coincident with an atypical major histocompatibility complex (MHC)-peptide structure, in that the epitope adopted a helical conformation that bulged from the peptide-binding groove, while a diverse TCR profile was observed in response to the epitope that formed a flatter, more 'featureless' landscape. Clonotypes with biased TCR usage demonstrated more efficient recognition of virus-infected cells, a greater CD8 dependency, and were more terminally differentiated in their phenotype when compared with the T cells expressing diverse TCR. These findings provide new insights into our understanding on how the biology of antigen presentation in addition to the structural features of the pMHC-I might shape the T-cell repertoire and its phenotype.

  3. Unifying model for molecular determinants of the preselection Vβ repertoire.

    PubMed

    Gopalakrishnan, Suhasni; Majumder, Kinjal; Predeus, Alexander; Huang, Yue; Koues, Olivia I; Verma-Gaur, Jiyoti; Loguercio, Salvatore; Su, Andrew I; Feeney, Ann J; Artyomov, Maxim N; Oltz, Eugene M

    2013-08-20

    The primary antigen receptor repertoire is sculpted by the process of V(D)J recombination, which must strike a balance between diversification and favoring gene segments with specialized functions. The precise determinants of how often gene segments are chosen to complete variable region coding exons remain elusive. We quantified Vβ use in the preselection Tcrb repertoire and report relative contributions of 13 distinct features that may shape their recombination efficiencies, including transcription, chromatin environment, spatial proximity to their DβJβ targets, and predicted quality of recombination signal sequences (RSSs). We show that, in contrast to functional Vβ gene segments, all pseudo-Vβ segments are sequestered in transcriptionally silent chromatin, which effectively suppresses wasteful recombination. Importantly, computational analyses provide a unifying model, revealing a minimum set of five parameters that are predictive of Vβ use, dominated by chromatin modifications associated with transcription, but largely independent of precise spatial proximity to DβJβ clusters. This learned model-building strategy may be useful in predicting the relative contributions of epigenetic, spatial, and RSS features in shaping preselection V repertoires at other antigen receptor loci. Ultimately, such models may also predict how designed or naturally occurring alterations of these loci perturb the preselection use of variable gene segments. PMID:23918392

  4. A robust pipeline for rapid production of versatile nanobody repertoires

    PubMed Central

    Fridy, Peter C.; Li, Yinyin; Keegan, Sarah; Thompson, Mary K.; Nudelman, Ilona; Scheid, Johannes F.; Oeffinger, Marlene; Nussenzweig, Michel C.; Fenyö, David; Chait, Brian T.; Rout, Michael P.

    2014-01-01

    Nanobodies are single domain antibodies derived from the variable regions of Camelidae atypical immunoglobulins. They show great promise as high affinity reagents for research, diagnostics and therapeutics due to their high specificity, small size (~15 kDa) and straightforward bacterial expression. However, identification of repertoires with sufficiently high affinity has proven time consuming and difficult, hampering nanobody implementation. Here, we present a rapid, straightforward approach that generates large repertoires of readily expressible recombinant nanobodies with high affinities and specificities against a given antigen. We demonstrate the efficacy of this approach through the production of large repertoires of nanobodies against two antigens, GFP and mCherry, with Kd values into the sub-nanomolar range. After mapping diverse epitopes on GFP, we were also able to design ultra-high affinity dimeric nanobodies with Kds down to ~30 pM. The approach presented is well-suited for the routine production of high affinity capture reagents for various biomedical applications. PMID:25362362

  5. Trade-offs in antibody repertoires to complex antigens

    PubMed Central

    Childs, Lauren M.; Baskerville, Edward B.; Cobey, Sarah

    2015-01-01

    Pathogens vary in their antigenic complexity. While some pathogens such as measles present a few relatively invariant targets to the immune system, others such as malaria display considerable antigenic diversity. How the immune response copes in the presence of multiple antigens, and whether a trade-off exists between the breadth and efficacy of antibody (Ab)-mediated immune responses, are unsolved problems. We present a theoretical model of affinity maturation of B-cell receptors (BCRs) during a primary infection and examine how variation in the number of accessible antigenic sites alters the Ab repertoire. Naive B cells with randomly generated receptor sequences initiate the germinal centre (GC) reaction. The binding affinity of a BCR to an antigen is quantified via a genotype–phenotype map, based on a random energy landscape, that combines local and distant interactions between residues. In the presence of numerous antigens or epitopes, B-cell clones with different specificities compete for stimulation during rounds of mutation within GCs. We find that the availability of many epitopes reduces the affinity and relative breadth of the Ab repertoire. Despite the stochasticity of somatic hypermutation, patterns of immunodominance are strongly shaped by chance selection of naive B cells with specificities for particular epitopes. Our model provides a mechanistic basis for the diversity of Ab repertoires and the evolutionary advantage of antigenically complex pathogens. PMID:26194759

  6. Effective marker alleles associated with type 2 resistance to Fusarium head blight infection in fields

    PubMed Central

    Li, Tao; Luo, Meng; Zhang, Dadong; Wu, Di; Li, Lei; Bai, Guihua

    2016-01-01

    Molecular markers associated with known quantitative trait loci (QTLs) for type 2 resistance to Fusarium head blight (FHB) in bi-parental mapping population usually have more than two alleles in breeding populations. Therefore, understanding the association of each allele with FHB response is particularly important to marker-assisted enhancement of FHB resistance. In this paper, we evaluated FHB severities of 192 wheat accessions including landraces and commercial varieties in three field growing seasons, and genotyped this panel with 364 genome-wide informative molecular markers. Among them, 11 markers showed reproducible marker-trait association (p < 0.05) in at least two experiments using a mixed model. More than two alleles were identified per significant marker locus. These alleles were classified into favorable, unfavorable and neutral alleles according to the normalized genotypic values. The distributions of effective alleles at these loci in each wheat accession were characterized. Mean FHB severities increased with decreased number of favorable alleles at the reproducible loci. Chinese wheat landraces and Japanese accessions have more favorable alleles at the majority of the reproducible marker loci. FHB resistance levels of varieties can be greatly improved by introduction of these favorable alleles and removal of unfavorable alleles simultaneously at these QTL-linked marker loci. PMID:27436944

  7. Strategies for B-Cell Receptor Repertoire Analysis in Primary Immunodeficiencies: From Severe Combined Immunodeficiency to Common Variable Immunodeficiency

    PubMed Central

    IJspeert, Hanna; Wentink, Marjolein; van Zessen, David; Driessen, Gertjan J.; Dalm, Virgil A. S. H.; van Hagen, Martin P.; Pico-Knijnenburg, Ingrid; Simons, Erik J.; van Dongen, Jacques J. M.; Stubbs, Andrew P.; van der Burg, Mirjam

    2015-01-01

    The antigen receptor repertoires of B- and T-cells form the basis of the adaptive immune response. The repertoires should be sufficiently diverse to recognize all possible pathogens. However, careful selection is needed to prevent responses to self or harmless antigens. Limited antigen receptor repertoire diversity leads to immunodeficiency, whereas unselected or misdirected repertoires can result in autoimmunity. The antigen receptor repertoire harbors information about abnormalities in many immunological disorders. Recent developments in next generation sequencing allow the analysis of the antigen receptor repertoire in much greater detail than ever before. Analyzing the antigen receptor repertoire in patients with mutations in genes responsible for the generation of the antigen receptor repertoire will give new insights into repertoire formation and selection. In this perspective, we describe strategies and considerations for analysis of the naive and antigen-selected B-cell repertoires in primary immunodeficiency patients with a focus on severe combined immunodeficiency and common variable immunodeficiency. PMID:25904919

  8. Allele surfing promotes microbial adaptation from standing variation.

    PubMed

    Gralka, Matti; Stiewe, Fabian; Farrell, Fred; Möbius, Wolfram; Waclaw, Bartlomiej; Hallatschek, Oskar

    2016-08-01

    The coupling of ecology and evolution during range expansions enables mutations to establish at expanding range margins and reach high frequencies. This phenomenon, called allele surfing, is thought to have caused revolutions in the gene pool of many species, most evidently in microbial communities. It has remained unclear, however, under which conditions allele surfing promotes or hinders adaptation. Here, using microbial experiments and simulations, we show that, starting with standing adaptive variation, range expansions generate a larger increase in mean fitness than spatially uniform population expansions. The adaptation gain results from 'soft' selective sweeps emerging from surfing beneficial mutations. The rate of these surfing events is shown to sensitively depend on the strength of genetic drift, which varies among strains and environmental conditions. More generally, allele surfing promotes the rate of adaptation per biomass produced, which could help developing biofilms and other resource-limited populations to cope with environmental challenges. PMID:27307400

  9. Allele Specific p53 Mutant Reactivation

    PubMed Central

    Yu, Xin; Vazquez, Alexei; Levine, Arnold J.; Carpizo, Darren R.

    2012-01-01

    Summary Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Using the NCI anticancer drug screen data, we identified two compounds from the thiosemicarbazone family that manifest increased growth inhibitory activity in mutant p53 cells, particularly for the p53R175 mutant. Mechanistic studies reveal that NSC319726 restores WT structure and function to the p53R175 mutant. This compound kills p53R172H knock-in mice with extensive apoptosis and inhibits xenograft tumor growth in a 175-allele specific mutant p53 dependent manner. This activity depends upon the zinc ion chelating properties of the compound as well as redox changes. These data identify NSC319726 as a p53R175 mutant reactivator and as a lead compound for p53 targeted drug development. PMID:22624712

  10. Allele-specific DNA methylation reinforces PEAR1 enhancer activity.

    PubMed

    Izzi, Benedetta; Pistoni, Mariaelena; Cludts, Katrien; Akkor, Pinar; Lambrechts, Diether; Verfaillie, Catherine; Verhamme, Peter; Freson, Kathleen; Hoylaerts, Marc F

    2016-08-18

    Genetic variation in the PEAR1 locus is linked to platelet reactivity and cardiovascular disease. The major G allele of rs12041331, an intronic cytosine guanine dinucleotide-single-nucleotide polymorphism (CpG-SNP), is associated with higher PEAR1 expression in platelets and endothelial cells than the minor A allele. The molecular mechanism underlying this difference remains elusive. We have characterized the histone modification profiles of the intronic region surrounding rs12041331 and identified H3K4Me1 enhancer-specific enrichment for the region that covers the CpG-SNP. Interestingly, methylation studies revealed that the CpG site is fully methylated in leukocytes of GG carriers. Nuclear protein extracts from megakaryocytes, endothelial cells, vs control HEK-293 cells show a 3-fold higher affinity for the methylated G allele compared with nonmethylated G or A alleles in a gel electrophoretic mobility shift assay. To understand the positive relationship between methylation and gene expression, we studied DNA methylation at 4 different loci of PEAR1 during in vitro megakaryopoiesis. During differentiation, the CpG-SNP remained fully methylated, while we observed rapid methylation increases at the CpG-island overlapping the first 5'-untranslated region exon, paralleling the increased PEAR1 expression. In the same region, A-allele carriers of rs12041331 showed significantly lower DNA methylation at CGI1 compared with GG homozygote. This CpG-island contains binding sites for the methylation-sensitive transcription factor CTCF, whose binding is known to play a role in enhancer activation and/or repression. In conclusion, we report the molecular characterization of the first platelet function-related CpG-SNP, a genetic predisposition that reinforces PEAR1 enhancer activity through allele-specific DNA methylation. PMID:27313330

  11. Functional NK cell repertoires are maintained through IL-2Rα and FasL

    PubMed Central

    Felices, Martin; Lenvik, Todd R.; Ankarlo, Dave E.M.; Foley, Bree; Curtsinger, Julie; Luo, Xianghua; Blazar, Bruce R.; Anderson, Stephen K.; Miller, Jeffrey S.

    2014-01-01

    Acquisition of a functional natural killer (NK) cell repertoire, known as education or licensing, is a complex process mediated through inhibitory receptors that recognize self. We found that NK cells containing self-killer immunoglobulin-like receptors (KIR) for cognate HLA-ligand in vivo were less susceptible to apoptosis. In vitro IL-15 withdrawal showed that uneducated NK cells upregulated Bim and Fas. Conversely, educated NK cells upregulated FasL under these conditions. Induction of cell death and Bim expression on uneducated cells correlated with increased IL-2Rα expression. Overexpression and knockdown studies showed that higher IL-2Rα limits NK cell survival in a novel manner that is independent from the role of IL-2 in activation induced cell death (AICD). To study the role of FasL in induction of IL-2Rαhi NK cell death, a co-culture assay with FasL blocking antibodies was used. IL-15 withdrawal led to FasL dependent killing of IL-2Rαhi NK cells by more educated IL-2Rαlo NK cells. Finally, CMV reactivation induces a potent long-lasting population of licensed NK cells with enhanced survival. These findings show education dependent NK cell survival advantages and killing of uneducated NK result in the maintenance of a functional repertoire, which may be manipulated to exploit NK cells for cancer immunotherapy. PMID:24634493

  12. Allele-specific disparity in breast cancer

    PubMed Central

    2011-01-01

    Background In a cancer cell the number of copies of a locus may vary due to amplification and deletion and these variations are denoted as copy number alterations (CNAs). We focus on the disparity of CNAs in tumour samples, which were compared to those in blood in order to identify the directional loss of heterozygosity. Methods We propose a numerical algorithm and apply it to data from the Illumina 109K-SNP array on 112 samples from breast cancer patients. B-allele frequency (BAF) and log R ratio (LRR) of Illumina were used to estimate Euclidian distances. For each locus, we compared genotypes in blood and tumour for subset of samples being heterozygous in blood. We identified loci showing preferential disparity from heterozygous toward either the A/B-allele homozygous (allelic disparity). The chi-squared and Cochran-Armitage trend tests were used to examine whether there is an association between high levels of disparity in single nucleotide polymorphisms (SNPs) and molecular, clinical and tumour-related parameters. To identify pathways and network functions over-represented within the resulting gene sets, we used Ingenuity Pathway Analysis (IPA). Results To identify loci with a high level of disparity, we selected SNPs 1) with a substantial degree of disparity and 2) with substantial frequency (at least 50% of the samples heterozygous for the respective locus). We report the overall difference in disparity in high-grade tumours compared to low-grade tumours (p-value < 0.001) and significant associations between disparity in multiple single loci and clinical parameters. The most significantly associated network functions within the genes represented in the loci of disparity were identified, including lipid metabolism, small-molecule biochemistry, and nervous system development and function. No evidence for over-representation of directional disparity in a list of stem cell genes was obtained, however genes appeared to be more often altered by deletion than by

  13. Evaluation of TCR repertoire diversity in patients after hematopoietic stem cell transplantation

    PubMed Central

    Xu, Ling

    2015-01-01

    T-cell receptor (TCR) repertoire analyses have been widely used to identify T cell populations of interest in cancer and autoimmunity and for characterizing immune repertoire reconstitution after hematopoietic stem cell transplantation (HSCT). Several decades of development and progress have led to the use of techniques for evaluating TCR repertoires in a more comprehensive, unbiased and fast manner, and the mechanisms of T cell immune reconstitution after HSCT and the new approaches used for recovering T cell repertoire diversity post HSCT have been more exhaustively documented to some degree. To better understand and characterize this progress, here we review recent studies on TCR repertoire diversity recovery in patients with leukemia and autoimmune disease who have received HSCT, impact factors and improvements in approaches for TCR repertoire recovery after HSCT.

  14. The porcine antibody repertoire: variations on the textbook theme.

    PubMed

    Butler, John E; Wertz, Nancy

    2012-01-01

    The genes encoding the heavy and light chains of swine antibodies are organized in the same manner as in other eutherian mammals. There are ∼30 VH genes, two functional DH genes and one functional JH gene, 14-60 Vκ genes, 5 Jκ segments, 12-13 functional Vλ genes, and two functional Jλ genes. The heavy chain constant regions encode the same repertoire of isotypes common to other eutherian mammals. The piglet models offers advantage over rodent models since the fetal repertoire develops without maternal influences and the precocial nature of their multiple offspring allows the experimenter to control the influences of environmental and maternal factors on repertoire development postnatally. B cell lymphogenesis in swine begins in the fetal yolk sac at 20 days of gestation (DG), moves to the fetal liver at 30 DG and eventually to the bone marrow which dominates until birth (114 DG) and to at least 5 weeks postpartum. There is no evidence that the ileal Peyers patches are a site of B cell lymphogenesis or are required for B cell maintenance. Unlike rodents and humans, light chain rearrangement begins first in the lambda locus; kappa rearrangements are not seen until late gestation. Dissimilar to lab rodents and more in the direction of the rabbit, swine utilize a small number of VH genes to form >90% of their pre-immune repertoire. Diversification in response to environmental antigen does not alter this pattern and is achieved by somatic hypermutation (SHM) of the same small number of VH genes. The situation for light chains is less well studied, but certain Vκ and Jκ and Vλ and Jλ are dominant in transcripts and in contrast to rearranged heavy chains, there is little junctional diversity, less SHM, and mutations are not concentrated in CDR regions. The transcribed and secreted pre-immune antibodies of the fetus include mainly IgM, IgA, and IgG3; this last isotype may provide a type of first responder mucosal immunity. Development of functional

  15. panhandling repertoires and routines for overcoming the nonperson treatment

    PubMed Central

    Lankenau, Stephen E.

    2007-01-01

    In this article, I present panhandling as a dynamic undertaking that requires conscious actions and purposeful modifications of self, performances, and emotions to gain the attention and interest of passersby. I show that describing and theorizing panhandling in terms of dramaturgical routines is useful in understanding the interactions and exchanges that constitute panhandling. In addition, repertoires rightly portray panhandlers as agents engaging the social world rather than as passive social types. From this perspective, sidewalks serve as stages on which panhandlers confront and overcome various forms of the nonperson treatment. The research is based on a street ethnography of homeless panhandlers living in Washington, DC. PMID:17541452

  16. Sex differences in the JAK2V617F allele burden in chronic myeloproliferative disorders

    PubMed Central

    Stein, Brady L.; Williams, Donna M.; Wang, Nae-Yuh; Rogers, Ophelia; Isaacs, Mary Ann; Pemmaraju, Naveen; Spivak, Jerry L.; Moliterno, Alison R.

