Sample records for allele specific polymerase

  1. Delimiting Allelic Imbalance of TYMS by Allele-Specific Analysis.

    PubMed

    Balboa-Beltrán, Emilia; Cruz, Raquel; Carracedo, Angel; Barros, Francisco

    2015-07-01

    Allelic imbalance of thymidylate synthase (TYMS) is attributed to polymorphisms in the 5'- and 3'-untranslated region (UTR). These polymorphisms have been related to the risk of suffering different cancers, for example leukemia, breast or gastric cancer, and response to different drugs, among which are methotrexate glutamates, stavudine, and specifically 5-fluorouracil (5-FU), as TYMS is its direct target. A vast literature has been published in relation to 5-FU, even suggesting the sole use of these polymorphisms to effectively manage 5-FU dosage. Estimates of the extent to which these polymorphisms influence in TYMS expression have in the past been based on functional analysis by luciferase assays and quantification of TYMS mRNA, but both these studies, as the association studies with cancer risk or with toxicity or response to 5-FU, are very contradictory. Regarding functional assays, the artificial genetic environment created in luciferase assay and the problems derived from quantitative polymerase chain reactions (qPCRs), for example the use of a reference gene, may have distorted the results. To avoid these sources of interference, we have analyzed the allelic imbalance of TYMS by allelic-specific analysis in peripheral blood mononuclear cells (PBMCs) from patients.Allelic imbalance in PBMCs, taken from 40 patients with suspected myeloproliferative haematological diseases, was determined by fluorescent fragment analysis (for the 3'-UTR polymorphism), Sanger sequencing and allelic-specific qPCR in multiplex (for the 5'-UTR polymorphisms).For neither the 3'- nor the 5'-UTR polymorphisms did the observed allelic imbalance exceed 1.5 fold. None of the TYMS polymorphisms is statistically associated with allelic imbalance.The results acquired allow us to deny the previously established assertion of an influence of 2 to 4 fold of the rs45445694 and rs2853542 polymorphisms in the expression of TYMS and narrow its allelic imbalance to 1.5 fold, in our population

  2. Allele-Specific Polymerase Chain Reaction for the Imatinib-Resistant KIT D816V and D816F Mutations in Mastocytosis and Acute Myelogenous Leukemia

    PubMed Central

    Corless, Christopher L.; Harrell, Patina; Lacouture, Mario; Bainbridge, Troy; Le, Claudia; Gatter, Ken; White, Clifton; Granter, Scott; Heinrich, Michael C.

    2006-01-01

    Oncogenic mutations of the receptor tyrosine kinase KIT contribute to the pathogenesis of gastrointestinal stromal tumors, systemic mastocytosis (SM), and some cases of acute myelogenous leukemia (AML). The D816V substitution in the activation loop of KIT results in relative resistance to the kinase inhibitor imatinib (Gleevec). Because this mutation occurs in 80 to 95% of adult SM, its detection has diagnostic and predictive significance. Unfortunately, the fraction of mutation-positive cells in clinical SM samples is often below the 20 to 30% threshold needed for detection by direct DNA sequencing. We have developed an allele-specific polymerase chain reaction assay using a mutation-specific primer combined with a wild-type blocking oligonucleotide that amplifies D816V at the level of 1% mutant allele in DNA extracted from formalin-fixed, paraffin-embedded tissue. There were no amplifications among 64 KIT wild-type tumors and cell lines, whereas all D816V-mutant samples (eight AML and 11 mast cell disease) were positive. Other D816 substitutions associated with resistance to imatinib in vitro are rare in SM. Among these D816F was detectable with the assay whereas D816H, D816Y, and D816G did not amplify. Nine biopsies (bone marrow, skin, or colon) with suspected SM were negative by denaturing high performance liquid chromatography and/or DNA sequencing but positive by allele-specific polymerase chain reaction. Thus, the assay may be useful in confirming the diagnosis of SM. PMID:17065430

  3. New prediction model for probe specificity in an allele-specific extension reaction for haplotype-specific extraction (HSE) of Y chromosome mixtures.

    PubMed

    Rothe, Jessica; Watkins, Norman E; Nagy, Marion

    2012-01-01

    Allele-specific extension reactions (ASERs) use 3' terminus-specific primers for the selective extension of completely annealed matches by polymerase. The ability of the polymerase to extend non-specific 3' terminal mismatches leads to a failure of the reaction, a process that is only partly understood and predictable, and often requires time-consuming assay design. In our studies we investigated haplotype-specific extraction (HSE) for the separation of male DNA mixtures. HSE is an ASER and provides the ability to distinguish between diploid chromosomes from one or more individuals. Here, we show that the success of HSE and allele-specific extension depend strongly on the concentration difference between complete match and 3' terminal mismatch. Using the oligonucleotide-modeling platform Visual Omp, we demonstrated the dependency of the discrimination power of the polymerase on match- and mismatch-target hybridization between different probe lengths. Therefore, the probe specificity in HSE could be predicted by performing a relative comparison of different probe designs with their simulated differences between the duplex concentration of target-probe match and mismatches. We tested this new model for probe design in more than 300 HSE reactions with 137 different probes and obtained an accordance of 88%.

  4. [Identification of Panax ginseng, P. notoginseng and P. quinquefolius admixture by multiplex allele-specific polymerase chain reaction].

    PubMed

    Jiang, Chao; Luo, Yu-Qing; Yuan, Yuan; Huang, Lu-Qi; Jin, Yan; Zhao, Yu-Yang

    2017-04-01

    To achieve a molecular method to identify Panax ginseng, P. notoginseng,P. quinquefolius and their admixture. The ITS,18S and matK sequences of Panax genus were analyzed to develop species-specific SNP marker. Three pairs of species-specific primers were designed to establish a multiplex allele-specific polymerase chain reaction (MAS-PCR) and the samples from different region were tested. The results showed that when the annealing temperature was 60 ℃ and the cycle number was 35, approximately 250, 500,1 000 bp specific band were obtained from P. ginseng, P. notoginseng and P. quinquefolius obtain, respectively. This method could also be used to authentificate admixture samples and could detect 0.5% percent of P. notoginseng or P. quinquefolius adulterated in P. ginseng, or 0.5% percent of P. ginseng or P. quinquefolius adulterated in P. notoginseng. The detect limit of P. ginseng in P. quinquefolius was 0.5% and P. notoginseng in P. quinquefolius was 1%. This results showed that the present method could be used as a promise method to identify Panax ginseng, P. notoginseng, P. quinquefolius and their admixture. Copyright© by the Chinese Pharmaceutical Association.

  5. New Prediction Model for Probe Specificity in an Allele-Specific Extension Reaction for Haplotype-Specific Extraction (HSE) of Y Chromosome Mixtures

    PubMed Central

    Rothe, Jessica; Watkins, Norman E.; Nagy, Marion

    2012-01-01

    Allele-specific extension reactions (ASERs) use 3′ terminus-specific primers for the selective extension of completely annealed matches by polymerase. The ability of the polymerase to extend non-specific 3′ terminal mismatches leads to a failure of the reaction, a process that is only partly understood and predictable, and often requires time-consuming assay design. In our studies we investigated haplotype-specific extraction (HSE) for the separation of male DNA mixtures. HSE is an ASER and provides the ability to distinguish between diploid chromosomes from one or more individuals. Here, we show that the success of HSE and allele-specific extension depend strongly on the concentration difference between complete match and 3′ terminal mismatch. Using the oligonucleotide-modeling platform Visual Omp, we demonstrated the dependency of the discrimination power of the polymerase on match- and mismatch-target hybridization between different probe lengths. Therefore, the probe specificity in HSE could be predicted by performing a relative comparison of different probe designs with their simulated differences between the duplex concentration of target-probe match and mismatches. We tested this new model for probe design in more than 300 HSE reactions with 137 different probes and obtained an accordance of 88%. PMID:23049901

  6. A polymorphism in the bovine gamma-S-crystallin gene revealed by allele-specific amplification.

    PubMed

    Kemp, S J; Maillard, J C; Teale, A J

    1993-04-01

    A polymorphism was detected in the 3' untranslated region of the bovine gamma-S-crystallin gene by direct sequencing of polymerase chain reaction (PCR) products from genomic DNA of an N'Dama bull and a Boran cow. A set of three PCR primers was designed to detect this difference and thus give allele-specific amplification. The two allele-specific primers differ in length by 20 nucleotides so that the allelic products may be distinguished by simple agarose gel electrophoresis following a single PCR reaction. This provides a simple and rapid assay for this polymorphism.

  7. Novel high-speed droplet-allele specific-polymerase chain reaction: application in the rapid genotyping of single nucleotide polymorphisms.

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Sueki, Akane; Koeda, Hiroshi; Takagi, Fumio; Kobayashi, Yukihiro; Sugano, Mitsutoshi; Honda, Takayuki

    2013-09-23

    Single nucleotide alterations such as single nucleotide polymorphisms (SNP) and single nucleotide mutations are associated with responses to drugs and predisposition to several diseases, and they contribute to the pathogenesis of malignancies. We developed a rapid genotyping assay based on the allele-specific polymerase chain reaction (AS-PCR) with our droplet-PCR machine (droplet-AS-PCR). Using 8 SNP loci, we evaluated the specificity and sensitivity of droplet-AS-PCR. Buccal cells were pretreated with proteinase K and subjected directly to the droplet-AS-PCR without DNA extraction. The genotypes determined using the droplet-AS-PCR were then compared with those obtained by direct sequencing. Specific PCR amplifications for the 8 SNP loci were detected, and the detection limit of the droplet-AS-PCR was found to be 0.1-5.0% by dilution experiments. Droplet-AS-PCR provided specific amplification when using buccal cells, and all the genotypes determined within 9 min were consistent with those obtained by direct sequencing. Our novel droplet-AS-PCR assay enabled high-speed amplification retaining specificity and sensitivity and provided ultra-rapid genotyping. Crude samples such as buccal cells were available for the droplet-AS-PCR assay, resulting in the reduction of the total analysis time. Droplet-AS-PCR may therefore be useful for genotyping or the detection of single nucleotide alterations. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Allelic inhibition of displacement activity: a simplified one tube allele-specific PCR for evaluation of ITPA polymorphisms.

    PubMed

    Galmozzi, E; Facchetti, F; Degasperi, E; Aghemo, A; Lampertico, P

    2013-02-01

    Recently, genome-wide association studies (GWAS) in patients with chronic hepatitis C virus (HCV) infection have identified two functional single nucleotide polymorphisms (SNPs) in the inosine triphosphatase (ITPA) gene, that are associated strongly and independently with hemolytic anemia in patients exposed to pegylated-interferon (Peg-IFN) plus ribavirin (RBV) combined therapy. Here has been developed a simplified allele discrimination polymerase chain reaction (PCR) assay named allelic inhibition of displacement activity (AIDA) for evaluation of ITPA polymorphisms. AIDA system relies on three unlabeled primers only, two outer common primers and one inner primer with allele-specific 3' terminus mismatch. DNA samples from 192 patients with chronic HCV infection were used to validate the AIDA system and results were compared with the gold standard TaqMan(®) SNP genotyping assay. Concordant data were obtained for all samples, granting for high specificity of the method. In conclusion, AIDA is a practical one-tube method to reproducibly and to assess accurately rs7270101 and rs1127354 ITPA SNPs. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Multiplex Allele-Specific Amplification from Whole Blood for Detecting Multiple Polymorphisms Simultaneously

    PubMed Central

    Zhu, Jianjie; Chen, Lanxin; Mao, Yong; Zhou, Huan

    2013-01-01

    Allele-specific amplification on the basis of polymerase chain reaction (PCR) has been widely used for single-nucleotide polymorphism (SNP) genotyping. However, the extraction of PCR-compatible genomic DNA from whole blood is usually required. This process is complicated and tedious, and is prone to cause cross-contamination between samples. To facilitate direct PCR amplification from whole blood without the extraction of genomic DNA, we optimized the pH value of PCR solution and the concentrations of magnesium ions and facilitator glycerol. Then, we developed multiplex allele-specific amplifications from whole blood and applied them to a case–control study. In this study, we successfully established triplex, five-plex, and eight-plex allele-specific amplifications from whole blood for determining the distribution of genotypes and alleles of 14 polymorphisms in 97 gastric cancer patients and 141 healthy controls. Statistical analysis results showed significant association of SNPs rs9344, rs1799931, and rs1800629 with the risk of gastric cancer. This method is accurate, time-saving, cost-effective, and easy-to-do, especially suitable for clinical prediction of disease susceptibility. PMID:23072573

  10. Direct Fluorescence Detection of Allele-Specific PCR Products Using Novel Energy-Transfer Labeled Primers.

    PubMed

    Winn-Deen

    1998-12-01

    Background: Currently analysis of point mutations can be done by allele-specific polymerase chain reaction (PCR) followed by gel analysis or by gene-specific PCR followed by hybridization with an allele-specific probe. Both of these mutation detection methods require post-PCR laboratory time and run the risk of contaminating subsequent experiments with the PCR product liberated during the detection step. The author has combined the PCR amplification and detection steps into a single procedure suitable for closed-tube analysis. Methods and Results: Allele-specific PCR primers were designed as Sunrise energy-transfer primers and contained a 3' terminal mismatch to distinguish between normal and mutant DNA. Cloned normal (W64) and mutant (R64) templates of the beta3-adrenergic receptor gene were tested to verify amplification specificity and yield. A no-target negative control was also run with each reaction. After PCR, each reaction was tested for fluorescence yield by measuring fluorescence on a spectrofluorimeter or fluorescent microtitreplate reader. The cloned controls and 24 patient samples were tested for the W64R mutation by two methods. The direct fluorescence results with the Sunrise allele-specific PCR method gave comparable genotypes to those obtained with the PCR/ restriction digest/gel electrophoresis control method. No PCR artifacts were observed in the negative controls or in the PCR reactions run with the mismatched target. Conclusions: The results of this pilot study indicate good PCR product and fluorescence yield from allele-specific energy-transfer labeled primers, and the capability of distinguishing between normal and mutant alleles based on fluorescence alone, without the need for restriction digestion, gel electrophoresis, or hybridization with an allele-specific probe.

  11. Allelic Dropout During Polymerase Chain Reaction due to G-Quadruplex Structures and DNA Methylation Is Widespread at Imprinted Human Loci.

    PubMed

    Stevens, Aaron J; Taylor, Millie G; Pearce, Frederick Grant; Kennedy, Martin A

    2017-03-10

    Loss of one allele during polymerase chain reaction (PCR) amplification of DNA, known as allelic dropout, can be caused by a variety of mechanisms. Allelic dropout during PCR may have profound implications for molecular diagnostic and research procedures that depend on PCR and assume biallelic amplification has occurred. Complete allelic dropout due to the combined effects of cytosine methylation and G-quadruplex formation was previously described for a differentially methylated region of the human imprinted gene, MEST We now demonstrate that this parent-of-origin specific allelic dropout can potentially occur at several other genomic regions that display genomic imprinting and have propensity for G-quadruplex formation, including AIM1 , BLCAP , DNMT1 , PLAGL1 , KCNQ1 , and GRB10 These findings demonstrate that systematic allelic dropout during PCR is a general phenomenon for regions of the genome where differential allelic methylation and G-quadruplex motifs coincide, and suggest that great care must be taken to ensure biallelic amplification is occurring in such situations. Copyright © 2017 Stevens et al.

  12. The Septic Shock-associated IL-10 -1082 A>G Polymorphism Mediates Allele-specific Transcription via Poly ADP-ribose Polymerase 1 in Macrophages Engulfing Apoptotic Cells

    PubMed Central

    Kang, Xiaoyan; Kim, Ha-Jeong; Ramirez, Michelle; Salameh, Sarah; Ma, Xiaojing

    2013-01-01

    The biallelic Interleukin-10 single nucleotide polymorphism (SNP) at -1082 of the promoter region linked to individual variation in cytokine inducibility has been strongly implicated in several pathological conditions including the development of, and outcomes in, septic shock during pneumococcal infection, acute respiratory distress syndrome, and cardiac dysfunction. However, the molecular basis of the SNP-mediated variable IL-10 production levels has not been explored. Here we report that the -1082G>A alleles in the promoter region of the human IL-10 gene physically interact with a nuclear protein in an allele-specific manner that results in different levels of IL-10 transcription. This protein has been identified as poly ADP-ribose polymerase 1 (PARP-1). We show that PARP-1 acts as a transcription repressor, and its DNA-binding activity is strongly regulated in macrophages that engulf apoptotic cells but not stimulated with lippopolysaccharides. These findings unveil a novel role of PARP-1 in the regulation of IL-10 production in an allele-dependent way, which determines individual susceptibility to sepsis-induced inflammatory pathology and the immunological sequelae in a physiological process where clearance of infection-induced apoptotic cells by professional phagocytes triggers the cytokine synthesis. PMID:20181890

  13. Allele-specific primer polymerase chain reaction for a single nucleotide polymorphism (C1205T) of swine toll-like receptor 5 and comparison of the allelic frequency among several pig breeds in Japan and the Czech Republic.

    PubMed

    Muneta, Yoshihiro; Minagawa, Yu; Kusumoto, Masahiro; Shinkai, Hiroki; Uenishi, Hirohide; Splichal, Igor

    2012-06-01

    In the present study, an allele-specific primer-polymerase chain reaction (ASP-PCR) for genotyping a single nucleotide polymorphism (SNP) of swine Toll-like receptor 5 (TLR5) (C1205T; P402L) that is related to the impaired recognition of Salmonella enterica serovar Choleraesuis (SC) was developed. The allele frequencies in several pig breeds in Japan and the Czech Republic were also compared. The swine TLR5 C1205T mutation was successfully determined by ASP-PCR using genomic DNA samples in Japan that had previously been genotyped by a sequencing method. Using the PCR condition determined, genomic DNA samples from blood obtained from 110 pigs from seven different breeds in the Czech Republic were genotyped by the ASP-PCR. The genotyping results from the ASP-PCR completely matched the results from the sequencing method. The allele frequency of the swine TLR5 C1205T mutation was 27.5% in the Landrace breed of the Czech Republic compared with 50.0% in Japanese Landrace. In Japan, the C1205T mutation was found only in the Landrace breed, whereas in the Czech Republic it was found in both the Landrace and Piétrain breeds. These results indicate the usefulness of ASP-PCR for detecting a specific SNP for swine TLR5 affecting ligand recognition. They also suggest the possibility of genetically improving pigs to enhance their resistance against SC infection by eliminating or selecting this specific SNP of swine TLR5. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.

  14. Simultaneous genotyping of single-nucleotide polymorphisms in alcoholism-related genes using duplex and triplex allele-specific PCR with two-step thermal cycles.

    PubMed

    Shirasu, Naoto; Kuroki, Masahide

    2014-01-01

    We developed a time- and cost-effective multiplex allele-specific polymerase chain reaction (AS-PCR) method based on the two-step PCR thermal cycles for genotyping single-nucleotide polymorphisms in three alcoholism-related genes: alcohol dehydrogenase 1B, aldehyde dehydrogenase 2 and μ-opioid receptor. Applying MightyAmp(®) DNA polymerase with optimized AS-primers and PCR conditions enabled us to achieve effective and selective amplification of the target alleles from alkaline lysates of a human hair root, and simultaneously to determine the genotypes within less than 1.5 h using minimal lab equipment.

  15. An Enhanced Polymerase Chain Reaction Assay to Detect Pre- and Full Mutation Alleles of the Fragile X Mental Retardation 1 Gene

    PubMed Central

    Saluto, Alessandro; Brussino, Alessandro; Tassone, Flora; Arduino, Carlo; Cagnoli, Claudia; Pappi, Patrizia; Hagerman, Paul; Migone, Nicola; Brusco, Alfredo

    2005-01-01

    Several diagnostic strategies have been applied to the detection of FMR1 gene repeat expansions in fragile X syndrome. Here, we report a novel polymerase chain reaction-based strategy using the Expand Long Template PCR System (Roche Diagnostics, Mannheim, Germany) and the osmolyte betaine. Repeat expansions up to ∼330 CGGs in males and up to at least ∼160 CGGs in carrier women could be easily visualized on ethidium bromide agarose gels. We also demonstrated that fluorescence analysis of polymerase chain reaction products was a reliable tool to verify the presence of premutation and full mutation alleles both in males and in females. This technique, primarily designed to detect premutation alleles, can be used as a routine first screen for expanded FMR1 alleles. PMID:16258159

  16. Allele related mutation specific-polymerase chain reaction for rapid diagnosis of Hb New York (beta 113 (G15) Val-->Glu, beta(CD113 GTG-->GAG)).

    PubMed

    Viprakasit, Vip; Tachavanich, Kalaya; Suwantol, Lerlugsn; Pung-Amritt, Parichat; Chinchang, Worawut; Tanphaichitr, Voravarn S

    2002-08-01

    Hemoglobin New York (beta 113 (G15) Val-->Glu), a beta-globin variant, was first reported in a Chinese family living in New York. Subsequently, this abnormal hemoglobin was reported in many Chinese descendants from several groups and it was also known as Hb Kaohsiung. The subtle change in alpha1beta1 contact region apart from the heme group connecting area by Val-->Glu substitution has minor changes in both the electrophoretic mobility and stability making this hemoglobin variant difficult to distinguish from Hb A using routine hemoglobin analysis. The authors described a case of heterozygosity of Hb New York diagnosed by a molecular technique and revealed a mutation in beta(CD113 GTG-->GAG). A novel Allele Related Mutation Specific-Polymerase Chain Reaction (ARMS-PCR) for rapid diagnosis of this mutation has been proposed.

  17. Functional PMS2 hybrid alleles containing a pseudogene-specific missense variant trace back to a single ancient intrachromosomal recombination event.

    PubMed

    Ganster, Christina; Wernstedt, Annekatrin; Kehrer-Sawatzki, Hildegard; Messiaen, Ludwine; Schmidt, Konrad; Rahner, Nils; Heinimann, Karl; Fonatsch, Christa; Zschocke, Johannes; Wimmer, Katharina

    2010-05-01

    Sequence exchange between PMS2 and its pseudogene PMS2CL, embedded in an inverted duplication on chromosome 7p22, has been reported to be an ongoing process that leads to functional PMS2 hybrid alleles containing PMS2- and PMS2CL-specific sequence variants at the 5'-and the 3'-end, respectively. The frequency of PMS2 hybrid alleles, their biological significance, and the mechanisms underlying their formation are largely unknown. Here we show that overall hybrid alleles account for one-third of 384 PMS2 alleles analyzed in individuals of different ethnic backgrounds. Depending on the population, 14-60% of hybrid alleles carry PMS2CL-specific sequences in exons 13-15, the remainder only in exon 15. We show that exons 13-15 hybrid alleles, named H1 hybrid alleles, constitute different haplotypes but trace back to a single ancient intrachromosomal recombination event with crossover. Taking advantage of an ancestral sequence variant specific for all H1 alleles we developed a simple gDNA-based polymerase chain reaction (PCR) assay that can be used to identify H1-allele carriers with high sensitivity and specificity (100 and 99%, respectively). Because H1 hybrid alleles harbor missense variant p.N775S of so far unknown functional significance, we assessed the H1-carrier frequency in 164 colorectal cancer patients. So far, we found no indication that the variant plays a major role with regard to cancer susceptibility. (c) 2010 Wiley-Liss, Inc.

  18. Heritable Individual-Specific and Allele-Specific Chromatin Signatures in Humans

    PubMed Central

    McDaniell, Ryan; Lee, Bum-Kyu; Song, Lingyun; Liu, Zheng; Boyle, Alan P.; Erdos, Michael R.; Scott, Laura J.; Morken, Mario A.; Kucera, Katerina S.; Battenhouse, Anna; Keefe, Damian; Collins, Francis S.; Willard, Huntington F.; Lieb, Jason D.; Furey, Terrence S.; Crawford, Gregory E.; Iyer, Vishwanath R.; Birney, Ewan

    2010-01-01

    The extent to which variation in chromatin structure and transcription factor binding may influence gene expression, and thus underlie or contribute to variation in phenotype, is unknown. To address this question, we cataloged both individual-to-individual variation and differences between homologous chromosomes within the same individual (allele-specific variation) in chromatin structure and transcription factor binding in lymphoblastoid cells derived from individuals of geographically diverse ancestry. Ten percent of active chromatin sites were individual-specific; a similar proportion were allele-specific. Both individual-specific and allele-specific sites were commonly transmitted from parent to child, which suggests that they are heritable features of the human genome. Our study shows that heritable chromatin status and transcription factor binding differ as a result of genetic variation and may underlie phenotypic variation in humans. PMID:20299549

  19. Evaluation of Allele-Specific Somatic Changes of Genome-Wide Association Study Susceptibility Alleles in Human Colorectal Cancers

    PubMed Central

    Gerber, Madelyn M.; Hampel, Heather; Schulz, Nathan P.; Fernandez, Soledad; Wei, Lai; Zhou, Xiao-Ping; de la Chapelle, Albert; Toland, Amanda Ewart

    2012-01-01

    Background Tumors frequently exhibit loss of tumor suppressor genes or allelic gains of activated oncogenes. A significant proportion of cancer susceptibility loci in the mouse show somatic losses or gains consistent with the presence of a tumor susceptibility or resistance allele. Thus, allele-specific somatic gains or losses at loci may demarcate the presence of resistance or susceptibility alleles. The goal of this study was to determine if previously mapped susceptibility loci for colorectal cancer show evidence of allele-specific somatic events in colon tumors. Methods We performed quantitative genotyping of 16 single nucleotide polymorphisms (SNPs) showing statistically significant association with colorectal cancer in published genome-wide association studies (GWAS). We genotyped 194 paired normal and colorectal tumor DNA samples and 296 paired validation samples to investigate these SNPs for allele-specific somatic gains and losses. We combined analysis of our data with published data for seven of these SNPs. Results No statistically significant evidence for allele-specific somatic selection was observed for the tested polymorphisms in the discovery set. The rs6983267 variant, which has shown preferential loss of the non-risk T allele and relative gain of the risk G allele in previous studies, favored relative gain of the G allele in the combined discovery and validation samples (corrected p-value = 0.03). When we combined our data with published allele-specific imbalance data for this SNP, the G allele of rs6983267 showed statistically significant evidence of relative retention (p-value = 2.06×10−4). Conclusions Our results suggest that the majority of variants identified as colon cancer susceptibility alleles through GWAS do not exhibit somatic allele-specific imbalance in colon tumors. Our data confirm previously published results showing allele-specific imbalance for rs6983267. These results indicate that allele-specific imbalance of cancer

  20. Functional PMS2 Hybrid Alleles Containing a Pseudogene-Specific Missense Variant Trace Back to a Single Ancient Intrachromosomal Recombination Event

    PubMed Central

    Ganster, Christina; Wernstedt, Annekatrin; Kehrer-Sawatzki, Hildegard; Messiaen, Ludwine; Schmidt, Konrad; Rahner, Nils; Heinimann, Karl; Fonatsch, Christa; Zschocke, Johannes; Wimmer, Katharina

    2012-01-01

    Sequence exchange between PMS2 and its pseudogene PMS2CL, embedded in an inverted duplication on chromosome 7p22, has been reported to be an ongoing process that leads to functional PMS2 hybrid alleles containing PMS2- and PMS2CL-specific sequence variants at the 5′-and the 3′-end, respectively. The frequency of PMS2 hybrid alleles, their biological significance, and the mechanisms underlying their formation are largely unknown. Here we show that overall hybrid alleles account for one-third of 384 PMS2 alleles analyzed in individuals of different ethnic backgrounds. Depending on the population, 14–60% of hybrid alleles carry PMS2CL-specific sequences in exons 13–15, the remainder only in exon 15. We show that exons 13–15 hybrid alleles, named H1 hybrid alleles, constitute different haplotypes but trace back to a single ancient intrachromosomal recombination event with crossover. Taking advantage of an ancestral sequence variant specific for all H1 alleles we developed a simple gDNA-based polymerase chain reaction (PCR) assay that can be used to identify H1-allele carriers with high sensitivity and specificity (100 and 99%, respectively). Because H1 hybrid alleles harbor missense variant p.N775S of so far unknown functional significance, we assessed the H1-carrier frequency in 164 colorectal cancer patients. So far, we found no indication that the variant plays a major role with regard to cancer susceptibility. PMID:20186689

  1. ALEA: a toolbox for allele-specific epigenomics analysis.

    PubMed

    Younesy, Hamid; Möller, Torsten; Heravi-Moussavi, Alireza; Cheng, Jeffrey B; Costello, Joseph F; Lorincz, Matthew C; Karimi, Mohammad M; Jones, Steven J M

    2014-04-15

    The assessment of expression and epigenomic status using sequencing based methods provides an unprecedented opportunity to identify and correlate allelic differences with epigenomic status. We present ALEA, a computational toolbox for allele-specific epigenomics analysis, which incorporates allelic variation data within existing resources, allowing for the identification of significant associations between epigenetic modifications and specific allelic variants in human and mouse cells. ALEA provides a customizable pipeline of command line tools for allele-specific analysis of next-generation sequencing data (ChIP-seq, RNA-seq, etc.) that takes the raw sequencing data and produces separate allelic tracks ready to be viewed on genome browsers. The pipeline has been validated using human and hybrid mouse ChIP-seq and RNA-seq data. The package, test data and usage instructions are available online at http://www.bcgsc.ca/platform/bioinfo/software/alea CONTACT: : mkarimi1@interchange.ubc.ca or sjones@bcgsc.ca Supplementary information: Supplementary data are available at Bioinformatics online. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Enrichment of individual KIR2DL4 sequences from genomic DNA using long-template PCR and allele-specific hybridization to magnetic bead-bound oligonucleotide probes.

    PubMed

    Roberts, C H; Turino, C; Madrigal, J A; Marsh, S G E

    2007-06-01

    DNA enrichment by allele-specific hybridization (DEASH) was used as a means to isolate individual alleles of the killer cell immunoglobulin-like receptor (KIR2DL4) gene from heterozygous genomic DNA. Using long-template polymerase chain reaction (LT-PCR), the complete KIR2DL4 gene was amplified from a cell line that had previously been characterized for its KIR gene content by PCR using sequence-specific primers (PCR-SSP). The whole gene amplicons were sequenced and we identified two heterozygous positions in accordance with the predictions of the PCR-SSP. The amplicons were then hybridized to allele-specific, biotinylated oligonucleotide probes and through binding to streptavidin-coated beads, the targeted alleles were enriched. A second PCR amplified only the exonic regions of the enriched allele, and these were then sequenced in full. We show DEASH to be capable of enriching single alleles from a heterozygous PCR product, and through sequencing the enriched DNA, we are able to produce complete coding sequences of the KIR2DL4 alleles in accordance with the typing predicted by PCR-SSP.

  3. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    PubMed

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR.

  4. Genetic characterization of an alloalbumin, albumin Kashmir, using gene amplification and allele-specific oligonucleotides.

    PubMed Central

    Savva, D; Tárnoky, A L; Vickers, M F

    1990-01-01

    The molecular basis for albumin Kashmir was studied using the polymerase chain reaction to amplify a DNA fragment containing codon 501 in exon 12 of the human albumin gene. Southern blots of the amplified DNA were hybridized to oligonucleotide probes specific either for the normal allele of albumin or for albumin Kashmir. The results provide strong evidence that codon 501 in albumin Kashmir is AAG (lysine) instead of GAG (glutamic acid), thus confirming the protein sequences reported. This approach was used to characterize a bisalbuminaemic individual as a carrier for albumin Kashmir. Similar strategies may be devised to study the molecular basis and to identify carriers of other alloalbumins. Images Fig. 1. Fig. 2. PMID:2317208

  5. S-genotype identification based on allele-specific PCR in Japanese pear

    PubMed Central

    Nashima, Kenji; Terakami, Shingo; Nishio, Sogo; Kunihisa, Miyuki; Nishitani, Chikako; Saito, Toshihiro; Yamamoto, Toshiya

    2015-01-01

    Gametophytic self-incompatibility in Japanese pear (Pyrus pyrifolia Nakai) is controlled by the single, multi-allelic S-locus. Information about the S-genotypes is important for breeding and the selection of pollen donors for fruit production. Rapid and reliable S-genotype identification system is necessary for efficient breeding of new cultivars in Japanese pear. We designed S allele-specific PCR primer pairs for ten previously reported S-RNase alleles (S1–S9 and Sk) as simple and reliable method. Specific nucleotide sequences were chosen to design the primers to amplify fragments of only the corresponding S alleles. The developed primer pairs were evaluated by using homozygous S-genotypes (S1/S1–S9/S9 and S4sm/S4sm) and 14 major Japanese pear cultivars, and found that S allele-specific primer pairs can identify S-genotypes effectively. The S allele-specific primer pairs developed in this study will be useful for efficient S-genotyping and for marker-assisted selection in Japanese pear breeding programs. PMID:26175617

  6. Allelic variation contributes to bacterial host specificity

    DOE PAGES

    Yue, Min; Han, Xiangan; Masi, Leon De; ...

    2015-10-30

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population andmore » functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. In conclusion, together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.« less

  7. Direct testing for allele-specific expression differences between conditions

    USDA-ARS?s Scientific Manuscript database

    Genetic differences in cis regulatory regions contribute to the phenotypic variation observed in natural and human populations, including beneficial, potentially adaptive, traits as well as disease states. The two alleles in a diploid cell can differ in their allele-specific expression leading to al...

  8. The translesion DNA polymerases Pol ζ and Rev1 are activated independently of PCNA ubiquitination upon UV radiation in mutants of DNA polymerase δ

    PubMed Central

    Ma, Emilie; Veaute, Xavier; Coïc, Eric

    2017-01-01

    Replicative DNA polymerases cannot insert efficiently nucleotides at sites of base lesions. This function is taken over by specialized translesion DNA synthesis (TLS) polymerases to allow DNA replication completion in the presence of DNA damage. In eukaryotes, Rad6- and Rad18-mediated PCNA ubiquitination at lysine 164 promotes recruitment of TLS polymerases, allowing cells to efficiently cope with DNA damage. However, several studies showed that TLS polymerases can be recruited also in the absence of PCNA ubiquitination. We hypothesized that the stability of the interactions between DNA polymerase δ (Pol δ) subunits and/or between Pol δ and PCNA at the primer/template junction is a crucial factor to determine the requirement of PCNA ubiquitination. To test this hypothesis, we used a structural mutant of Pol δ in which the interaction between Pol3 and Pol31 is inhibited. We found that in yeast, rad18Δ-associated UV hypersensitivity is suppressed by pol3-ct, a mutant allele of the POL3 gene that encodes the catalytic subunit of replicative Pol δ. pol3-ct suppressor effect was specifically dependent on the Rev1 and Pol ζ TLS polymerases. This result strongly suggests that TLS polymerases could rely much less on PCNA ubiquitination when Pol δ interaction with PCNA is partially compromised by mutations. In agreement with this model, we found that the pol3-FI allele suppressed rad18Δ-associated UV sensitivity as observed for pol3-ct. This POL3 allele carries mutations within a putative PCNA Interacting Peptide (PIP) motif. We then provided molecular and genetic evidence that this motif could contribute to Pol δ-PCNA interaction indirectly, although it is not a bona fide PIP. Overall, our results suggest that the primary role of PCNA ubiquitination is to allow TLS polymerases to outcompete Pol δ for PCNA access upon DNA damage. PMID:29281621

  9. [A new human leukocyte antigen class I allele, HLA- B*52:11].

    PubMed

    Li, Xiao-feng; Zhang, Xu; Zhang, Kun-lian; Chen, Yang; Liu, Xian-zhi; Li, Jian-ping

    2011-12-01

    To identify and confirm a novel HLA allele. A new human leukocyte antigen class I allele was found during routine HLA genotyping by polymerase chain reaction-sequence specific oligonucleotide probes (PCR-SSOP) and sequencing-based typing (SBT). The novel HLA-B*52 allele was identical to B*52:01:01 with an exception of one base substitution at position 583 of exon 3 where a C was changed to T resulting in codon 195 changed from CAC(H) to TAC(Y). A new HLA class I allele, B*52:11, is identified, and is named officially by the WHO Nomenclature Committee.

  10. Tissue-specific patterns of allelically-skewed DNA methylation

    PubMed Central

    Marzi, Sarah J.; Meaburn, Emma L.; Dempster, Emma L.; Lunnon, Katie; Paya-Cano, Jose L.; Smith, Rebecca G.; Volta, Manuela; Troakes, Claire; Schalkwyk, Leonard C.; Mill, Jonathan

    2016-01-01

    ABSTRACT While DNA methylation is usually thought to be symmetrical across both alleles, there are some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-studied sources of allele-specific methylation (ASM), but recent research has indicated a more complex pattern in which genotypic variation can be associated with allelically-skewed DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues and cell types we explored inter- and intra-individual variation in ASM across several regions of the human brain and whole blood from multiple individuals. Consistent with previous studies, we find widespread ASM with > 4% of the ∼220,000 loci interrogated showing evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often located in an extended genomic context of intermediate DNA methylation. We also detect examples of genotype-driven ASM, some of which are tissue-specific. These findings contribute to our understanding of the nature of differential DNA methylation across tissues and have important implications for genetic studies of complex disease. As a resource to the community, ASM patterns across each of the tissues studied are available in a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood. PMID:26786711

  11. QuASAR: quantitative allele-specific analysis of reads.

    PubMed

    Harvey, Chris T; Moyerbrailean, Gregory A; Davis, Gordon O; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2015-04-15

    Expression quantitative trait loci (eQTL) studies have discovered thousands of genetic variants that regulate gene expression, enabling a better understanding of the functional role of non-coding sequences. However, eQTL studies are costly, requiring large sample sizes and genome-wide genotyping of each sample. In contrast, analysis of allele-specific expression (ASE) is becoming a popular approach to detect the effect of genetic variation on gene expression, even within a single individual. This is typically achieved by counting the number of RNA-seq reads matching each allele at heterozygous sites and testing the null hypothesis of a 1:1 allelic ratio. In principle, when genotype information is not readily available, it could be inferred from the RNA-seq reads directly. However, there are currently no existing methods that jointly infer genotypes and conduct ASE inference, while considering uncertainty in the genotype calls. We present QuASAR, quantitative allele-specific analysis of reads, a novel statistical learning method for jointly detecting heterozygous genotypes and inferring ASE. The proposed ASE inference step takes into consideration the uncertainty in the genotype calls, while including parameters that model base-call errors in sequencing and allelic over-dispersion. We validated our method with experimental data for which high-quality genotypes are available. Results for an additional dataset with multiple replicates at different sequencing depths demonstrate that QuASAR is a powerful tool for ASE analysis when genotypes are not available. http://github.com/piquelab/QuASAR. fluca@wayne.edu or rpique@wayne.edu Supplementary Material is available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. QuASAR: quantitative allele-specific analysis of reads

    PubMed Central

    Harvey, Chris T.; Moyerbrailean, Gregory A.; Davis, Gordon O.; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2015-01-01

    Motivation: Expression quantitative trait loci (eQTL) studies have discovered thousands of genetic variants that regulate gene expression, enabling a better understanding of the functional role of non-coding sequences. However, eQTL studies are costly, requiring large sample sizes and genome-wide genotyping of each sample. In contrast, analysis of allele-specific expression (ASE) is becoming a popular approach to detect the effect of genetic variation on gene expression, even within a single individual. This is typically achieved by counting the number of RNA-seq reads matching each allele at heterozygous sites and testing the null hypothesis of a 1:1 allelic ratio. In principle, when genotype information is not readily available, it could be inferred from the RNA-seq reads directly. However, there are currently no existing methods that jointly infer genotypes and conduct ASE inference, while considering uncertainty in the genotype calls. Results: We present QuASAR, quantitative allele-specific analysis of reads, a novel statistical learning method for jointly detecting heterozygous genotypes and inferring ASE. The proposed ASE inference step takes into consideration the uncertainty in the genotype calls, while including parameters that model base-call errors in sequencing and allelic over-dispersion. We validated our method with experimental data for which high-quality genotypes are available. Results for an additional dataset with multiple replicates at different sequencing depths demonstrate that QuASAR is a powerful tool for ASE analysis when genotypes are not available. Availability and implementation: http://github.com/piquelab/QuASAR. Contact: fluca@wayne.edu or rpique@wayne.edu Supplementary information: Supplementary Material is available at Bioinformatics online. PMID:25480375

  13. Identification and removal of low-complexity sites in allele-specific analysis of ChIP-seq data.

    PubMed

    Waszak, Sebastian M; Kilpinen, Helena; Gschwind, Andreas R; Orioli, Andrea; Raghav, Sunil K; Witwicki, Robert M; Migliavacca, Eugenia; Yurovsky, Alisa; Lappalainen, Tuuli; Hernandez, Nouria; Reymond, Alexandre; Dermitzakis, Emmanouil T; Deplancke, Bart

    2014-01-15

    High-throughput sequencing technologies enable the genome-wide analysis of the impact of genetic variation on molecular phenotypes at unprecedented resolution. However, although powerful, these technologies can also introduce unexpected artifacts. We investigated the impact of library amplification bias on the identification of allele-specific (AS) molecular events from high-throughput sequencing data derived from chromatin immunoprecipitation assays (ChIP-seq). Putative AS DNA binding activity for RNA polymerase II was determined using ChIP-seq data derived from lymphoblastoid cell lines of two parent-daughter trios. We found that, at high-sequencing depth, many significant AS binding sites suffered from an amplification bias, as evidenced by a larger number of clonal reads representing one of the two alleles. To alleviate this bias, we devised an amplification bias detection strategy, which filters out sites with low read complexity and sites featuring a significant excess of clonal reads. This method will be useful for AS analyses involving ChIP-seq and other functional sequencing assays. The R package abs filter for library clonality simulations and detection of amplification-biased sites is available from http://updepla1srv1.epfl.ch/waszaks/absfilter

  14. QuASAR-MPRA: accurate allele-specific analysis for massively parallel reporter assays.

    PubMed

    Kalita, Cynthia A; Moyerbrailean, Gregory A; Brown, Christopher; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2018-03-01

    The majority of the human genome is composed of non-coding regions containing regulatory elements such as enhancers, which are crucial for controlling gene expression. Many variants associated with complex traits are in these regions, and may disrupt gene regulatory sequences. Consequently, it is important to not only identify true enhancers but also to test if a variant within an enhancer affects gene regulation. Recently, allele-specific analysis in high-throughput reporter assays, such as massively parallel reporter assays (MPRAs), have been used to functionally validate non-coding variants. However, we are still missing high-quality and robust data analysis tools for these datasets. We have further developed our method for allele-specific analysis QuASAR (quantitative allele-specific analysis of reads) to analyze allele-specific signals in barcoded read counts data from MPRA. Using this approach, we can take into account the uncertainty on the original plasmid proportions, over-dispersion, and sequencing errors. The provided allelic skew estimate and its standard error also simplifies meta-analysis of replicate experiments. Additionally, we show that a beta-binomial distribution better models the variability present in the allelic imbalance of these synthetic reporters and results in a test that is statistically well calibrated under the null. Applying this approach to the MPRA data, we found 602 SNPs with significant (false discovery rate 10%) allele-specific regulatory function in LCLs. We also show that we can combine MPRA with QuASAR estimates to validate existing experimental and computational annotations of regulatory variants. Our study shows that with appropriate data analysis tools, we can improve the power to detect allelic effects in high-throughput reporter assays. http://github.com/piquelab/QuASAR/tree/master/mpra. fluca@wayne.edu or rpique@wayne.edu. Supplementary data are available online at Bioinformatics. © The Author (2017). Published by

  15. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing

    PubMed Central

    Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J.; Szatkiewicz, Jin P.

    2015-01-01

    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. PMID:25883151

  16. PanGEA: identification of allele specific gene expression using the 454 technology.

    PubMed

    Kofler, Robert; Teixeira Torres, Tatiana; Lelley, Tamas; Schlötterer, Christian

    2009-05-14

    Next generation sequencing technologies hold great potential for many biological questions. While mainly used for genomic sequencing, they are also very promising for gene expression profiling. Sequencing of cDNA does not only provide an estimate of the absolute expression level, it can also be used for the identification of allele specific gene expression. We developed PanGEA, a tool which enables a fast and user-friendly analysis of allele specific gene expression using the 454 technology. PanGEA allows mapping of 454-ESTs to genes or whole genomes, displaying gene expression profiles, identification of SNPs and the quantification of allele specific gene expression. The intuitive GUI of PanGEA facilitates a flexible and interactive analysis of the data. PanGEA additionally implements a modification of the Smith-Waterman algorithm which deals with incorrect estimates of homopolymer length as occuring in the 454 technology To our knowledge, PanGEA is the first tool which facilitates the identification of allele specific gene expression. PanGEA is distributed under the Mozilla Public License and available at: http://www.kofler.or.at/bioinformatics/PanGEA

  17. PanGEA: Identification of allele specific gene expression using the 454 technology

    PubMed Central

    Kofler, Robert; Teixeira Torres, Tatiana; Lelley, Tamas; Schlötterer, Christian

    2009-01-01

    Background Next generation sequencing technologies hold great potential for many biological questions. While mainly used for genomic sequencing, they are also very promising for gene expression profiling. Sequencing of cDNA does not only provide an estimate of the absolute expression level, it can also be used for the identification of allele specific gene expression. Results We developed PanGEA, a tool which enables a fast and user-friendly analysis of allele specific gene expression using the 454 technology. PanGEA allows mapping of 454-ESTs to genes or whole genomes, displaying gene expression profiles, identification of SNPs and the quantification of allele specific gene expression. The intuitive GUI of PanGEA facilitates a flexible and interactive analysis of the data. PanGEA additionally implements a modification of the Smith-Waterman algorithm which deals with incorrect estimates of homopolymer length as occuring in the 454 technology Conclusion To our knowledge, PanGEA is the first tool which facilitates the identification of allele specific gene expression. PanGEA is distributed under the Mozilla Public License and available at: PMID:19442283

  18. Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression

    PubMed Central

    Andergassen, Daniel; Dotter, Christoph P; Wenzel, Daniel; Sigl, Verena; Bammer, Philipp C; Muckenhuber, Markus; Mayer, Daniela; Kulinski, Tomasz M; Theussl, Hans-Christian; Penninger, Josef M; Bock, Christoph; Barlow, Denise P; Pauler, Florian M; Hudson, Quanah J

    2017-01-01

    To determine the dynamics of allelic-specific expression during mouse development, we analyzed RNA-seq data from 23 F1 tissues from different developmental stages, including 19 female tissues allowing X chromosome inactivation (XCI) escapers to also be detected. We demonstrate that allelic expression arising from genetic or epigenetic differences is highly tissue-specific. We find that tissue-specific strain-biased gene expression may be regulated by tissue-specific enhancers or by post-transcriptional differences in stability between the alleles. We also find that escape from X-inactivation is tissue-specific, with leg muscle showing an unexpectedly high rate of XCI escapers. By surveying a range of tissues during development, and performing extensive validation, we are able to provide a high confidence list of mouse imprinted genes including 18 novel genes. This shows that cluster size varies dynamically during development and can be substantially larger than previously thought, with the Igf2r cluster extending over 10 Mb in placenta. DOI: http://dx.doi.org/10.7554/eLife.25125.001 PMID:28806168

  19. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing.

    PubMed

    Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J; Szatkiewicz, Jin P

    2015-08-18

    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Multiple Avirulence Loci and Allele-Specific Effector Recognition Control the Pm3 Race-Specific Resistance of Wheat to Powdery Mildew[OPEN

    PubMed Central

    Roffler, Stefan; Stirnweis, Daniel; Treier, Georges; Herren, Gerhard; Korol, Abraham B.; Wicker, Thomas

    2015-01-01

    In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3a2/f2 from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 a2/f2 revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes. PMID:26452600

  1. Allele-specific Characterization of Alanine: Glyoxylate Aminotransferase Variants Associated with Primary Hyperoxaluria

    PubMed Central

    Lage, Melissa D.; Pittman, Adrianne M. C.; Roncador, Alessandro; Cellini, Barbara; Tucker, Chandra L.

    2014-01-01

    Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type) and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele. PMID:24718375

  2. Specific amino acid residues in the beta sliding clamp establish a DNA polymerase usage hierarchy in Escherichia coli.

    PubMed

    Sutton, Mark D; Duzen, Jill M

    2006-03-07

    Escherichia coli dnaN159 strains encode a mutant form of the beta sliding clamp (beta159), causing them to display altered DNA polymerase (pol) usage. In order to better understand mechanisms of pol selection/switching in E. coli, we have further characterized pol usage in the dnaN159 strain. The dnaN159 allele contains two amino acid substitutions: G66E (glycine-66 to glutamic acid) and G174A (glycine-174 to alanine). Our results indicated that the G174A substitution impaired interaction of the beta clamp with the alpha catalytic subunit of pol III. In light of this finding, we designed two additional dnaN alleles. One of these dnaN alleles contained a G174A substitution (beta-G174A), while the other contained D173A, G174A and H175A substitutions (beta-173-175). Examination of strains bearing these different dnaN alleles indicated that each conferred a distinct UV sensitive phenotype that was dependent upon a unique combination of Delta polB (pol II), Delta dinB (pol IV) and/or Delta umuDC (pol V) alleles. Taken together, these findings indicate that mutations in the beta clamp differentially affect the functions of these three pols, and suggest that pol II, pol IV and pol V are capable of influencing each others' abilities to gain access to the replication fork. These findings are discussed in terms of a model whereby amino acid residues in the vicinity of those mutated in beta159 (G66 and G174) help to define a DNA polymerase usage hierarchy in E. coli following UV irradiation.

  3. Development of allele-specific primer PCR for a swine TLR2 SNP and comparison of the frequency among several pig breeds of Japan and the Czech Republic.

    PubMed

    Muneta, Yoshihiro; Minagawa, Yu; Kusumoto, Masahiro; Shinkai, Hiroki; Uenishi, Hirohide; Splichal, Igor

    2012-05-01

    In the present study, we have developed an allele-specific primer-polymerase chain reaction (ASP-PCR) for genotyping a single nucleotide polymorphism (SNP) of swine Toll-like receptor 2 (TLR2) (C406G), which is related to the prevalence of pneumonia caused by Mycoplasma hyopneumoniae. We also compared the allele frequency among several pig breeds of Japan and the Czech Republic. Allele-specific primers were constructed by introducing 1-base mismatch sequence before the SNP site. The swine TLR2 C406G mutation was successfully determined by the ASP-PCR using genomic DNA samples in Japan as previously genotyped by a sequencing method. Using the PCR condition determined, genomic DNA samples from pig blood obtained from 110 pigs from 7 different breeds in the Czech Republic were genotyped by the ASP-PCR. The genotyping results from the ASP-PCR were completely matched with the results from the sequencing method. The allele frequency of the swine TLR2 C406G mutation was 27.5% in the Czech Republic and 3.6% in Japan. The C406G mutation was only found in the Landrace breed in Japan, and was almost exclusively found in the Landrace breed in the Czech Republic as well. These results indicated the usefulness of ASP-PCR for detecting a specific SNP for swine TLR2.

  4. DNA typing by microbead arrays and PCR-SSP: apparent false-negative or -positive hybridization or amplification signals disclose new HLA-B and -DRB1 alleles.

    PubMed

    Rahal, M; Kervaire, B; Villard, J; Tiercy, J-M

    2008-03-01

    Human leukocyte antigen (HLA) typing by polymerase chain reaction-sequence-specific oligonucleotide (PCR-SSO) hybridization on solid phase (microbead assay) or polymerase chain reaction-sequence-specific primers (PCR-SSP) requires interpretation softwares to detect all possible allele combinations. These programs propose allele calls by taking into account false-positive or false-negative signal(s). The laboratory has the option to validate typing results in the presence of strongly cross-reacting or apparent false-negative signals. Alternatively, these seemingly aberrant signals may disclose novel variants. We report here four new HLA-B (B*5620 and B*5716) and HLA-DRB1 alleles (DRB1*110107 and DRB1*1474) that were detected by apparent false-negative or -positive hybridization or amplification patterns, and ultimately resolved by sequencing. To avoid allele misassignments, a comprehensive evaluation of acquired data as documented in a quality assurance system is therefore required to confirm unambiguous typing interpretation.

  5. Allele-Specific, Age-Dependent and BMI-Associated DNA Methylation of Human MCHR1

    PubMed Central

    Stepanow, Stefanie; Reichwald, Kathrin; Huse, Klaus; Gausmann, Ulrike; Nebel, Almut; Rosenstiel, Philip; Wabitsch, Martin; Fischer-Posovszky, Pamela; Platzer, Matthias

    2011-01-01

    Background Melanin-concentrating hormone receptor 1 (MCHR1) plays a significant role in regulation of energy balance, food intake, physical activity and body weight in humans and rodents. Several association studies for human obesity showed contrary results concerning the SNPs rs133072 (G/A) and rs133073 (T/C), which localize to the first exon of MCHR1. The variations constitute two main haplotypes (GT, AC). Both SNPs affect CpG dinucleotides, whereby each haplotype contains a potential methylation site at one of the two SNP positions. In addition, 15 CpGs in close vicinity of these SNPs constitute a weak CpG island. Here, we studied whether DNA methylation in this sequence context may contribute to population- and age-specific effects of MCHR1 alleles in obesity. Principal Findings We analyzed DNA methylation of a 315 bp region of MCHR1 encompassing rs133072 and rs133073 and the CpG island in blood samples of 49 individuals by bisulfite sequencing. The AC haplotype shows a significantly higher methylation level than the GT haplotype. This allele-specific methylation is age-dependent. In young individuals (20–30 years) the difference in DNA methylation between haplotypes is significant; whereas in individuals older than 60 years it is not detectable. Interestingly, the GT allele shows a decrease in methylation status with increasing BMI, whereas the methylation of the AC allele is not associated with this phenotype. Heterozygous lymphoblastoid cell lines show the same pattern of allele-specific DNA methylation. The cell line, which exhibits the highest difference in methylation levels between both haplotypes, also shows allele-specific transcription of MCHR1, which can be abolished by treatment with the DNA methylase inhibitor 5-aza-2′-deoxycytidine. Conclusions We show that DNA methylation at MCHR1 is allele-specific, age-dependent, BMI-associated and affects transcription. Conceivably, this epigenetic regulation contributes to the age- and/or population

  6. Molecular Basis of Allele-Specific Efficacy of a Blood-Stage Malaria Vaccine: Vaccine Development Implications

    PubMed Central

    Ouattara, Amed; Takala-Harrison, Shannon; Thera, Mahamadou A.; Coulibaly, Drissa; Niangaly, Amadou; Saye, Renion; Tolo, Youssouf; Dutta, Sheetij; Heppner, D. Gray; Soisson, Lorraine; Diggs, Carter L.; Vekemans, Johan; Cohen, Joe; Blackwelder, William C.; Dube, Tina; Laurens, Matthew B.; Doumbo, Ogobara K.; Plowe, Christopher V.

    2013-01-01

    The disappointing efficacy of blood-stage malaria vaccines may be explained in part by allele-specific immune responses that are directed against polymorphic epitopes on blood-stage antigens. FMP2.1/AS02A, a blood-stage candidate vaccine based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, had allele-specific efficacy against clinical malaria in a phase II trial in Malian children. We assessed the cross-protective efficacy of the malaria vaccine and inferred which polymorphic amino acid positions in AMA1 were the targets of protective allele-specific immune responses. FMP2.1/AS02A had the highest efficacy against AMA1 alleles that were identical to the 3D7 vaccine-type allele at 8 highly polymorphic amino acid positions in the cluster 1 loop (c1L) but differed from 3D7 elsewhere in the molecule. Comparison of the incidence of vaccine-type alleles before and after vaccination in the malaria vaccine and control groups and examination of the patterns of allele change at polymorphic positions in consecutive malaria episodes suggest that the highly polymorphic amino acid position 197 in c1L was the most critical determinant of allele-specific efficacy. These results indicate that a multivalent AMA1 vaccine with broad efficacy could include only a limited set of key alleles of this extremely polymorphic antigen. PMID:23204168

  7. Detection of nucleotide-specific CRISPR/Cas9 modified alleles using multiplex ligation detection

    PubMed Central

    KC, R.; Srivastava, A.; Wilkowski, J. M.; Richter, C. E.; Shavit, J. A.; Burke, D. T.; Bielas, S. L.

    2016-01-01

    CRISPR/Cas9 genome-editing has emerged as a powerful tool to create mutant alleles in model organisms. However, the precision with which these mutations are created has introduced a new set of complications for genotyping and colony management. Traditional gene-targeting approaches in many experimental organisms incorporated exogenous DNA and/or allele specific sequence that allow for genotyping strategies based on binary readout of PCR product amplification and size selection. In contrast, alleles created by non-homologous end-joining (NHEJ) repair of double-stranded DNA breaks generated by Cas9 are much less amenable to such strategies. Here we describe a novel genotyping strategy that is cost effective, sequence specific and allows for accurate and efficient multiplexing of small insertion-deletions and single-nucleotide variants characteristic of CRISPR/Cas9 edited alleles. We show that ligation detection reaction (LDR) can be used to generate products that are sequence specific and uniquely detected by product size and/or fluorescent tags. The method works independently of the model organism and will be useful for colony management as mutant alleles differing by a few nucleotides become more prevalent in experimental animal colonies. PMID:27557703

  8. Extensive variation between tissues in allele specific expression in an outbred mammal.

    PubMed

    Chamberlain, Amanda J; Vander Jagt, Christy J; Hayes, Benjamin J; Khansefid, Majid; Marett, Leah C; Millen, Catriona A; Nguyen, Thuy T T; Goddard, Michael E

    2015-11-23

    Allele specific gene expression (ASE), with the paternal allele more expressed than the maternal allele or vice versa, appears to be a common phenomenon in humans and mice. In other species the extent of ASE is unknown, and even in humans and mice there are several outstanding questions. These include; to what extent is ASE tissue specific? how often does the direction of allele expression imbalance reverse between tissues? how often is only one of the two alleles expressed? is there a genome wide bias towards expression of the paternal or maternal allele; and finally do genes that are nearby on a chromosome share the same direction of ASE? Here we use gene expression data (RNASeq) from 18 tissues from a single cow to investigate each of these questions in turn, and then validate some of these findings in two tissues from 20 cows. Between 40 and 100 million sequence reads were generated per tissue across three replicate samples for each of the eighteen tissues from the single cow (the discovery dataset). A bovine gene expression atlas was created (the first from RNASeq data), and differentially expressed genes in each tissue were identified. To analyse ASE, we had access to unambiguously phased genotypes for all heterozygous variants in the cow's whole genome sequence, where these variants were homozygous in the whole genome sequence of her sire, and as a result we were able to map reads to parental genomes, to determine SNP and genes showing ASE in each tissue. In total 25,251 heterozygous SNP within 7985 genes were tested for ASE in at least one tissue. ASE was pervasive, 89 % of genes tested had significant ASE in at least one tissue. This large proportion of genes displaying ASE was confirmed in the two tissues in a validation dataset. For individual tissues the proportion of genes showing significant ASE varied from as low as 8-16 % of those tested in thymus to as high as 71-82 % of those tested in lung. There were a number of cases where the direction of

  9. Comparison of allele-specific PCR, created restriction-site PCR, and PCR with primer-introduced restriction analysis methods used for screening complex vertebral malformation carriers in Holstein cattle

    PubMed Central

    Altınel, Ahmet

    2017-01-01

    Complex vertebral malformation (CVM) is an inherited, autosomal recessive disorder of Holstein cattle. The aim of this study was to compare sensitivity, specificity, positive and negative predictive values, accuracy, and rapidity of allele-specific polymerase chain reaction (AS-PCR), created restriction-site PCR (CRS-PCR), and PCR with primer-introduced restriction analysis (PCR-PIRA), three methods used in identification of CVM carriers in a Holstein cattle population. In order to screen for the G>T mutation in the solute carrier family 35 member A3 (SLC35A3) gene, DNA sequencing as the gold standard method was used. The prevalence of carriers and the mutant allele frequency were 3.2% and 0.016, respectively, among Holstein cattle in the Thrace region of Turkey. Among the three methods, the fastest but least accurate was AS-PCR. Although the rapidity of CRS-PCR and PCR-PIRA were nearly equal, the accuracy of PCR-PIRA was higher than that of CRS-PCR. Therefore, among the three methods, PCR-PIRA appears to be the most efficacious for screening of mutant alleles when identifying CVM carriers in a Holstein cattle population. PMID:28927256

  10. iASeq: integrative analysis of allele-specificity of protein-DNA interactions in multiple ChIP-seq datasets

    PubMed Central

    2012-01-01

    Background ChIP-seq provides new opportunities to study allele-specific protein-DNA binding (ASB). However, detecting allelic imbalance from a single ChIP-seq dataset often has low statistical power since only sequence reads mapped to heterozygote SNPs are informative for discriminating two alleles. Results We develop a new method iASeq to address this issue by jointly analyzing multiple ChIP-seq datasets. iASeq uses a Bayesian hierarchical mixture model to learn correlation patterns of allele-specificity among multiple proteins. Using the discovered correlation patterns, the model allows one to borrow information across datasets to improve detection of allelic imbalance. Application of iASeq to 77 ChIP-seq samples from 40 ENCODE datasets and 1 genomic DNA sample in GM12878 cells reveals that allele-specificity of multiple proteins are highly correlated, and demonstrates the ability of iASeq to improve allelic inference compared to analyzing each individual dataset separately. Conclusions iASeq illustrates the value of integrating multiple datasets in the allele-specificity inference and offers a new tool to better analyze ASB. PMID:23194258

  11. Allele-specific cytokine responses at the HLA-C locus: implications for psoriasis.

    PubMed

    Hundhausen, Christian; Bertoni, Anna; Mak, Rose K; Botti, Elisabetta; Di Meglio, Paola; Clop, Alex; Laggner, Ute; Chimenti, Sergio; Hayday, Adrian C; Barker, Jonathan N; Trembath, Richard C; Capon, Francesca; Nestle, Frank O

    2012-03-01

    Psoriasis is an inflammatory skin disorder that is inherited as a complex trait. Genetic studies have repeatedly highlighted HLA-C as the major determinant for psoriasis susceptibility, with the Cw*0602 allele conferring significant disease risk in a wide range of populations. Despite the potential importance of HLA-C variation in psoriasis, either via an effect on peptide presentation or immuno-inhibitory activity, allele-specific expression patterns have not been investigated. Here, we used reporter assays to characterize two regulatory variants, which virtually abolished the response to tumor necrosis factor (TNF)-α (rs2524094) and IFN-γ (rs10657191) in HLA-Cw*0602 and a cluster of related alleles. We validated these findings through the analysis of HLA-Cw*0602 expression in primary keratinocytes treated with TNF-α and IFN-γ. Finally, we showed that HLA-Cw*0602 transcripts are not increased in psoriatic skin lesions, despite highly elevated TNF-α levels. Thus, our findings demonstrate the presence of allele-specific differences in HLA-C expression and indicate that HLA-Cw*0602 is unresponsive to upregulation by key proinflammatory cytokines in psoriasis. These data pave the way for functional studies into the pathogenic role of the major psoriasis susceptibility allele.

  12. Allele-specific cytokine responses at the HLA-C locus, implications for psoriasis

    PubMed Central

    Hundhausen, Christian; Bertoni, Anna; Mak, Rose K; Botti, Elisabetta; Di Meglio, Paola; Clop, Alex; Laggner, Ute; Chimenti, Sergio; Hayday, Adrian C; Barker, Jonathan N; Trembath, Richard C; Capon, Francesca; Nestle, Frank O

    2011-01-01

    Psoriasis is an inflammatory skin disorder that is inherited as a complex trait. Genetic studies have repeatedly highlighted HLA-C as the major determinant for psoriasis susceptibility, with the Cw*0602 allele conferring significant disease risk in a wide-range of populations. Despite the potential importance of HLA-C variation in psoriasis, either via an effect on peptide presentation or immuno-inhibitory activity, allele-specific expression patterns have not been investigated. Here, we used reporter assays to characterize two regulatory variants, which virtually abolished the response to TNF-α (rs2524094) and IFN-γ (rs10657191) in HLA-Cw*0602 and a cluster of related alleles. We validated these findings through the analysis of HLA-Cw*0602 expression in primary keratinocytes treated with TNF-α and IFN-γ. Finally, we showed that HLA-Cw*0602 transcripts are not increased in psoriatic skin lesions, despite highly elevated TNF-α levels. Thus, our findings demonstrate the presence of allele-specific differences in HLA-C expression and indicate that HLA-Cw*0602 is unresponsive to up-regulation by key pro-inflammatory cytokines in psoriasis. These data pave the way for functional studies into the pathogenic role of the major psoriasis susceptibility allele. PMID:22113476

  13. Allele-specific locus binding and genome editing by CRISPR at the p16INK4a locus.

    PubMed

    Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka

    2016-07-28

    The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adopted for a wide range of biological applications including genome editing. In some cases, dissection of genome functions requires allele-specific genome editing, but the use of CRISPR for this purpose has not been studied in detail. In this study, using the p16INK4a gene in HCT116 as a model locus, we investigated whether chromatin states, such as CpG methylation, or a single-nucleotide gap form in a target site can be exploited for allele-specific locus binding and genome editing by CRISPR in vivo. First, we showed that allele-specific locus binding and genome editing could be achieved by targeting allele-specific CpG-methylated regions, which was successful for one, but not all guide RNAs. In this regard, molecular basis underlying the success remains elusive at this stage. Next, we demonstrated that an allele-specific single-nucleotide gap form could be employed for allele-specific locus binding and genome editing by CRISPR, although it was important to avoid CRISPR tolerance of a single nucleotide mismatch brought about by mismatched base skipping. Our results provide information that might be useful for applications of CRISPR in studies of allele-specific functions in the genomes.

  14. Diversity of HLA-B61 alleles and haplotypes in East Asians and Spanish Gypsies.

    PubMed

    Ogawa, A; Tokunaga, K; Lin, L; Kashiwase, K; Tanaka, H; Herrero, M J; Vilches, C; Park, M H; Jia, G J; Chimge, N O; Sideltseva, E W; Ishikawa, Y; Akaza, T; Tadokoro, K; Juji, T

    1998-04-01

    The distribution of HLA-B61 alleles and their association with HLA-C and DRB1 alleles were investigated in six East Asian populations (South Korean, Chinese Korean, Man (Manchu), Northern Han, Mongolian and Buryat) and Spanish Gypsies and compared to our previous report on the Japanese population. The alleles were identified using a group-specific polymerase chain reaction (PCR) and genomic DNA followed by hybridization with sequence-specific oligonucleotide probes (SSOP). Both HLA-B*4002 and B*4006 were commonly detected in the South Korean, Chinese Korean, Man, Northern Han and Japanese populations, while HLA-B*4002 was predominant in the Mongolian and Buryat populations. Strong associations of B*4002 with Cw*0304 and of B*4006 with Cw*0801 were commonly observed in these East Asian populations. In contrast, in Spanish Gypsies, only HLA-B*4006 was found and the allele exhibited a strong association with Cw*1502. HLA-B*4003 was also identified in the South Korean, Chinese Korean, Northern Han, Mongolian and Japanese populations at relatively low frequencies, and exhibited an association with Cw*0304. Moreover, the association of these B61 alleles with the DRB1 alleles revealed considerable diversity among the different populations. HLA-B*4004 and B*4009 were not observed in these populations. Consequently, the frequencies of the B61 alleles varied among the different East Asian populations, but the individual B61 alleles were carried by specific haplotypes often regardless of the ethnic differences.

  15. Population-specific documentation of pharmacogenomic markers and their allelic frequencies in FINDbase.

    PubMed

    Georgitsi, Marianthi; Viennas, Emmanouil; Gkantouna, Vassiliki; Christodoulopoulou, Elena; Zagoriti, Zoi; Tafrali, Christina; Ntellos, Fotios; Giannakopoulou, Olga; Boulakou, Athanassia; Vlahopoulou, Panagiota; Kyriacou, Eva; Tsaknakis, John; Tsakalidis, Athanassios; Poulas, Konstantinos; Tzimas, Giannis; Patrinos, George P

    2011-01-01

    Population and ethnic group-specific allele frequencies of pharmacogenomic markers are poorly documented and not systematically collected in structured data repositories. We developed the Frequency of Inherited Disorders Pharmacogenomics database (FINDbase-PGx), a separate module of the FINDbase, aiming to systematically document pharmacogenomic allele frequencies in various populations and ethnic groups worldwide. We critically collected and curated 214 scientific articles reporting pharmacogenomic markers allele frequencies in various populations and ethnic groups worldwide. Subsequently, in order to host the curated data, support data visualization and data mining, we developed a website application, utilizing Microsoft™ PivotViewer software. Curated allelic frequency data pertaining to 144 pharmacogenomic markers across 14 genes, representing approximately 87,000 individuals from 150 populations worldwide, are currently included in FINDbase-PGx. A user-friendly query interface allows for easy data querying, based on numerous content criteria, such as population, ethnic group, geographical region, gene, drug and rare allele frequency. FINDbase-PGx is a comprehensive database, which, unlike other pharmacogenomic knowledgebases, fulfills the much needed requirement to systematically document pharmacogenomic allelic frequencies in various populations and ethnic groups worldwide.

  16. BRCA1 allele-specific expression in genetic predisposed breast/ovarian cancer.

    PubMed

    Jamard, Estelle; Volard, Bertrand; Dugué, Audrey Emmanuelle; Legros, Angelina; Leconte, Alexandra; Clarisse, Bénédicte; Davy, Grégoire; Polycarpe, Florence; Dugast, Catherine; Abadie, Caroline; Frebourg, Thierry; Tinat, Julie; Tennevet, Isabelle; Layet, Valérie; Joly, Florence; Castéra, Laurent; Berthet, Pascaline; Vaur, Dominique; Krieger, Sophie

    2017-04-01

    Germline allele specific expression (ASE), resulting in a lowered expression of one of the BRCA1 alleles, has been described as a possible predisposition marker in Hereditary Breast or Ovarian Cancer (HBOC), usable for molecular diagnosis in HBOC. The main objective of this prospective case-control study was to compare the proportion of ASE between controls without familial history of breast or ovarian cancer, and HBOC cases without BRCA1 or BRCA2 deleterious mutation. BRCA1 ASE evaluated on three SNPs among controls and HBOC patients without deleterious mutation were assessed by pyrosequencing. The allelic ratios and the proportion of ASE were compared between controls and cases using a Student's t test and a Fisher exact test, respectively. The linearity and reproducibility of the ASE dosage was demonstrated with R 2  > 0.99 and a coefficient of variation below 10 %, and ASE was detected in two positive controls harbouring BRCA1 truncated mutations. In the heterozygote population, composed of 99/264 controls (37.5 %) and 96/227 patients (42.3 %), we detected a 5 % ASE without truncated mutations, in each population. We failed to detect any significant difference of ASE between controls and patients. So far, BRCA1 Allelic specific expression is not usable in routine diagnosis as a possible predisposition marker in HBOC patients except for the detection of truncated mutations.

  17. Japaneseplex: A forensic SNP assay for identification of Japanese people using Japanese-specific alleles.

    PubMed

    Yuasa, Isao; Akane, Atsushi; Yamamoto, Toshimichi; Matsusue, Aya; Endoh, Minoru; Nakagawa, Mayumi; Umetsu, Kazuo; Ishikawa, Takaki; Iino, Morio

    2018-04-24

    It is sometimes necessary to determine whether a forensic biological sample came from a Japanese person. In this study, we developed a 60-locus SNP assay designed for the differentiation of Japanese people from other East Asians using entirely and nearly Japanese-specific alleles. This multiplex assay consisted of 6 independent PCR reactions followed by single nucleotide extension. The average number and standard deviation of Japanese-specific alleles possessed by an individual were 0.81 ± 0.93 in 108 Koreans from Seoul, 8.87 ± 2.89 in 103 Japanese from Tottori, 17.20 ± 3.80 in 88 Japanese from Okinawa, and 0 in 220 Han Chinese from Wuxi and Changsha. The Koreans had 0-4 Japanese-specific alleles per individual, whereas the Japanese had 4-26 Japanese-specific alleles. Almost all Japanese were distinguished from the Koreans and other people by the factorial correspondence and principal component analyses. The Snipper program was also useful to estimate the degree of Japaneseness. The method described here was successfully applied to the differentiation of Japanese from non-Japanese people in forensic cases. This Japanese-specific SNP assay was named Japaneseplex. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Allelic divergence and cultivar-specific SSR alleles revealed by capillary electrophoresis using fluorescence-labeled SSR markers in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Though sugarcane cultivars (Saccharum spp. hybrids) are complex aneu-polyploid hybrids, genetic evaluation and tracking of clone- or cultivar-specific alleles become possible due to capillary electrophoregrams (CE) using fluorescence-labeled SSR primer pairs. Twenty-four sugarcane cultivars, 12 each...

  19. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies

    PubMed Central

    Bratic, Ana; Kauppila, Timo E. S.; Macao, Bertil; Grönke, Sebastian; Siibak, Triinu; Stewart, James B.; Baggio, Francesca; Dols, Jacqueline; Partridge, Linda; Falkenberg, Maria; Wredenberg, Anna; Larsson, Nils-Göran

    2015-01-01

    Replication errors are the main cause of mitochondrial DNA (mtDNA) mutations and a compelling approach to decrease mutation levels would therefore be to increase the fidelity of the catalytic subunit (POLγA) of the mtDNA polymerase. Here we genomically engineer the tamas locus, encoding fly POLγA, and introduce alleles expressing exonuclease- (exo−) and polymerase-deficient (pol−) POLγA versions. The exo− mutant leads to accumulation of point mutations and linear deletions of mtDNA, whereas pol− mutants cause mtDNA depletion. The mutant tamas alleles are developmentally lethal but can complement each other in trans resulting in viable flies with clonally expanded mtDNA mutations. Reconstitution of human mtDNA replication in vitro confirms that replication is a highly dynamic process where POLγA goes on and off the template to allow complementation during proofreading and elongation. The created fly models are valuable tools to study germ line transmission of mtDNA and the pathophysiology of POLγA mutation disease. PMID:26554610

  20. Implementation and validation of an improved allele specific stutter filtering method for electropherogram interpretation.

    PubMed

    Kalafut, Tim; Schuerman, Curt; Sutton, Joel; Faris, Tom; Armogida, Luigi; Bright, Jo-Anne; Buckleton, John; Taylor, Duncan

    2018-03-31

    Modern probabilistic genotyping (PG) software is capable of modeling stutter as part of the profile weighting statistic. This allows for peaks in stutter positions to be considered as allelic or stutter or both. However, prior to running any sample through a PG calculator, the examiner must first interpret the sample, considering such things as artifacts and number of contributors (NOC or N). Stutter can play a major role both during the assignment of the number of contributors, and the assessment of inclusion and exclusion. If stutter peaks are not filtered when they should be, it can lead to the assignment of an additional contributor, causing N contributors to be assigned as N + 1. If peaks in the stutter position of a major contributor are filtered using a threshold that is too high, true alleles of minor contributors can be lost. Until now, the software used to view the electropherogram stutter filters are based on a locus specific model. Combined stutter peaks occur when a peak could be the result of both back stutter (stutter one repeat shorter than the allele) and forward stutter (stutter one repeat unit larger than the allele). This can challenge existing filters. We present here a novel stutter filter model in the ArmedXpert™ software package that uses a linear model based on allele for back stutter and applies an additive filter for combined stutter. We term this the allele specific stutter model (AM). We compared AM with a traditional model based on locus specific stutter filters (termed LM). This improved stutter model has the benefit of: Instances of over filtering were reduced 78% from 101 for a traditional model (LM) to 22 for the allele specific model (AM) when scored against each other. Instances of under filtering were reduced 80% from 85 (LM) to 17 (AM) when scored against ground truth mixtures. Published by Elsevier B.V.

  1. Sex-specific allelic transmission bias suggests sexual conflict at MC1R.

    PubMed

    Ducret, Valérie; Gaigher, Arnaud; Simon, Céline; Goudet, Jérôme; Roulin, Alexandre

    2016-09-01

    Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome - called intralocus sexual conflict. Although the autosomal melanocortin-1-receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy-Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year-specific deviations from Hardy-Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages. © 2016 John Wiley & Sons Ltd.

  2. Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles.

    PubMed

    McMeel, O M; Hoey, E M; Ferguson, A

    2001-01-01

    The cDNA nucleotide sequences of the lactate dehydrogenase alleles LDH-C1*90 and *100 of brown trout (Salmo trutta) were found to differ at position 308 where an A is present in the *100 allele but a G is present in the *90 allele. This base substitution results in an amino acid change from aspartic acid at position 82 in the LDH-C1 100 allozyme to a glycine in the 90 allozyme. Since aspartic acid has a net negative charge whilst glycine is uncharged, this is consistent with the electrophoretic observation that the LDH-C1 100 allozyme has a more anodal mobility relative to the LDH-C1 90 allozyme. Based on alignment of the cDNA sequence with the mouse genomic sequence, a local primer set was designed, incorporating the variable position, and was found to give very good amplification with brown trout genomic DNA. Sequencing of this fragment confirmed the difference in both homozygous and heterozygous individuals. Digestion of the polymerase chain reaction products with BslI, a restriction enzyme specific for the site difference, gave one, two and three fragments for the two homozygotes and the heterozygote, respectively, following electrophoretic separation. This provides a DNA-based means of routine screening of the highly informative LDH-C1* polymorphism in brown trout population genetic studies. Primer sets presented could be used to sequence cDNA of other LDH* genes of brown trout and other species.

  3. A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana.

    PubMed

    McClure, B; Mou, B; Canevascini, S; Bernatzky, R

    1999-11-09

    Although S-locus RNases (S-RNases) determine the specificity of pollen rejection in self-incompatible (SI) solanaceous plants, they alone are not sufficient to cause S-allele-specific pollen rejection. To identify non-S-RNase sequences that are required for pollen rejection, a Nicotiana alata cDNA library was screened by differential hybridization. One clone, designated HT, hybridized strongly to RNA from N. alata styles but not to RNA from Nicotiana plumbaginifolia, a species known to lack one or more factors necessary for S-allele-specific pollen rejection. Sequence analysis revealed a 101-residue ORF including a putative secretion signal and an asparagine-rich domain near the C terminus. RNA blot analysis showed that the HT-transcript accumulates in the stigma and style before anthesis. The timing of HT-expression lags slightly behind S(C10)-RNase in SI N. alata S(C10)S(C10) and is well correlated with the onset of S-allele-specific pollen rejection in the style. An antisense-HT construct was prepared to test for a role in pollen rejection. Transformed (N. plumbaginifolia x SI N. alata S(C10)S(C10)) hybrids with reduced levels of HT-protein continued to express S(C10)-RNase but failed to reject S(C10)-pollen. Control hybrids expressing both S(C10)-RNase and HT-protein showed a normal S-allele-specific pollen rejection response. We conclude that HT-protein is directly implicated in pollen rejection.

  4. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes.

    PubMed Central

    Tabor, S; Richardson, C C

    1985-01-01

    The RNA polymerase gene of bacteriophage T7 has been cloned into the plasmid pBR322 under the inducible control of the lambda PL promoter. After induction, T7 RNA polymerase constitutes 20% of the soluble protein of Escherichia coli, a 200-fold increase over levels found in T7-infected cells. The overproduced enzyme has been purified to homogeneity. During extraction the enzyme is sensitive to a specific proteolysis, a reaction that can be prevented by a modification of lysis conditions. The specificity of T7 RNA polymerase for its own promoters, combined with the ability to inhibit selectively the host RNA polymerase with rifampicin, permits the exclusive expression of genes under the control of a T7 RNA polymerase promoter. We describe such a coupled system and its use to express high levels of phage T7 gene 5 protein, a subunit of T7 DNA polymerase. Images PMID:3156376

  5. Loss of RNA expression and allele-specific expression associated with congenital heart disease

    PubMed Central

    McKean, David M.; Homsy, Jason; Wakimoto, Hiroko; Patel, Neil; Gorham, Joshua; DePalma, Steven R.; Ware, James S.; Zaidi, Samir; Ma, Wenji; Patel, Nihir; Lifton, Richard P.; Chung, Wendy K.; Kim, Richard; Shen, Yufeng; Brueckner, Martina; Goldmuntz, Elizabeth; Sharp, Andrew J.; Seidman, Christine E.; Gelb, Bruce D.; Seidman, J. G.

    2016-01-01

    Congenital heart disease (CHD), a prevalent birth defect occurring in 1% of newborns, likely results from aberrant expression of cardiac developmental genes. Mutations in a variety of cardiac transcription factors, developmental signalling molecules and molecules that modify chromatin cause at least 20% of disease, but most CHD remains unexplained. We employ RNAseq analyses to assess allele-specific expression (ASE) and biallelic loss-of-expression (LOE) in 172 tissue samples from 144 surgically repaired CHD subjects. Here we show that only 5% of known imprinted genes with paternal allele silencing are monoallelic versus 56% with paternal allele expression—this cardiac-specific phenomenon seems unrelated to CHD. Further, compared with control subjects, CHD subjects have a significant burden of both LOE genes and ASE events associated with altered gene expression. These studies identify FGFBP2, LBH, RBFOX2, SGSM1 and ZBTB16 as candidate CHD genes because of significantly altered transcriptional expression. PMID:27670201

  6. Utilization of a ts-sacB selection system for the generation of a Mycobacterium avium serovar-8 specific glycopeptidolipid allelic exchange mutant

    PubMed Central

    Irani, Vida R; Lee, Sun-Hwa; Eckstein, Torsten M; Inamine, Julia M; Belisle, John T; Maslow, Joel N

    2004-01-01

    Background Mycobacterium avium are ubiquitous environmental organisms and a cause of disseminated infection in patients with end-stage AIDS. The glycopeptidolipids (GPL) of M. avium are proposed to participate in the pathogenesis of this organism, however, establishment of a clear role for GPL in disease production has been limited by the inability to genetically manipulate M. avium. Methods To be able to study the role of the GPL in M. avium pathogenesis, a ts-sacB selection system, not previously used in M. avium, was employed as a means to achieve homologous recombination for the rhamnosyltransferase (rtfA) gene of a pathogenic serovar 8 strain of M. avium to prevent addition of serovar-specific sugars to rhamnose of the fatty acyl-peptide backbone of GPL. The genotype of the resultant rtfA mutant was confirmed by polymerase chain reaction and southern hybridization. Disruption in the proximal sugar of the haptenic oligosaccharide resulted in the loss of serovar specific GPL with no change in the pattern of non-serovar specific GPL moieties as shown by thin layer chromatography and gas chromatography/mass spectrometry. Complementation of wild type (wt) rtfA in trans through an integrative plasmid restored serovar-8 specific GPL expression identical to wt serovar 8 parent strain. Results In this study, we affirm our results that rtfA encodes an enzyme responsible for the transfer of Rha to 6d-Tal and provide evidence of a second allelic exchange mutagenesis system suitable for M. avium. Conclusion We report the second allelic exchange system for M. avium utilizing ts-sacB as double-negative and xylE as positive counter-selection markers, respectively. This system of allelic exchange would be especially useful for M. avium strains that demonstrate significant isoniazid (INH) resistance despite transformation with katG. Through the construction of mutants in GPL or other mycobacterial components, their roles in M. avium pathogenesis, biosynthesis, or drug

  7. Distribution of Diego blood group alleles and identification of four novel mutations on exon 19 of SLC4A1 gene in the Chinese Han population by polymerase chain reaction sequence-based typing.

    PubMed

    Xu, X G; He, J; He, Y M; Tao, S D; Ying, Y L; Zhu, F M; Lv, H J; Yan, L X

    2011-04-01

    The Diego blood group system plays an important role in transfusion medicine. Genotyping of DI1 and DI2 alleles is helpful for the investigation into haemolytic disease of the newborn (HDN) and for the development of rare blood group databases. Here, we set up a polymerase chain reaction sequence-based typing (PCR-SBT) method for genotyping of Diego blood group alleles. Specific primers for exon 19 of the solute carrier family 4, anion exchanger, member1 (SLC4A1) gene were designed, and our PCR-SBT method was established and optimized for Diego genotyping. A total of 1053 samples from the Chinese Han population and the family members of a rare proband with DI1/DI1 genotype were investigated by the PCR-SBT method. An allele-specific primer PCR (PCR-ASP) was used to verify the reliability of the PCR-SBT method. The frequencies of DI1 and DI2 alleles in the Chinese Han population were 0.0247 and 0.9753, respectively. Six new single nucleotide polymorphisms (SNPs) were found in the sequenced regions of the SLC4A1 gene, and four novel SNPs located in the exon 19, in which one SNP could cause an amino acid alteration of Ala858Ser on erythrocyte anion exchanger protein 1. The genotypes for Diego blood group were identical among 41 selected samples with PCR-ASP and PCR-SBT. The PCR-SBT method can be used in Diego genotyping as a substitute of serological technique when the antisera is lacking and was suitable for screening large numbers of donors in rare blood group databases. © 2010 The Author(s). Vox Sanguinis © 2010 International Society of Blood Transfusion.

  8. Plant-specific multisubunit RNA polymerase in gene silencing.

    PubMed

    Lahmy, Sylvie; Bies-Etheve, Natacha; Lagrange, Thierry

    2010-01-01

    In recent years, a major breakthrough in the study of epigenetic silencing in eukaryotes came with the discovery that the RNA-interference pathway (RNAi) is generally implicated in heterochromatin assembly and gene silencing. An important and paradoxical feature of the RNAi-mediated heterochromatin pathways is their requirement for some form of transcription. In fission yeast, Schizosaccharomyces pombe, centromeric siRNAs have been shown to derive from chromatin-bound nascent transcripts produced by RNA polymerase II (PolII) at the site of heterochromatin formation. Likewise, chromatin-bound nascent transcripts generated by a PolII-related DNA-dependent RNA polymerase, known as PolIVb/PolV, have recently been implicated in RNA-directed DNA methylation (RdDM), the prominent RNAi-mediated chromatin pathway in plants. In this review we discuss recent work on the plant-specific PolII variant enzymes and discuss the mechanistic convergences that have been observed in the role of these enzymes in their respective siRNA-mediated heterochromatin formation pathways.

  9. Allele-specific gene expression in a wild nonhuman primate population

    PubMed Central

    Tung, J.; Akinyi, M. Y.; Mutura, S.; Altmann, J.; Wray, G. A.; Alberts, S. C.

    2015-01-01

    Natural populations hold enormous potential for evolutionary genetic studies, especially when phenotypic, genetic and environmental data are all available on the same individuals. However, untangling the genotype-phenotype relationship in natural populations remains a major challenge. Here, we describe results of an investigation of one class of phenotype, allele-specific gene expression (ASGE), in the well-studied natural population of baboons of the Amboseli basin, Kenya. ASGE measurements identify cases in which one allele of a gene is overexpressed relative to the alternative allele of the same gene, within individuals, thus providing a control for background genetic and environmental effects. Here, we characterize the incidence of ASGE in the Amboseli baboon population, focusing on the genetic and environmental contributions to ASGE in a set of eleven genes involved in immunity and defence. Within this set, we identify evidence for common ASGE in four genes. We also present examples of two relationships between cis-regulatory genetic variants and the ASGE phenotype. Finally, we identify one case in which this relationship is influenced by a novel gene-environment interaction. Specifically, the dominance rank of an individual’s mother during its early life (an aspect of that individual’s social environment) influences the expression of the gene CCL5 via an interaction with cis-regulatory genetic variation. These results illustrate how environmental and ecological data can be integrated into evolutionary genetic studies of functional variation in natural populations. They also highlight the potential importance of early life environmental variation in shaping the genetic architecture of complex traits in wild mammals. PMID:21226779

  10. Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations.

    PubMed

    Jeselsohn, Rinath; Bergholz, Johann S; Pun, Matthew; Cornwell, MacIntosh; Liu, Weihan; Nardone, Agostina; Xiao, Tengfei; Li, Wei; Qiu, Xintao; Buchwalter, Gilles; Feiglin, Ariel; Abell-Hart, Kayley; Fei, Teng; Rao, Prakash; Long, Henry; Kwiatkowski, Nicholas; Zhang, Tinghu; Gray, Nathanael; Melchers, Diane; Houtman, Rene; Liu, X Shirley; Cohen, Ofir; Wagle, Nikhil; Winer, Eric P; Zhao, Jean; Brown, Myles

    2018-02-12

    Estrogen receptor α (ER) ligand-binding domain (LBD) mutations are found in a substantial number of endocrine treatment-resistant metastatic ER-positive (ER + ) breast cancers. We investigated the chromatin recruitment, transcriptional network, and genetic vulnerabilities in breast cancer models harboring the clinically relevant ER mutations. These mutants exhibit both ligand-independent functions that mimic estradiol-bound wild-type ER as well as allele-specific neomorphic properties that promote a pro-metastatic phenotype. Analysis of the genome-wide ER binding sites identified mutant ER unique recruitment mediating the allele-specific transcriptional program. Genetic screens identified genes that are essential for the ligand-independent growth driven by the mutants. These studies provide insights into the mechanism of endocrine therapy resistance engendered by ER mutations and potential therapeutic targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Genotyping of HLA-I and HLA-II alleles in Chinese patients with paraneoplastic pemphigus.

    PubMed

    Liu, Q; Bu, D-F; Li, D; Zhu, X-J

    2008-03-01

    Class I and class II HLA genes are thought to play a role in the immunopathogenesis of bullous dermatoses such as pemphigus vulgaris and pemphigus foliaceus, but we know little about the genetic background of paraneoplastic pemphigus (PNP) in Chinese patients. To identify class I and class II HLA alleles by genotyping in Chinese patients with PNP, and to find out the possible association between HLA alleles and disease susceptibility. Nineteen Chinese patients with PNP were enrolled in this study. HLA-A, B, C, DRB1 and DQB1 alleles were typed by polymerase chain reaction and a colour-coded sequence-specific oligonucleotide probes method. The frequencies of HLA-B*4002/B*4004, B*51, B*52, Cw*14, DQB1*0301, DRB1*08 and DRB1*11 were relatively prevalent in Chinese Han patients with PNP in comparison with normal controls. After correction for multiple comparisons, Cw*14 remained statistically significant, and the other alleles were unremarkable in these patients. The genetic background predisposing to PNP may be different in patients from various races and areas. HLA-Cw*14 may be the predisposing allele to PNP in Chinese patients, which is different from the predisposing allele in French patients with PNP and the alleles predisposing to pemphigus vulgaris and pemphigus foliaceus.

  12. Allele-Specific PCR for Determination of IL28B Genotype

    PubMed Central

    Cook, Linda; Diem, Kurt; Kim, Woo; Scott, John D.

    2012-01-01

    The IL28B genotype is a critical determinant of interferon response in patients infected with hepatitis C virus genotype 1. We describe an allele-specific PCR assay for the IL28B genotype. The assay is simple and robust, uses commonly available real-time PCR instrumentation, and is well suited for clinical laboratories offering IL28B genotyping. PMID:23052312

  13. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi.

    PubMed

    Kaulich, Manuel; Lee, Yeon J; Lönn, Peter; Springer, Aaron D; Meade, Bryan R; Dowdy, Steven F

    2015-04-20

    Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Comparative anatomy of chromosomal domains with imprinted and non-imprinted allele-specific DNA methylation.

    PubMed

    Paliwal, Anupam; Temkin, Alexis M; Kerkel, Kristi; Yale, Alexander; Yotova, Iveta; Drost, Natalia; Lax, Simon; Nhan-Chang, Chia-Ling; Powell, Charles; Borczuk, Alain; Aviv, Abraham; Wapner, Ronald; Chen, Xiaowei; Nagy, Peter L; Schork, Nicholas; Do, Catherine; Torkamani, Ali; Tycko, Benjamin

    2013-08-01

    Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM.

  15. Comparative Anatomy of Chromosomal Domains with Imprinted and Non-Imprinted Allele-Specific DNA Methylation

    PubMed Central

    Kerkel, Kristi; Yale, Alexander; Yotova, Iveta; Drost, Natalia; Lax, Simon; Nhan-Chang, Chia-Ling; Powell, Charles; Borczuk, Alain; Aviv, Abraham; Wapner, Ronald; Chen, Xiaowei; Nagy, Peter L.; Schork, Nicholas; Do, Catherine; Torkamani, Ali; Tycko, Benjamin

    2013-01-01

    Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM. PMID:24009515

  16. Nascent Transcription Affected by RNA Polymerase IV in Zea mays

    PubMed Central

    Erhard, Karl F.; Talbot, Joy-El R. B.; Deans, Natalie C.; McClish, Allison E.; Hollick, Jay B.

    2015-01-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3ʹ-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance. PMID:25653306

  17. Detection of MPL mutations by a novel allele-specific PCR-based strategy.

    PubMed

    Furtado, Larissa V; Weigelin, Helmut C; Elenitoba-Johnson, Kojo S J; Betz, Bryan L

    2013-11-01

    MPL mutation testing is recommended in patients with suspected primary myelofibrosis or essential thrombocythemia who lack the JAK2 V617F mutation. MPL mutations can occur at allelic levels below 15%, which may escape detection by commonly used mutation screening methods such as Sanger sequencing. We developed a novel multiplexed allele-specific PCR assay capable of detecting most recurrent MPL exon 10 mutations associated with primary myelofibrosis and essential thrombocythemia (W515L, W515K, W515A, and S505N) down to a sensitivity of 2.5% mutant allele. Test results were reviewed from 15 reference cases and 1380 consecutive specimens referred to our laboratory for testing. Assay performance was compared to Sanger sequencing across a series of 58 specimens with MPL mutations. Positive cases consisted of 45 with W515L, 6 with S505N, 5 with W515K, 1 with W515A, and 1 with both W515L and S505N. Seven cases had mutations below 5% that were undetected by Sanger sequencing. Ten additional cases had mutation levels between 5% and 15% that were not consistently detected by sequencing. All results were easily interpreted in the allele-specific test. This assay offers a sensitive and reliable solution for MPL mutation testing. Sanger sequencing appears insufficiently sensitive for robust MPL mutation detection. Our data also suggest the relative frequency of S505N mutations may be underestimated, highlighting the necessity for inclusion of this mutation in MPL test platforms. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  18. Molecular diversity of HLA-Cw alleles in the Maratha community of Mumbai, Maharashtra, western India.

    PubMed

    Shankarkumar, U; Ghosh, K; Mohanty, D

    2005-08-01

    Recent advances suggest a significant role for the HLA-C locus as a target of alloreactions after bone marrow transplantation. The biological importance of products of the HLA-C locus, both as transplant antigens and as ligands for natural killer (NK) cells, is well established. A total of 10 different serologically defined HLA-Cw antigen specificities (Cw1-Cw10) are encoded by the C locus; however, there are now 151 different alleles that can be identified by molecular methods. Serological definition of Cw alleles therefore includes 20-50% blanks, which cannot be detected by the available antisera. We used the molecular method of polymerase chain reaction (PCR)-based sequence-specific amplification and probe hybridization to define Cw alleles in 91 individuals from the Maratha community, and compared the data with data for 92 serologically typed Maratha individuals from India. We identified Cw*12, Cw*14, Cw*15, Cw*16 and Cw*18, along with the serologically identified Cw*01, Cw*02, Cw*03, Cw*04, Cw*06 and Cw*07 alleles. The HLA-Cw blank allele frequency in the Maratha was reduced from 0.5706 to 0.00. Furthermore, by using a molecular technique, it was possible to identify novel allele subtypes, such as Cw*0104, Cw*0203 and Cw*0707, and a high frequency of Cw* 1801 in the Maratha community compared with other Indian and world populations. Our results will have clinical implications in related and unrelated HLA-matched bone marrow transplantation in India.

  19. T7 RNA polymerase non-specifically transcribes and induces disassembly of DNA nanostructures.

    PubMed

    Schaffter, Samuel W; Green, Leopold N; Schneider, Joanna; Subramanian, Hari K K; Schulman, Rebecca; Franco, Elisa

    2018-06-01

    The use of proteins that bind and catalyze reactions with DNA alongside DNA nanostructures has broadened the functionality of DNA devices. DNA binding proteins have been used to specifically pattern and tune structural properties of DNA nanostructures and polymerases have been employed to directly and indirectly drive structural changes in DNA structures and devices. Despite these advances, undesired and poorly understood interactions between DNA nanostructures and proteins that bind DNA continue to negatively affect the performance and stability of DNA devices used in conjunction with enzymes. A better understanding of these undesired interactions will enable the construction of robust DNA nanostructure-enzyme hybrid systems. Here, we investigate the undesired disassembly of DNA nanotubes in the presence of viral RNA polymerases (RNAPs) under conditions used for in vitro transcription. We show that nanotubes and individual nanotube monomers (tiles) are non-specifically transcribed by T7 RNAP, and that RNA transcripts produced during non-specific transcription disassemble the nanotubes. Disassembly requires a single-stranded overhang on the nanotube tiles where transcripts can bind and initiate disassembly through strand displacement, suggesting that single-stranded domains on other DNA nanostructures could cause unexpected interactions in the presence of viral RNA polymerases.

  20. Allele-Specific Alternative mRNA processing (ASARP) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    A software pipeline for prediction of allele-specific alternative RNA processing events using single RNA-seq data. The current version focuses on prediction of alternative splicing and alternative polyadenylation modulated by genetic variants.

  1. Allele-specific control of replication timing and genome organization during development.

    PubMed

    Rivera-Mulia, Juan Carlos; Dimond, Andrew; Vera, Daniel; Trevilla-Garcia, Claudia; Sasaki, Takayo; Zimmerman, Jared; Dupont, Catherine; Gribnau, Joost; Fraser, Peter; Gilbert, David M

    2018-05-07

    DNA replication occurs in a defined temporal order known as the replication-timing (RT) program. RT is regulated during development in discrete chromosomal units, coordinated with transcriptional activity and 3D genome organization. Here, we derived distinct cell types from F1 hybrid musculus X castaneus mouse crosses and exploited the high single nucleotide polymorphism (SNP) density to characterize allelic differences in RT (Repli-seq), genome organization (Hi-C and promoter-capture Hi-C), gene expression (total nuclear RNA-seq) and chromatin accessibility (ATAC-seq). We also present HARP: a new computational tool for sorting SNPs in phased genomes to efficiently measure allele-specific genome-wide data. Analysis of six different hybrid mESC clones with different genomes (C57BL/6, 129/sv and CAST/Ei), parental configurations and gender revealed significant RT asynchrony between alleles across ~12% of the autosomal genome linked to sub-species genomes but not to parental origin, growth conditions or gender. RT asynchrony in mESCs strongly correlated with changes in Hi-C compartments between alleles but not SNP density, gene expression, imprinting or chromatin accessibility. We then tracked mESC RT asynchronous regions during development by analyzing differentiated cell types including extraembryonic endoderm stem (XEN) cells, 4 male and female primary mouse embryonic fibroblasts (MEFs) and neural precursor cells (NPCs) differentiated in vitro from mESCs with opposite parental configurations. We found that RT asynchrony and allelic discordance in Hi-C compartments seen in mESCs was largely lost in all differentiated cell types, coordinated with a more uniform Hi-C compartment arrangement, suggesting that genome organization of homologues converges to similar folding patterns during cell fate commitment. Published by Cold Spring Harbor Laboratory Press.

  2. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression

    PubMed Central

    Parks, Matthew M.; Kurylo, Chad M.; Dass, Randall A.; Bojmar, Linda; Lyden, David; Vincent, C. Theresa; Blanchard, Scott C.

    2018-01-01

    The ribosome, the integration point for protein synthesis in the cell, is conventionally considered a homogeneous molecular assembly that only passively contributes to gene expression. Yet, epigenetic features of the ribosomal DNA (rDNA) operon and changes in the ribosome’s molecular composition have been associated with disease phenotypes, suggesting that the ribosome itself may possess inherent regulatory capacity. Analyzing whole-genome sequencing data from the 1000 Genomes Project and the Mouse Genomes Project, we find that rDNA copy number varies widely across individuals, and we identify pervasive intra- and interindividual nucleotide variation in the 5S, 5.8S, 18S, and 28S ribosomal RNA (rRNA) genes of both human and mouse. Conserved rRNA sequence heterogeneities map to functional centers of the assembled ribosome, variant rRNA alleles exhibit tissue-specific expression, and ribosomes bearing variant rRNA alleles are present in the actively translating ribosome pool. These findings provide a critical framework for exploring the possibility that the expression of genomically encoded variant rRNA alleles gives rise to physically and functionally heterogeneous ribosomes that contribute to mammalian physiology and human disease. PMID:29503865

  3. Increased prevalence of mutant null alleles that cause hereditary fructose intolerance in the American population.

    PubMed

    Coffee, Erin M; Yerkes, Laura; Ewen, Elizabeth P; Zee, Tiffany; Tolan, Dean R

    2010-02-01

    Mutations in the aldolase B gene (ALDOB) impairing enzyme activity toward fructose-1-phosphate cleavage cause hereditary fructose intolerance (HFI). Diagnosis of the disease is possible by identifying known mutant ALDOB alleles in suspected patients; however, the frequencies of mutant alleles can differ by population. Here, 153 American HFI patients with 268 independent alleles were analyzed to identify the prevalence of seven known HFI-causing alleles (A149P, A174D, N334K, Delta4E4, R59Op, A337V, and L256P) in this population. Allele-specific oligonucleotide hybridization analysis was performed on polymerase chain reaction (PCR)-amplified genomic DNA from these patients. In the American population, the missense mutations A149P and A174D are the two most common alleles, with frequencies of 44% and 9%, respectively. In addition, the nonsense mutations Delta4E4 and R59Op are the next most common alleles, with each having a frequency of 4%. Together, the frequencies of all seven alleles make up 65% of HFI-causing alleles in this population. Worldwide, these same alleles make up 82% of HFI-causing mutations. This difference indicates that screening for common HFI alleles is more difficult in the American population. Nevertheless, a genetic screen for diagnosing HFI in America can be improved by including all seven alleles studied here. Lastly, identification of HFI patients presenting with classic symptoms and who have homozygous null genotypes indicates that aldolase B is not required for proper development or metabolic maintenance.

  4. Using the Polymerase Chain Reaction in an Undergraduate Laboratory to Produce "DNA Fingerprints."

    ERIC Educational Resources Information Center

    Phelps, Tara L.; And Others

    1996-01-01

    Presents a laboratory exercise that demonstrates the sensitivity of the Polymerase Chain Reaction as well as its potential application to forensic analysis during a criminal investigation. Can also be used to introduce, review, and integrate population and molecular genetics topics such as genotypes, multiple alleles, allelic and genotypic…

  5. Association of primary biliary cirrhosis with the allele HLA-DPB1*0301 in a German population.

    PubMed

    Mella, J G; Roschmann, E; Maier, K P; Volk, B A

    1995-02-01

    The major histocompatibility complex class II alleles at the HLA-DPB1 locus were investigated in 32 German Caucasoid patients with primary biliary cirrhosis (PBC) and compared with those from 47 normal control patients using molecular genotyping techniques. The second exon of the HLA-DPB1 gene was amplified by polymerase chain reaction (PCR) and hybridized with 25 sequence-specific oligonucleotides (SSOs) to assign the HLA-DPB1 alleles on the basis of known sequence variations, according to the protocols of the Eleventh International Histocompatibility Workshop. A strong association of PBC was found with the allele HLA-DPB1*0301. The allele HLA DPB1*0301 was present in 50% (16 of 32) of the patients with PBC compared with 13% (6 of 47) of normal controls (P corrected < .015), whereas the other HLA-DPB1 alleles showed no significant differences in both groups. The relative risk (RR) estimate for the allele HLA-DPB1*0301 was 6.8 (95% confidence limits: 2.27 to 20.57). In summary, this study clearly demonstrates an association of PBC with the HLA-DPB1*0301 allele in German Caucasoids and may add new data to the immunogenetic background of PBC, suggesting a contribution of the HLA-DPB1 gene to the genetic susceptibility of the disease.

  6. The amino terminal extension of mammalian mitochondrial RNA polymerase ensures promoter specific transcription initiation

    PubMed Central

    Posse, Viktor; Hoberg, Emily; Dierckx, Anke; Shahzad, Saba; Koolmeister, Camilla; Larsson, Nils-Göran; Wilhelmsson, L. Marcus; Hällberg, B. Martin; Gustafsson, Claes M.

    2014-01-01

    Mammalian mitochondrial transcription is executed by a single subunit mitochondrial RNA polymerase (Polrmt) and its two accessory factors, mitochondrial transcription factors A and B2 (Tfam and Tfb2m). Polrmt is structurally related to single-subunit phage RNA polymerases, but it also contains a unique N-terminal extension (NTE) of unknown function. We here demonstrate that the NTE functions together with Tfam to ensure promoter-specific transcription. When the NTE is deleted, Polrmt can initiate transcription in the absence of Tfam, both from promoters and non-specific DNA sequences. Additionally, when in presence of Tfam and a mitochondrial promoter, the NTE-deleted mutant has an even higher transcription activity than wild-type polymerase, indicating that the NTE functions as an inhibitory domain. Our studies lead to a model according to which Tfam specifically recruits wild-type Polrmt to promoter sequences, relieving the inhibitory effect of the NTE, as a first step in transcription initiation. In the second step, Tfb2m is recruited into the complex and transcription is initiated. PMID:24445803

  7. T7 RNA polymerase non-specifically transcribes and induces disassembly of DNA nanostructures

    PubMed Central

    Schaffter, Samuel W; Green, Leopold N; Schneider, Joanna; Subramanian, Hari K K; Schulman, Rebecca

    2018-01-01

    Abstract The use of proteins that bind and catalyze reactions with DNA alongside DNA nanostructures has broadened the functionality of DNA devices. DNA binding proteins have been used to specifically pattern and tune structural properties of DNA nanostructures and polymerases have been employed to directly and indirectly drive structural changes in DNA structures and devices. Despite these advances, undesired and poorly understood interactions between DNA nanostructures and proteins that bind DNA continue to negatively affect the performance and stability of DNA devices used in conjunction with enzymes. A better understanding of these undesired interactions will enable the construction of robust DNA nanostructure-enzyme hybrid systems. Here, we investigate the undesired disassembly of DNA nanotubes in the presence of viral RNA polymerases (RNAPs) under conditions used for in vitro transcription. We show that nanotubes and individual nanotube monomers (tiles) are non-specifically transcribed by T7 RNAP, and that RNA transcripts produced during non-specific transcription disassemble the nanotubes. Disassembly requires a single-stranded overhang on the nanotube tiles where transcripts can bind and initiate disassembly through strand displacement, suggesting that single-stranded domains on other DNA nanostructures could cause unexpected interactions in the presence of viral RNA polymerases. PMID:29718412

  8. Huntingtin Haplotypes Provide Prioritized Target Panels for Allele-specific Silencing in Huntington Disease Patients of European Ancestry

    PubMed Central

    Kay, Chris; Collins, Jennifer A; Skotte, Niels H; Southwell, Amber L; Warby, Simon C; Caron, Nicholas S; Doty, Crystal N; Nguyen, Betty; Griguoli, Annamaria; Ross, Colin J; Squitieri, Ferdinando; Hayden, Michael R

    2015-01-01

    Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in the Huntingtin gene (HTT). Heterozygous polymorphisms in cis with the mutation allow for allele-specific suppression of the pathogenic HTT transcript as a therapeutic strategy. To prioritize target selection, precise heterozygosity estimates are needed across diverse HD patient populations. Here we present the first comprehensive investigation of all common target alleles across the HTT gene, using 738 reference haplotypes from the 1000 Genomes Project and 2364 haplotypes from HD patients and relatives in Canada, Sweden, France, and Italy. The most common HD haplotypes (A1, A2, and A3a) define mutually exclusive sets of polymorphisms for allele-specific therapy in the greatest number of patients. Across all four populations, a maximum of 80% are treatable using these three target haplotypes. We identify a novel deletion found exclusively on the A1 haplotype, enabling potent and selective silencing of mutant HTT in approximately 40% of the patients. Antisense oligonucleotides complementary to the deletion reduce mutant A1 HTT mRNA by 78% in patient cells while sparing wild-type HTT expression. By suppressing specific haplotypes on which expanded CAG occurs, we demonstrate a rational approach to the development of allele-specific therapy for a monogenic disorder. PMID:26201449

  9. A Maximum-Likelihood Method to Correct for Allelic Dropout in Microsatellite Data with No Replicate Genotypes

    PubMed Central

    Wang, Chaolong; Schroeder, Kari B.; Rosenberg, Noah A.

    2012-01-01

    Allelic dropout is a commonly observed source of missing data in microsatellite genotypes, in which one or both allelic copies at a locus fail to be amplified by the polymerase chain reaction. Especially for samples with poor DNA quality, this problem causes a downward bias in estimates of observed heterozygosity and an upward bias in estimates of inbreeding, owing to mistaken classifications of heterozygotes as homozygotes when one of the two copies drops out. One general approach for avoiding allelic dropout involves repeated genotyping of homozygous loci to minimize the effects of experimental error. Existing computational alternatives often require replicate genotyping as well. These approaches, however, are costly and are suitable only when enough DNA is available for repeated genotyping. In this study, we propose a maximum-likelihood approach together with an expectation-maximization algorithm to jointly estimate allelic dropout rates and allele frequencies when only one set of nonreplicated genotypes is available. Our method considers estimates of allelic dropout caused by both sample-specific factors and locus-specific factors, and it allows for deviation from Hardy–Weinberg equilibrium owing to inbreeding. Using the estimated parameters, we correct the bias in the estimation of observed heterozygosity through the use of multiple imputations of alleles in cases where dropout might have occurred. With simulated data, we show that our method can (1) effectively reproduce patterns of missing data and heterozygosity observed in real data; (2) correctly estimate model parameters, including sample-specific dropout rates, locus-specific dropout rates, and the inbreeding coefficient; and (3) successfully correct the downward bias in estimating the observed heterozygosity. We find that our method is fairly robust to violations of model assumptions caused by population structure and by genotyping errors from sources other than allelic dropout. Because the data sets

  10. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib

    PubMed Central

    Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145

  11. Association between diabetes type 1 and DQB1 alleles in a case-control study conducted in Montevideo, Uruguay.

    PubMed

    Mimbacas, Adriana; Pérez-Bravo, Francisco; Hidalgo, Pedro C; Javiel, Gerardo; Pisciottano, Carmen; Grignola, Rosario; Jorge, Ana María; Gallino, Juan Pablo; Gasagoite, Jackeline; Cardoso, Horacio

    2003-03-31

    We studied HLA DQB1 allele frequencies and the relative risk (RR) of various genotypes in 72 type 1 diabetic patients and 40 control individuals in Uruguay. This is a tri-racial (Caucasian, Black and Indo-American) mixed population. The products of the polymerase chain reaction amplifications were hybridized with oligonucleotides by allele-specific oligonucleotide reverse or dot blot methods. Significant differences between these two groups were observed only for allele DQB1*0302 (35%, RR = 7.34, P<0.001). The frequency of the alleles carrying a non-aspartic acid residue at position 57 was significantly higher in the diabetic patients (85 vs 53%, P<0.001). In contrast, the frequency of Asp alleles was negatively associated with type 1 diabetes (RR = 0.20, P<0.001). The genotype DQB1*0302/DQB1*0201 (33%, RR = 5.41, P<0.05) was positively associated with this disease. The genotype frequencies associated with type 1 diabetes in our population were significantly different from what is known for Caucasian and Black populations as well as compared with another admixed population, from Chile.

  12. A hypervariable STR polymorphism in the CFI gene: southern origin of East Asian-specific group H alleles.

    PubMed

    Yuasa, Isao; Jin, Feng; Harihara, Shinji; Matsusue, Aya; Fujihara, Junko; Takeshita, Haruo; Akane, Atsushi; Umetsu, Kazuo; Saitou, Naruya; Chattopadhyay, Prasanta K

    2013-09-01

    Previous studies of four populations revealed that a hypervariable short tandem repeat (iSTR) in intron 7 of the human complement factor I (CFI) gene on chromosome 4q was unique, with 17 possible East Asian-specific group H alleles observed at relatively high frequencies. To develop a deeper anthropological and forensic understanding of iSTR, 1161 additional individuals from 11 Asian populations were investigated. Group H alleles of iSTR and c.1217A allele of a SNP in exon 11 of the CFI gene were associated with each other and were almost entirely confined to East Asian populations. Han Chinese in Changsha, southern China, showed the highest frequency for East Asian-specific group H alleles (0.201) among 15 populations. Group H alleles were observed to decrease gradually from south to north in 11 East Asian populations. This expansion of group H alleles provides evidence that southern China and Southeast Asia are a hotspot of Asian diversity and a genetic reservoir of Asians after they entered East Asia. The expected heterozygosity values of iSTR ranged from 0.927 in Thais to 0.874 in Oroqens, higher than those of an STR in the fibrinogen alpha chain (FGA) gene on chromosome 4q. Thus, iSTR is a useful marker for anthropological and forensic genetics. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Molecular genetic mechanisms of allelic specific regulation of murine Comt expression

    PubMed Central

    Segall, Samantha K.; Shabalina, Svetlana A.; Meloto, Carolina B.; Wen, Xia; Cunningham, Danielle; Tarantino, Lisa M.; Wiltshire, Tim; Gauthier, Josée; Tohyama, Sarasa; Martin, Loren J.; Mogil, Jeffrey S.; Diatchenko, Luda

    2015-01-01

    Abstract A functional allele of the mouse catechol-O-methyltransferase (Comt) gene is defined by the insertion of a B2 short interspersed repeat element in its 3′-untranslated region (UTR). This allele has been associated with a number of phenotypes, such as pain and anxiety. In comparison with mice carrying the ancestral allele (Comt+), ComtB2i mice show higher Comt mRNA and enzymatic activity levels. Here, we investigated the molecular genetic mechanisms underlying this allelic specific regulation of Comt expression. Insertion of the B2 element introduces an early polyadenylation signal generating a shorter Comt transcript, in addition to the longer ancestral mRNA. Comparative analysis and in silico prediction of Comt mRNA potential targets within the transcript 3′ to the B2 element was performed and allowed choosing microRNA (miRNA) candidates for experimental screening: mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667. Cell transfection with each miRNA downregulated the expression of the ancestral transcript and COMT enzymatic activity. Our in vivo experiments showed that mmu-miR-667-3p is strongly correlated with decreasing amounts of Comt mRNA in the brain, and lentiviral injections of mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667 increase hypersensitivity in the mouse formalin model, consistent with reduced COMT activity. In summary, our data demonstrate that the Comt+ transcript contains regulatory miRNA signals in its 3′-untranslated region leading to mRNA degradation; these signals, however, are absent in the shorter transcript, resulting in higher mRNA expression and activity levels. PMID:26067582

  14. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data.

    PubMed

    Favero, F; Joshi, T; Marquard, A M; Birkbak, N J; Krzystanek, M; Li, Q; Szallasi, Z; Eklund, A C

    2015-01-01

    Exome or whole-genome deep sequencing of tumor DNA along with paired normal DNA can potentially provide a detailed picture of the somatic mutations that characterize the tumor. However, analysis of such sequence data can be complicated by the presence of normal cells in the tumor specimen, by intratumor heterogeneity, and by the sheer size of the raw data. In particular, determination of copy number variations from exome sequencing data alone has proven difficult; thus, single nucleotide polymorphism (SNP) arrays have often been used for this task. Recently, algorithms to estimate absolute, but not allele-specific, copy number profiles from tumor sequencing data have been described. We developed Sequenza, a software package that uses paired tumor-normal DNA sequencing data to estimate tumor cellularity and ploidy, and to calculate allele-specific copy number profiles and mutation profiles. We applied Sequenza, as well as two previously published algorithms, to exome sequence data from 30 tumors from The Cancer Genome Atlas. We assessed the performance of these algorithms by comparing their results with those generated using matched SNP arrays and processed by the allele-specific copy number analysis of tumors (ASCAT) algorithm. Comparison between Sequenza/exome and SNP/ASCAT revealed strong correlation in cellularity (Pearson's r = 0.90) and ploidy estimates (r = 0.42, or r = 0.94 after manual inspecting alternative solutions). This performance was noticeably superior to previously published algorithms. In addition, in artificial data simulating normal-tumor admixtures, Sequenza detected the correct ploidy in samples with tumor content as low as 30%. The agreement between Sequenza and SNP array-based copy number profiles suggests that exome sequencing alone is sufficient not only for identifying small scale mutations but also for estimating cellularity and inferring DNA copy number aberrations. © The Author 2014. Published by Oxford University Press on behalf of

  15. Deep-sea vent phage DNA polymerase specifically initiates DNA synthesis in the absence of primers.

    PubMed

    Zhu, Bin; Wang, Longfei; Mitsunobu, Hitoshi; Lu, Xueling; Hernandez, Alfredo J; Yoshida-Takashima, Yukari; Nunoura, Takuro; Tabor, Stanley; Richardson, Charles C

    2017-03-21

    A DNA polymerase is encoded by the deep-sea vent phage NrS-1. NrS-1 has a unique genome organization containing genes that are predicted to encode a helicase and a single-stranded DNA (ssDNA)-binding protein. The gene for an unknown protein shares weak homology with the bifunctional primase-polymerases (prim-pols) from archaeal plasmids but is missing the zinc-binding domain typically found in primases. We show that this gene product has efficient DNA polymerase activity and is processive in DNA synthesis in the presence of the NrS-1 helicase and ssDNA-binding protein. Remarkably, this NrS-1 DNA polymerase initiates DNA synthesis from a specific template DNA sequence in the absence of any primer. The de novo DNA polymerase activity resides in the N-terminal domain of the protein, whereas the C-terminal domain enhances DNA binding.

  16. A mass spectrometry-based multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification.

    PubMed

    Park, Jung Hun; Jang, Hyowon; Jung, Yun Kyung; Jung, Ye Lim; Shin, Inkyung; Cho, Dae-Yeon; Park, Hyun Gyu

    2017-05-15

    We herein describe a new mass spectrometry-based method for multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification (SDA) reaction. In this method, allele-specific ligation is first performed to discriminate base sequence variations at the SNP site within the PCR-amplified target DNA. The primary ligation probe is extended by a universal primer annealing site while the secondary ligation probe has base sequences as an overhang with a nicking enzyme recognition site and complementary mass marker sequence. The ligation probe pairs are ligated by DNA ligase only at specific allele in the target DNA and the resulting ligated product serves as a template to promote the SDA reaction using a universal primer. This process isothermally amplifies short DNA fragments, called mass markers, to be analyzed by mass spectrometry. By varying the sizes of the mass markers, we successfully demonstrated the multiplex SNP genotyping capability of this method by reliably identifying several BRCA mutations in a multiplex manner with mass spectrometry. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Both XPD alleles contribute to the phenotype of compound heterozygote xeroderma pigmentosum patients

    PubMed Central

    Ueda, Takahiro; Compe, Emmanuel; Catez, Philippe; Kraemer, Kenneth H.

    2009-01-01

    Mutations in the XPD subunit of the DNA repair/transcription factor TFIIH result in the rare recessive genetic disorder xeroderma pigmentosum (XP). Many XP patients are compound heterozygotes with a “causative” XPD point mutation R683W and different second mutant alleles, considered “null alleles.” However, there is marked clinical heterogeneity (including presence or absence of skin cancers or neurological degeneration) in these XPD/R683W patients, thus suggesting a contribution of the second allele. Here, we report XP patients carrying XPD/R683W and a second XPD allele either XPD/Q452X, /I455del, or /199insPP. We performed a systematic study of the effect of these XPD mutations on several enzymatic functions of TFIIH and found that each mutation exhibited unique biochemical properties. Although all the mutations inhibited the nucleotide excision repair (NER) by disturbing the XPD helicase function, each of them disrupted specific molecular steps during transcription: XPD/Q452X hindered the transactivation process, XPD/I455del disturbed RNA polymerase II phosphorylation, and XPD/199insPP inhibited kinase activity of the cdk7 subunit of TFIIH. The broad range and severity of clinical features in XP patients arise from a broad set of deficiencies in NER and transcription that result from the combination of mutations found on both XPD alleles. PMID:19934020

  18. Tapping natural variation at functional level reveals allele specific molecular characteristics of potato invertase Pain-1.

    PubMed

    Draffehn, Astrid M; Durek, Pawel; Nunes-Nesi, Adriano; Stich, Benjamin; Fernie, Alisdair R; Gebhardt, Christiane

    2012-12-01

    Biochemical, molecular and genetic studies emphasize the role of the potato vacuolar invertase Pain-1 in the accumulation of reducing sugars in potato tubers upon cold storage, and thereby its influence on the quality of potato chips and French fries. Previous studies showed that natural Pain-1 cDNA alleles were associated with better chip quality and higher tuber starch content. In this study, we focused on the functional characterization of these alleles. A genotype-dependent transient increase of total Pain-1 transcript levels in cold-stored tubers of six different genotypes as well as allele-specific expression patterns were detected. 3D modelling revealed putative structural differences between allelic Pain-1 proteins at the molecule's surface and at the substrate binding site. Furthermore, the yeast SUC2 mutant was complemented with Pain-1 cDNA alleles and enzymatic parameters of the heterologous expressed proteins were measured at 30 and 4 °C. Significant differences between the alleles were detected. The observed functional differences between Pain-1 alleles did not permit final conclusions on the mechanism of their association with tuber quality traits. Our results show that natural allelic variation at the functional level is present in potato, and that the heterozygous genetic background influences the manifestation of this variation. © 2012 Blackwell Publishing Ltd.

  19. Allele-specific siRNA knockdown as a personalized treatment strategy for vascular Ehlers-Danlos syndrome in human fibroblasts.

    PubMed

    Müller, Gerd A; Hansen, Uwe; Xu, Zhi; Griswold, Benjamin; Talan, Mark I; McDonnell, Nazli B; Briest, Wilfried

    2012-02-01

    The vascular type of the Ehlers-Danlos syndrome (vEDS) is caused by dominant-negative mutations in the procollagen type III (COL3A1) gene. Patients with this autosomal dominant disorder have a shortened life expectancy due to complications from ruptured vessels or hollow organs. We tested the effectiveness of allele-specific RNA interference (RNAi) to reduce the mutated phenotype in fibroblasts. Small-interfering RNAs (siRNAs) discriminating between wild-type and mutant COL3A1 allele were identified by a luciferase reporter gene assay and in primary fibroblasts from a normal donor and a patient with vEDS. The best discriminative siRNA with the mutation at position 10 resulted in >90% silencing of the mutant allele without affecting the wild-type allele. Transmission and immunogold electron microscopy of extracted extracellular matrices from untreated fibroblasts of the patient with vEDS revealed structurally abnormal fibrils. After siRNA treatment, collagen fibrils became similar to fibrils from fibroblasts of normal and COL3A1 haploinsufficient donors. In addition, it was shown that expression of mutated COL3A1 activates the unfolded protein response and that reduction of the amount of mutated protein by siRNA reduces cellular stress. Taken together, the results provide evidence that allele-specific siRNAs are able to reduce negative effects of mutated COL3A1 proteins. Thus, the application of allele-specific RNAi may be a promising direction for future personalized therapies to reduce the severity of vEDS.

  20. Identification of fragile X pre-mutation carriers in the Chinese obstetric population using a robust FMR1 polymerase chain reaction assay: implications for screening and prenatal diagnosis.

    PubMed

    Cheng, Y Ky; Lin, C Sw; Kwok, Y Ky; Chan, Y M; Lau, T K; Leung, T Y; Choy, K W

    2017-04-01

    There is significant morbidity associated with fragile X syndrome. Unfortunately, most maternal carriers are clinically silent during their reproductive years. Because of this, many experts have put forward the notion of preconception or prenatal fragile X carrier screening for females. This study aimed to determine the prevalence of fragile X syndrome pre-mutation and asymptomatic full-mutation carriers in a Chinese pregnant population, and the distribution of cytosine-guanine-guanine (CGG) repeat numbers using a robust fragile X mental retardation 1 (FMR1) polymerase chain reaction assay. This was a cross-sectional survey in prospectively recruited pregnant women from a university hospital in Hong Kong. Chinese pregnant women without a family history of fragile X syndrome were recruited between April 2013 and May 2015. A specific FMR1 polymerase chain reaction assay was performed on peripheral blood to determine the CGG repeat number of the FMR1 gene. Prenatal counselling was offered to full-mutation and pre-mutation carriers. In 2650 Chinese pregnant women, two individuals with pre-mutation alleles (0.08%, one in 1325) and one asymptomatic woman with full-mutation (0.04%, one in 2650) alleles were identified. The overall prevalence of pre-mutation and full-mutation alleles was 0.11% (1 in 883). Furthermore, 30 (1.1%) individuals with intermediate alleles were detected. In the 2617 women with normal CGG repeats, the most common CGG repeat allele was 30. The overall prevalence of pre-mutation and asymptomatic full-mutation carriers in the Chinese pregnant population was one in 883, detected by a new FMR1 polymerase chain reaction assay.

  1. Rapid ABO genotyping by high-speed droplet allele-specific PCR using crude samples.

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Takeichi, Naoya; Furukawa, Satomi; Sugano, Mitsutoshi; Uehara, Takeshi; Okumura, Nobuo; Honda, Takayuki

    2018-01-01

    ABO genotyping has common tools for personal identification of forensic and transplantation field. We developed a new method based on a droplet allele-specific PCR (droplet-AS-PCR) that enabled rapid PCR amplification. We attempted rapid ABO genotyping using crude DNA isolated from dried blood and buccal cells. We designed allele-specific primers for three SNPs (at nucleotides 261, 526, and 803) in exons 6 and 7 of the ABO gene. We pretreated dried blood and buccal cells with proteinase K, and obtained crude DNAs without DNA purification. Droplet-AS-PCR allowed specific amplification of the SNPs at the three loci using crude DNA, with results similar to those for DNA extracted from fresh peripheral blood. The sensitivity of the methods was 5%-10%. The genotyping of extracted DNA and crude DNA were completed within 8 and 9 minutes, respectively. The genotypes determined by the droplet-AS-PCR method were always consistent with those obtained by direct sequencing. The droplet-AS-PCR method enabled rapid and specific amplification of three SNPs of the ABO gene from crude DNA treated with proteinase K. ABO genotyping by the droplet-AS-PCR has the potential to be applied to various fields including a forensic medicine and transplantation medical care. © 2017 Wiley Periodicals, Inc.

  2. Development of a multiplex allele-specific primer PCR assay for simultaneous detection of QoI and CAA fungicide resistance alleles in Plasmopara viticola populations.

    PubMed

    Aoki, Yoshinao; Hada, Yosuke; Suzuki, Shunji

    2013-02-01

    DNA-based diagnosis has become a common tool for the evaluation of fungicide resistance in obligate phytopathogenic fungus Plasmopara viticola. A multiplex allele-specific primer PCR assay has been developed for the rapid detection of fungicide resistance in P. viticola populations. With this assay, a glycine-to-alanine substitution at codon 143 of the P. viticola cytochrome b gene, which conferred QoI fungicide resistance, and a glycine-to-serine substitution at codon 1105 of the P. viticola cellulose synthase gene PvCesA3, which conferred CAA fungicide resistance, were detected simultaneously. It is suggested that the present assay is a reliable tool for the rapid and simultaneous detection of QoI and CAA fungicide resistance alleles in P. viticola populations. The assay required only 2 h from the sampling of symptoms to the detection of resistance alleles to both fungicides. Copyright © 2012 Society of Chemical Industry.

  3. MCM-BP is required for repression of life-cycle specific genes transcribed by RNA polymerase I in the mammalian infectious form of Trypanosoma brucei.

    PubMed

    Kim, Hee-Sook; Park, Sung Hee; Günzl, Arthur; Cross, George A M

    2013-01-01

    Trypanosoma brucei variant surface glycoprotein (VSG) expression is a classic example of allelic exclusion. While the genome of T. brucei contains >2,000 VSG genes and VSG pseudogenes, only one allele is expressed at the surface of each infectious trypanosome and the others are repressed. Along with recombinatorial VSG switching, allelic exclusion provides a major host evasion mechanism for trypanosomes, a phenomenon known as antigenic variation. To extend our understanding of how trypanosomes escape host immunity by differential expression of VSGs, we attempted to identify genes that contribute to VSG silencing, by performing a loss-of-silencing screen in T. brucei using a transposon-mediated random insertional mutagenesis. One identified gene, which we initially named LOS1, encodes a T. brucei MCM-Binding Protein (TbMCM-BP). Here we show that TbMCM-BP is essential for viability of infectious bloodstream-form (BF) trypanosome and is required for proper cell-cycle progression. Tandem affinity purification of TbMCM-BP followed by mass spectrometry identified four subunits (MCM4-MCM7) of the T. brucei MCM complex, a replicative helicase, and MCM8, a subunit that is uniquely co-purified with TbMCM-BP. TbMCM-BP is required not only for repression of subtelomeric VSGs but also for silencing of life-cycle specific, insect-stage genes, procyclin and procyclin-associated genes (PAGs), that are normally repressed in BF trypanosomes and are transcribed by RNA polymerase I. Our study uncovers a functional link between chromosome maintenance and RNA pol I-mediated gene silencing in T. brucei.