    2010-01-01

    Background The JAK2V617F allele burden is a variable measure, determined by the frequency of mitotic recombination events and the expansion of JAK2V617F clones. Since variability in the JAK2V617F allele burden is partly responsible for the distinct phenotypes seen in the myeloproliferative disorders, the objective of this study was to identify modifiers of the allele burden. Design and Methods Blood samples were obtained between May 2005 and January 2009 from 272 patients with essential thrombocytosis, polycythemia vera, and myelofibrosis. The JAK2V617F allele burden was measured by an allele-specific quantitative polymerase chain reaction using DNA from purified neutrophils. Repeated measures, on average 2 years apart, were available for 104 patients. Results Sex, age at diagnosis, and disease duration all independently influenced the JAK2V617F allele burden. When considering all patients with myeloproliferative disorders, women had significantly lower allele burdens than men (P=0.04). In those patients with repeated measures, the increase in allele burden per year between the first and second evaluations was significantly less in females than in males. Among those who experienced disease evolution, females were 4.5 times more likely to have evolution from essential thrombocytosis to polycythemia vera, but 0.23 times as likely to have evolution from essential thrombocytosis to myelofibrosis. Conclusions Sex is an independent factor accounting for variability in the JAK2V617F allele burden. We speculate that lower allele burdens in females reflect a lower frequency of mitotic recombination events in females than in males, and should be considered when evaluating the relationship of allele burden to disease phenotype and also in evaluating responses to JAK2V617F-inhibitors. Because sex may influence genotype and/or clonal expansion, underpinning the variability in JAK2V617F allele burden, it will be important to explore factors that determine susceptibility to

  17. Rare HLA Drive Additional HIV Evolution Compared to More Frequent Alleles

    PubMed Central

    Lockhart, David W.; Listgarten, Jennifer; Maley, Stephen N.; Kadie, Carl; Learn, Gerald H.; Nickle, David C.; Heckerman, David E.; Deng, Wenjie; Brander, Christian; Ndung'u, Thumbi; Coovadia, Hoosen; Goulder, Philip J.R.; Korber, Bette T.; Walker, Bruce D.; Mullins, James I.

    2009-01-01

    Abstract HIV-1 can evolve HLA-specific escape variants in response to HLA-mediated cellular immunity. HLA alleles that are common in the host population may increase the frequency of such escape variants at the population level. When loss of viral fitness is caused by immune escape variation, these variants may revert upon infection of a new host who does not have the corresponding HLA allele. Furthermore, additional escape variants may appear in response to the nonconcordant HLA alleles. Because individuals with rare HLA alleles are less likely to be infected by a partner with concordant HLA alleles, viral populations infecting hosts with rare HLA alleles may undergo a greater amount of evolution than those infecting hosts with common alleles due to the loss of preexisting escape variants followed by new immune escape. This hypothesis was evaluated using maximum likelihood phylogenetic trees of each gene from 272 full-length HIV-1 sequences. Recent viral evolution, as measured by the external branch length, was found to be inversely associated with HLA frequency in nef (p < 0.02), env (p < 0.03), and pol (p ≤ 0.05), suggesting that rare HLA alleles provide a disproportionate force driving viral evolution compared to common alleles, likely due to the loss of preexisting escape variants during early stages postinfection. PMID:19327049

  18. Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions

    PubMed Central

    Solbakken, Monica H.; Tørresen, Ole K.; Nederbragt, Alexander J.; Seppola, Marit; Gregers, Tone F.; Jakobsen, Kjetill S.; Jentoft, Sissel

    2016-01-01

    Genome sequencing of the teleost Atlantic cod demonstrated loss of the Major Histocompatibility Complex (MHC) class II, an extreme gene expansion of MHC class I and gene expansions and losses in the innate pattern recognition receptor (PRR) family of Toll-like receptors (TLR). In a comparative genomic setting, using an improved version of the genome, we characterize PRRs in Atlantic cod with emphasis on TLRs demonstrating the loss of TLR1/6, TLR2 and TLR5 and expansion of TLR7, TLR8, TLR9, TLR22 and TLR25. We find that Atlantic cod TLR expansions are strongly influenced by diversifying selection likely to increase the detectable ligand repertoire through neo- and subfunctionalization. Using RNAseq we find that Atlantic cod TLRs display likely tissue or developmental stage-specific expression patterns. In a broader perspective, a comprehensive vertebrate TLR phylogeny reveals that the Atlantic cod TLR repertoire is extreme with regards to losses and expansions compared to other teleosts. In addition we identify a substantial shift in TLR repertoires following the evolutionary transition from an aquatic vertebrate (fish) to a terrestrial (tetrapod) life style. Collectively, our findings provide new insight into the function and evolution of TLRs in Atlantic cod as well as the evolutionary history of vertebrate innate immunity. PMID:27126702

  19. Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions.

    PubMed

    Solbakken, Monica H; Tørresen, Ole K; Nederbragt, Alexander J; Seppola, Marit; Gregers, Tone F; Jakobsen, Kjetill S; Jentoft, Sissel

    2016-01-01

    Genome sequencing of the teleost Atlantic cod demonstrated loss of the Major Histocompatibility Complex (MHC) class II, an extreme gene expansion of MHC class I and gene expansions and losses in the innate pattern recognition receptor (PRR) family of Toll-like receptors (TLR). In a comparative genomic setting, using an improved version of the genome, we characterize PRRs in Atlantic cod with emphasis on TLRs demonstrating the loss of TLR1/6, TLR2 and TLR5 and expansion of TLR7, TLR8, TLR9, TLR22 and TLR25. We find that Atlantic cod TLR expansions are strongly influenced by diversifying selection likely to increase the detectable ligand repertoire through neo- and subfunctionalization. Using RNAseq we find that Atlantic cod TLRs display likely tissue or developmental stage-specific expression patterns. In a broader perspective, a comprehensive vertebrate TLR phylogeny reveals that the Atlantic cod TLR repertoire is extreme with regards to losses and expansions compared to other teleosts. In addition we identify a substantial shift in TLR repertoires following the evolutionary transition from an aquatic vertebrate (fish) to a terrestrial (tetrapod) life style. Collectively, our findings provide new insight into the function and evolution of TLRs in Atlantic cod as well as the evolutionary history of vertebrate innate immunity. PMID:27126702

  20. Characterization of the Sortase Repertoire in Bacillus anthracis

    PubMed Central

    Fouet, Agnès

    2011-01-01

    LPXTG proteins, present in most if not all Gram-positive bacteria, are known to be anchored by sortases to the bacterial peptidoglycan. More than one sortase gene is often encoded in a bacterial species, and each sortase is supposed to specifically anchor given LPXTG proteins, depending of the sequence of the C-terminal cell wall sorting signal (cwss), bearing an LPXTG motif or another recognition sequence. B. anthracis possesses three sortase genes. B. anthracis sortase deleted mutant strains are not affected in their virulence. To determine the sortase repertoires, we developed a genetic screen using the property of the gamma phage to lyse bacteria only when its receptor, GamR, an LPXTG protein, is exposed at the surface. We identified 10 proteins that contain a cell wall sorting signal and are covalently anchored to the peptidoglycan. Some chimeric proteins yielded phage lysis in all sortase mutant strains, suggesting that cwss proteins remained surface accessible in absence of their anchoring sortase, probably as a consequence of membrane localization of yet uncleaved precursor proteins. For definite assignment of the sortase repertoires, we consequently relied on a complementary test, using a biochemical approach, namely immunoblot experiments. The sortase anchoring nine of these proteins has thus been determined. The absence of virulence defect of the sortase mutants could be a consequence of the membrane localization of the cwss proteins. PMID:22076158

  1. Evolving a Behavioral Repertoire for a Walking Robot.

    PubMed

    Cully, A; Mouret, J-B

    2016-01-01

    Numerous algorithms have been proposed to allow legged robots to learn to walk. However, most of these algorithms are devised to learn walking in a straight line, which is not sufficient to accomplish any real-world mission. Here we introduce the Transferability-based Behavioral Repertoire Evolution algorithm (TBR-Evolution), a novel evolutionary algorithm that simultaneously discovers several hundreds of simple walking controllers, one for each possible direction. By taking advantage of solutions that are usually discarded by evolutionary processes, TBR-Evolution is substantially faster than independently evolving each controller. Our technique relies on two methods: (1) novelty search with local competition, which searches for both high-performing and diverse solutions, and (2) the transferability approach, which combines simulations and real tests to evolve controllers for a physical robot. We evaluate this new technique on a hexapod robot. Results show that with only a few dozen short experiments performed on the robot, the algorithm learns a repertoire of controllers that allows the robot to reach every point in its reachable space. Overall, TBR-Evolution introduced a new kind of learning algorithm that simultaneously optimizes all the achievable behaviors of a robot. PMID:25585055

  2. Balancing immunity and tolerance: deleting and tuning lymphocyte repertoires.

    PubMed Central

    Goodnow, C C

    1996-01-01

    Immunological self-tolerance is ensured by eliminating or inhibiting self-reactive lymphocyte clones, creating physical or functional holes in the B- and T-lymphocyte antigen receptor repertoires. The nature and size of these gaps in our immune defenses must be balanced against the necessity of mounting rapid immune responses to an everchanging array of foreign pathogens. To achieve this balance, only a fraction of particularly hazardous self-reactive clones appears to be physically eliminated from the repertoire in a manner that fully prevents their recruitment into an antimicrobial immune response. Many self-reactive cells are retained with a variety of conditional and potentially flexible restraints: (i) their ability to be triggered by antigen is diminished by mechanisms that tune down signaling by their antigen receptors, (ii) their ability to carry out inflammatory effector functions can be inhibited, and (iii) their capacity to migrate and persist is constrained. This balance between tolerance and immunity can be shifted, altering susceptibility to autoimmune disease and to infection by genetic or environmental differences either in the way antigens are presented, in the tuning molecules that adjust triggering set points for lymphocyte responses to antigen, or in the effector molecules that eliminate, retain, or expand particular clones. Images Fig. 1 Fig. 2 PMID:8637861

  3. The mimetic repertoire of the spotted bowerbird Ptilonorhynchus maculatus

    NASA Astrophysics Data System (ADS)

    Kelley, Laura A.; Healy, Susan D.

    2011-06-01

    Although vocal mimicry in songbirds is well documented, little is known about the function of such mimicry. One possibility is that the mimic produces the vocalisations of predatory or aggressive species to deter potential predators or competitors. Alternatively, these sounds may be learned in error as a result of their acoustic properties such as structural simplicity. We determined the mimetic repertoires of a population of male spotted bowerbirds Ptilonorhynchus maculatus, a species that mimics predatory and aggressive species. Although male mimetic repertoires contained an overabundance of vocalisations produced by species that were generally aggressive, there was also a marked prevalence of mimicry of sounds that are associated with alarm such as predator calls, alarm calls and mobbing calls, irrespective of whether the species being mimicked was aggressive or not. We propose that it may be the alarming context in which these sounds are first heard that may lead both to their acquisition and to their later reproduction. We suggest that enhanced learning capability during acute stress may explain vocal mimicry in many species that mimic sounds associated with alarm.

  4. The Role of Atomic Repertoires in Complex Behavior

    PubMed Central

    Palmer, David C

    2012-01-01

    Evolution and reinforcement shape adaptive forms and adaptive behavior through many cycles of blind variation and selection, and therein lie their parsimony and power. Human behavior is distinctive in that this shaping process is commonly “short circuited”: Critical variations are induced in a single trial. The processes by which this economy is accomplished have a common feature: They all exploit one or more atomic repertoires, elementary units of behavior each under control of a distinctive stimulus. By appropriate arrangements of these discriminative stimuli, an indefinite number of permutations of atomic units can be evoked. When such a permutation satisfies a second contingency, it can come under control of the relevant context, and the explicit arrangement of discriminative stimuli will no longer be required. Consequently, innovations in adaptive behavior can spread rapidly through the population. A consideration of atomic repertoires informs our interpretation of generalized operants and other phenomena that are otherwise difficult to explain. Observational learning is discussed as a case in point. PMID:22942536

  5. Systematic Characterization and Comparative Analysis of the Rabbit Immunoglobulin Repertoire

    PubMed Central

    Lavinder, Jason J.; Hoi, Kam Hon; Reddy, Sai T.; Wine, Yariv; Georgiou, George

    2014-01-01

    Rabbits have been used extensively as a model system for the elucidation of the mechanism of immunoglobulin diversification and for the production of antibodies. We employed Next Generation Sequencing to analyze Ig germline V and J gene usage, CDR3 length and amino acid composition, and gene conversion frequencies within the functional (transcribed) IgG repertoire of the New Zealand white rabbit (Oryctolagus cuniculus). Several previously unannotated rabbit heavy chain variable (VH) and light chain variable (VL) germline elements were deduced bioinformatically using multidimensional scaling and k-means clustering methods. We estimated the gene conversion frequency in the rabbit at 23% of IgG sequences with a mean gene conversion tract length of 59±36 bp. Sequencing and gene conversion analysis of the chicken, human, and mouse repertoires revealed that gene conversion occurs much more extensively in the chicken (frequency 70%, tract length 79±57 bp), was observed to a small, yet statistically significant extent in humans, but was virtually absent in mice. PMID:24978027

  6. In silico analysis of the cyclophilin repertoire of apicomplexan parasites

    PubMed Central

    Krücken, Jürgen; Greif, Gisela; von Samson-Himmelstjerna, Georg

    2009-01-01

    Background Cyclophilins (Cyps) are peptidyl cis/trans isomerases implicated in diverse processes such as protein folding, signal transduction, and RNA processing. They are also candidate drug targets, in particular for the immunosuppressant cyclosporine A. In addition, cyclosporine is known to exhibit anti-parasitic effects on a wide range of organisms including several apicomplexa. In order to obtain new non-immunosuppressive drugs targeting apicomplexan cyclophilins, a profound knowledge of the cyclophilin repertoire of this phylum would be necessary. Results BLAST and maximum likelihood analyses identified 16 different cyclophilin subfamilies within the genomes of Cryptosporidium hominis, Toxoplasma gondii, Plasmodium falciparum, Theileria annulata, Theileria parva, and Babesia bovis. In addition to good statistical support from the phylogenetic analysis, these subfamilies are also confirmed by comparison of cyclophilin domain architecture. Within an individual genome, the number of different Cyp genes that could be deduced varies between 7–9 for Cryptosporidia and 14 for T. gondii. Many of the putative apicomplexan cyclophilins are predicted to be nuclear proteins, most of them presumably involved in RNA processing. Conclusion The genomes of apicomplexa harbor a cyclophilin repertoire that is at least as complex as that of most fungi. The identification of Cyp subfamilies that are specific for lower eukaryotes, apicomplexa, or even the genus Plasmodium is of particular interest since these subfamilies are not present in host cells and might therefore represent attractive drug targets. PMID:19555495

  7. Null allele, allelic dropouts or rare sex detection in clonal organisms: simulations and application to real data sets of pathogenic microbes

    PubMed Central

    2014-01-01

    Background Pathogens and their vectors are organisms whose ecology is often only accessible through population genetics tools based on spatio-temporal variability of molecular markers. However, molecular tools may present technical difficulties due to the masking of some alleles (allelic dropouts and/or null alleles), which tends to bias the estimation of heterozygosity and thus the inferences concerning the breeding system of the organism under study. This is especially critical in clonal organisms in which deviation from panmixia, as measured by Wright’s FIS, can, in principle, be used to infer both the extent of clonality and structure in a given population. In particular, null alleles and allelic dropouts are locus specific and likely produce high variance of Wright’s FIS across loci, as rare sex is expected to do. In this paper we propose a tool enabling to discriminate between consequences of these technical problems and those of rare sex. Methods We have performed various simulations of clonal and partially clonal populations. We introduce allelic dropouts and null alleles in clonal data sets and compare the results with those that exhibit increasing rates of sexual recombination. We use the narrow relationship that links Wright’s FIS to genetic diversity in purely clonal populations as assessment criterion, since this relationship disappears faster with sexual recombination than with amplification problems of certain alleles. Results We show that the relevance of our criterion for detecting poorly amplified alleles depends partly on the population structure, the level of homoplasy and/or mutation rate. However, the interpretation of data becomes difficult when the number of poorly amplified alleles is above 50%. The application of this method to reinterpret published data sets of pathogenic clonal microbes (yeast and trypanosomes) confirms its usefulness and allows refining previous estimates concerning important pathogenic agents. Conclusion Our

  8. Surface expression, peptide repertoire, and thermostability of chicken class I molecules correlate with peptide transporter specificity.