  4. MCM-BP Is Required for Repression of Life-Cycle Specific Genes Transcribed by RNA Polymerase I in the Mammalian Infectious Form of Trypanosoma brucei

    PubMed Central

    Kim, Hee-Sook; Park, Sung Hee; Günzl, Arthur; Cross, George A. M.

    2013-01-01

    Trypanosoma brucei variant surface glycoprotein (VSG) expression is a classic example of allelic exclusion. While the genome of T. brucei contains >2,000 VSG genes and VSG pseudogenes, only one allele is expressed at the surface of each infectious trypanosome and the others are repressed. Along with recombinatorial VSG switching, allelic exclusion provides a major host evasion mechanism for trypanosomes, a phenomenon known as antigenic variation. To extend our understanding of how trypanosomes escape host immunity by differential expression of VSGs, we attempted to identify genes that contribute to VSG silencing, by performing a loss-of-silencing screen in T. brucei using a transposon-mediated random insertional mutagenesis. One identified gene, which we initially named LOS1, encodes a T. brucei MCM-Binding Protein (TbMCM-BP). Here we show that TbMCM-BP is essential for viability of infectious bloodstream-form (BF) trypanosome and is required for proper cell-cycle progression. Tandem affinity purification of TbMCM-BP followed by mass spectrometry identified four subunits (MCM4-MCM7) of the T. brucei MCM complex, a replicative helicase, and MCM8, a subunit that is uniquely co-purified with TbMCM-BP. TbMCM-BP is required not only for repression of subtelomeric VSGs but also for silencing of life-cycle specific, insect-stage genes, procyclin and procyclin-associated genes (PAGs), that are normally repressed in BF trypanosomes and are transcribed by RNA polymerase I. Our study uncovers a functional link between chromosome maintenance and RNA pol I-mediated gene silencing in T. brucei. PMID:23451133

  5. Allele-specific expression of the MAOA gene and X chromosome inactivation in in vitro produced bovine embryos.

    PubMed

    Ferreira, A R; Machado, G M; Diesel, T O; Carvalho, J O; Rumpf, R; Melo, E O; Dode, M A N; Franco, M M

    2010-07-01

    During embryogenesis, one of the two X chromosomes is inactivated in embryos. The production of embryos in vitro may affect epigenetic mechanisms that could alter the expression of genes related to embryo development and X chromosome inactivation (XCI). The aim of this study was to understand XCI during in vitro, pre-implantation bovine embryo development by characterizing the allele-specific expression pattern of the X chromosome-linked gene, monoamine oxidase A (MAOA). Two pools of ten embryos, comprised of the 4-, 8- to 16-cell, morula, blastocyst, and expanded blastocyst stages, were collected. Total RNA from embryos was isolated, and the RT-PCR-RFLP technique was used to observe expression of the MAOA gene. The DNA amplicons were also sequenced using the dideoxy sequencing method. MAOA mRNA was detected, and allele-specific expression was identified in each pool of embryos. We showed the presence of both the maternal and paternal alleles in the 4-, 8- to 16-cell, blastocyst and expanded blastocyst embryos, but only the maternal allele was present in the morula stage. Therefore, we can affirm that the paternal X chromosome is totally inactivated at the morula stage and reactivated at the blastocyst stage. To our knowledge, this is the first report of allele-specific expression of an X-linked gene that is subject to XCI in in vitro bovine embryos from the 4-cell to expanded blastocyst stages. We have established a pattern of XCI in our in vitro embryo production system that can be useful as a marker to assist the development of new protocols for in vitro embryo production. (c) 2010 Wiley-Liss, Inc.

  6. [Study on correlation between HLA-A, B, DR alleles and Duchenne muscular dystrophy].

    PubMed

    Chen, Wei; Xiao, Lulu; Zhang, Cheng; Wu, Hong-ling

    2007-10-01

    To analyze the polymorphism of HLA-A, B and DR alleles of Duchenne muscular dystrophy (DMD) patients in Han nationality of South China and to discuss the role of immune and genetic factors in the pathogenesis of DMD and muscular fiber necrosis. Polymerase chain reaction-reverse sequence specific oligonucleotide (PCR-RSSO) and National Marrow Donor Program (NMDP) were used to analyze the polymorphism of HLA-A,B and DR alleles of 113 DMD patients and 406 normal controls in Han nationality of South China. The frequencies of HLA-A24, A30 alleles in DMD group were 11.25% and 5.46% respectively, indicating notable difference (P=0.001, < 0.01) from 22.16% and 0.87% of control group; the frequencies of HLA-B13, B15, B61 and B62 alleles in DMD group were 12.26%, 16.92%, 0.44% and 0.44%, indicating a notable difference (P=0.016, < 0.01, 0.001) from 6.76%, 1.49%, 4.79% and 5.05% of control group; the frequencies of HLA-DR04, DR07, DR12 alleles in DMD group were 17.45%, 6.40% and 19.62%, indicating a notable difference (P=0.018, < 0.01, 0.012) from 10.67%, 2.24% and 11.92% of control group. There are significant differences in the HLA gene frequencies between DMD patients and normal controls. These results suggest that HLA genotype relates to the muscular necrosis and the pathogenesis of DMD.

  7. HLA-B40, B18, B27, and B37 allele discrimination using group-specific amplification and SSCP method.

    PubMed

    Bannai, M; Tokunaga, K; Lin, L; Ogawa, A; Fujisawa, K; Juji, T

    1996-04-01

    We developed a system for discriminating HLA-B40, B18, B27, and B37 alleles using a two-step PCR method followed by SSCP analysis. Fragments (0.8 kb) including exon 2, intron 2, and exon 3 were amplified in the first PCR. We used two sets of primers, one specific for HLA-B60-related alleles and the other specific for HLA-B61-related, B18, B27, and B37 alleles. No amplifications of other class I genes or pseudogenes were observed. In the second PCR, exon 2 and exon 3 were amplified separately, using diluents of the first PCR products as templates. HLA-B61-related, B18, B27, B37, and B60-related alleles were clearly discriminated in the SSCP analysis of the second PCR products. In a population study in which B61 alleles were analyzed, B*4003 was detected in two Japanese individuals in addition to two B61 alleles previously reported to occur in Japanese, B*4002 and B*4006. The relative frequencies of B*4002, B*4006, and B*4003 in Japanese were 58, 35, and 6%, respectively. The individuals having B*4003 are the first non-South Americans in whom this allele has been detected. The SSCP banding patterns of 18 HLA-B60-positive Japanese population samples were identical to those of a B*40012 sample for both exon 2 and exon 3. We also demonstrated that the B37 allele occurring in some Japanese is B*3701.

  8. Allelic differences within and among sister spores of the arbuscular mycorrhizal fungus Glomus etunicatum suggest segregation at sporulation.

    PubMed

    Boon, Eva; Zimmerman, Erin; St-Arnaud, Marc; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF are made up of coenocytic networks of hyphae through which nuclei and organelles can freely migrate. In this study, we investigated the possibility of a genetic bottleneck and segregation of allelic variation at sporulation for a low-copy Polymerase1-like gene, PLS. Specifically, our objectives were (1) to estimate what allelic diversity is passed on to a single spore (2) to determine whether this diversity is less than the total amount of variation found in all spores (3) to investigate whether there is any differential segregation of allelic variation. We inoculated three tomato plants with a single spore of Glomus etunicatum each and after six months sampled between two and three daughter spores per tomato plant. Pyrosequencing PLS amplicons in eight spores revealed high levels of allelic diversity; between 43 and 152 alleles per spore. We corroborated the spore pyrosequencing results with Sanger- and pyrosequenced allele distributions from the original parent isolate. Both sequencing methods retrieved the most abundant alleles from the offspring spore allele distributions. Our results indicate that individual spores contain only a subset of the total allelic variation from the pooled spores and parent isolate. Patterns of allele diversity between spores suggest the possibility for segregation of PLS alleles among spores. We conclude that a genetic bottleneck could potentially occur during sporulation in AMF, with resulting differences in genetic variation among sister spores. We suggest that the effects of this bottleneck may be countered by anastomosis (hyphal fusion) between related hyphae.

  9. Methylation-sensitive enrichment of minor DNA alleles using a double-strand DNA-specific nuclease.

    PubMed

    Liu, Yibin; Song, Chen; Ladas, Ioannis; Fitarelli-Kiehl, Mariana; Makrigiorgos, G Mike

    2017-04-07

    Aberrant methylation changes, often present in a minor allelic fraction in clinical samples such as plasma-circulating DNA (cfDNA), are potentially powerful prognostic and predictive biomarkers in human disease including cancer. We report on a novel, highly-multiplexed approach to facilitate analysis of clinically useful methylation changes in minor DNA populations. Methylation Specific Nuclease-assisted Minor-allele Enrichment (MS-NaME) employs a double-strand-specific DNA nuclease (DSN) to remove excess DNA with normal methylation patterns. The technique utilizes oligonucleotide-probes that direct DSN activity to multiple targets in bisulfite-treated DNA, simultaneously. Oligonucleotide probes targeting unmethylated sequences generate local double stranded regions resulting to digestion of unmethylated targets, and leaving methylated targets intact; and vice versa. Subsequent amplification of the targeted regions results in enrichment of the targeted methylated or unmethylated minority-epigenetic-alleles. We validate MS-NaME by demonstrating enrichment of RARb2, ATM, MGMT and GSTP1 promoters in multiplexed MS-NaME reactions (177-plex) using dilutions of methylated/unmethylated DNA and in DNA from clinical lung cancer samples and matched normal tissue. MS-NaME is a highly scalable single-step approach performed at the genomic DNA level in solution that combines with most downstream detection technologies including Sanger sequencing, methylation-sensitive-high-resolution melting (MS-HRM) and methylation-specific-Taqman-based-digital-PCR (digital Methylight) to boost detection of low-level aberrant methylation-changes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Allele-specific DNA methylation and its interplay with repressive histone marks at promoter-mutant TERT genes

    PubMed Central

    Stern, Josh Lewis; Paucek, Richard D.; Huang, Franklin W.; Ghandi, Mahmoud; Nwumeh, Ronald; Costello, James C.; Cech, Thomas R.

    2017-01-01

    SUMMARY A mutation in the promoter of the Telomerase Reverse Transcriptase (TERT) gene is the most frequent noncoding mutation in cancer. The mutation drives unusual monoallelic expression of TERT, allowing immortalization. Here we find that DNA methylation of the TERT CpG Island (CGI) is also allele-specific in multiple cancers. The expressed allele is hypomethylated, which is opposite to cancers without TERT promoter mutations. The continued presence of Polycomb repressive complex 2 (PRC2) on the inactive allele suggests that histone marks of repressed chromatin may be causally linked to high DNA methylation. Consistent with this hypothesis, TERT promoter DNA containing 5-methyl-CpG has much increased affinity for PRC2 in vitro. Thus, CpG methylation and histone marks appear to collaborate to maintain the two TERT alleles in different epigenetic states in TERT promoter-mutant cancers. Finally, in several cancers DNA methylation levels at the TERT CGI correlate with altered patient survival. PMID:29281820

  11. Parallel gene analysis with allele-specific padlock probes and tag microarrays

    PubMed Central

    Banér, Johan; Isaksson, Anders; Waldenström, Erik; Jarvius, Jonas; Landegren, Ulf; Nilsson, Mats

    2003-01-01

    Parallel, highly specific analysis methods are required to take advantage of the extensive information about DNA sequence variation and of expressed sequences. We present a scalable laboratory technique suitable to analyze numerous target sequences in multiplexed assays. Sets of padlock probes were applied to analyze single nucleotide variation directly in total genomic DNA or cDNA for parallel genotyping or gene expression analysis. All reacted probes were then co-amplified and identified by hybridization to a standard tag oligonucleotide array. The technique was illustrated by analyzing normal and pathogenic variation within the Wilson disease-related ATP7B gene, both at the level of DNA and RNA, using allele-specific padlock probes. PMID:12930977

  12. Relative frequencies of DRB1*11 alleles and their DRB3 associations in five major population groups in a United States bone marrow registry.

    PubMed

    Tang, T F; Huang, A Y; Pappas, A; Slack, R; Ng, J; Hartzman, R J; Hurley, C K

    2000-08-01

    One hundred sixty-one individuals from each of five US population groups, Caucasians (CAU), African Americans (AFA), Asians/Pacific Islanders (API), Hispanics (HIS), and Native Americans (NAT), were randomly selected from a volunteer bone marrow registry database consisting of 14,452 HLA-DRB1*11 positive individuals. This sampling provided at least an 80% probability of detecting a rare allele that occurred at 1% in the DRB1*11 positive population. Samples were typed for DRB1*11 alleles by polymerase chain reaction-sequence specific oligonucleotide probe typing (PCR-SSOP). A total of 10 DRB1*11 alleles out of 27 possible alleles were detected. The distribution and diversity of DRB1*11 alleles varied among populations although DRB1*1101 was the predominant DRB1*11 allele in all populations. Caucasians were the least diversified; only four common alleles (DRB1*1101-*1104) were observed. As well as the four common alleles, other groups also carried one or two other less frequent alleles including DRB1*1105 (API), *1106 (API), *1110 (AFA), *1114 (HIS), *1115 (NAT), and *1117 (AFA). A subset (418) of these individuals were also typed for DRB3 alleles. Most (97.6%) showed a strong association of DRB1*11 with DRB3*0202.

  13. Specific inhibitors of mammalian DNA polymerase species.

    PubMed

    Mizushina, Yoshiyuki

    2009-06-01

    In screening of selective inhibitors of eukaryotic DNA polymerases (pols) for 15 years, more than 100 inhibitors have been discovered from natural and chemical sources. Some compounds selectively inhibit the activities of mammalian pols, and in particular, dehydroaltenusin and curcumin derivatives, such as monoacetyl-curcumin, were found to be specific inhibitors of pol alpha and pol lambda, respectively. Dehydroaltenusin was isolated from a fungus (Alternaria tennuis), and this compound inhibited cell proliferation of human cancer cell lines by arresting the cells at the S-phase, and was effective in suppressing the growth on nude mice of solid tumors of human cervical cancer cell line HeLa. Curcumin derivatives had anti-12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammatory activity with the same tendency as pol lambda inhibitory activity. These compounds might be useful not only as "molecular probes" for pol research, but also as biomedical and chemotherapeutic drugs for anti-cancer or anti-inflammation.

  14. Marker-assisted selection for recognizing wheat mutant genotypes carrying HMW glutenin alleles related to baking quality.

    PubMed

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker's results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism).

  15. Evaluation of efficiency of nested multiplex allele-specific PCR assay for detection of multidrug resistant tuberculosis directly from sputum samples.

    PubMed

    Mistri, S K; Sultana, M; Kamal, S M M; Alam, M M; Irin, F; Nessa, J; Ahsan, C R; Yasmin, M

    2016-05-01

    For an effective control of tuberculosis, rapid detection of multidrug resistant tuberculosis (MDR-TB) is necessary. Therefore, we developed a modified nested multiplex allele-specific polymerase chain reaction (MAS-PCR) method that enables rapid MDR-TB detection directly from sputum samples. The efficacy of this method was evaluated using 79 sputum samples collected from suspected tuberculosis patients. The performance of nested MAS-PCR method was compared with other MDR-TB detection methods like drug susceptibility testing (DST) and DNA sequencing. As rifampicin (RIF) resistance conforms to MDR-TB in greater than 90% cases, only the presence of RIF-associated mutations in rpoB gene was determined by DNA sequencing and nested MAS-PCR to detect MDR-TB. The concordance between nested MAS-PCR and DNA sequencing results was found to be 96·3%. When compared with DST, the sensitivity and specificity of nested MAS-PCR for RIF-resistance detection were determined to be 92·9 and 100% respectively. For developing- and high-TB burden countries, molecular-based tests have been recommended by the World Health Organization for rapid detection of MDR-TB. The results of this study indicate that, nested MAS-PCR assay might be a practical and relatively cost effective molecular method for rapid detection of MDR-TB from suspected sputum samples in developing countries with resource poor settings. © 2016 The Society for Applied Microbiology.

  16. Identification and Evolution of Functional Alleles of the Previously Described Pollen Specific Myrosinase Pseudogene AtTGG6 in Arabidopsis thaliana.

    PubMed

    Fu, Lili; Han, Bingying; Tan, Deguan; Wang, Meng; Ding, Mei; Zhang, Jiaming

    2016-02-22

    Myrosinases are β-thioglucoside glucohydrolases and serve as defense mechanisms against insect pests and pathogens by producing toxic compounds. AtTGG6 in Arabidopsis thaliana was previously reported to be a myrosinase pseudogene but specifically expressed in pollen. However, we found that AlTGG6, an ortholog to AtTGG6 in A. lyrata (an outcrossing relative of A. thaliana) was functional, suggesting that functional AtTGG6 alleles may still exist in A. thaliana. AtTGG6 alleles in 29 A. thaliana ecotypes were cloned and sequenced. Results indicate that ten alleles were functional and encoded Myr II type myrosinase of 512 amino acids, and myrosinase activity was confirmed by overexpressing AtTGG6 in Pichia pastoris. However, the 19 other ecotypes had disabled alleles with highly polymorphic frame-shift mutations and diversified sequences. Thirteen frame-shift mutation types were identified, which occurred independently many times in the evolutionary history within a few thousand years. The functional allele was expressed specifically in pollen similar to the disabled alleles but at a higher expression level, suggesting its role in defense of pollen against insect pests such as pollen beetles. However, the defense function may have become less critical after A. thaliana evolved to self-fertilization, and thus resulted in loss of function in most ecotypes.

  17. Allelic Differences within and among Sister Spores of the Arbuscular Mycorrhizal Fungus Glomus etunicatum Suggest Segregation at Sporulation

    PubMed Central

    St-Arnaud, Marc; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF are made up of coenocytic networks of hyphae through which nuclei and organelles can freely migrate. In this study, we investigated the possibility of a genetic bottleneck and segregation of allelic variation at sporulation for a low-copy Polymerase1-like gene, PLS. Specifically, our objectives were (1) to estimate what allelic diversity is passed on to a single spore (2) to determine whether this diversity is less than the total amount of variation found in all spores (3) to investigate whether there is any differential segregation of allelic variation. We inoculated three tomato plants with a single spore of Glomus etunicatum each and after six months sampled between two and three daughter spores per tomato plant. Pyrosequencing PLS amplicons in eight spores revealed high levels of allelic diversity; between 43 and 152 alleles per spore. We corroborated the spore pyrosequencing results with Sanger- and pyrosequenced allele distributions from the original parent isolate. Both sequencing methods retrieved the most abundant alleles from the offspring spore allele distributions. Our results indicate that individual spores contain only a subset of the total allelic variation from the pooled spores and parent isolate. Patterns of allele diversity between spores suggest the possibility for segregation of PLS alleles among spores. We conclude that a genetic bottleneck could potentially occur during sporulation in AMF, with resulting differences in genetic variation among sister spores. We suggest that the effects of this bottleneck may be countered by anastomosis (hyphal fusion) between related hyphae. PMID:24386173

  18. Inhibition of host cell RNA polymerase III-mediated transcription by poliovirus: Inactivation of specific transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fradkin, L.G.; Yoshinaga, S.K.; Berk, A.J.

    1987-11-01

    The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription ofmore » RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoted, however, was not altered by infection of cells with the virus. The authors conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirtus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.« less

  19. Specific Inhibition of Herpes Simplex Virus DNA Polymerase by Helical Peptides Corresponding to the Subunit Interface

    NASA Astrophysics Data System (ADS)

    Digard, Paul; Williams, Kevin P.; Hensley, Preston; Brooks, Ian S.; Dahl, Charles E.; Coen, Donald M.

    1995-02-01

    The herpes simplex virus DNA polymerase consists of two subunits-a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial α-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of α-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase δ and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.

  20. Allele-Specific DNA Methylation and Its Interplay with Repressive Histone Marks at Promoter-Mutant TERT Genes.

    PubMed

    Stern, Josh Lewis; Paucek, Richard D; Huang, Franklin W; Ghandi, Mahmoud; Nwumeh, Ronald; Costello, James C; Cech, Thomas R

    2017-12-26

    A mutation in the promoter of the Telomerase Reverse Transcriptase (TERT) gene is the most frequent noncoding mutation in cancer. The mutation drives unusual monoallelic expression of TERT, allowing immortalization. Here, we find that DNA methylation of the TERT CpG island (CGI) is also allele-specific in multiple cancers. The expressed allele is hypomethylated, which is opposite to cancers without TERT promoter mutations. The continued presence of Polycomb repressive complex 2 (PRC2) on the inactive allele suggests that histone marks of repressed chromatin may be causally linked to high DNA methylation. Consistent with this hypothesis, TERT promoter DNA containing 5-methyl-CpG has much increased affinity for PRC2 in vitro. Thus, CpG methylation and histone marks appear to collaborate to maintain the two TERT alleles in different epigenetic states in TERT promoter mutant cancers. Finally, in several cancers, DNA methylation levels at the TERT CGI correlate with altered patient survival. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Phenotypic and genotypic expression of self-incompatibility haplotypes in Arabidopsis lyrata suggests unique origin of alleles in different dominance classes.

    PubMed

    Prigoda, Nadia L; Nassuth, Annette; Mable, Barbara K

    2005-07-01

    The highly divergent alleles of the SRK gene in outcrossing Arabidopsis lyrata have provided important insights into the evolutionary history of self-incompatibility (SI) alleles and serve as an ideal model for studies of the evolutionary and molecular interactions between alleles in cell-cell recognition systems in general. One tantalizing question is how new specificities arise in systems that require coordination between male and female components. Allelic recruitment via gene conversion has been proposed as one possibility, based on the division of DNA sequences at the SRK locus into two distinctive groups: (1) sequences whose relationships are not well resolved and display the long branch lengths expected for a gene under balancing selection (Class A); and (2) sequences falling into a well-supported group with shorter branch lengths (Class B) that are closely related to an unlinked paralogous locus. The purpose of this study was to determine if differences in phenotype (site of expression assayed using allele-specific reverse transcription-polymerase chain reaction) or function (dominance relationships assayed through controlled pollinations) accompany the sequence-based classification. Expression of Class A alleles was restricted to floral tissues, as predicted for genes involved in the SI response. In contrast, Class B alleles, despite being tightly linked to the SI phenotype, were unexpectedly expressed in both leaves and floral tissues; the same pattern found for a related unlinked paralogous sequence. Whereas Class A included haplotypes in three different dominance classes, all Class B haplotypes were found to be recessive to all except one Class A haplotype. In addition, mapping of expression and dominance patterns onto an S-domain-based genealogy suggested that allelic dominance may be determined more by evolutionary history than by frequency-dependent selection for lowered dominance as some theories suggest. The possibility that interlocus gene

  2. HLA-A*02 allele frequencies and haplotypic associations in Koreans.

    PubMed

    Park, M H; Whang, D H; Kang, S J; Han, K S

    2000-03-01

    We have investigated the frequencies of HLA-A*02 alleles and their haplotypic associations with HLA-B and -DRB1 loci in 439 healthy unrelated Koreans, including 214 parents from 107 families. All of the 227 samples (51.7%) typed as A2 by serology were analyzed for A*02 alleles using polymerase chain reaction (PCR)-low ionic strength-single-strand conformation polymorphism (LIS-SSCP) method. A total of six different A*02 alleles were detected (A*02 allele frequency 29.6%): A*0201/9 (16.6%), *0203 (0.5%), *0206 (9.3%), *0207 (3.0%), and one each case of *0210 and *02 undetermined type. Two characteristic haplotypes showing the strongest linkage disequilibrium were A*0203-B38-DRB]*1502 and A*0207-B46-DRB1*0803. Besides these strong associations, significant two-locus associations (P<0.001) were observed for A*0201 with B61, DRB1*0901 and DRB1*1401, and for A*0206 with B48 and B61. HLA haplotypes carrying HLA-A2 showed a variable distribution of A*02 alleles, and all of the eight most common A2-B-DR haplotypes occurring at frequencies of > or =1% were variably associated with two different A*02 alleles. These results demonstrate that substantial heterogeneity is present in the distribution of HLA-A*02 alleles and related haplotypes in Koreans.

  3. Purification of Xenopus laevis mitochondrial RNA polymerase and identification of a dissociable factor required for specific transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogenhagen, D.F.; Insdorf, N.F.

    1988-07-01

    The Xenopus laevis mitochondrial RNA (mtRNA) polymerase was purified to near homogeneity with an overall yield approaching 50%. The major polypeptides in the final fraction were a doublet of proteins of approximately 140 kilodaltons that copurified with the mtRNA polymerase activity. It appeared likely that the smaller polypeptide is a breakdown product of the larger one. The highly purified polymerase was active in nonspecific transcription but required a dissociable factor for specific transcription of X. laevis mtDNA. The factor could be resolved from mtRNA polymerase by hydrophobic chromatography and had a sedimentation coefficient of 3.0 S. The transcription factor elutedmore » from both the hydrophobic column and a Mono Q anion-exchange column as a single symmetrical peak. The mtRNA polymerase and this factor together are necessary and sufficient for active transcription from four promoters located in a noncoding region of the mtDNA genome between the gene for tRNA/sup Phe/ and the displacement loop.« less

  4. Comparison of immunohistochemistry, DNA sequencing and allele-specific PCR for the detection of IDH1 mutations in gliomas.

    PubMed

    Loussouarn, Delphine; Le Loupp, Anne-Gaëlle; Frenel, Jean-Sébastien; Leclair, François; Von Deimling, Andreas; Aumont, Maud; Martin, Stéphane; Campone, Mario; Denis, Marc G

    2012-06-01

    Previous studies have identified mutations of the isocitrate dehydrogenase 1 (IDH1) gene in more than 70% of World Health Organization (WHO) grade II and III gliomas. The most frequent mutation leads to a specific amino acid change from arginine to histidine at codon 132 (c.395G>A, p.R132H). IDH1 mutated tumors have a better prognosis than IDH1 non-mutated tumors. The aim of our study was to evaluate and compare the methods of mIDH1 R132H immunohistochemistry, allele-specific PCR and DNA sequencing for determination of IDH1 status. We performed a retrospective study of 91 patients with WHO grade II (n=43) and III (n=48) oligodendrogliomas. A fragment of exon 4 spanning the sequence encoding the catalytic domain of IDH1, including codon 132, was amplified and sequenced using standard conditions. Allele-specific amplification was performed using two forward primers with variations in their 3' nucleotides such that each was specific for the wild-type or the mutated variant, and one reverse primer. Immunohistochemistry was performed with mouse monoclonal mIDH1 R132H. DNA was extracted from FFPE sections following macrodissection. IDH1 mutations were found in 55/90 patients (61.1%) by direct sequencing. R132H mutations were found in 47/55 patients (85.4%). The results of the allele-specific PCR positively correlated with those from DNA sequencing. Other mutations (p.R132C, p.R132S and pR132G) were found by DNA sequencing in 3, 3 and 2 tumors, respectively (8/55 patients, 14.6%). mIDH1 R132H immunostaining was found in the 47 patients presenting the R132H mutation (sensitivity 47/47, 100% for this mutation). None of the tumors presenting a wild-type IDH1 gene were stained (specificity 35/35, 100%). Our results demonstrate that immunohistochemistry using the mIDH1 R132H antibody and allele-specific amplification are highly sensitive techniques to detect the most frequent mutation of the IDH1 gene.

  5. Rapid single nucleotide polymorphism based method for hematopoietic chimerism analysis and monitoring using high-speed droplet allele-specific PCR and allele-specific quantitative PCR.

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Uehara, Masayuki; Sugano, Mitsutoshi; Okumura, Nobuo; Honda, Takayuki

    2015-05-20

    Chimerism analysis is important for the evaluation of engraftment and predicting relapse following hematopoietic stem cell transplantation (HSCT). We developed a chimerism analysis for single nucleotide polymorphisms (SNPs), including rapid screening of the discriminable donor/recipient alleles using droplet allele-specific PCR (droplet-AS-PCR) pre-HSCT and quantitation of recipient DNA using AS-quantitative PCR (AS-qPCR) following HSCT. SNP genotyping of 20 donor/recipient pairs via droplet-AS-PCR and the evaluation of the informativity of 5 SNP markers for chimerism analysis were performed. Samples from six follow-up patients were analyzed to assess the chimerism via AS-qPCR. These results were compared with that determined by short tandem repeat PCR (STR-PCR). Droplet-AS-PCR could determine genotypes within 8min. The total informativity using all 5 loci was 95% (19/20). AS-qPCR provided the percentage of recipient DNA in all 6 follow-up patients without influence of the stutter peak or the amplification efficacy, which affected the STR-PCR results. The droplet-AS-PCR had an advantage over STR-PCR in terms of rapidity and simplicity for screening before HSCT. Furthermore, AS-qPCR had better accuracy than STR-PCR for quantification of recipient DNA following HSCT. The present chimerism assay compensates for the disadvantages of STR-PCR and is readily performable in clinical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data

    PubMed Central

    Degner, Jacob F.; Marioni, John C.; Pai, Athma A.; Pickrell, Joseph K.; Nkadori, Everlyne; Gilad, Yoav; Pritchard, Jonathan K.

    2009-01-01

    Motivation: Next-generation sequencing has become an important tool for genome-wide quantification of DNA and RNA. However, a major technical hurdle lies in the need to map short sequence reads back to their correct locations in a reference genome. Here, we investigate the impact of SNP variation on the reliability of read-mapping in the context of detecting allele-specific expression (ASE). Results: We generated 16 million 35 bp reads from mRNA of each of two HapMap Yoruba individuals. When we mapped these reads to the human genome we found that, at heterozygous SNPs, there was a significant bias toward higher mapping rates of the allele in the reference sequence, compared with the alternative allele. Masking known SNP positions in the genome sequence eliminated the reference bias but, surprisingly, did not lead to more reliable results overall. We find that even after masking, ∼5–10% of SNPs still have an inherent bias toward more effective mapping of one allele. Filtering out inherently biased SNPs removes 40% of the top signals of ASE. The remaining SNPs showing ASE are enriched in genes previously known to harbor cis-regulatory variation or known to show uniparental imprinting. Our results have implications for a variety of applications involving detection of alternate alleles from short-read sequence data. Availability: Scripts, written in Perl and R, for simulating short reads, masking SNP variation in a reference genome and analyzing the simulation output are available upon request from JFD. Raw short read data were deposited in GEO (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE18156. Contact: jdegner@uchicago.edu; marioni@uchicago.edu; gilad@uchicago.edu; pritch@uchicago.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19808877

  7. Emergence of DNA Polymerase ε Antimutators That Escape Error-Induced Extinction in Yeast

    PubMed Central

    Williams, Lindsey N.; Herr, Alan J.; Preston, Bradley D.

    2013-01-01

    DNA polymerases (Pols) ε and δ perform the bulk of yeast leading- and lagging-strand DNA synthesis. Both Pols possess intrinsic proofreading exonucleases that edit errors during polymerization. Rare errors that elude proofreading are extended into duplex DNA and excised by the mismatch repair (MMR) system. Strains that lack Pol proofreading or MMR exhibit a 10- to 100-fold increase in spontaneous mutation rate (mutator phenotype), and inactivation of both Pol δ proofreading (pol3-01) and MMR is lethal due to replication error-induced extinction (EEX). It is unclear whether a similar synthetic lethal relationship exists between defects in Pol ε proofreading (pol2-4) and MMR. Using a plasmid-shuffling strategy in haploid Saccharomyces cerevisiae, we observed synthetic lethality of pol2-4 with alleles that completely abrogate MMR (msh2Δ, mlh1Δ, msh3Δ msh6Δ, or pms1Δ mlh3Δ) but not with partial MMR loss (msh3Δ, msh6Δ, pms1Δ, or mlh3Δ), indicating that high levels of unrepaired Pol ε errors drive extinction. However, variants that escape this error-induced extinction (eex mutants) frequently emerged. Five percent of pol2-4 msh2Δ eex mutants encoded second-site changes in Pol ε that reduced the pol2-4 mutator phenotype between 3- and 23-fold. The remaining eex alleles were extragenic to pol2-4. The locations of antimutator amino-acid changes in Pol ε and their effects on mutation spectra suggest multiple mechanisms of mutator suppression. Our data indicate that unrepaired leading- and lagging-strand polymerase errors drive extinction within a few cell divisions and suggest that there are polymerase-specific pathways of mutator suppression. The prevalence of suppressors extragenic to the Pol ε gene suggests that factors in addition to proofreading and MMR influence leading-strand DNA replication fidelity. PMID:23307893

  8. Allelic Imbalance Is a Prevalent and Tissue-Specific Feature of the Mouse Transcriptome

    PubMed Central

    Pinter, Stefan F.; Colognori, David; Beliveau, Brian J.; Sadreyev, Ruslan I.; Payer, Bernhard; Yildirim, Eda; Wu, Chao-ting; Lee, Jeannie T.

    2015-01-01

    In mammals, several classes of monoallelic genes have been identified, including those subject to X-chromosome inactivation (XCI), genomic imprinting, and random monoallelic expression (RMAE). However, the extent to which these epigenetic phenomena are influenced by underlying genetic variation is unknown. Here we perform a systematic classification of allelic imbalance in mouse hybrids derived from reciprocal crosses of divergent strains. We observe that deviation from balanced biallelic expression is common, occurring in ∼20% of the mouse transcriptome in a given tissue. Allelic imbalance attributed to genotypic variation is by far the most prevalent class and typically is tissue-specific. However, some genotype-based imbalance is maintained across tissues and is associated with greater genetic variation, especially in 5′ and 3′ termini of transcripts. We further identify novel random monoallelic and imprinted genes and find that genotype can modify penetrance of parental origin even in the setting of large imprinted regions. Examination of nascent transcripts in single cells from inbred parental strains reveals that genes showing genotype-based imbalance in hybrids can also exhibit monoallelic expression in isogenic backgrounds. This surprising observation may suggest a competition between alleles and/or reflect the combined impact of cis- and trans-acting variation on expression of a given gene. Our findings provide novel insights into gene regulation and may be relevant to human genetic variation and disease. PMID:25858912

  9. A simple real-time polymerase chain reaction (PCR)-based assay for authentication of the Chinese Panax ginseng cultivar Damaya from a local ginseng population.

    PubMed

    Wang, H; Wang, J; Li, G

    2016-06-27

    Panax ginseng is one of the most important medicinal plants in the Orient. Owing to its increasing demand in the world market, cultivated ginseng has become the main source of medicinal material. Among the Chinese ginseng cultivars, Damaya commands higher prices and is grown in significant proportions among the local ginseng population. Due to the lack of rapid and accurate authentication methods, Damaya is distributed among different cultivars in the local ginseng population in China. Here, we identified a unique, Damaya-specific single nucleotide polymorphism (SNP) site present in the second intron of mitochondrial cytochrome c oxidase subunit 2 (cox2). Based on this SNP, a Damaya cultivar-specific primer was designed and an allele-specific polymerase chain reaction (PCR) was optimized for the effective molecular authentication of Damaya. We designed a method by combining a simple DNA isolation method with real-time allele-specific PCR using SYBR Green I fluorescent dye, and proved its efficacy in clearly discriminated Damaya cultivar from other Chinese ginseng cultivars according to the allelic discrimination analysis. Hence, this study provides a simple and rapid assay for the differentiation and conservation of Damaya from the local Chinese ginseng population.

  10. Associations of HLA DRB1 alleles with IgG oligoclonal bands and their influence on multiple sclerosis course and disability status.

    PubMed

    Balnytė, Renata; Rastenytė, Daiva; Vaitkus, Antanas; Skrodenienė, Erika; Vitkauskienė, Astra; Ulozienė, Ingrida

    2016-01-01

    Oligoclonal bands (OCB) may be associated with the genes of HLA complex, which allows to consider the possible interaction of genetic and immunological factors and its importance in the development and progression of multiple sclerosis (MS). The aim of this study was to evaluate the associations between HLA DRB1 alleles and oligoclonal bands (OCBs) in the disease course and disability of multiple sclerosis (MS) patients. This was a prospective study of 120 patients with MS. HLA DRB1 alleles were genotyped using the polymerase chain reaction. Matched cerebrospinal fluid (CSF) and plasma samples were analyzed using isoelectric focusing and IgG specific immunofixation to test for the presence of intrathecal specific OCB. HLA DRB1*08 allele was related to a lower degree of disability. Oligoclonal bands were an independent and significant factor that influenced disability status irrespective of HLA DRB1* 04, *07, *08, *13, *15 and *16 alleles. Age at the onset and duration of the disease were independent and significant factors for MS progression in all logistic regression models with each newly added HLA DRB1 allele. HLA DRB1*08 allele was related to 75% lower odds that relapsing remitting (RR) MS will change to a progressive course MS irrespective of the other factors investigated. Detection of OCBs in the CSF was associated with the higher possibility of RR MS progression in all cases, except when the *08 allele was present. OCBs had an influence on disability status, while HLA DRB1*08 allele was significantly associated with lower possibility that RR MS will change to progressive course MS. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Investigation of specific interactions between T7 promoter and T7 RNA polymerase by force spectroscopy using atomic force microscope.

    PubMed

    Zhang, Xiaojuan; Yao, Zhixuan; Duan, Yanting; Zhang, Xiaomei; Shi, Jinsong; Xu, Zhenghong

    2018-01-11

    The specific recognition and binding of promoter and RNA polymerase is the first step of transcription initiation in bacteria and largely determines transcription activity. Therefore, direct analysis of the interaction between promoter and RNA polymerase in vitro may be a new strategy for promoter characterization, to avoid interference due to the cell's biophysical condition and other regulatory elements. In the present study, the specific interaction between T7 promoter and T7 RNA polymerase was studied as a model system using force spectroscopy based on atomic force microscope (AFM). The specific interaction between T7 promoter and T7 RNA polymerase was verified by control experiments, and the rupture force in this system was measured as 307.2 ± 6.7 pN. The binding between T7 promoter mutants with various promoter activities and T7 RNA polymerase was analyzed. Interaction information including rupture force, rupture distance and binding percentage were obtained in vitro , and reporter gene expression regulated by these promoters was also measured according to a traditional promoter activity characterization method in vivo Using correlation analysis, it was found that the promoter strength characterized by reporter gene expression was closely correlated with rupture force and the binding percentage by force spectroscopy. These results indicated that the analysis of the interaction between promoter and RNA polymerase using AFM-based force spectroscopy was an effective and valid approach for the quantitative characterization of promoters. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Evaluation of 16 SNPs allele-specific to quantify post hSCT chimerism by SYBR green-based qRT-PCR.

    PubMed

    Almeida, Carlos Arthur Cardoso; Dreyfuss, Juliana Luporini; Azevedo-Shimmoto, Marily Maria; Figueiredo, Maria Stela; de Oliveira, José Salvador Rodrigues

    2013-03-01

    The importance of monitoring post haematopoietic stem cell transplantation (hSCT) chimerism has been defined in numerous publications. Single-nucleotide polymorphisms (SNPs) are molecular markers that vary significantly among different populations. Allied to a very sensible technique, SNP assays seem to be very sensitive (0.001%) when post hSCT chimerism is measured. However, well known SNP frequencies are limited to certain populations, mainly in countries where there is a high level of diversity in its population, therefore restricting their use worldwide. Amplification by SYBR green based quantitative real time PCR of eight pairs of allele-specific SNPs (MLH-1, PECAM-1, ICAM-1, SUR-1, HA-1, rs715405, rs713503, rs2296600) was conducted in 88 patient/donor pairs, who underwent allogeneic myeloablative or non-myeloablative hSCT. One informative allele was detected in at least 42% (n=37) of the samples; 20% (n=18) had at least two informative alleles; 10% (n=9) had at least three informative alleles; 9% (n=8) had more than three informative alleles and 18% (n=16) showed no informative allele at all. Overall, the frequency of informative alleles for these SNPs in the Brazilian population was very low. Consequently, the amount of information attained reached 9% of those expected, being able to discriminate only eight pairs of donor/recipient samples with more than three informative alleles, making them useless for the quantification of chimerism in our routine.

  13. Human leukocyte class I antigen alleles A2 and A11 are not associated with nasopharyngeal carcinoma in West Malaysia.

    PubMed

    Lee, L K; Tan, E L; Gopala, K; Sam, C K

    2007-07-01

    Nasopharyngeal carcinoma (NPC) is the second most common cancer among Malaysian Chinese males. We determined the frequencies of 17 human leukocyte antigens (HLA), HLA-A and HLA-B, alleles in 88 Malaysian Chinese with NPC. Using polymerase chain reaction sequence-specific primers, the frequencies of 17 HLA-A and HLA-B alleles were analysed. They were A1, A2, A11, A31, A32, A33, B8, B13, B27, B38, B39, B44, B46, B55, B58, B61 and B71. Three of the 17 alleles were detected in NPC patients. They were A1 (0.6 percent), A2 (56.3 percent) and A11 (43.2 percent). Three of the 17 alleles were detected in age- and sex-matched healthy individuals. They were A2 (50.0 percent), A11 (50.0 percent) and B27 (4.7 percent). The A2 and A11 alleles were evenly distributed in both groups, while A1 was only found in one NPC patient and B27 exclusively in healthy individuals. We conclude that A1 is very rare, and A2, A11, A31, A32, A33, B8, B13, B38, B39, B44, B46, B55, B58, B61 and B71 alleles have no associations with the occurrence of NPC in Malaysia, while allele B27 is negatively associated.

  14. WASP: a Web-based Allele-Specific PCR assay designing tool for detecting SNPs and mutations

    PubMed Central

    Wangkumhang, Pongsakorn; Chaichoompu, Kridsadakorn; Ngamphiw, Chumpol; Ruangrit, Uttapong; Chanprasert, Juntima; Assawamakin, Anunchai; Tongsima, Sissades

    2007-01-01

    Background Allele-specific (AS) Polymerase Chain Reaction is a convenient and inexpensive method for genotyping Single Nucleotide Polymorphisms (SNPs) and mutations. It is applied in many recent studies including population genetics, molecular genetics and pharmacogenomics. Using known AS primer design tools to create primers leads to cumbersome process to inexperience users since information about SNP/mutation must be acquired from public databases prior to the design. Furthermore, most of these tools do not offer the mismatch enhancement to designed primers. The available web applications do not provide user-friendly graphical input interface and intuitive visualization of their primer results. Results This work presents a web-based AS primer design application called WASP. This tool can efficiently design AS primers for human SNPs as well as mutations. To assist scientists with collecting necessary information about target polymorphisms, this tool provides a local SNP database containing over 10 million SNPs of various populations from public domain databases, namely NCBI dbSNP, HapMap and JSNP respectively. This database is tightly integrated with the tool so that users can perform the design for existing SNPs without going off the site. To guarantee specificity of AS primers, the proposed system incorporates a primer specificity enhancement technique widely used in experiment protocol. In particular, WASP makes use of different destabilizing effects by introducing one deliberate 'mismatch' at the penultimate (second to last of the 3'-end) base of AS primers to improve the resulting AS primers. Furthermore, WASP offers graphical user interface through scalable vector graphic (SVG) draw that allow users to select SNPs and graphically visualize designed primers and their conditions. Conclusion WASP offers a tool for designing AS primers for both SNPs and mutations. By integrating the database for known SNPs (using gene ID or rs number), this tool facilitates the

  15. Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2.

    PubMed

    Chan, Elizabeth A W; Teng, Grace; Corbett, Elizabeth; Choudhury, Kingshuk Roy; Bassing, Craig H; Schatz, David G; Krangel, Michael S

    2013-11-26

    Allelic exclusion requires that the two alleles at antigen-receptor loci attempt to recombine variable (V), diversity (D), and joining (J) gene segments [V(D)J recombination] asynchronously in nuclei of developing lymphocytes. It previously was shown that T-cell receptor β (Tcrb) alleles frequently and stochastically associate with the nuclear lamina and pericentromeric heterochromatin in CD4(-)CD8(-) thymocytes. Moreover, rearranged alleles were underrepresented at these locations. Here we used 3D immunofluorescence in situ hybridization to identify recently rearranged Tcrb alleles based on the accumulation of the DNA-repair protein 53BP1. We found that Tcrb alleles recombine asynchronously in double-negative thymocytes and that V(D)J recombination is suppressed on peripheral as compared with central Tcrb alleles. Moreover, the recombination events that did take place at the nuclear periphery preferentially occurred on Tcrb alleles that were partially dissociated from the nuclear lamina. To understand better the mechanism by which V(D)J recombination is suppressed at the nuclear periphery, we evaluated the subnuclear distribution of recombination-activating gene 2 (RAG2) protein. We found that RAG2 abundance was reduced at the nuclear periphery. Moreover, RAG2 was distributed differently from RNA polymerase II and histone H3K4 trimethylation. Our data suggest that the nuclear periphery suppresses V(D)J recombination, at least in part, by segregating Tcrb alleles from RAG proteins.

  16. HLA-DRB1 alleles in juvenile-onset systemic lupus erythematosus: renal histologic class correlations.

    PubMed

    Liphaus, B L; Kiss, M H B; Goldberg, A C

    2007-04-01

    Human leukocyte antigens (HLA) DRB1*03 and DRB1*02 have been associated with systemic lupus erythematosus (SLE) in Caucasians and black populations. It has been observed that certain HLA alleles show stronger associations with SLE autoantibodies and clinical subsets, although they have rarely been associated with lupus renal histologic class. In the present study, HLA-DRB1 allele correlations with clinical features, autoantibodies and renal histologic class were analyzed in a cohort of racially mixed Brazilian patients with juvenile-onset SLE. HLA-DRB1 typing was carried out by polymerase chain reaction amplification with sequence-specific primers using genomic DNA from 55 children and adolescents fulfilling at least four of the American College of Rheumatology criteria for SLE. Significance was determined by the chi-square test applied to 2 x 2 tables. The HLA-DRB1*15 allele was most frequent in patients with renal, musculoskeletal, cutaneous, hematologic, cardiac, and neuropsychiatric involvement, as well as in patients positive for anti-dsDNA, anti-Sm, anti-U1-RNP, and anti-SSA/Ro antibodies, although an association between HLA alleles and SLE clinical features and autoantibodies could not be observed. The HLA-DRB1*17, HLA-DRB1*10, HLA-DRB1*15, and HLA-DRB1*07 alleles were significantly higher in patients with renal histologic class I, class IIA, class IIB, and class V, respectively. The present results suggest that the contribution of HLA- DRB1 alleles to juvenile-onset SLE could not be related to clinical or serological subsets of the disease, but it may be related to renal histologic classes, especially class I, class II A, class II B, and class V. The latter correlations have not been observed in literature.

  17. Y-chromosome specific alleles and haplotypes in European and Asian populations: linkage disequilibrium and geographic diversity.

    PubMed

    Mitchell, R J; Earl, L; Fricke, B

    1997-10-01

    Variation on the Y chromosome may permit our understanding the evolution of the human paternal lineage and male gene flow. This study reports upon the distribution and non random association of alleles at four Y-chromosome specific loci in four populations, three Caucasoid (Italian, Greek and Slav) and one Asian. The markers include insertion/deletion (p12f), point mutation (92R7 and pY alpha I), and repeat sequence (p21A1) polymorphisms. Our data confirm that the p12f/TaqI 8 kb allele is a Caucasoid marker and that Asians are monomorphic at three of the loci (p12f, 92R7, and pY alpha I). The alleles at 92R7 and pY alpha I were found to be in complete disequilibrium in Europeans. Y-haplotype diversity was highly significant between Asians and all three European groups (P < 0.001), but the Greeks and Italians were also significantly different with respect to some alleles and haplotypes (P < 0.02). We find strong evidence that the p12f/TaqI 8 kb allele may have arisen only once, as a deletion event, and, additionally, that the present-day frequency distribution of Y chromosomes carrying the p12f/8 kb allele suggests that it may have been spread by colonising sea-faring peoples from the Near East, possibly the Phoenicians, rather than by expansion of Neolithic farmers into continental Europe. The p12f deletion is the key marker of a unique Y chromosome, found only in Caucasians to date, labelled 'Mediterranean' and this further increases the level of Y-chromosome diversity seen among Caucasoids when compared to the other major population groups.

  18. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.

    PubMed

    Ong, Jennifer L; Loakes, David; Jaroslawski, Szymon; Too, Kathleen; Holliger, Philipp

    2006-08-18

    DNA polymerases enable key technologies in modern biology but for many applications, native polymerases are limited by their stringent substrate recognition. Here we describe short-patch compartmentalized self-replication (spCSR), a novel strategy to expand the substrate spectrum of polymerases in a targeted way. spCSR is based on the previously described CSR, but unlike CSR only a short region (a "patch") of the gene under investigation is diversified and replicated. This allows the selection of polymerases under conditions where catalytic activity and processivity are compromised to the extent that full self-replication is inefficient. We targeted two specific motifs involved in substrate recognition in the active site of DNA polymerase I from Thermus aquaticus (Taq) and selected for incorporation of both ribonucleotide- (NTP) and deoxyribonucleotide-triphosphates (dNTPs) using spCSR. This allowed the isolation of multiple variants of Taq with apparent dual substrate specificity. They were able to synthesize RNA, while still retaining essentially wild-type (wt) DNA polymerase activity as judged by PCR. One such mutant (AA40: E602V, A608V, I614M, E615G) was able to incorporate both NTPs and dNTPs with the same catalytic efficiency as the wt enzyme incorporates dNTPs. AA40 allowed the generation of mixed RNA-DNA amplification products in PCR demonstrating DNA polymerase, RNA polymerase as well as reverse transcriptase activity within the same polypeptide. Furthermore, AA40 displayed an expanded substrate spectrum towards other 2'-substituted nucleotides and was able to synthesize nucleic acid polymers in which each base bore a different 2'-substituent. Our results suggest that spCSR will be a powerful strategy for the generation of polymerases with altered substrate specificity for applications in nano- and biotechnology and in the enzymatic synthesis of antisense and RNAi probes.

  19. Mechanisms and Disease Associations of Haplotype-Dependent Allele-Specific DNA Methylation

    PubMed Central

    Do, Catherine; Lang, Charles F.; Lin, John; Darbary, Huferesh; Krupska, Izabela; Gaba, Aulona; Petukhova, Lynn; Vonsattel, Jean-Paul; Gallagher, Mary P.; Goland, Robin S.; Clynes, Raphael A.; Dwork, Andrew; Kral, John G.; Monk, Catherine; Christiano, Angela M.; Tycko, Benjamin

    2016-01-01

    Haplotype-dependent allele-specific methylation (hap-ASM) can impact disease susceptibility, but maps of this phenomenon using stringent criteria in disease-relevant tissues remain sparse. Here we apply array-based and Methyl-Seq approaches to multiple human tissues and cell types, including brain, purified neurons and glia, T lymphocytes, and placenta, and identify 795 hap-ASM differentially methylated regions (DMRs) and 3,082 strong methylation quantitative trait loci (mQTLs), most not previously reported. More than half of these DMRs have cell type-restricted ASM, and among them are 188 hap-ASM DMRs and 933 mQTLs located near GWAS signals for immune and neurological disorders. Targeted bis-seq confirmed hap-ASM in 12/13 loci tested, including CCDC155, CD69, FRMD1, IRF1, KBTBD11, and S100A∗-ILF2, associated with immune phenotypes, MYT1L, PTPRN2, CMTM8 and CELF2, associated with neurological disorders, NGFR and HLA-DRB6, associated with both immunological and brain disorders, and ZFP57, a trans-acting regulator of genomic imprinting. Polymorphic CTCF and transcription factor (TF) binding sites were over-represented among hap-ASM DMRs and mQTLs, and analysis of the human data, supplemented by cross-species comparisons to macaques, indicated that CTCF and TF binding likelihood predicts the strength and direction of the allelic methylation asymmetry. These results show that hap-ASM is highly tissue specific; an important trans-acting regulator of genomic imprinting is regulated by this phenomenon; and variation in CTCF and TF binding sites is an underlying mechanism, and maps of hap-ASM and mQTLs reveal regulatory sequences underlying supra- and sub-threshold GWAS peaks in immunological and neurological disorders. PMID:27153397

  20. ABO alleles are linked with haplotypes of an erythroid cell-specific regulatory element in intron 1 with a few exceptions attributable to genetic recombination.

    PubMed

    Nakajima, T; Sano, R; Takahashi, Y; Watanabe, K; Kubo, R; Kobayashi, M; Takahashi, K; Takeshita, H; Kominato, Y

    2016-01-01

    Recent investigation of transcriptional regulation of the ABO genes has identified a candidate erythroid cell-specific regulatory element, named the +5·8-kb site, in the first intron of ABO. Six haplotypes of the site have been reported previously. The present genetic population study demonstrated that each haplotype was mostly linked with specific ABO alleles with a few exceptions, possibly as a result of hybrid formation between common ABO alleles. Thus, investigation of these haplotypes could provide a clue to further elucidation of ABO alleles. © 2015 International Society of Blood Transfusion.

  1. A study of the association of childhood asthma with HLA alleles in the population of Siliguri, West Bengal, India.

    PubMed

    Lama, M; Chatterjee, M; Chaudhuri, T K

    2014-09-01

    Asthma is a heterogeneous disease for which a strong genetic basis is firmly established. It is a complex disorder influenced by gene-environment interaction. Human leukocyte antigen (HLA) genes have been shown to be consistently associated with asthma and its related phenotypes in various populations. The aim of this study was to determine the frequency of the selected HLA classes I and II allelic groups in asthmatic and control groups. HLA typing was performed using polymerase chain reaction-sequence-specific typing (PCR-SSP) method. The allele frequency was estimated by direct counting. Frequency of each HLA allelic group was compared between asthmatic group and control group using χ(2) test. P-value was corrected by multiplying with the number of the allelic groups studied. Odds ratio (OR) and its corresponding 95% confidence interval (CI) for each allelic group were calculated using graphpad instat 3.10. The results of this study showed a significantly higher frequency of HLA-DRB1*03 in asthmatics than in controls (11.43% vs 3.64%, OR = 3.78, 95% CI = 1.61-8.85, P = 0.0025, Pcorr  < 0.05). Analysis of HLA alleles in low and high total serum immunoglobulin E (IgE) level in asthmatics revealed no significant association. HLA-DRB1*03 may be implicated in the susceptibility to asthma in the pediatric population. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. A dominant mutation in mediator of paramutation2, one of three second-largest subunits of a plant-specific RNA polymerase, disrupts multiple siRNA silencing processes.

    PubMed

    Sidorenko, Lyudmila; Dorweiler, Jane E; Cigan, A Mark; Arteaga-Vazquez, Mario; Vyas, Meenal; Kermicle, Jerry; Jurcin, Diane; Brzeski, Jan; Cai, Yu; Chandler, Vicki L

    2009-11-01

    Paramutation involves homologous sequence communication that leads to meiotically heritable transcriptional silencing. We demonstrate that mop2 (mediator of paramutation2), which alters paramutation at multiple loci, encodes a gene similar to Arabidopsis NRPD2/E2, the second-largest subunit of plant-specific RNA polymerases IV and V. In Arabidopsis, Pol-IV and Pol-V play major roles in RNA-mediated silencing and a single second-largest subunit is shared between Pol-IV and Pol-V. Maize encodes three second-largest subunit genes: all three genes potentially encode full length proteins with highly conserved polymerase domains, and each are expressed in multiple overlapping tissues. The isolation of a recessive paramutation mutation in mop2 from a forward genetic screen suggests limited or no functional redundancy of these three genes. Potential alternative Pol-IV/Pol-V-like complexes could provide maize with a greater diversification of RNA-mediated transcriptional silencing machinery relative to Arabidopsis. Mop2-1 disrupts paramutation at multiple loci when heterozygous, whereas previously silenced alleles are only up-regulated when Mop2-1 is homozygous. The dramatic reduction in b1 tandem repeat siRNAs, but no disruption of silencing in Mop2-1 heterozygotes, suggests the major role for tandem repeat siRNAs is not to maintain silencing. Instead, we hypothesize the tandem repeat siRNAs mediate the establishment of the heritable silent state-a process fully disrupted in Mop2-1 heterozygotes. The dominant Mop2-1 mutation, which has a single nucleotide change in a domain highly conserved among all polymerases (E. coli to eukaryotes), disrupts both siRNA biogenesis (Pol-IV-like) and potentially processes downstream (Pol-V-like). These results suggest either the wild-type protein is a subunit in both complexes or the dominant mutant protein disrupts both complexes. Dominant mutations in the same domain in E. coli RNA polymerase suggest a model for Mop2-1 dominance

  3. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology.

    PubMed

    Daher, Rana K; Stewart, Gale; Boissinot, Maurice; Boudreau, Dominique K; Bergeron, Michel G

    2015-04-01

    Recombinase polymerase amplification (RPA) technology relies on three major proteins, recombinase proteins, single-strand binding proteins, and polymerases, to specifically amplify nucleic acid sequences in an isothermal format. The performance of RPA with respect to sequence mismatches of closely-related non-target molecules is not well documented and the influence of the number and distribution of mismatches in DNA sequences on RPA amplification reaction is not well understood. We investigated the specificity of RPA by testing closely-related species bearing naturally occurring mismatches for the tuf gene sequence of Pseudomonas aeruginosa and/or Mycobacterium tuberculosis and for the cfb gene sequence of Streptococcus agalactiae. In addition, the impact of the number and distribution of mismatches on RPA efficiency was assessed by synthetically generating 14 types of mismatched forward primers for detecting five bacterial species of high diagnostic relevance such as Clostridium difficile, Staphylococcus aureus, S. agalactiae, P. aeruginosa, and M. tuberculosis as well as Bacillus atropheus subsp. globigii for which we use the spores as internal control in diagnostic assays. A total of 87 mismatched primers were tested in this study. We observed that target specific RPA primers with mismatches (n > 1) at their 3'extrimity hampered RPA reaction. In addition, 3 mismatches covering both extremities and the center of the primer sequence negatively affected RPA yield. We demonstrated that the specificity of RPA was multifactorial. Therefore its application in clinical settings must be selected and validated a priori. We recommend that the selection of a target gene must consider the presence of closely-related non-target genes. It is advisable to choose target regions with a high number of mismatches (≥36%, relative to the size of amplicon) with respect to closely-related species and the best case scenario would be by choosing a unique target gene. Copyright © 2014

  4. MICA diversity and linkage disequilibrium with HLA-B alleles in renal-transplant candidates in southern Brazil.

    PubMed

    Yamakawa, Roger Haruki; Saito, Patrícia Keiko; Gelmini, Geórgia Fernanda; da Silva, José Samuel; Bicalho, Maria da Graça; Borelli, Sueli Donizete

    2017-01-01

    The major histocompatibility complex (MHC) class I chain-related gene A (MICA) is located centromerically to the human leukocyte antigen (HLA)-B. The short distance between these loci in the MHC indicates the presence of linkage disequilibrium (LD). Similarly to the HLA, the MICA is highly polymorphic, and this polymorphism has not been well documented in different populations. In this study, we estimated the allelic frequencies of MICA and the linkage disequilibrium with HLA-B alleles in 346 renal-transplant candidates in southern Brazil. MICA and HLA were typed using the polymerase chain reaction-sequence-specific primer method (PCR-SSO), combined with the Luminex technology. A total of 19 MICA allele groups were identified. The most frequent allele groups were MICA*008 (21.6%), MICA*002 (17.0%) and MICA*004 (14.8%). The most common haplotypes were MICA*009-B*51 (7.8%), MICA*004-B*44 (6.06%) and MICA*002-B*35 (5.63%). As expected from the proximity of the MICA and HLA-B loci, most haplotypes showed strong LD. Renal patients and healthy subjects in the same region of Brazil showed statistically significant differences in their MICA polymorphisms. The MICA*027 allele group was more frequent in renal patients (Pc = 0.018, OR: 3.421, 95% CI: 1.516-7.722), while the MICA*019 allele group was more frequent in healthy subjects (Pc = 0.001, OR: 0.027, 95% CI: 0.002-0.469). This study provided information on the distribution of MICA polymorphisms and linkage disequilibrium with HLA-B alleles in Brazilian renal-transplant candidates. This information should help to determine the mechanisms of susceptibility to different diseases in patients with chronic kidney disease, and to elucidate the mechanisms involved in allograft rejection associated with MICA polymorphisms in a Brazilian population.

  5. An improved assay for the determination of Huntington`s disease allele size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, C.; Klinger, K.; Miller, G.

    1994-09-01

    The hallmark of Huntington`s disease (HD) is the expansion of a polymorphic (CAG)n repeat. Several methods have been published describing PCR amplification of this region. Most of these assays require a complex PCR reaction mixture to amplify this GC-rich region. A consistent problem with trinucleotide repeat PCR amplification is the presence of a number of {open_quotes}stutter bands{close_quotes} which may be caused by primer or amplicon slippage during amplification or insufficient polymerase processivity. Most assays for HD arbitrarily select a particular band for diagnostic purposes. Without a clear choice for band selection such an arbitrary selection may result in inconsistent intra-more » or inter-laboratory findings. We present an improved protocol for the amplification of the HD trinucleotide repeat region. This method simplifies the PCR reaction buffer and results in a set of easily identifiable bands from which to determine allele size. HD alleles were identified by selecting bands of clearly greater signal intensity. Stutter banding was much reduced thus permitting easy identification of the most relevant PCR product. A second set of primers internal to the CCG polymorphism was used in selected samples to confirm allele size. The mechanism of action of N,N,N trimethylglycine in the PCR reaction is not clear. It may be possible that the minimal isostabilizing effect of N,N,N trimethylglycine at 2.5 M is significant enough to affect primer specificity. The use of N,N,N trimethylglycine in the PCR reaction facilitated identification of HD alleles and may be appropriate for use in other assays of this type.« less

  6. A member of the polymerase beta nucleotidyltransferase superfamily is required for RNA interference in C. elegans.

    PubMed

    Chen, Chun-Chieh G; Simard, Martin J; Tabara, Hiroaki; Brownell, Daniel R; McCollough, Jennifer A; Mello, Craig C

    2005-02-22

    RNA interference (RNAi) is an ancient, highly conserved mechanism in which small RNA molecules (siRNAs) guide the sequence-specific silencing of gene expression . Several silencing machinery protein components have been identified, including helicases, RNase-related proteins, double- and single-stranded RNA binding proteins, and RNA-dependent RNA polymerase-related proteins . Work on these factors has led to the revelation that RNAi mechanisms intersect with cellular pathways required for development and fertility . Despite rapid progress in understanding key steps in the RNAi pathway, it is clear that many factors required for both RNAi and related developmental mechanisms have not yet been identified. Here, we report the characterization of the C. elegans gene rde-3. Genetic analysis of presumptive null alleles indicates that rde-3 is required for siRNA accumulation and for efficient RNAi in all tissues, and it is essential for fertility and viability at high temperatures. RDE-3 contains conserved domains found in the polymerase beta nucleotidyltransferase superfamily, which includes conventional poly(A) polymerases, 2'-5' oligoadenylate synthetase (OAS), and yeast Trf4p . These findings implicate a new enzymatic modality in RNAi and suggest possible models for the role of RDE-3 in the RNAi mechanism.

  7. Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2

    PubMed Central

    Chan, Elizabeth A. W.; Teng, Grace; Corbett, Elizabeth; Choudhury, Kingshuk Roy; Bassing, Craig H.; Schatz, David G.; Krangel, Michael S.

    2013-01-01

    Allelic exclusion requires that the two alleles at antigen-receptor loci attempt to recombine variable (V), diversity (D), and joining (J) gene segments [V(D)J recombination] asynchronously in nuclei of developing lymphocytes. It previously was shown that T-cell receptor β (Tcrb) alleles frequently and stochastically associate with the nuclear lamina and pericentromeric heterochromatin in CD4−CD8− thymocytes. Moreover, rearranged alleles were underrepresented at these locations. Here we used 3D immunofluorescence in situ hybridization to identify recently rearranged Tcrb alleles based on the accumulation of the DNA-repair protein 53BP1. We found that Tcrb alleles recombine asynchronously in double-negative thymocytes and that V(D)J recombination is suppressed on peripheral as compared with central Tcrb alleles. Moreover, the recombination events that did take place at the nuclear periphery preferentially occurred on Tcrb alleles that were partially dissociated from the nuclear lamina. To understand better the mechanism by which V(D)J recombination is suppressed at the nuclear periphery, we evaluated the subnuclear distribution of recombination-activating gene 2 (RAG2) protein. We found that RAG2 abundance was reduced at the nuclear periphery. Moreover, RAG2 was distributed differently from RNA polymerase II and histone H3K4 trimethylation. Our data suggest that the nuclear periphery suppresses V(D)J recombination, at least in part, by segregating Tcrb alleles from RAG proteins. PMID:24218622

  8. Genome-wide identification of allele-specific expression (ASE) in response to Marek's disease virus infection using next generation sequencing.