    PubMed

    Tregaskes, Clive A; Harrison, Michael; Sowa, Anna K; van Hateren, Andy; Hunt, Lawrence G; Vainio, Olli; Kaufman, Jim

    2016-01-19

    The chicken major histocompatibility complex (MHC) has strong genetic associations with resistance and susceptibility to certain infectious pathogens. The cell surface expression level of MHC class I molecules varies as much as 10-fold between chicken haplotypes and is inversely correlated with diversity of peptide repertoire and with resistance to Marek's disease caused by an oncogenic herpesvirus. Here we show that the average thermostability of class I molecules isolated from cells also varies, being higher for high-expressing MHC haplotypes. However, we find roughly the same amount of class I protein synthesized by high- and low-expressing MHC haplotypes, with movement to the cell surface responsible for the difference in expression. Previous data show that chicken TAP genes have high allelic polymorphism, with peptide translocation specific for each MHC haplotype. Here we use assembly assays with peptide libraries to show that high-expressing B15 class I molecules can bind a much wider variety of peptides than are found on the cell surface, with the B15 TAPs restricting the peptides available. In contrast, the translocation specificity of TAPs from the low-expressing B21 haplotype is even more permissive than the promiscuous binding shown by the dominantly expressed class I molecule. B15/B21 heterozygote cells show much greater expression of B15 class I molecules than B15/B15 homozygote cells, presumably as a result of receiving additional peptides from the B21 TAPs. Thus, chicken MHC haplotypes vary in several correlated attributes, with the most obvious candidate linking all these properties being molecular interactions within the peptide-loading complex (PLC). PMID:26699458

  9. Genomic architecture of MHC-linked odorant receptor gene repertoires among 16 vertebrate species.

    PubMed

    Santos, Pablo Sandro Carvalho; Kellermann, Thomas; Uchanska-Ziegler, Barbara; Ziegler, Andreas

    2010-09-01

    The recent sequencing and assembly of the genomes of different organisms have shown that almost all vertebrates studied in detail so far have one or more clusters of genes encoding odorant receptors (OR) in close physical linkage to the major histocompatibility complex (MHC). It has been postulated that MHC-linked OR genes could be involved in MHC-influenced mate choice, comprising both pre- as well as post-copulatory mechanisms. We have therefore carried out a systematic comparison of protein sequences of these receptors from the genomes of man, chimpanzee, gorilla, orangutan, rhesus macaque, mouse, rat, dog, cat, cow, pig, horse, elephant, opossum, frog and zebra fish (amounting to a total of 559 protein sequences) in order to identify OR families exhibiting evolutionarily conserved MHC linkage. In addition, we compared the genomic structure of this region within these 16 species, accounting for presence or absence of OR gene families, gene order, transcriptional orientation and linkage to the MHC or framework genes. The results are presented in the form of gene maps and phylogenetic analyses that reveal largely concordant repertoires of gene families, at least among tetrapods, although each of the eight taxa studied (primates, rodents, ungulates, carnivores, proboscids, marsupials, amphibians and teleosts) exhibits a typical architecture of MHC (or MHC framework loci)-linked OR genes. Furthermore, the comparison of the genomic organization of this region has implications for phylogenetic relationships between closely related taxa, especially in disputed cases such as the evolutionary history of even- and odd-toed ungulates and carnivores. Finally, the largely conserved linkage between distinct OR genes and the MHC supports the concept that particular alleles within a given haplotype function in a concerted fashion during self-/non-self-discrimination processes in reproduction. PMID:20680261

  10. Surface expression, peptide repertoire, and thermostability of chicken class I molecules correlate with peptide transporter specificity

    PubMed Central

    Tregaskes, Clive A.; Harrison, Michael; Sowa, Anna K.; van Hateren, Andy; Hunt, Lawrence G.; Vainio, Olli; Kaufman, Jim

    2016-01-01

    The chicken major histocompatibility complex (MHC) has strong genetic associations with resistance and susceptibility to certain infectious pathogens. The cell surface expression level of MHC class I molecules varies as much as 10-fold between chicken haplotypes and is inversely correlated with diversity of peptide repertoire and with resistance to Marek’s disease caused by an oncogenic herpesvirus. Here we show that the average thermostability of class I molecules isolated from cells also varies, being higher for high-expressing MHC haplotypes. However, we find roughly the same amount of class I protein synthesized by high- and low-expressing MHC haplotypes, with movement to the cell surface responsible for the difference in expression. Previous data show that chicken TAP genes have high allelic polymorphism, with peptide translocation specific for each MHC haplotype. Here we use assembly assays with peptide libraries to show that high-expressing B15 class I molecules can bind a much wider variety of peptides than are found on the cell surface, with the B15 TAPs restricting the peptides available. In contrast, the translocation specificity of TAPs from the low-expressing B21 haplotype is even more permissive than the promiscuous binding shown by the dominantly expressed class I molecule. B15/B21 heterozygote cells show much greater expression of B15 class I molecules than B15/B15 homozygote cells, presumably as a result of receiving additional peptides from the B21 TAPs. Thus, chicken MHC haplotypes vary in several correlated attributes, with the most obvious candidate linking all these properties being molecular interactions within the peptide-loading complex (PLC). PMID:26699458

  11. Reconstructing and mining the B cell repertoire with ImmunediveRsity.

    PubMed

    Cortina-Ceballos, Bernardo; Godoy-Lozano, Elizabeth Ernestina; Sámano-Sánchez, Hugo; Aguilar-Salgado, Andrés; Velasco-Herrera, Martín Del Castillo; Vargas-Chávez, Carlos; Velázquez-Ramírez, Daniel; Romero, Guillermo; Moreno, José; Téllez-Sosa, Juan; Martínez-Barnetche, Jesús

    2015-01-01

    The B cell antigen receptor repertoire is highly diverse and constantly modified by clonal selection. High-throughput DNA sequencing (HTS) of the lymphocyte repertoire (Rep-Seq) represents a promising technology to explore such diversity ex-vivo and assist in the identification of antigen-specific antibodies based on molecular signatures of clonal selection. Therefore, integrative tools for repertoire reconstruction and analysis from antibody sequences are needed. We developed ImmunediveRity, a stand-alone pipeline primarily based in R programming for the integral analysis of B cell repertoire data generated by HTS. The pipeline integrates GNU software and in house scripts to perform quality filtering, sequencing noise correction and repertoire reconstruction based on V, D and J segment assignment, clonal origin and unique heavy chain identification. Post-analysis scripts generate a wealth of repertoire metrics that in conjunction with a rich graphical output facilitates sample comparison and repertoire mining. Its performance was tested with raw and curated human and mouse 454-Roche sequencing benchmarks providing good approximations of repertoire structure. Furthermore, ImmunediveRsity was used to mine the B cell repertoire of immunized mice with a model antigen, allowing the identification of previously validated antigen-specific antibodies, and revealing different and unexpected clonal diversity patterns in the post-immunization IgM and IgG compartments. Although ImmunediveRsity is similar to other recently developed tools, it offers significant advantages that facilitate repertoire analysis and repertoire mining. ImmunediveRsity is open source and free for academic purposes and it runs on 64 bit GNU/Linux and MacOS. Available at: https://bitbucket.org/ImmunediveRsity/immunediversity/. PMID:25875140

  12. Reconstructing and mining the B cell repertoire with ImmunediveRsity

    PubMed Central

    Cortina-Ceballos, Bernardo; Godoy-Lozano, Elizabeth Ernestina; Sámano-Sánchez, Hugo; Aguilar-Salgado, Andrés; Velasco-Herrera, Martín Del Castillo; Vargas-Chávez, Carlos; Velázquez-Ramírez, Daniel; Romero, Guillermo; Moreno, José; Téllez-Sosa, Juan; Martínez-Barnetche, Jesús

    2015-01-01

    The B cell antigen receptor repertoire is highly diverse and constantly modified by clonal selection. High-throughput DNA sequencing (HTS) of the lymphocyte repertoire (Rep-Seq) represents a promising technology to explore such diversity ex-vivo and assist in the identification of antigen-specific antibodies based on molecular signatures of clonal selection. Therefore, integrative tools for repertoire reconstruction and analysis from antibody sequences are needed. We developed ImmunediveRity, a stand-alone pipeline primarily based in R programming for the integral analysis of B cell repertoire data generated by HTS. The pipeline integrates GNU software and in house scripts to perform quality filtering, sequencing noise correction and repertoire reconstruction based on V, D and J segment assignment, clonal origin and unique heavy chain identification. Post-analysis scripts generate a wealth of repertoire metrics that in conjunction with a rich graphical output facilitates sample comparison and repertoire mining. Its performance was tested with raw and curated human and mouse 454-Roche sequencing benchmarks providing good approximations of repertoire structure. Furthermore, ImmunediveRsity was used to mine the B cell repertoire of immunized mice with a model antigen, allowing the identification of previously validated antigen-specific antibodies, and revealing different and unexpected clonal diversity patterns in the post-immunization IgM and IgG compartments. Although ImmunediveRsity is similar to other recently developed tools, it offers significant advantages that facilitate repertoire analysis and repertoire mining. ImmunediveRsity is open source and free for academic purposes and it runs on 64 bit GNU/Linux and MacOS. Available at: https://bitbucket.org/ImmunediveRsity/immunediversity/ PMID:25875140

  13. alpha1-antitrypsin (PI) alleles as markers of Westeuropean influence in the Baltic Sea region.

    PubMed

    Beckman, L; Sikström, C; Mikelsaar, A; Krumina, A; Kucinskas, V; Beckman, G

    1999-01-01

    The distribution of alpha1-antitrypsin (PI) alleles was studied in an attempt to elucidate migrations and admixture between populations in the Baltic Sea region. The frequency of the PI Z allele, a typically Northwesteuropean marker gene, showed a highly significant regional variation in the Baltic Sea region. The highest frequency (4.5%) was found in the western part of Latvia (Courland). The PI S allele, another marker of Westeuropean influence, also showed an increased frequency in the Courland population. These results indicate that among the populations east of the Baltic Sea the Curonian population has the most pronounced Westeuropean influence. Archaeological data have shown that from the 7th century and for several hundreds of years Courland received immigrations from mainland Sweden and the island of Gotland. We speculate that the increased frequencies of the PI Z alleles and S alleles in Courland may have been caused by these migrations. PMID:9858859

  14. Preservation of Tetherin and CD4 Counter-Activities in Circulating Vpu Alleles despite Extensive Sequence Variation within HIV-1 Infected Individuals

    PubMed Central

    Pickering, Suzanne; Hué, Stephane; Kim, Eun-Young; Reddy, Susheel; Wolinsky, Steven M.; Neil, Stuart J. D.

    2014-01-01

    The HIV-1 Vpu protein is expressed from a bi-cistronic message late in the viral life cycle. It functions during viral assembly to maximise infectious virus release by targeting CD4 for proteosomal degradation and counteracting the antiviral protein tetherin (BST2/CD317). Single genome analysis of vpu repertoires throughout infection in 14 individuals infected with HIV-1 clade B revealed extensive amino acid diversity of the Vpu protein. For the most part, this variation in Vpu increases over the course of infection and is associated with predicted epitopes of the individual's MHC class I haplotype, suggesting CD8+ T cell pressure is the major driver of Vpu sequence diversity within the host. Despite this variability, the Vpu functions of targeting CD4 and counteracting both physical virus restriction and NF-κB activation by tetherin are rigorously maintained throughout HIV-1 infection. Only a minority of circulating alleles bear lesions in either of these activities at any given time, suggesting functional Vpu mutants are heavily selected against even at later stages of infection. Comparison of Vpu proteins defective for one or several functions reveals novel determinants of CD4 downregulation, counteraction of tetherin restriction, and inhibition of NF-κB signalling. These data affirm the importance of Vpu functions for in vivo persistence of HIV-1 within infected individuals, not simply for transmission, and highlight its potential as a target for antiviral therapy. PMID:24465210

  15. Characterization of the treefrog null allele, 1991

    SciTech Connect

    Guttman, S.I.

    1992-04-01

    Spring peeper (Hyla crucifer) tadpoles collected from the waste storage area during the Biological and Ecological Site Characterization of the Feed Materials Production Center (FEMP) in 1986 and 1987 appeared to be unique. A null (inactive) allele was found at the glucose phosphate isomerase enzyme locus in significant frequencies (approximately 20%) each year; this allele did not appear to occur in the offsite sample collected approximately 15km from the FEMP. Null alleles at this locus have not been reported in other amphibian populations; when they have been found in other organisms they have invariably been lethal in the homozygous condition.

  16. Characterization of the treefrog null allele

    SciTech Connect

    Guttman, S.I. . Dept. of Zoology)

    1990-12-01

    As part of the authors intensive year-long baseline ecological study, they characterized the degree of genetic polymorphism and heterozygosity in selected Feed Materials Production Center (FMPC) populations using electrophoretic techniques. These data are being used as an indicator of stress by comparing populations on and off the FMPC site. The current study was initiated to determine whether this GPI null allele is lethal, when homozygous, in spring peepers. Also, a sampling protocol was implemented to determine whether a linear effect occurs relative to the frequency of the null allele offsite and to determine the origination site of the null allele. 18 refs., 2 figs., 4 tabs.

  17. Antibody repertoire development in fetal and neonatal piglets. XI. The thymic B-cell repertoire develops independently from that in blood and mesenteric lymph nodes

    PubMed Central

    McAleer, Jeremy; Weber, Patrick; Sun, Jishan; Butler, John E

    2005-01-01

    The origin and function of thymic B cells is currently unresolved. In the present study we compared VH gene repertoire diversification in >3500 cloned VDJs (from 11 animals at three time-points, using three to five animals per time-point) that were expressed with immunoglobulin (Ig)M, IgD, IgG, IgA and IgE in thymus, mesenteric lymph nodes (MLN) and peripheral blood B cells (PBB) of newborn piglets and 5-week-old isolator piglets maintained germfree (GF) or colonized with Escherichia coli. The results showed that the repertoire expressed with IgM, IgD, IgG and IgA in PBB and MLN remained polyclonal, undiversified and unselected in piglets maintained GF for 5 weeks, that age and colonization resulted in significant repertoire diversification of IgG and IgA in the MLN and of IgG in blood, that the thymic B-cell repertoire was polyclonal, unaffected by colonization and showed no clonal selection in any isotype, and that the thymic IgA and IgE repertoires were more diverse at birth than the repertoire of any isotype in MLN or PBB. IgD was seldom recovered from the PBB of newborn piglets or at any time-point in thymus, but was recovered in the MLN of all 11 animals examined. The IgD and IgM repertoires in all tissues remained polyclonal and unselected, although VH usage by IgD transcripts did not always parallel that of IgM in the same tissue. Therefore, isotype-switched B cells in the thymic medulla cannot be accounted for by immigration of B cells diversified by colonization of the gut, and thymic B cells undergo switch recombination and repertoire diversification before birth without clonal selection. PMID:15667562

  18. Mathematics Students' Aspirations for Higher Education: Class, Ethnicity, Gender and Interpretative Repertoire Styles

    ERIC Educational Resources Information Center

    Hernandez-Martinez, Paul; Black, Laura; Williams, Julian; Davis, Pauline; Pampaka, Maria; Wake, Geoff

    2008-01-01

    This paper reports how students talk about their aspirations in regard to higher education (HE) and their mathematics, what "repertoires" they use to mediate this discourse, and how students' predominant "repertoire style" relates to their cultural background. Our analyses draw on an interview sample (n=40) of students selected because they are…

  19. Rule-Governed Behavior: Teaching a Preliminary Repertoire of Rule-Following to Children with Autism

    ERIC Educational Resources Information Center

    Tarbox, Jonathan; Zuckerman, Carrie K.; Bishop, Michele R.; Olive, Melissa L.; O'Hora, Denis P.

    2011-01-01

    Rule-governed behavior is generally considered an integral component of complex verbal repertoires but has rarely been the subject of empirical research. In particular, little or no previous research has attempted to establish rule-governed behavior in individuals who do not already display the repertoire. This study consists of two experiments…

  20. Development of a Tool to Evaluate Lecturers' Verbal Repertoire in Action

    ERIC Educational Resources Information Center

    van der Rijst, R. M.; Visser-Wijnveen, G. J.; Verloop, N.; van Driel, J. H.

    2014-01-01

    A broad communicative repertoire can help university lecturers to motivate and engage diverse student populations. The aim of this study is to develop and explore the usefulness and validity of a tool to identify patterns in lecturers' verbal repertoire. Speech act theory is presented as a framework to study lecturers' verbal…

  1. Diversity-oriented approaches for interrogating T-cell receptor repertoire, ligand recognition, and function

    PubMed Central

    Birnbaum, Michael E.; Dong, Shen; Garcia, K. Christopher

    2012-01-01

    Summary Molecular diversity lies at the heart of adaptive immunity. T-cell receptors and peptide-major histocompatibility complex molecules utilize and rely upon an enormous degree of diversity at the levels of genetics, chemistry, and structure to engage one another and carry out their functions. This high level of diversity complicates the systematic study of important aspects of T-cell biology, but recent technical advances have allowed for the ability to study diversity in a comprehensive manner. In this review, we assess insights gained into T-cell receptor function and biology from our increasingly precise ability to assess the T-cell repertoire as a whole or to perturb individual receptors with engineered reagents. We conclude with a perspective on a new class of high-affinity, non-stimulatory peptide ligands we have recently discovered using diversity-oriented techniques that challenges notions for how we think about T-cell receptor signaling. PMID:23046124

  2. Establishing a Generalized Repertoire of Helping Behavior in Children with Autism

    PubMed Central

    Reeve, Sharon A; Reeve, Kenneth F; Buffington Townsend, Dawn; Poulson, Claire L

    2007-01-01

    The present study used a multiple baseline across participants design to assess whether 4 children with autism could learn a generalized repertoire of helping adults with different tasks through the use of a multicomponent teaching package. Different helping responses were taught in the presence of multiple exemplars of discriminative stimuli drawn from experimenter-defined categories of helping behavior (e.g., locating objects, putting away items, setting up an activity). During the training condition, video models, prompting, and reinforcement were used. The results showed that all 4 children learned to emit appropriate helping responses in the presence of discriminative stimuli from the helping categories used during training. Generalization of helping responses was observed in the presence of untrained discriminative stimuli during additional probe conditions. Additional pre- and postintervention generalization trials showed that the frequency of helping responses also increased in the presence of novel stimuli, in a novel setting, and with a novel instructor. PMID:17471797

  3. Type 2 Diabetes Risk Alleles Demonstrate Extreme Directional Differentiation among Human Populations, Compared to Other Diseases

    PubMed Central

    Chen, Rong; Corona, Erik; Sikora, Martin; Dudley, Joel T.; Morgan, Alex A.; Moreno-Estrada, Andres; Nilsen, Geoffrey B.; Ruau, David; Lincoln, Stephen E.; Bustamante, Carlos D.; Butte, Atul J.

    2012-01-01

    Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D) demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may contribute to the observed

  4. Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases.