    PubMed

    Maceachern, Sean; Muir, William M; Crosby, Seth; Cheng, Hans H

    2011-06-03

    Marek's disease (MD), a T cell lymphoma induced by the highly oncogenic α-herpesvirus Marek's disease virus (MDV), is the main chronic infectious disease concern threatening the poultry industry. Enhancing genetic resistance to MD in commercial poultry is an attractive method to augment MD vaccines, which is currently the control method of choice. In order to optimally implement this control strategy through marker-assisted selection (MAS) and to gain biological information, it is necessary to identify specific genes that influence MD incidence. A genome-wide screen for allele-specific expression (ASE) in response to MDV infection was conducted. The highly inbred ADOL chicken lines 6 (MD resistant) and 7 (MD susceptible) were inter-mated in reciprocal crosses and half of the progeny challenged with MDV. Splenic RNA pools at a single time after infection for each treatment group point were generated, sequenced using a next generation sequencer, then analyzed for allele-specific expression (ASE). To validate and extend the results, Illumina GoldenGate assays for selected cSNPs were developed and used on all RNA samples from all 6 time points following MDV challenge. RNA sequencing resulted in 11-13+ million mappable reads per treatment group, 1.7+ Gb total sequence, and 22,655 high-confidence cSNPs. Analysis of these cSNPs revealed that 5360 cSNPs in 3773 genes exhibited statistically significant allelic imbalance. Of the 1536 GoldenGate assays, 1465 were successfully scored with all but 19 exhibiting evidence for allelic imbalance. ASE is an efficient method to identify potentially all or most of the genes influencing this complex trait. The identified cSNPs can be further evaluated in resource populations to determine their allelic direction and size of effect on genetic resistance to MD as well as being directly implemented in genomic selection programs. The described method, although demonstrated in inbred chicken lines, is applicable to all traits in any

  9. EGFR mutant allelic-specific imbalance assessment in routine samples of non-small cell lung cancer.

    PubMed

    Malapelle, Umberto; Vatrano, Simona; Russo, Stefania; Bellevicine, Claudio; de Luca, Caterina; Sgariglia, Roberta; Rocco, Danilo; de Pietro, Livia; Riccardi, Fernando; Gobbini, Elisa; Righi, Luisella; Troncone, Giancarlo

    2015-09-01

    In non-small cell lung cancer (NSCLC), the epidermal growth factor receptor (EGFR) gene may undergo both mutations and copy number gains. EGFR mutant allele-specific imbalance (MASI) occurs when the ratio of mutant-to-wild-type alleles increases significantly. In this study, by using a previously validated microfluidic-chip-based technology, EGFR-MASI occurred in 25/67 mutant cases (37%), being more frequently associated with EGFR exon 19 deletions (p=0.033). In a subset of 49 treated patients, we assessed whether MASI is a modifier of anti-EGFR treatment benefit. The difference in progression-free survival and overall survival between EGFR-MASI-positive and EGFR-MASI-negative groups of patients did not show a statistical significance. In conclusion, EGFR-MASI is a significant event in NSCLC, specifically associated with EGFR exon 19 deletions. However, EGFR-MASI does not seem to play a role in predicting the response to first-generation EGFR small molecules inhibitors. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Clonal Ordering of 17p and 5q Allelic Losses in Barrett Dysplasia and Adenocarcinoma

    NASA Astrophysics Data System (ADS)

    Blount, Patricia L.; Meltzer, Stephen J.; Yin, Jing; Huang, Ying; Krasna, Mark J.; Reid, Brian J.

    1993-04-01

    Both 17p and 5q allelic losses appear to be involved in the pathogenesis or progression of many human solid tumors. In colon carcinogenesis, there is strong evidence that the targets of the 17p and 5q allelic losses are TP53, the gene encoding p53, and APC, respectively. It is widely accepted that 5q allelic losses precede 17p allelic losses in the progression to colonic carcinoma. The data, however, supporting this proposed order are largely based on the prevalence of 17p and 5q allelic losses in adenomas and unrelated adenocarcinomas from different patients. We investigated the order in which 17p and 5q allelic losses developed during neoplastic progression in Barrett esophagus by evaluating multiple aneuploid cell populations from the same patient. Using DNA content flow cytometric cell sorting and polymerase chain reaction, 38 aneuploid cell populations from 14 patients with Barrett esophagus who had high grade dysplasia, cancer or both were evaluated for 17p and 5q allelic losses. 17p allelic losses preceded 5q allelic losses in 7 patients, both 17p and 5q allelic losses were present in all aneuploid populations of 4 patients, and only 17p (without 5q) allelic losses were present in the aneuploid populations of 3 patients. In no patient did we find that a 5q allelic loss preceded a 17p allelic loss. Our data suggest that 17p allelic losses typically occur before 5q allelic losses during neoplastic progression in Barrett esophagus.

  11. Allele-specific Col1a1 silencing reduces mutant collagen in fibroblasts from Brtl mouse, a model for classical osteogenesis imperfecta

    PubMed Central

    Rousseau, Julie; Gioia, Roberta; Layrolle, Pierre; Lieubeau, Blandine; Heymann, Dominique; Rossi, Antonio; Marini, Joan C; Trichet, Valerie; Forlino, Antonella

    2014-01-01

    Gene silencing approaches have the potential to become a powerful curative tool for a variety of monogenic diseases caused by gain-of-function mutations. Classical osteogenesis imperfecta (OI), a dominantly inherited bone dysplasia, is characterized in its more severe forms by synthesis of structurally abnormal type I collagen, which exerts a negative effect on extracellular matrix. Specific suppression of the mutant (Mut) allele would convert severe OI forms to the mild type caused by a quantitative defect in normal collagen. Here, we describe the in vitro and ex vivo investigation of a small interfering RNA (siRNA) approach to allele-specific gene silencing using Mut Col1a1 from the Brtl mouse, a well-characterized model for classical human OI. A human embryonic kidney cell line, which expresses the firefly luciferase gene, combined with either wild-type or Mut Brtl Col1a1 exon 23 sequences, was used for the first screening. The siRNAs selected based on their specificity and the corresponding short hairpin RNAs (shRNAs) subcloned in a lentiviral vector were evaluated ex vivo in Brtl fibroblasts for their effect on collagen transcripts and protein. A preferential reduction of the Mut allele of up to 52% was associated with about 40% decrease of the Mut protein, with no alteration of cell proliferation. Interestingly, a downregulation of HSP47, a specific collagen chaperone known to be upregulated in some OI cases, was detected. Our data support further testing of shRNAs and their delivery by lentivirus as a strategy to specifically suppress the Mut allele in mesenchymal stem cells of OI patients for autologous transplantation. PMID:24022296

  12. Pitfalls in genetic testing: a case of a SNP in primer-annealing region leading to allele dropout in BRCA1.

    PubMed

    Silva, Felipe Carneiro; Torrezan, Giovana Tardin; Brianese, Rafael Canfield; Stabellini, Raquel; Carraro, Dirce Maria

    2017-07-01

    Hereditary breast and ovarian cancer is characterized by mutations in BRCA1 or BRCA2 genes and PCR-based screening techniques, such as capillary sequencing and next-generation sequencing (NGS), are considered gold standard methods for detection of pathogenic mutations in these genes. Single-nucleotide polymorphisms (SNPs) constitute a vast source of variation in the human genome and represent a risk for misdiagnosis in genetic testing, since the presence of a SNP in primer-annealing sites may cause false negative results due to allele dropout. However, few reports are available and the frequency of this phenomenon in diagnostic assays remains unknown. In this article, we investigated the causes of a false negative capillary sequencing result in BRCA1 involving a mother-daughter dyad. Using several molecular strategies, including different DNA polymerases, primer redesign, allele-specific PCR and NGS, we established that the initial misdiagnosis was caused by a SNP located in the primer-annealing region, leading to allele dropout of the mutated allele. Assuming that this problem can also occur in any PCR-based method that are widely used in diagnostic settings, the clinical report presented here draws attention for one of the limitations of genetic testing in general, for which medical and laboratory communities need to be aware.

  13. Bayesian Inference of Allele-Specific Gene Expression Indicates Abundant Cis-Regulatory Variation in Natural Flycatcher Populations

    PubMed Central

    Wang, Mi

    2017-01-01

    Abstract Polymorphism in cis-regulatory sequences can lead to different levels of expression for the two alleles of a gene, providing a starting point for the evolution of gene expression. Little is known about the genome-wide abundance of genetic variation in gene regulation in natural populations but analysis of allele-specific expression (ASE) provides a means for investigating such variation. We performed RNA-seq of multiple tissues from population samples of two closely related flycatcher species and developed a Bayesian algorithm that maximizes data usage by borrowing information from the whole data set and combines several SNPs per transcript to detect ASE. Of 2,576 transcripts analyzed in collared flycatcher, ASE was detected in 185 (7.2%) and a similar frequency was seen in the pied flycatcher. Transcripts with statistically significant ASE commonly showed the major allele in >90% of the reads, reflecting that power was highest when expression was heavily biased toward one of the alleles. This would suggest that the observed frequencies of ASE likely are underestimates. The proportion of ASE transcripts varied among tissues, being lowest in testis and highest in muscle. Individuals often showed ASE of particular transcripts in more than one tissue (73.4%), consistent with a genetic basis for regulation of gene expression. The results suggest that genetic variation in regulatory sequences commonly affects gene expression in natural populations and that it provides a seedbed for phenotypic evolution via divergence in gene expression. PMID:28453623

  14. Development of allele-specific multiplex PCR to determine the length of poly-T in intron 8 of CFTR

    PubMed Central

    Prada, Anne E.

    2014-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation analysis has been implemented for Cystic Fibrosis (CF) carrier screening, and molecular diagnosis of CF and congenital bilateral absence of the vas deferens (CBAVD). Although poly-T allele analysis in intron 8 of CFTR is required when a patient is positive for R117H, it is not recommended for routine carrier screening. Therefore, commercial kits for CFTR mutation analysis were designed either to mask the poly-T allele results, unless a patient is R117H positive, or to have the poly-T analysis as a standalone reflex test using the same commercial platform. There are other standalone assays developed to detect poly-T alleles, such as heteroduplex analysis, High Resolution Melting (HRM) curve analysis, allele-specific PCR (AS-PCR) and Sanger sequencing. In this report, we developed a simple and easy-to-implement multiplex AS-PCR assay using unlabeled standard length primers, which can be used as a reflex or standalone test for CFTR poly-T track analysis. Out of 115 human gDNA samples tested, results from our new AS-PCR matched to the previous known poly-T results or results from Sanger sequencing. PMID:25071991

  15. Allele-Specific Inhibition of Rhodopsin With an Antisense Oligonucleotide Slows Photoreceptor Cell Degeneration

    PubMed Central

    Murray, Susan F.; Jazayeri, Ali; Matthes, Michael T.; Yasumura, Douglas; Yang, Haidong; Peralta, Raechel; Watt, Andy; Freier, Sue; Hung, Gene; Adamson, Peter S.; Guo, Shuling; Monia, Brett P.; LaVail, Matthew M.; McCaleb, Michael L.

    2015-01-01

    Purpose To preserve photoreceptor cell structure and function in a rodent model of retinitis pigmentosa with P23H rhodopsin by selective inhibition of the mutant rhodopsin allele using a second generation antisense oligonucleotide (ASO). Methods Wild-type mice and rats were treated with ASO by intravitreal (IVT) injection and rhodopsin mRNA and protein expression were measured. Transgenic rats expressing the murine P23H rhodopsin gene (P23H transgenic rat Line 1) were administered either a mouse-specific P23H ASO or a control ASO. The contralateral eye was injected with PBS and used as a comparator control. Electroretinography (ERG) measurements and analyses of the retinal outer nuclear layer were conducted and correlated with rhodopsin mRNA levels. Results Rhodopsin mRNA and protein expression was reduced after a single ASO injection in wild-type mice with a rhodopsin-specific ASO. Transgenic rat eyes that express a murine P23H rhodopsin gene injected with a murine P23H ASO had a 181 ± 39% better maximum amplitude response (scotopic a-wave) as compared with contralateral PBS-injected eyes; the response in control ASO eyes was not significantly different from comparator contralateral eyes. Morphometric analysis of the outer nuclear layer showed a significantly thicker nuclear layer in eyes injected with murine P23H ASO (18%) versus contralateral PBS-injected eyes. Conclusions Allele-specific ASO-mediated knockdown of mutant P23H rhodopsin expression slowed the rate of photoreceptor degeneration and preserved the function of photoreceptor cells in eyes of the P23H rhodopsin transgenic rat. Our data indicate that ASO treatment is a potentially effective therapy for the treatment of retinitis pigmentosa. PMID:26436889

  16. Cloning of murine RNA polymerase I-specific TAF factors: Conserved interactions between the subunits of the species-specific transcription initiation factor TIF-IB/SL1

    PubMed Central

    Heix, Jutta; Zomerdijk, Joost C. B. M.; Ravanpay, Ali; Tjian, Robert; Grummt, Ingrid

    1997-01-01

    Promoter selectivity for all three classes of eukaryotic RNA polymerases is brought about by multimeric protein complexes containing TATA box binding protein (TBP) and specific TBP-associated factors (TAFs). Unlike class II- and III-specific TBP–TAF complexes, the corresponding murine and human class I-specific transcription initiation factor TIF-IB/SL1 exhibits a pronounced selectivity for its homologous promoter. As a first step toward understanding the molecular basis of species-specific promoter recognition, we cloned the cDNAs encoding the three mouse pol I-specific TBP-associated factors (TAFIs) and compared the amino acid sequences of the murine TAFIs with their human counterparts. The four subunits from either species can form stable chimeric complexes that contain stoichiometric amounts of TBP and TAFIs, demonstrating that differences in the primary structure of human and mouse TAFIs do not dramatically alter the network of protein–protein contacts responsible for assembly of the multimeric complex. Thus, primate vs. rodent promoter selectivity mediated by the TBP–TAFI complex is likely to be the result of cumulative subtle differences between individual subunits that lead to species-specific properties of RNA polymerase I transcription. PMID:9050847

  17. Cloning of murine RNA polymerase I-specific TAF factors: conserved interactions between the subunits of the species-specific transcription initiation factor TIF-IB/SL1.

    PubMed

    Heix, J; Zomerdijk, J C; Ravanpay, A; Tjian, R; Grummt, I

    1997-03-04

    Promoter selectivity for all three classes of eukaryotic RNA polymerases is brought about by multimeric protein complexes containing TATA box binding protein (TBP) and specific TBP-associated factors (TAFs). Unlike class II- and III-specific TBP-TAF complexes, the corresponding murine and human class I-specific transcription initiation factor TIF-IB/SL1 exhibits a pronounced selectivity for its homologous promoter. As a first step toward understanding the molecular basis of species-specific promoter recognition, we cloned the cDNAs encoding the three mouse pol I-specific TBP-associated factors (TAFIs) and compared the amino acid sequences of the murine TAFIs with their human counterparts. The four subunits from either species can form stable chimeric complexes that contain stoichiometric amounts of TBP and TAFIs, demonstrating that differences in the primary structure of human and mouse TAFIs do not dramatically alter the network of protein-protein contacts responsible for assembly of the multimeric complex. Thus, primate vs. rodent promoter selectivity mediated by the TBP-TAFI complex is likely to be the result of cumulative subtle differences between individual subunits that lead to species-specific properties of RNA polymerase I transcription.

  18. Association of HLA class I alleles with aloplecia areata in Chinese Hans.

    PubMed

    Xiao, Feng-Li; Yang, Sen; Yan, Kai-lin; Cui, Yong; Liang, Yan-Hua; Zhou, Fu-Sheng; Du, Wen-Hui; Gao, Min; Sun, Liang-Dan; Fan, Xing; Chen, Jian-Jun; Wang, Pei-Guang; Zhu, Ya-Gang; Zhou, Shun-Ming; Zhang, Xue-Jun

    2006-02-01

    Some studies suggested that human HLA status may potentiate development of the AA phenotype and exists ethic differences. No report has been published about HLA class I alleles associated with AA in Chinese Hans. To study the distribution of HLA class I alleles and haplotypes in Chinese Hans AA patients and the relation of HLA class I profile with age of onset, severity, duration of current attack, past history and family history. The polymerase chain reaction-sequence-specific primer (PCR-SSP) method was used to analyze the distribution of HLA class I alleles in 192 patients with AA and 252 healthy controls in Chinese Hans. The frequencies of HLA-A*02, -A*03, -B*18, -B*27, -B*52 and -Cw*0704 were significantly higher in patients than in controls. The A*2-B*18, A*2-B*27, A*2-B*52, A*2-Cw*0704, B*18-Cw*0704, B*27-Cw*0704, B*52-Cw*0704 were found as high-risk haplotypes in developing AA in this study. The HLA-A*02 and -A*03 were observed increased frequencies in patients less than 50% hair loss, and HLA-B*27 equally in patients of 50-99% hair loss, alopecia totalis and alopecia universalis. The frequencies of HLA-A*02 and -B*27 were significantly raised in recurrent patients, and ones of HLA-A*02, -A*03 and -B*27 similarly in patients without a positive family history. This study demonstrated the positive association of HLA class I alleles and haplotypes with AA. There may be differences in genetic background in patients with different age of onset, grade of scalp hair loss, duration of current attack, a past history and a family history.

  19. Development of a novel allele-specific Rfo marker and creation of Ogura CMS fertility-restored interspecific hybrids in Brassica oleracea.

    PubMed

    Yu, Hai-Long; Fang, Zhi-Yuan; Liu, Yu-Mei; Yang, Li-Mei; Zhuang, Mu; Lv, Hong-Hao; Li, Zhan-Sheng; Han, Feng-Qing; Liu, Xiao-Ping; Zhang, Yang-Yong

    2016-08-01

    A novel allele-specific Rfo marker was developed and proved to be effective for MAS of Rfo gene in B. oleracea background and six Ogu-CMS fertility-restored interspecific hybrids were created for the first time. Ogura cytoplasmic male sterility (Ogu-CMS) has been extensively used for Brassica oleracea hybrid production. However, because of maternal inheritance, all the hybrids produced by CMS lines are male sterile and cannot be self-pollinated, which prohibits germplasm maintenance and innovation. This problem can be overcome by using the Ogu-CMS restorer line, but restorer material is absent in B. oleracea crops. Here, Rfo, a fertility-restored gene of Ogu-CMS, was transferred from rapeseed restorer lines into a Chinese kale Ogu-CMS line using interspecific hybridization combined with embryo rescue. Nine interspecific, triploid plant progenies were identified at morphological and ploidy level, with phenotypes intermediate between those of rapeseed and Chinese kale. Because the Rfo marker (Hu et al., Mol Breeding 22:663-674, 2008) cannot distinguish the Rfo and its homologies under a B. oleracea background, a novel allele-specific Rfo marker was developed based on the BLAST analysis of highly homologous Rfo sequences in B. oleracea. Screening using the novel Rfo marker found that six interspecific hybrids carrying Rfo were also fertile, although fertility varied during different flowering periods. Furthermore, BC1 offsprings with the Rfo gene were selected with the allele-specific Rfo marker and showed restored fertility. These results indicated that the novel allele-specific marker could be used for the MAS of Rfo gene in B. oleracea, and this study lays the foundation for the development of Ogu-CMS restorer material in cabbage and its related other subspecies.

  20. [Molecular authentication of Jinyinhua formula granule by using allele-specific PCR].

    PubMed

    Jiang, Chao; Tu, Li-Chan; Yuan, Yuan; Huang, Lu-Qi; Gao, Wei; Jin, Yan

    2017-07-01

    Traditional authentication method is hard to identify herb's authenticity of traditional Chinese medicine(TCM) formula granules because they have lost all their morphological characteristics. In this study, a new allele-specific PCR method was established for identifying the authentication of Jinyinhua formula granule (made from Lonicerae Japonicae Flos) based on an SNP site in trnL-trnF fragment. Genomic DNA was successfully extracted from Lonicerae Japonicae Flos and its formula granules by using an improved spin column method and then PCR was performed with the designed primer. Approximately 110 bp specific bands was obtained only in the authentic Lonicerae Japonicae Flos and its formula granules, while no bands were found in fake mixed products. In addition, the PCR product sequence was proved from Lonicerae Japonicae Flos trnL-trnF sequence by using BLAST method. Therefore, DNA molecular authentication method could make up the limitations of character identification method and microscopic identification, and quickly identify herb's authenticity of TCM formula granules, with enormous potential for market supervision and quality control. Copyright© by the Chinese Pharmaceutical Association.

  1. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes.

    PubMed

    Matsa, Elena; Dixon, James E; Medway, Christopher; Georgiou, Orestis; Patel, Minal J; Morgan, Kevin; Kemp, Paul J; Staniforth, Andrew; Mellor, Ian; Denning, Chris

    2014-04-01

    Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K(+) currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart.

  2. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes

    PubMed Central

    Matsa, Elena; Dixon, James E.; Medway, Christopher; Georgiou, Orestis; Patel, Minal J.; Morgan, Kevin; Kemp, Paul J.; Staniforth, Andrew; Mellor, Ian; Denning, Chris

    2014-01-01

    Aims Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. Methods and results We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K+ currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). Conclusions These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart. PMID:23470493

  3. Powerful Identification of Cis-regulatory SNPs in Human Primary Monocytes Using Allele-Specific Gene Expression

    PubMed Central

    Almlöf, Jonas Carlsson; Lundmark, Per; Lundmark, Anders; Ge, Bing; Maouche, Seraya; Göring, Harald H. H.; Liljedahl, Ulrika; Enström, Camilla; Brocheton, Jessy; Proust, Carole; Godefroy, Tiphaine; Sambrook, Jennifer G.; Jolley, Jennifer; Crisp-Hihn, Abigail; Foad, Nicola; Lloyd-Jones, Heather; Stephens, Jonathan; Gwilliam, Rhian; Rice, Catherine M.; Hengstenberg, Christian; Samani, Nilesh J.; Erdmann, Jeanette; Schunkert, Heribert; Pastinen, Tomi; Deloukas, Panos; Goodall, Alison H.; Ouwehand, Willem H.; Cambien, François; Syvänen, Ann-Christine

    2012-01-01

    A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers. PMID:23300628

  4. Fluorescence resonance energy transfer analysis of escherichia coli RNA polymerase and polymerase-DNA complexes.

    PubMed

    Heyduk, T; Niedziela-Majka, A

    Fluorescence resonance energy transfer (FRET) is a technique allowing measurements of atomic-scale distances in diluted solutions of macromolecules under native conditions. This feature makes FRET a powerful tool to study complicated biological assemblies. In this report we review the applications of FRET to studies of transcription initiation by Escherichia coli RNA polymerase. The versatility of FRET for studies of a large macromolecular assembly such as RNA polymerase is illustrated by examples of using FRET to address several different aspects of transcription initiation by polymerase. FRET has been used to determine the architecture of polymerase, its complex with single-stranded DNA, and the conformation of promoter fragment bound to polymerase. FRET has been also used as a binding assay to determine the thermodynamics of promoter DNA fragment binding to the polymerase. Functional conformational changes in the specificity subunit of polymerase responsible for the modulation of the promoter binding activity of the enzyme and the mechanistic aspects of the transition from the initiation to the elongation complex were also investigated. Copyright 2002 Wiley Periodicals, Inc.

  5. HLA-A, -B, -C, -DRB1 and -DQB1 alleles and haplotypes in 951 Southeast Asia Malays from Peninsular Malaysia.

    PubMed

    Tan, Lay-Kim; Mohd-Farid, Baharin; Salsabil, Sulaiman; Heselynn, Hussein; Wahinuddin, Sulaiman; Lau, Ing-Soo; Gun, Suk-Chyn; Nor-Suhaila, Sharil; Eashwary, M; Mohd-Shahrir, Mohamed Said; Ainon, Mohd-Mokhtar; Azmillah, Rosman; Muhaini, Othman; Shahnaz, Murad; Too, Chun-Lai

    2016-10-01

    A total of 951 Southeast Asia Malays from Peninsular Malaysia were genotyped for HLA-A, -B, -C -DRB1, and -DQB1 loci using polymerase chain reaction sequence-specific oligonucleotide probe hybridization methods. In this report, there were significant deviation from Hardy-Weinberg proportions for the HLA-A (p<0.0001), -B (p<0.0001), -DRB1 (p<0.0001) and -DQB1 (p<0.01) loci. Minor deviations from HWEP were detected for HLA-C (p=0.01). This genotype data was available in Allele Frequencies Network Database (AFND) Gonzalez-Galarza et al. (2015). Copyright © 2016. Published by Elsevier Inc.

  6. A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNA-seq data

    PubMed Central

    Skelly, Daniel A.; Johansson, Marnie; Madeoy, Jennifer; Wakefield, Jon; Akey, Joshua M.

    2011-01-01

    Variation in gene expression is thought to make a significant contribution to phenotypic diversity among individuals within populations. Although high-throughput cDNA sequencing offers a unique opportunity to delineate the genome-wide architecture of regulatory variation, new statistical methods need to be developed to capitalize on the wealth of information contained in RNA-seq data sets. To this end, we developed a powerful and flexible hierarchical Bayesian model that combines information across loci to allow both global and locus-specific inferences about allele-specific expression (ASE). We applied our methodology to a large RNA-seq data set obtained in a diploid hybrid of two diverse Saccharomyces cerevisiae strains, as well as to RNA-seq data from an individual human genome. Our statistical framework accurately quantifies levels of ASE with specified false-discovery rates, achieving high reproducibility between independent sequencing platforms. We pinpoint loci that show unusual and biologically interesting patterns of ASE, including allele-specific alternative splicing and transcription termination sites. Our methodology provides a rigorous, quantitative, and high-resolution tool for profiling ASE across whole genomes. PMID:21873452

  7. The association between oxcarbazepine-induced maculopapular eruption and HLA-B alleles in a Northern Han Chinese population

    PubMed Central

    2013-01-01

    Background We investigated the association between oxcarbazepine (OXC)-induced maculopapular eruption (MPE) and HLA-B alleles in a northern Han Chinese population, and conducted an analysis of clinical risk factors for OXC-MPE. Methods Forty-two northern Han Chinese patients who had been treated with OXC in Changchun, China were genotyped. Among them were 14 cases with OXC-induced MPE; the remaining 28 were OXC-tolerant. The HLA-B allele frequencies of the normal control group were found in the Allele Frequency Net Database. Polymerase chain reaction-sequence specific primer( PCR-SSP )was used for HLA-B*1502 testing and direct sequencing for four-digit genotype determination. Results Four-digit allele sequencing showed that there was no statistically significant difference in the frequency of the HLA-B*1502 allele between the OXC-MPE and OXC-tolerant controls (3.6% versus 7.5%, OR = 0.38, 95% CI = 0.04–3.40, P = 0.65), as well as between OXC-MPE and normal controls (3.6% versus 2.4%, OR = 1.54, 95% CI = 0.20–11.73, P = 0.49). However, a significant difference in the frequency of HLA-B*3802 alleles was found between the MPE group and normal controls (10.7% versus 1.9%, OR = 6.329, 95% CI = 1.783-22.460, P = 0.018). There was no significant difference in terms of age, gender, or final OXC dose between the OXC-MPE and OXC-tolerant groups. Conclusions There was no significant association between OXC-MPE and HLA-B*1502 in the northern Han Chinese population in our study. Instead, HLA-B*3802 was found to be a potential risk factor for OXC-MPE. PMID:23829937

  8. GeneiASE: Detection of condition-dependent and static allele-specific expression from RNA-seq data without haplotype information

    PubMed Central

    Edsgärd, Daniel; Iglesias, Maria Jesus; Reilly, Sarah-Jayne; Hamsten, Anders; Tornvall, Per; Odeberg, Jacob; Emanuelsson, Olof

    2016-01-01

    Allele-specific expression (ASE) is the imbalance in transcription between maternal and paternal alleles at a locus and can be probed in single individuals using massively parallel DNA sequencing technology. Assessing ASE within a single sample provides a static picture of the ASE, but the magnitude of ASE for a given transcript may vary between different biological conditions in an individual. Such condition-dependent ASE could indicate a genetic variation with a functional role in the phenotypic difference. We investigated ASE through RNA-sequencing of primary white blood cells from eight human individuals before and after the controlled induction of an inflammatory response, and detected condition-dependent and static ASE at 211 and 13021 variants, respectively. We developed a method, GeneiASE, to detect genes exhibiting static or condition-dependent ASE in single individuals. GeneiASE performed consistently over a range of read depths and ASE effect sizes, and did not require phasing of variants to estimate haplotypes. We observed condition-dependent ASE related to the inflammatory response in 19 genes, and static ASE in 1389 genes. Allele-specific expression was confirmed by validation of variants through real-time quantitative RT-PCR, with RNA-seq and RT-PCR ASE effect-size correlations r = 0.67 and r = 0.94 for static and condition-dependent ASE, respectively. PMID:26887787

  9. [Distribution of DRD4 and DAT1 alleles from dopaminergic system in a mixed Chilean population].

    PubMed

    Vieyra, Gonzalo; Moraga, Mauricio; Henríquez, Hugo; Aboitiz, Francisco; Rothhammer, Francisco

    2003-02-01

    Genes for dopamine receptor DRD4 and dopamine transporter DAT1 are highly polymorphic. Two alleles of these genes, namely the DRD4.7 and the DAT1*9 are frequently associated to the attention deficit disorder with hyperactivity. In Europe, the allele for DRD4 receptor with four repetitions (DRD4.4) has the highest frequency, with a median of 69%, followed by DRD4.7, with a frequency of 15%. South American indigenous populations have higher frequencies for DRD4.7 (61%) than for DRD4.4 (29%). The ten repetition allele for DAT1 transporter has a high frequency among Europeans (72%) and Amerindians (100%). The allele DAT1*9 is the second most frequent allele. To study the frequency of DRD4 and DAT1 alleles in a Chilean population sample. One hundred serum samples were obtained from blood donors in two public hospitals in Santiago. Polymorphic regions for DRD4 and DAT1 were amplified by polymerase chain reaction. The allele DRD4.4 had a frequency of 59% and DRD4.7 a frequency of 27%. The allele DAT1*10 had a frequency of 74%, followed by DAT 1*9, with a frequency of 23%. In a Chilean population sample, the frequency of DRD4 and DAT1 alleles was very similar to that of European populations.

  10. A method to discriminate between closely related bovine major histocompatibility complex class I alleles by combining established PCR-SSP assays with RFLPs.

    PubMed

    Svitek, N; Nzau, B; Steinaa, L; Nene, V

    2015-04-01

    We have developed a polymerase chain reaction-sequence-specific primers-restriction fragment length polymorphism (PCR-SSP-RFLP) method to rapidly differentiate between the A18 and A18 variant (v) BoLA haplotypes and between A14 and A15/A15v BoLA haplotypes in Holstein/Friesian cattle. We used published SSP to PCR amplify BoLA alleles expressed in animals of known haplotype and exposed the amplicons to the restriction enzyme PvuII that was predicted to cut at a unique site in the middle of BoLA-6*01302 (A18v) and BoLA-1*00901 (A15) but not in BoLA-6*01301 (A18) or BoLA-1*02301 (A14) alleles. Whereas the method does not discriminate between the A15 and A15v haplotypes, as the BoLA-1*00902 allele associated with A15v also contains a PvuII site, we are interested in cattle of A18 and A14 haplotype for vaccine related studies. Our results also indicated that the BoLA-6*01302 (A18v) allele is much more abundant than BoLA-6*01301 (A18) in the cattle that we sampled. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Quantum dots for a high-throughput Pfu polymerase based multi-round polymerase chain reaction (PCR).

    PubMed

    Sang, Fuming; Zhang, Zhizhou; Yuan, Lin; Liu, Deli

    2018-02-26

    Multi-round PCR is an important technique for obtaining enough target DNA from rare DNA resources, and is commonly used in many fields including forensic science, ancient DNA analysis and cancer research. However, multi-round PCR is often aborted, largely due to the accumulation of non-specific amplification during repeated amplifications. Here, we developed a Pfu polymerase based multi-round PCR technique assisted by quantum dots (QDs). Different PCR assays, DNA polymerases (Pfu and Taq), DNA sizes and GC amounts were compared in this study. In the presence of QDs, PCR specificity could be retained even in the ninth-round amplification. Moreover, the longer and more complex the targets were, the earlier the abortion happened in multi-round PCR. However, no obvious enhancement of specificity was found in multi-round PCR using Taq DNA polymerase. Significantly, the fidelity of Pfu polymerase based multi-round PCR was not sacrificed in the presence of QDs. Besides, pre-incubation at 50 °C for an hour had no impact on multi-round PCR performance, which further authenticated the hot start effect of QDs modulated in multi-round PCR. The findings of this study demonstrated that a cost-effective and promising multi-round PCR technique for large-scale and high-throughput sample analysis could be established with high specificity, sensibility and accuracy.

  12. A TBP-containing multiprotein complex (TIF-IB) mediates transcription specificity of murine RNA polymerase I.

    PubMed

    Eberhard, D; Tora, L; Egly, J M; Grummt, I

    1993-09-11

    TIF-IB is a transcription factor which interacts with the mouse ribosomal gene promoter and nucleates the formation of an initiation complex containing RNA polymerase I (Pol I). We have purified this factor to near homogeneity and demonstrate that TIF-IB is a large complex (< 200 kDa) which contains several polypeptides. One of the subunits present in this protein complex is the TATA-binding protein (TBP) as revealed by copurification of TIF-IB activity and TBP over different chromatographic steps including immunoaffinity purification. In addition to TBP, three tightly associated proteins (TAFs-I) with apparent molecular weights of 95, 68, and 48 kDa are contained in this multimeric complex. This subunit composition is similar--but not identical--to the analogous human factor SL1. Depletion of TBP from TIF-IB-containing fractions by immunoprecipitation eliminates TIF-IB activity. Neither TBP alone nor fractions containing other TBP complexes are capable of substituting for TIF-IB activity. Therefore, TIF-IB is a unique complex with Pol I-specific TAFs distinct from other TBP-containing complexes. The identification of TBP as an integral part of the murine rDNA promoter-specific transcription initiation factor extends the previously noted similarity of transcriptional initiation by the three nuclear RNA polymerases and underscores the importance of TAFs in determining promoter specificity.

  13. A TBP-containing multiprotein complex (TIF-IB) mediates transcription specificity of murine RNA polymerase I.

    PubMed Central

    Eberhard, D; Tora, L; Egly, J M; Grummt, I

    1993-01-01

    TIF-IB is a transcription factor which interacts with the mouse ribosomal gene promoter and nucleates the formation of an initiation complex containing RNA polymerase I (Pol I). We have purified this factor to near homogeneity and demonstrate that TIF-IB is a large complex (< 200 kDa) which contains several polypeptides. One of the subunits present in this protein complex is the TATA-binding protein (TBP) as revealed by copurification of TIF-IB activity and TBP over different chromatographic steps including immunoaffinity purification. In addition to TBP, three tightly associated proteins (TAFs-I) with apparent molecular weights of 95, 68, and 48 kDa are contained in this multimeric complex. This subunit composition is similar--but not identical--to the analogous human factor SL1. Depletion of TBP from TIF-IB-containing fractions by immunoprecipitation eliminates TIF-IB activity. Neither TBP alone nor fractions containing other TBP complexes are capable of substituting for TIF-IB activity. Therefore, TIF-IB is a unique complex with Pol I-specific TAFs distinct from other TBP-containing complexes. The identification of TBP as an integral part of the murine rDNA promoter-specific transcription initiation factor extends the previously noted similarity of transcriptional initiation by the three nuclear RNA polymerases and underscores the importance of TAFs in determining promoter specificity. Images PMID:8414971

  14. Specific β-Turns Precede PPIIL Structures Binding to Allele-Specific HLA-DRβ1* PBRs in Fully-Protective Malaria Vaccine Components

    PubMed Central

    Bermudez, Adriana; Alba, Martha P.; Vanegas, Magnolia; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2018-01-01

    The 3D structural analysis of 62 peptides derived from highly pathogenic Plasmodium falciparum malaria parasite proteins involved in host cell invasion led to finding a striking association between particular β-turn types located in the N-terminal peripheral flanking residue region (preceding the polyproline II left-handed structures fitting into the HLA-DRβ* allele family) and modified immune protection-inducing protein structure induced long-lasting protective immunity. This is the first time association between two different secondary structures associated with a specific immunological function has been described: full, long-lasting protective immunity. PMID:29682500

  15. Specific β-Turns Precede PPIIL Structures Binding to Allele-Specific HLA-DRβ1* PBRs in Fully-Protective Malaria Vaccine Components.

    PubMed

    Bermudez, Adriana; Alba, Martha P; Vanegas, Magnolia; Patarroyo, Manuel A; Patarroyo, Manuel E

    2018-01-01

    The 3D structural analysis of 62 peptides derived from highly pathogenic Plasmodium falciparum malaria parasite proteins involved in host cell invasion led to finding a striking association between particular β-turn types located in the N-terminal peripheral flanking residue region (preceding the polyproline II left-handed structures fitting into the HLA-DRβ * allele family) and modified i mmune protection-inducing protein structure induced long-lasting protective immunity. This is the first time association between two different secondary structures associated with a specific immunological function has been described: full, long-lasting protective immunity.

  16. Specific β-turns precede PPIIL structures binding to allele-specific HLA-DRβ1* PBRs in fully-protective malaria vaccine components

    NASA Astrophysics Data System (ADS)

    Bermudez, Adriana; Alba, Martha P.; Vanegas, Magnolia; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2018-04-01

    The 3D structural analysis of 62 peptides derived from highly pathogenic Plasmodium falciparum malaria parasite proteins involved in host cell invasion led to finding a striking association between particular β-turn types located in the N-terminal peripheral flanking residue region (preceding the polyproline II left-handed structures fitting into the HLA-DRβ* allele family) and modified immune protection-inducing protein structure induced long-lasting protective immunity. This is the first time association between two different secondary structures associated with a specific immunological function has been described: full, long-lasting protective immunity.

  17. Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains

    PubMed Central

    Brown-Guedira, Gina; Haley, Scott D.; McMaster, Gregory S.; Reid, Scott D.; Smith, Jared; Byrne, Patrick F.

    2016-01-01

    Heading date in wheat (Triticum aestivum L.) and other small grain cereals is affected by the vernalization and photoperiod pathways. The reduced-height loci also have an effect on growth and development. Heading date, which occurs just prior to anthesis, was evaluated in a population of 299 hard winter wheat entries representative of the U.S. Great Plains region, grown in nine environments during 2011–2012 and 2012–2013. The germplasm was evaluated for candidate genes at vernalization (Vrn-A1, Vrn-B1, and Vrn-D1), photoperiod (Ppd-A1, Ppd-B1 and Ppd-D1), and reduced-height (Rht-B1 and Rht-D1) loci using polymerase chain reaction (PCR) and Kompetitive Allele Specific PCR (KASP) assays. Our objectives were to determine allelic variants known to affect flowering time, assess the effect of allelic variants on heading date, and investigate changes in the geographic and temporal distribution of alleles and haplotypes. Our analyses enhanced understanding of the roles developmental genes have on the timing of heading date in wheat under varying environmental conditions, which could be used by breeding programs to improve breeding strategies under current and future climate scenarios. The significant main effects and two-way interactions between the candidate genes explained an average of 44% of variability in heading date at each environment. Among the loci we evaluated, most of the variation in heading date was explained by Ppd-D1, Ppd-B1, and their interaction. The prevalence of the photoperiod sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b has gradually decreased in U.S. Great Plains germplasm over the past century. There is also geographic variation for photoperiod sensitive and reduced-height alleles, with germplasm from breeding programs in the northern Great Plains having greater incidences of the photoperiod sensitive alleles and lower incidence of the semi-dwarf alleles than germplasm from breeding programs in the central or southern plains. PMID:27058239

  18. A and MdMYB1 allele-specific markers controlling apple (Malus x domestica Borkh.) skin color and suitability for marker-assisted selection.

    PubMed

    Zhang, X J; Wang, L X; Chen, X X; Liu, Y L; Meng, R; Wang, Y J; Zhao, Z Y

    2014-10-31

    Pre-selection for fruit skin color at the seedling stage would be highly advantageous, with marker-assisted selection offering a potential method for apple pre-selection. A and MdMYB1 alleles are allele-specific DNA markers that are potentially associated with apple skin color, and co-segregate with the Rf and Rni loci, respectively. Here, we assessed the potential application of these 2 alleles for marker-assisted breeding across 30 diverse cultivars and 2 apple seedling progenies. The red skin color phenotype was usually associated with the MdMYB1-1 allele and A(1) allele, respectively, while the 2 molecular markers provided approximately 91% predictability in the 'Fuji' x 'Cripps Pink' and 'Fuji' x 'Gala' progenies. The results obtained from the 30 cultivars and 2 progenies were consistent for the 2 molecular markers. Hence, the results supported that Rf and Rni could be located in a gene cluster, or even correspond to alleles of the same gene. Our results are consistent with the hypothesis that red/yellow dimorphism is controlled by a monogenic system, with the presence of the red anthocyanin pigmentation being dominant. In addition, our results supported that the practical utilization of the 2 function markers to efficiently and accurately select red-skinned apple cultivars in apple scion breeding programs.

  19. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity.

    PubMed

    Sata, F; Sapone, A; Elizondo, G; Stocker, P; Miller, V P; Zheng, W; Raunio, H; Crespi, C L; Gonzalez, F J

    2000-01-01

    To determine the existence of mutant and variant CgammaP3A4 alleles in three racial groups and to assess functions of the variant alleles by complementary deoxyribonucleic acid (cDNA) expression. A bacterial artificial chromosome that contains the complete CgammaP3A4 gene was isolated and the exons and surrounding introns were directly sequenced to develop primers to polymerase chain reaction (PCR) amplify and sequence the gene from lymphocyte DNA. DNA samples from Chinese, black, and white subjects were screened. Mutating the affected amino acid in the wild-type cDNA and expressing the variant enzyme with use of the baculovirus system was used to functionally evaluate the variant allele having a missense mutation. To investigate the existence of mutant and variant CgammaP3A4 alleles in humans, all 13 exons and the 5'-flanking region of the human CgammaP3A4 gene in three racial groups were sequenced and four alleles were identified. An A-->G point mutation in the 5'-flanking region of the human CgammaP3A4 gene, designated CgammaP3A4*1B, was found in the three different racial groups. The frequency of this allele in a white population was 4.2%, whereas it was 66.7% in black subjects. The CgammaP3A4*1B allele was not found in Chinese subjects. A second variant allele, designated CgammaP3A4*2, having a Ser222Pro change, was found at a frequency of 2.7% in the white population and was absent in the black subjects and Chinese subjects analyzed. Baculovirus-directed cDNA expression revealed that the CYP3A4*2 P450 had a lower intrinsic clearance for the CYP3A4 substrate nifedipine compared with the wild-type enzyme but was not significantly different from the wild-type enzyme for testosterone 6beta-hydroxylation. Another rare allele, designated CgammaP3A4*3, was found in a single Chinese subject who had a Met445Thr change in the conserved heme-binding region of the P450. These are the first examples of potential function polymorphisms resulting from missense mutations in

  20. Pyrosequencing-based validation of a simple cell-suspension polymerase chain reaction assay for Campylobacter with application of high-processivity polymerase and novel internal amplification controls for rapid and specific detection.

    PubMed

    Oakley, Brian B; Line, J Eric; Berrang, Mark E; Johnson, Jessica M; Buhr, R Jeff; Cox, Nelson A; Hiett, Kelli L; Seal, Bruce S

    2012-02-01

    Although Campylobacter is an important food-borne human pathogen, there remains a lack of molecular diagnostic assays that are simple to use, cost-effective, and provide rapid results in research, clinical, or regulatory laboratories. Of the numerous Campylobacter assays that do exist, to our knowledge none has been empirically tested for specificity using high-throughput sequencing. Here we demonstrate the power of next-generation sequencing to determine the specificity of a widely cited Campylobacter-specific polymerase chain reaction (PCR) assay and describe a rapid method for direct cell suspension PCR to quickly and easily screen samples for Campylobacter. We present a specific protocol which eliminates the need for time-consuming and expensive genomic DNA extractions and, using a high-processivity polymerase, demonstrate conclusive screening of samples in <1 h. Pyrosequencing results show the assay to be extremely (>99%) sensitive, and spike-back experiments demonstrated a detection threshold of <10(2) CFU mL(-1). Additionally, we present 2 newly designed broad-range bacterial primer sets targeting the 23S rRNA gene that have wide applicability as internal amplification controls. Empirical testing of putative taxon-specific assays using high-throughput sequencing is an important validation step that is now financially feasible for research, regulatory, or clinical applications. Published by Elsevier Inc.

  1. HLA-DQBl*0402 alleles polymorphisms detected in Javanese HIV patients with positive anti-Toxoplasma gondii IgM

    NASA Astrophysics Data System (ADS)

    Sari, Yulia; Haryati, Sri; Prasetyo, Afiono Agung; Hartono, Adnan, Zainal Arifin

    2017-02-01

    The human leukocyte antigen (HLA)-DQB1 gene polymorphisms may associated with the infection risk of Toxoplasma gondii in HIV patients. The HLA-DQB1*0402 in HIV-1-positive patients could be considered risk factors for developing neurological opportunistic infections, mainly Toxoplasma encephalitis. However, the HLA-DQB1*0402 gene polymorphisms status in the Javanese HIV patients is unknown. This study evaluated the prevalence of HLA-DQB*0402 alleles polymorphisms in Javanese HIV patients with positive anti-Toxoplasma gondii IgM status. Since 2009 our research group performing a molecular epidemiology of blood borne viruses in Central Java Indonesia, by collecting the epidemiological and clinical data from the high risk communities. All blood samples were screened for blood borne pathogens by serological and molecular assays including for HIV and Toxoplasma gondii. The genomic DNA was isolated from the whole blood samples. Genetic polymorphisms of HLA-DQB1*0402 alleles were detected with polymerase chain reaction-sequence-specific primers (PCR-SSPs) technique. The genotypes were defined according to generated fragment patterns in the agarose gel electrophoresis analysis of PCR products. All of the samples were tested at least in duplicate. HLA-DQB1*0402 alleles were detected in 20.8% (16/77) patients and not detected in all HIV positive samples with negative anti-Toxoplasma gondii IgM status (n= 200). The HLA-DQB1*0402 alleles polymorphisms were detected in Javanese HIV patients with positive anti-Toxoplasma gondii IgM. The polymorphisms found may have association with the infection risk of Toxoplasma gondii in HIV patients.

  2. HLA-DRB1*08 allele may help to distinguish between type 1 diabetes mellitus and type 2 diabetes mellitus in Mexican children.

    PubMed

    Rodríguez-Ventura, Ana L; Yamamoto-Furusho, Jesus K; Coyote, Ninel; Dorantes, Luis M; Ruiz-Morales, Jorge A; Vargas-Alarcón, Gilberto; Granados, Julio

    2007-02-01

    It may be difficult to distinguish type 1 diabetes mellitus (T1DM) from type 2 diabetes mellitus (T2DM) in the pediatric population. Autoantibodies may help to differentiate both types of diabetes, but sometimes these are positive in patients with T2DM and negative in patients with T1DM. The human leukocyte antigen (HLA)-DR genotype has been associated with T1DM and with T2DM only in adults and in determined cases. To determine the differences in HLA class II allele frequencies in Mexican children with T1DM and T2DM. We included 72 children with T1DM, 28 children with T2DM, and 99 healthy controls. All were Mexican, and diabetes was diagnosed according to the clinical and laboratory criteria established by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. The HLA-DRB1 typing was performed using polymerase chain reaction-sequence-specific oligonucleotide probe and polymerase chain reaction sequence-specific primers. We found an increased frequency of HLA-DRB1*08 and a decreased frequency of HLA-DRB1*04 in the group with T2DM vs. T1DM [p = 0.0001, odds ratio (OR) = 10.58, 95% confidence interval (CI) = 3-40.8 and p = 0.0006, OR = 0.24, 95% CI = 0.11-0.53, respectively]. No significant differences were found between HLA-DRB1 alleles in T2DM vs. controls. In the group with T1DM, there was a significantly increased frequency of the HLA-DR4 and HLA-DR3 alleles relative to controls (p = 0.0000001, OR = 3.59, 95% CI = 2.2-5.8 and p = 0.00009, OR = 4.66, 95% CI = 2.1-10.3, respectively). There are significant differences in the HLA profile in Mexican children with T1DM and T2DM. HLA typing could play a role in the differentiation between both types of diabetes in this population.

  3. HLA-A, HLA-B, and HLA-DRB1 Allele and Haplotype Frequencies in Renal Transplant Candidates in a Population in Southern Brazil.

    PubMed

    Saito, Patrícia Keiko; Yamakawa, Roger Haruki; Noguti, Erika Noda; Bedendo, Gustavo Borelli; Júnior, Waldir Veríssimo da Silva; Yamada, Sérgio Seiji; Borelli, Sueli Donizete

    2016-05-01

    Very few studies have examined the diversity of human leukocyte antigens (HLA) in the Brazilian renal transplant candidates. The frequencies of the HLA-A, HLA-B, and HLA-DRB1 alleles, haplotypes and phenotypes were studied in 522 patients with chronic renal failure, renal transplant candidates, registered at the Transplant Centers in north/northwestern Paraná State, southern Brazil. Patients were classified according to the ethnic group (319 whites [Caucasians], 134 mestizos [mixed race descendants of Europeans, Africans, and Amerindians; browns or "pardos"] and 69 blacks). The HLA typing was performed by the polymerase chain reaction sequence-specific oligonucleotide method (PCR-SSO), combined with Luminex technology. In the analysis of the total samples, 20 HLA-A, 32 HLA-B, and 13 HLA-DRB1 allele groups were identified. The most frequent allele groups for each HLA locus were HLA-A*02 (25.4%), HLA-B*44 (10.9%), and HLA-DRB1*13 (13.9%). The most frequent haplotypes were HLA-A*01-B*08-DRB1*03 (2.3%), A*02-B*44-DRB1*07 (1.2%), and A*03-B*07-DRB1*11 (1.0%). Significant differences (P < 0.05) were observed in the HLA-A*68, B*08, and B*58 allele frequencies among ethnic groups. This study provides the first data on the HLA-A, HLA-B, and HLA-DRB1 allele, phenotype and haplotype frequencies of renal transplant candidates in a population in southern Brazil. © 2015 Wiley Periodicals, Inc.

  4. Allele-specific HLA-DR typing by mass spectrometry: an alternative to hybridization-based typing methods.

    PubMed

    Worrall, T A; Schmeckpeper, B J; Corvera, J S; Cotter, R J

    2000-11-01

    The primer oligomer base extension (PROBE) reaction, combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, is used to characterize HLA-DR2 polymorphism. Alleles are distinguished rapidly and accurately by measuring the mass of primer extension products at every known variable region of HLA-DR2 alleles. Since differentiation of alleles by PROBE relies on measuring differences in extension product mass rather than differences in hybridization properties, mistyped alleles resulting from nonspecific hybridization are absent. The method shows considerable potential for high-throughput screening of HLA-DR polymorphism in a chip-based format, including rapid tissue typing of unrelated volunteer donors.

  5. Role of a GAG Hinge in the Nucleotide-induced Conformational Change Governing Nucleotide Specificity by T7 DNA Polymerase*

    PubMed Central

    Jin, Zhinan; Johnson, Kenneth A.

    2011-01-01

    A nucleotide-induced change in DNA polymerase structure governs the kinetics of polymerization by high fidelity DNA polymerases. Mutation of a GAG hinge (G542A/G544A) in T7 DNA polymerase resulted in a 1000-fold slower rate of conformational change, which then limited the rate of correct nucleotide incorporation. Rates of misincorporation were comparable to that seen for wild-type enzyme so that the net effect of the mutation was a large decrease in fidelity. We demonstrate that a presumably modest change from glycine to alanine 20 Å from the active site can severely restrict the flexibility of the enzyme structure needed to recognize and incorporate correct substrates with high specificity. These results emphasize the importance of the substrate-induced conformational change in governing nucleotide selectivity by accelerating the incorporation of correct base pairs but not mismatches. PMID:20978284

  6. A multiplex allele-specific real-time PCR assay for screening of ESR1 mutations in metastatic breast cancer.

    PubMed

    Wang, Ting; Liu, Jin-Hui; Zhang, Jie; Wang, Le; Chen, Chao; Dai, Peng-Gao

    2015-04-01

    Acquired resistance to endocrine-based therapies occurs in virtually all estrogen receptor-α (ERα, encoded by ESR1) positive breast cancer patients. The underlying molecular mechanism is attributed to the activating mutations in ESR1. These mutations provide an exciting opportunity for the development of new antagonists that specifically inhibit the mutant proteins. Therefore, accurate detection of ESR1 mutations is of critical importance in clinical practice. We carried out a single tube, multiplex allele-specific real-time PCR assay for the detection of four ESR1 mutations (Y537S, Y537C, Y537N, and D538G). The assay was found to be highly specific and sensitive. With this assay, as low as 1% mutant DNA template in wild type DNA could be detected. Fifteen DNA samples were prepared from archived formalin-fixed paraffin-embedded metastatic breast cancer biopsies. They were further screened with this assay, and three samples were identified as ESR1 mutant. The results were validated with pyrosequencing and complete concordance was observed between the two assays. The multiplex allele-specific real-time PCR assay provides a rapid and reliable diagnostic tool for accurate detection of ESR1 mutations. This procedure may be used in the clinical treatment of breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A major role of DNA polymerase δ in replication of both the leading and lagging DNA strands

    PubMed Central

    Prakash, Louise; Prakash, Satya

    2015-01-01

    SUMMARY Genetic studies with S. cerevisiae Polδ (pol3-L612M) and Polε (pol2-M644G) mutant alleles, each of which display a higher rate for the generation of a specific mismatch, have led to the conclusion that Polε is the primary leading strand replicase and that Polδ is restricted to replicating the lagging strand template. Contrary to this widely accepted view, here we show that Polδ plays a major role in the replication of both DNA strands, and that the paucity of pol3-L612M generated errors on the leading strand results from their more proficient removal. Thus, the apparent lack of Polδ contribution to leading strand replication is due to differential mismatch removal rather than differential mismatch generation. Altogether, our genetic studies with Pol3 and Pol2 mutator alleles support the conclusion that Polδ, and not Polε, is the major DNA polymerase for carrying out both leading and lagging DNA synthesis. PMID:26145172

  8. Systematic evaluation of the impact of ChIP-seq read designs on genome coverage, peak identification, and allele-specific binding detection.

    PubMed

    Zhang, Qi; Zeng, Xin; Younkin, Sam; Kawli, Trupti; Snyder, Michael P; Keleş, Sündüz

    2016-02-24

    Chromatin immunoprecipitation followed by sequencing (ChIP-seq) experiments revolutionized genome-wide profiling of transcription factors and histone modifications. Although maturing sequencing technologies allow these experiments to be carried out with short (36-50 bps), long (75-100 bps), single-end, or paired-end reads, the impact of these read parameters on the downstream data analysis are not well understood. In this paper, we evaluate the effects of different read parameters on genome sequence alignment, coverage of different classes of genomic features, peak identification, and allele-specific binding detection. We generated 101 bps paired-end ChIP-seq data for many transcription factors from human GM12878 and MCF7 cell lines. Systematic evaluations using in silico variations of these data as well as fully simulated data, revealed complex interplay between the sequencing parameters and analysis tools, and indicated clear advantages of paired-end designs in several aspects such as alignment accuracy, peak resolution, and most notably, allele-specific binding detection. Our work elucidates the effect of design on the downstream analysis and provides insights to investigators in deciding sequencing parameters in ChIP-seq experiments. We present the first systematic evaluation of the impact of ChIP-seq designs on allele-specific binding detection and highlights the power of pair-end designs in such studies.

  9. Associations between gastric dilatation-volvulus in Great Danes and specific alleles of the canine immune-system genes DLA88, DRB1, and TLR5.

    PubMed

    Harkey, Michael A; Villagran, Alexandra M; Venkataraman, Gopalakrishnan M; Leisenring, Wendy M; Hullar, Meredith A J; Torok-Storb, Beverly J

    2017-08-01

    OBJECTIVE To determine whether specific alleles of candidate genes of the major histocompatibility complex (MHC) and innate immune system were associated with gastric dilatation-volvulus (GDV) in Great Danes. ANIMALS 42 healthy Great Danes (control group) and 39 Great Danes with ≥ 1 GDV episode. PROCEDURES Variable regions of the 2 most polymorphic MHC genes (DLA88 and DRB1) were amplified and sequenced from the dogs in each group. Similarly, regions of 3 genes associated with the innate immune system (TLR5, NOD2, and ATG16L1), which have been linked to inflammatory bowel disease, were amplified and sequenced. Alleles were evaluated for associations with GDV, controlling for age and dog family. RESULTS Specific alleles of genes DLA88, DRB1, and TLR5 were significantly associated with GDV. One allele of each gene had an OR > 2 in the unadjusted univariate analyses and retained a hazard ratio > 2 after controlling for temperament, age, and familial association in the multivariate analysis. CONCLUSIONS AND CLINICAL RELEVANCE The 3 GDV-associated alleles identified in this study may serve as diagnostic markers for identification of Great Danes at risk for GDV. Additional research is needed to determine whether other dog breeds have the same genetic associations. These findings also provided a new target for research into the etiology of, and potential treatments for, GDV in dogs.

  10. Recommendations for Accurate Resolution of Gene and Isoform Allele-Specific Expression in RNA-Seq Data

    PubMed Central

    Wood, David L. A.; Nones, Katia; Steptoe, Anita; Christ, Angelika; Harliwong, Ivon; Newell, Felicity; Bruxner, Timothy J. C.; Miller, David; Cloonan, Nicole; Grimmond, Sean M.

    2015-01-01

    Genetic variation modulates gene expression transcriptionally or post-transcriptionally, and can profoundly alter an individual’s phenotype. Measuring allelic differential expression at heterozygous loci within an individual, a phenomenon called allele-specific expression (ASE), can assist in identifying such factors. Massively parallel DNA and RNA sequencing and advances in bioinformatic methodologies provide an outstanding opportunity to measure ASE genome-wide. In this study, matched DNA and RNA sequencing, genotyping arrays and computationally phased haplotypes were integrated to comprehensively and conservatively quantify ASE in a single human brain and liver tissue sample. We describe a methodological evaluation and assessment of common bioinformatic steps for ASE quantification, and recommend a robust approach to accurately measure SNP, gene and isoform ASE through the use of personalized haplotype genome alignment, strict alignment quality control and intragenic SNP aggregation. Our results indicate that accurate ASE quantification requires careful bioinformatic analyses and is adversely affected by sample specific alignment confounders and random sampling even at moderate sequence depths. We identified multiple known and several novel ASE genes in liver, including WDR72, DSP and UBD, as well as genes that contained ASE SNPs with imbalance direction discordant with haplotype phase, explainable by annotated transcript structure, suggesting isoform derived ASE. The methods evaluated in this study will be of use to researchers performing highly conservative quantification of ASE, and the genes and isoforms identified as ASE of interest to researchers studying those loci. PMID:25965996

  11. Independent regulation of the two Pax5 alleles during B-cell development.

    PubMed

    Nutt, S L; Vambrie, S; Steinlein, P; Kozmik, Z; Rolink, A; Weith, A; Busslinger, M

    1999-04-01

    The developmental control genes of the Pax family are frequently associated with mouse mutants and human disease syndromes. The function of these transcription factors is sensitive to gene dosage, as mutation of one allele or a modest increase in gene number results in phenotypic abnormalities. Pax5 has an important role in B-cell and midbrain development. By following the expression of individual Pax5 alleles at the single-cell level, we demonstrate here that Pax5 is subject to allele-specific regulation during B-lymphopoiesis. Pax5 is predominantly transcribed from only one allele in early progenitors and mature B cells, whereas it switches to a biallelic transcription mode in immature B cells. The allele-specific regulation of Pax5 is stochastic, reversible, independent of parental origin and correlates with synchronous replication, in contrast with imprinted and other monoallelically expressed genes. As a consequence, B-lymphoid tissues are mosaics with respect to the transcribed Pax5 allele, and thus mutation of one allele in heterozygous mice results in deletion of the cell population expressing the mutant allele due to loss of Pax5 function at the single-cell level. Similar allele-specific regulation may be a common mechanism causing the haploinsufficiency and frequent association of other Pax genes with human disease.

  12. The loss-of-allele assay for ES cell screening and mouse genotyping.

    PubMed

    Frendewey, David; Chernomorsky, Rostislav; Esau, Lakeisha; Om, Jinsop; Xue, Yingzi; Murphy, Andrew J; Yancopoulos, George D; Valenzuela, David M

    2010-01-01

    Targeting vectors used to create directed mutations in mouse embryonic stem (ES) cells consist, in their simplest form, of a gene for drug selection flanked by mouse genomic sequences, the so-called homology arms that promote site-directed homologous recombination between the vector and the target gene. The VelociGene method for the creation of targeted mutations in ES cells employs targeting vectors, called BACVecs, that are based on bacterial artificial chromosomes. Compared with conventional short targeting vectors, BacVecs provide two major advantages: (1) their much larger homology arms promote high targeting efficiencies without the need for isogenicity or negative selection strategies; and (2) they enable deletions and insertions of up to 100kb in a single targeting event, making possible gene-ablating definitive null alleles and other large-scale genomic modifications. Because of their large arm sizes, however, BACVecs do not permit screening by conventional assays, such as long-range PCR or Southern blotting, that link the inserted targeting vector to the targeted locus. To exploit the advantages of BACVecs for gene targeting, we inverted the conventional screening logic in developing the loss-of-allele (LOA) assay, which quantifies the number of copies of the native locus to which the mutation was directed. In a correctly targeted ES cell clone, the LOA assay detects one of the two native alleles (for genes not on the X or Y chromosome), the other allele being disrupted by the targeted modification. We apply the same principle in reverse as a gain-of-allele assay to quantify the copy number of the inserted targeting vector. The LOA assay reveals a correctly targeted clone as having lost one copy of the native target gene and gained one copy of the drug resistance gene or other inserted marker. The combination of these quantitative assays makes LOA genotyping unequivocal and amenable to automated scoring. We use the quantitative polymerase chain reaction

  13. Allele specific expression analysis identifies regulatory variation associated with stress-related genes in the Mexican highland maize landrace Palomero Toluqueño

    PubMed Central

    González-Segovia, Eric; Ross-Ibarra, Jeffrey; Simpson, June K.

    2017-01-01

    Background Gene regulatory variation has been proposed to play an important role in the adaptation of plants to environmental stress. In the central highlands of Mexico, farmer selection has generated a unique group of maize landraces adapted to the challenges of the highland niche. In this study, gene expression in Mexican highland maize and a reference maize breeding line were compared to identify evidence of regulatory variation in stress-related genes. It was hypothesised that local adaptation in Mexican highland maize would be associated with a transcriptional signature observable even under benign conditions. Methods Allele specific expression analysis was performed using the seedling-leaf transcriptome of an F1 individual generated from the cross between the highland adapted Mexican landrace Palomero Toluqueño and the reference line B73, grown under benign conditions. Results were compared with a published dataset describing the transcriptional response of B73 seedlings to cold, heat, salt and UV treatments. Results A total of 2,386 genes were identified to show allele specific expression. Of these, 277 showed an expression difference between Palomero Toluqueño and B73 alleles under benign conditions that anticipated the response of B73 cold, heat, salt and/or UV treatments, and, as such, were considered to display a prior stress response. Prior stress response candidates included genes associated with plant hormone signaling and a number of transcription factors. Construction of a gene co-expression network revealed further signaling and stress-related genes to be among the potential targets of the transcription factors candidates. Discussion Prior activation of responses may represent the best strategy when stresses are severe but predictable. Expression differences observed here between Palomero Toluqueño and B73 alleles indicate the presence of cis-acting regulatory variation linked to stress-related genes in Palomero Toluqueño. Considered alongside

  14. Modified pseudomonas oleovorans phaC1 nucleic acids encoding bispecific polyhydroxyalkanoate polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srienc, Friedrich; Jackson, John K.; Somers, David A.

    A genetically engineered Pseudomonas oleovorans phaC1 polyhydroxyalkanoate (PHA) polymerase having tailored substrate specificity is provided. The modified PHA polymerase is preferably a "bispecific" PHA polymerase capable of copolymerizing a short chain length monomer and a medium chain length monomer is provided. Methods for making the modified PHA polymerase and for making nucleic acids encoding the modified PHA polymerase are also disclosed, as are methods of producing PHA using the modified PHA polymerase. The invention further includes methods to assay for altered substrate specificity.