    PubMed

    Chen, Rong; Corona, Erik; Sikora, Martin; Dudley, Joel T; Morgan, Alex A; Moreno-Estrada, Andres; Nilsen, Geoffrey B; Ruau, David; Lincoln, Stephen E; Bustamante, Carlos D; Butte, Atul J

    2012-01-01

    Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D) demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may contribute to the observed

  5. Pyrosequencing for Accurate Imprinted Allele Expression Analysis

    PubMed Central

    Yang, Bing; Damaschke, Nathan; Yao, Tianyu; McCormick, Johnathon; Wagner, Jennifer; Jarrard, David

    2016-01-01

    Genomic imprinting is an epigenetic mechanism that restricts gene expression to one inherited allele. Improper maintenance of imprinting has been implicated in a number of human diseases and developmental syndromes. Assays are needed that can quantify the contribution of each paternal allele to a gene expression profile. We have developed a rapid, sensitive quantitative assay for the measurement of individual allelic ratios termed Pyrosequencing for Imprinted Expression (PIE). Advantages of PIE over other approaches include shorter experimental time, decreased labor, avoiding the need for restriction endonuclease enzymes at polymorphic sites, and prevent heteroduplex formation which is problematic in quantitative PCR-based methods. We demonstrate the improved sensitivity of PIE including the ability to detect differences in allelic expression down to 1%. The assay is capable of measuring genomic heterozygosity as well as imprinting in a single run. PIE is applied to determine the status of Insulin-like Growth Factor-2 (IGF2) imprinting in human and mouse tissues. PMID:25581900

  6. Cognitive and neural correlates of the 5-repeat allele of the dopamine D4 receptor gene in a population lacking the 7-repeat allele.

    PubMed

    Takeuchi, Hikaru; Tomita, Hiroaki; Taki, Yasuyuki; Kikuchi, Yoshie; Ono, Chiaki; Yu, Zhiqian; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2015-04-15

    The 5-repeat allele of a common length polymorphism in the gene that encodes the dopamine D4 receptor (DRD4) is robustly associated with the risk of attention deficit hyperactivity disorder (ADHD) and substantially exists in Asian populations, which have a lower ADHD prevalence. In this study, we investigated the effect of this allele on microstructural properties of the brain and on its functional activity during externally directed attention-demanding tasks and creative performance in the 765 Asian subjects. For this purpose, we employed diffusion tensor imaging, N-back functional magnetic resonance imaging paradigms, and a test to measure creativity by divergent thinking. The 5-repeat allele was significantly associated with increased originality in the creative performance, increased mean diffusivity (the measure of how the tissue includes water molecules instead of neural and vessel components) in the widespread gray and white matter areas of extensive areas, particularly those where DRD4 is expressed, and reduced task-induced deactivation in the areas that are deactivated during the tasks in the course of both the attention-demanding working memory task and simple sensorimotor task. The observed neural characteristics of 5-repeat allele carriers may lead to an increased risk of ADHD and behavioral deficits. Furthermore, the increased originality of creative thinking observed in the 5-repeat allele carriers may support the notion of the side of adaptivity of the widespread risk allele of psychiatric diseases. PMID:25659462

  7. Characterization of Neonatal Vocal and Motor Repertoire of Reelin Mutant Mice

    PubMed Central

    Caruso, Angela; Laviola, Giovanni; Scattoni, Maria Luisa

    2013-01-01

    Reelin is a large secreted extracellular matrix glycoprotein playing an important role in early neurodevelopment. Several genetic studies found an association between RELN gene and increased risk of autism suggesting that reelin deficiency may be a vulnerability factor in its etiology. Moreover, a reduced reelin expression has been observed in several brain regions of subjects with Autism Spectrum Disorders. Since a number of reports have documented presence of vocal and neuromotor abnormalities in patients with autism and suggested that these dysfunctions predate the onset of the syndrome, we performed a fine-grain characterization of the neonatal vocal and motor repertoire in reelin mutant mice to explore the developmental precursors of the disorder. Our findings evidence a general delay in motor and vocal development in heterozygous (50% reduced reelin) and reeler (lacking reelin gene) mutant mice. As a whole, an increased number of calls characterized heterozygous pup's emission. Furthermore, the typical ontogenetic peak in the number of calls characterizing wild-type pups on postnatal day 4 appeared slightly delayed in heterozygous pups (to day 6) and was quite absent in reeler littermates, which exhibited a flat profile during development. We also detected a preferential use of a specific call category (two-components) by heterozygous and reeler mice at postnatal days 6 and 8 as compared to their wild-type littermates. With regard to the analysis of spontaneous movements, a differential profile emerged early in development among the three genotypes. While only slight coordination difficulties are exhibited by heterozygous pups, all indices of motor development appear delayed in reeler mice. Overall, our results evidence a genotype-dependent deviation in ultrasonic vocal repertoire and a general delay in motor development in reelin mutant pups. PMID:23700474

  8. Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity

    PubMed Central

    Huang, Shengfeng; Yuan, Shaochun; Guo, Lei; Yu, Yanhong; Li, Jun; Wu, Tao; Liu, Tong; Yang, Manyi; Wu, Kui; Liu, Huiling; Ge, Jin; Yu, Yingcai; Huang, Huiqing; Dong, Meiling; Yu, Cuiling; Chen, Shangwu; Xu, Anlong

    2008-01-01

    It has been speculated that before vertebrates evolved somatic diversity-based adaptive immunity, the germline-encoded diversity of innate immunity may have been more developed. Amphioxus occupies the basal position of the chordate phylum and hence is an important reference to the evolution of vertebrate immunity. Here we report the first comprehensive genomic survey of the immune gene repertoire of the amphioxus Branchiostoma floridae. It has been reported that the purple sea urchin has a vastly expanded innate receptor repertoire not previously seen in other species, which includes 222 toll-like receptors (TLRs), 203 NOD/NALP-like receptors (NLRs), and 218 scavenger receptors (SRs). We discovered that the amphioxus genome contains comparable expansion with 71 TLR gene models, 118 NLR models, and 270 SR models. Amphioxus also expands other receptor-like families, including 1215 C-type lectin models, 240 LRR and IGcam-containing models, 1363 other LRR-containing models, 75 C1q-like models, 98 ficolin-like models, and hundreds of models containing complement-related domains. The expansion is not restricted to receptors but is likely to extend to intermediate signal transducers because there are 58 TIR adapter-like models, 36 TRAF models, 44 initiator caspase models, and 541 death-fold domain-containing models in the genome. Amphioxus also has a sophisticated TNF system and a complicated complement system not previously seen in other invertebrates. Besides the increase of gene number, domain combinations of immune proteins are also increased. Altogether, this survey suggests that the amphioxus, a species without vertebrate-type adaptive immunity, holds extraordinary innate complexity and diversity. PMID:18562681

  9. Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity.

    PubMed

    Huang, Shengfeng; Yuan, Shaochun; Guo, Lei; Yu, Yanhong; Li, Jun; Wu, Tao; Liu, Tong; Yang, Manyi; Wu, Kui; Liu, Huiling; Ge, Jin; Yu, Yingcai; Huang, Huiqing; Dong, Meiling; Yu, Cuiling; Chen, Shangwu; Xu, Anlong

    2008-07-01

    It has been speculated that before vertebrates evolved somatic diversity-based adaptive immunity, the germline-encoded diversity of innate immunity may have been more developed. Amphioxus occupies the basal position of the chordate phylum and hence is an important reference to the evolution of vertebrate immunity. Here we report the first comprehensive genomic survey of the immune gene repertoire of the amphioxus Branchiostoma floridae. It has been reported that the purple sea urchin has a vastly expanded innate receptor repertoire not previously seen in other species, which includes 222 toll-like receptors (TLRs), 203 NOD/NALP-like receptors (NLRs), and 218 scavenger receptors (SRs). We discovered that the amphioxus genome contains comparable expansion with 71 TLR gene models, 118 NLR models, and 270 SR models. Amphioxus also expands other receptor-like families, including 1215 C-type lectin models, 240 LRR and IGcam-containing models, 1363 other LRR-containing models, 75 C1q-like models, 98 ficolin-like models, and hundreds of models containing complement-related domains. The expansion is not restricted to receptors but is likely to extend to intermediate signal transducers because there are 58 TIR adapter-like models, 36 TRAF models, 44 initiator caspase models, and 541 death-fold domain-containing models in the genome. Amphioxus also has a sophisticated TNF system and a complicated complement system not previously seen in other invertebrates. Besides the increase of gene number, domain combinations of immune proteins are also increased. Altogether, this survey suggests that the amphioxus, a species without vertebrate-type adaptive immunity, holds extraordinary innate complexity and diversity. PMID:18562681

  10. The ancestral gene repertoire of animal stem cells.

    PubMed

    Alié, Alexandre; Hayashi, Tetsutaro; Sugimura, Itsuro; Manuel, Michaël; Sugano, Wakana; Mano, Akira; Satoh, Nori; Agata, Kiyokazu; Funayama, Noriko

    2015-12-22

    Stem cells are pivotal for development and tissue homeostasis of multicellular animals, and the quest for a gene toolkit associated with the emergence of stem cells in a common ancestor of all metazoans remains a major challenge for evolutionary biology. We reconstructed the conserved gene repertoire of animal stem cells by transcriptomic profiling of totipotent archeocytes in the demosponge Ephydatia fluviatilis and by tracing shared molecular signatures with flatworm and Hydra stem cells. Phylostratigraphy analyses indicated that most of these stem-cell genes predate animal origin, with only few metazoan innovations, notably including several partners of the Piwi machinery known to promote genome stability. The ancestral stem-cell transcriptome is strikingly poor in transcription factors. Instead, it is rich in RNA regulatory actors, including components of the "germ-line multipotency program" and many RNA-binding proteins known as critical regulators of mammalian embryonic stem cells. PMID:26644562

  11. Repertoires: How to Transform a Project into a Research Community

    PubMed Central

    Leonelli, Sabina; Ankeny, Rachel A.

    2015-01-01

    How effectively communities of scientists come together and co-operate is crucial both to the quality of research outputs and to the extent to which such outputs integrate insights, data and methods from a variety of fields, laboratories and locations around the globe. This essay focuses on the ensemble of material and social conditions that makes it possible for a short-term collaboration, set up to accomplish a specific task, to give rise to relatively stable communities of researchers. We refer to these distinctive features as repertoires, and investigate their development and implementation across three examples of collaborative research in the life sciences. We conclude that whether a particular project ends up fostering the emergence of a resilient research community is partly determined by the degree of attention and care devoted by researchers to material and social elements beyond the specific research questions under consideration. PMID:26412866

  12. The ancestral gene repertoire of animal stem cells

    PubMed Central

    Alié, Alexandre; Hayashi, Tetsutaro; Sugimura, Itsuro; Manuel, Michaël; Sugano, Wakana; Mano, Akira; Satoh, Nori; Agata, Kiyokazu; Funayama, Noriko

    2015-01-01

    Stem cells are pivotal for development and tissue homeostasis of multicellular animals, and the quest for a gene toolkit associated with the emergence of stem cells in a common ancestor of all metazoans remains a major challenge for evolutionary biology. We reconstructed the conserved gene repertoire of animal stem cells by transcriptomic profiling of totipotent archeocytes in the demosponge Ephydatia fluviatilis and by tracing shared molecular signatures with flatworm and Hydra stem cells. Phylostratigraphy analyses indicated that most of these stem-cell genes predate animal origin, with only few metazoan innovations, notably including several partners of the Piwi machinery known to promote genome stability. The ancestral stem-cell transcriptome is strikingly poor in transcription factors. Instead, it is rich in RNA regulatory actors, including components of the “germ-line multipotency program” and many RNA-binding proteins known as critical regulators of mammalian embryonic stem cells. PMID:26644562

  13. New perspectives for large-scale repertoire analysis of immune receptors.

    PubMed

    Boudinot, Pierre; Marriotti-Ferrandiz, Maria Encarnita; Pasquier, Louis Du; Benmansour, Abdenour; Cazenave, Pierre-André; Six, Adrien

    2008-05-01

    In vertebrates, the world of antigenic motifs is matched to large populations of lymphocytes through specific recognition of an epitope by a given receptor unique to a lymphocyte clone. The concept of immune repertoire was proposed to describe this diversity of lymphocyte receptors - Ig and TCR - required by the network of interactions. The immune repertoires became useful tools to describe lymphocyte and receptor populations through the development of the immune system and in pathological situations. Recently, the development of mass technologies made possible a comprehensive survey of immune repertoires at the genome, transcript and protein levels, and some of these techniques have been already adapted to TCR and Ig repertoire analyses. Such approaches generate very big datasets, which necessitates complex and multi-parametric annotations in dedicated databases. They also require new analysis methods, leading to the integration of structure and dynamics of the immune repertoires, at different time scales (immune response, development of the individual, evolution of the species). Such methods may be extended to the analysis of new classes of adaptive-like receptors, which were recently discovered in different invertebrates and in agnathans. Ultimately, they may allow a parallel monitoring of pathogen and immune repertoires addressing the reciprocal influences that decide for the host survival or death. In this review, we first study the characteristics of Ig and TCR repertoires, and we examine several systematic approaches developed for the analysis of these "classical" immune repertoires at different levels. We then consider examples of the recent developments of modeling and statistical analysis, and we discuss their relevance and their importance for the study of the immune diversity. An extended view of immune repertoires is proposed, integrating the diversity of other receptors involved in immune recognition. Also, we discuss how repertoire studies could link

  14. Nomenclature for alleles of the thiopurine methyltransferase gene.

    PubMed

    Appell, Malin L; Berg, Jonathan; Duley, John; Evans, William E; Kennedy, Martin A; Lennard, Lynne; Marinaki, Tony; McLeod, Howard L; Relling, Mary V; Schaeffeler, Elke; Schwab, Matthias; Weinshilboum, Richard; Yeoh, Allen E J; McDonagh, Ellen M; Hebert, Joan M; Klein, Teri E; Coulthard, Sally A

    2013-04-01

    The drug-metabolizing enzyme thiopurine methyltransferase (TPMT) has become one of the best examples of pharmacogenomics to be translated into routine clinical practice. TPMT metabolizes the thiopurines 6-mercaptopurine, 6-thioguanine, and azathioprine, drugs that are widely used for treatment of acute leukemias, inflammatory bowel diseases, and other disorders of immune regulation. Since the discovery of genetic polymorphisms in the TPMT gene, many sequence variants that cause a decreased enzyme activity have been identified and characterized. Increasingly, to optimize dose, pretreatment determination of TPMT status before commencing thiopurine therapy is now routine in many countries. Novel TPMT sequence variants are currently numbered sequentially using PubMed as a source of information; however, this has caused some problems as exemplified by two instances in which authors' articles appeared on PubMed at the same time, resulting in the same allele numbers given to different polymorphisms. Hence, there is an urgent need to establish an order and consensus to the numbering of known and novel TPMT sequence variants. To address this problem, a TPMT nomenclature committee was formed in 2010, to define the nomenclature and numbering of novel variants for the TPMT gene. A website (http://www.imh.liu.se/tpmtalleles) serves as a platform for this work. Researchers are encouraged to submit novel TPMT alleles to the committee for designation and reservation of unique allele numbers. The committee has decided to renumber two alleles: nucleotide position 106 (G>A) from TPMT*24 to TPMT*30 and position 611 (T>C, rs79901429) from TPMT*28 to TPMT*31. Nomenclature for all other known alleles remains unchanged. PMID:23407052

  15. Fixation probability and the crossing time in the Wright-Fisher multiple alleles model

    NASA Astrophysics Data System (ADS)

    Gill, Wonpyong

    2009-08-01

    The fixation probability and crossing time in the Wright-Fisher multiple alleles model, which describes a finite haploid population, were calculated by switching on an asymmetric sharply-peaked landscape with a positive asymmetric parameter, r, such that the reversal allele of the optimal allele has higher fitness than the optimal allele. The fixation probability, which was evaluated as the ratio of the first arrival time at the reversal allele to the origination time, was double the selective advantage of the reversal allele compared with the optimal allele in the strong selection region, where the fitness parameter, k, is much larger than the critical fitness parameter, kc. The crossing time in a finite population for r>0 and kallele in the first generation should be greater than one individual in an asymmetric sharply-peaked landscape. It was also found that the crossing time in a finite population for r>0 and k≫kc scaled as a power law in the fitness parameter with a similar scaling exponent as the crossing time in an infinite population for r=0, and that the critical fitness parameter decreased with increasing sequence length with a fixed population size.

  16. A Computer Simulation Study of Vntr Population Genetics: Constrained Recombination Rules Out the Infinite Alleles Model

    PubMed Central

    Harding, R. M.; Boyce, A. J.; Martinson, J. J.; Flint, J.; Clegg, J. B.

    1993-01-01

    Extensive allelic diversity in variable numbers of tandem repeats (VNTRs) has been discovered in the human genome. For population genetic studies of VNTRs, such as forensic applications, it is important to know whether a neutral mutation-drift balance of VNTR polymorphism can be represented by the infinite alleles model. The assumption of the infinite alleles model that each new mutant is unique is very likely to be violated by unequal sister chromatid exchange (USCE), the primary process believed to generate VNTR mutants. We show that increasing both mutation rates and misalignment constraint for intrachromosomal recombination in a computer simulation model reduces simulated VNTR diversity below the expectations of the infinite alleles model. Maximal constraint, represented as slippage of single repeats, reduces simulated VNTR diversity to levels expected from the stepwise mutation model. Although misalignment rule is the more important variable, mutation rate also has an effect. At moderate rates of USCE, simulated VNTR diversity fluctuates around infinite alleles expectation. However, if rates of USCE are high, as for hypervariable VNTRs, simulated VNTR diversity is consistently lower than predicted by the infinite alleles model. This has been observed for many VNTRs and accounted for by technical problems in distinguishing alleles of neighboring size classes. We use sampling theory to confirm the intrinsically poor fit to the infinite alleles model of both simulated VNTR diversity and observed VNTR polymorphisms sampled from two Papua New Guinean populations. PMID:8293988

  17. Allele Workbench: transcriptome pipeline and interactive graphics for allele-specific expression.

    PubMed

    Soderlund, Carol A; Nelson, William M; Goff, Stephen A

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https://code.google.com/p/allele

  18. Allele Workbench: Transcriptome Pipeline and Interactive Graphics for Allele-Specific Expression

    PubMed Central

    Soderlund, Carol A.; Nelson, William M.; Goff, Stephen A.

    2014-01-01

    Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor), where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense), and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available from https://code.google.com/p/allele

  19. Transvection in the Drosophila Ultrabithorax Gene: A Cbx(1) Mutant Allele Induces Ectopic Expression of a Normal Allele in Trans

    PubMed Central

    Castelli-Gair, J. E.; Micol, J. L.; Garcia-Bellido, A.

    1990-01-01

    In wild-type Drosophila melanogaster larvae, the Ultrabithorax (Ubx) gene is expressed in the haltere imaginal discs but not in the majority of cells of the wing imaginal discs. Ectopic expression of the Ubx gene in wing discs can be elicited by the presence of Contrabithorax (Cbx) gain-of-function alleles of the Ubx gene or by loss-of-function mutations in Polycomb (Pc) or in other trans-regulatory genes which behave as repressors of Ubx gene activity. Several Ubx loss-of-function alleles cause the absence of detectable Ubx proteins (UBX) or the presence of truncated UBX lacking the homeodomain. We have compared adult wing phenotypes with larval wing disc UBX patterns in genotypes involving double mutant chromosomes carrying in cis one of those Ubx mutations and the Cbx(1) mutation. We show that such double mutant genes are (1) active in the same cells in which the single mutant Cbx(1) is expressed, although they are unable to yield functional proteins, and (2) able to induce ectopic expression of a normal homologous Ubx allele in a part of the cells in which the single mutant Cbx(1) is active. That induction is conditional upon pairing of the homologous chromosomes (the phenomenon known as transvection), and it is not mediated by UBX. Depletion of Pc gene products by Pc(3) mutation strongly enhances the induction phenomenon, as shown by (1) the increase of the number of wing disc cells in which induction of the homologous allele is detectable, and (2) the induction of not only a paired normal allele but also an unpaired one. PMID:2121595

  20. "Is English Also the Place Where I Belong?": Linguistic Biographies and Expanding Communicative Repertoires in Central Java

    ERIC Educational Resources Information Center

    Zentz, Lauren

    2015-01-01

    This article employs the term "communicative repertoire" in order to highlight that when one learns any new "language", one introduces new communicative resources into a unified communicative repertoire. As repertoires represent such singular "grammars" in individuals' minds, learned communicative resources can…

  1. Memory B lymphocytes determine repertoire oligoclonality early after haematopoietic stem cell transplantation

    PubMed Central

    OMAZIC, B; LUNDKVIST, I; MATTSSON, J; PERMERT, J; NÄSMAN-BJÖRK, I

    2003-01-01

    The objective of this study was to investigate if oligoclonality of the Ig repertoire post-haematopoietic stem cell transplantation (HSCT) is restricted to memory B lymphocytes or if it is a general property among B lymphocytes. As a measure of B lymphocyte repertoire diversity, we have analysed size distribution of polymerase chain reaction (PCR) amplified Ig H complementarity determining region 3 (CDR3) in naive and memory B lymphocytes isolated from patients before HSCT and at 3, 6 and 12 months after HSCT as well as from healthy controls. We demonstrate a limited variation of the IgH CDR3 repertoire in the memory B lymphocyte population compared to the naive B cell population. This difference was significant at 3 and 6 months post-HSCT. Compared to healthy controls there is a significant restriction of the memory B lymphocyte repertoire at 3 months after HSCT, but not of the naive B lymphocyte repertoire. Twelve months after HSCT, the IgH CDR3 repertoire in both memory and naive B lymphocytes are as diverse as in healthy controls. Thus, our findings suggest a role for memory B cells in the restriction of the oligoclonal B cell repertoire observed early after HSCT, which may be of importance when considering reimmunization of transplanted patients. PMID:12974769

  2. Requirement of full TCR repertoire for regulatory T cells to maintain intestinal homeostasis.

    PubMed

    Nishio, Junko; Baba, Minato; Atarashi, Koji; Tanoue, Takeshi; Negishi, Hideo; Yanai, Hideyuki; Habu, Sonoko; Hori, Shohei; Honda, Kenya; Taniguchi, Tadatsugu

    2015-10-13

    The regulation of intestinal homeostasis by the immune system involves the dynamic interplay between gut commensal microbiota and resident immune cells. It is well known that a large and diverse lymphocyte antigen receptor repertoire enables the immune system to recognize and respond to a wide range of invading pathogens. There is also an emerging appreciation for a critical role the T-cell receptor (TCR) repertoire serves in the maintenance of peripheral tolerance by regulatory T cells (Tregs). Nevertheless, how the diversity of the TCR repertoire in Tregs affects intestinal homeostasis remains unknown. To address this question, we studied mice whose T cells express a restricted TCR repertoire. We observed the development of spontaneous colitis, accompanied by the induction of T-helper type 17 cells in the colon that is driven by gut commensal microbiota. We provide further evidence that a restricted TCR repertoire causes a loss of tolerogenicity to microbiota, accompanied by a paucity of peripherally derived, Helios(-) Tregs and hyperactivation of migratory dendritic cells. These results thus reveal a new facet of the TCR repertoire in which Tregs require a diverse TCR repitoire for intestinal homeostasis, suggesting an additional driving force in the evolutional significance of the TCR repertoire. PMID:26420876

  3. The mouse antibody heavy chain repertoire is germline-focused and highly variable between inbred strains.

    PubMed

    Collins, Andrew M; Wang, Yan; Roskin, Krishna M; Marquis, Christopher P; Jackson, Katherine J L

    2015-09-01

    The human and mouse antibody repertoires are formed by identical processes, but like all small animals, mice only have sufficient lymphocytes to express a small part of the potential antibody repertoire. In this study, we determined how the heavy chain repertoires of two mouse strains are generated. Analysis of IgM- and IgG-associated VDJ rearrangements generated by high-throughput sequencing confirmed the presence of 99 functional immunoglobulin heavy chain variable (IGHV) genes in the C57BL/6 genome, and inferred the presence of 164 IGHV genes in the BALB/c genome. Remarkably, only five IGHV sequences were common to both strains. Compared with humans, little N nucleotide addition was seen in the junctions of mouse VDJ genes. Germline human IgG-associated IGHV genes are rare, but many murine IgG-associated IGHV genes were unmutated. Together these results suggest that the expressed mouse repertoire is more germline-focused than the human repertoire. The apparently divergent germline repertoires of the mouse strains are discussed with reference to reports that inbred mouse strains carry blocks of genes derived from each of the three subspecies of the house mouse. We hypothesize that the germline genes of BALB/c and C57BL/6 mice may originally have evolved to generate distinct germline-focused antibody repertoires in the different mouse subspecies. PMID:26194750

  4. Requirement of full TCR repertoire for regulatory T cells to maintain intestinal homeostasis

    PubMed Central

    Nishio, Junko; Baba, Minato; Atarashi, Koji; Tanoue, Takeshi; Negishi, Hideo; Yanai, Hideyuki; Habu, Sonoko; Hori, Shohei; Honda, Kenya; Taniguchi, Tadatsugu

    2015-01-01

    The regulation of intestinal homeostasis by the immune system involves the dynamic interplay between gut commensal microbiota and resident immune cells. It is well known that a large and diverse lymphocyte antigen receptor repertoire enables the immune system to recognize and respond to a wide range of invading pathogens. There is also an emerging appreciation for a critical role the T-cell receptor (TCR) repertoire serves in the maintenance of peripheral tolerance by regulatory T cells (Tregs). Nevertheless, how the diversity of the TCR repertoire in Tregs affects intestinal homeostasis remains unknown. To address this question, we studied mice whose T cells express a restricted TCR repertoire. We observed the development of spontaneous colitis, accompanied by the induction of T-helper type 17 cells in the colon that is driven by gut commensal microbiota. We provide further evidence that a restricted TCR repertoire causes a loss of tolerogenicity to microbiota, accompanied by a paucity of peripherally derived, Helios− Tregs and hyperactivation of migratory dendritic cells. These results thus reveal a new facet of the TCR repertoire in which Tregs require a diverse TCR repitoire for intestinal homeostasis, suggesting an additional driving force in the evolutional significance of the TCR repertoire. PMID:26420876

  5. Distinct allelic patterns of nanog expression impart embryonic stem cell population heterogeneity.

    PubMed

    Wu, Jincheng; Tzanakakis, Emmanuel S

    2013-01-01

    Nanog is a principal pluripotency regulator exhibiting a disperse distribution within stem cell populations in vivo and in vitro. Increasing evidence points to a functional role of Nanog heterogeneity on stem cell fate decisions. Allelic control of Nanog gene expression was reported recently in mouse embryonic stem cells. To better understand how this mode of regulation influences the observed heterogeneity of NANOG in stem cell populations, we assembled a multiscale stochastic population balance equation framework. In addition to allelic control, gene expression noise and random partitioning at cell division were considered. As a result of allelic Nanog expression, the distribution of Nanog exhibited three distinct states but when combined with transcriptional noise the profile became bimodal. Regardless of their allelic expression pattern, initially uniform populations of stem cells gave rise to the same Nanog heterogeneity within ten cell cycles. Depletion of NANOG content in cells switching off both gene alleles was slower than the accumulation of intracellular NANOG after cells turned on at least one of their Nanog gene copies pointing to Nanog state-dependent dynamics. Allelic transcription of Nanog also raises issues regarding the use of stem cell lines with reporter genes knocked in a single allelic locus. Indeed, significant divergence was observed in the reporter and native protein profiles depending on the difference in their half-lives and insertion of the reporter gene in one or both alleles. In stem cell populations with restricted Nanog expression, allelic regulation facilitates the maintenance of fractions of self-renewing cells with sufficient Nanog content to prevent aberrant loss of pluripotency. Our findings underline the role of allelic control of Nanog expression as a prime determinant of stem cell population heterogeneity and warrant further investigation in the contexts of stem cell specification and cell reprogramming. PMID:23874182

  6. Modification of the carboxy-terminal flanking region of a universal influenza epitope alters CD4+ T-cell repertoire selection

    PubMed Central

    Cole, David K.; Gallagher, Kathleen; Lemercier, Brigitte; Holland, Christopher J.; Junaid, Sayed; Hindley, James P.; Wynn, Katherine K.; Gostick, Emma; Sewell, Andrew K.; Gallimore, Awen M.; Ladell, Kristin; Price, David A.; Gougeon, Marie-Lise; Godkin, Andrew

    2012-01-01

    Human CD4+ αβ T cells are activated via T-cell receptor recognition of peptide epitopes presented by major histocompatibility complex (MHC) class II (MHC-II). The open ends of the MHC-II binding groove allow peptide epitopes to extend beyond a central nonamer core region at both the amino- and carboxy-terminus. We have previously found that these non-bound C-terminal residues can alter T cell activation in an MHC allele-transcending fashion, although the mechanism for this effect remained unclear. Here we show that modification of the C-terminal peptide-flanking region of an influenza hemagglutinin (HA305−320) epitope can alter T-cell receptor binding affinity, T-cell activation and repertoire selection of influenza-specific CD4+ T cells expanded from peripheral blood. These data provide the first demonstration that changes in the C-terminus of the peptide-flanking region can substantially alter T-cell receptor binding affinity, and indicate a mechanism through which peptide flanking residues could influence repertoire selection. PMID:22314361

  7. Monitoring Pharmacologically Induced Immunosuppression by Immune Repertoire Sequencing to Detect Acute Allograft Rejection in Heart Transplant Patients: A Proof-of-Concept Diagnostic Accuracy Study

    PubMed Central

    Valantine, Hannah A.; Penland, Lolita; Luikart, Helen; Strehl, Calvin; Cohen, Garrett; Khush, Kiran K.; Quake, Stephen R.

    2015-01-01

    Background It remains difficult to predict and to measure the efficacy of pharmacological immunosuppression. We hypothesized that measuring the B-cell repertoire would enable assessment of the overall level of immunosuppression after heart transplantation. Methods and Findings In this proof-of-concept study, we implemented a molecular-barcode-based immune repertoire sequencing assay that sensitively and accurately measures the isotype and clonal composition of the circulating B cell repertoire. We used this assay to measure the temporal response of the B cell repertoire to immunosuppression after heart transplantation. We selected a subset of 12 participants from a larger prospective cohort study (ClinicalTrials.gov NCT01985412) that is ongoing at Stanford Medical Center and for which enrollment started in March 2010. This subset of 12 participants was selected to represent post-heart-transplant events, with and without acute rejection (six participants with moderate-to-severe rejection and six without). We analyzed 130 samples from these patients, with an average follow-up period of 15 mo. Immune repertoire sequencing enables the measurement of a patient’s net state of immunosuppression (correlation with tacrolimus level, r = −0.867, 95% CI −0.968 to −0.523, p = 0.0014), as well as the diagnosis of acute allograft rejection, which is preceded by increased immune activity with a sensitivity of 71.4% (95% CI 30.3% to 94.9%) and a specificity of 82.0% (95% CI 72.1% to 89.1%) (cell-free donor-derived DNA as noninvasive gold standard). To illustrate the potential of immune repertoire sequencing to monitor atypical post-transplant trajectories, we analyzed two more patients, one with chronic infections and one with amyloidosis. A larger, prospective study will be needed to validate the power of immune repertoire sequencing to predict rejection events, as this proof-of-concept study is limited to a small number of patients who were selected based on several

  8. High throughput automated allele frequency estimation by pyrosequencing.

    PubMed

    Doostzadeh, Julie; Shokralla, Shadi; Absalan, Farnaz; Jalili, Roxana; Mohandessi, Sharareh; Langston, James W; Davis, Ronald W; Ronaghi, Mostafa; Gharizadeh, Baback

    2008-01-01

    Pyrosequencing is a DNA sequencing method based on the principle of sequencing-by-synthesis and pyrophosphate detection through a series of enzymatic reactions. This bioluminometric, real-time DNA sequencing technique offers unique applications that are cost-effective and user-friendly. In this study, we have combined a number of methods to develop an accurate, robust and cost efficient method to determine allele frequencies in large populations for association studies. The assay offers the advantage of minimal systemic sampling errors, uses a general biotin amplification approach, and replaces dTTP for dATP-apha-thio to avoid non-uniform higher peaks in order to increase accuracy. We demonstrate that this newly developed assay is a robust, cost-effective, accurate and reproducible approach for large-scale genotyping of DNA pools. We also discuss potential improvements of the software for more accurate allele frequency analysis. PMID:18628978

  9. High Throughput Automated Allele Frequency Estimation by Pyrosequencing

    PubMed Central

    Absalan, Farnaz; Jalili, Roxana; Mohandessi, Sharareh; Langston, James W.; Davis, Ronald W.; Ronaghi, Mostafa; Gharizadeh, Baback

    2008-01-01

    Pyrosequencing is a DNA sequencing method based on the principle of sequencing-by-synthesis and pyrophosphate detection through a series of enzymatic reactions. This bioluminometric, real-time DNA sequencing technique offers unique applications that are cost-effective and user-friendly. In this study, we have combined a number of methods to develop an accurate, robust and cost efficient method to determine allele frequencies in large populations for association studies. The assay offers the advantage of minimal systemic sampling errors, uses a general biotin amplification approach, and replaces dTTP for dATP-apha-thio to avoid non-uniform higher peaks in order to increase accuracy. We demonstrate that this newly developed assay is a robust, cost-effective, accurate and reproducible approach for large-scale genotyping of DNA pools. We also discuss potential improvements of the software for more accurate allele frequency analysis. PMID:18628978

  10. Three allele combinations associated with Multiple Sclerosis

    PubMed Central

    Favorova, Olga O; Favorov, Alexander V; Boiko, Alexey N; Andreewski, Timofey V; Sudomoina, Marina A; Alekseenkov, Alexey D; Kulakova, Olga G; Gusev, Eugenyi I; Parmigiani, Giovanni; Ochs, Michael F

    2006-01-01

    Background Multiple sclerosis (MS) is an immune-mediated disease of polygenic etiology. Dissection of its genetic background is a complex problem, because of the combinatorial possibilities of gene-gene interactions. As genotyping methods improve throughput, approaches that can explore multigene interactions appropriately should lead to improved understanding of MS. Methods 286 unrelated patients with definite MS and 362 unrelated healthy controls of Russian descent were genotyped at polymorphic loci (including SNPs, repeat polymorphisms, and an insertion/deletion) of the DRB1, TNF, LT, TGFβ1, CCR5 and CTLA4 genes and TNFa and TNFb microsatellites. Each allele carriership in patients and controls was compared by Fisher's exact test, and disease-associated combinations of alleles in the data set were sought using a Bayesian Markov chain Monte Carlo-based method recently developed by our group. Results We identified two previously unknown MS-associated tri-allelic combinations: -509TGFβ1*C, DRB1*18(3), CTLA4*G and -238TNF*B1,-308TNF*A2, CTLA4*G, which perfectly separate MS cases from controls, at least in the present sample. The previously described DRB1*15(2) allele, the microsatellite TNFa9 allele and the biallelic combination CCR5Δ32, DRB1*04 were also reidentified as MS-associated. Conclusion These results represent an independent validation of MS association with DRB1*15(2) and TNFa9 in Russians and are the first to find the interplay of three loci in conferring susceptibility to MS. They demonstrate the efficacy of our approach for the identification of complex-disease-associated combinations of alleles. PMID:16872485

  11. Determinants of the mouse ultrasonic vocal structure and repertoire.

    PubMed

    Heckman, Jesse; McGuinness, Brigit; Celikel, Tansu; Englitz, Bernhard

    2016-06-01

    Mouse ultrasonic vocalizations (USV) exhibit a high degree of complexity as demonstrated in recent years. A multitude of factors have been identified to influence USVs on the spectrotemporal as well as structural - e.g. syntactic - level. A synthesis of the various studies that attributes semantics to USV properties or sequences is still lacking. Presently, we address the factors modulating the composition of USVs, specifically age, gender, genetic background (including the targeted FoxP2 mutagenesis), behavioral state and individuality. It emerges that the different factors share a set of common influences, e.g. vocalization rate and frequency range are universally modulated across independent variables described; however, distinct influences exist for sequential structure (different effects for age, behavioral state and genetic background) or vocal repertoire (age). Recently, USV research has seen important advances based on the quantitative maturation of methods on multiple levels of vocalization. Adoption of these methods to address the natural statistics of USV will ultimately benefit several related research areas, e.g. neurolinguistics, neurodevelopmental disorders, multisensory and sensorimotor research. PMID:27060755