  15. Assigning breed origin to alleles in crossbred animals.

    PubMed

    Vandenplas, Jérémie; Calus, Mario P L; Sevillano, Claudia A; Windig, Jack J; Bastiaansen, John W M

    2016-08-22

    For some species, animal production systems are based on the use of crossbreeding to take advantage of the increased performance of crossbred compared to purebred animals. Effects of single nucleotide polymorphisms (SNPs) may differ between purebred and crossbred animals for several reasons: (1) differences in linkage disequilibrium between SNP alleles and a quantitative trait locus; (2) differences in genetic backgrounds (e.g., dominance and epistatic interactions); and (3) differences in environmental conditions, which result in genotype-by-environment interactions. Thus, SNP effects may be breed-specific, which has led to the development of genomic evaluations for crossbred performance that take such effects into account. However, to estimate breed-specific effects, it is necessary to know breed origin of alleles in crossbred animals. Therefore, our aim was to develop an approach for assigning breed origin to alleles of crossbred animals (termed BOA) without information on pedigree and to study its accuracy by considering various factors, including distance between breeds. The BOA approach consists of: (1) phasing genotypes of purebred and crossbred animals; (2) assigning breed origin to phased haplotypes; and (3) assigning breed origin to alleles of crossbred animals based on a library of assigned haplotypes, the breed composition of crossbred animals, and their SNP genotypes. The accuracy of allele assignments was determined for simulated datasets that include crosses between closely-related, distantly-related and unrelated breeds. Across these scenarios, the percentage of alleles of a crossbred animal that were correctly assigned to their breed origin was greater than 90 %, and increased with increasing distance between breeds, while the percentage of incorrectly assigned alleles was always less than 2 %. For the remaining alleles, i.e. 0 to 10 % of all alleles of a crossbred animal, breed origin could not be assigned. The BOA approach accurately assigns

  16. Analysis of density and epitopes of D antigen on the surface of erythrocytes from DEL phenotypic individuals carrying the RHD1227A allele.

    PubMed

    Gu, Juan; Sun, An-Yuan; Wang, Xue-Dong; Shao, Chao-Peng; Li, Zheng; Huang, Li-Hua; Pan, Zhao-Lin; Wang, Qing-Ping; Sun, Guang-Ming

    2014-04-01

    The characteristics of the D antigen are important as they influence the immunogenicity of D variant cells. Several studies on antigenic sites have been reported in normal D positive, weak D and partial D cases, including a comprehensive analysis of DEL types in Caucasians. The aim of this study was to assess D antigen density and epitopes on the erythrocyte surface of Asian type DEL phenotypic individuals carrying the RHD1227A allele in the Chinese population. A total of 154 DEL phenotypic individuals carrying the RHD1227A allele were identified through adsorption and elution tests and polymerase chain reaction analysis with sequence-specific primers in the Chinese population. D antigen density on the erythrocyte surface of these individuals was detected using a flow cytometric method. An erythrocyte sample with known D antigen density was used as a standard. Blood samples from D-negative and D-positive individuals were used as controls. In addition, D antigen epitopes on the erythrocyte surface of DEL individuals carrying the RHD1227A allele were investigated with 18 monoclonal anti-D antibodies specific for different D antigen epitopes. The means of the median fluorescence intensity of D antigen on the erythrocyte membrane surface of D-negative, D-positive and DEL individuals were 2.14±0.25, 193.61±11.43 and 2.45±0.82, respectively. The DEL samples were estimated to have approximately 22 D antigens per cell. The samples from all 154 DEL individuals reacted positively with 18 monoclonal anti-D antibodies specific for different D antigen epitopes. In this study, D antigen density on the erythrocyte surface of DEL individuals carrying the RHD1227A allele was extremely low, there being only very few antigenic molecules per cell, but the D antigen epitopes were grossly complete.

  17. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients

    PubMed Central

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-01-01

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients’ samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAFV600E and BRAFV600K mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method. PMID:26690267

  18. A Sensitive Detection Method for MPLW515L or MPLW515K Mutation in Chronic Myeloproliferative Disorders with Locked Nucleic Acid-Modified Probes and Real-Time Polymerase Chain Reaction

    PubMed Central

    Pancrazzi, Alessandro; Guglielmelli, Paola; Ponziani, Vanessa; Bergamaschi, Gaetano; Bosi, Alberto; Barosi, Giovanni; Vannucchi, Alessandro M.

    2008-01-01

    Acquired mutations in the juxtamembrane region of MPL (W515K or W515L), the receptor for thrombopoietin, have been described in patients with primary myelofibrosis or essential thrombocythemia, which are chronic myeloproliferative disorders. We have developed a real-time polymerase chain reaction assay for the detection and quantification of MPL mutations that is based on locked nucleic acid fluorescent probes. Mutational analysis was performed using DNA from granulocytes. Reference curves were obtained using cloned fragments of MPL containing either the wild-type or mutated sequence; the predicted sensitivity level was at least 0.1% mutant allele in a wild-type background. None of the 60 control subjects presented with a MPLW515L/K mutation. Of 217 patients with myelofibrosis, 19 (8.7%) harbored the MPLW515 mutation, 10 (52.6%) with the W515L allele. In one case, both the W515L and W515K alleles were detected by real-time polymerase chain reaction. By comparing results obtained with conventional sequencing, no erroneous genotype attribution using real-time polymerase chain reaction was found, whereas one patient considered wild type according to sequence analysis actually harbored a low W515L allele burden. This is a simple, sensitive, and cost-effective procedure for large-scale screening of the MPLW515L/K mutation in patients suspected to have a myeloproliferative disorder. It can also provide a quantitative estimate of mutant allele burden that might be useful for both patient prognosis and monitoring response to therapy. PMID:18669880

  19. A sensitive detection method for MPLW515L or MPLW515K mutation in chronic myeloproliferative disorders with locked nucleic acid-modified probes and real-time polymerase chain reaction.

    PubMed

    Pancrazzi, Alessandro; Guglielmelli, Paola; Ponziani, Vanessa; Bergamaschi, Gaetano; Bosi, Alberto; Barosi, Giovanni; Vannucchi, Alessandro M

    2008-09-01

    Acquired mutations in the juxtamembrane region of MPL (W515K or W515L), the receptor for thrombopoietin, have been described in patients with primary myelofibrosis or essential thrombocythemia, which are chronic myeloproliferative disorders. We have developed a real-time polymerase chain reaction assay for the detection and quantification of MPL mutations that is based on locked nucleic acid fluorescent probes. Mutational analysis was performed using DNA from granulocytes. Reference curves were obtained using cloned fragments of MPL containing either the wild-type or mutated sequence; the predicted sensitivity level was at least 0.1% mutant allele in a wild-type background. None of the 60 control subjects presented with a MPLW515L/K mutation. Of 217 patients with myelofibrosis, 19 (8.7%) harbored the MPLW515 mutation, 10 (52.6%) with the W515L allele. In one case, both the W515L and W515K alleles were detected by real-time polymerase chain reaction. By comparing results obtained with conventional sequencing, no erroneous genotype attribution using real-time polymerase chain reaction was found, whereas one patient considered wild type according to sequence analysis actually harbored a low W515L allele burden. This is a simple, sensitive, and cost-effective procedure for large-scale screening of the MPLW515L/K mutation in patients suspected to have a myeloproliferative disorder. It can also provide a quantitative estimate of mutant allele burden that might be useful for both patient prognosis and monitoring response to therapy.

  20. Analysis for complete genomic sequence of HLA-B and HLA-C alleles in the Chinese Han population.

    PubMed

    Zhu, F; He, Y; Zhang, W; He, J; He, J; Xu, X; Lv, H; Yan, L

    2011-08-01

    In the present study, we have determined the complete genomic sequence and analysed the intron polymorphism of partial HLA-B and HLA-C alleles in the Chinese Han population. Over 3.0 kb DNA fragments of HLA-B and HLA-C loci were amplified by polymerase chain reaction from partial 5' untranslated region to 3' noncoding region respectively, and then the amplified products were sequenced. Full-length nucleotide sequences of 14 HLA-B alleles and 10 HLA-C alleles were obtained and have been submitted to GenBank and IMGT/HLA database. Two novel alleles of HLA-B*52:01:01:02 and HLA-B*59:01:01:02 were identified, and the complete genomic sequence of HLA-B*52:01:01:01 was firstly reported. Totally 157 and 167 polymorphism positions were found in the full-length genomic sequence of HLA-B and HLA-C loci respectively. Our results suggested that many single nucleotide polymorphisms existed in the exon and intron regions, and the data can provide useful information for understanding the evolution of HLA-B and HLA-C alleles. © 2011 Blackwell Publishing Ltd.

  1. Specific Silencing of L392V PSEN1 Mutant Allele by RNA Interference

    PubMed Central

    Sierant, Malgorzata; Paduszynska, Alina; Kazmierczak-Baranska, Julia; Nacmias, Benedetta; Sorbi, Sandro; Bagnoli, Silvia; Sochacka, Elzbieta; Nawrot, Barbara

    2011-01-01

    RNA interference (RNAi) technology provides a powerful molecular tool to reduce an expression of selected genes in eukaryotic cells. Short interfering RNAs (siRNAs) are the effector molecules that trigger RNAi. Here, we describe siRNAs that discriminate between the wild type and mutant (1174 C→G) alleles of human Presenilin1 gene (PSEN1). This mutation, resulting in L392V PSEN1 variant, contributes to early onset familial Alzheimer's disease. Using the dual fluorescence assay, flow cytometry and fluorescent microscopy we identified positions 8th–11th, within the central part of the antisense strand, as the most sensitive to mismatches. 2-Thiouridine chemical modification introduced at the 3′-end of the antisense strand improved the allele discrimination, but wobble base pairing adjacent to the mutation site abolished the siRNA activity. Our data indicate that siRNAs can be designed to discriminate between the wild type and mutant alleles of genes that differ by just a single nucleotide. PMID:21559198

  2. Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution.

    PubMed

    McGranahan, Nicholas; Rosenthal, Rachel; Hiley, Crispin T; Rowan, Andrew J; Watkins, Thomas B K; Wilson, Gareth A; Birkbak, Nicolai J; Veeriah, Selvaraju; Van Loo, Peter; Herrero, Javier; Swanton, Charles

    2017-11-30

    Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. VIDEO ABSTRACT. Copyright © 2017 The Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

  3. Brief communication: Molecular characterization of O alleles at the ABO locus in Chilean Aymara and Huilliche Indians.

    PubMed

    Llop, Elena; Henríquez, Hugo; Moraga, Mauricio; Castro, Mario; Rothhammer, Francisco

    2006-12-01

    A molecular characterization of alleles O1, O1variant (O1v), and the mutation G542A of the ABO blood group was performed in two Amerindian populations of Chile, the Aymara (n = 84) and the Huilliche (n = 75). In addition, a sample of 82 individuals of Santiago belonging to the mixed Chilean population was typed for comparative purposes. The polymorphisms which allow for molecular differentiation of different alleles of the O blood group were studied in genomic DNA. The mutations G188, G261-, G542A, T646A, and C771T, described for alleles O1, O1v, and G542A, were determined using the PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) technique. All individuals studied were group O homozygotes for the deletion G261-, which defines the O1 alleles. Results obtained indicate that allele O1v exhibits frequencies of 0.65, 0.81, and 0.60 in Aymara, Huilliche, and Santiago populations, respectively. The frequencies of allele O1(G542A) were 0.119, 0.113, and 0.079 in the same populations. Frequencies for alleles O1 and O1v obtained in the Chilean populations studied concur with the results obtained by other authors, respecting the greater frequency of allele O1v as well as with its heterogeneous distribution in aboriginal South American populations. In Chilean populations, Allele G542A exhibits lower frequencies than those described for indigenous populations from Brazil and may be used as an Amerind admixture marker. 2006 Wiley-Liss, Inc.

  4. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication

    PubMed Central

    Shinbrot, Eve; Henninger, Erin E.; Weinhold, Nils; Covington, Kyle R.; Göksenin, A. Yasemin; Schultz, Nikolaus; Chao, Hsu; Doddapaneni, HarshaVardhan; Muzny, Donna M.; Gibbs, Richard A.; Sander, Chris; Pursell, Zachary F.

    2014-01-01

    Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C→A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication. PMID:25228659

  5. Combined subtraction hybridization and polymerase chain reaction amplification procedure for isolation of strain-specific Rhizobium DNA sequences.

    PubMed Central

    Bjourson, A J; Stone, C E; Cooper, J E

    1992-01-01

    A novel subtraction hybridization procedure, incorporating a combination of four separation strategies, was developed to isolate unique DNA sequences from a strain of Rhizobium leguminosarum bv. trifolii. Sau3A-digested DNA from this strain, i.e., the probe strain, was ligated to a linker and hybridized in solution with an excess of pooled subtracter DNA from seven other strains of the same biovar which had been restricted, ligated to a different, biotinylated, subtracter-specific linker, and amplified by polymerase chain reaction to incorporate dUTP. Subtracter DNA and subtracter-probe hybrids were removed by phenol-chloroform extraction of a streptavidin-biotin-DNA complex. NENSORB chromatography of the sequences remaining in the aqueous layer captured biotinylated subtracter DNA which may have escaped removal by phenol-chloroform treatment. Any traces of contaminating subtracter DNA were removed by digestion with uracil DNA glycosylase. Finally, remaining sequences were amplified by polymerase chain reaction with a probe strain-specific primer, labelled with 32P, and tested for specificity in dot blot hybridizations against total genomic target DNA from each strain in the subtracter pool. Two rounds of subtraction-amplification were sufficient to remove cross-hybridizing sequences and to give a probe which hybridized only with homologous target DNA. The method is applicable to the isolation of DNA and RNA sequences from both procaryotic and eucaryotic cells. Images PMID:1637166

  6. Authentication of an endangered herb Changium smyrnioides from different producing areas based on rDNA ITS sequences and allele-specific PCR.

    PubMed

    Sun, Xiaoqin; Wei, Yanglian; Qin, Minjian; Guo, Qiaosheng; Guo, Jianlin; Zhou, Yifeng; Hang, Yueyu

    2012-03-01

    The rDNA ITS region of 18 samples of Changium smyrnioides from 7 areas and of 2 samples of Chuanminshen violaceum were sequenced and analyzed. The amplified ITS region of the samples, including a partial sequence of ITS1 and complete sequences of 5.8S and ITS2, had a total length of 555 bp. After complete alignment, there were 49 variable sites, of which 45 were informative, when gaps were treated as missing data. Samples of C. smyrnioides from different locations could be identified exactly based on the variable sites. The maximum parsimony (MP) and neighbor joining (NJ) tree constructed from the ITS sequences based on Kumar's two-parameter model showed that the genetic distances of the C. smyrnioides samples from different locations were not always related to their geographical distances. A specific primer set for Allele-specific PCR authentication of C. violaceum from Jurong of Jiangsu was designed based on the SNP in the ITS sequence alignment. C. violaceum from the major genuine producing area in Jurong of Jiangsu could be identified exactly and quickly by Allele-specific PCR.

  7. A survey of FRAXE allele sizes in three populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, N.; Ju, W.; Curley, D.

    1996-08-09

    FRAXE is a fragile site located at Xq27-8, which contains polymorphic triplet GCC repeats associated with a CpG island. Similar to FRAXA, expansion of the GCC repeats results in an abnormal methylation of the CpG island and is associated with a mild mental retardation syndrome (FRAXE-MR). We surveyed the GCC repeat alleles of FRAXE from 3 populations. A total of 665 X chromosomes including 416 from a New York Euro-American sample (259 normal and 157 with FRAXA mutations), 157 from a Chinese sample (144 normal and 13 FRAXA), and 92 from a Finnish sample (56 normal and 36 FRAXA) weremore » analyzed by polymerase chain reaction. Twenty-seven alleles, ranging from 4 to 39 GCC repeats, were observed. The modal repeat number was 16 in the New York and Finnish samples and accounted for 24% of all the chromosomes tested (162/665). The modal repeat number in the Chinese sample was 18. A founder effect for FRAXA was suggested among the Finnish FRAXA samples in that 75% had the FRAXE 16 repeat allele versus only 30% of controls. Sequencing of the FRAXE region showed no imperfections within the GCC repeat region, such as those commonly seen in FRAXA. The smaller size and limited range of repeats and the lack of imperfections suggests the molecular mechanisms underlying FRAXE triplet mutations may be different from those underlying FRAXA. 27 refs., 4 figs., 1 tab.« less

  8. Colorimetric Detection of Specific DNA Segments Amplified by Polymerase Chain Reactions

    NASA Astrophysics Data System (ADS)

    Kemp, David J.; Smith, Donald B.; Foote, Simon J.; Samaras, N.; Peterson, M. Gregory

    1989-04-01

    The polymerase chain reaction (PCR) procedure has many potential applications in mass screening. We describe here a general assay for colorimetric detection of amplified DNA. The target DNA is first amplified by PCR, and then a second set of oligonucleotides, nested between the first two, is incorporated by three or more PCR cycles. These oligonucleotides bear ligands: for example, one can be biotinylated and the other can contain a site for a double-stranded DNA-binding protein. After linkage to an immobilized affinity reagent (such as a cloned DNA-binding protein, which we describe here) and labeling with a second affinity reagent (for example, avidin) linked to horseradish peroxidase, reaction with a chromogenic substrate allows detection of the amplified DNA. This amplified DNA assay (ADA) is rapid, is readily applicable to mass screening, and uses routine equipment. We show here that it can be used to detect human immunodeficiency virus sequences specifically against a background of human DNA.

  9. Lipoprotein(a) and HIV: Allele-Specific Apolipoprotein(a) Levels Predict Carotid Intima-Media Thickness in HIV-Infected Young Women in the Women's Interagency HIV Study.

    PubMed

    Enkhmaa, Byambaa; Anuurad, Erdembileg; Zhang, Wei; Li, Chin-Shang; Kaplan, Robert; Lazar, Jason; Merenstein, Dan; Karim, Roksana; Aouizerat, Brad; Cohen, Mardge; Butler, Kenneth; Pahwa, Savita; Ofotokun, Igho; Adimora, Adaora A; Golub, Elizabeth; Berglund, Lars

    2017-05-01

    In the general population, lipoprotein(a) [Lp(a)] has been established as an independent causal risk factor for cardiovascular disease. Lp(a) levels are to a major extent regulated by a size polymorphism in the apolipoprotein(a) [apo(a)] gene. The roles of Lp(a)/apo(a) in human immunodeficiency virus (HIV)-related elevated cardiovascular disease risk remain unclear. The associations between total plasma Lp(a) level, allele-specific apo(a) level, an Lp(a) level carried by individual apo(a) alleles, and common carotid artery intima-media thickness were assessed in 150 HIV-infected and 100 HIV-uninfected women in the WIHS (Women's Interagency HIV Study). Linear regression analyses with and without adjustments were used. The cohort was young (mean age, ≈31 years), with the majority being Blacks (≈70%). The prevalence of a small size apo(a) (≤22 Kringle repeats) or a high Lp(a) level (≥30 mg/dL) was similar by HIV status. Total plasma Lp(a) level ( P =0.029) and allele-specific apo(a) level carried by the smaller apo(a) sizes ( P =0.022) were significantly associated with carotid artery intima-media thickness in the HIV-infected women only. After accounting for confounders (age, race, smoking, body mass index, blood pressure, hepatitis C virus coinfection, menopause, plasma lipids, treatment status, CD4 + T cell count, and HIV/RNA viral load), the association remained significant for both Lp(a) ( P =0.035) and allele-specific apo(a) level carried by the smaller apo(a) sizes ( P =0.010) in the HIV-infected women. Notably, none of the other lipids/lipoproteins was associated with carotid artery intima-media thickness. Lp(a) and allele-specific apo(a) levels predict carotid artery intima-media thickness in HIV-infected young women. Further research is needed to identify underlying mechanisms of an increased Lp(a) atherogenicity in HIV infection. © 2017 American Heart Association, Inc.

  10. Rapid detection of 21-hydroxylase deficiency mutations by allele-specific in vitro amplification and capillary zone electrophoresis.

    PubMed

    Carrera, P; Barbieri, A M; Ferrari, M; Righetti, P G; Perego, M; Gelfi, C

    1997-11-01

    A quick diagnosis of the classic form of 21-hydroxylase deficiency (simple virilizing and salt wasting) is of great importance, especially for prenatal diagnosis and treatment in pregnancies at risk. A method for simultaneous detection of common point mutations in the P450c21 B gene is here proposed by combining a nested PCR amplification refractory mutation system (ARMS) with capillary zone electrophoresis (CZE) in sieving liquid polymers. In the first PCR, B genes are selectively amplified. In the nested reaction, ARMS-detected wild-type and mutated alleles are separately pooled and resolved by CZE. CZE is performed in coated capillaries in the presence of 30 g/L hydroxyethyl cellulose in the background electrolyte for size separation of the DNA analytes. For high-sensitivity detection the electrophoresis buffer contains the fluorescent dye SYBR Green I. Laser-induced fluorescence detection is obtained by excitation at 488 nm and signal collection at 520 nm. Specificity and reproducibility of the protocols were established by using samples from 75 Italian families with 21-hydroxylase deficiency already genotyped by allele-specific oligonucleotide hybridization or direct sequencing. Whereas dot-blot is time consuming because of the high number of hybridizations with radioactive probes, this present protocol is more rapid, giving sufficient separation on CZE after PCR reactions without preconcentration or desalting of samples.

  11. Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure

    PubMed Central

    2013-01-01

    Background Candida albicans is a ubiquitous opportunistic fungal pathogen that afflicts immunocompromised human hosts. With rare and transient exceptions the yeast is diploid, yet despite its clinical relevance the respective sequences of its two homologous chromosomes have not been completely resolved. Results We construct a phased diploid genome assembly by deep sequencing a standard laboratory wild-type strain and a panel of strains homozygous for particular chromosomes. The assembly has 700-fold coverage on average, allowing extensive revision and expansion of the number of known SNPs and indels. This phased genome significantly enhances the sensitivity and specificity of allele-specific expression measurements by enabling pooling and cross-validation of signal across multiple polymorphic sites. Additionally, the diploid assembly reveals pervasive and unexpected patterns in allelic differences between homologous chromosomes. Firstly, we see striking clustering of indels, concentrated primarily in the repeat sequences in promoters. Secondly, both indels and their repeat-sequence substrate are enriched near replication origins. Finally, we reveal an intimate link between repeat sequences and indels, which argues that repeat length is under selective pressure for most eukaryotes. This connection is described by a concise one-parameter model that explains repeat-sequence abundance in C. albicans as a function of the indel rate, and provides a general framework to interpret repeat abundance in species ranging from bacteria to humans. Conclusions The phased genome assembly and insights into repeat plasticity will be valuable for better understanding allele-specific phenomena and genome evolution. PMID:24025428

  12. Deletion of the low-molecular-weight glutenin subunit allele Glu-A3a of wheat (Triticum aestivum L.) significantly reduces dough strength and breadmaking quality.

    PubMed

    Zhen, Shoumin; Han, Caixia; Ma, Chaoying; Gu, Aiqin; Zhang, Ming; Shen, Xixi; Li, Xiaohui; Yan, Yueming

    2014-12-19

    Low-molecular-weight glutenin subunits (LMW-GS), encoded by Glu-3 complex loci in hexaploid wheat, play important roles in the processing quality of wheat flour. To date, the molecular characteristics and effects on dough quality of individual Glu-3 alleles and their encoding proteins have been poorly studied. We used a Glu-A3 deletion line of the Chinese Spring (CS-n) wheat variety to conduct the first comprehensive study on the molecular characteristics and functional properties of the LMW-GS allele Glu-A3a. The Glu-A3a allele at the Glu-A3 locus in CS and its deletion in CS-n were identified and characterized by proteome and molecular marker methods. The deletion of Glu-A3a had no significant influence on plant morphological and yield traits, but significantly reduced the dough strength and breadmaking quality compared to CS. The complete sequence of the Glu-A3a allele was cloned and characterized, which was found to encode a B-subunit with longer repetitive domains and an increased number of α-helices. The Glu-A3a-encoded B-subunit showed a higher expression level and accumulation rate during grain development. These characteristics of the Glu-A3a allele could contribute to achieving superior gluten quality and demonstrate its potential application to wheat quality improvement. Furthermore, an allele-specific polymerase chain reaction (AS-PCR) marker for the Glu-A3a allele was developed and validated using different bread wheat cultivars, including near-isogenic lines (NILs) and recombinant inbred lines (RILs), which could be used as an effective molecular marker for gluten quality improvement through marker-assisted selection. This work demonstrated that the LMW-GS allele Glu-A3a encodes a specific LMW-i type B-subunit that significantly affects wheat dough strength and breadmaking quality. The Glu-A3a-encoded B-subunit has a long repetitive domain and more α-helix structures as well as a higher expression level and accumulation rate during grain development

  13. Frequency of null allele of Human Leukocyte Antigen-G (HLA-G) locus in subjects to recurrent miscarriage.

    PubMed

    Alizadeh, Nazila; Mosaferi, Elnaz; Farzadi, Laya; Majidi, Jafar; Monfaredan, Amir; Yousefi, Bahman; Baradaran, Behzad

    2016-07-01

    Human leukocyte antigen-G (HLA-G) is a non-classical class I molecule highly expressed by extravillous cytotrophoblast cells. Due to a single base pair deletion, its function can be compensated by other isoforms. Investigating the frequency of null allele in Recurrent Miscarriage (RM) subjects could be useful in understanding the relationship between frequency of this allele and RM in a given population. This study aimed to determine the frequency of HLA-G*0105N null allele and its potential association with down-regulation of HLA-G in subjects with RM. Western blotting was used to assess the level of HLA-G protein expression. For investigating the frequency of HLA-G*0105N null allele in RM subjects, PCR-RFLP method was used. Exon 3 of HLA-G gene was amplified by polymerase chain reaction (PCR). Subsequently, PpuM-1 enzyme was employed to digest the PCR products and fragments were analyzed using gel electrophoresis. Digestion using restriction enzyme showed the presence of heterozygous HLA-G*0105N null allele in 10% of the test population. Western blotting results confirmed the decrease in expression of HLA-G in the placental tissue of subjects with RM compared to subjects who could give normal birth. The frequency of heterozygous HLA-G*0105N null allele was high to some extent in subjects with RM. The mutation rate in subjects suggested that there is a significant association between RM and frequency of mutations in this allele.

  14. TATA box-binding protein (TBP) is a constituent of the polymerase I-specific transcription initiation factor TIF-IB (SL1) bound to the rRNA promoter and shows differential sensitivity to TBP-directed reagents in polymerase I, II, and III transcription factors.

    PubMed

    Radebaugh, C A; Matthews, J L; Geiss, G K; Liu, F; Wong, J M; Bateman, E; Camier, S; Sentenac, A; Paule, M R

    1994-01-01

    The role of the Acanthamoeba castellanii TATA-binding protein (TBP) in transcription was examined. Specific antibodies against the nonconserved N-terminal domain of TBP were used to verify the presence of TBP in the fundamental transcription initiation factor for RNA polymerase I, TIF-IB, and to demonstrate that TBP is part of the committed initiation complex on the rRNA promoter. The same antibodies inhibit transcription in all three polymerase systems, but they do so differentially. Oligonucleotide competitors were used to evaluate the accessibility of the TATA-binding site in TIF-IB, TFIID, and TFIIIB. The results suggest that insertion of TBP into the polymerase II and III factors is more similar than insertion into the polymerase I factor.

  15. CYP3A4*18: it is not rare allele in Japanese population.

    PubMed

    Yamamoto, Takehito; Nagafuchi, Nobue; Ozeki, Takeshi; Kubota, Takahiro; Ishikawa, Hiroshi; Ogawa, Seishi; Yamada, Yasuhiko; Hirai, Hisamaru; Iga, Tatsuji

    2003-01-01

    We sequenced all 13 exons of the CYP3A4 gene derived from 48 Japanese subjects. One subject possess the 20070 T>C mutation in the exon 10 (result in leu293Pro substitution, namely CYP3A4(*)18), as heterozygote. Thus, we investigated the frequency of CYP3A4(*)18 in 118 Japanese population using polymerase chain reaction-restriction fragment length polymorphism with Msp I and determined that the frequency of the CYP3A4(*)18 allele was 1.3%.

  16. Lymphogranuloma venereum variant L2b-specific polymerase chain reaction: insertion used to close an epidemiological gap.

    PubMed

    Verweij, S P; Catsburg, A; Ouburg, S; Lombardi, A; Heijmans, R; Dutly, F; Frei, R; Morré, S A; Goldenberger, D

    2011-11-01

    The management of the ongoing lymphogranuloma venereum epidemic in industrialized Western countries caused by Chlamydia trachomatis variant L2b still needs improvements in diagnosis, therapy and prevention. We therefore developed the first rapid C. trachomatis variant L2b-specific polymerase chain reaction to circumvent laborious ompA gene sequencing. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  17. Screening for SNPs with Allele-Specific Methylation based on Next-Generation Sequencing Data.

    PubMed

    Hu, Bo; Ji, Yuan; Xu, Yaomin; Ting, Angela H

    2013-05-01

    Allele-specific methylation (ASM) has long been studied but mainly documented in the context of genomic imprinting and X chromosome inactivation. Taking advantage of the next-generation sequencing technology, we conduct a high-throughput sequencing experiment with four prostate cell lines to survey the whole genome and identify single nucleotide polymorphisms (SNPs) with ASM. A Bayesian approach is proposed to model the counts of short reads for each SNP conditional on its genotypes of multiple subjects, leading to a posterior probability of ASM. We flag SNPs with high posterior probabilities of ASM by accounting for multiple comparisons based on posterior false discovery rates. Applying the Bayesian approach to the in-house prostate cell line data, we identify 269 SNPs as candidates of ASM. A simulation study is carried out to demonstrate the quantitative performance of the proposed approach.

  18. Screening for SNPs with Allele-Specific Methylation based on Next-Generation Sequencing Data

    PubMed Central

    Hu, Bo; Xu, Yaomin

    2013-01-01

    Allele-specific methylation (ASM) has long been studied but mainly documented in the context of genomic imprinting and X chromosome inactivation. Taking advantage of the next-generation sequencing technology, we conduct a high-throughput sequencing experiment with four prostate cell lines to survey the whole genome and identify single nucleotide polymorphisms (SNPs) with ASM. A Bayesian approach is proposed to model the counts of short reads for each SNP conditional on its genotypes of multiple subjects, leading to a posterior probability of ASM. We flag SNPs with high posterior probabilities of ASM by accounting for multiple comparisons based on posterior false discovery rates. Applying the Bayesian approach to the in-house prostate cell line data, we identify 269 SNPs as candidates of ASM. A simulation study is carried out to demonstrate the quantitative performance of the proposed approach. PMID:23710259

  19. [Allelic variants of apolipoproteins B and CII genes in patients with ischemic heart disease and in healthy persons from the Moscow population].

    PubMed

    Pogoda, T V; Nikonova, A L; Kolosova, T V; Liudvikova, E K; Perova, N V; Limborskaia, S A

    1995-07-01

    Allelic frequencies of a microsatellite of the apolipoprotein CII gene (APOCII) and a minisatellite of the apolipoprotein B gene (APOB) were studied using polymerase chain reaction (PCR). The study was conducted on a random sample of male Moscow inhabitants and a sample of patients with coronary heart disease (CHD) from the same population. Fourteen variants of the APOB minisatellite (the 82% heterozygosity level) and 13 alleles of the APOCII microsatellite (the 85% heterozygosity level) were found. CHD patients significantly differed from the control group in the distributions of alleles in these loci: APOB 32, APOB 46, APOB 48, and APOB 50 as well as APOCII 17 and APOCII 29 were found more frequently. A relationship was found between the distributions of APOB and APOCII in the CHD patients. The CHD patients with alleles APOCII 21 and APOCII 30 very often had the allele APOB 32; and patients with the genotype APOB 34, 36 had the allele APOCII 29 even more often than affected individuals in general. Individuals of the control group with the allele APOCII 30 exhibited hypertriglyceridemia without increased levels of total cholesterol and apolipoprotein B in plasma.

  20. Sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis.

    PubMed

    Felten, Sandra; Leutenegger, Christian M; Balzer, Hans-Joerg; Pantchev, Nikola; Matiasek, Kaspar; Wess, Gerhard; Egberink, Herman; Hartmann, Katrin

    2017-08-02

    Feline coronavirus (FCoV) exists as two pathotypes, and FCoV spike gene mutations are considered responsible for the pathotypic switch in feline infectious peritonitis (FIP) pathogenesis. The aim of this study was to evaluate sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction (RT-PCR) specifically designed to detect FCoV spike gene mutations at two nucleotide positions. It was hypothesized that this test would correctly discriminate feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV). The study included 63 cats with signs consistent with FIP. FIP was confirmed in 38 cats. Twenty-five control cats were definitively diagnosed with a disease other than FIP. Effusion and/or serum/plasma samples were examined by real-time RT-PCR targeting the two FCoV spike gene fusion peptide mutations M1058 L and S1060A using an allelic discrimination approach. Sensitivity, specificity, negative and positive predictive values including 95% confidence intervals (95% CI) were calculated. FIPV was detected in the effusion of 25/59 cats, one of them being a control cat with chronic kidney disease. A mixed population of FIPV/FECV was detected in the effusion of 2/59 cats; all of them had FIP. RT-PCR was negative or the pathotype could not be determined in 34/59 effusion samples. In effusion, sensitivity was 68.6% (95% CI 50.7-83.2), specificity was 95.8% (95% CI 78.9-99.9). No serum/plasma samples were positive for FIPV. Although specificity of the test in effusions was high, one false positive result occurred. The use of serum/plasma cannot be recommended due to a low viral load in blood.

  1. Allele frequencies for 12 autosomal short tandem repeat loci in two Bolivian populations.

    PubMed

    Cifuentes, L; Jorquera, H; Acuña, M; Ordóñez, J; Sierra, A L

    2008-03-18

    Two hundred and sixty unrelated subjects who asked for paternity testing at two Bolivian Laboratories in La Paz and Santa Cruz were studied. The loci D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820, TH01, TPOX, and CSF1PO were typed from blood samples, amplifying DNA by polymerase chain reactions and electrophoresis. Allele frequencies were estimated by simple counting and the unbiased heterozygosity was calculated. Hardy-Weinberg equilibrium was studied and gene frequencies were compared between the two samples. All loci conformed to the Hardy-Weinberg law and allele frequencies were similar in samples from the two cities. The Bolivian gene frequencies estimated were significantly different from those described for Chile and the United States Hispanic-Americans for most of the loci.

  2. The Pleiotropic Phenotype of Apc Mutations in the Mouse: Allele Specificity and Effects of the Genetic Background

    PubMed Central

    Halberg, Richard B.; Chen, Xiaodi; Amos-Landgraf, James M.; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C.; Dove, William F.

    2008-01-01

    Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes. PMID:18723878

  3. The pleiotropic phenotype of Apc mutations in the mouse: allele specificity and effects of the genetic background.

    PubMed

    Halberg, Richard B; Chen, Xiaodi; Amos-Landgraf, James M; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C; Dove, William F

    2008-09-01

    Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes.

  4. Maternal cell traffic bounds for immune modulation: tracking maternal H-2 alleles in spleens of baby mice by DNA fingerprinting.

    PubMed

    Wan, Wenhan; Shimizu, Shoji; Ikawa, Hiromichi; Sugiyama, Kiyosh; Yamaguchi, Nobuo

    2002-10-01

    We have previously reported that the immunization of pregnant mice with T-dependent antigens successfully induced suppression of the antigen-specific plaque-forming cell (PFC) response to the relevant antigens in the offspring. This suppression was not caused by the administered antigens, the antibodies produced by the pregnant mother, or lactational transfer, but was dependent on the presence of the intact maternal T cells. It was major histocompatibility complex (MHC)-restricted manner tolerance, which continued for at least one-sixth of the murine life. Traditionally, the placenta acts as a natural barrier, not allowing the cells to pass through. However, the results presented strongly suggested that maternal T cells pass through the placenta and subsequently induce tolerance. In this present study, we attempted to substantiate the presence of maternal cells in the fetal circulation through the use of molecular techniques. We found that a highly polymorphic microsatellite sequence within the class II Eb gene of the H-2 complex is useful for the molecular detection of various H-2 alleles. DNA polymorphic analysis was used for tracking maternal H-2 alleles in the spleens of baby mice. The main procedure involved polymerase chain reaction amplification and restriction fragment length polymorphism analysis of the DNA sequence encompassing the H-2-specific microsatellite from the genomic DNA of baby mice. The results indicated that maternal T cells of immunized pregnant mice cross the placenta into the fetus, eventually inducing antigen-specific immunological tolerance in the offspring.

  5. Allele frequencies of human platelet antigens in Banjar, Bugis, Champa, Jawa and Kelantan Malays in Peninsular Malaysia.

    PubMed

    Wan Syafawati, W U; Norhalifah, H K; Zefarina, Z; Zafarina, Z; Panneerchelvam, S; Norazmi, M N; Chambers, G K; Edinur, H A

    2015-10-01

    The major aims of this study are to characterise and compile allelic data of human platelet antigen (HPA)-1 to -6 and -15 systems in five Malay sub-ethnic groups in Peninsular Malaysia. HPAs are polymorphic glycoproteins expressed on the surface of platelet membranes and are genetically differentiated across ethnogeographically unrelated populations. Blood samples were obtained with informed consent from 192 volunteers: Banjar (n = 30), Bugis (n = 37), Champa (n = 51), Jawa (n = 39) and Kelantan (n = 35). Genotyping was done using polymerase chain reaction-sequence specific primer method. In general, frequencies of HPAs in the Malay sub-ethnic groups are more similar to those in Asian populations compared with other more distinct populations such as Indians, Australian Aborigines and Europeans. This study provides the first HPA datasets for the selected Malay sub-ethnic groups. Subsequent analyses including previously reported HPA data of Malays, Chinese and Indians revealed details of the genetic relationships and ancestry of various sub-populations in Peninsular Malaysia. Furthermore, the comprehensive HPA allele frequency information from Peninsular Malaysia provided in this report has potential applications for future study of diseases, estimating risks associated with HPA alloimmunization and for developing an efficient HPA-typed donor recruitment strategy. © 2015 British Blood Transfusion Society.

  6. Comparison of specific binding sites for Escherichia coli RNA polymerase with naturally occurring hairpin regions in single-stranded DNA of coliphage M13. [Aspergillus oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niyogi, S.K.; Mitra, S.

    Escherichia coli RNA polymerase binds specifically to the single-stranded circular DNA of coliphage M13 in the presence of a saturating concentration of the bacterial DNA binding protein presumably as an essential step in the synthesis of the RNA primer required for synthesizing the complementary DNA strand in parental replicative-form DNA. The RNA polymerase-protected DNA regions were isolated after extensive digestion with pancreatic DNase, S1 endonuclease of Aspergillus oryzae, and exonuclease I of E. coli. The physicochemical properties of the RNA polymerase-protected segments (called PI and PII) were compared with those of the naturally occurring hairpin regions.

  7. The Length Distribution of Class I-Restricted T Cell Epitopes Is Determined by Both Peptide Supply and MHC Allele-Specific Binding Preference.

    PubMed

    Trolle, Thomas; McMurtrey, Curtis P; Sidney, John; Bardet, Wilfried; Osborn, Sean C; Kaever, Thomas; Sette, Alessandro; Hildebrand, William H; Nielsen, Morten; Peters, Bjoern

    2016-02-15

    HLA class I-binding predictions are widely used to identify candidate peptide targets of human CD8(+) T cell responses. Many such approaches focus exclusively on a limited range of peptide lengths, typically 9 aa and sometimes 9-10 aa, despite multiple examples of dominant epitopes of other lengths. In this study, we examined whether epitope predictions can be improved by incorporating the natural length distribution of HLA class I ligands. We found that, although different HLA alleles have diverse length-binding preferences, the length profiles of ligands that are naturally presented by these alleles are much more homogeneous. We hypothesized that this is due to a defined length profile of peptides available for HLA binding in the endoplasmic reticulum. Based on this, we created a model of HLA allele-specific ligand length profiles and demonstrate how this model, in combination with HLA-binding predictions, greatly improves comprehensive identification of CD8(+) T cell epitopes. Copyright © 2016 by The American Association of Immunologists, Inc.

  8. S genotyping in Japanese plum and sweet cherry by allele-specific hybridization using streptavidin-coated magnetic beads.

    PubMed

    Wang, Chun-Lei; Zhang, Zhi-Ping; Tonosaki, Kaoru; Kitashiba, Hiroyasu; Nishio, Takeshi

    2013-04-01

    We report a rapid and reliable method for S genotyping of Rosaceae fruit trees, which would to be useful for successful planting of cross-compatible cultivars in orchards. Japanese plum (Prunus salicina) and sweet cherry (Prunus avium), belonging to the family Rosaceae, possess gametophytic self-incompatibility controlled by a single polymorphic locus containing at least two linked genes, S-RNase and SFB (S-haplotype-specific F-box gene). For successful planting of cross-compatible cultivars of Rosaceae fruit trees in commercial orchards, it is necessary to obtain information on S genotypes of cultivars. Recently, a method of dot-blot analysis utilizing allele-specific oligonucleotides having sequences of SFB-HVa region has been developed for identification of S haplotypes in Japanese plum and sweet cherry. However, dot-blot hybridization requires considerable time and skill for analysis even of a small number of plant samples. Thus, a quick and efficient method for S genotyping was developed in this study. In this method, instead of a nylon membrane used for dot-blot hybridization, streptavidin-coated magnetic beads are used to immobilize PCR products, which are hybridized with allele-specific oligonucleotide probes. Our improved method allowed us to identify 10 S haplotypes (S-a, S-b, S-c, S-d, S-e, S-f, S-h, S-k, S-7 and S-10) of 13 Japanese plum cultivars and 10 S haplotypes (S-1, S-2, S-3, S-4, S-4', S-5, S-6, S-7, S-9 and S-16) of 13 sweet cherry cultivars utilizing SFB or S-RNase gene polymorphism. This method would be suitable for identification of S genotypes of a small number of plant samples.

  9. India Allele Finder: a web-based annotation tool for identifying common alleles in next-generation sequencing data of Indian origin.

    PubMed

    Zhang, Jimmy F; James, Francis; Shukla, Anju; Girisha, Katta M; Paciorkowski, Alex R

    2017-06-27

    We built India Allele Finder, an online searchable database and command line tool, that gives researchers access to variant frequencies of Indian Telugu individuals, using publicly available fastq data from the 1000 Genomes Project. Access to appropriate population-based genomic variant annotation can accelerate the interpretation of genomic sequencing data. In particular, exome analysis of individuals of Indian descent will identify population variants not reflected in European exomes, complicating genomic analysis for such individuals. India Allele Finder offers improved ease-of-use to investigators seeking to identify and annotate sequencing data from Indian populations. We describe the use of India Allele Finder to identify common population variants in a disease quartet whole exome dataset, reducing the number of candidate single nucleotide variants from 84 to 7. India Allele Finder is freely available to investigators to annotate genomic sequencing data from Indian populations. Use of India Allele Finder allows efficient identification of population variants in genomic sequencing data, and is an example of a population-specific annotation tool that simplifies analysis and encourages international collaboration in genomics research.

  10. Characterization and machine learning prediction of allele-specific DNA methylation.

    PubMed

    He, Jianlin; Sun, Ming-an; Wang, Zhong; Wang, Qianfei; Li, Qing; Xie, Hehuang

    2015-12-01

    A large collection of Single Nucleotide Polymorphisms (SNPs) has been identified in the human genome. Currently, the epigenetic influences of SNPs on their neighboring CpG sites remain elusive. A growing body of evidence suggests that locus-specific information, including genomic features and local epigenetic state, may play important roles in the epigenetic readout of SNPs. In this study, we made use of mouse methylomes with known SNPs to develop statistical models for the prediction of SNP associated allele-specific DNA methylation (ASM). ASM has been classified into parent-of-origin dependent ASM (P-ASM) and sequence-dependent ASM (S-ASM), which comprises scattered-S-ASM (sS-ASM) and clustered-S-ASM (cS-ASM). We found that P-ASM and cS-ASM CpG sites are both enriched in CpG rich regions, promoters and exons, while sS-ASM CpG sites are enriched in simple repeat and regions with high frequent SNP occurrence. Using Lasso-grouped Logistic Regression (LGLR), we selected 21 out of 282 genomic and methylation related features that are powerful in distinguishing cS-ASM CpG sites and trained the classifiers with machine learning techniques. Based on 5-fold cross-validation, the logistic regression classifier was found to be the best for cS-ASM prediction with an ACC of 0.77, an AUC of 0.84 and an MCC of 0.54. Lastly, we applied the logistic regression classifier on human brain methylome and predicted 608 genes associated with cS-ASM. Gene ontology term enrichment analysis indicated that these cS-ASM associated genes are significantly enriched in the category coding for transcripts with alternative splicing forms. In summary, this study provided an analytical procedure for cS-ASM prediction and shed new light on the understanding of different types of ASM events. Published by Elsevier Inc.

  11. incurvata13, a Novel Allele of AUXIN RESISTANT6, Reveals a Specific Role for Auxin and the SCF Complex in Arabidopsis Embryogenesis, Vascular Specification, and Leaf Flatness1[W][OA

    PubMed Central

    Esteve-Bruna, David; Pérez-Pérez, José Manuel; Ponce, María Rosa; Micol, José Luis

    2013-01-01

    Auxin plays a pivotal role in plant development by modulating the activity of SCF ubiquitin ligase complexes. Here, we positionally cloned Arabidopsis (Arabidopsis thaliana) incurvata13 (icu13), a mutation that causes leaf hyponasty and reduces leaf venation pattern complexity and auxin responsiveness. We found that icu13 is a novel recessive allele of AUXIN RESISTANT6 (AXR6), which encodes CULLIN1, an invariable component of the SCF complex. Consistent with a role for auxin in vascular specification, the vascular defects in the icu13 mutant were accompanied by reduced expression of auxin transport and auxin perception markers in provascular cells. This observation is consistent with the expression pattern of AXR6, which we found to be restricted to vascular precursors and hydathodes in wild-type leaf primordia. AXR1, RELATED TO UBIQUITIN1-CONJUGATING ENZYME1, CONSTITUTIVE PHOTOMORPHOGENIC9 SIGNALOSOME5A, and CULLIN-ASSOCIATED NEDD8-DISSOCIATED1 participate in the covalent modification of CULLIN1 by RELATED TO UBIQUITIN. Hypomorphic alleles of these genes also display simple venation patterns, and their double mutant combinations with icu13 exhibited a synergistic, rootless phenotype reminiscent of that caused by loss of function of MONOPTEROS (MP), which forms an auxin-signaling module with BODENLOS (BDL). The phenotypes of double mutant combinations of icu13 with either a gain-of-function allele of BDL or a loss-of-function allele of MP were synergistic. In addition, a BDL:green fluorescent protein fusion protein accumulated in icu13, and BDL loss of function or MP overexpression suppressed the phenotype of icu13. Our results demonstrate that the MP-BDL module is required not only for root specification in embryogenesis and vascular postembryonic development but also for leaf flatness. PMID:23319550

  12. INCURVATA2 Encodes the Catalytic Subunit of DNA Polymerase α and Interacts with Genes Involved in Chromatin-Mediated Cellular Memory in Arabidopsis thaliana

    PubMed Central

    Barrero, José María; González-Bayón, Rebeca; del Pozo, Juan Carlos; Ponce, María Rosa; Micol, José Luis

    2007-01-01

    Cell type–specific gene expression patterns are maintained by the stable inheritance of transcriptional states through mitosis, requiring the action of multiprotein complexes that remodel chromatin structure. Genetic and molecular interactions between chromatin remodeling factors and components of the DNA replication machinery have been identified in Schizosaccharomyces pombe, indicating that some epigenetic marks are replicated simultaneously to DNA with the participation of the DNA replication complexes. This model of epigenetic inheritance might be extended to the plant kingdom, as we report here with the positional cloning and characterization of INCURVATA2 (ICU2), which encodes the putative catalytic subunit of the DNA polymerase α of Arabidopsis thaliana. The strong icu2-2 and icu2-3 insertional alleles caused fully penetrant zygotic lethality when homozygous and incompletely penetrant gametophytic lethality, probably because of loss of DNA polymerase activity. The weak icu2-1 allele carried a point mutation and caused early flowering, leaf incurvature, and homeotic transformations of sepals into carpels and of petals into stamens. Further genetic analyses indicated that ICU2 interacts with TERMINAL FLOWER2, the ortholog of HETEROCHROMATIN PROTEIN1 of animals and yeasts, and with the Polycomb group (PcG) gene CURLY LEAF. Another PcG gene, EMBRYONIC FLOWER2, was found to be epistatic to ICU2. Quantitative RT-PCR analyses indicated that a number of regulatory genes were derepressed in the icu2-1 mutant, including genes associated with flowering time, floral meristem, and floral organ identity. PMID:17873092

  13. Allelic Expression of Deleterious Protein-Coding Variants across Human Tissues

    PubMed Central

    Kukurba, Kimberly R.; Zhang, Rui; Li, Xin; Smith, Kevin S.; Knowles, David A.; How Tan, Meng; Piskol, Robert; Lek, Monkol; Snyder, Michael; MacArthur, Daniel G.; Li, Jin Billy; Montgomery, Stephen B.

    2014-01-01

    Personal exome and genome sequencing provides access to loss-of-function and rare deleterious alleles whose interpretation is expected to provide insight into individual disease burden. However, for each allele, accurate interpretation of its effect will depend on both its penetrance and the trait's expressivity. In this regard, an important factor that can modify the effect of a pathogenic coding allele is its level of expression; a factor which itself characteristically changes across tissues. To better inform the degree to which pathogenic alleles can be modified by expression level across multiple tissues, we have conducted exome, RNA and deep, targeted allele-specific expression (ASE) sequencing in ten tissues obtained from a single individual. By combining such data, we report the impact of rare and common loss-of-function variants on allelic expression exposing stronger allelic bias for rare stop-gain variants and informing the extent to which rare deleterious coding alleles are consistently expressed across tissues. This study demonstrates the potential importance of transcriptome data to the interpretation of pathogenic protein-coding variants. PMID:24786518

  14. DNA polymerase gamma from Xenopus laevis. I. The identification of a high molecular weight catalytic subunit by a novel DNA polymerase photolabeling procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Insdorf, N.F.; Bogenhagen, D.F.

    1989-12-25

    DNA polymerase gamma has been purified over 10,000-fold from mitochondria of Xenopus laevis ovaries. We have developed a novel technique which specifically photolabels DNA polymerases. This procedure, the DNA polymerase trap, was used to identify a catalytic subunit of 140,000 Da from X. laevis DNA polymerase gamma. Additional catalytically active polypeptides of 100,000 and 55,000 Da were identified in the highly purified enzyme. These appear to be products of degradation of the 140,000-Da subunit. The DNA polymerase trap, which does not require large amounts of enzyme or renaturation from sodium dodecyl sulfate, is an alternative to the classic activity gel.

  15. Detecting DNA methylation of the BCL2, CDKN2A and NID2 genes in urine using a nested methylation specific polymerase chain reaction assay to predict bladder cancer.

    PubMed

    Scher, Michael B; Elbaum, Michael B; Mogilevkin, Yakov; Hilbert, David W; Mydlo, Jack H; Sidi, A Ami; Adelson, Martin E; Mordechai, Eli; Trama, Jason P

    2012-12-01

    Detection of methylated DNA has been shown to be a good biomarker for bladder cancer. Bladder cancer has the highest recurrence rate of any cancer and, as such, patients are regularly monitored using invasive diagnostic techniques. As urine is easily attainable, bladder cancer is an optimal cancer to detect using DNA methylation. DNA methylation is highly specific in cancer detection. However, it is difficult to detect because of the limited amount of DNA present in the urine of patients with bladder cancer. Therefore, an improved, sensitive and noninvasive diagnostic test is needed. We developed a highly specific and sensitive nested methylation specific polymerase chain reaction assay to detect the presence of bladder cancer in small volumes of patient urine. The genes assayed for DNA methylation are BCL2, CDKN2A and NID2. The regions surrounding the DNA methylation sites were amplified in a methylation independent first round polymerase chain reaction and the amplification product from the first polymerase chain reaction was used in a real-time methylation specific polymerase chain reaction. Urine samples were collected from patients receiving treatment at Wolfson Medical Center in Holon, Israel. In a pilot clinical study using patient urine samples we were able to differentiate bladder cancer from other urogenital malignancies and nonmalignant conditions with a sensitivity of 80.9% and a specificity of 86.4%. We developed a novel methylation specific polymerase chain reaction assay for the detection and monitoring of bladder cancer using DNA extracted from patient urine. The assay may also be combined with other diagnostic tests to improve accuracy. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. The interleukin-10-1082 'A' allele and abdominal aortic aneurysms.

    PubMed

    Bown, Matthew J; Lloyd, Geraint M; Sandford, Rebecca M; Thompson, John R; London, Nicholas J M; Samani, Nilesh J; Sayers, Robert D

    2007-10-01

    Abdominal aortic aneurysms (AAA) are caused by inflammatory processes in the wall of the aorta resulting in degradation of structural proteins. This inflammatory process is mediated, in part, by cytokines, and interleukin-10 (IL-10) is a predominantly anti-inflammatory cytokine. A single nucleotide polymorphism in the promoter region of the IL-10 gene that affects transcription has been associated with AAA in a small study. The aim of this study was to determine whether this polymorphism is associated with AAA and also examine its effect on the growth of small AAA. A case control study was performed. A total of 389 patients with AAA and 404 healthy controls were recruited. IL-10-1082 polymorphisms were determined by polymerase chain reaction-based methods. In the case of patients with small AAA (<5.5 cm), serial size measurements were recorded to determine mean growth rate. There was a statistically significant difference both in allele and genotype frequencies between the case and control groups with the IL-10-1082 'A' allele being more common in the AAA group (P = .006). In the AAA group, genotype frequencies were as follows: GG 84, GA 201, and AA 104. In the control group, the genotype frequencies were GG 118, GA 205, and AA 81. The odds ratio for the 'A' allele as a risk factor for AAA was 1.50 (95% confidence interval 1.09 to 2.07). Regression modeling revealed that the IL-10-1082 genotype was, however, not independently associated with AAA if age, tobacco use, hypertension, and history of coronary or peripheral artery disease was taken into account. There was a trend towards lower plasma IL-10 level in IL-10 AA carriers, but the IL-10 'A' allele did not have any discernible effect on the growth of small AAA. This study demonstrates that the IL-10-1082 'A' allele is associated with AAA, although this association is likely to be secondary to an association between IL-10-1082 genotype and other markers of cardiovascular disease rather than AAA per se.

  17. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification.

    PubMed

    Silva, Gonçalo; Bömer, Moritz; Nkere, Chukwuemeka; Kumar, P Lava; Seal, Susan E

    2015-09-15

    Yam mosaic virus (YMV; genus Potyvirus) is considered to cause the most economically important viral disease of yams (Dioscorea spp.) in West Africa which is the dominant region for yam production globally. Yams are a vegetatively propagated crop and the use of virus-free planting material forms an essential component of disease control. Current serological and PCR-based diagnostic methods for YMV are time consuming involving a succession of target detection steps. In this study, a novel assay for specific YMV detection is described that is based on isothermal reverse transcription-recombinase polymerase amplification (RT-exoRPA). This test has been shown to be reproducible and able to detect as little as 14 pg/μl of purified RNA obtained from an YMV-infected plant, a sensitivity equivalent to that obtained with the reverse transcription-polymerase chain reaction (RT-PCR) in current general use. The RT-exoRPA assay has, however, several advantages over the RT-PCR; positive samples can be detected in less than 30 min, and amplification only requires a single incubation temperature (optimum 37°C). These features make the RT-exoRPA assay a promising candidate for adapting into a field test format to be used by yam breeding programmes or certification laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution.

    PubMed

    Marez, D; Legrand, M; Sabbagh, N; Lo Guidice, J M; Spire, C; Lafitte, J J; Meyer, U A; Broly, F

    1997-06-01

    The polymorphic cytochrome P450 CYP2D6 is involved in the metabolism of various drugs of wide therapeutic use and is a presumed susceptibility factor for certain environmentally-induced diseases. Our aim was to define the mutations and alleles of the CYP2D6 gene and to evaluate their frequencies in the European population. Using polymerase chain reaction-single strand conformation polymorphism analysis, 672 unrelated subjects were screened for mutations in the 9 exons of the gene and their exon-intron boundaries. A total of 48 point mutations were identified, of which 29 were novel. Mutations 1749 G-->C, 2938 C-->T and 4268 G-->C represented 52.6%, 34.3% and 52.9% of the mutations in the total population, respectively. Of the eight detrimental mutations detected, the 1934 G-->A, the 1795 Tdel and the 2637 Adel accounted for 65.8%, 6.2% and 4.8% respectively, within the poor metabolizer subgroup. Fifty-three different alleles were characterized from the mutation pattern and by allele-specific sequencing. They are derived from three major alleles, namely the wild-type CYP2D6*1A, the functional CYP2D6*2 and the null CYP2D6*4A. Five allelic variants (CYP2D6*1A, *2, *2B, *4A and *5) account for about 87% of all alleles, while the remaining alleles occur with a frequency of 0.1%-2.7%. These data provide a solid basis for future epidemiological, clinical as well as interethnic studies of the CYP2D6 polymorphism and highlight that the described single strand conformation polymorphism method can be successfully used in designing such studies.

  19. The functional importance of sequence versus expression variability of MHC alleles in parasite resistance.

    PubMed

    Axtner, Jan; Sommer, Simone

    2012-12-01

    Understanding selection processes driving the pronounced allelic polymorphism of the major histocompatibility complex (MHC) genes and its functional associations to parasite load have been the focus of many recent wildlife studies. Two main selection scenarios are currently debated which explain the susceptibility or resistance to parasite infections either by the effects of (1) specific MHC alleles which are selected frequency-dependent in space and time or (2) a heterozygote or divergent allele advantage. So far, most studies have focused only on structural variance in co-evolutionary processes although this might not be the only trait subject to natural selection. In the present study, we analysed structural variance stretching from exon1 through exon3 of MHC class II DRB genes as well as genotypic expression variance in relation to the gastrointestinal helminth prevalence and infection intensity in wild yellow-necked mice (Apodemus flavicollis). We found support for the functional importance of specific alleles both on the sequence and expression level. By resampling a previously investigated study population we identified specific MHC alleles affected by temporal shifts in parasite pressure and recorded associated changes in allele frequencies. The allele Apfl-DRB*23 was associated with resistance to infections by the oxyurid nematode Syphacia stroma and at the same time with susceptibility to cestode infection intensity. In line with our expectation, MHC mRNA transcript levels tended to be higher in cestode-infected animals carrying the allele Apfl-DRB*23. However, no support for a heterozygote or divergent allele advantage on the sequence or expression level was detected. The individual amino acid distance of genotypes did not explain individual differences in parasite loads and the genetic distance had no effect on MHC genotype expression. For ongoing studies on the functional importance of expression variance in parasite resistance, allele-specific

  20. SU94. Allele-Specific and Trauma-Related Epigenetic Changes in the FKBP5 Gene: Differences Between Psychotic Patients and Healthy Controls

    PubMed Central

    Mihaljevic, Marina; Franic, Dusica; Soldatovic, Ivan; Andric, Sanja; Mirjanic, Tijana; Novakovic, Ivana; Adzic, Miroslav; Maric, Nadja

    2017-01-01

    Abstract Background: Hypothalamic-pituitary-adrenal (HPA) axis dysregulation is a proposed etiological mechanism of psychosis. Recent studies highlighted impact of the FKBP5 gene and its functional variant rs1360780, which risk (T) allele affects the activity of HPA axis following stress exposure, on psychotic patients exposed to early trauma (1). Additionally, risk allele and trauma dependent FKBP5 demethylation in intron 7 was observed in traumatized individuals (2). Thus, the purpose of this pilot study was to investigate influence of the risk allele and trauma on FKBP5 DNA methylation levels at intron 7 in psychotic patients and to compare it with healthy individuals. Methods: The sample consisted of 24 psychosis spectrum patients and 24 controls matched by age and gender. All participants were genotyped for rs1360780 and divided into 2 groups depending on the presence of the risk allele (risk and nonrisk group). DNA methylation levels at 3 CpG sites (CpG1, CpG2, and CpG3) in intron 7 were analyzed by Sanger sequencing. Early-life adversities were measured by Childhood Trauma Questionnaire. Pearson correlation and t test were performed as appropriate. Results: Analyses revealed decreased FKBP5 methylation at targeted CpG sites and averaged methylation level (AML) at intron 7 in patients compared to controls (P = .026, P = .017, P = .027, and P = .003, respectively). Decreased AML and methylation at CpG3 were observed comparing risk and nonrisk patients’ groups (P = .018 and P = .016, respectively). Additionally, decreased methylation was found in risk patients’ group compared to risk controls’ group. No differences were found comparing nonrisk groups. Furthermore, strong negative associations between trauma and methylation at CpG3 and AML were observed only in risk controls’ group (r = −0.707, P = .007; r = −0.741, P = .004, respectively). Conclusion: Our preliminary results revealed allele-specific epigenetic changes of the FKBP

  1. Frequency of null allele of Human Leukocyte Antigen-G (HLA-G) locus in subjects to recurrent miscarriage

    PubMed Central

    Alizadeh, Nazila; Mosaferi, Elnaz; Farzadi, Laya; Majidi, Jafar; Monfaredan, Amir; Yousefi, Bahman; Baradaran, Behzad

    2016-01-01

    Background: Human leukocyte antigen-G (HLA-G) is a non-classical class I molecule highly expressed by extravillous cytotrophoblast cells. Due to a single base pair deletion, its function can be compensated by other isoforms. Investigating the frequency of null allele in Recurrent Miscarriage (RM) subjects could be useful in understanding the relationship between frequency of this allele and RM in a given population. Objective: This study aimed to determine the frequency of HLA-G*0105N null allele and its potential association with down-regulation of HLA-G in subjects with RM. Materials and Methods: Western blotting was used to assess the level of HLA-G protein expression. For investigating the frequency of HLA-G*0105N null allele in RM subjects, PCR-RFLP method was used. Exon 3 of HLA-G gene was amplified by polymerase chain reaction (PCR). Subsequently, PpuM-1 enzyme was employed to digest the PCR products and fragments were analyzed using gel electrophoresis. Results: Digestion using restriction enzyme showed the presence of heterozygous HLA-G*0105N null allele in 10% of the test population. Western blotting results confirmed the decrease in expression of HLA-G in the placental tissue of subjects with RM compared to subjects who could give normal birth. Conclusion: The frequency of heterozygous HLA-G*0105N null allele was high to some extent in subjects with RM. The mutation rate in subjects suggested that there is a significant association between RM and frequency of mutations in this allele. PMID:27525330

  2. IDP-ASE: haplotyping and quantifying allele-specific expression at the gene and gene isoform level by hybrid sequencing

    PubMed Central

    Deonovic, Benjamin; Wang, Yunhao; Weirather, Jason; Wang, Xiu-Jie; Au, Kin Fai

    2017-01-01

    Abstract Allele-specific expression (ASE) is a fundamental problem in studying gene regulation and diploid transcriptome profiles, with two key challenges: (i) haplotyping and (ii) estimation of ASE at the gene isoform level. Existing ASE analysis methods are limited by a dependence on haplotyping from laborious experiments or extra genome/family trio data. In addition, there is a lack of methods for gene isoform level ASE analysis. We developed a tool, IDP-ASE, for full ASE analysis. By innovative integration of Third Generation Sequencing (TGS) long reads with Second Generation Sequencing (SGS) short reads, the accuracy of haplotyping and ASE quantification at the gene and gene isoform level was greatly improved as demonstrated by the gold standard data GM12878 data and semi-simulation data. In addition to methodology development, applications of IDP-ASE to human embryonic stem cells and breast cancer cells indicate that the imbalance of ASE and non-uniformity of gene isoform ASE is widespread, including tumorigenesis relevant genes and pluripotency markers. These results show that gene isoform expression and allele-specific expression cooperate to provide high diversity and complexity of gene regulation and expression, highlighting the importance of studying ASE at the gene isoform level. Our study provides a robust bioinformatics solution to understand ASE using RNA sequencing data only. PMID:27899656

  3. High allele frequency of CYP2C9*3 (rs1057910) in a Negrito's subtribe population in Malaysia; Aboriginal people of Jahai.