  12. Gene repertoire of amoeba-associated giant viruses.

    PubMed

    Colson, Philippe; Raoult, Didier

    2010-01-01

    Acanthamoeba polyphaga mimivirus, Marseillevirus, and Sputnik, a virophage, are intra-amoebal viruses that have been isolated from water collected in cooling towers. They have provided fascinating data and have raised exciting questions about viruses definition and evolution. Mimivirus and Marseillevirus have been classified in the nucleo-cytoplasmic large DNA viruses (NCLDVs) class. Their genomes are the largest and fifth largest viral genomes sequenced so far. The gene repertoire of these amoeba-associated viruses can be divided into four groups: the core genome, genes acquired by lateral gene transfer, duplicated genes, and ORFans. Open reading frames (ORFs) that have homologs in the NCLDVs core gene set represent 2.9 and 6.1% of the Mimivirus and Marseillevirus gene contents, respectively. A substantial proportion of the Mimivirus, Marseillevirus and Sputnik ORFs exhibit sequence similarities to homologs found in bacteria, archaea, eukaryotes or viruses. The large amount of chimeric genes in these viral genomes might have resulted from acquisitions by lateral gene transfers, implicating sympatric bacteria and viruses with an intra-amoebal lifestyle. In addition, lineage-specific gene expansion may have played a major role in the genome shaping. Altogether, the data so far accumulated on amoeba-associated giant viruses are a powerful incentive to isolate and study additional strains to gain better understanding of their pangenome. PMID:20551685

  13. Reconstructing the locomotor repertoire of Protopithecus brasiliensis. I. Body size.

    PubMed

    Halenar, Lauren B

    2011-12-01

    An accurate body size estimate is essential for reconstructing and interpreting many aspects of the paleobiology of an extinct taxon. With this in mind, the purpose of this study is two-fold: first, to create statistically robust predictive regression equations for body mass, total body length, and head and body length from postcranial elements using a platyrrhine reference sample, data that do not exist elsewhere in the literature; and, second, to apply those regression equations to the "giant" subfossil platyrrhine Protopithecus brasiliensis, a little-studied taxon represented by a nearly complete skeleton. Building on results of previous work with other primate groups, different skeletal elements, subgroups of the reference sample, and regression models lead to different body size estimates with different standard errors and prediction errors. However, relatively tight clusters of estimates around 20 kg, total length of 1,675 mm, and head and body length of 710 mm are obtained, placing the fossil in the size range of a large male baboon. While not quite as large as the original 25 kg body mass estimate for the fossil, this new estimate is still approximately 150% larger than the largest living New World monkey. Confirmation of its place in a large-bodied size class of platyrrhines has a profound effect on reconstructing the locomotor repertoire of Protopithecus and the evolutionary trajectory of the alouattin lineage. PMID:22042663

  14. Impact of asymmetric gene repertoire between cyclostomes and gnathostomes.

    PubMed

    Kuraku, Shigehiro

    2013-02-01

    Extant vertebrates are divided into the two major groups, cyclostomes and gnathostomes (jawed vertebrates). The former includes jawless fishes, hagfishes and lampreys, and the latter includes all extant jawed vertebrates. In many research fields, the phenotypic traits of the cyclostomes have been considered crucial in understanding the evolutionary process from invertebrates to vertebrates. Recent studies have suggested that the common ancestor of the extant vertebrates including hagfishes and lampreys underwent two-round of whole genome duplications, and thus the genome expansion solely does not account for phenotypic differences between cyclostomes and gnathostomes. Emerging evidence from molecular phylogeny of individual gene families indicates that the gene repertoire expanded at the common ancestor of vertebrates were later reshaped asymmetrically between the two lineages, resulting in the retention of differential gene sets. This also confuses interpretation of conserved synteny which often serves as indicator of orthology and the ploidy level. In this review, current controversy and future perspectives of cyclostome genomics are discussed with reference to evolutionary developmental biology. PMID:23291292

  15. Comprehensive Repertoire of Foldable Regions within Whole Genomes

    PubMed Central

    Faure, Guilhem; Callebaut, Isabelle

    2013-01-01

    In order to get a comprehensive repertoire of foldable domains within whole proteomes, including orphan domains, we developed a novel procedure, called SEG-HCA. From only the information of a single amino acid sequence, SEG-HCA automatically delineates segments possessing high densities in hydrophobic clusters, as defined by Hydrophobic Cluster Analysis (HCA). These hydrophobic clusters mainly correspond to regular secondary structures, which together form structured or foldable regions. Genome-wide analyses revealed that SEG-HCA is opposite of disorder predictors, both addressing distinct structural states. Interestingly, there is however an overlap between the two predictions, including small segments of disordered sequences, which undergo coupled folding and binding. SEG-HCA thus gives access to these specific domains, which are generally poorly represented in domain databases. Comparison of the whole set of SEG-HCA predictions with the Conserved Domain Database (CDD) also highlighted a wide proportion of predicted large (length >50 amino acids) segments, which are CDD orphan. These orphan sequences may either correspond to highly divergent members of already known families or belong to new families of domains. Their comprehensive description thus opens new avenues to investigate new functional and/or structural features, which remained so far uncovered. Altogether, the data described here provide new insights into the protein architecture and organization throughout the three kingdoms of life. PMID:24204229

  16. Microsatellite allele dose and configuration establishment (MADCE): an integrated approach for genetic studies in allopolyploids

    PubMed Central

    2012-01-01

    Background Genetic studies in allopolyploid plants are challenging because of the presence of similar sub-genomes, which leads to multiple alleles and complex segregation ratios. In this study, we describe a novel method for establishing the exact dose and configuration of microsatellite alleles for any accession of an allopolyploid plant species. The method, named Microsatellite Allele Dose and Configuration Establishment (MADCE), can be applied to mapping populations and pedigreed (breeding) germplasm in allopolyploids. Results Two case studies are presented to demonstrate the power and robustness of the MADCE method. In the mapping case, five microsatellites were analysed. These microsatellites amplified 35 different alleles based on size. Using MADCE, we uncovered 30 highly informative segregating alleles. A conventional approach would have yielded only 19 fully informative and six partially informative alleles. Of the ten alleles that were present in all progeny (and thereby ignored or considered homozygous when using conventional approaches), six were found to segregate by dosage when analysed with MADCE. Moreover, the full allelic configuration of the mapping parents could be established, including null alleles, homozygous loci, and alleles that were present on multiple homoeologues. In the second case, 21 pedigreed cultivars were analysed using MADCE, resulting in the establishment of the full allelic configuration for all 21 cultivars and a tracing of allele flow over multiple generations. Conclusions The procedure described in this study (MADCE) enhances the efficiency and information content of mapping studies in allopolyploids. More importantly, it is the first technique to allow the determination of the full allelic configuration in pedigreed breeding germplasm from allopolyploid plants. This enables pedigree-based marker-trait association studies the use of algorithms developed for diploid crops, and it may increase the effectiveness of LD

  17. Genomic repertoires of DNA-binding transcription factors across the tree of life

    PubMed Central

    Charoensawan, Varodom; Wilson, Derek; Teichmann, Sarah A.

    2010-01-01

    Sequence-specific transcription factors (TFs) are important to genetic regulation in all organisms because they recognize and directly bind to regulatory regions on DNA. Here, we survey and summarize the TF resources available. We outline the organisms for which TF annotation is provided, and discuss the criteria and methods used to annotate TFs by different databases. By using genomic TF repertoires from ∼700 genomes across the tree of life, covering Bacteria, Archaea and Eukaryota, we review TF abundance with respect to the number of genes, as well as their structural complexity in diverse lineages. While typical eukaryotic TFs are longer than the average eukaryotic proteins, the inverse is true for prokaryotes. Only in eukaryotes does the same family of DNA-binding domain (DBD) occur multiple times within one polypeptide chain. This potentially increases the length and diversity of DNA-recognition sequence by reusing DBDs from the same family. We examined the increase in TF abundance with the number of genes in genomes, using the largest set of prokaryotic and eukaryotic genomes to date. As pointed out before, prokaryotic TFs increase faster than linearly. We further observe a similar relationship in eukaryotic genomes with a slower increase in TFs. PMID:20675356

  18. Allelic imbalance within the E-cadherin gene is an infrequent event in prostate carcinogenesis.

    PubMed

    Murant, S J; Rolley, N; Phillips, S M; Stower, M; Maitland, N J

    2000-01-01

    By exploiting two single nucleotide polymorphisms (SNPs) located within the E-cadherin gene, at 16q22, we have determined the frequency of allelic imbalance at this proposed tumor suppressor locus in a series of human prostatic carcinoma DNA samples. Whereas results with seven highly polymorphic microsatellite markers flanking the E-cadherin locus confirmed the existence of three separate loci on chromosome 16, at which allelic imbalance increased with increasing loss of tumor cell differentiation, no allelic imbalance within the E-cadherin gene was detected either by single-strand conformational polymorphism analysis or by direct sequencing. We conclude that the loss of E-cadherin function observed in prostate cancer is not a result of allelic deletion. Genes Chromosomes Cancer 27:104-109, 2000. PMID:10564592

  19. Imprint of 5-azacytidine on the natural killer cell repertoire during systemic treatment for high-risk myelodysplastic syndrome

    PubMed Central

    Sohlberg, Ebba; Pfefferle, Aline; Andersson, Sandra; Baumann, Bettina C.; Hellström-Lindberg, Eva; Malmberg, Karl-Johan

    2015-01-01

    5-azacytidine (5-aza) is a hypomethylating agent approved for the treatment of high-risk myelodysplastic syndrome (MDS). It is assumed to act by demethylating tumor suppressor genes and via direct cytotoxic effects on malignant cells. In vitro treatment with hypomethylating agents has profound effects on the expression of killer-cell immunoglobulin-like (KIR) receptors on natural killer (NK) cells, as these receptors are epigenetically regulated via methylation of the promoters. Here we investigated the influence of 5-aza on the NK-cell repertoire during cytokine-induced proliferation in vitro and homeostatic proliferation in vivo in patients with high-risk MDS. In vitro treatment of NK cells from both healthy donors and MDS patients with low doses of 5-aza led to a significant increase in expression of multiple KIRs, but only in cells that had undergone several rounds of cell division. Proliferating 5-aza exposed NK cells exhibited increased IFN-γ production and degranulation towards tumor target cells. MDS patients had lower proportions of educated KIR-expressing NK cells than healthy controls but after systemic treatment with 5-aza, an increased proportion of Ki-67+ NK cells expressed multiple KIRs suggesting uptake of 5-aza in cycling cells in vivo. Hence, these results suggest that systemic treatment with 5-aza may shape the NK cell repertoire, in particular during homeostatic proliferation, thereby boosting NK cell-mediated recognition of malignant cells. PMID:26497557

  20. Imprint of 5-azacytidine on the natural killer cell repertoire during systemic treatment for high-risk myelodysplastic syndrome.

    PubMed

    Sohlberg, Ebba; Pfefferle, Aline; Andersson, Sandra; Baumann, Bettina C; Hellström-Lindberg, Eva; Malmberg, Karl-Johan

    2015-10-27

    5-azacytidine (5-aza) is a hypomethylating agent approved for the treatment of high-risk myelodysplastic syndrome (MDS). It is assumed to act by demethylating tumor suppressor genes and via direct cytotoxic effects on malignant cells. In vitro treatment with hypomethylating agents has profound effects on the expression of killer-cell immunoglobulin-like (KIR) receptors on natural killer (NK) cells, as these receptors are epigenetically regulated via methylation of the promoters. Here we investigated the influence of 5-aza on the NK-cell repertoire during cytokine-induced proliferation in vitro and homeostatic proliferation in vivo in patients with high-risk MDS. In vitro treatment of NK cells from both healthy donors and MDS patients with low doses of 5-aza led to a significant increase in expression of multiple KIRs, but only in cells that had undergone several rounds of cell division. Proliferating 5-aza exposed NK cells exhibited increased IFN-γ production and degranulation towards tumor target cells. MDS patients had lower proportions of educated KIR-expressing NK cells than healthy controls but after systemic treatment with 5-aza, an increased proportion of Ki-67+ NK cells expressed multiple KIRs suggesting uptake of 5-aza in cycling cells in vivo. Hence, these results suggest that systemic treatment with 5-aza may shape the NK cell repertoire, in particular during homeostatic proliferation, thereby boosting NK cell-mediated recognition of malignant cells. PMID:26497557

  1. Position 156 influences the peptide repertoire and tapasin dependency of human leukocyte antigen B*44 allotypes

    PubMed Central

    Badrinath, Soumya; Saunders, Philippa; Huyton, Trevor; Aufderbeck, Susanne; Hiller, Oliver; Blasczyk, Rainer; Bade-Doeding, Christina

    2012-01-01

    Background Polymorphic differences between donor and recipient human leukocyte antigen class I molecules can result in graft-versus-host disease due to distinct peptide presentation. As part of the peptide-loading complex, tapasin plays an important role in selecting peptides from the pool of potential ligands. Class I polymorphisms can significantly alter the tapasin-mediated interaction with the peptide-loading complex and although most class I allotypes are highly dependent upon tapasin, some are able to load peptides independently of tapasin. Several human leukocyte antigen B*44 allotypes differ exclusively at position 156 (B*44:02156Asp, 44:03156Leu, 44:28156Arg, 44:35156Glu). From these alleles, only the high tapasin-dependency of human leukocyte antigen B*44:02 has been reported. Design and Methods We investigated the influence of position 156 polymorphisms on both the requirement of tapasin for efficient surface expression of each allotype and their peptide features. Genes encoding human leukocyte antigen B*44 variants bearing all possible substitutions at position 156 were lentivirally transduced into human leukocyte antigen class I-negative LCL 721.221 cells and the tapasin-deficient cell line LCL 721.220. Results Exclusively human leukocyte antigen B*44:28156Arg was expressed on the surface of tapasin-deficient cells, suggesting that the remaining B*44/156 variants are highly tapasin-dependent. Our computational analysis suggests that the tapasin-independence of human leukocyte antigen B*44:28156Arg is a result of stabilization of the peptide binding region and generation of a more peptide receptive state. Sequencing of peptides eluted from human leukocyte antigen B*44 molecules by liquid chromatography-electrospray ionization-mass spectrometry (LTQ-Orbitrap) demonstrated that both B*44:02 and B*44:28 share the same overall peptide motif and a certain percentage of their individual peptide repertoires in the presence and/or absence of tapasin

  2. Robust estimates of overall immune-repertoire diversity from high-throughput measurements on samples.

    PubMed

    Kaplinsky, Joseph; Arnaout, Ramy

    2016-01-01

    The diversity of an organism's B- and T-cell repertoires is both clinically important and a key measure of immunological complexity. However, diversity is hard to estimate by current methods, because of inherent uncertainty in the number of B- and T-cell clones that will be missing from a blood or tissue sample by chance (the missing-species problem), inevitable sampling bias, and experimental noise. To solve this problem, we developed Recon, a modified maximum-likelihood method that outputs the overall diversity of a repertoire from measurements on a sample. Recon outputs accurate, robust estimates by any of a vast set of complementary diversity measures, including species richness and entropy, at fractional repertoire coverage. It also outputs error bars and power tables, allowing robust comparisons of diversity between individuals and over time. We apply Recon to in silico and experimental immune-repertoire sequencing data sets as proof of principle for measuring diversity in large, complex systems. PMID:27302887

  3. Defining the Alloreactive T Cell Repertoire Using High-Throughput Sequencing of Mixed Lymphocyte Reaction Culture

    PubMed Central

    Konieczna, Iwona M.; Robins, Harlan S.; Leventhal, Joseph R.

    2014-01-01

    The cellular immune response is the most important mediator of allograft rejection and is a major barrier to transplant tolerance. Delineation of the depth and breadth of the alloreactive T cell repertoire and subsequent application of the technology to the clinic may improve patient outcomes. As a first step toward this, we have used MLR and high-throughput sequencing to characterize the alloreactive T cell repertoire in healthy adults at baseline and 3 months later. Our results demonstrate that thousands of T cell clones proliferate in MLR, and that the alloreactive repertoire is dominated by relatively high-abundance T cell clones. This clonal make up is consistently reproducible across replicates and across a span of three months. These results indicate that our technology is sensitive and that the alloreactive TCR repertoire is broad and stable over time. We anticipate that application of this approach to track donor-reactive clones may positively impact clinical management of transplant patients. PMID:25365040

  4. Robust estimates of overall immune-repertoire diversity from high-throughput measurements on samples

    PubMed Central

    Kaplinsky, Joseph; Arnaout, Ramy

    2016-01-01

    The diversity of an organism's B- and T-cell repertoires is both clinically important and a key measure of immunological complexity. However, diversity is hard to estimate by current methods, because of inherent uncertainty in the number of B- and T-cell clones that will be missing from a blood or tissue sample by chance (the missing-species problem), inevitable sampling bias, and experimental noise. To solve this problem, we developed Recon, a modified maximum-likelihood method that outputs the overall diversity of a repertoire from measurements on a sample. Recon outputs accurate, robust estimates by any of a vast set of complementary diversity measures, including species richness and entropy, at fractional repertoire coverage. It also outputs error bars and power tables, allowing robust comparisons of diversity between individuals and over time. We apply Recon to in silico and experimental immune-repertoire sequencing data sets as proof of principle for measuring diversity in large, complex systems. PMID:27302887

  5. Positive emotions broaden the scope of attention and thought-action repertoires

    PubMed Central

    Fredrickson, Barbara L.; Branigan, Christine

    2011-01-01

    The broaden-and-build theory (Fredrickson, 1998, 2001) hypothesises that positive emotions broaden the scope of attention and thought-action repertoires. Two experiments with 104 college students tested these hypotheses. In each, participants viewed a film that elicited (a) amusement, (b) contentment, (c) neutrality, (d) anger, or (e) anxiety. Scope of attention was assessed using a global-local visual processing task (Experiment 1) and thought-action repertoires were assessed using a Twenty Statements Test (Experiment 2). Compared to a neutral state, positive emotions broadened the scope of attention in Experiment 1 and thought-action repertoires in Experiment 2. In Experiment 2, negative emotions, relative to a neutral state, narrowed thought-action repertoires. Implications for promoting emotional well-being and physical health are discussed. PMID:21852891

  6. If the immune repertoire evolved to be large, random, and somatically generated, then...

    PubMed

    Langman, Rodney E; Cohn, Melvin

    2002-01-01

    The evolution of the somatically generated random combining site repertoire of the "adaptive" immune system depended on the concurrent appearance of a somatic process that sorted the repertoire into anti-self and anti-nonself. Unlike the germline-selected sorting process characteristic of "innate" defense mechanisms, somatic sorting of the repertoire requires that antigens be classified based on their behavior, not on their physical or chemical properties. As specific recognitive combining sites (paratopes) define antigenic determinants (epitopes), the sorting of the repertoire operates epitope-by-epitope. By contrast, the coupling of the paratope to effector function must operate antigen-by-antigen because the response to each epitope on the antigen must be in the same effector class (i.e., coherent). This distinction resolves a long standing debate and provides a basis for analyzing the various models. PMID:12381346

  7. Pollution-tolerant allele in fingernail clams (Musculium transversum).

    PubMed

    Sloss, B L; Romano, M A; Anderson, R V

    1998-08-01

    For nearly 50 years, the fingernail clam (Musculium transversum) was believed to be virtually eliminated from the Illinois River. In 1991, workers began finding substantial populations of M. transversum in the Illinois River including several beds in and around the highly polluted Chicago Sanitary District. In order to determine if populations of M. transversum from polluted sites exhibited any genetic response to the high levels of toxins and to examine the genetic structure of several populations of M. transversum for any changes due to the population crash, starch-gel electrophoresis was performed on M. transversum from three Illinois River localities and four Mississippi River basin locations. The sampled populations produced an inbreeding coefficient (FIS) of 0.929, indicating that the populations were highly inbred. The results of a suspected founder effect due to a bottleneck was suggested by an FST = 0.442. The isozyme Glucose-6-phosphate isomerase-2 (Gpi-2) produced allelic frequency patterns that were consistent with expected patterns of a pollution-tolerant allele. Polluted sites exhibited elevated frequencies of Gpi-2(100) whereas nonpolluted sites exhibited elevated frequencies of Gpi-2(74). This frequency pattern suggested that natural selection was occurring in populations under severe toxic pressures, leading to an increase in the frequency of the allele Gpi-2(100). Therefore, Gpi-2(100) is a possible pollution-tolerant mutation in M. transversum. PMID:9680522

  8. Repertoire, diversity, and differentiation of specific CD8 T cells are associated with immune protection against human cytomegalovirus disease.

    PubMed

    Sacre, Karim; Carcelain, Guislaine; Cassoux, Nathalie; Fillet, Anne-Marie; Costagliola, Dominique; Vittecoq, Daniel; Salmon, Dominique; Amoura, Zahir; Katlama, Christine; Autran, Brigitte

    2005-06-20

    To determine the correlates of immune recovery from active human CMV (HCMV) disease, we compared the antigenic repertoire, diversity, magnitude, and differentiation of HCMV-specific CD8+ T cells in HIV-HCMV coinfected subjects with no, cured, or active HCMV disease and in healthy HIV-negative HCMV-positive controls. ELISPOT-IFN-gamma assays using peptide pools spanning the pp65 and immediate early 1 (IE1) HCMV proteins showed that HCMV-specific CD8+ T cells had a significantly broader antigenic repertoire and greater diversity in HIV-positive patients controlling HCMV replication than in those with active HCMV disease, but the magnitude of the CD8 T cell response did not differ between the different groups. HCMV-specific T cells mainly were focused against IE1 during the short-term recovery from retinitis, and switched toward pp65 during long-term recovery. HCMV-specific T cells displaying an "early" (CD8+CD27+CD28+) and "intermediate" (CD8+CD27-CD28+) differentiation phenotype were increased significantly during long-term recovery compared with other HIV-positive patients and were nearly undetectable during active HCMV disease. HCMV-specific T cells with a "late" (CD8+CD27-28-) differentiation phenotype predominated in all cases. Therefore, restoration of immune protection against HCMV after active HCMV disease in immunodeficient individuals is associated with enlarged repertoire and diversity, and with early differentiation of virus-specific CD8+ T cells, thus defining immune correlates of protection against diseases caused by persistent viruses. PMID:15967826

  9. Tetrasomic Segregation for Multiple Alleles in Alfalfa

    PubMed Central

    Quiros, Carlos F.

    1982-01-01

    Evidence of tetrasomic inheritance in alfalfa, Medicago sativa L. and M. falcata L., for multiple codominant alleles at three isozymic loci is reported in this study. The locus Prx-1 governing anodal peroxidase and the loci Lap-1 and Lap-2 governing anodal leucine-aminopeptidase were studied by starch gel electrophoresis in seedling root tissue or seeds. The progenies from several di-, tri- or tetra-allelic plants belong to the species M. sativa and M. falcata and their hybrids were studied for the segregation of the three genes. In all cases, tetrasomic inheritance of chromosomal-type segregation was observed. In another progeny resulting from the crossing of two plants involving four different alleles at locus Lap-2, tetrasomic segregation with the possible occurrence of double reduction was observed. This study presents direct evidence of autotetraploidy and the existence of tetra-allelic loci in alfalfa. It also supports the concept that the species M. sativa and M. falcata are genetically close enough to be considered biotypes of a common species. PMID:17246077

  10. Rhodopsin F45L Allele Does Not Cause Autosomal Dominant Retinitis Pigmentosa in a Large Caucasian Family

    PubMed Central

    Vincent, Andrea L.; Carroll, Joseph; Fishman, Gerald A.; Sauer, Alexandra; Sharp, Dianne; Summerfelt, Phyllis; Williams, Vesper; Dubis, Adam M.; Kohl, Susanne; Wong, Fulton

    2013-01-01

    Purpose To ascertain the potential pathogenicity of a retinitis pigmentosa (RP)-causing RHO F45L allele in a family affected by congenital achromatopsia (ACHM). Methods Case series/observational study that included two patients with ACHM and 24 extended family members. Molecular genetic analysis was performed to identify RHO F45L carrier status in the family and a control population. An adaptive optics scanning light ophthalmoscope (AOSLO) was used to image the photoreceptor mosaic and assess rod and cone structure. Spectral domain optical coherence tomography (SD-OCT) was used to examine retinal lamination. Comprehensive clinical testing included acuity, color vision, and dilated fundus examination. Electroretinography was used to assess rod and cone function. Results Five carriers of the RHO F45L allele alone (24–80 years) and three carriers in combination with a heterozygous CNGA3 mutant allele (10–64 years) were all free of the classic symptoms and signs of RP. In heterozygous carriers of both mutations, SD-OCT showed normal retinal thickness and intact outer retinal layers; rod and cone densities were within normal limits on AOSLO. The phenotype in two individuals affected with ACHM and harboring the RHO F45L allele was indistinguishable from that previously reported for ACHM. Conclusions The RHO F45L allele is not pathogenic in this large family; hence, the two ACHM patients would unlikely develop RP in the future. Translational Relevance The combined approach of comprehensive molecular analysis of individual genomes and noninvasive cellular resolution retinal imaging enhances the current repertoire of clinical diagnostic tools, giving a substantial impetus to personalized medicine. PMID:24049715

  11. Identification of antigen-specific B cell receptor sequences using public repertoire analysis

    PubMed Central

    Galson, Jacob D.; Rance, Richard; Parkhill, Julian; Lunter, Gerton; Pollard, Andrew J.; Kelly, Dominic F.

    2014-01-01

    High-throughput sequencing allows detailed study of the B cell receptor (BCR) repertoire post-immunization but it remains unclear to what extent the de novo identification of antigen-specific sequences from the total BCR repertoire is possible. A Hib-MenC-TT conjugate vaccine containing H. influenzae type b (Hib) and group C meningococcal (MenC) polysaccharides as well as tetanus toxoid (TT) was used to investigate the BCR repertoire of adult humans following immunization and test the hypothesis that public or convergent repertoire analysis could identify antigen specific sequences. A number of antigen-specific BCR sequences have previously been reported for Hib and TT which made a vaccine containing these 2 antigens an ideal immunological stimulus. Analysis of identical complementarity determining region (CDR)3 amino acid (AA) sequences that were shared by individuals in the post-vaccine repertoire identified a number of known Hib-specific sequences but only one previously described TT sequence. The extension of this analysis to non-identical but highly similar CDR3 AA sequences revealed a number of other TT-related sequences. The anti-Hib avidity index post-vaccination was strongly correlated with the relative frequency of Hib-specific sequences, indicating that the post-vaccination public BCR repertoire may be related to more conventional measures of immunogenicity correlating with disease protection. Analysis of public BCR repertoire provided evidence of convergent BCR evolution in individuals exposed to the same antigens. If this finding is confirmed, the public repertoire could be used for rapid and direct identification of protective antigen-specific BCR sequences from peripheral blood. PMID:25392534

  12. Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire.

    PubMed

    Sims, Jennifer S; Grinshpun, Boris; Feng, Yaping; Ung, Timothy H; Neira, Justin A; Samanamud, Jorge L; Canoll, Peter; Shen, Yufeng; Sims, Peter A; Bruce, Jeffrey N

    2016-06-21

    Although immune signaling has emerged as a defining feature of the glioma microenvironment, how the underlying structure of the glioma-infiltrating T-cell population differs from that of the blood from which it originates has been difficult to measure directly in patients. High-throughput sequencing of T-cell receptor (TCR) repertoires (TCRseq) provides a population-wide statistical description of how T cells respond to disease. We have defined immunophenotypes of whole repertoires based on TCRseq of the α- and β-chains from glioma tissue, nonneoplastic brain tissue, and peripheral blood from patients. Using information theory, we partitioned the diversity of these TCR repertoires into that from the distribution of VJ cassette combinations and diversity due to VJ-independent factors, such as selection due to antigen binding. Tumor-infiltrating lymphocytes (TILs) possessed higher VJ-independent diversity than nonneoplastic tissue, stratifying patients according to tumor grade. We found that the VJ-independent components of tumor-associated repertoires diverge more from their corresponding peripheral repertoires than T-cell populations in nonneoplastic brain tissue, particularly for low-grade gliomas. Finally, we identified a "signature" set of TCRs whose use in peripheral blood is associated with patients exhibiting low TIL divergence and is depleted in patients with highly divergent TIL repertoires. This signature is detectable in peripheral blood, and therefore accessible noninvasively. We anticipate that these immunophenotypes will be foundational to monitoring and predicting response to antiglioma vaccines and immunotherapy. PMID:27261081

  13. Dynamics of Individual T Cell Repertoires: From Cord Blood to Centenarians.

    PubMed

    Britanova, Olga V; Shugay, Mikhail; Merzlyak, Ekaterina M; Staroverov, Dmitriy B; Putintseva, Ekaterina V; Turchaninova, Maria A; Mamedov, Ilgar Z; Pogorelyy, Mikhail V; Bolotin, Dmitriy A; Izraelson, Mark; Davydov, Alexey N; Egorov, Evgeny S; Kasatskaya, Sofya A; Rebrikov, Denis V; Lukyanov, Sergey; Chudakov, Dmitriy M

    2016-06-15

    The diversity, architecture, and dynamics of the TCR repertoire largely determine our ability to effectively withstand infections and malignancies with minimal mistargeting of immune responses. In this study, we have employed deep TCRβ repertoire sequencing with normalization based on unique molecular identifiers to explore the long-term dynamics of T cell immunity. We demonstrate remarkable stability of repertoire, where approximately half of all T cells in peripheral blood are represented by clones that persist and generally preserve their frequencies for 3 y. We further characterize the extremes of lifelong TCR repertoire evolution, analyzing samples ranging from umbilical cord blood to centenarian peripheral blood. We show that the fetal TCR repertoire, albeit structurally maintained within regulated borders due to the lower numbers of randomly added nucleotides, is not limited with respect to observed functional diversity. We reveal decreased efficiency of nonsense-mediated mRNA decay in umbilical cord blood, which may reflect specific regulatory mechanisms in development. Furthermore, we demonstrate that human TCR repertoires are functionally more similar at birth but diverge during life, and we track the lifelong behavior of CMV- and EBV-specific T cell clonotypes. Finally, we reveal gender differences in dynamics of TCR diversity constriction, which come to naught in the oldest age. Based on our data, we propose a more general explanation for the previous observations on the relationships between longevity and immunity. PMID:27183615

  14. APOL1 Null Alleles from a Rural Village in India Do Not Correlate with Glomerulosclerosis

    PubMed Central

    Johnstone, Duncan B.; Shegokar, Vijay; Nihalani, Deepak; Rathore, Yogendra Singh; Mallik, Leena; Ashish; Zare, Vasant; Ikizler, H. Omer; Powar, Rajaram; Holzman, Lawrence B.

    2012-01-01

    Background Among African-Americans, genome wide association revealed a strong correlation between the G1 and G2 alleles of APOL1 (apolipoproteinL1, also called trypanolytic factor) and kidney diseases including focal and segmental glomerulosclerosis, HIV-associated nephropathy and hypertensive nephrosclerosis. In the prevailing hypothesis, heterozygous APOL1 G1 and G2 alleles increase resistance against Trypanosoma that cause African sleeping sickness, resulting in positive selection of these alleles, but when homozygous the G1 and G2 alleles predispose to glomerulosclerosis. While efforts are underway to screen patients for G1 and G2 alleles and to better understand “APOL1 glomerulopathy,” no data prove that these APOL1 sequence variants cause glomerulosclerosis. G1 and G2 correlate best with glomerulosclerosis as recessive alleles, which suggests a loss of function mutation for which proof of causality is commonly tested with homozygous null alleles. This test cannot be performed in rodents as the APOL gene cluster evolved only in primates. However, there is a homozygous APOL1 null human being who lives in a village in rural India. This individual and his family offer a unique opportunity to test causality between APOL1 null alleles and glomerulosclerosis. Methods and Findings We obtained clinical data, blood and urine from this APOL1 null patient and 50 related villagers. Based on measurements of blood pressure, BUN, creatinine, albuminuria, genotyping and immunoblotting, this APOL1 null individual does not have glomerulosclerosis, nor do his relatives who carry APOL1 null alleles. Conclusions This small study cannot provide definitive conclusions but the absence of glomerulosclerosis in this unique population is consistent with the possibility that African-American glomerulosclerosis is caused, not by loss of APOL1 function, but by other mechanisms including a subtle gain of function or by the “genetic hitchhiking” of deleterious mutations in a gene

  15. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression.

    PubMed

    Reddy, Timothy E; Gertz, Jason; Pauli, Florencia; Kucera, Katerina S; Varley, Katherine E; Newberry, Kimberly M; Marinov, Georgi K; Mortazavi, Ali; Williams, Brian A; Song, Lingyun; Crawford, Gregory E; Wold, Barbara; Willard, Huntington F; Myers, Richard M

    2012-05-01

    A complex interplay between transcription factors (TFs) and the genome regulates transcription. However, connecting variation in genome sequence with variation in TF binding and gene expression is challenging due to environmental differences between individuals and cell types. To address this problem, we measured genome-wide differential allelic occupancy of 24 TFs and EP300 in a human lymphoblastoid cell line GM12878. Overall, 5% of human TF binding sites have an allelic imbalance in occupancy. At many sites, TFs clustered in TF-binding hubs on the same homolog in especially open chromatin. While genetic variation in core TF binding motifs generally resulted in large allelic differences in TF occupancy, most allelic differences in occupancy were subtle and associated with disruption of weak or noncanonical motifs. We also measured genome-wide differential allelic expression of genes with and without heterozygous exonic variants in the same cells. We found that genes with differential allelic expression were overall less expressed both in GM12878 cells and in unrelated human cell lines. Comparing TF occupancy with expression, we found strong association between allelic occupancy and expression within 100 bp of transcription start sites (TSSs), and weak association up to 100 kb from TSSs. Sites of differential allelic occupancy were significantly enriched for variants associated with disease, particularly autoimmune disease, suggesting that allelic differences in TF occupancy give functional insights into intergenic variants associated with disease. Our results have the potential to increase the power and interpretability of association studies by targeting functional intergenic variants in addition to protein coding sequences. PMID:22300769

  16. Detection of newly antibody-defined epitopes on HLA class I alleles reacting with antibodies induced during pregnancy.