    PubMed

    Rosdi, Rasmaizatul Akma; Mohd Yusoff, Narazah; Ismail, Rusli; Soo Choon, Tan; Saleem, Mohamed; Musa, Nurfadhlina; Yusoff, Surini

    2016-09-01

    CYP2C9 gene polymorphisms modulate inter-individual variations in the human body's responses to various endogenous and exogenous drug substrates. To date, little is known about the CYP2C9 gene polymorphisms among the aboriginal populations of the world, including those in Malaysia. To characterise and compare the CYP2C9 polymorphisms (CYP2C9*2, CYP2C9*3, CYP2C9*4 and CYP2C9*5) between one of Malaysia's aboriginal populations, Jahai, with the national major ethnic, Malay. To also compare the allele frequencies from these two populations with available data of other aboriginal populations around the world. The extracted DNA of 155 Jahais and 183 Malays was genotyped for CYP2C9 polymorphisms using a nested multiplex allele-specific polymerase chain reaction technique. The results were confirmed by DNA direct sequencing. Genotyping results revealed that CYP2C9*2, CYP2C9*4 and CYP2C9*5 were absent in Jahais, while only the latter two were absent in Malays. The CYP2C9*3 allelic frequency in Jahais was 36.2%, making them the most frequent carriers of the allele thus far reported in any ethnic group from Southeast Asia. The high frequency of CYP2C9*3 and the absence of CYP2C9*2 in Jahais suggest that genetic drift may be occurring in this ethnic group. This is the first study to determine the CYP2C9 polymorphisms in an aboriginal population in Malaysia.

  4. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity.

    PubMed

    Freemont, P S; Ollis, D L; Steitz, T A; Joyce, C M

    1986-09-01

    The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.

  5. Transposable elements generate population-specific insertional patterns and allelic variation in genes of wild emmer wheat (Triticum turgidum ssp. dicoccoides).

    PubMed

    Domb, Katherine; Keidar, Danielle; Yaakov, Beery; Khasdan, Vadim; Kashkush, Khalil

    2017-10-27

    Natural populations of the tetraploid wild emmer wheat (genome AABB) were previously shown to demonstrate eco-geographically structured genetic and epigenetic diversity. Transposable elements (TEs) might make up a significant part of the genetic and epigenetic variation between individuals and populations because they comprise over 80% of the wild emmer wheat genome. In this study, we performed detailed analyses to assess the dynamics of transposable elements in 50 accessions of wild emmer wheat collected from 5 geographically isolated sites. The analyses included: the copy number variation of TEs among accessions in the five populations, population-unique insertional patterns, and the impact of population-unique/specific TE insertions on structure and expression of genes. We assessed the copy numbers of 12 TE families using real-time quantitative PCR, and found significant copy number variation (CNV) in the 50 wild emmer wheat accessions, in a population-specific manner. In some cases, the CNV difference reached up to 6-fold. However, the CNV was TE-specific, namely some TE families showed higher copy numbers in one or more populations, and other TE families showed lower copy numbers in the same population(s). Furthermore, we assessed the insertional patterns of 6 TE families using transposon display (TD), and observed significant population-specific insertional patterns. The polymorphism levels of TE-insertional patterns reached 92% among all wild emmer wheat accessions, in some cases. In addition, we observed population-specific/unique TE insertions, some of which were located within or close to protein-coding genes, creating allelic variations in a population-specific manner. We also showed that those genes are differentially expressed in wild emmer wheat. For the first time, this study shows that TEs proliferate in wild emmer wheat in a population-specific manner, creating new alleles of genes, which contribute to the divergent evolution of homeologous genes

  6. Dissection of expression-quantitative trait locus and allele specificity using a haploid/diploid plant system - insights into compensatory evolution of transcriptional regulation within populations.

    PubMed

    Verta, Jukka-Pekka; Landry, Christian R; MacKay, John

    2016-07-01

    Regulation of gene expression plays a central role in translating genotypic variation into phenotypic variation. Dissection of the genetic basis of expression variation is key to understanding how expression regulation evolves. Such analyses remain challenging in contexts where organisms are outbreeding, highly heterozygous and long-lived such as in the case of conifer trees. We developed an RNA sequencing (RNA-seq)-based approach for both expression-quantitative trait locus (eQTL) mapping and the detection of cis-acting (allele-specific) vs trans-acting (non-allele-specific) eQTLs. This method can be potentially applied to many conifers. We used haploid and diploid meiotic seed tissues of a single self-fertilized white spruce (Picea glauca) individual to dissect eQTLs according to linkage and allele specificity. The genetic architecture of local eQTLs linked to the expressed genes was particularly complex, consisting of cis-acting, trans-acting and, surprisingly, compensatory cis-trans effects. These compensatory effects influence expression in opposite directions and are neutral when combined in homozygotes. Nearly half of local eQTLs were under compensation, indicating that close linkage between compensatory cis-trans factors is common in spruce. Compensated genes were overrepresented in developmental and cell organization functions. Our haploid-diploid eQTL analysis in spruce revealed that compensatory cis-trans eQTLs segregate within populations and evolve in close genetic linkage. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Genome-wide identification and quantification of cis- and trans-regulated genes responding to Marek's disease virus infection via analysis of allele-specific expression

    USDA-ARS?s Scientific Manuscript database

    Background Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by the Marek’s disease virus (MDV), a naturally-occurring oncogenic alphaherpesvirus. We attempted to identify genes conferring MD resistance, by completing a genome-wide screen for allele-specific expr...

  8. The structural basis for RNA specificity and Ca2+ inhibition of an RNA-dependent RNA polymerase.

    PubMed

    Salgado, Paula S; Makeyev, Eugene V; Butcher, Sarah J; Bamford, Dennis H; Stuart, David I; Grimes, Jonathan M

    2004-02-01

    The RNA-dependent RNA polymerase of bacteriophage phi6 transcribes mRNA from the three segments of the dsRNA viral genome. We have cocrystallized RNA oligonucleotides with the polymerase, revealing the mode of binding of RNA templates. This binding is somewhat different from that previously seen for DNA oligomers, leading to additional RNA-protein hydrogen bonds, consistent with a preference for RNA. Activation of the RNA/polymerase complex by the addition of substrate and Mg2+ initiates a single round of reaction within the crystal to form a dead-end complex that partially collapses within the enzyme active site. By replacing Mg2+ with Ca2+, we have been able to capture the inhibited complex which shows distortion that explains the structural basis for the inhibition of such polymerases by Ca2+.

  9. Enhancing the specificity of polymerase chain reaction by graphene oxide through surface modification: zwitterionic polymer is superior to other polymers with different charges.

    PubMed

    Zhong, Yong; Huang, Lihong; Zhang, Zhisen; Xiong, Yunjing; Sun, Liping; Weng, Jian

    Graphene oxides (GOs) with different surface characteristics, such as size, reduction degree and charge, are prepared, and their effects on the specificity of polymerase chain reaction (PCR) are investigated. In this study, we demonstrate that GO with a large size and high reduction degree is superior to small and nonreduced GO in enhancing the specificity of PCR. Negatively charged polyacrylic acid (PAA), positively charged polyacrylamide (PAM), neutral polyethylene glycol (PEG) and zwitterionic polymer poly(sulfobetaine) (pSB) are used to modify GO. The PCR specificity-enhancing ability increases in the following order: GO-PAA < GO-PAM < GO-PEG < GO-pSB. Thus, zwitterionic polymer-modified GO is superior to other GO derivatives with different charges in enhancing the specificity of PCR. GO derivatives are also successfully used to enhance the specificity of PCR for the amplification of human mitochondrial DNA using blood genomic DNA as template. Molecular dynamics simulations and molecular docking are performed to elucidate the interaction between the polymers and Pfu DNA polymerase. Our data demonstrate that the size, reduction degree and surface charge of GO affect the specificity of PCR. Based on our results, zwitterionic polymer-modified GO may be used as an efficient additive for enhancing the specificity of PCR.

  10. Using the Textpresso Site-Specific Recombinases Web server to identify Cre expressing mouse strains and floxed alleles.

    PubMed

    Condie, Brian G; Urbanski, William M

    2014-01-01

    Effective tools for searching the biomedical literature are essential for identifying reagents or mouse strains as well as for effective experimental design and informed interpretation of experimental results. We have built the Textpresso Site Specific Recombinases (Textpresso SSR) Web server to enable researchers who use mice to perform in-depth searches of a rapidly growing and complex part of the mouse literature. Our Textpresso Web server provides an interface for searching the full text of most of the peer-reviewed publications that report the characterization or use of mouse strains that express Cre or Flp recombinase. The database also contains most of the publications that describe the characterization or analysis of strains carrying conditional alleles or transgenes that can be inactivated or activated by site-specific recombinases such as Cre or Flp. Textpresso SSR complements the existing online databases that catalog Cre and Flp expression patterns by providing a unique online interface for the in-depth text mining of the site specific recombinase literature.

  11. Rapid and specific detection of porcine parvovirus by isothermal recombinase polymerase amplification assays.

    PubMed

    Yang, Yang; Qin, Xiaodong; Zhang, Wei; Li, Yanmin; Zhang, Zhidong

    2016-10-01

    Porcine parvovirus (PPV) is a major cause of swine reproductive failure and reported in many countries worldwide. Recombinase polymerase amplification (RPA) assays using a real-time fluorescent detection (PPV real-time RPA assay) and a lateral flow dipstick (PPV RPA LFD assay) were developed targeting PPV NS1 gene. The detection limit of PPV real-time RPA assay was 300 copies per reaction within 9 min at 38 °C, while the RPA LFD assay has a detection limit of 400 copies per reaction in less than 20 min at 38 °C. In both assays, there were no cross-reactions with porcine circovirus type 2, pseudorabies virus, porcine reproductive and respiratory syndrome virus, classical swine fever virus, and foot-and-mouth disease virus. Based on a total of 128 clinical samples examined, the sensitivity and the specificity of the developed RPA assays for identification of PPV was 94.4% and 100%, respectively, when compared to real-time (qPCR) assay. Therefore, the RPA assay provides a rapid, sensitive and specific alternative for PPV detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. HLA-A, B and DRB1 allele and haplotype frequencies in volunteer bone marrow donors from the north of Parana State.

    PubMed

    Bardi, Marlene Silva; Jarduli, Luciana Ribeiro; Jorge, Adylson Justino; Camargo, Rossana Batista Oliveira Godoy; Carneiro, Fernando Pagotto; Gelinski, Jair Roberto; Silva, Roseclei Assunção Feliciano; Lavado, Edson Lopes

    2012-01-01

    Knowledge of allele and haplotype frequencies of the human leukocyte antigen (HLA) system is important in the search for unrelated bone marrow donors. The Brazilian population is very heterogeneous and the HLA system is highly informative of populations because of the high level of polymorphisms. The aim of this study was to characterize the immunogenetic profile of ethnic groups (Caucasians, Afro-Brazilians and Asians) in the north of Parana State. A study was carried out of 3978 voluntary bone marrow donors registered in the Brazilian National Bone Marrow Donor Registry and typed for the HLA-A, B and DRB1 (low resolution) loci. The alleles were characterized by the polymerase chain reaction sequence-specific oligonucleotides method using the LabType SSO kit (One Lambda, CA, USA). The ARLEQUIN v.3.11 computer program was used to calculate allele and haplotype frequencies The most common alleles found in Caucasians were HLA-A*02, 24, 01; HLA-B*35, 44, 51; DRB1*11, 13, 07; for Afro-Brazilians they were HLA-A*02, 03, 30; HLA-B*35, 15, 44; DRB1*13, 11, 03; and for Asians they were: HLA-A*24, 02, 26; HLA-B*40, 51, 52; DRB1*04, 15, 09. The most common haplotype combinations were: HLA-A*01, B*08, DRB1*03 and HLA-A*29, B*44, DRB1*07 for Caucasians; HLA-A*29, B*44, DRB1*07 and HLA-A*01, B*08 and DRB1*03 for Afro-Brazilians; and HLA-A*24, B*52, DRB1*15 and HLA-A*24, B*40 and DRB1*09 for Asians. There is a need to target and expand bone marrow donor campaigns in the north of Parana State. The data of this study may be used as a reference by the Instituto Nacional de Cancer/Brazilian National Bone Marrow Donor Registry to evaluate the immunogenetic profile of populations in specific regions and in the selection of bone marrow donors.

  13. HLA-A, B and DRB1 allele and haplotype frequencies in volunteer bone marrow donors from the north of Parana State

    PubMed Central

    Bardi, Marlene Silva; Jarduli, Luciana Ribeiro; Jorge, Adylson Justino; Camargo, Rossana Batista Oliveira Godoy; Carneiro, Fernando Pagotto; Gelinski, Jair Roberto; Silva, Roseclei Assunção Feliciano; Lavado, Edson Lopes

    2012-01-01

    Background Knowledge of allele and haplotype frequencies of the human leukocyte antigen (HLA) system is important in the search for unrelated bone marrow donors. The Brazilian population is very heterogeneous and the HLA system is highly informative of populations because of the high level of polymorphisms. Aim The aim of this study was to characterize the immunogenetic profile of ethnic groups (Caucasians, Afro-Brazilians and Asians) in the north of Parana State. Methods A study was carried out of 3978 voluntary bone marrow donors registered in the Brazilian National Bone Marrow Donor Registry and typed for the HLA-A, B and DRB1 (low resolution) loci. The alleles were characterized by the polymerase chain reaction sequence-specific oligonucleotides method using the LabType SSO kit (One Lambda, CA, USA). The ARLEQUIN v.3.11 computer program was used to calculate allele and haplotype frequencies Results The most common alleles found in Caucasians were HLA-A*02, 24, 01; HLA-B*35, 44, 51; DRB1*11, 13, 07; for Afro-Brazilians they were HLA-A*02, 03, 30; HLA-B*35, 15, 44; DRB1*13, 11, 03; and for Asians they were: HLA-A*24, 02, 26; HLA-B*40, 51, 52; DRB1*04, 15, 09. The most common haplotype combinations were: HLA-A*01, B*08, DRB1*03 and HLA-A*29, B*44, DRB1*07 for Caucasians; HLA-A*29, B*44, DRB1*07 and HLA-A*01, B*08 and DRB1*03 for Afro-Brazilians; and HLA-A*24, B*52, DRB1*15 and HLA-A*24, B*40 and DRB1*09 for Asians. Conclusion There is a need to target and expand bone marrow donor campaigns in the north of Parana State. The data of this study may be used as a reference by the Instituto Nacional de Cancer/Brazilian National Bone Marrow Donor Registry to evaluate the immunogenetic profile of populations in specific regions and in the selection of bone marrow donors PMID:23049380

  14. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    DOE PAGES

    McInerney, Peter; Adams, Paul; Hadi, Masood Z.

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less

  15. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield.

    PubMed

    Guo, Mei; Rupe, Mary A; Wei, Jun; Winkler, Chris; Goncalves-Butruille, Marymar; Weers, Ben P; Cerwick, Sharon F; Dieter, Jo Ann; Duncan, Keith E; Howard, Richard J; Hou, Zhenglin; Löffler, Carlos M; Cooper, Mark; Simmons, Carl R

    2014-01-01

    Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays AR GOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer's modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer's female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance.

  16. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield

    PubMed Central

    Guo, Mei

    2014-01-01

    Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays ARGOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer’s modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer’s female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance. PMID:24218327

  17. Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field.

    PubMed

    Koller, Teresa; Brunner, Susanne; Herren, Gerhard; Hurni, Severine; Keller, Beat

    2018-04-01

    The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects. Allelic Pm3 resistance genes of wheat confer race-specific resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles Pm3a, b, c, d, f, and g have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided Pm3 alleles, which were generated by crossbreeding of lines transformed with single Pm3 alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two Pm3 alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of Pm3 transgenes proved to be successful in enhancing powdery mildew field resistance.

  18. Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis.

    PubMed

    Livneh, Zvi; Ziv, Omer; Shachar, Sigal

    2010-02-15

    The encounter of replication forks with DNA lesions may lead to fork arrest and/or the formation of single-stranded gaps. A major strategy to cope with these replication irregularities is translesion DNA synthesis (TLS), in which specialized error-prone DNA polymerases bypass the blocking lesions. Recent studies suggest that TLS across a particular DNA lesion may involve as many as four different TLS polymerases, acting in two-polymerase reactions in which insertion by a particular polymerase is followed by extension by another polymerase. Insertion determines the accuracy and mutagenic specificity of the TLS reaction, and is carried out by one of several polymerases such as poleta, polkappa or poliota. In contrast, extension is carried out primarily by polzeta. In cells from XPV patients, which are deficient in TLS across cyclobutane pyrimidine dimers (CPD) due to a deficiency in poleta, TLS is carried out by at least two backup reactions each involving two polymerases: One reaction involves polkappa and polzeta, and the other poliota and polzeta. These mechanisms may also assist poleta in normal cells under an excessive amount of UV lesions.

  19. RNA binding and replication by the poliovirus RNA polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberste, M.S.

    1988-01-01

    RNA binding and RNA synthesis by the poliovirus RNA-dependent RNA polymerase were studied in vitro using purified polymerase. Templates for binding and RNA synthesis studies were natural RNAs, homopolymeric RNAs, or subgenomic poliovirus-specific RNAs synthesized in vitro from cDNA clones using SP6 or T7 RNA polymerases. The binding of the purified polymerase to poliovirion and other RNAs was studied using a protein-RNA nitrocellulose filter binding assay. A cellular poly(A)-binding protein was found in the viral polymerase preparations, but was easily separated from the polymerase by chromatography on poly(A) Sepharose. The binding of purified polymerase to {sup 32}P-labeled ribohomopolymeric RNAs wasmore » examined, and the order of binding observed was poly(G) >>> poly(U) > poly(C) > poly(A). The K{sub a} for polymerase binding to poliovirion RNA and to a full-length negative strand transcript was about 1 {times} 10{sup 9} M{sup {minus}1}. The polymerase binds to a subgenomic RNAs which contain the 3{prime} end of the genome with a K{sub a} similar to that for virion RNA, but binds less well to 18S rRNA, globin mRNA, and subgenomic RNAs which lack portions of the 3{prime} noncoding region.« less

  20. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits.

    PubMed

    Wang, Yaqiong; Ma, Hong

    2015-09-01

    Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Effects of Active Site Mutations on Specificity of Nucleobase Binding in Human DNA Polymerase η.

    PubMed

    Ucisik, Melek N; Hammes-Schiffer, Sharon

    2017-04-20

    Human DNA polymerase η (Pol η) plays a vital role in protection against skin cancer caused by damage from ultraviolet light. This enzyme rescues stalled replication forks at cyclobutane thymine-thymine dimers (TTDs) by inserting nucleotides opposite these DNA lesions. Residue R61 is conserved in the Pol η enzymes across species, but the corresponding residue, as well as its neighbor S62, is different in other Y-family polymerases, Pol ι and Pol κ. Herein, R61 and S62 are mutated to their Pol ι and Pol κ counterparts. Relative binding free energies of dATP to mutant Pol η•DNA complexes with and without a TTD were calculated using thermodynamic integration. The binding free energies of dATP to the Pol η•DNA complex with and without a TTD are more similar for all of these mutants than for wild-type Pol η, suggesting that these mutations decrease the ability of this enzyme to distinguish between a TTD lesion and undamaged DNA. Molecular dynamics simulations of the mutant systems provide insights into the molecular level basis for the changes in relative binding free energies. The simulations identified differences in hydrogen-bonding, cation-π, and π-π interactions of the side chains with the dATP and the TTD or thymine-thymine (TT) motif. The simulations also revealed that R61 and Q38 act as a clamp to position the dATP and the TTD or TT and that the mutations impact the balance among the interactions related to this clamp. Overall, these calculations suggest that R61 and S62 play key roles in the specificity and effectiveness of Pol η for bypassing TTD lesions during DNA replication. Understanding the basis for this specificity is important for designing drugs aimed at cancer treatment.

  2. Effects of Active Site Mutations on Specificity of Nucleobase Binding in Human DNA Polymerase η

    PubMed Central

    2016-01-01

    Human DNA polymerase η (Pol η) plays a vital role in protection against skin cancer caused by damage from ultraviolet light. This enzyme rescues stalled replication forks at cyclobutane thymine–thymine dimers (TTDs) by inserting nucleotides opposite these DNA lesions. Residue R61 is conserved in the Pol η enzymes across species, but the corresponding residue, as well as its neighbor S62, is different in other Y-family polymerases, Pol ι and Pol κ. Herein, R61 and S62 are mutated to their Pol ι and Pol κ counterparts. Relative binding free energies of dATP to mutant Pol η•DNA complexes with and without a TTD were calculated using thermodynamic integration. The binding free energies of dATP to the Pol η•DNA complex with and without a TTD are more similar for all of these mutants than for wild-type Pol η, suggesting that these mutations decrease the ability of this enzyme to distinguish between a TTD lesion and undamaged DNA. Molecular dynamics simulations of the mutant systems provide insights into the molecular level basis for the changes in relative binding free energies. The simulations identified differences in hydrogen-bonding, cation−π, and π–π interactions of the side chains with the dATP and the TTD or thymine–thymine (TT) motif. The simulations also revealed that R61 and Q38 act as a clamp to position the dATP and the TTD or TT and that the mutations impact the balance among the interactions related to this clamp. Overall, these calculations suggest that R61 and S62 play key roles in the specificity and effectiveness of Pol η for bypassing TTD lesions during DNA replication. Understanding the basis for this specificity is important for designing drugs aimed at cancer treatment. PMID:28423907

  3. Comparison of Prion Allele Frequency found in Suffolk and Targhee Sheep

    USDA-ARS?s Scientific Manuscript database

    Scrapie is a class of Transmissible Spongiform Encephalopathy that affects sheep and goats. The objective of this study was to compare genotypic and allelic frequencies among USSES Targhee and Suffolk sheep. A total of 122 sheep were genotyped for codon 171 with allele specific primers in 2 separate...

  4. An African Ancestry-Specific Allele of CTLA4 Confers Protection against Rheumatoid Arthritis in African Americans

    PubMed Central

    Kelley, James M.; Hughes, Laura B.; Faggard, Jeffrey D.; Danila, Maria I.; Crawford, Monica H.; Edberg, Yuanqing; Padilla, Miguel A.; Tiwari, Hemant K.; Westfall, Andrew O.; Alarcón, Graciela S.; Conn, Doyt L.; Jonas, Beth L.; Callahan, Leigh F.; Smith, Edwin A.; Brasington, Richard D.; Allison, David B.; Kimberly, Robert P.; Moreland, Larry W.; Edberg, Jeffrey C.; Bridges, S. Louis

    2009-01-01

    Cytotoxic T-lymphocyte associated protein 4 (CTLA4) is a negative regulator of T-cell proliferation. Polymorphisms in CTLA4 have been inconsistently associated with susceptibility to rheumatoid arthritis (RA) in populations of European ancestry but have not been examined in African Americans. The prevalence of RA in most populations of European and Asian ancestry is ∼1.0%; RA is purportedly less common in black Africans, with little known about its prevalence in African Americans. We sought to determine if CTLA4 polymorphisms are associated with RA in African Americans. We performed a 2-stage analysis of 12 haplotype tagging single nucleotide polymorphisms (SNPs) across CTLA4 in a total of 505 African American RA patients and 712 African American controls using Illumina and TaqMan platforms. The minor allele (G) of the rs231778 SNP was 0.054 in RA patients, compared to 0.209 in controls (4.462×10−26, Fisher's exact). The presence of the G allele was associated with a substantially reduced odds ratio (OR) of having RA (AG+GG genotypes vs. AA genotype, OR 0.19, 95% CI: 0.13–0.26, p = 2.4×10−28, Fisher's exact), suggesting a protective effect. This SNP is polymorphic in the African population (minor allele frequency [MAF] 0.09 in the Yoruba population), but is very rare in other groups (MAF = 0.002 in 530 Caucasians genotyped for this study). Markers associated with RA in populations of European ancestry (rs3087243 [+60C/T] and rs231775 [+49A/G]) were not replicated in African Americans. We found no confounding of association for rs231778 after stratifying for the HLA-DRB1 shared epitope, presence of anti-cyclic citrullinated peptide antibody, or degree of admixture from the European population. An African ancestry-specific genetic variant of CTLA4 appears to be associated with protection from RA in African Americans. This finding may explain, in part, the relatively low prevalence of RA in black African populations. PMID:19300490

  5. New Deoxyribonucleic Acid Polymerase Induced by Bacillus subtilis Bacteriophage PBS2

    PubMed Central

    Price, Alan R.; Cook, Sandra J.

    1972-01-01

    The deoxyribonucleic acid (DNA) of Bacillus subtilis phage PBS2 has been confirmed to contain uracil instead of thymine. PBS2 phage infection of wild-type cells or DNA polymerase-deficient cells results in an increase in the specific activity of DNA polymerase. This induction of DNA polymerase activity is prevented by actinomycin D and chloramphenicol. In contrast to the major B. subtilis DNA polymerase, which prefers deoxythymidine triphosphate (dTTP) to deoxyuridine triphosphate (dUTP), the DNA polymerase in crude extracts of PBS2-infected cells is equally active whether dTTP or dUTP is employed. This phage-induced polymerase may be responsible for the synthesis of uracil-containing DNA during PBS2 phage infection. PMID:4623224

  6. Analysis of novel sph (spherocytosis) alleles in mice reveals allele-specific loss of band 3 and adducin in α-spectrin–deficient red cells

    PubMed Central

    Robledo, Raymond F.; Lambert, Amy J.; Birkenmeier, Connie S.; Cirlan, Marius V.; Cirlan, Andreea Flavia M.; Campagna, Dean R.; Lux, Samuel E.

    2010-01-01

    Five spontaneous, allelic mutations in the α-spectrin gene, Spna1, have been identified in mice (spherocytosis [sph], sph1J, sph2J, sph2BC, sphDem). All cause severe hemolytic anemia. Here, analysis of 3 new alleles reveals previously unknown consequences of red blood cell (RBC) spectrin deficiency. In sph3J, a missense mutation (H2012Y) in repeat 19 introduces a cryptic splice site resulting in premature termination of translation. In sphIhj, a premature stop codon occurs (Q1853Stop) in repeat 18. Both mutations result in markedly reduced RBC membrane spectrin content, decreased band 3, and absent β-adducin. Reevaluation of available, previously described sph alleles reveals band 3 and adducin deficiency as well. In sph4J, a missense mutation occurs in the C-terminal EF hand domain (C2384Y). Notably, an equally severe hemolytic anemia occurs despite minimally decreased membrane spectrin with normal band 3 levels and present, although reduced, β-adducin. The severity of anemia in sph4J indicates that the highly conserved cysteine residue at the C-terminus of α-spectrin participates in interactions critical to membrane stability. The data reinforce the notion that a membrane bridge in addition to the classic protein 4.1-p55-glycophorin C linkage exists at the RBC junctional complex that involves interactions between spectrin, adducin, and band 3. PMID:20056793

  7. Analysis of novel sph (spherocytosis) alleles in mice reveals allele-specific loss of band 3 and adducin in alpha-spectrin-deficient red cells.

    PubMed

    Robledo, Raymond F; Lambert, Amy J; Birkenmeier, Connie S; Cirlan, Marius V; Cirlan, Andreea Flavia M; Campagna, Dean R; Lux, Samuel E; Peters, Luanne L

    2010-03-04

    Five spontaneous, allelic mutations in the alpha-spectrin gene, Spna1, have been identified in mice (spherocytosis [sph], sph(1J), sph(2J), sph(2BC), sph(Dem)). All cause severe hemolytic anemia. Here, analysis of 3 new alleles reveals previously unknown consequences of red blood cell (RBC) spectrin deficiency. In sph(3J), a missense mutation (H2012Y) in repeat 19 introduces a cryptic splice site resulting in premature termination of translation. In sph(Ihj), a premature stop codon occurs (Q1853Stop) in repeat 18. Both mutations result in markedly reduced RBC membrane spectrin content, decreased band 3, and absent beta-adducin. Reevaluation of available, previously described sph alleles reveals band 3 and adducin deficiency as well. In sph(4J), a missense mutation occurs in the C-terminal EF hand domain (C2384Y). Notably, an equally severe hemolytic anemia occurs despite minimally decreased membrane spectrin with normal band 3 levels and present, although reduced, beta-adducin. The severity of anemia in sph(4J) indicates that the highly conserved cysteine residue at the C-terminus of alpha-spectrin participates in interactions critical to membrane stability. The data reinforce the notion that a membrane bridge in addition to the classic protein 4.1-p55-glycophorin C linkage exists at the RBC junctional complex that involves interactions between spectrin, adducin, and band 3.

  8. No CAG repeat expansion of polymerase gamma is associated with male infertility in Tamil Nadu, South India

    PubMed Central

    Poongothai, J.

    2013-01-01

    Mitochondria contains a single deoxyribonucleic acid (DNA) polymerase, polymerase gamma (POLG) mapped to long arm of chromosome 15 (15q25), responsible for replication and repair of mitochondrial DNA. Exon 1 of the human POLG contains CAG trinucleotide repeat, which codes for polyglutamate. Ten copies of CAG repeat were found to be uniformly high (0.88) in different ethnic groups and considered as the common allele, whereas the mutant alleles (not -10/not -10 CAG repeats) were found to be associated with oligospermia/oligoasthenospermia in male infertility. Recent data suggested the implication of POLG CAG repeat expansion in infertility, but are debated. The aim of our study was to explore whether the not -10/not -10 variant is associated with spermatogenic failure. As few study on Indian population have been conducted so far to support this view, we investigated the distribution of the POLG CAG repeats in 61 infertile men and 60 normozoospermic control Indian men of Tamil Nadu, from the same ethnic background. This analysis interestingly revealed that the homozygous wild type genotype (10/-10) was common in infertile men (77% - 47/61) and in normozoospermic control men (71.7% - 43/60). Our study failed to confirm any influence of the POLG gene polymorphism on the efficiency of the spermatogenesis. PMID:24339545

  9. A novel FY*A allele with the 265T and 298A SNPs formerly associated exclusively with the FY*B allele and weak Fy(b) antigen expression: implication for genotyping interpretative algorithms.

    PubMed

    Lopez, G H; Condon, J A; Wilson, B; Martin, J R; Liew, Y-W; Flower, R L; Hyland, C A

    2015-01-01

    An Australian Caucasian blood donor consistently presented a serology profile for the Duffy blood group as Fy(a+b+) with Fy(a) antigen expression weaker than other examples of Fy(a+b+) red cells. Molecular typing studies were performed to investigate the reason for the observed serology profile. Blood group genotyping was performed using a commercial SNP microarray platform. Sanger sequencing was performed using primer sets to amplify across exons 1 and 2 of the FY gene and using allele-specific primers. The propositus was genotyped as FY*A/B, FY*X heterozygote that predicted the Fy(a+b+(w) ) phenotype. Sequencing identified the 265T and 298A variants on the FY*A allele. This link between FY*A allele and 265T was confirmed by allele-specific PCR. The reduced Fy(a) antigen reactivity is attributed to a FY*A allele-carrying 265T and 298A variants previously defined in combination only with the FY*B allele and associated with weak Fy(b) antigen expression. This novel allele should be considered in genotyping interpretative algorithms for generating a predicted phenotype. © 2014 International Society of Blood Transfusion.

  10. Trans-Lesion DNA Polymerases May Be Involved in Yeast Meiosis

    PubMed Central

    Arbel-Eden, Ayelet; Joseph-Strauss, Daphna; Masika, Hagit; Printzental, Oxana; Rachi, Eléanor; Simchen, Giora

    2013-01-01

    Trans-lesion DNA polymerases (TLSPs) enable bypass of DNA lesions during replication and are also induced under stress conditions. Being only weakly dependent on their template during replication, TLSPs introduce mutations into DNA. The low processivity of these enzymes ensures that they fall off their template after a few bases are synthesized and are then replaced by the more accurate replicative polymerase. We find that the three TLSPs of budding yeast Saccharomyces cerevisiae Rev1, PolZeta (Rev3 and Rev7), and Rad30 are induced during meiosis at a time when DNA double-strand breaks (DSBs) are formed and homologous chromosomes recombine. Strains deleted for one or any combination of the three TLSPs undergo normal meiosis. However, in the triple-deletion mutant, there is a reduction in both allelic and ectopic recombination. We suggest that trans-lesion polymerases are involved in the processing of meiotic double-strand breaks that lead to mutations. In support of this notion, we report significant yeast two-hybrid (Y2H) associations in meiosis-arrested cells between the TLSPs and DSB proteins Rev1-Spo11, Rev1-Mei4, and Rev7-Rec114, as well as between Rev1 and Rad30. We suggest that the involvement of TLSPs in processing of meiotic DSBs could be responsible for the considerably higher frequency of mutations reported during meiosis compared with that found in mitotically dividing cells, and therefore may contribute to faster evolutionary divergence than previously assumed. PMID:23550131

  11. Detection of Entamoeba histolytica by Recombinase Polymerase Amplification

    PubMed Central

    Nair, Gayatri; Rebolledo, Mauricio; White, A. Clinton; Crannell, Zachary; Richards-Kortum, R. Rebecca; Pinilla, A. Elizabeth; Ramírez, Juan David; López, M. Consuelo; Castellanos-Gonzalez, Alejandro

    2015-01-01

    Amebiasis is an important cause of diarrheal disease worldwide and has been associated with childhood malnutrition. Traditional microscopy approaches are neither sensitive nor specific for Entamoeba histolytica. Antigen assays are more specific, but many cases are missed unless tested by molecular methods. Although polymerase chain reaction (PCR) is effective, the need for sophisticated, expensive equipment, infrastructure, and trained personnel limits its usefulness, especially in the resource-limited, endemic areas. Here, we report development of a recombinase polymerase amplification (RPA) method to detect E. histolytica specifically. Using visual detection by lateral flow (LF), the test was highly sensitive and specific and could be performed without additional equipment. The availability of this inexpensive, sensitive, and field-applicable diagnostic test could facilitate rapid diagnosis and treatment of amebiasis in endemic regions. PMID:26123960

  12. Comparison of Polymerase Subunits from Double-Stranded RNA Bacteriophages

    PubMed Central

    Yang, Hongyan; Makeyev, Eugene V.; Bamford, Dennis H.

    2001-01-01

    The family Cystoviridae comprises several bacteriophages with double-stranded RNA (dsRNA) genomes. We have previously purified the catalytic polymerase subunit (Pol) of one of the Cystoviridae members, bacteriophage φ6, and shown that the protein can catalyze RNA synthesis in vitro. In this reaction, both bacteriophage-specific and heterologous RNAs can serve as templates, but those containing 3′ termini from the φ6 minus strands are favored. This provides a molecular basis for the observation that only plus strands, not minus strands, are transcribed from φ6 dsRNA segments in vivo. To test whether such a regulatory mechanism is also found in other dsRNA viruses, we purified recombinant Pol subunits from the φ6-related bacteriophages φ8 and φ13 and assayed their polymerase activities in vitro. The enzymes catalyze template-dependent RNA synthesis using both single-stranded-RNA (ssRNA) and dsRNA templates. However, they differ from each other as well as from φ6 Pol in certain biochemical properties. Notably, each polymerase demonstrates a distinct preference for ssRNAs bearing short 3′-terminal sequences from the virus-specific minus strands. This suggests that, in addition to other factors, RNA transcription in Cystoviridae is controlled by the template specificity of the polymerase subunit. PMID:11602748

  13. The origin and early evolution of nucleic acid polymerases

    NASA Technical Reports Server (NTRS)

    Lazcano, A.; Cappello, R.; Valverde, V.; Llaca, V.; Oro, J.

    1992-01-01

    The hypothesis that vestiges of the ancestral RNA-dependent RNA polymerase involved in the replication of RNA genomes of Archean cells are present in the eubacterial RNA-polymerase beta-prime subunit and its homologues is discussed. It is shown that, in the DNA-dependent RNA polymerases from three cellular lineages, a very conserved sequence of eight amino acids, also found in a small RNA-binding site previously described for the E. coli polynucleotide phosphorylase and the S1 ribosomal protein, is present. The optimal conditions for the replicase activity of the avian-myeloblastosis-virus reverse transcriptase are presented. The evolutionary significance of the in vitro modifications of substrate and template specificities of RNA polymerases and reverse transcriptases is discussed.

  14. Capillary sample introduction of polymerase chain reaction (PCR) products separated in ultrathin slab gels.

    PubMed

    Bullard, K M; Hietpas, P B; Ewing, A G

    1998-01-01

    Polymerase chain reaction (PCR) amplified short tandem repeat (STR) samples from the HUMVWF locus have been analyzed using a unique sample introduction and separation technique. A single capillary is used to transfer samples onto an ultrathin slab gel (57 microm thin). This ultrathin nondenaturing polyacrylamide gel is used to separate the amplified fragments, and laser-induced fluorescence with ethidium bromide is used for detection. The feasibility of performing STR analysis using this system has been investigated by examining the reproducibility for repeated samples. Reproducibility is examined by comparing the migration of the 14 and 17 HUMVWF alleles on three consecutive separations on the ultrathin slab gel. Using one locus, separations match in migration time with the two alleles 42 s apart for each of the three consecutive separations. This technique shows potential to increase sample throughput in STR analysis techniques although separation resolution still needs to be improved.

  15. Safety and Allele-Specific Immunogenicity of a Malaria Vaccine in Malian Adults: Results of a Phase I Randomized Trial

    PubMed Central

    Thera, Mahamadou A; Doumbo, Ogobara K; Coulibaly, Drissa; Diallo, Dapa A; Sagara, Issaka; Dicko, Alassane; Diemert, David J; Heppner, D. Gray; Stewart, V. Ann; Angov, Evelina; Soisson, Lorraine; Leach, Amanda; Tucker, Kathryn; Lyke, Kirsten E; Plowe, Christopher V

    2006-01-01

    Objectives: The objectives were to evaluate the safety, reactogenicity, and allele-specific immunogenicity of the blood-stage malaria vaccine FMP1/AS02A in adults exposed to seasonal malaria and the impact of natural infection on vaccine-induced antibody levels. Design: We conducted a randomized, double-blind, controlled phase I clinical trial. Setting: Bandiagara, Mali, West Africa, is a rural town with intense seasonal transmission of Plasmodium falciparum malaria. Participants: Forty healthy, malaria-experienced Malian adults aged 18–55 y were enrolled. Interventions: The FMP1/AS02A malaria vaccine is a 42-kDa recombinant protein based on the carboxy-terminal end of merozoite surface protein-1 (MSP-142) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The control vaccine was a killed rabies virus vaccine (Imovax). Participants were randomized to receive either FMP1/AS02A or rabies vaccine at 0, 1, and 2 mo and were followed for 1 y. Outcome Measures: Solicited and unsolicited adverse events and allele-specific antibody responses to recombinant MSP-142 and its subunits derived from P. falciparum strains homologous and heterologous to the 3D7 vaccine strain were measured. Results: Transient local pain and swelling were more common in the malaria vaccine group than in the control group (11/20 versus 3/20 and 10/20 versus 6/20, respectively). MSP-142 antibody levels rose during the malaria transmission season in the control group, but were significantly higher in malaria vaccine recipients after the second immunization and remained higher after the third immunization relative both to baseline and to the control group. Immunization with the malaria vaccine was followed by significant increases in antibodies recognizing three diverse MSP-142 alleles and their subunits. Conclusions: FMP1/AS02A was well tolerated and highly immunogenic in adults exposed to intense seasonal malaria transmission and elicited immune responses to genetically diverse parasite

  16. [Establishment of a novel HLA genotyping method for preimplantation genetic diagnonis using multiple displacement amplification-polymerase chain reaction-sequencing based technique].

    PubMed

    Zhang, Yinfeng; Luo, Haining; Zhang, Yunshan

    2015-12-01

    To establish a novel HLA genotyping method for preimplantation genetic diagnonis (PGD) using multiple displacement amplification-polymerase chain reaction-sequencing based technique (MDA-PCR-SBT). Peripheral blood samples and 76 1PN, 2PN, 3PN discarded embryos from 9 couples were collected. The alleles of HLA-A, B, DR loci were detected from the MDA product with the PCR-SBT method. The HLA genotypes of the parental peripheral blood samples were analyzed with the same protocol. The genotypes of specific HLA region were evaluated for distinguishing the segregation of haplotypes among the family members, and primary HLA matching was performed between the embryos. The 76 embryos were subjected to MDA and 74 (97.4%) were successfully amplified. For the 34 embryos from the single blastomere group, the amplification rate was 94.1%, and for the 40 embryos in the two blastomeres group, the rate was 100%. The dropout rates for DQ allele and DR allele were 1.3% and 0, respectively. The positive rate for MDA in the single blastomere group was 100%, with the dropout rates for DQ allele and DR allele being 1.5% and 0, respectively. The positive rate of MDA for the two blastomere group was 100%, with the dropout rates for both DQ and DR alleles being 0. The recombination rate of fetal HLA was 20.2% (30/148). Due to the improper classification and abnormal fertilized embryos, the proportion of matched embryos HLA was 20.3% (15/74),which was lower than the theoretical value of 25%. PGD with HLA matching can facilitate creation of a HLA-identical donor (saviour child) for umbilical cord blood or bone marrow stem cells for its affected sibling with a genetic disease. Therefore, preimplantation HLA matching may provide a tool for couples desiring to conceive a potential donor progeny for transplantation for its sibling with a life-threatening disorder.

  17. An extensive allelic series of Drosophila kae1 mutants reveals diverse and tissue-specific requirements for t6A biogenesis

    PubMed Central

    Lin, Ching-Jung; Smibert, Peter; Zhao, Xiaoyu; Hu, Jennifer F.; Ramroop, Johnny; Kellner, Stefanie M.; Benton, Matthew A.; Govind, Shubha; Dedon, Peter C.; Sternglanz, Rolf; Lai, Eric C.

    2015-01-01

    N6-threonylcarbamoyl-adenosine (t6A) is one of the few RNA modifications that is universally present in life. This modification occurs at high frequency at position 37 of most tRNAs that decode ANN codons, and stabilizes cognate anticodon–codon interactions. Nearly all genetic studies of the t6A pathway have focused on single-celled organisms. In this study, we report the isolation of an extensive allelic series in the Drosophila ortholog of the core t6A biosynthesis factor Kae1. kae1 hemizygous larvae exhibit decreases in t6A that correlate with allele strength; however, we still detect substantial t6A-modified tRNAs even during the extended larval phase of null alleles. Nevertheless, complementation of Drosophila Kae1 and other t6A factors in corresponding yeast null mutants demonstrates that these metazoan genes execute t6A synthesis. Turning to the biological consequences of t6A loss, we characterize prominent kae1 melanotic masses and show that they are associated with lymph gland overgrowth and ectopic generation of lamellocytes. On the other hand, kae1 mutants exhibit other phenotypes that reflect insufficient tissue growth. Interestingly, whole-tissue and clonal analyses show that strongly mitotic tissues such as imaginal discs are exquisitely sensitive to loss of kae1, whereas nonproliferating tissues are less affected. Indeed, despite overt requirements of t6A for growth of many tissues, certain strong kae1 alleles achieve and sustain enlarged body size during their extended larval phase. Our studies highlight tissue-specific requirements of the t6A pathway in a metazoan context and provide insights into the diverse biological roles of this fundamental RNA modification during animal development and disease. PMID:26516084

  18. New RNAi strategy for selective suppression of a mutant allele in polyglutamine disease.

    PubMed

    Kubodera, Takayuki; Yokota, Takanori; Ishikawa, Kinya; Mizusawa, Hidehiro

    2005-12-01

    In gene therapy of dominantly inherited diseases with small interfering RNA (siRNA), mutant allele specific suppression may be necessary for diseases in which the defective gene normally has an important role. It is difficult, however, to design a mutant allele-specific siRNA for trinucleotide repeat diseases in which the difference of sequences is only repeat length. To overcome this problem, we use a new RNA interference (RNAi) strategy for selective suppression of mutant alleles. Both mutant and wild-type alleles are inhibited by the most effective siRNA, and wild-type protein is restored using the wild-type mRNA modified to be resistant to the siRNA. Here, we applied this method to spinocerebellar ataxia type 6 (SCA6). We discuss its feasibility and problems for future gene therapy.

  19. Marker-Dependent Recombination in T4 Bacteriophage. IV. Recombinational Effects of Antimutator T4 DNA Polymerase

    PubMed Central

    Shcherbakov, V. P.; Plugina, L. A.; Kudryashova, E. A.

    1995-01-01

    Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates. PMID:7635281

  20. Site-specific incorporation of probes into RNA polymerase by unnatural-amino-acid mutagenesis and Staudinger-Bertozzi ligation

    PubMed Central

    Chakraborty, Anirban; Mazumder, Abhishek; Lin, Miaoxin; Hasemeyer, Adam; Xu, Qumiao; Wang, Dongye; Ebright, Yon W.; Ebright, Richard H.

    2015-01-01

    Summary A three-step procedure comprising (i) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (ii) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (iii) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a crosslinking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP. PMID:25665560

  1. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases.

    PubMed

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2008-10-04

    Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases.

  2. Detection of Entamoeba histolytica by Recombinase Polymerase Amplification.

    PubMed

    Nair, Gayatri; Rebolledo, Mauricio; White, A Clinton; Crannell, Zachary; Richards-Kortum, R Rebecca; Pinilla, A Elizabeth; Ramírez, Juan David; López, M Consuelo; Castellanos-Gonzalez, Alejandro

    2015-09-01

    Amebiasis is an important cause of diarrheal disease worldwide and has been associated with childhood malnutrition. Traditional microscopy approaches are neither sensitive nor specific for Entamoeba histolytica. Antigen assays are more specific, but many cases are missed unless tested by molecular methods. Although polymerase chain reaction (PCR) is effective, the need for sophisticated, expensive equipment, infrastructure, and trained personnel limits its usefulness, especially in the resource-limited, endemic areas. Here, we report development of a recombinase polymerase amplification (RPA) method to detect E. histolytica specifically. Using visual detection by lateral flow (LF), the test was highly sensitive and specific and could be performed without additional equipment. The availability of this inexpensive, sensitive, and field-applicable diagnostic test could facilitate rapid diagnosis and treatment of amebiasis in endemic regions. © The American Society of Tropical Medicine and Hygiene.

  3. [Analysis of allele dropout at TH01 locus in paternity testing].

    PubMed

    Lai, Li; Shen, Xiao-li; Xue, Shi-jie; Hu, Jie

    2013-10-01

    To analyze allele dropout at TH01 locus in paternity testing in order to determine the accurate genotype. To use a two STR loci genotyping system to verify an abnormal genotype for the TH01 locus with PCR using specific primers, cloning and DNA sequencing. A rare allele at TH01 locus named 5.2, which was undetectable with PowerPlex 21 system, was detected with an Identifiler system. Genetic variations may result in rare alleles and loci loss. To avoid misjudgment, laboratories should have a variety of methods for detecting loci loss.

  4. An evolutionary approach to major histocompatibility diversity based on allele supertypes.

    PubMed

    Naugler, Christopher; Liwski, Robert

    2008-01-01

    Human leukocyte antigens are traditionally classified by serologic or molecular techniques into a bewildering variety of alleles. It is generally believed that this allelic diversity is maintained by selection pressures for inbreeding avoidance and/or maximal immune system diversity. While the usual antigen-based classification of individual alleles may be most appropriate in the artificial situation of tissue transplantation, we hypothesize that a functional classification based on allele supertypes may represent a more biologically relevant way to view MHC diversity in the contexts of mate choice and disease pathogenesis. Furthermore, immune system diversity could be quantitatively estimated by calculating a Supertype Diversity Index (SDI) which is the number of different MHC supertypes possessed by an individual. This hypothesis generates a number of testable predictions. First, it predicts that a reduced inherited diversity of MHC allele supertypes may predispose to the development of malignancies because of a decreased native ability to present different tumor-associated antigens. Furthermore, specific autoimmune diseases may be associated with the presence or absence of a particular MHC supertype rather than a particular MHC haplotype. In transplant medicine, it is possible that unmatched alleles may trigger a weaker foreign antigen response if they are matched by allele supertype. Finally, there have been several studies documenting dissortative mating in humans for dissimilar MHC alleles. We predict that natural selection should favor maximization of the heterozygosity of allele supertypes instead of the heterozygosity of individual alleles and that the previously observed dissortative mating may actually be an adaptive strategy to maximize allele supertype diversity.

  5. Identification of the third/extra allele for forensic application in cases with TPOX tri-allelic pattern.

    PubMed

    Picanço, Juliane Bentes; Raimann, Paulo Eduardo; Motta, Carlos Henrique Ares Silveira da; Rodenbusch, Rodrigo; Gusmão, Leonor; Alho, Clarice Sampaio

    2015-05-01

    Genotyping of polymorphic short tandem repeats (STRs) loci is widely used in forensic DNA analysis. STR loci eventually present tri-allelic pattern as a genotyping irregularity and, in that situation, the doubt about the tri-allele locus frequency calculation can reduce the analysis strength. In the TPOX human STR locus, tri-allelic genotypes have been reported with a widely varied frequency among human populations. We investigate whether there is a single extra allele (the third allele) in the TPOX tri-allelic pattern, what it is, and where it is, aiming to understand its genomic anatomy and to propose the knowledge of this TPOX extra allele from genetic profile, thus preserving the two standard TPOX alleles in forensic analyses. We looked for TPOX tri-allelic subjects in 75,113 Brazilian families. Considering only the parental generation (mother+father) we had 150,226 unrelated subjects evaluated. From this total, we found 88 unrelated subjects with tri-allelic pattern in the TPOX locus (0.06%; 88/150,226). Seventy three of these 88 subjects (73/88; 83%) had the Clayton's original Type 2 tri-allelic pattern (three peaks of even intensity). The remaining 17% (15/88) show a new Type 2 derived category with heterozygote peak imbalance (one double dose peak plus one regular sized peak). In this paper we present detailed data from 66 trios (mother+father+child) with true biological relationships. In 39 of these families (39/66; 59%) the extra TPOX allele was transmitted either from the mother or from the father to the child. Evidences indicated the allele 10 as the extra TPOX allele, and it is on the X chromosome. The present data, which support the previous Lane hypothesis, improve the knowledge about tri-allelic pattern of TPOX CODIS' locus allowing the use of TPOX profile in forensic analyses even when with tri-allelic pattern. This evaluation is now available for different forensic applications. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases

    PubMed Central

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2008-01-01

    Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases. This article was reviewed by Eugene Koonin and Mark Ragan. PMID:18834537

  7. Development of an immunomagnetic separation-polymerase chain reaction (IMS-PCR) assay specific for Enterocytozoon bieneusi in water samples.

    PubMed

    Sorel, N; Guillot, E; Thellier, M; Accoceberry, I; Datry, A; Mesnard-Rouiller, L; Miégeville, M

    2003-01-01

    Microsporidia have become widely recognized as important human pathogens. Among Microsporidia, Enterocytozoon bieneusi is responsible for severe gastrointestinal disease. To date, no current therapy has been proven effective. Their mode of transmission and environmental occurrence are poorly documented because of the lack of detection methods that are both species-specific and sensitive. In this study, we developed a sensitive and specific molecular method to detect E. bieneusi spores in water samples. The molecular assay combined immunomagnetic separation (IMS) and polymerase chain reaction (PCR) amplification to detect E. bieneusi spores. A comparison was made of IMS magnetic beads coated with two different monoclonal antibodies, one specific for the Encephalitozoon genus that cross-reacts with E. bieneusi and the other specific only for the E. bieneusi species itself. Immunotech beads coated with the antibody specific for E. bieneusi were found to be the most effective combination. The highly specific IMS-PCR assay developed in this study provides a rapid and sensitive means of screening water samples for the presence of E. bieneusi spores.

  8. TBX6 Null Variants and a Common Hypomorphic Allele in Congenital Scoliosis

    PubMed Central

    Wu, N.; Ming, X.; Xiao, J.; Wu, Z.; Chen, X.; Shinawi, M.; Shen, Y.; Yu, G.; Liu, J.; Xie, H.; Gucev, Z.S.; Liu, S.; Yang, N.; Al-Kateb, H.; Chen, J.; Zhang, Jian; Hauser, N.; Zhang, T.; Tasic, V.; Liu, P.; Su, X.; Pan, X.; Liu, C.; Wang, L.; Shen, Joseph; Shen, Jianxiong; Chen, Y.; Zhang, T.; Zhang, Jianguo; Choy, K.W.; Wang, Jun; Wang, Q.; Li, S.; Zhou, W.; Guo, J.; Wang, Y.; Zhang, C.; Zhao, H.; An, Y.; Zhao, Y.; Wang, Jiucun; Liu, Z.; Zuo, Y.; Tian, Y.; Weng, X.; Sutton, V.R.; Wang, H.; Ming, Y.; Kulkarni, S.; Zhong, T.P.; Giampietro, P.F.; Dunwoodie, S.L.; Cheung, S.W.; Zhang, X.; Jin, L.; Lupski, J.R.; Qiu, G.; Zhang, F.

    2015-01-01

    BACKGROUND Congenital scoliosis is a common type of vertebral malformation. Genetic susceptibility has been implicated in congenital scoliosis. METHODS We evaluated 161 Han Chinese persons with sporadic congenital scoliosis, 166 Han Chinese controls, and 2 pedigrees, family members of which had a 16p11.2 deletion, using comparative genomic hybridization, quantitative polymerase-chain-reaction analysis, and DNA sequencing. We carried out tests of replication using an additional series of 76 Han Chinese persons with congenital scoliosis and a multi-center series of 42 persons with 16p11.2 deletions. RESULTS We identified a total of 17 heterozygous TBX6 null mutations in the 161 persons with sporadic congenital scoliosis (11%); we did not observe any null mutations in TBX6 in 166 controls (P<3.8×10−6). These null alleles include copy-number variants (12 instances of a 16p11.2 deletion affecting TBX6) and single-nucleotide variants (1 nonsense and 4 frame-shift mutations). However, the discordant intrafamilial phenotypes of 16p11.2 deletion carriers suggest that heterozygous TBX6 null mutation is insufficient to cause congenital scoliosis. We went on to identify a common TBX6 haplotype as the second risk allele in all 17 carriers of TBX6 null mutations (P<1.1×10−6). Replication studies involving additional persons with congenital scoliosis who carried a deletion affecting TBX6 confirmed this compound inheritance model. In vitro functional assays suggested that the risk haplotype is a hypomorphic allele. Hemivertebrae are characteristic of TBX6-associated congenital scoliosis. CONCLUSIONS Compound inheritance of a rare null mutation and a hypomorphic allele of TBX6 accounted for up to 11% of congenital scoliosis cases in the series that we analyzed. PMID:25564734

  9. Beta 3-adrenergic-receptor allele distributions in children, adolescents and young adults with obesity, underweight or anorexia nervosa.

    PubMed

    Hinney, A; Lentes, K U; Rosenkranz, K; Barth, N; Roth, H; Ziegler, A; Hennighausen, K; Coners, H; Wurmser, H; Jacob, K; Römer, G; Winnikes, U; Mayer, H; Herzog, W; Lehmkuhl, G; Poustka, F; Schmidt, M H; Blum, W F; Pirke, K M; Schäfer, H; Grzeschik, K H; Remschmidt, H; Hebebrand, J

    1997-03-01

    The missense mutation (64Trp to 64Arg) in the beta 3-adrenergic-receptor has previously been described to confer a genetic predisposition to the development of obesity. To test the hypothesis we evaluated allele frequencies in children, adolescents and young adults who belonged to different weight groups that were delineated with percentiles for the body mass index (BMI; kg/m2). 99 underweight probands (BMI < or = 15th percentile). 80 normal weight probands (BMI: 5th-85th percentile). 238 obese children and adolescents (BMI > or = 97th percentile). 84 patients with anorexia nervosa (AN). The cohorts were screened by polymerase chain reaction with subsequent restriction fragment length polymorphism (PCR-RFLP) analysis. Data were statistically analysed for association. In addition to these case control studies, the transmission disequilibrium test (TDT) was applied to 80 families of obese probands and to 52 families of patients with AN. Both the tests for association and linkage were negative. The Trp64Arg allele frequencies in the three weight groups (obesity: 0.071; normal weight: 0.081; underweight: 0.056) and the AN patients (0.054) were similar. Extremely obese individuals showed no excess of the Trp64Arg allele. No homozygotes for the Trp64Arg allele were detected. Heterozygosity for the Trp64Arg allele is not of major importance in regulation of body weight in individuals younger than 35 y. Additionally, the extreme obese subgroup is not enriched for the polymorphism.

  10. HLA-B27 allele frequency in Sri Lankan patients with spondyloarthritides.

    PubMed

    Kidnapillai, S; Sirisena, N D; Dissanayake, V H

    2016-06-01

    This preliminary study aims to describe the HLA-B27 allele frequency in Sri Lankan patients with spondyloarthritides (SA). An anonymised database of 373 Sri Lankan patients with SA referred for HLA-B27 testing was retrospectively analysed. Eighty five (22.8%) patients were positive for the HLA-B27 allele. A male preponderance was observed among the positives. The HLA-B27 allele frequency in this sample of patients with SA was relatively low compared to published studies in other populations. Further research is needed to identify the predominant subtypes of the allele to determine which subtypes are the most prevalent in a larger sample of Sri Lankan patients with SA, and to define their association with the specific types of SA.

  11. Nested methylation-specific polymerase chain reaction cancer detection method

    DOEpatents

    Belinsky, Steven A [Albuquerque, NM; Palmisano, William A [Edgewood, NM

    2007-05-08

    A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection of lung and other cancers.

  12. Allele-Specific Methylation Occurs at Genetic Variants Associated with Complex Disease

    PubMed Central

    Hutchinson, John N.; Raj, Towfique; Fagerness, Jes; Stahl, Eli; Viloria, Fernando T.; Gimelbrant, Alexander; Seddon, Johanna; Daly, Mark; Chess, Andrew; Plenge, Robert

    2014-01-01

    We hypothesize that the phenomenon of allele-specific methylation (ASM) may underlie the phenotypic effects of multiple variants identified by Genome-Wide Association studies (GWAS). We evaluate ASM in a human population and document its genome-wide patterns in an initial screen at up to 380,678 sites within the genome, or up to 5% of the total genomic CpGs. We show that while substantial inter-individual variation exists, 5% of assessed sites show evidence of ASM in at least six samples; the majority of these events (81%) are under genetic influence. Many of these cis-regulated ASM variants are also eQTLs in peripheral blood mononuclear cells and monocytes and/or in high linkage-disequilibrium with variants linked to complex disease. Finally, focusing on autoimmune phenotypes, we extend this initial screen to confirm the association of cis-regulated ASM with multiple complex disease-associated variants in an independent population using next-generation bisulfite sequencing. These four variants are implicated in complex phenotypes such as ulcerative colitis and AIDS progression disease (rs10491434), Celiac disease (rs2762051), Crohn's disease, IgA nephropathy and early-onset inflammatory bowel disease (rs713875) and height (rs6569648). Our results suggest cis-regulated ASM may provide a mechanistic link between the non-coding genetic changes and phenotypic variation observed in these diseases and further suggests a route to integrating DNA methylation status with GWAS results. PMID:24911414

  13. High-throughput microfluidic single-cell digital polymerase chain reaction.

    PubMed

    White, A K; Heyries, K A; Doolin, C; Vaninsberghe, M; Hansen, C L

    2013-08-06

    Here we present an integrated microfluidic device for the high-throughput digital polymerase chain reaction (dPCR) analysis of single cells. This device allows for the parallel processing of single cells and executes all steps of analysis, including cell capture, washing, lysis, reverse transcription, and dPCR analysis. The cDNA from each single cell is distributed into a dedicated dPCR array consisting of 1020 chambers, each having a volume of 25 pL, using surface-tension-based sample partitioning. The high density of this dPCR format (118,900 chambers/cm(2)) allows the analysis of 200 single cells per run, for a total of 204,000 PCR reactions using a device footprint of 10 cm(2). Experiments using RNA dilutions show this device achieves shot-noise-limited performance in quantifying single molecules, with a dynamic range of 10(4). We performed over 1200 single-cell measurements, demonstrating the use of this platform in the absolute quantification of both high- and low-abundance mRNA transcripts, as well as micro-RNAs that are not easily measured using alternative hybridization methods. We further apply the specificity and sensitivity of single-cell dPCR to performing measurements of RNA editing events in single cells. High-throughput dPCR provides a new tool in the arsenal of single-cell analysis methods, with a unique combination of speed, precision, sensitivity, and specificity. We anticipate this approach will enable new studies where high-performance single-cell measurements are essential, including the analysis of transcriptional noise, allelic imbalance, and RNA processing.

  14. Analysis of LMNB1 Duplications in Autosomal Dominant Leukodystrophy Provides Insights into Duplication Mechanisms and Allele-Specific Expression

    PubMed Central

    Giorgio, Elisa; Rolyan, Harshvardhan; Kropp, Laura; Chakka, Anish Baswanth; Yatsenko, Svetlana; Gregorio, Eleonora Di; Lacerenza, Daniela; Vaula, Giovanna; Talarico, Flavia; Mandich, Paola; Toro, Camilo; Pierre, Eleonore Eymard; Labauge, Pierre; Capellari, Sabina; Cortelli, Pietro; Vairo, Filippo Pinto; Miguel, Diego; Stubbolo, Danielle; Marques, Lourenco Charles; Gahl, William; Boespflug-Tanguy, Odile; Melberg, Atle; Hassin-Baer, Sharon; Cohen, Oren S; Pjontek, Rastislav; Grau, Armin; Klopstock, Thomas; Fogel, Brent; Meijer, Inge; Rouleau, Guy; Bouchard, Jean-Pierre L; Ganapathiraju, Madhavi; Vanderver, Adeline; Dahl, Niklas; Hobson, Grace; Brusco, Alfredo; Brussino, Alessandro; Padiath, Quasar Saleem

    2013-01-01

    ABSTRACT Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients’ fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels. PMID:23649844

  15. Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class IIβ alleles of New World ranid frogs

    USGS Publications Warehouse

    Kiemnec-Tyburczy, Karen M.; Richmond, Jonathan Q.; Savage, Anna E.; Zamudio, Kelly R.

    2010-01-01

    Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II ??1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class II?? exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class II?? loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the ??1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations. ?? 2010 Springer-Verlag.

  16. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer

    PubMed Central

    Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499

  17. HLA-DRB1 shared epitope alleles in patients with rheumatoid arthritis: relation to autoantibodies and disease severity in a south Indian population.

    PubMed

    Konda Mohan, Vasanth; Ganesan, Nalini; Gopalakrishnan, Rajasekhar; Venkatesan, Vettriselvi

    2017-10-01

    To investigate the presence of the 'shared epitope' (SE) in the HLA-DRB1 alleles in patients with RA and to ascertain the frequency of the HLA-DRB1 alleles with autoantibodies (anti-cyclic citrullinated peptide [anti-CCP] rheumatoid factor [RF]) and disease severity. A total of 200 RA patients and 200 apparently healthy subjects participated in the study. HLA-DRB1 were genotyped using polymerase chain reaction with sequence-specific primer (PCR-SSP). Anti-CCP and RF in serum were determined by in vitro quantitative enzyme-linked immunosorbent assay (ELISA) method. Erythrocyte sedimentation rate (ESR) was measured by Westergren method. Disease activity was assessed by using the disease activity score-28 (DAS-28). Chi-square test and Student's t-test were used in the statistical analysis. A significant increase in the frequency of HLA-DRB1*01, *04, *10 and *14 were identified in RA patients and showed a strong association with the disease susceptibility. While the frequencies of HLA-DRB1*03, *07, *11 and *13 were significantly lower in RA patients than in controls. The other HLA-DRB1 alleles *08, *09, *12, *15 and *16 showed no significant difference. The frequency of anti-CCP and RF antibodies did not showed significant difference in SE-positive patients compared with SE-negative patients. DAS-28 values of RA patients showed no significant difference between SE-positive and SE-negative groups. Our results indicate that HLA-DRB1*01, *04, *10 and *14 alleles are related with RA, while HLA-DRB1*03, *07, *11 and *13 protect against RA in our population. On the other hand, we failed to provide evidence for the association of the autoantibodies and DAS-28 with SE-positive RA patients. © 2016 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  18. Reduced Height (Rht) Alleles Affect Wheat Grain Quality.