    PubMed

    Duquesnoy, R J; Hönger, G; Hösli, I; Marrari, M; Schaub, S

    2016-08-01

    The determination of HLA mismatch acceptability at the epitope level can be best performed with epitopes that have been verified experimentally with informative antibodies. The website-based International Registry of HLA Epitopes (http://www.epregistry.com.br) has a list of 81 antibody-verified HLA-ABC epitopes but more epitopes need to be added. Pregnancy offers an attractive model to study antibody responses to mismatched HLA epitopes which can be readily determined from the HLA types of child and mother. This report describes a HLAMatchmaker-based analysis of 16 postpregnancy sera tested in single HLA-ABC allele binding assays. Most sera reacted with alleles carrying epitopes that have been antibody-verified, and this study focused on the reactivity of additional alleles that share other epitopes corresponding to eplets and other amino acid residue configurations. This analysis led in the identification of 16 newly antibody-defined epitopes, seven are equivalent to eplets and nine correspond to combinations of eplets in combination with other nearby residue configurations. These epitopes will be added to the repertoire of antibody-verified epitopes in the HLA Epitope Registry. PMID:27312793

  17. Identification of multiple public TCR repertoires in chronic beryllium disease.

    PubMed

    Bowerman, Natalie A; Falta, Michael T; Mack, Douglas G; Wehrmann, Fabian; Crawford, Frances; Mroz, Margaret M; Maier, Lisa A; Kappler, John W; Fontenot, Andrew P

    2014-05-15

    Chronic beryllium disease (CBD) is a granulomatous lung disease characterized by the accumulation of beryllium (Be)-specific CD4(+) T cells in bronchoalveolar lavage. These expanded CD4(+) T cells are composed of oligoclonal T cell subsets, suggesting their recruitment to the lung in response to conventional Ag. In the current study, we noted that all bronchoalveolar lavage-derived T cell lines from HLA-DP2-expressing CBD patients contained an expansion of Be-responsive Vβ5.1(+) CD4(+) T cells. Using Be-loaded HLA-DP2-peptide tetramers, the majority of tetramer-binding T cells also expressed Vβ5.1 with a highly conserved CDR3β motif. Interestingly, Be-specific, Vβ5.1-expressing CD4(+) T cells displayed differential HLA-DP2-peptide tetramer staining intensity, and sequence analysis of the distinct tetramer-binding subsets showed that the two populations differed by a single conserved amino acid in the CDR3β motif. TCR Vα-chain analysis of purified Vβ5.1(+) CD4(+) T cells based on differential tetramer-binding intensity showed differing TCR Vα-chain pairing requirements, with the high-affinity population having promiscuous Vα-chain pairing and the low-affinity subset requiring restricted Vα-chain usage. Importantly, disease severity, as measured by loss of lung function, was inversely correlated with the frequency of tetramer-binding CD4(+) T cells in the lung. Our findings suggest the presence of a dominant Be-specific, Vβ5.1-expressing public T cell repertoire in the lungs of HLA-DP2-expressing CBD patients using promiscuous Vα-chain pairing to recognize an identical HLA-DP2-peptide/Be complex. Importantly, the inverse relationship between expansion of CD4(+) T cells expressing these public TCRs and disease severity suggests a pathogenic role for these T cells in CBD. PMID:24719461

  18. Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting

    PubMed Central

    Khan, Tarik A.; Friedensohn, Simon; de Vries, Arthur R. Gorter; Straszewski, Jakub; Ruscheweyh, Hans-Joachim; Reddy, Sai T.

    2016-01-01

    High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion—the intraclonal diversity index—which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology. PMID:26998518

  19. In-air vocal repertoires of spotted seals, Phoca largha.

    PubMed

    Zhang, Peijun; Lu, Jiaojiao; Li, Songhai; Han, Jiabo; Wang, Qinguo; Yang, Liangliang

    2016-08-01

    Spotted seals (Phoca largha) are thought to be less vocal than other phocids. However, acoustic communication behaviors of spotted seals have been reported several times. In this study, the vocal repertoires of spotted seals housed in Dalian Sun Aquarium, China were recorded and analyzed. The frequencies of the sounds made by the seals ranged from 139.3 to 2323.1 Hz, and the time durations lasted from 92.8 to 1208 ms, depending on age and gender (P < 0.01). The peak-to-peak sound source levels were 109-124 dB re 20μPa. In total, seven vocal types were identified: pup call, yearling call, bark, growl, grunt, moo, and throat guttural. The pups emitted sounds with high frequencies (F1: 972.4 ± 374.4 Hz, mean ± standard deviation) and medial time durations (564 ± 178 ms); when the pups grew older, the sounds became yearling calls, which had high frequencies with median (interquartile range) of 1198.0 (821.7-1385.5) Hz; and long time durations [902 (745-1080) ms]. The male adults emitted sounds with low frequencies [430.2 (388.2-486.7) Hz] and short time durations [334 (233-599) ms], while the female adults emitted sounds with medial frequencies [814.5 (592.6-1024.3) Hz] and medial time durations [531 (336-688) ms]. PMID:27586740

  20. Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting.

    PubMed

    Khan, Tarik A; Friedensohn, Simon; Gorter de Vries, Arthur R; Straszewski, Jakub; Ruscheweyh, Hans-Joachim; Reddy, Sai T

    2016-03-01

    High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion-the intraclonal diversity index-which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology. PMID:26998518

  1. Novel underwater soundscape: acoustic repertoire of plainfin midshipman fish.

    PubMed

    McIver, Eileen L; Marchaterre, Margaret A; Rice, Aaron N; Bass, Andrew H

    2014-07-01

    Toadfishes are among the best-known groups of sound-producing (vocal) fishes and include species commonly known as toadfish and midshipman. Although midshipman have been the subject of extensive investigation of the neural mechanisms of vocalization, this is the first comprehensive, quantitative analysis of the spectro-temporal characters of their acoustic signals and one of the few for fishes in general. Field recordings of territorial, nest-guarding male midshipman during the breeding season identified a diverse vocal repertoire composed of three basic sound types that varied widely in duration, harmonic structure and degree of amplitude modulation (AM): 'hum', 'grunt' and 'growl'. Hum duration varied nearly 1000-fold, lasting for minutes at a time, with stable harmonic stacks and little envelope modulation throughout the sound. By contrast, grunts were brief, ~30-140 ms, broadband signals produced both in isolation and repetitively as a train of up to 200 at intervals of ~0.5-1.0 s. Growls were also produced alone or repetitively, but at variable intervals of the order of seconds with durations between those of grunts and hums, ranging 60-fold from ~200 ms to 12 s. Growls exhibited prominent harmonics with sudden shifts in pulse repetition rate and highly variable AM patterns, unlike the nearly constant AM of grunt trains and flat envelope of hums. Behavioral and neurophysiological studies support the hypothesis that each sound type's unique acoustic signature contributes to signal recognition mechanisms. Nocturnal production of these sounds against a background chorus dominated constantly for hours by a single sound type, the multi-harmonic hum, reveals a novel underwater soundscape for fish. PMID:24737759

  2. Growth behavior of additional offspring with a beneficial reversal allele in the asymmetric sharply-peaked landscape in the coupled discrete-time mutation-selection model

    NASA Astrophysics Data System (ADS)

    Gill, Wonpyong

    2013-01-01

    The probability of additional offspring with a beneficial reversal allele for growing to a size NC for a range of population sizes N, sequence lengths L, selective advantages s, and measuring parameters C was calculated for a haploid, asexual population in the coupled discrete-time mutation-selection model in an asymmetric sharply-peaked landscape with a positive selective advantage of the reversal allele over the optimal allele. The growing probability in the stochastic region was inversely proportional to the measuring parameter when C < 1 /Ns, bent when C ≈ 1/ Ns and saturated when C > 1/ Ns. The crossing time and the time dependence of the increase in relative density of the reversal allele in the coupled discrete-time mutation-selection model was approximated using the Wright-Fisher two-allele model with the same selective advantage and corresponding effective mutation rate. The growth behavior of additional offspring with the reversal allele in the asymmetric sharply-peaked landscape in the coupled discrete-time mutation-selection model was controlled by the selective advantage of the reversal allele compared to the optimal allele and could be described by using the Wright-Fisher two-allele model, in spite of there being many other alleles with lower fitness, and in spite of there being two alleles, the optimal and reversal allele, separated by a low-fitness valley with a tunable depth and width.

  3. HLA-B alleles of the Cayapa of Ecuador: New B39 and B15 alleles

    SciTech Connect

    Garber, T.L.; Butler, L.M.; Watkins, D.I.

    1995-05-01

    Recent data suggest that HLA-B locus alleles can evolve quickly in native South American populations. To investigate further this phenomenon of new HLA-B variants among Amerindians, we studied samples from another South American tribe, the Cayapa from Ecuador. We selected individuals for HLA-B molecular typing based upon their HLA class II typing results. Three new variants of HLA-B39 and one new variant of HLA-B15 were found in the Cayapa: HLA-B*3905, HLA-B*3906, HLA-B*3907, and HLA-B*1522. A total of thirteen new HLA-B alleles have now been found in the four South American tribes studied. Each of these four tribes studied, including the Cayapa, had novel alleles that were not found in any of the other tribes, suggesting that many of these new HLA-B alleles may have evolved since the Paleo-Indians originally populated South America. Each of these 13 new alleles contained predicted amino acid replacements that were located in the peptide binding site. These amino acid replacements may affect the sequence motif of the bound peptides, suggesting that these new alleles have been maintained by selection. New allelic variants have been found for all common HLA-B locus antigenic groups present in South American tribes with the exception of B48. In spite of its high frequency in South American tribes, no evidence for variants of B48 has been found in all the Amerindians studied, suggesting that B48 may have unique characteristics among the B locus alleles. 70 refs., 2 figs., 2 tabs.

  4. No Association Between CEL-HYB Hybrid Allele and Chronic Pancreatitis in Asian Populations.

    PubMed

    Zou, Wen-Bin; Boulling, Arnaud; Masamune, Atsushi; Issarapu, Prachand; Masson, Emmanuelle; Wu, Hao; Sun, Xiao-Tian; Hu, Liang-Hao; Zhou, Dai-Zhan; He, Lin; Fichou, Yann; Nakano, Eriko; Hamada, Shin; Kakuta, Yoichi; Kume, Kiyoshi; Isayama, Hiroyuki; Paliwal, Sumit; Mani, K Radha; Bhaskar, Seema; Cooper, David N; Férec, Claude; Shimosegawa, Tooru; Chandak, Giriraj R; Chen, Jian-Min; Li, Zhao-Shen; Liao, Zhuan

    2016-06-01

    A hybrid allele between the carboxyl ester lipase gene (CEL) and its pseudogene, CELP (called CEL-HYB), generated by nonallelic homologous recombination between CEL intron 10 and CELP intron 10', was found to increase susceptibility to chronic pancreatitis in a case-control study of patients of European ancestry. We attempted to replicate this finding in 3 independent cohorts from China, Japan, and India, but failed to detect the CEL-HYB allele in any of these populations. The CEL-HYB allele might therefore be an ethnic-specific risk factor for chronic pancreatitis. An alternative hybrid allele (CEL-HYB2) was identified in all 3 Asian populations (1.7% combined carrier frequency), but was not associated with chronic pancreatitis. PMID:26946345

  5. An altered repertoire of T cell receptor V gene expression by rheumatoid synovial fluid T lymphocytes.

    PubMed

    Lunardi, C; Marguerie, C; So, A K

    1992-12-01

    The pattern of T cell receptor V gene expression by lymphocytes from rheumatoid synovial fluid and paired peripheral blood samples was compared using a polymerase chain reaction (PCR)-based assay. Eight rheumatoid arthritis (RA) patients who had varying durations of disease (from 2 to 20 years) were studied. In all patients there was evidence of a different pattern of V gene expression between the two compartments. Significantly increased expression of at least one V alpha or V beta gene family by synovial fluid T cells was observed in all the patients studied. Three different V alpha (V alpha 10, 15 and 18) and three V beta (V beta 4, 5 and 13) families were commonly elevated. Sequencing of synovial V beta transcripts demonstrated that the basis of increased expression of selected V gene families in the synovial fluid was due to the presence of dominant clonotypes within those families, which constituted up to 53% of the sequences isolated from one particular synovial V gene family. There were considerable differences in the NDJ sequences found in synovial and peripheral blood T cell receptor (TCR) transcripts of the same V beta gene family. These data suggest that the TCR repertoire in the two compartments differs, and that antigen-driven expansion of particular synovial T cell populations is a component of rheumatoid synovitis, and is present in all stages of the disease. PMID:1458680

  6. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size.

    PubMed

    Garza, J C; Slatkin, M; Freimer, N B

    1995-07-01

    The distributions of allele sizes at eight simple-sequence repeat (SSR) or microsatellite loci in chimpanzees are found and compared with the distributions previously obtained from several human populations. At several loci, the differences in average allele size between chimpanzees and humans are sufficiently small that there might be a constraint on the evolution of average allele size. Furthermore, a model that allows for a bias in the mutation process shows that for some loci a weak bias can account for the observations. Several alleles at one of the loci (Mfd 59) were sequenced. Differences between alleles of different lengths were found to be more complex than previously assumed. An 8-base-pair deletion was present in the nonvariable region of the chimpanzee locus. This locus contains a previously unrecognized repeated region, which is imperfect in humans and perfect in chimpanzees. The apparently greater opportunity for mutation conferred by the two perfect repeat regions in chimpanzees is reflected in the higher variance in repeat number at Mfd 59 in chimpanzees than in humans. These data indicate that interspecific differences in allele length are not always attributable to simple changes in the number of repeats. PMID:7659015

  7. Combination of Eight Alleles at Four Quantitative Trait Loci Determines Grain Length in Rice

    PubMed Central

    Zeng, Yuxiang; Ji, Zhijuan; Wen, Zhihua; Liang, Yan; Yang, Changdeng

    2016-01-01

    Grain length is an important quantitative trait in rice (Oryza sativa L.) that influences both grain yield and exterior quality. Although many quantitative trait loci (QTLs) for grain length have been identified, it is still unclear how different alleles from different QTLs regulate grain length coordinately. To explore the mechanisms of QTL combination in the determination of grain length, five mapping populations, including two F2 populations, an F3 population, an F7 recombinant inbred line (RIL) population, and an F8 RIL population, were developed from the cross between the U.S. tropical japonica variety ‘Lemont’ and the Chinese indica variety ‘Yangdao 4’ and grown under different environmental conditions. Four QTLs (qGL-3-1, qGL-3-2, qGL-4, and qGL-7) for grain length were detected using both composite interval mapping and multiple interval mapping methods in the mapping populations. In each locus, there was an allele from one parent that increased grain length and another allele from another parent that decreased it. The eight alleles in the four QTLs were analyzed to determine whether these alleles act additively across loci, and lead to a linear relationship between the predicted breeding value of QTLs and phenotype. Linear regression analysis suggested that the combination of eight alleles determined grain length. Plants carrying more grain length-increasing alleles had longer grain length than those carrying more grain length-decreasing alleles. This trend was consistent in all five mapping populations and demonstrated the regulation of grain length by the four QTLs. Thus, these QTLs are ideal resources for modifying grain length in rice. PMID:26942914

  8. Do Heliconius butterfly species exchange mimicry alleles?

    PubMed Central

    Smith, Joel; Kronforst, Marcus R.

    2013-01-01

    Hybridization has the potential to transfer beneficial alleles across species boundaries, and there are a growing number of examples in which this has apparently occurred. Recent studies suggest that Heliconius butterflies have transferred wing pattern mimicry alleles between species via hybridization, but ancestral polymorphism could also produce a signature of shared ancestry around mimicry genes. To distinguish between these alternative hypotheses, we measured DNA sequence divergence around putatively introgressed mimicry loci and compared this with the rest of the genome. Our results reveal that putatively introgressed regions show strongly reduced sequence divergence between co-mimetic species, suggesting that their divergence times are younger than the rest of the genome. This is consistent with introgression and not ancestral variation. We further show that this signature of introgression occurs at sites throughout the genome, not just around mimicry genes. PMID:23864282

  9. Network Signatures of IgG Immune Repertoires in Hepatitis B Associated Chronic Infection and Vaccination Responses

    PubMed Central

    Chang, Ya-Hui; Kuan, Hui-Chung; Hsieh, T. C.; Ma, K. H.; Yang, Chung-Hsiang; Hsu, Wei-Bin; Tsai, Shih-Feng; Chao, Anne; Liu, Hong-Hsing

    2016-01-01

    The repertoire of IgG antibody responses to infection and vaccination varies depending on the characteristics of the immunogen and the ability of the host to mount a protective immune response. Chronic hepatitis B virus (HBV) infections are marked by persistent infection and immune tolerance to vaccination. This disease offers a unique opportunity to discover key repertoire signatures during infection and in response to vaccination. Complementarity determining region 3 of an antibody heavy chain (CDR-H3) has a major impact on the antigenic specificity of an antibody. We used next-generation sequencing to characterize the CDR-H3 sequences in paired siblings of 4 families in which only one member of each pair had chronic HBV infection. Blood samples were obtained before and 2 weeks after HBV vaccination. The analysis revealed a huge network of sequence-related CDR-H3 clones found almost exclusively among carriers. In contrast, vaccination induced significant increases of CDR-H3 cluster diversities among siblings without hepatitis B. Several vaccination-associated clone clusters were identified. Similar findings of vaccination-associated clone networks were observed in healthy adults receiving HBV boosters. These strategies can be used to identify signatures of other infectious diseases and accelerate discoveries of antibody sequences with important biomedical implications. PMID:27222149

  10. MEKK1 regulates the AP-1 dimer repertoire via control of JunB transcription and Fra-2 protein stability.

    PubMed

    Cuevas, Bruce D; Uhlik, Mark T; Garrington, Timothy P; Johnson, Gary L

    2005-01-27

    Activator protein 1 (AP-1) transcription factor dimers are composed of Jun, Fos, and ATF member proteins, but the mechanisms that determine AP-1 composition are not clearly defined and the function of specific dimers is not well understood. MEKK1 is a mitogen-activated protein kinase (MAPK) kinase kinase and an ubiquitin ligase that regulates both the extracellular signal-regulated kinase 1/2 and the c-Jun amino-terminal kinase. Herein, we demonstrate that MEKK1 regulates the AP-1 protein repertoire. Both FGF-2 and phorbol ester-inducible urokinase-type plasminogen activator (uPA) expression requires AP-1 binding to an enhancer element in the uPA promoter, and we have previously shown that FGF-2 or PMA induction of uPA expression is strongly dependent on MEKK1. JunB mRNA is significantly increased in MEKK1-/- cells, demonstrating that MEKK1 suppresses JunB mRNA expression. Upregulation of JunB expression in MEKK1-/- cells forms an inhibitory AP-1 complex that binds to the uPA promoter and inhibits uPA transcription. MEKK1 also regulates Fra-2 protein stability by inducing Fra-2 ubiquitination and degradation. MEKK1 regulates AP-1-dependent gene expression by regulating the expression, activity and degradation of component members of the AP-1 complex. Controlling the repertoire of a transcription factor complex is a newly defined function for an MAPK kinase kinase. PMID:15558021