    PubMed

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05) reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the

  19. A Caenorhabditis elegans RNA polymerase II gene, ama-1 IV, and nearby essential genes.

    PubMed

    Rogalski, T M; Riddle, D L

    1988-01-01

    The amanitin-binding subunit of RNA polymerase II in Caenorhabditis elegans is encoded by the ama-1 gene, located approximately 0.05 map unit to the right of dpy-13 IV. Using the amanitin-resistant ama-1(m118) strain as a parent, we have isolated amanitin-sensitive mutants that carry recessive-lethal ama-1 alleles. Of the six ethyl methanesulfonate-induced mutants examined, two are arrested late in embryogenesis. One of these is a large deficiency, mDf9, but the second may be a novel point mutation. The four other mutants are hypomorphs, and presumably produce altered RNA polymerase II enzymes with some residual function. Two of these mutants develop into sterile adults at 20 degrees but are arrested as larvae at 25 degrees, and two others are fertile at 20 degrees and sterile at 25 degrees. Temperature-shift experiments performed with the adult sterile mutant, ama-1(m118m238ts), have revealed a temperature-sensitive period that begins late in gonadogenesis and is centered around the initiation of egg-laying. Postembryonic development at 25 degrees is slowed by 30%. By contrast, the amanitin-resistant allele of ama-1 has very little effect on developmental rate or fertility. We have identified 15 essential genes in an interval of 4.5 map units surrounding ama-1, as well as four gamma-ray-induced deficiencies and two duplications that include the ama-1 gene. The larger duplication, mDp1, may include the entire left arm of chromosome IV, and it recombines with the normal homologue at a low frequency. The smallest deficiency, mDf10, complements all but three identified genes: let-278, dpy-13 and ama-1, which define an interval of only 0.1 map unit. The terminal phenotype of mDf10 homozygotes is developmental arrest during the first larval stage, suggesting that there is sufficient maternal RNA polymerase II to complete embryonic development.

  20. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression

    PubMed Central

    Hintermair, Corinna; Voß, Kirsten; Forné, Ignasi; Heidemann, Martin; Flatley, Andrew; Kremmer, Elisabeth; Imhof, Axel; Eick, Dirk

    2016-01-01

    Dynamic phosphorylation of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad-repeats in the C-terminal domain (CTD) of the large subunit coordinates progression of RNA polymerase (Pol) II through the transcription cycle. Here, we describe an M phase-specific form of Pol II phosphorylated at Thr4, but not at Tyr1, Ser2, Ser5, and Ser7 residues. Thr4 phosphorylated Pol II binds to centrosomes and midbody and interacts with the Thr4-specific Polo-like kinase 1. Binding of Pol II to centrosomes does not require the CTD but may involve subunits of the non-canonical R2TP-Prefoldin-like complex, which bind to and co-localize with Pol II at centrosomes. CTD Thr4 mutants, but not Ser2 and Ser5 mutants, display severe mitosis and cytokinesis defects characterized by multipolar spindles and polyploid cells. We conclude that proper M phase progression of cells requires binding of Pol II to centrosomes to facilitate regulation of mitosis and cytokinesis in a CTD Thr4-P dependent manner. PMID:27264542

  1. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression.

    PubMed

    Hintermair, Corinna; Voß, Kirsten; Forné, Ignasi; Heidemann, Martin; Flatley, Andrew; Kremmer, Elisabeth; Imhof, Axel; Eick, Dirk

    2016-06-06

    Dynamic phosphorylation of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad-repeats in the C-terminal domain (CTD) of the large subunit coordinates progression of RNA polymerase (Pol) II through the transcription cycle. Here, we describe an M phase-specific form of Pol II phosphorylated at Thr4, but not at Tyr1, Ser2, Ser5, and Ser7 residues. Thr4 phosphorylated Pol II binds to centrosomes and midbody and interacts with the Thr4-specific Polo-like kinase 1. Binding of Pol II to centrosomes does not require the CTD but may involve subunits of the non-canonical R2TP-Prefoldin-like complex, which bind to and co-localize with Pol II at centrosomes. CTD Thr4 mutants, but not Ser2 and Ser5 mutants, display severe mitosis and cytokinesis defects characterized by multipolar spindles and polyploid cells. We conclude that proper M phase progression of cells requires binding of Pol II to centrosomes to facilitate regulation of mitosis and cytokinesis in a CTD Thr4-P dependent manner.

  2. Concordance of the ForenSeq™ system and characterisation of sequence-specific autosomal STR alleles across two major population groups.

    PubMed

    Devesse, Laurence; Ballard, David; Davenport, Lucinda; Riethorst, Immy; Mason-Buck, Gabriella; Syndercombe Court, Denise

    2018-05-01

    By using sequencing technology to genotype loci of forensic interest it is possible to simultaneously target autosomal, X and Y STRs as well as identity, ancestry and phenotypic informative SNPs, resulting in a breadth of data obtained from a single run that is considerable when compared to that generated with standard technologies. It is important however that this information aligns with the genotype data currently obtained using commercially available kits for CE-based investigations such that results are compatible with existing databases and hence can be of use to the forensic community. In this work, 400 samples were typed using commercially available STR kits and CE, as well as using the Ilumina ForenSeq™ DNA Signature Prep Kit and MiSeq ® FGx to assess concordance of autosomal STRs and population variability. Results show a concordance rate between the two technologies exceeding 99.98% while numerous novel sequence based alleles are described. In order to make use of the sequence variation observed, sequence specific allele frequencies were generated for White British and British Chinese populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The c.64_80del SMIM1 allele is segregating in the Hutterite population.

    PubMed

    Coghlan, Gail; Zelinski, Teresa

    2016-04-01

    The high-incidence red blood cell (RBC) antigen Vel is coded by SMIM1 (small-membrane molecule 1 gene), where a homozygous 17 base pair deletion underlies the majority of Vel- phenotypes. Because anti-Vel has been reported to cause severe hemolytic transfusion reactions and periodically hemolytic disease of the newborn and fetus, identification of individuals negative for Vel is clinically important. RBCs from the members of a large three-generation Hutterite family were serologically determined to be Vel+(w) . Genomic DNA from these family members was polymerase chain reaction amplified and analyzed for SMIM1 polymorphisms by either Sanger sequencing or restriction fragment length polymorphisms. SMIM1 genotyping was also conducted on DNA from an additional 104 Hutterites. All family members whose RBCs weakly expressed the Vel antigen were found to be heterozygous for the c.64_80del mutation in SMIM1. Of the 104 additional Hutterite samples, four were found to be heterozygous for the same SMIM1 mutation. After emigrating to the United States and Canada, the Hutterite population has expanded dramatically. Alleles that initially entered the population have been maintained within the population. The c.64_80del null allele of SMIM1 is one such allele, thus having implications for transfusion medicine and child or maternal health. © 2015 AABB.

  4. Allele Frequencies for 15 Short Tandem Repeat Loci in Representative Sample of Croatian Population

    PubMed Central

    Projić, Petar; Škaro, Vedrana; Šamija, Ivana; Pojskić, Naris; Durmić-Pašić, Adaleta; Kovačević, Lejla; Bakal, Narcisa; Primorac, Dragan; Marjanović, Damir

    2007-01-01

    Aim To study the distribution of allele frequencies of 15 short tandem repeat (STR) loci in a representative sample of the Croatian population. Methods A total of 195 unrelated Caucasian individuals born in Croatia, from 14 counties and the City of Zagreb, were sampled for the analysis. All the tested individuals were voluntary donors. Buccal swab was used as the DNA source. AmpFlSTR® Identifiler® was applied to simultaneously amplify 15 STR loci. Total reaction volume was 12.5 μL. The polymerase chain reaction (PCR) amplification was carried out in PE Gene Amp PCR System Thermal Cycler. Electrophoresis of the amplification products was preformed on an ABI PRISM 3130 Genetic Analyzer. After PCR amplification and separation by electrophoresis, raw data were compiled, analyzed, and numerical allele designations of the profiles were obtained. Deviation from Hardy-Weinberg equilibrium, observed and expected heterozygosity, power of discrimination, and power of exclusion were calculated. Bonferroni’s correction was used before each comparative analysis. Results We compared Croatian data with those obtained from geographically neighboring European populations. The significant difference (at P<0.01) in allele frequencies was recorded only between the Croatian and Slovenian populations for vWA locus. There was no significant deviation from Hardy-Weinberg equilibrium for all the observed loci. Conclusion Obtained population data concurred with the expected “STR data frame” for this part of Europe. PMID:17696301

  5. Polymerase chain displacement reaction.

    PubMed

    Harris, Claire L; Sanchez-Vargas, Irma J; Olson, Ken E; Alphey, Luke; Fu, Guoliang

    2013-02-01

    Quantitative PCR assays are now the standard method for viral diagnostics. These assays must be specific, as well as sensitive, to detect the potentially low starting copy number of viral genomic material. We describe a new technique, polymerase chain displacement reaction (PCDR), which uses multiple nested primers in a rapid, capped, one-tube reaction that increases the sensitivity of normal quantitative PCR (qPCR) assays. Sensitivity was increased by approximately 10-fold in a proof-of-principle test on dengue virus sequence. In PCDR, when extension occurs from the outer primer, it displaces the extension strand produced from the inner primer by utilizing a polymerase that has strand displacement activity. This allows a greater than 2-fold increase of amplification product for each amplification cycle and therefore increased sensitivity and speed over conventional PCR. Increased sensitivity in PCDR would be useful in nucleic acid detection for viral diagnostics.

  6. Genetic variation of the angiotensin-converting enzyme gene: increased frequency of the insertion allele in Koreans.

    PubMed

    Hong, S H; Kang, B Y; Park, W H; Kim, J Q; Lee, C C

    1997-01-01

    In view of the clinical importance of angiotensin-converting enzyme (ACE) as a major marker for cardiovascular diseases, we investigated insertion/deletion (I/D) polymorphism of the ACE gene in Koreans. Genotype frequencies were examined by polymerase chain reaction in 171 patients with coronary artery disease (CAD) and 120 healthy subjects. Allele frequencies of ACE polymorphism in Koreans were not significantly different between patient and control groups. In addition, association between ACE genotypes and the number of stenosed coronary arteries was not detected. ACE genotypes in the CAD group were not associated with body mass index and plasma lipid levels. Thus, our results suggest that, at least in Koreans, I/D polymorphism of the gene is unlikely to be a useful marker for CAD subjects. However, the I allele frequency of Koreans (0.58) was higher than that of Caucasian populations (0.47) but lower than that of Samoan (0.91) and Yanomami (0.85) populations. Here, we discuss the clinical and ethnic importance of ACE polymorphism.

  7. Forensic Loci Allele Database (FLAD): Automatically generated, permanent identifiers for sequenced forensic alleles.

    PubMed

    Van Neste, Christophe; Van Criekinge, Wim; Deforce, Dieter; Van Nieuwerburgh, Filip

    2016-01-01

    It is difficult to predict if and when massively parallel sequencing of forensic STR loci will replace capillary electrophoresis as the new standard technology in forensic genetics. The main benefits of sequencing are increased multiplexing scales and SNP detection. There is not yet a consensus on how sequenced profiles should be reported. We present the Forensic Loci Allele Database (FLAD) service, made freely available on http://forensic.ugent.be/FLAD/. It offers permanent identifiers for sequenced forensic alleles (STR or SNP) and their microvariants for use in forensic allele nomenclature. Analogous to Genbank, its aim is to provide permanent identifiers for forensically relevant allele sequences. Researchers that are developing forensic sequencing kits or are performing population studies, can register on http://forensic.ugent.be/FLAD/ and add loci and allele sequences with a short and simple application interface (API). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Identification of four novel HLA-B alleles, B*1590, B*1591, B*2726, and B*4705, from an East African population by high-resolution sequence-based typing.

    PubMed

    Luo, M; Mao, X; Plummer, F A

    2005-02-01

    We report here four novel HLA-B alleles, B*1590, B*1591, B*2726, and B*4705, identified from an East African population during sequence-based HLA-B typing. The novel alleles were confirmed by sequencing two separate polymerase chain reaction products, and by molecular cloning and sequencing multiple clones. B*1590 is identical to B*1510 at exon 2 and exon 3, except for a difference (GCCGTC) at codon 158. Sequence differences at codon 152 (GAGGTG) and codon 167 (TGGTCG) differentiate B*1591 from B*1503 at exon 3. B*2726 is identical to B*2708 at exon 2 and exon 3, except for a difference (AAGCAG) at codon 70. B*4705 was identified in three Kenyan women. The allele is identical to B*47010101/02 at exon 2 and exon 3, except for differences at codon 97 (AGGAAT) and codon 99 (TTTTAT). These new alleles have been named by the WHO Nomenclature Committee. Identification of these novel HLA-B alleles reflects the genetic diversity of this East African population.

  9. Allele and genotype frequencies of polymorphisms in cytokine genes in ethnic Russian individuals from Moscow, Russia.

    PubMed

    Shadrina, Alexandra; Voronina, Elena; Zolotukhin, Igor; Filipenko, Maxim

    2017-02-01

    Two hundred and twenty eight ethnic Russian individuals from Moscow, Russia, were genotyped at 14 single nucleotide polymorphisms CCL2 A-2578G; VEGFA C-2578A, G-634C, and C+936T; TNF G+419A and G-308A; IL1A G-889A; IL1RN T+1018C; IL6G-174C and G-572C; IFNG T+874A; IL1B C-511T; IL10 A+1082G; TGFB1 C-509T. Genotypes were determined using real-time polymerase chain reaction with TaqMan probes and polymerase chain reaction followed by melting analysis of dual-labeled probe. Genotype distribution was in accordance with Hardy-Weinberg equilibrium for all studied polymorphisms. Genotype data are available in the Allele Frequencies Net Database under identifier AFND 3367 and the population name "Russia Moscow Cytokine". Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  10. Association of HLA-A and HLA-B Alleles with Lamotrigine-Induced Cutaneous Adverse Drug Reactions in the Thai Population

    PubMed Central

    Koomdee, Napatrupron; Pratoomwun, Jirawat; Jantararoungtong, Thawinee; Theeramoke, Voralaksana; Tassaneeyakul, Wichittra; Klaewsongkram, Jettanong; Rerkpattanapipat, Ticha; Santon, Siwalee; Puangpetch, Apichaya; Intusoma, Utcharee; Tempark, Therdpong; Deesudchit, Tayard; Satapornpong, Patompong; Visudtibhan, Anannit; Sukasem, Chonlaphat

    2017-01-01

    Background: Lamotrigine (LTG) is commonly used for treatment of epilepsy and bipolar disorder. It is one of the common cause of cutaneous adverse drug reactions (CADR). Clinical symptoms of LTG-induced CADR range from maculopapular exanthema (MPE) to severe cutaneous adverse reactions (SCAR). This study aimed to determine the association of the LTG-induced CADR with human leukocyte antigen (HLA) alleles in Thai patients. Methods: Fifteen patients with LTG-induced CADR [10 MPE; 4 Stevens–Johnson syndrome; and 1 drug reaction with eosinophilia and systemic symptoms] and 50 LTG-tolerant controls were included in the study. HLA-A and HLA-B genotyping was performed using polymerase chain reaction-sequence-specific oligonucleotides probes. Results: The proportion of HLA-A∗02:07 and HLA-B∗15:02 allele carriers were significantly higher in the LTG-induced CADR group than in the tolerant controls [odds ratio (OR): 7.83; 95% confidence interval (CI): 1.60–38.25; P = 0.013, and OR: 4.89; 95% CI: 1.28–18.67; P = 0.014]. In addition, subjects with HLA-A∗33:03, HLA-B∗15:02, and HLA-B∗44:03 were significantly higher in the LTG-induced MPE group than in the tolerant controls (OR: 8.27; 95% CI: 1.83–37.41; P = 0.005, OR: 7.33; 95% CI: 1.63–33.02; P = 0.005; and OR: 10.29; 95% CI: 1.45–72.81; P = 0.029). In contrast to the LTG-induced MPE group, there were no significant differences between HLA alleles and LTG-induced SCAR group. Conclusion: HLA-A∗02:07 and HLA-B∗15:02 were associated with LTG-induced CADR in Thai patients. We also identified an association between HLA-A∗33:03, HLA-B∗15:02, and HLA-B∗44:03 and LTG-induced MPE in this population. These results suggest that these alleles could be useful screening markers for preventing CADR before LTG treatment in Thai patients, but further replication studies with larger sample sizes are needed. PMID:29238301

  11. Identification of TCT, a novel knockdown resistance allele mutation and analysis of resistance detection methods in the voltage-gated Na⁺ channel of Culex pipiens pallens from Shandong Province, China.

    PubMed

    Liu, Hong-Mei; Cheng, Peng; Huang, Xiaodan; Dai, Yu-Hua; Wang, Hai-Fang; Liu, Li-Juan; Zhao, Yu-Qiang; Wang, Huai-Wei; Gong, Mao-Qing

    2013-02-01

    The present study aimed to investigate deltamethrin resistance in Culex pipiens pallens (C. pipiens pallens) mosquitoes and its correlation with knockdown resistance (kdr) mutations. In addition, mosquito‑resistance testing methods were analyzed. Using specific primers in polymerase chain reaction (PCR) and allele-specific (AS)-PCR, kdr gene sequences isolated from wild C. pipiens pallens mosquitoes were sequenced. Linear regression analysis was used to determine the correlation between the mutations and deltamethrin resistance. A kdr allelic gene was cloned and sequenced. Analysis of the DNA sequences revealed the presence of two point mutations at the L1014 residue in the IIS6 transmembrane segment of the voltage‑gated sodium channel (VGSC): L1014F, TTA→TTT, replacing a leucine (L) with a phenylalanine (F); L1014S, TTA→TCA, replacing leucine (L) with serine (S). Two alternative kdr-like mutations, L1014F and L1014S, were identified to be positively correlated with the deltamethrin-resistant phenotype. In addition a novel mutation, TCT, was identified in the VGSC of C. pipiens pallens. PCR and AS-PCR yielded consistent results with respect to mosquito resistance. However, the detection rate of PCR was higher than that of AS-PCR. Further studies are required to determine the specific resistance mechanism. PCR and AS-PCR demonstrated suitability for mosquito resistance field tests, however, the former method may be superior to the latter.

  12. Structure of T7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme.

    PubMed Central

    Jeruzalmi, D; Steitz, T A

    1998-01-01

    The T7 RNA polymerase-T7 lysozyme complex regulates phage gene expression during infection of Escherichia coli. The 2.8 A crystal structure of the complex reveals that lysozyme binds at a site remote from the polymerase active site, suggesting an indirect mechanism of inhibition. Comparison of the T7 RNA polymerase structure with that of the homologous pol I family of DNA polymerases reveals identities in the catalytic site but also differences specific to RNA polymerase function. The structure of T7 RNA polymerase presented here differs significantly from a previously published structure. Sequence similarities between phage RNA polymerases and those from mitochondria and chloroplasts, when interpreted in the context of our revised model of T7 RNA polymerase, suggest a conserved fold. PMID:9670025

  13. Rapid detection of the CYP2A6*12 hybrid allele by Pyrosequencing technology.

    PubMed

    Koontz, Deborah A; Huckins, Jacqueline J; Spencer, Antonina; Gallagher, Margaret L

    2009-08-24

    Identification of CYP2A6 alleles associated with reduced enzyme activity is important in the study of inter-individual differences in drug metabolism. CYP2A6*12 is a hybrid allele that results from unequal crossover between CYP2A6 and CYP2A7 genes. The 5' regulatory region and exons 1-2 are derived from CYP2A7, and exons 3-9 are derived from CYP2A6. Conventional methods for detection of CYP2A6*12 consist of two-step PCR protocols that are laborious and unsuitable for high-throughput genotyping. We developed a rapid and accurate method to detect the CYP2A6*12 allele by Pyrosequencing technology. A single set of PCR primers was designed to specifically amplify both the CYP2A6*1 wild-type allele and the CYP2A6*12 hybrid allele. An internal Pyrosequencing primer was used to generate allele-specific sequence information, which detected homozygous wild-type, heterozygous hybrid, and homozygous hybrid alleles. We first validated the assay on 104 DNA samples that were also genotyped by conventional two-step PCR and by cycle sequencing. CYP2A6*12 allele frequencies were then determined using the Pyrosequencing assay on 181 multi-ethnic DNA samples from subjects of African American, European Caucasian, Pacific Rim, and Hispanic descent. Finally, we streamlined the Pyrosequencing assay by integrating liquid handling robotics into the workflow. Pyrosequencing results demonstrated 100% concordance with conventional two-step PCR and cycle sequencing methods. Allele frequency data showed slightly higher prevalence of the CYP2A6*12 allele in European Caucasians and Hispanics. This Pyrosequencing assay proved to be a simple, rapid, and accurate alternative to conventional methods, which can be easily adapted to the needs of higher-throughput studies.

  14. Textpresso site-specific recombinases: A text-mining server for the recombinase literature including Cre mice and conditional alleles.

    PubMed

    Urbanski, William M; Condie, Brian G

    2009-12-01

    Textpresso Site Specific Recombinases (http://ssrc.genetics.uga.edu/) is a text-mining web server for searching a database of more than 9,000 full-text publications. The papers and abstracts in this database represent a wide range of topics related to site-specific recombinase (SSR) research tools. Included in the database are most of the papers that report the characterization or use of mouse strains that express Cre recombinase as well as papers that describe or analyze mouse lines that carry conditional (floxed) alleles or SSR-activated transgenes/knockins. The database also includes reports describing SSR-based cloning methods such as the Gateway or the Creator systems, papers reporting the development or use of SSR-based tools in systems such as Drosophila, bacteria, parasites, stem cells, yeast, plants, zebrafish, and Xenopus as well as publications that describe the biochemistry, genetics, or molecular structure of the SSRs themselves. Textpresso Site Specific Recombinases is the only comprehensive text-mining resource available for the literature describing the biology and technical applications of SSRs. (c) 2009 Wiley-Liss, Inc.

  15. Allelic Prevalence of ABO Blood Group Genes in Iranian Azari Population.

    PubMed

    Nojavan, Mohammad; Shamsasenjan, Karrim; Movassaghpour, Ali Akbar; Akbarzadehlaleh, Parvin; Torabi, Seyd Esmail; Ghojazadeh, Morteza

    2012-01-01

    ABO blood group system is the most important blood group in transfusion and has been widely used in population studies. Several molecular techniques for ABO allele's detection are widely used for distinguishing various alleles of glycosyl transferase locus on chromosome 9. 744 randomly selected samples from Azari donors of East Azerbaijan province (Iran) were examined using well-adjusted multiplex allele- specific PCR ABO genotyping technique. The results were consistent for all individuals. The ABO blood group genotype of 744 healthy Azari blood donors was: 25.8% AA/AO (2), 7.6% AO (1), 1.6% BB, 11.3% B0 (1), 10% AB, 9.3% 0(1)0(1) and 15.3%0(1)0(2). The highest genotype frequency belonged to O01/O02 genotype (15.3%) and the lowest frequency belonged to A101/A102 genotype (0.4%). The frequencies of ABO alleles didn't show significant differences between East Azerbaijan province population and that of other areas of the country. Meanwhile, statistical analysis of frequencies of A and B alleles between East Azerbaijan province population and neighbor countries showed significant differences whereas the frequency of allele O between them did not show significant difference (P>0.05). The frequencies of ABO alleles didn't show significant differences between East Azerbaijan province population and that of other areas of the country. Meanwhile, statistical analysis of frequencies of A and B alleles between East Azerbaijan province population and neighbor countries showed significant differences whereas the frequency of allele O between them did not show significant difference (P>0.05).

  16. Forensic applicability of multi-allelic InDels with mononucleotide homopolymer structures.

    PubMed

    Zhang, Shu; Zhu, Qiang; Chen, Xiaogang; Zhao, Yuancun; Zhao, Xiaohong; Yang, Yiwen; Gao, Zehua; Fang, Ting; Wang, Yufang; Zhang, Ji

    2018-04-27

    Insertion/deletion polymorphisms (InDels), which possess the characteristics of low mutation rates and a short amplicon size, have been regarded as promising markers for forensic DNA analysis. InDels can be classified as bi-allelic or multi-allelic, depending on the number of alleles. Many studies have explored the use of bi-allelic InDels in forensic applications, such as individual identification and ancestry inference. However, multi-allelic InDels have received relatively little attention. In this study, InDels with 2-6 alleles and a minor allele frequency ≥0.01, in Chinese Southern Han (CHS), were retrieved from the 1000 Genomes Project Phase III. Based on the structural analysis of all retrieved InDels, 17 multi-allelic markers with mononucleotide homopolymer structures were selected and combined in one multiplex PCR reaction system. Sensitivity, species specificity and applicability in forensic case work of the multiplex were analyzed. A total of 218 unrelated individuals from a Chinese Han population were genotyped. The combined discriminatory power (CDP), the combined match probability (CMP) and the cumulative probability of exclusion (CPE) were 0.9999999999609, 3.91E-13 and 0.9956, respectively. The results demonstrated that this InDel multiplex panel was highly informative in the investigated population and most of the 26 populations of the 1000 Genomes Project. The data also suggested that multi-allelic InDel markers with monomeric base pair expansions are useful for forensic applications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction

    PubMed Central

    2012-01-01

    Background Choosing appropriate primers is probably the single most important factor affecting the polymerase chain reaction (PCR). Specific amplification of the intended target requires that primers do not have matches to other targets in certain orientations and within certain distances that allow undesired amplification. The process of designing specific primers typically involves two stages. First, the primers flanking regions of interest are generated either manually or using software tools; then they are searched against an appropriate nucleotide sequence database using tools such as BLAST to examine the potential targets. However, the latter is not an easy process as one needs to examine many details between primers and targets, such as the number and the positions of matched bases, the primer orientations and distance between forward and reverse primers. The complexity of such analysis usually makes this a time-consuming and very difficult task for users, especially when the primers have a large number of hits. Furthermore, although the BLAST program has been widely used for primer target detection, it is in fact not an ideal tool for this purpose as BLAST is a local alignment algorithm and does not necessarily return complete match information over the entire primer range. Results We present a new software tool called Primer-BLAST to alleviate the difficulty in designing target-specific primers. This tool combines BLAST with a global alignment algorithm to ensure a full primer-target alignment and is sensitive enough to detect targets that have a significant number of mismatches to primers. Primer-BLAST allows users to design new target-specific primers in one step as well as to check the specificity of pre-existing primers. Primer-BLAST also supports placing primers based on exon/intron locations and excluding single nucleotide polymorphism (SNP) sites in primers. Conclusions We describe a robust and fully implemented general purpose primer design tool

  18. Isolation and functional characterization of TIF-IB, a factor that confers promoter specificity to mouse RNA polymerase I.

    PubMed

    Schnapp, A; Clos, J; Hädelt, W; Schreck, R; Cvekl, A; Grummt, I

    1990-03-25

    The murine ribosomal gene promoter contains two cis-acting control elements which operate in concert to promote efficient and accurate transcription initiation by RNA polymerase I. The start site proximal core element which is indispensable for promoter recognition by RNA polymerase I (pol I) encompasses sequences from position -39 to -1. An upstream control element (UCE) which is located between nucleotides -142 and -112 stimulates the efficiency of transcription initiation both in vivo and in vitro. Here we report the isolation and functional characterization of a specific rDNA binding protein, the transcription initiation factor TIF-IB, which specifically interacts with the core region of the mouse ribosomal RNA gene promoter. Highly purified TIF-IB complements transcriptional activity in the presence of two other essential initiation factors TIF-IA and TIF-IC. We demonstrate that the binding efficiency of purified TIF-IB to the core promoter is strongly enhanced by the presence in cis of the UCE. This positive effect of upstream sequences on TIF-IB binding is observed throughout the purification procedure suggesting that the synergistic action of the two distant promoter elements is not mediated by a protein different from TIF-IB. Increasing the distance between both control elements still facilitates stable factor binding but eliminates transcriptional activation. The results demonstrate that TIF-IB binding to the rDNA promoter is an essential early step in the assembly of a functional transcription initiation complex. The subsequent interaction of TIF-IB with other auxiliary transcription initiation factors, however, requires the correct spacing between the UCE and the core promoter element.

  19. Allelic variation in Salmonella: an underappreciated driver of adaptation and virulence

    PubMed Central

    Yue, Min; Schifferli, Dieter M.

    2014-01-01

    Salmonella enterica causes substantial morbidity and mortality in humans and animals. Infection and intestinal colonization by S. enterica require virulence factors that mediate bacterial binding and invasion of enterocytes and innate immune cells. Some S. enterica colonization factors and their alleles are host restricted, suggesting a potential role in regulation of host specificity. Recent data also suggest that colonization factors promote horizontal gene transfer of antimicrobial resistance genes by increasing the local density of Salmonella in colonized intestines. Although a profusion of genes are involved in Salmonella pathogenesis, the relative importance of their allelic variation has only been studied intensely in the type 1 fimbrial adhesin FimH. Although other Salmonella virulence factors demonstrate allelic variation, their association with specific metadata (e.g., host species, disease or carrier state, time and geographic place of isolation, antibiotic resistance profile, etc.) remains to be interrogated. To date, genome-wide association studies (GWAS) in bacteriology have been limited by the paucity of relevant metadata. In addition, due to the many variables amid metadata categories, a very large number of strains must be assessed to attain statistically significant results. However, targeted approaches in which genes of interest (e.g., virulence factors) are specifically sequenced alleviates the time-consuming and costly statistical GWAS analysis and increases statistical power, as larger numbers of strains can be screened for non-synonymous single nucleotide polymorphisms (SNPs) that are associated with available metadata. Congruence of specific allelic variants with specific metadata from strains that have a relevant clinical and epidemiological history will help to prioritize functional wet-lab and animal studies aimed at determining cause-effect relationships. Such an approach should be applicable to other pathogens that are being collected

  20. Distribution of HLA-DQA1 alleles in Arab and Pakistani individuals from Dubai, United Arab Emirates.

    PubMed

    Tahir, M A; al Khayat, A Q; al Shamali, F; Budowle, B; Novick, G E

    1997-03-14

    PCR-based typing of the HLA-DQA1 locus, using allele specific oligonucleotide (ASO) probes and reverse dot blot methodology was used to determine allelic distributions and construct a database for Arab and Pakistani individuals living in Dubai. Genotype and allelic frequencies were calculated, and the data were tested for departures from Hardy-Weinberg (HWE) equilibrium. The most frequent HLA-DQA1 alleles among Dubaian Arabs are DQA1 4 and 1.2. Among Pakistanis, the most frequent allele is also DQA1 4. No significant deviations from HWE were detected.

  1. A modified single-tube one-step product-enhanced reverse transcriptase (mSTOS-PERT) assay with heparin as DNA polymerase inhibitor for specific detection of RTase activity.

    PubMed

    Fan, Xiao-Yong; Lü, Guo-Zhen; Wu, Li-Na; Chen, Jing-Hua; Xu, Wen-Qing; Zhao, Chun-Nü; Guo, Sheng-Qi

    2006-12-01

    Current regulations and recommendations proposed for the production of vaccines in continuous cell lines of any origin demand that these be free of exogenous viruses, particularly retroviruses. Recently, the ultra-sensitive product-enhanced reverse transcriptase (PERT) assay can be used to detect minute of reverse transcriptase (RTase) in single retroviral particle and is 10(6) times more sensitive than the conventional RTase assays. However, coincidental with this increase in sensitivity is an increase in false-positive reactions derived from contaminating cellular DNA polymerases, which are known to have RTase-like activities. To develop a modified single-tube one-step PERT (mSTOS-PERT) assay with improvements on decreasing significantly the level of false-positive reactions, and to evaluate the mSTOS-PERT assay for sensitivity and specificity. Ampliwaxtrade mark was used to compartmentalize the reverse transcription (RT) and PCR step in the same micro-tube with more efficiency and reproducibility, while maintaining the high sensitivity. The DNA amplification products were separated by 2% agarose gel electrophoresis, and then analyzed by non-isotopic Southern blot hybridization. A wide variety of cell lines used in biologicals production were detected to validate the improved mSTOS-PERT assay. The detection limit for the mSTOS-PERT assay was at least 10(-9)U, when using AMV-RTase as a positive control. Furthermore, heparin involvement in the RT step can eliminate completely the false-positive PERT signals which are exhibited by cellular polymerases such as DNA-dependent DNA polymerase alpha, gamma released by cell death. Most mammalian cells (MRC-5, Vero, WISH, 2BS, RK-13, MDCK, etc.) are PERT-negative in cell supernatants. Some PERT-positive signals in cell lysates were found to be introduced by the cellular DNA polymerases and could be inhibited specifically by heparin. Chick cells derived from either chick embryo fibroblasts (CEF) or allantoic fluid from SPF

  2. MICA genetic polymorphism and HLA-A,C,B,MICA and DRB1 haplotypic variation in a southern Chinese Han population: identification of two new MICA alleles, MICA*060 and MICA*062.

    PubMed

    Tian, Wei; Cai, JinHong; Liu, XueXiang

    2011-06-01

    In this study, 201 healthy, unrelated Han subjects in Hunan province, southern China, were investigated by sequence-based typing (SBT) for the allelic variation of the human major histocompatibility complex (MHC) class I chain-related gene A (MICA). Nineteen MICA alleles were observed, among which MICA*008:01 predominated with gene frequency of 30.35%. There was significant linkage disequilibrium (LD) of MICA*012:01 with HLA-B*54 and HLA-B*55, which was not observed in a northern Chinese Han population. Haplotype HLA-A*11-C*07-B60-MICA*008:01 (9.16%) was highly specific to this southern Chinese Han population. The most common five-locus haplotype in this population was HLA-A*02-C*01-B*46-MICA*010-DRB1*09 (8.73%). A new MICA allele, MICA*060, was identified on an HLA-A*02-C*01-B*55:02-DRB1*14 haplotype through extended family analysis. MICA*060 has probably arisen from MICA*012:01. Another new MICA allele, MICA*062, was identified by screening 1432 subjects using polymerase chain reaction-sequence-specific priming technology. MICA*062 has probably derived from MICA*010. Of particular interest is that MICA*062 was carried on an HLA-C*08-B*48:01-DRB1*14 haplotypic segment, as HLA-B*48 has been consistently shown to be primarily linked to MICA gene deletion in east Asian populations. Our results provide new insight into MICA genetic polymorphism in human populations. The findings reported here are of importance for future studies on the potential role of MICA in allogeneic organ transplantation and disease association in populations of Chinese ancestry. Copyright © 2011 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  3. Reduced Height (Rht) Alleles Affect Wheat Grain Quality

    PubMed Central

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0–450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05) reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the

  4. Identification of the variations in the CPT1B and CHKB genes along with the HLA-DQB1*06:02 allele in Turkish narcolepsy patients and healthy persons.

    PubMed

    Cingoz, Sultan; Agilkaya, Sinem; Oztura, Ibrahim; Eroglu, Secil; Karadeniz, Derya; Evlice, Ahmet; Altungoz, Oguz; Yilmaz, Hikmet; Baklan, Baris

    2014-04-01

    The HLA-DQB1*06:02 allele across all ethnic groups and the rs5770917 variation between CPT1B and CHKB genes in Japanese and Koreans are common genetic susceptibility factors for narcolepsy. This comprehensive genetic study sought to assess variations in CHKB and CPT1B susceptibility genes and HLA-DQB1*06:02 allele status in Turkish patients with narcolepsy and healthy persons. CHKB/CPT1B genes were sequenced in patients with narcolepsy (n=37) and healthy persons (n=100) to detect variations. The HLA-DQB1*06:02 allele status was determined by sequence specific polymerase chain reaction. The HLA-DQB1*06:02 allele was significantly more frequent in narcoleptic patients than in healthy persons (p=2×10(-7)) and in patients with narcolepsy and cataplexy than in those without (p=0.018). The mean of the multiple sleep latency test, sleep-onset rapid eye movement periods, and frequency of sleep paralysis significantly differed in the HLA-DQB1*06:02-positive patients. rs5770917, rs5770911, rs2269381, and rs2269382 were detected together as a haplotype in three patients and 11 healthy persons. In addition to this haplotype, the indel variation (rs144647670) was detected in the 5' upstream region of the human CHKB gene in the patients and healthy persons carrying four variants together. This study identified a novel haplotype consisting of the indel variation, which had not been detected in previous studies in Japanese and Korean populations, and observed four single-nucleotide polymorphisms in CHKB/CPT1B. The study confirmed the association of the HLA-DQB1*06:02 allele with narcolepsy and cataplexy susceptibility. The findings suggest that the presence of HLA-DQB1*06:02 may be a predictor of cataplexy in narcoleptic patients and could therefore be used as an additional diagnostic marker alongside hypocretin.

  5. Global distribution of malaria-resistant MHC-HLA alleles: the number and frequencies of alleles and malaria risk.

    PubMed

    Garamszegi, László Zsolt

    2014-09-03

    The major histocompatibility complex (MHC) is the most polymorphic genetic region in vertebrates, but the origin of such genetic diversity remains unresolved. Several studies have demonstrated at the within-population level that individuals harbouring particular alleles can be less or more susceptible to malaria, but these do not allow strong generalization. Here worldwide data on the frequencies of several hundred MHC alleles of the human leucocyte antigen (HLA) system in relation to malaria risk at the between-population level were analysed in a phylogenetic framework, and results for different alleles were quantitatively summarized in a meta-analysis. There was an overall positive relationship between malaria pressure and the frequency of several HLA alleles indicating that allele frequencies increase in countries with strong malaria pressure. Nevertheless, considerable heterogeneity was observed across alleles, and some alleles showed a remarkable negative relationship with malaria risk. When heterogeneities were partitioned into different organization groups of the MHC, the strongest positive relationships were detected for alleles of the HLA-A and HLA-B loci, but there were also differences between MHC supertypes that constitute functionally distinct nucleotide sequences. Finally, the number of MHC alleles that are maintained within countries was also related to malaria risk. Therefore, malaria represents a key selection pressure for the human MHC and has left clear evolutionary footprints on both the frequencies and the number of alleles observed in different countries.

  6. Population-Level Immune-Mediated Adaptation in HIV-1 Polymerase during the North American Epidemic

    PubMed Central

    Kinloch, Natalie N.; MacMillan, Daniel R.; Le, Anh Q.; Cotton, Laura A.; Bangsberg, David R.; Buchbinder, Susan; Carrington, Mary; Fuchs, Jonathan; Harrigan, P. Richard; Koblin, Beryl; Kushel, Margot; Markowitz, Martin; Mayer, Kenneth; Milloy, M. J.; Schechter, Martin T.; Wagner, Theresa; Walker, Bruce D.; Carlson, Jonathan M.; Poon, Art F. Y.

    2015-01-01

    ABSTRACT Human leukocyte antigen (HLA) class I-associated polymorphisms in HIV-1 that persist upon transmission to HLA-mismatched hosts may spread in the population as the epidemic progresses. Transmission of HIV-1 sequences containing such adaptations may undermine cellular immune responses to the incoming virus in future hosts. Building upon previous work, we investigated the extent of HLA-associated polymorphism accumulation in HIV-1 polymerase (Pol) through comparative analysis of linked HIV-1/HLA class I genotypes sampled during historic (1979 to 1989; n = 338) and modern (2001 to 2011; n = 278) eras from across North America (Vancouver, BC, Canada; Boston, MA; New York, NY; and San Francisco, CA). Phylogenies inferred from historic and modern HIV-1 Pol sequences were star-like in shape, with an inferred most recent common ancestor (epidemic founder virus) sequence nearly identical to the modern North American subtype B consensus sequence. Nevertheless, modern HIV-1 Pol sequences exhibited roughly 2-fold-higher patristic (tip-to-tip) genetic distances than historic sequences, with HLA pressures likely driving ongoing diversification. Moreover, the frequencies of published HLA-associated polymorphisms in individuals lacking the selecting HLA class I allele was on average ∼2.5-fold higher in the modern than in the historic era, supporting their spread in circulation, though some remained stable in frequency during this time. Notably, polymorphisms restricted by protective HLA alleles appear to be spreading to a greater relative extent than others, though these increases are generally of modest absolute magnitude. However, despite evidence of polymorphism spread, North American hosts generally remain at relatively low risk of acquiring an HIV-1 polymerase sequence substantially preadapted to their HLA profiles, even in the present era. IMPORTANCE HLA class I-restricted cytotoxic T-lymphocyte (CTL) escape mutations in HIV-1 that persist upon transmission may

  7. Allele-specific expression in the human heart and its application to postoperative atrial fibrillation and myocardial ischemia.

    PubMed

    Sigurdsson, Martin I; Saddic, Louis; Heydarpour, Mahyar; Chang, Tzuu-Wang; Shekar, Prem; Aranki, Sary; Couper, Gregory S; Shernan, Stanton K; Seidman, Jon G; Body, Simon C; Muehlschlegel, Jochen D

    2016-12-06

    Allele-specific expression (ASE) is differential expression of each of the two chromosomal alleles of an autosomal gene. We assessed ASE patterns in the human left atrium (LA, n = 62) and paired samples from the left ventricle (LV, n = 76) before and after ischemia, and tested the utility of differential ASE to identify genes associated with postoperative atrial fibrillation (poAF) and myocardial ischemia. Following genotyping from whole blood and whole-genome sequencing of LA and LV samples, we called ASE using sequences overlapping heterozygous SNPs using rigorous quality control to minimize false ASE calling. ASE patterns were compared between cardiac chambers and with a validation cohort from cadaveric tissue. ASE patterns in the LA were compared between patients who had poAF and those who did not. Changes in ASE in the LV were compared between paired baseline and post-ischemia samples. ASE was found for 3404 (5.1%) and 8642 (4.0%) of SNPs analyzed in the LA and LV, respectively. Out of 6157 SNPs with ASE analyzed in both chambers, 2078 had evidence of ASE in both LA and LV (p < 0.0001). The SNP with the greatest ASE difference in the LA of patients with and without postoperative atrial fibrillation was within the gelsolin (GSN) gene, previously associated with atrial fibrillation in mice. The genes with differential ASE in poAF were enriched for myocardial structure genes, indicating the importance of atrial remodeling in the pathophysiology of AF. The greatest change in ASE between paired post-ischemic and baseline samples of the LV was in the zinc finger and homeodomain protein 2 (ZHX2) gene, a modulator of plasma lipids. Genes with differential ASE in ischemia were enriched in the ubiquitin ligase complex pathway associated with the ischemia-reperfusion response. Our results establish a pattern of ASE in the human heart, with a high degree of shared ASE between cardiac chambers as well as chamber-specific ASE. Furthermore, ASE analysis can be

  8. FY*X real-time polymerase chain reaction with melting curve analysis associated with a complete one-step real-time FY genotyping.

    PubMed

    Ansart-Pirenne, H; Martin-Blanc, S; Le Pennec, P-Y; Rouger, P; Cartron, J-P; Tournamille, C

    2007-02-01

    The Duffy (FY) blood group system is controlled by four major alleles: FY*A and FY*B, the Caucasian common alleles, encoding Fy(a) and Fy(b) antigens; FY*X allele responsible for a poorly expressed Fy(b) antigen, and FY*Fy a silent predominant allele among Black population. Despite the recent development of a real-time fluorescent polymerase chain reaction (PCR) method for FY genotyping FY*X genotyping has not been described by this method. This study focused on the real-time FY*X genotyping development associated with a complete, one-step real-time FY genotyping, based on fluorescence resonance energy transfer (FRET) technology. Seventy-two blood samples from Fy(a+b-) Caucasian blood donors were studied by real-time PCR only. Forty-seven Caucasian and Black individual blood samples, referred to our laboratory, were studied by PCR-RFLP and real-time PCR. For each individual, the result of the genotype was compared to the known phenotype. The FY*X allele frequency calculated in an Fy(a+b-) Caucasian blood donors population was 0.014. With the Caucasian and Black patient samples we found a complete correlation between PCR-RFLP and the real-time PCR method whatever the alleles combination tested. When the known phenotype was not correlated to FY*X genotype, the presence of the Fy(b) antigen was always confirmed by adsorption-elution. The real-time technology method is rapid and accurate for FY genotyping. From now, we are able to detect the FY*X allele in all the alleles combinations studied. Regarding its significant frequency, the detection of the FY*X allele is useful for the correct typing of blood donors and recipients considering the therapeutic use of blood units and the preparation of test red blood cells for antibody screening.

  9. The Distribution of Genotype and Allelic Frequency of IL28B Gene Polymorphism in Andhra Pradesh, India

    PubMed Central

    Sivaprasad, Siddapuram; Rao, Padaki Nagaraja; Gupta, Rajesh; Ashwini, Kaitha; Reddy, Duvvuru Nageshwar

    2012-01-01

    Background The single nucleotide polymorphism (SNP) of IL28B gene on chromosome 19, encoding for the interferon (IFN)-λ-3 is strongly associated with treatment response to pegylated-IFN and ribavirin in patients infected with different genotypes of hepatitis C virus (HCV). Difference between ethnicity and treatment response rates suggesting a key role of host genetics. The IL28B polymorphism (rs12979860C/T) shows a marked differential distribution between racial groups. Aim The present study is aimed to evaluate genotype and allelic frequency of IL28B gene polymorphism (rs12979860C/T) in Andhra Pradesh, India. Methods A total of 220 healthy controls were recruited for the study. The genotyping of SNP rs12979860C/T on IL28B gene was performed by polymerase chain reaction-direct sequencing method. Result The frequency of CC genotype was found to be significantly (59.09%) higher compared to CT (34.09%) and TT (6.81%) genotypes, respectively. The frequency of major allele C is 0.762 whereas minor allele T is 0.238. Conclusion The higher distribution of genotype ‘CC’ of SNP, rs12979860C/T of IL28B gene in study subjects is suggestive of better response of HCV patients to standard anti-HCV therapy. PMID:25755419

  10. Techniques used to study the DNA polymerase reaction pathway

    PubMed Central

    Joyce, Catherine M.

    2009-01-01

    Summary A minimal reaction pathway for DNA polymerases was established over 20 years ago using chemical quench methods. Since that time there has been considerable interest in noncovalent steps in the reaction pathway, conformational changes involving the polymerase or its DNA substrate that may play a role in substrate specificity. Fluorescence-based assays have been devised in order to study these conformational transitions and the results obtained have added new detail to the reaction pathway. PMID:19665596

  11. Comparative molecular dynamics studies of heterozygous open reading frames of DNA polymerase eta (η) in pathogenic yeast Candida albicans

    NASA Astrophysics Data System (ADS)

    Satpati, Suresh; Manohar, Kodavati; Acharya, Narottam; Dixit, Anshuman

    2017-01-01

    Genomic instability in Candida albicans is believed to play a crucial role in fungal pathogenesis. DNA polymerases contribute significantly to stability of any genome. Although Candida Genome database predicts presence of S. cerevisiae DNA polymerase orthologs; functional and structural characterizations of Candida DNA polymerases are still unexplored. DNA polymerase eta (Polη) is unique as it promotes efficient bypass of cyclobutane pyrimidine dimers. Interestingly, C. albicans is heterozygous in carrying two Polη genes and the nucleotide substitutions were found only in the ORFs. As allelic differences often result in functional differences of the encoded proteins, comparative analyses of structural models and molecular dynamic simulations were performed to characterize these orthologs of DNA Polη. Overall structures of both the ORFs remain conserved except subtle differences in the palm and PAD domains. The complementation analysis showed that both the ORFs equally suppressed UV sensitivity of yeast rad30 deletion strain. Our study has predicted two novel molecular interactions, a highly conserved molecular tetrad of salt bridges and a series of π-π interactions spanning from thumb to PAD. This study suggests these ORFs as the homologues of yeast Polη, and due to its heterogeneity in C. albicans they may play a significant role in pathogenicity.

  12. Allele-specific suppression as a tool to study protein-protein interactions in bacteria.

    PubMed

    Manson, M D

    2000-01-01

    Suppression analysis is well suited to study the interactions of gene products. It offers the advantage of simplicity for any organism for which a convenient genetic system has been developed, which holds for a wide spectrum of bacteria and an ever-increasing number of unicellular as well as complex eukaryotes. No other method provides as much information about the functional relationships of biological macromolecules. The intrinsic value of suppression analysis is enhanced by advances in genomics and in biophysical techniques for investigating the properties of nucleic acids and proteins, such as X-ray crystallography, liquid and solid-state nuclear magnetic resonance, electron spin labeling, and isothermal calorimetry. These approaches confirm and complement whatever is revealed by genetics. Despite these sterling qualities, suppression analysis has its dangers, less in execution than in conceptualization of experiments and interpretation of data. A consistent nomenclature is essential for a uniform and widespread understanding of the results. Familiarity with the genetic background and idiosyncracies of the organism studied is critical in avoiding extraneous phenomena that can affect the outcome. Finally, it is imperative not to underestimate potentially bizarre and improbable consequences that can transpire when rigorous genetic selection is maintained for an appreciable length of time. The article begins with a somewhat pedagogical discussion of genetic terminology. It then moves on to the necessary precautions to observe while planning and conducting suppression analysis. The remainder of the article considers different manifestations of suppression: bypass suppression; gradients of suppression; suppression by relaxed specificity; allele-specific "suppression at a distance"; and true conformational suppression. The treatment is not exhaustive, but representative examples have been gleaned from the recent bacterial literature. Copyright 2000 Academic Press.

  13. Mechanism of transcription termination by RNA polymerase III utilizes a nontemplate-strand sequence-specific signal element

    PubMed Central

    Arimbasseri, Aneeshkumar G.; Maraia, Richard J.

    2015-01-01

    SUMMARY Understanding the mechanism of transcription termination by a eukaryotic RNA polymerase (RNAP) has been limited by lack of a characterizable intermediate that reflects transition from an elongation complex to a true termination event. While other multisubunit RNAPs require multipartite cis-signals and/or ancillary factors to mediate pausing and release of the nascent transcript from the clutches of these enzymes, RNAP III does so with precision and efficiency on a simple oligo(dT) tract, independent of other cis-elements or trans-factors. We report a RNAP III pre-termination complex that reveals termination mechanisms controlled by sequence-specific elements in the non-template strand. Furthermore, the TFIIF-like, RNAP III subunit, C37 is required for this function of the non-template strand signal. The results reveal the RNAP III terminator as an information-rich control element. While the template strand promotes destabilization via a weak oligo(rU:dA) hybrid, the non-template strand provides distinct sequence-specific destabilizing information through interactions with the C37 subunit. PMID:25959395

  14. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation

    PubMed Central

    Varshney, Dhaval; Vavrova-Anderson, Jana; Oler, Andrew J.; Cowling, Victoria H.; Cairns, Bradley R.; White, Robert J.

    2015-01-01

    Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription. PMID:25798578

  15. T7-RNA Polymerase

    NASA Technical Reports Server (NTRS)

    1997-01-01

    T7-RNA Polymerase grown on STS-81. Structure-Function Relationships of RNA Polymerase: DNA-dependent RNA polymerase is the key enzyme responsible for the biosynthesis of RNA, a process known as transcription. Principal Investigator's include Dr. Dan Carter, Dr. B.C. Wang, and Dr. John Rose of New Century Pharmaceuticals.

  16. A Likelihood-Based Framework for Association Analysis of Allele-Specific Copy Numbers.

    PubMed

    Hu, Y J; Lin, D Y; Sun, W; Zeng, D

    2014-10-01

    Copy number variants (CNVs) and single nucleotide polymorphisms (SNPs) co-exist throughout the human genome and jointly contribute to phenotypic variations. Thus, it is desirable to consider both types of variants, as characterized by allele-specific copy numbers (ASCNs), in association studies of complex human diseases. Current SNP genotyping technologies capture the CNV and SNP information simultaneously via fluorescent intensity measurements. The common practice of calling ASCNs from the intensity measurements and then using the ASCN calls in downstream association analysis has important limitations. First, the association tests are prone to false-positive findings when differential measurement errors between cases and controls arise from differences in DNA quality or handling. Second, the uncertainties in the ASCN calls are ignored. We present a general framework for the integrated analysis of CNVs and SNPs, including the analysis of total copy numbers as a special case. Our approach combines the ASCN calling and the association analysis into a single step while allowing for differential measurement errors. We construct likelihood functions that properly account for case-control sampling and measurement errors. We establish the asymptotic properties of the maximum likelihood estimators and develop EM algorithms to implement the corresponding inference procedures. The advantages of the proposed methods over the existing ones are demonstrated through realistic simulation studies and an application to a genome-wide association study of schizophrenia. Extensions to next-generation sequencing data are discussed.

  17. Clinical characteristics and HLA alleles of a family with simultaneously occurring alopecia areata.

    PubMed

    Emre, Selma; Metin, Ahmet; Caykoylu, Ali; Akoglu, Gulsen; Ceylan, Gülay G; Oztekin, Aynure; Col, Esra S

    2016-06-01

    Alopecia areata (AA) is a T-cell-mediated autoimmune disease resulting in partial or total noncicatricial hair loss. HLA class II antigens are the most important markers that constitute genetic predisposition to AA. Various life events and intense psychological stress may play an important role in triggering AA attacks. We report an unusual case series of 4 family members who had simultaneously occurring active AA lesions. Our aim was to evaluate the clinical and psychiatric features of 4 cases of active AA lesions occurring simultaneously in a family and determine HLA alleles. The clinical and psychological features of all patients were examined. HLA antigen DNA typing was performed by polymerase chain reaction with sequence-specific primers. All patients had typical AA lesions over the scalp and/or beard area. Psychological examinations revealed obsessive-compulsive personality disorder in the proband's parents as well as anxiety and lack of self-confidence in both the proband and his sister. HLA antigen types were not commonly shared with family members. These findings suggest that AA presenting concurrently in members of the same family was not associated with genetic predisposition. Shared psychological disorders and stressful life events might be the major key points in the concurrent presentation of these familial AA cases and development of resistance against treatments.

  18. Tissue-specific methylation differences and cognitive function in fragile X premutation females

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allingham-Hawkins, D.J.; Babul, R.; Chitayat, D.

    1996-08-09

    Tissue-specific variation in (CGG){sub n} repeat size and methylation status of the FMR1 gene was investigated in 17 female premutation carriers. Minor variation in premutation repeat size among leukocyte, lymphoblast, and fibroblast tissues was noted in some subjects. One subject exhibited a premutation size allele of (CGG){sub 64} in leukocyte and fibroblast tissues by polymerase chain reaction analysis but a normal-size allele of (CGG){sub 46} in lymphoblast cells, suggesting low-level mosaicism in blood and clonality of the lymphoblast cell line. Six subjects exhibited differences in methylation pattern between leukocytes and lymphoblasts but not between leukocytes and fibroblasts, whereas 2 subjectsmore » showed large differences in methylation pattern between leukocytes and fibroblasts. Cognitive function was studied in 14 subjects using the Wechsler Adult Intelligence Scale-Revised. Mean Verbal and Performance IQs were well within the average range as was the mean Full Scale IQ; nevertheless, a trend toward lower Performance IQ compared with Verbal IQ was observed. No significant correlation was apparent between Full Scale IQ and (CGG){sub n} repeat size; however, a significant positive correlation was observed between Full Scale IQ and the proportion of the active X carrying the normal FMR1 allele in fibroblasts but not in leukocytes or lymphoblasts. 24 refs., 1 fig., 2 tabs.« less

  19. Allelic exclusion of the immunoglobulin heavy chain locus is independent of its nuclear localization in mature B cells

    PubMed Central

    Holwerda, Sjoerd J. B.; van de Werken, Harmen J. G.; Ribeiro de Almeida, Claudia; Bergen, Ingrid M.; de Bruijn, Marjolein J. W.; Verstegen, Marjon J. A. M.; Simonis, Marieke; Splinter, Erik; Wijchers, Patrick J.; Hendriks, Rudi W.; de Laat, Wouter

    2013-01-01

    In developing B cells, the immunoglobulin heavy chain (IgH) locus is thought to move from repressive to permissive chromatin compartments to facilitate its scheduled rearrangement. In mature B cells, maintenance of allelic exclusion has been proposed to involve recruitment of the non-productive IgH allele to pericentromeric heterochromatin. Here, we used an allele-specific chromosome conformation capture combined with sequencing (4C-seq) approach to unambigously follow the individual IgH alleles in mature B lymphocytes. Despite their physical and functional difference, productive and non-productive IgH alleles in B cells and unrearranged IgH alleles in T cells share many chromosomal contacts and largely reside in active chromatin. In brain, however, the locus resides in a different repressive environment. We conclude that IgH adopts a lymphoid-specific nuclear location that is, however, unrelated to maintenance of allelic exclusion. We additionally find that in mature B cells—but not in T cells—the distal VH regions of both IgH alleles position themselves away from active chromatin. This, we speculate, may help to restrict enhancer activity to the productively rearranged VH promoter element. PMID:23748562

  20. HLA class II alleles influence rheumatoid arthritis susceptibility and autoantibody status in South Indian Tamil population.

    PubMed

    Mariaselvam, C M; Fortier, C; Charron, D; Krishnamoorthy, R; Tamouza, R; Negi, V S

    2016-11-01

    Rheumatoid arthritis (RA) is a complex multifactorial autoimmune disease characterized by inflammatory arthritis. The precise etiology and pathogenesis of RA remains elusive but evidence points towards stochastic interactions between genetic and environmental factors. This study investigated the distribution of human leucocyte antigen (HLA)-DRB1/DQB1 alleles in South Indian patients with rheumatoid arthritis (RA) and their influence on RA susceptibility and clinical phenotype. Low resolution HLA-DRB1 and -DQB1 typing was performed in 271 RA patients and 233 healthy controls by polymerase chain reaction (PCR) using sequence-specific primers (SSP). HLA-DRB1*10 was found to be more frequent in patients (P c = 0.004, OR = 2.23, 95% CI = 1.5-3.34) than controls. This difference persisted in RF positive (P c = 9 × 10 -6 , OR = 2.45, 95% CI = 1.62-3.74), ACPA positive (P c = 0.007, OR = 2.10, 95% CI = 1.35-3.29), ACPA negative (P c = 0.001, OR = 2.45, 95% CI = 1.50-3.97) and both RF and ACPA positive subgroup of patients (P c = 0.003, OR = 2.22, 95% CI = 1.41-3.51). On the contrary, the HLA-DRB1*13 (P c = 0.01, OR = 0.43, 95% CI = 0.25-0.73) and HLA-DRB1*14 (P c = 0.003, OR = 0.43, 95% CI = 0.26-0.69) alleles were over-represented in controls than patients. Further, distribution of the prominent Caucasian RA risk allele DRB1*04 did not differ between patients and controls in our study population. We did not find any association between DQB1 alleles and RA susceptibility or autoantibody status. The haplotypes DQB1*05-DRB1*10 (P = 6.8 × 10 -6 , OR = 2.46, 95% CI = 1.63-3.79) and DQB1*06-DRB1*15 (P = 0.03, OR = 1.41, 95% CI = 1.02-1.96) were more frequent in patients while DQB1*05-DRB1*14 (P = 8.4 × 10 -4 , OR = 0.44, 95% CI = 0.26-0.74) and DQB1*06-DRB1*13 (P = 9.5 × 10 -4 , OR = 0.40, 95% CI = 0.21-0.72) were higher in controls. To conclude, HLA-DRB1*10 is associated with RA while HLA-DRB1*13 and HLA-DRB1*14 alleles confer protection in south Indian Tamils. © 2016

  1. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.

    1984-03-30

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties.

  2. The Predicted Cross Value for Genetic Introgression of Multiple Alleles

    PubMed Central

    Han, Ye; Cameron, John N.; Wang, Lizhi; Beavis, William D.

    2017-01-01

    We consider the plant genetic improvement challenge of introgressing multiple alleles from a homozygous donor to a recipient. First, we frame the project as an algorithmic process that can be mathematically formulated. We then introduce a novel metric for selecting breeding parents that we refer to as the predicted cross value (PCV). Unlike estimated breeding values, which represent predictions of general combining ability, the PCV predicts specific combining ability. The PCV takes estimates of recombination frequencies as an input vector and calculates the probability that a pair of parents will produce a gamete with desirable alleles at all specified loci. We compared the PCV approach with existing estimated-breeding-value approaches in two simulation experiments, in which 7 and 20 desirable alleles were to be introgressed from a donor line into a recipient line. Results suggest that the PCV is more efficient and effective for multi-allelic trait introgression. We also discuss how operations research can be used for other crop genetic improvement projects and suggest several future research directions. PMID:28122824

  3. A serotype-specific polymerase chain reaction for identification of Pasteurella multocida serotype 1

    USGS Publications Warehouse

    Rocke, Tonie E.; Smith, Susan R.; Miyamoto, Amy; Shadduck, Daniel J.

    2002-01-01

    A serotype-specific polymerase chain reaction (PCR) assay was developed for detection and identification of Pasteurella multocida serotype 1, the causative agent of avian cholera in wild waterfowl. Arbitrarily primed PCR was used to detect DNA fragments that distinguish serotype 1 from the other 15 serotypes of P. multocida (with the exception of serotype 14). Oligonucleotide primers were constructed from these sequences, and a PCR assay was optimized and evaluated. PCR reactions consistently resulted in amplification products with reference strains 1 and 14 and all other serotype 1 strains tested, with cell numbers as low as 2.3 cells/ml. No amplification products were produced with other P. multocida serotypes or any other bacterial species tested. To compare the sensitivity and further test the specificity of this PCR assay with traditional culturing and serotyping techniques, tissue samples from 84 Pekin ducks inoculated with field strains of P. multocida and 54 wild lesser snow geese collected during an avian cholera outbreak were provided by other investigators working on avian cholera. PCR was as sensitive (58/64) as routine isolation (52/64) in detecting and identifying P. multocida serotype 1 from the livers of inoculated Pekins that became sick or died from avian cholera. No product was amplified from tissues of 20 other Pekin ducks that received serotypes other than type 1 (serotype 3, 12 × 3, or 10) or 12 control birds. Of the 54 snow geese necropsied and tested for P. multocida, our PCR detected and identified the bacteria from 44 compared with 45 by direct isolation. The serotype-specific PCR we developed was much faster and less labor intensive than traditional culturing and serotyping procedures and could result in diagnosis of serotype 1 pasteurellosis within 24 hr of specimen submission.

  4. A serotype-specific polymerase chain reaction for identification of Pasteurella multocida serotype 1

    USGS Publications Warehouse

    Rocke, T.E.; Smith, S.R.; Miyamoto, A.; Shadduck, D.J.

    2002-01-01

    A serotype-specific polymerase chain reaction (PCR) assay was developed for detection and identification of Pasteurella multocida serotype 1, the causative agent of avian cholera in wild waterfowl. Arbitrarily primed PCR was used to detect DNA fragments that distinguish serotype 1 from the other 15 serotypes of P. multocida (with the exception of serotype 14). Oligonucleotide primers were constructed from these sequences, and a PCR assay was optimized and evaluated. PCR reactions consistently resulted in amplification products with reference strains 1 and 14 and all other serotype 1 strains tested, with cell numbers as low as 2.3 cells/ml. No amplification products were produced with other P. multocida serotypes or any other bacterial species tested. To compare the sensitivity and further test the specificity of this PCR assay with traditional culturing and serotyping techniques, tissue samples from 84 Pekin ducks inoculated with field strains of P. multocida and 54 wild lesser snow geese collected during an avian cholera outbreak were provided by other investigators working on avian cholera. PCR was as sensitive (58/64) as routine isolation (52/64) in detecting and identifying P. multocida serotype 1 from the livers of inoculated Pekins that became sick or died from avian cholera. No product was amplified from tissues of 20 other Pekin ducks that received serotypes other than type 1 (serotype 3, 12 × 3, or 10) or 12 control birds. Of the 54 snow geese necropsied and tested for P. multocida, our PCR detected and identified the bacteria from 44 compared with 45 by direct isolation. The serotype-specific PCR we developed was much faster and less labor intensive than traditional culturing and serotyping procedures and could result in diagnosis of serotype 1 pasteurellosis within 24 hr of specimen submission.

  5. Polymerase III transcription factor B activity is reduced in extracts of growth-restricted cells.

    PubMed Central

    Tower, J; Sollner-Webb, B

    1988-01-01

    Extracts of cells that are down-regulated for transcription by RNA polymerase I and RNA polymerase III exhibit a reduced in vitro transcriptional capacity. We have recently demonstrated that the down-regulation of polymerase I transcription in extracts of cycloheximide-treated and stationary-phase cells results from a lack of an activated subform of RNA polymerase I which is essential for rDNA transcription. To examine whether polymerase III transcriptional down-regulation occurs by a similar mechanism, the polymerase III transcription factors were isolated and added singly and in pairs to control cell extracts and to extracts of cells that had reduced polymerase III transcriptional activity due to cycloheximide treatment or growth into stationary phase. These down-regulations result from a specific reduction in TFIIIB; TFIIIC and polymerase III activities remain relatively constant. Thus, although transcription by both polymerase III and polymerase I is substantially decreased in extracts of growth-arrested cells, this regulation is brought about by reduction of different kinds of activities: a component of the polymerase III stable transcription complex in the former case and the activated subform of RNA polymerase I in the latter. Images PMID:3352599

  6. Functional Architecture of T7 RNA Polymerase Transcription Complexes

    PubMed Central

    Nayak, Dhananjaya; Guo, Qing; Sousa, Rui

    2007-01-01

    Summary T7 RNA polymerase is the best-characterized member of a widespread family of single-subunit RNA polymerases. Crystal structures of T7 RNA polymerase initiation and elongation complexes have provided a wealth of detailed information on RNA polymerase interactions with the promoter and transcription bubble, but the absence of DNA downstream of the melted region of the template in the initiation complex structure, and the absence of DNA upstream of the transcription bubble in the elongation complex structure means that our picture of the functional architecture of T7 RNA polymerase transcription complexes remains incomplete. Here we use the site-specifically tethered chemical nucleases and functional characterization of directed T7 RNAP mutants to both reveal the architecture of the duplex DNA that flanks the transcription bubble in the T7 RNAP initiation and elongation complexes, and to define the function of the interactions made by these duplex elements. We find that downstream duplex interactions made with a cluster of lysines (K711/K713/K714) are present during both elongation and initiation where they contribute to stabilizing a bend in the downstream DNA that is important for promoter opening. The upstream DNA in the elongation complex is also found to be sharply bent at the upstream edge of the transcription bubble, thereby allowing formation of upstream duplex:polymerase interactions that contribute to elongation complex stability. PMID:17580086

  7. SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data.

    PubMed

    Zhang, Zhongyang; Hao, Ke

    2015-11-01

    Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity.

  8. SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data

    PubMed Central

    Zhang, Zhongyang; Hao, Ke

    2015-01-01

    Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity. PMID:26583378

  9. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  10. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  11. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  12. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1990-01-01

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  13. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  14. Variant-specific quantification of factor H in plasma reveals null alleles associated with atypical hemolytic uremic syndrome

    PubMed Central

    Hakobyan, Svetlana; Tortajada, Agustín; Harris, Claire L.; de Córdoba, Santiago Rodríguez; Morgan, B. Paul

    2011-01-01

    Atypical hemolytic uremic syndrome (aHUS) associates with complement alternative pathway defects in over 50% of cases. Mutations in factor H (fH) are most common, usually point mutations affecting complement surface regulation and sometimes null mutations in heterozygosity. The latter are difficult to identify; although consistently low plasma fH concentration is suggestive, definitive proof has required the demonstration that the mutant sequence does not express in vitro. Here, novel reagents and assays that distinguish and individually quantify the common fH-Y402H polymorphic variants were used to identify alleles of the CFH gene resulting in low or no (‘null’) expression of full-length fH, but normal or increased expression of the alternative splice product FHL-1, also detected in these assays. Their use in an aHUS cohort identified three Y402H heterozygotes with low or absent fH-H402 but normal or increased FHL-1 levels. Novel mutations in heterozygosis explained the null phenotype in two cases, confirmed by family studies in one. In the third case, family studies showed that a known mutation was present on the Y allele; the cause of the reduced expression of H allele was not found, although data suggested altered fH/FHL-1 splicing. In each family, inheritance of “low expression” or “null” alleles for fH strongly associated with aHUS. These assays provide a rapid means to identify fH expression defects in aHUS without resorting to gene sequencing or expression analysis. PMID:20703214

  15. Allelic Prevalence of ABO Blood Group Genes in Iranian Azari Population

    PubMed Central

    Nojavan, Mohammad; Shamsasenjan, Karrim; Movassaghpour, Ali Akbar; Akbarzadehlaleh, Parvin; Torabi, Seyd Esmail; Ghojazadeh, Morteza

    2012-01-01

    Introduction ABO blood group system is the most important blood group in transfusion and has been widely used in population studies. Several molecular techniques for ABO allele’s detection are widely used for distinguishing various alleles of glycosyl transferase locus on chromosome 9. Methods 744 randomly selected samples from Azari donors of East Azerbaijan province (Iran) were examined using well-adjusted multiplex allele- specific PCR ABO genotyping technique. Results The results were consistent for all individuals. The ABO blood group genotype of 744 healthy Azari blood donors was: 25.8% AA/AO (2), 7.6% AO (1), 1.6% BB, 11.3% B0 (1), 10% AB, 9.3% 0(1)0(1) and 15.3%0(1)0(2). The highest genotype frequency belonged to O01/O02 genotype (15.3%) and the lowest frequency belonged to A101/A102 genotype (0.4%). Conclusions: The frequencies of ABO alleles didn’t show significant differences between East Azerbaijan province population and that of other areas of the country. Meanwhile, statistical analysis of frequencies of A and B alleles between East Azerbaijan province population and neighbor countries showed significant differences whereas the frequency of allele O between them did not show significant difference (P>0.05). Conclusions The frequencies of ABO alleles didn’t show significant differences between East Azerbaijan province population and that of other areas of the country. Meanwhile, statistical analysis of frequencies of A and B alleles between East Azerbaijan province population and neighbor countries showed significant differences whereas the frequency of allele O between them did not show significant difference (P>0.05). PMID:23678461

  16. Allele-specific DNA methylation of disease susceptibility genes in Japanese patients with inflammatory bowel disease.

    PubMed

    Chiba, Hirofumi; Kakuta, Yoichi; Kinouchi, Yoshitaka; Kawai, Yosuke; Watanabe, Kazuhiro; Nagao, Munenori; Naito, Takeo; Onodera, Motoyuki; Moroi, Rintaro; Kuroha, Masatake; Kanazawa, Yoshitake; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Negoro, Kenichi; Nagasaki, Masao; Unno, Michiaki; Shimosegawa, Tooru

    2018-01-01

    Inflammatory bowel disease (IBD) has an unknown etiology; however, accumulating evidence suggests that IBD is a multifactorial disease influenced by a combination of genetic and environmental factors. The influence of genetic variants on DNA methylation in cis and cis effects on expression have been demonstrated. We hypothesized that IBD susceptibility single-nucleotide polymorphisms (SNPs) regulate susceptibility gene expressions in cis by regulating DNA methylation around SNPs. For this, we determined cis-regulated allele-specific DNA methylation (ASM) around IBD susceptibility genes in CD4+ effector/memory T cells (Tem) in lamina propria mononuclear cells (LPMCs) in patients with IBD and examined the association between the ASM SNP genotype and neighboring susceptibility gene expressions. CD4+ effector/memory T cells (Tem) were isolated from LPMCs in 15 Japanese IBD patients (ten Crohn's disease [CD] and five ulcerative colitis [UC] patients). ASM analysis was performed by methylation-sensitive SNP array analysis. We defined ASM as a changing average relative allele score ([Formula: see text]) >0.1 after digestion by methylation-sensitive restriction enzymes. Among SNPs showing [Formula: see text] >0.1, we extracted the probes located on tag-SNPs of 200 IBD susceptibility loci and around IBD susceptibility genes as candidate ASM SNPs. To validate ASM, bisulfite-pyrosequencing was performed. Transcriptome analysis was examined in 11 IBD patients (seven CD and four UC patients). The relation between rs36221701 genotype and neighboring gene expressions were analyzed. We extracted six candidate ASM SNPs around IBD susceptibility genes. The top of [Formula: see text] (0.23) was rs1130368 located on HLA-DQB1. ASM around rs36221701 ([Formula: see text] = 0.14) located near SMAD3 was validated using bisulfite pyrosequencing. The SMAD3 expression was significantly associated with the rs36221701 genotype (p = 0.016). We confirmed the existence of cis-regulated ASM around

  17. Allele-specific DNA methylation of disease susceptibility genes in Japanese patients with inflammatory bowel disease

    PubMed Central

    Chiba, Hirofumi; Kakuta, Yoichi; Kinouchi, Yoshitaka; Kawai, Yosuke; Watanabe, Kazuhiro; Nagao, Munenori; Naito, Takeo; Onodera, Motoyuki; Moroi, Rintaro; Kuroha, Masatake; Kanazawa, Yoshitake; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Negoro, Kenichi; Nagasaki, Masao; Unno, Michiaki; Shimosegawa, Tooru

    2018-01-01

    Background Inflammatory bowel disease (IBD) has an unknown etiology; however, accumulating evidence suggests that IBD is a multifactorial disease influenced by a combination of genetic and environmental factors. The influence of genetic variants on DNA methylation in cis and cis effects on expression have been demonstrated. We hypothesized that IBD susceptibility single-nucleotide polymorphisms (SNPs) regulate susceptibility gene expressions in cis by regulating DNA methylation around SNPs. For this, we determined cis-regulated allele-specific DNA methylation (ASM) around IBD susceptibility genes in CD4+ effector/memory T cells (Tem) in lamina propria mononuclear cells (LPMCs) in patients with IBD and examined the association between the ASM SNP genotype and neighboring susceptibility gene expressions. Methods CD4+ effector/memory T cells (Tem) were isolated from LPMCs in 15 Japanese IBD patients (ten Crohn's disease [CD] and five ulcerative colitis [UC] patients). ASM analysis was performed by methylation-sensitive SNP array analysis. We defined ASM as a changing average relative allele score (ΔRAS¯) >0.1 after digestion by methylation-sensitive restriction enzymes. Among SNPs showing ΔRAS¯ >0.1, we extracted the probes located on tag-SNPs of 200 IBD susceptibility loci and around IBD susceptibility genes as candidate ASM SNPs. To validate ASM, bisulfite-pyrosequencing was performed. Transcriptome analysis was examined in 11 IBD patients (seven CD and four UC patients). The relation between rs36221701 genotype and neighboring gene expressions were analyzed. Results We extracted six candidate ASM SNPs around IBD susceptibility genes. The top of ΔRAS¯ (0.23) was rs1130368 located on HLA-DQB1. ASM around rs36221701 (ΔRAS¯ = 0.14) located near SMAD3 was validated using bisulfite pyrosequencing. The SMAD3 expression was significantly associated with the rs36221701 genotype (p = 0.016). Conclusions We confirmed the existence of cis-regulated ASM around IBD

  18. Species difference in ANP32A underlies influenza A virus polymerase host restriction

    PubMed Central

    Long, Jason S.; Giotis, Efstathios S.; Moncorgé, Olivier; Frise, Rebecca; Mistry, Bhakti; James, Joe; Morisson, Mireille; Iqbal, Munir; Vignal, Alain; Skinner, Michael A.; Barclay, Wendy S.

    2015-01-01

    Influenza pandemics occur unpredictably when zoonotic influenza viruses with novel antigenicity acquire the ability to transmit amongst humans 1. Incompatibilities between avian virus components and the human host limit host range breaches. Barriers include receptor preference, virion stability and poor activity of the avian virus RNA-dependent RNA polymerase in human cells 2. Mutants of the heterotrimeric viral polymerase components, particularly PB2 protein, are selected during mammalian adaptation, but their mode of action is unknown 3–6. We show that a species-specific difference in host protein ANP32A accounts for the suboptimal function of avian virus polymerase in mammalian cells. Avian ANP32A possesses an additional 33 amino acids between the LRR and LCAR domains. In mammalian cells, avian ANP32A rescued the suboptimal function of avian virus polymerase to levels similar to mammalian adapted polymerase. Deletion of the avian-specific sequence from chicken ANP32A abrogated this activity whereas its insertion into human ANP32A, or closely related ANP32B, supported avian virus polymerase function. Substitutions, such as PB2 E627K, rapidly selected upon infection of humans with avian H5N1 or H7N9 influenza viruses, adapt the viral polymerase for the shorter mammalian ANP32A. Thus ANP32A represents an essential host partner co-opted to support influenza virus replication and is a candidate host target for novel antivirals. PMID:26738596

  19. Isolation and characterization of high affinity aptamers against DNA polymerase iota.

    PubMed

    Lakhin, Andrei V; Kazakov, Andrei A; Makarova, Alena V; Pavlov, Yuri I; Efremova, Anna S; Shram, Stanislav I; Tarantul, Viacheslav Z; Gening, Leonid V

    2012-02-01

    Human DNA-polymerase iota (Pol ι) is an extremely error-prone enzyme and the fidelity depends on the sequence context of the template. Using the in vitro systematic evolution of ligands by exponential enrichment (SELEX) procedure, we obtained an oligoribonucleotide with a high affinity to human Pol ι, named aptamer IKL5. We determined its dissociation constant with homogenous preparation of Pol ι and predicted its putative secondary structure. The aptamer IKL5 specifically inhibits DNA-polymerase activity of the purified enzyme Pol ι, but did not inhibit the DNA-polymerase activities of human DNA polymerases beta and kappa. IKL5 suppressed the error-prone DNA-polymerase activity of Pol ι also in cellular extracts of the tumor cell line SKOV-3. The aptamer IKL5 is useful for studies of the biological role of Pol ι and as a potential drug to suppress the increase of the activity of this enzyme in malignant cells.

  20. The link between some alleles on human leukocyte antigen system and autism in children.

    PubMed

    Mostafa, Gehan A; Shehab, Abeer A; Al-Ayadhi, Laila Y

    2013-02-15

    The reason behind the initiation of autoimmunity to brain in some patients with autism is not well understood. There is an association between some autoimmune disorders and specific alleles of human leukocyte antigen (HLA) system. Thus, we examined the frequency of some HLA-DRB1 alleles in 100 autistic children and 100 healthy matched-children by differential hybridization with sequence-specific oligonucleotide probes. The risk of association between acquisition or absence of these alleles and autism and also a history of autoimmune diseases in autistic relatives was studied. Autistic children had significantly higher frequency of HLA-DRB1*11 allele than controls (P<0.001). In contrast, autistic children had significantly lower frequency of HLA-DRB1*03 allele than controls (P<0.001). Acquisition of HLA-DRB1*011 and absence of HLA-DRB1*3 had significant risk for association with autism (odds ratio: 3.21 and 0.17, respectively; 95% CI: 1.65-6.31 and 0.06-0.45, respectively). HLA-DRB1*11 had a significant risk for association with a family history of autoimmunity in autistic children (odds ratio: 5.67; 95% CI: 2.07-16.3). In conclusions, the link of some HLA alleles to autism and to family history of autoimmunity indicates the possible contributing role of these alleles to autoimmunity in some autistic children. Despite a relatively small sample size, we are the first to report a probable protective association of HLA-DRB1*03 allele with autism. It warrants a replication study of a larger sample to validate the HLA-DRB1 genetic association with autism. This is important to determine whether therapeutic modulations of the immune function are legitimate avenues for novel therapy in selected cases of autism. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. RNA-dependent RNA polymerases of dsRNA bacteriophages.

    PubMed

    Makeyev, Eugene V; Grimes, Jonathan M

    2004-04-01

    Genome replication and transcription of riboviruses are catalyzed by an RNA-dependent RNA polymerase (RdRP). RdRPs are normally associated with other virus- or/and host-encoded proteins that modulate RNA polymerization activity and template specificity. The polymerase complex of double-stranded dsRNA viruses is a large icosahedral particle (inner core) containing RdRP as a minor constituent. In phi6 and other dsRNA bacteriophages from the Cystoviridae family, the inner core is composed of four virus-specific proteins. Of these, protein P2, or Pol subunit, has been tentatively identified as RdRP by sequence comparisons, but the role of this protein in viral RNA synthesis has not been studied until recently. Here, we overview the work on the Pol subunits of phi6 and related viruses from the standpoints of function, structure and evolution.

  2. Genotyping by Sequencing Using Specific Allelic Capture to Build a High-Density Genetic Map of Durum Wheat

    PubMed Central

    Holtz, Yan; Ardisson, Morgane; Ranwez, Vincent; Besnard, Alban; Leroy, Philippe; Poux, Gérard; Roumet, Pierre; Viader, Véronique; Santoni, Sylvain; David, Jacques

    2016-01-01

    Targeted sequence capture is a promising technology which helps reduce costs for sequencing and genotyping numerous genomic regions in large sets of individuals. Bait sequences are designed to capture specific alleles previously discovered in parents or reference populations. We studied a set of 135 RILs originating from a cross between an emmer cultivar (Dic2) and a recent durum elite cultivar (Silur). Six thousand sequence baits were designed to target Dic2 vs. Silur polymorphisms discovered in a previous RNAseq study. These baits were exposed to genomic DNA of the RIL population. Eighty percent of the targeted SNPs were recovered, 65% of which were of high quality and coverage. The final high density genetic map consisted of more than 3,000 markers, whose genetic and physical mapping were consistent with those obtained with large arrays. PMID:27171472

  3. Rearrangement and allelic imbalance on chromosome 5 leads to homozygous deletions in the CDKN2A/2B tumor suppressor gene region in rat endometrial cancer.

    PubMed

    Adamovic, Tatjana; Hamta, Ahmad; Roshani, Leyla; Lü, Xuchun; Röhme, Dan; Helou, Khalil; Klinga-Levan, Karin; Levan, Göran

    2008-07-01

    The inbred BDII rat is a valuable experimental model for the genetic analysis of hormone-dependent endometrial adenocarcinoma (EAC). One common aberration detected previously by comparative genomic hybridization in rat EAC is loss affecting mostly the middle part of rat chromosome 5 (RNO5). First, we applied an RNO5-specific painting probe and four region-specific gene probes onto tumor cell metaphases from 21 EACs, and found that rearrangements involving RNO5 were common. The copy numbers of loci situated on RNO5 were found to be reduced, particularly for the CDKN2A/2B locus. Second, polymerase chain reaction analysis was performed with 22 genes and markers and homozygous deletions of the CDKN2A exon 1beta and CDKN2B genes were detected in 13 EACs (62%) and of CDKN2A exon 1alpha in 12 EACs (57%) Third, the occurrence of allelic imbalance in RNO5 was analyzed using 39 microsatellite markers covering the entire chromosome and frequent loss of heterozygosity was detected. Even more intriguing was the repeated finding of allele switching in a narrow region of 7 Mb across the CDKN2A/2B locus. We conclude that genetic events affecting the middle part of RNO5 (including bands 5q31 approximately q33 and the CDKN2A locus) contribute to the development of EAC in rat, with the CDKN2A locus having a primary role.

  4. Mechanisms of allele-selective down-regulation of HLA class I in Burkitt's lymphoma.

    PubMed

    Imreh, M P; Zhang, Q J; de Campos-Lima, P O; Imreh, S; Krausa, P; Browning, M; Klein, G; Masucci, M G

    1995-07-04

    Burkitt lymphomas (BL) that arise in HLA-AII-positive individuals are characterized by selective loss/down-regulation of the HLA AII polypeptide. We have investigated the molecular basis of such down-regulation by comparing 5 pairs of BL lines and Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCL) derived from the normal B cells of the same individuals. The presence of apparently intact HLA AII genes was confirmed in all 5 BL/LCL pairs by polymerase chain reaction (PCR) typing and by Southern-blot hybridization with HLA A locus-specific probes. Northern-blot analysis with locus- and allele-specific probes revealed a significantly lower expression or absence of AII-specific mRNA in all 5 BL lines compared to the corresponding LCLs. Up-regulation of AII-specific mRNA was achieved by IFN alpha treatment of 2 BL lines with low HLA AII expression (BL-28 and BL-72) while the treatment had no effect in 3 BL lines (WWI-BL, WW2-BL and BL41) that did not express the endogenous gene. HLA AII expression was restored by transfection of the gene in WWI-BL whereas transfectants of BL-41 remained AII-negative. An HLA-AII-promoter-driven chloramphenicol acetyl transferase reporter gene (pAIICAT) was active in WWI-BL but not in BL-41. HLA-AII was expressed in hybrids of BL-41 with an AII-positive LCL, while expression of the endogenous HLA AII gene could not be restored by fusion of BL-41 with an AII-negative LCL, although an adequate set of transcription factors was present in the hybrid. Our results suggest that genetic defects and lack of transcription factors may contribute to the selective down-regulation of HLA AII in BL cells.

  5. Plasmodium falciparum msp1 and msp2 genetic diversity and allele frequencies in parasites isolated from symptomatic malaria patients in Bobo-Dioulasso, Burkina Faso.

    PubMed

    Somé, Anyirékun Fabrice; Bazié, Thomas; Zongo, Issaka; Yerbanga, R Serge; Nikiéma, Frédéric; Neya, Cathérine; Taho, Liz Karen; Ouédraogo, Jean-Bosco

    2018-05-30

    In Burkina Faso, malaria remains the overall leading cause of morbidity and mortality accounting for 35.12% of consultations, 40.83% of hospitalizations and 37.5% of deaths. Genotyping of malaria parasite populations remains an important tool to determine the types and number of parasite clones in an infection. The present study aimed to evaluate the merozoite surface protein 1 (msp1) and merozoite surface protein 2 (msp2) genetic diversity and allele frequencies in Bobo-Dioulasso, Burkina Faso. Dried blood spots (DBS) were collected at baseline from patients with uncomplicated malaria in urban health centers in Bobo-Dioulasso. Parasite DNA was extracted using chelex-100 and species were identified using nested PCR. Plamodium falciparum msp1 and msp2 genes were amplified by nested polymerase chain reaction (PCR) and PCR products were analyzed by electrophoresis on a 2.5% agarose gel. Alleles were categorized according to their molecular weight. A total of 228 blood samples were analyzed out of which 227 (99.9%) were confirmed as P. falciparum-positive and one sample classified as mixed infection for P. malaria and P. falciparum. In msp1, the K1 allelic family was predominant with 77.4% (162/209) followed respectively by the MAD20 allelic family with 41.3% and R033 allelic family with 36%. In msp2, the 3D7 allelic family was the most frequently detected with 93.1 % compared to FC27 with 41.3%. Twenty-one different alleles were observed in msp1 with 9 alleles for K1, 8 alleles for MAD20 and 4 alleles for R033. In msp2, 25 individual alleles were detected with 10 alleles for FC27 and 15 alleles for 3D7. The mean multiplicity of falciparum infection was 1.95 with respectively 1.8 (1.76-1.83) and 2.1 (2.03-2.16) for msp1 and msp2 (P = 0.01). Our study showed high genetic diversity and allelic frequencies of msp1 and msp2 in Plasmodium falciparum isolates from symptomatic malaria patients in Bobo-Dioulasso.

  6. An Evolutionary/Biochemical Connection Between Promoter- and Primer-Dependent Polymerases Revealed by Selective Evolution of Ligands by Exponential Enrichment (SELEX).

    PubMed

    Fenstermacher, Katherine J; Achuthan, Vasudevan; Schneider, Thomas D; DeStefano, Jeffrey J

    2018-01-16

    DNA polymerases (DNAPs) recognize 3' recessed termini on duplex DNA and carry out nucleotide catalysis. Unlike promoter-specific RNA polymerases (RNAPs), no sequence specificity is required for binding or initiation of catalysis. Despite this, previous results indicate that viral reverse transcriptases bind much more tightly to DNA primers that mimic the polypurine tract. In the current report, primer sequences that bind with high affinity to Taq and Klenow polymerases were identified using a modified Selective Evolution of Ligands by Exponential Enrichment (SELEX) approach. Two Taq -specific primers that bound ∼10 (Taq1) and over 100 (Taq2) times more stably than controls to Taq were identified. Taq1 contained 8 nucleotides (5' -CACTAAAG-3') that matched the phage T3 RNAP "core" promoter. Both primers dramatically outcompeted primers with similar binding thermodynamics in PCR reactions. Similarly, exonuclease minus Klenow polymerase also selected a high affinity primer that contained a related core promoter sequence from phage T7 RNAP (5' -ACTATAG-3'). For both Taq and Klenow, even small modifications to the sequence resulted in large losses in binding affinity suggesting that binding was highly sequence-specific. The results are discussed in the context of possible effects on multi-primer (multiplex) PCR assays, molecular information theory, and the evolution of RNAPs and DNAPs. Importance This work further demonstrates that primer-dependent DNA polymerases can have strong sequence biases leading to dramatically tighter binding to specific sequences. These may be related to biological function, or be a consequences of the structural architecture of the enzyme. New sequence specificity for Taq and Klenow polymerases were uncovered and among them were sequences that contained the core promoter elements from T3 and T7 phage RNA polymerase promoters. This suggests the intriguing possibility that phage RNA polymerases exploited intrinsic binding affinities of

  7. Mammalian proliferating cell nuclear antigen stimulates the processivity of two wheat embryo DNA polymerases.

    PubMed Central

    Laquel, P; Litvak, S; Castroviejo, M

    1993-01-01

    Multiple DNA polymerases have been described in all organisms studied to date. Their specific functions are not easy to determine, except when powerful genetic and/or biochemical tools are available. However, the processivity of a DNA polymerase could reflect the physiological role of the enzyme. In this study, analogies between plant and animal DNA polymerases have been investigated by analyzing the size of the products synthesized by wheat DNA polymerases A, B, CI, and CII as a measure of their processivity. Thus, incubations have been carried out with poly(dA)-oligo(dT) as a template-primer under varying assay conditions. In the presence of MgCl2, DNA polymerase A was highly processive, whereas DNA polymerases B, CI, and CII synthesized much shorter products. With MnCl2 instead of MgCl2, DNA polymerase A was highly processive, DNA polymerases B and CII were moderately processive, and DNA polymerase CI remained strictly distributive. The effect of calf thymus proliferating cell nuclear antigen (PCNA) on wheat polymerases was studied as described for animal DNA polymerases. The high processivity of DNA polymerase A was PCNA independent, whereas both enzyme activity and processivity of wheat DNA polymerases B and CII were significantly stimulated by PCNA. On the other hand, DNA polymerase CI was not stimulated by PCNA and, like animal DNA polymerase beta, was distributive in all cases. From these results, we propose that wheat DNA polymerase A could correspond to a DNA polymerase alpha, DNA polymerases B and CII could correspond to the delta-like enzyme, and DNA polymerase CI could correspond to DNA polymerase beta. PMID:7906418

  8. Genetic variation among the Mapuche Indians from the Patagonian region of Argentina: mitochondrial DNA sequence variation and allele frequencies of several nuclear genes.

    PubMed

    Ginther, C; Corach, D; Penacino, G A; Rey, J A; Carnese, F R; Hutz, M H; Anderson, A; Just, J; Salzano, F M; King, M C

    1993-01-01

    DNA samples from 60 Mapuche Indians, representing 39 maternal lineages, were genetically characterized for (1) nucleotide sequences of the mtDNA control region; (2) presence or absence of a nine base duplication in mtDNA region V; (3) HLA loci DRB1 and DQA1; (4) variation at three nuclear genes with short tandem repeats; and (5) variation at the polymorphic marker D2S44. The genetic profile of the Mapuche population was compared to other Amerinds and to worldwide populations. Two highly polymorphic portions of the mtDNA control region, comprising 650 nucleotides, were amplified by the polymerase chain reaction (PCR) and directly sequenced. The 39 maternal lineages were defined by two or three generation families identified by the Mapuches. These 39 lineages included 19 different mtDNA sequences that could be grouped into four classes. The same classes of sequences appear in other Amerinds from North, Central, and South American populations separated by thousands of miles, suggesting that the origin of the mtDNA patterns predates the migration to the Americas. The mtDNA sequence similarity between Amerind populations suggests that the migration throughout the Americas occurred rapidly relative to the mtDNA mutation rate. HLA DRB1 alleles 1602 and 1402 were frequent among the Mapuches. These alleles also occur at high frequency among other Amerinds in North and South America, but not among Spanish, Chinese or African-American populations. The high frequency of these alleles throughout the Americas, and their specificity to the Americas, supports the hypothesis that Mapuches and other Amerind groups are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Diversity of alleles encoding HLA-B40: relative frequencies in united states populations and description of five novel alleles.

    PubMed

    Pimtanothai, N; Rizzuto, G A; Slack, R; Steiner, N K; Kosman, C A; Jones, P F; Koester, R; Ng, J; Hartzman, R J; Katovich Hurley, C

    2000-08-01

    The frequency of each B*40 allele was determined by DNA sequencing in four major United States populations: Caucasians, African Americans, Asians/Pacific Islanders, and Hispanics. Thirty-two individuals from each ethnic group, who were previously described serologically as B40, B60, or B61, were randomly selected out of a pool of 82,979 unrelated individuals for allele characterization. Out of nine different B*40 alleles identified in this study, B*4001 and B*4002 were the two most frequent B*40 alleles in all the population groups. B*4001 was the primary B*40 allele seen in Caucasians (83%) and African Americans (76%), while B*4002 was found in the majority of Hispanics (62%). The distributions of both alleles were comparable in the Asian/Pacific Islander population. These two alleles were the only B*40 alleles detected in Caucasians while four to five additional B*40 alleles were seen in the other population groups. The other B*40 alleles detected in this study included: B*4003 and B*4010 in Asian/Pacific Islanders; B*4012 and B*4016 in African Americans; and B*4004, B*4006, and B*4027 in Hispanics. Analysis revealed significant differences between Hispanics and all other groups as well as between African Americans and Asian/Pacific Islanders. This report also describes five novel B*40 alleles: B*4019, B*4020, B*4024, B*4027, and B*4028.

  10. Allosteric inhibitors of Coxsackie virus A24 RNA polymerase.

    PubMed

    Schein, Catherine H; Rowold, Diane; Choi, Kyung H

    2016-02-15

    Coxsackie virus A24 (CVA24), a causative agent of acute hemorrhagic conjunctivitis, is a prototype of enterovirus (EV) species C. The RNA polymerase (3D(pol)) of CVA24 can uridylylate the viral peptide linked to the genome (VPg) from distantly related EV and is thus, a good model for studying this reaction. Once UMP is bound, VPgpU primes RNA elongation. Structural and mutation data have identified a conserved binding surface for VPg on the RNA polymerase (3D(pol)), located about 20Å from the active site. Here, computational docking of over 60,000 small compounds was used to select those with the lowest (best) specific binding energies (BE) for this allosteric site. Compounds with varying structures and low BE were assayed for their effect on formation of VPgU by CVA24-3D(pol). Two compounds with the lowest specific BE for the site inhibited both uridylylation and formation of VPgpolyU at 10-20μM. These small molecules can be used to probe the role of this allosteric site in polymerase function, and may be the basis for novel antiviral compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Estimated allele substitution effects underlying genomic evaluation models depend on the scaling of allele counts.

    PubMed

    Bouwman, Aniek C; Hayes, Ben J; Calus, Mario P L

    2017-10-30

    Genomic evaluation is used to predict direct genomic values (DGV) for selection candidates in breeding programs, but also to estimate allele substitution effects (ASE) of single nucleotide polymorphisms (SNPs). Scaling of allele counts influences the estimated ASE, because scaling of allele counts results in less shrinkage towards the mean for low minor allele frequency (MAF) variants. Scaling may become relevant for estimating ASE as more low MAF variants will be used in genomic evaluations. We show the impact of scaling on estimates of ASE using real data and a theoretical framework, and in terms of power, model fit and predictive performance. In a dairy cattle dataset with 630 K SNP genotypes, the correlation between DGV for stature from a random regression model using centered allele counts (RRc) and centered and scaled allele counts (RRcs) was 0.9988, whereas the overall correlation between ASE using RRc and RRcs was 0.27. The main difference in ASE between both methods was found for SNPs with a MAF lower than 0.01. Both the ratio (ASE from RRcs/ASE from RRc) and the regression coefficient (regression of ASE from RRcs on ASE from RRc) were much higher than 1 for low MAF SNPs. Derived equations showed that scenarios with a high heritability, a large number of individuals and a small number of variants have lower ratios between ASE from RRc and RRcs. We also investigated the optimal scaling parameter [from - 1 (RRcs) to 0 (RRc) in steps of 0.1] in the bovine stature dataset. We found that the log-likelihood was maximized with a scaling parameter of - 0.8, while the mean squared error of prediction was minimized with a scaling parameter of - 1, i.e., RRcs. Large differences in estimated ASE were observed for low MAF SNPs when allele counts were scaled or not scaled because there is less shrinkage towards the mean for scaled allele counts. We derived a theoretical framework that shows that the difference in ASE due to shrinkage is heavily influenced by the

  12. The frequency of the canine leukocyte adhesion deficiency (CLAD) allele within the Irish Setter population of Australia.

    PubMed

    Jobling, A I; Ryan, J; Augusteyn, R C

    2003-12-01

    To determine the frequency of the 107G-->C canine leukocyte adhesion deficiency (CLAD) mutation in Irish Setters from the Australian breeding population. Genomic DNA was isolated from 87 Irish Setter blood samples and a region of the beta-2 integrin gene (ITGB2), encompassing the mutation, was amplified using real-time Polymerase Chain Reaction (PCR). Two fluorescently labelled probes were hybridised to the fragment, and fluorescence resonance energy transfer (FRET) was used to detect the 107G-->C mutation responsible for CLAD. Three new heterozygotes were identified among 87 healthy Irish Setters from Australia. All originated from a litter sired by a known heterozygote. A total of seven heterozygotes have now been identified in 92 dogs (7.6%), representing over 90% of all major breeding stock in five Australian states. Two of the heterozygotes were recently imported adult dogs and the others were their offspring. The frequency of the 107C allele in the Australian population of Irish Setters is lower than that in Europe. Selective breeding programs should be adopted to eliminate the mutant allele presently in two breeding lines.

  13. Intrinsic MYH7 expression regulation contributes to tissue level allelic imbalance in hypertrophic cardiomyopathy.

    PubMed

    Montag, Judith; Syring, Mandy; Rose, Julia; Weber, Anna-Lena; Ernstberger, Pia; Mayer, Anne-Kathrin; Becker, Edgar; Keyser, Britta; Dos Remedios, Cristobal; Perrot, Andreas; van der Velden, Jolanda; Francino, Antonio; Navarro-Lopez, Francesco; Ho, Carolyn Yung; Brenner, Bernhard; Kraft, Theresia

    2017-08-01

    HCM, the most common inherited cardiac disease, is mainly caused by mutations in sarcomeric genes. More than a third of the patients are heterozygous for mutations in the MYH7 gene encoding for the β-myosin heavy chain. In HCM-patients, expression of the mutant and the wildtype allele can be unequal, thus leading to fractions of mutant and wildtype mRNA and protein which deviate from 1:1. This so-called allelic imbalance was detected in whole tissue samples but also in individual cells. There is evidence that the severity of HCM not only depends on the functional effect of the mutation itself, but also on the fraction of mutant protein in the myocardial tissue. Allelic imbalance has been shown to occur in a broad range of genes. Therefore, we aimed to examine whether the MYH7-alleles are intrinsically expressed imbalanced or whether the allelic imbalance is solely associated with the disease. We compared the expression of MYH7-alleles in non-HCM donors and in HCM-patients with different MYH7-missense mutations. In the HCM-patients, we identified imbalanced as well as equal expression of both alleles. Also at the protein level, allelic imbalance was determined. Most interestingly, we also discovered allelic imbalance and balance in non-HCM donors. Our findings therefore strongly indicate that apart from mutation-specific mechanisms, also non-HCM associated allelic-mRNA expression regulation may account for the allelic imbalance of the MYH7 gene in HCM-patients. Since the relative amount of mutant mRNA and protein or the extent of allelic imbalance has been associated with the severity of HCM, individual analysis of the MYH7-allelic expression may provide valuable information for the prognosis of each patient.

  14. HLA-DRB1 Alleles Are Associated with the Susceptibility to Sporadic Parkinson’s Disease in Chinese Han Population

    PubMed Central

    Sun, Congcong; Wei, Lei; Luo, Feifei; Li, Yi; Li, Jiaobiao; Zhu, Feiqi; Kang, Ping; Xu, Rensi; Xiao, LuLu; Liu, Zhuolin; Xu, Pingyi

    2012-01-01

    Immune disorders may play an important role in the pathogenesis of Parkinson's disease (PD). Recently, polymorphisms in the HLA-DR region have been found to be associated with sporadic PD in European ancestry populations. However, polymorphisms in the HLA complex are highly variable with ethnic and geographic origin. To explore the relationships between polymorphisms of the HLA-DR region and sporadic PD in Chinese Han population, we genotyped 567 sporadic PD patients and 746 healthy controls in two independent series for the HLA-DRB1 locus with Polymerase chain reaction-sequence based typing(PCR-SBT). The χ2 test was used to evaluate the distribution of allele frequencies between the patients and healthy controls. The impact of HLA-DRB1 alleles on PD risk was estimated by unconditional logistic regression. We found a significant higher frequency of HLA-DRB1*0301 in sporadic PD patients than in healthy controls and a positive association, which was independent of onset age, between HLA-DRB1*0301 and PD risk. Conversely, a lower frequency of HLA-DRB1*0406 was found in sporadic PD patients than in healthy controls, with a negative association between HLA-DRB1*0406 and PD risk. Furthermore, a meta-analysis involving 195205 individuals was conducted to summarize the frequencies of these two alleles in populations from various ethnic regions, we found a higher frequency of HLA-DRB1*0301, but a lower frequency of HLA-DRB1*0406 in European ancestry populations than that in Asians, this was consistent with the higher prevalence of sporadic PD in European ancestry populations. Based on these results, we speculate that HLA-DRB1 alleles are associated with the susceptibility to sporadic PD in Chinese Han population, among them HLA-DRB1*0301 is a risk allele while the effect of HLA-DRB1*0406 deserves debate. PMID:23139797

  15. Concomitant presence of endothelial nitric oxide 894T and angiotensin II-converting enzyme D alleles are associated with diabetic nephropathy in a Kurdish population from Western Iran.

    PubMed

    Rahimi, Zohreh; Vaisi-Raygani, Asad; Rahimi, Ziba; Parsian, Abbas

    2012-02-01

    The present study investigated the influence of insertion (I)/deletion (D) polymorphism of the angiotensin II-converting enzyme (ACE) gene in combination with endothelial nitric oxide (eNOS) G894T polymorphism on the predisposition to diabetic nephropathy (DN). Using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP) method, the ACE and eNOS polymorphisms were genotyped in 72 microalbuminuric, 68 macroalbuminuric and 72 normoalbuinuric type 2 diabetes mellitus (T2DM) patients from Western Iran. The presence of eNOS T or ACE D allele was not associated with increased risk of macroalbuminuria (odds ratio (OR) = 1.36, P = 0.27 and OR = 1.6, P = 0.062, respectively). However, in the presence of both alleles there was a trend towards increased risk of macroalbuminuria (fivefold, P = 0.05). Our study indicates that the concomitant presence of both ACE D and eNOS T alleles tends to be associated with an elevation risk of macroalbuminuria compared with the presence of each polymorphism alone. This risk could be attributed to the increasing activity of ACE and angiotensin II level in the presence of D allele and decreasing NO production in the presence of T allele accelerating diabetic nephropathy. © 2011 The Authors. Nephrology © 2011 Asian Pacific Society of Nephrology.

  16. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen

    PubMed Central

    Lu, Xunli; Kracher, Barbara; Saur, Isabel M. L.; Bauer, Saskia; Ellwood, Simon R.; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul

    2016-01-01

    Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVRa gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVRa genes and identified AVRa1 and AVRa13, encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVRa1 and AVRa13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVRA1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVRA1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVRA1. Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation. PMID:27702901

  17. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen.

    PubMed

    Lu, Xunli; Kracher, Barbara; Saur, Isabel M L; Bauer, Saskia; Ellwood, Simon R; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul

    2016-10-18

    Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVR a gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVR a genes and identified AVR a1 and AVR a13 , encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVR a1 and AVR a13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVR A1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVR A1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVR A1 Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation.

  18. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange

    PubMed Central

    Hmelo, Laura R.; Borlee, Bradley R.; Almblad, Henrik; Love, Michelle E.; Randall, Trevor E.; Tseng, Boo Shan; Lin, Chuyang; Irie, Yasuhiko; Storek, Kelly M.; Yang, Jaeun Jane; Siehnel, Richard J.; Howell, P. Lynne; Singh, Pradeep K.; Tolker-Nielsen, Tim; Parsek, Matthew R.; Schweizer, Herbert P.; Harrison, Joe J.

    2016-01-01

    Allelic exchange is an efficient method of bacterial genome engineering. This protocol describes the use of this technique to make gene knockouts and knockins, as well as single nucleotide insertions, deletions and substitutions in Pseudomonas aeruginosa. Unlike other approaches to allelic exchange, this protocol does not require heterologous recombinases to insert or excise selective markers from the target chromosome. Rather, positive and negative selection are enabled solely by suicide vector-encoded functions and host cell proteins. Here, mutant alleles, which are flanked by regions of homology to the recipient chromosome, are synthesized in vitro and then cloned into allelic exchange vectors using standard procedures. These suicide vectors are then introduced into recipient cells by conjugation. Homologous recombination then results in antibiotic resistant single-crossover mutants in which the plasmid has integrated site-specifically into the chromosome. Subsequently, unmarked double-crossover mutants are isolated directly using sucrose-mediated counter-selection. This two-step process yields seamless mutations that are precise to a single base pair of DNA. The entire procedure requires ~2 weeks. PMID:26492139

  19. Human leukocyte antigen alleles, genotypes and haplotypes frequencies in renal transplant donors and recipients from West Central India.

    PubMed

    Patel, Jaina S; Patel, Manisha M; Koringa, Prakash G; Shah, Tejas M; Patel, Amrutlal K; Tripathi, Ajai K; Mathew, Anila; Rajapurkar, Mohan M; Joshi, Chaitanya G

    2013-04-01

    Human leukocyte antigen (HLA) is comprised of a highly polymorphic set of genes which determines the histocompatibility of organ transplantation. The present study was undertaken to identify HLA class I and class II allele, genotype and haplotype frequencies in renal transplant recipients and donors from West Central India. HLA typing was carried out using Polymerase Chain Reaction-Sequence Specific Primer in 552 live related and unrelated renal transplant recipients and donors. The most frequent HLA class I and class II alleles and their frequencies in recipients were HLA-AFNx0101 (0.1685) and AFNx0102 (0.1649), HLA-BFNx0135 (0.1322), and HLA-DR beta 1 (DRB 1)FNx0115 (0.2192), whereas in donors, these were HLA-AFNx0102 (0.1848) and AFNx0101 (0.1667), HLA-BFNx0135 (0.1359), and HLA-DRB1FNx0115 (0.2409). The two-locus haplotype statistical analysis revealed HLA-AFNx0102-B61 as the most common haplotype with the frequency of 0.0487 and 0.0510 in recipients and donors, respectively. Further, among the three locus haplotypes HLA-AFNx0133-BFNx0144-DRB1FNx0107 and HLA-AFNx0102-BFNx0161-DRB1FNx0115 were the most common haplotypes with frequencies 0.0362 and 0.0326, respectively in recipients and 0.0236 and 0.0323, respectively in donors. Genotype frequency revealed a high prevalence of genotype HLA-AFNx0102/AFNx0124 in recipients (0.058) compared to donors (0.0109) whereas low prevalence of HLA-AFNx0101/AFNx0102 in recipients (0.0435) than in donors (0.0797). The phylogenetic and principal component analysis of HLA allele and haplotype frequency distribution revealed genetic similarities of various ethnic groups. Further, case control analysis provides preliminary evidence of association of HLA-A genotype (P < 0.05) with renal failure. This study will be helpful in suitable donor search besides providing valuable information for population genetics and HLA disease association analysis.

  20. Inhibition of RNA-Dependent DNA Polymerase of Avian Myeloblastosis Virus by Pyran Copolymer

    PubMed Central

    Papas, Takis S.; Pry, Thomas W.; Chirigos, Michael A.

    1974-01-01

    Pyran copolymer, a known immunostimulator, was found to be a potent inhibitor of purified DNA polymerase (deoxynucleosidetriphosphate: DNA deoxynucleotidyltransferase; EC 2.7.7.7) isolated from avian myeloblastosis virus. Unlike other inhibitors, pyran showed unique features of inhibition. It interacts with the polymerase at a region other than the template site. The inhibitory effect was overcome only by excess enzyme and not affected by excess template. The degree of inhibition was not template specific for the templates tested: 70S RNA from avian myeloblastosis virus, synthetic hybrid poly(rA)·oligo(dT)10, synthetic copolymer poly(dA-dT), and activated calf-thymus DNA. The observed rate of inhibition by pyran was shown to vary with the different polymerases tested. Inhibition was shown with all oncornaviral polymerases and, to a lesser extent, with mammalian polymerases. However, two of the three bacterial polymerases, by contrast, showed a marked activation. PMID:4131275

  1. Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in Saccharomyces cerevisiae

    PubMed Central

    Cui, Ping; Jin, Huiyan; Vutukuru, Manjula Ramya; Kaplan, Craig D.

    2016-01-01

    The interplay between adjacent transcription units can result in transcription-dependent alterations in chromatin structure or recruitment of factors that determine transcription outcomes, including the generation of intragenic or other cryptic transcripts derived from cryptic promoters. Mutations in a number of genes in Saccharomyces cerevisiae confer both cryptic intragenic transcription and the Suppressor of Ty (Spt-) phenotype for the lys2-128∂ allele of the LYS2 gene. Mutants that suppress lys2-128∂ allow transcription from a normally inactive Ty1 ∂ promoter, conferring a LYS+ phenotype. The arrangement of transcription units at lys2-128∂ is reminiscent of genes containing cryptic promoters within their open reading frames. We set out to examine the relationship between RNA Polymerase II (Pol II) activity, functions of Spt elongation factors, and cryptic transcription because of the previous observation that increased-activity Pol II alleles confer an Spt- phenotype. We identify both cooperating and antagonistic genetic interactions between Pol II alleles and alleles of elongation factors SPT4, SPT5, and SPT6. We find that cryptic transcription at FLO8 and STE11 is distinct from that at lys2-128∂, though all show sensitivity to reduction in Pol II activity, especially the expression of lys2-128∂ found in Spt- mutants. We determine that the lys2-128∂ Spt- phenotypes for spt6-1004 and increased activity rpo21/rpb1 alleles each require transcription from the LYS2 promoter. Furthermore, we identify the Ty1 transcription start site (TSS) within the ∂ element as the position of Spt- transcription in tested Spt- mutants. PMID:27261007

  2. Deducing the pathogenic contribution of recessive ABCA4 alleles in an outbred population.

    PubMed

    Schindler, Emily I; Nylen, Erik L; Ko, Audrey C; Affatigato, Louisa M; Heggen, Andrew C; Wang, Kai; Sheffield, Val C; Stone, Edwin M

    2010-10-01

    Accurate prediction of the pathogenic effects of specific genotypes is important for the design and execution of clinical trials as well as for meaningful counseling of individual patients. However, for many autosomal recessive diseases, it can be difficult to deduce the relative pathogenic contribution of individual alleles because relatively few affected individuals share the same two disease-causing variations. In this study, we used multiple regression analysis to estimate the pathogenicity of specific alleles of ABCA4 in patients with retinal phenotypes ranging from Stargardt disease to retinitis pigmentosa. This analysis revealed quantitative allelic effects on two aspects of the visual phenotype, visual acuity (P < 10(-3)) and visual field (P < 10(-7)). Discordance between visual acuity and visual field in individual patients suggests the existence of at least two non-ABCA4 modifying factors. The findings of this study will facilitate the discovery of factors that modify ABCA4 disease and will also aid in the optimal selection of subjects for clinical trials of new therapies.

  3. Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, G.; Kirouac, K.; Shin, Y.J.

    2009-09-16

    DNA polymerases are co-ordinated by sliding clamps (PCNA/{beta}-clamp) in translesion synthesis. It is unclear how these enzymes assemble on PCNA with geometric and functional compatibility. We report the crystal structure of a full-length Y-family polymerase, Dpo4, in complex with heterodimeric PCNA1-PCNA2 at 2.05 {angstrom} resolution. Dpo4 exhibits an extended conformation that differs from the Dpo4 structures in apo- or DNA-bound form. Two hinges have been identified in Dpo4, which render the multidomain polymerase flexible conformations and orientations relative to PCNA. Dpo4 binds specifically to PCNA1 on the conserved ligand binding site. The C-terminal peptide of Dpo4 becomes structured with amore » 3{sub 10} helix and dominates the specific binding. The Y-family polymerase also contacts PCNA1 with its finger, thumb and little finger domains, which are conformation-dependent protein-protein interactions that diversify the binding mode of Dpo4 on PCNA. The structure reveals a molecular model in which substrate/partner binding-coupled multiple conformations of a Y-family polymerase facilitate its recruitment and co-ordination on the sliding clamp. The conformational flexibility would turn the error-prone Y-family polymerase off when more efficient high-fidelity DNA polymerases work on undamaged DNA and turn it onto DNA templates to perform translesion synthesis when replication forks are stalled by DNA lesions.« less

  4. Protective effect of the APOE-e3 allele in Alzheimer's disease

    PubMed Central

    de-Almada, B.V.P.; de-Almeida, L.D.; Camporez, D.; de-Moraes, M.V.D.; Morelato, R.L.; Perrone, A.M.S.; Belcavello, L.; Louro, I.D.; de-Paula, F.

    2011-01-01

    Although several alleles of susceptibility to Alzheimer's disease (AD) have been studied in the last decades, few polymorphisms have been considered as risk factors for the disease. Among them, the APOE-e4 allele appears to be the major genetic risk factor for the onset of the disease. However, it is important to confirm the potential susceptibility of these genetic variants in different populations in order to establish a genetic profile for the disease in specific communities. This study analyzed the APOE polymorphisms regarding susceptibility to AD in a sample of 264 individuals (primarily Caucasians; 82 cases and 182 controls) in the population from Vitória, ES, Brazil, by PCR restriction fragment length polymorphism (PCR-RFLP) methods. The patients were selected according to clinical criteria for probable AD. Whereas the e4 allele showed statistically significant positive association with susceptibility to AD (OR = 3.01, 95%CI = 1.96-4.61; P < 0.0001), the e2 allele did not. The results of the e4 allele confirm the role of this polymorphism as a risk factor for AD in the sample studied as observed in other populations. Although the e3 allele has been considered neutral in several studies, our results suggest that it acts as a protective factor against AD in the population studied (OR = 0.46, 95%CI = 0.30-0.67; P < 0.0001). This study may provide a new insight into the role of the APOE-e3 allele in the etiology of AD and might help to estabilish a profile of risk for AD in the population from Vitória, ES. PMID:22068907

  5. MHC Class I Chain-Related Gene A Polymorphisms and Linkage Disequilibrium with HLA-B and HLA-C Alleles in Ocular Toxoplasmosis.

    PubMed

    Ayo, Christiane Maria; Camargo, Ana Vitória da Silveira; Frederico, Fábio Batista; Siqueira, Rubens Camargo; Previato, Mariana; Murata, Fernando Henrique Antunes; Silveira-Carvalho, Aparecida Perpétuo; Barbosa, Amanda Pires; Brandão de Mattos, Cinara de Cássia; de Mattos, Luiz Carlos

    2015-01-01

    This study investigated whether polymorphisms of the MICA (major histocompatibility complex class I chain-related gene A) gene are associated with eye lesions due to Toxoplasma gondii infection in a group of immunocompetent patients from southeastern Brazil. The study enrolled 297 patients with serological diagnosis of toxoplasmosis. Participants were classified into two distinct groups after conducting fundoscopic exams according to the presence (n = 148) or absence (n = 149) of ocular scars/lesions due to toxoplasmosis. The group of patients with scars/lesions was further subdivided into two groups according to the type of the ocular manifestation observed: primary (n = 120) or recurrent (n = 28). Genotyping of the MICA and HLA alleles was performed by the polymerase chain reaction-sequence specific oligonucleotide technique (PCR-SSO; One Lambda®) and the MICA-129 polymorphism (rs1051792) was identified by nested polymerase chain reaction (PCR-RFLP). Significant associations involving MICA polymorphisms were not found. Although the MICA*002~HLA-B*35 haplotype was associated with increased risk of developing ocular toxoplasmosis (P-value = 0.04; OR = 2.20; 95% CI = 1.05-4.60), and the MICA*008~HLA-C*07 haplotype was associated with protection against the development of manifestations of ocular toxoplasmosis (P-value = 0.009; OR: 0.44; 95% CI: 0.22-0.76), these associations were not statistically significant after adjusting for multiple comparisons. MICA polymorphisms do not appear to influence the development of ocular lesions in patients diagnosed with toxoplasmosis in this study population.

  6. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    NASA Astrophysics Data System (ADS)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  7. Next-generation sequencing can reveal in vitro-generated PCR crossover products: some artifactual sequences correspond to HLA alleles in the IMGT/HLA database.

    PubMed

    Holcomb, C L; Rastrou, M; Williams, T C; Goodridge, D; Lazaro, A M; Tilanus, M; Erlich, H A

    2014-01-01

    The high-resolution human leukocyte antigen (HLA) genotyping assay that we developed using 454 sequencing and Conexio software uses generic polymerase chain reaction (PCR) primers for DRB exon 2. Occasionally, we observed low abundance DRB amplicon sequences that resulted from in vitro PCR 'crossing over' between DRB1 and DRB3/4/5. These hybrid sequences, revealed by the clonal sequencing property of the 454 system, were generally observed at a read depth of 5%-10% of the true alleles. They usually contained at least one mismatch with the IMGT/HLA database, and consequently, were easily recognizable and did not cause a problem for HLA genotyping. Sometimes, however, these artifactual sequences matched a rare allele and the automatic genotype assignment was incorrect. These observations raised two issues: (1) could PCR conditions be modified to reduce such artifacts? and (2) could some of the rare alleles listed in the IMGT/HLA database be artifacts rather than true alleles? Because PCR crossing over occurs during late cycles of PCR, we compared DRB genotypes resulting from 28 and (our standard) 35 cycles of PCR. For all 21 cell line DNAs amplified for 35 cycles, crossover products were detected. In 33% of the cases, these hybrid sequences corresponded to named alleles. With amplification for only 28 cycles, these artifactual sequences were not detectable. To investigate whether some rare alleles in the IMGT/HLA database might be due to PCR artifacts, we analyzed four samples obtained from the investigators who submitted the sequences. In three cases, the sequences were generated from true alleles. In one case, our 454 sequencing revealed an error in the previously submitted sequence. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Recombinase Polymerase Amplification Compared to Real-Time Polymerase Chain Reaction Test for the Detection of Fasciola hepatica in Human Stool

    PubMed Central

    Cabada, Miguel M.; Malaga, Jose L.; Castellanos-Gonzalez, Alejandro; Bagwell, Kelli A.; Naeger, Patrick A.; Rogers, Hayley K.; Maharsi, Safa; Mbaka, Maryann; White, A. Clinton

    2017-01-01

    Fasciola hepatica is the most widely distributed trematode infection in the world. Control efforts may be hindered by the lack of diagnostic capacity especially in remote endemic areas. Polymerase chain reaction (PCR)–based methods offer high sensitivity and specificity but require expensive technology. However, the recombinase polymerase amplification (RPA) is an efficient isothermal method that eliminates the need for a thermal cycler and has a high deployment potential to resource-limited settings. We report on the characterization of RPA and PCR tests to detect Fasciola infection in clinical stool samples with low egg burdens. The sensitivity of the RPA and PCR were 87% and 66%, respectively. Both tests were 100% specific showing no cross-reactivity with trematode, cestode, or nematode parasites. In addition, RPA and PCR were able to detect 47% and 26% of infections not detected by microscopy, respectively. The RPA adapted to a lateral flow platform was more sensitive than gel-based detection of the reaction products. In conclusion, the Fasciola RPA is a highly sensitive and specific test to diagnose chronic infection using stool samples. The Fasciola RPA lateral flow has the potential for deployment to endemic areas after further characterization. PMID:27821691

  9. Allelic Variants of Complement Genes Associated with Dense Deposit Disease

    PubMed Central

    Abrera-Abeleda, Maria Asuncion; Nishimura, Carla; Frees, Kathy; Jones, Michael; Maga, Tara; Katz, Louis M.; Zhang, Yuzhou

    2011-01-01

    The alternative pathway of the complement cascade plays a role in the pathogenesis of dense deposit disease (DDD). Deficiency of complement factor H and mutations in CFH associate with the development of DDD, but it is unknown whether allelic variants in other complement genes also associate with this disease. We studied patients with DDD and identified previously unreported sequence alterations in several genes in addition to allelic variants and haplotypes common to patients with DDD. We found that the likelihood of developing DDD increases with the presence of two or more risk alleles in CFH and C3. To determine the functional consequence of this finding, we measured the activity of the alternative pathway in serum samples from phenotypically normal controls genotyped for variants in CFH and C3. Alternative pathway activity was higher in the presence of variants associated with DDD. Taken together, these data confirm that DDD is a complex genetic disease and may provide targets for the development of disease-specific therapies. PMID:21784901

  10. Base modifications affecting RNA polymerase and reverse transcriptase fidelity.

    PubMed

    Potapov, Vladimir; Fu, Xiaoqing; Dai, Nan; Corrêa, Ivan R; Tanner, Nathan A; Ong, Jennifer L

    2018-06-20

    Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.

  11. Evolutionary dynamics of sporophytic self-incompatibility alleles in plants.

    PubMed

    Schierup, M H; Vekemans, X; Christiansen, F B

    1997-10-01

    The stationary frequency distribution and allelic dynamics in finite populations are analyzed through stochastic simulations in three models of single-locus, multi-allelic sporophytic self-incompatibility. The models differ in the dominance relationships among alleles. In one model, alleles act codominantly in both pollen and style (SSIcod), in the second, alleles form a dominance hierarchy in pollen and style (SSIdom). In the third model, alleles interact codominantly in the style and form a dominance hierarchy in the pollen (SSIdomcod). The SSIcod model behaves similarly to the model of gametophytic self-incompatibility, but the selection intensity is stronger. With dominance, dominant alleles invade the population more easily than recessive alleles and have a lower frequency at equilibrium. In the SSIdom model, recessive alleles have both a higher allele frequency and higher expected life span. In the SSIdomcod model, however, loss due to drift occurs more easily for pollen-recessive than for pollen-dominant alleles, and therefore, dominant alleles have a higher expected life span than the more recessive alleles. The process of allelic turnover in the SSIdomcod and SSIdom models is closely approximated by a random walk on a dominance ladder. Implications of the results for experimental studies of sporophytic self-incompatibility in natural populations are discussed.

  12. The restriction-modification genes of Escherichia coli K-12 may not be selfish: they do not resist loss and are readily replaced by alleles conferring different specificities.

    PubMed

    O'Neill, M; Chen, A; Murray, N E

    1997-12-23

    Type II restriction and modification (R-M) genes have been described as selfish because they have been shown to impose selection for the maintenance of the plasmid that encodes them. In our experiments, the type I R-M system EcoKI does not behave in the same way. The genes specifying EcoKI are, however, normally residents of the chromosome and therefore our analyses were extended to monitor the deletion of chromosomal genes rather than loss of plasmid vector. If EcoKI were to behave in the same way as the plasmid-encoded type II R-M systems, the loss of the relevant chromosomal genes by mutation or recombination should lead to cell death because the cell would become deficient in modification enzyme and the bacterial chromosome would be vulnerable to the restriction endonuclease. Our data contradict this prediction; they reveal that functional type I R-M genes in the chromosome are readily replaced by mutant alleles and by alleles encoding a type I R-M system of different specificity. The acquisition of allelic genes conferring a new sequence specificity, but not the loss of the resident genes, is dependent on the product of an unlinked gene, one predicted [Prakash-Cheng, A., Chung, S. S. & Ryu, J. (1993) Mol. Gen. Genet. 241, 491-496] to be relevant to control of expression of the genes that encode EcoKI. Our evidence suggests that not all R-M systems are evolving as "selfish" units; rather, the diversity and distribution of the family of type I enzymes we have investigated require an alternative selective pressure.

  13. Focal epithelial hyperplasia associated with human papillomavirus 13 and common human leukocyte antigen alleles in a Turkish family.

    PubMed

    Akoğlu, Gülşen; Metin, Ahmet; Ceylan, Gülay Güleç; Emre, Selma; Akpolat, Demet; Süngü, Nuran

    2015-02-01

    Focal epithelial hyperplasia (FEH) is a rare and benign papillomatous disease of the oral cavity, which is closely associated with human papillomavirus (HPV) type 13 and 32. Genetic susceptibility to HPV infections are supported by recent studies involving the human leukocyte antigen system (HLA). In this report, we aimed to determine the clinicopathological features of a Turkish family with FEH and to detect the shared HLA DR and DQ types. HPV DNA typing of tissue samples and HLA determination from blood samples of four family members were performed by polymerase chain reaction. Histopathological examination of all patients revealed acanthotic papillomatous epidermis, koilocytes, apoptotic keratinocytes, and mitosoid bodies. HPV13 was detected by polymerase chain reaction. HLA DQA1*0501, HLA DQB1*0302, and HLA DRB1*11 alleles were common in all family members. HLA DRB1*04 was detected in three of them. This report is the first step for the investigation of involvement of HLA types in the pathogenesis of Turkish patients with FEH. © 2014 The International Society of Dermatology.

  14. Prognostic significance of the allelic loss of the BRCA1 gene in colorectal cancer

    PubMed Central

    Garcia, J M; Rodriguez, R; Dominguez, G; Silva, J M; Provencio, M; Silva, J; Colmenarejo, A; Millan, I; Muñoz, C; Salas, C; Coca, S; España, P; Bonilla, F

    2003-01-01

    Background: Survival at the intermediate stage of colorectal cancer (CRC) is less predictable than in the early and advanced stages. Several genetic markers possibly involved in growth and progression of CRC can be used for prognosis. Aims: This study investigated the proportion of allelic loss (loss of heterozygosity (LOH)) at the BRCA1 locus in sporadic CRC and its value in patient prognosis. Patients and methods: A total of 314 patients were investigated for LOH at the BRCA1 locus using polymerase chain reaction by means of three intragenic polymorphic microsatellite markers. Allelic losses were compared with clinicopathological characteristics of patients, recurrence rate, disease free survival (DFS), and overall survival. Results: Twenty six patients were excluded because of microsatellite instability. Of the remaining 288 cases, 244 (84.7%) were informative, with 97 (39.8%) patients bearing BRCA1 LOH. Recurrence rate was higher in patients with LOH (p = 0.0003), and DFS was 73.3% (SEM 5.7) at five years in patients without LOH, and 49.2% (7.1) in cases with positive allelic loss (p = 0.0004). Retention of alleles at the BRCA1 locus was associated with a favourable DFS in stages I and II (p<0.05). The presence of LOH was also significantly associated with short overall survival (p = 0.02). Multivariate analysis in the complete series showed that stage (p = 0.006) and lymph node metastases (⩾4 nodes, p = 0.0001; 1–3 nodes, p = 0.038) were independent prognostic factors. However, multivariate study by stages revealed that BRCA1 LOH was an independent prognostic factor in stages I and II (p = 0.001). Conclusions: BRCA1 LOH is a molecular alteration present in CRC, with unfavourable repercussions for overall survival, that could be considered as an outstanding independent prognostic factor in stages I and II. PMID:14633957

  15. Long-distance dispersal suppresses introgression of local alleles during range expansions

    PubMed Central

    Amorim, C E G; Hofer, T; Ray, N; Foll, M; Ruiz-Linares, A; Excoffier, L

    2017-01-01

    During range expansions, even low levels of interbreeding can lead to massive introgression of local alleles into an invader's genome. Nonetheless, this pattern is not always observed in human populations. For instance, European Americans in North America are barely introgressed by Amerindian genes in spite of known contact and admixture. With coalescent spatially explicit simulations, we examined the impact of long-distance dispersal (LDD) events on introgression of local alleles into the invading population using a set of different demographic scenarios applicable to a diverse range of natural populations and species. More specifically, we consider two distinct LDD models: one where LDD events originate in the range core and targets only the expansion front and a second one where LDD events can occur from any area to any other. We find that LDD generally prevents introgression, but that LDD events specifically targeting the expansion front are most efficient in suppressing introgression. This is likely due to the fact that LDD allows for the presence of a larger number of invader alleles at the wave front, where effective population size is thus increased and local introgressed alleles are rapidly outnumbered. We postulate that the documented settlement of pioneers directly on the wave front in North America has contributed to low levels of Amerindian admixture observed in European Americans and that this phenomenon may well explain the lack of introgression after a range expansion in natural populations without the need to evoke other mechanisms such as natural selection. PMID:27577693

  16. Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications.

    PubMed

    Imashimizu, Masahiko; Shimamoto, Nobuo; Oshima, Taku; Kashlev, Mikhail

    2014-01-01

    Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity.

  17. Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III.

    PubMed Central

    Pombo, A; Jackson, D A; Hollinshead, M; Wang, Z; Roeder, R G; Cook, P R

    1999-01-01

    Mammalian nuclei contain three different RNA polymerases defined by their characteristic locations and drug sensitivities; polymerase I is found in nucleoli, and polymerases II and III in the nucleoplasm. As nascent transcripts made by polymerases I and II are concentrated in discrete sites, the locations of those made by polymerase III were investigated. HeLa cells were lysed with saponin in an improved 'physiological' buffer that preserves transcriptional activity and nuclear ultrastructure; then, engaged polymerases were allowed to extend nascent transcripts in Br-UTP, before the resulting Br-RNA was immunolabelled indirectly with fluorochromes or gold particles. Biochemical analysis showed that approximately 10 000 transcripts were being made by polymerase III at the moment of lysis, while confocal and electron microscopy showed that these transcripts were concentrated in only approximately 2000 sites (diameter approximately 40 nm). Therefore, each site contains approximately five active polymerases. These sites contain specific subunits of polymerase III, but not the hyperphosphorylated form of the largest subunit of polymerase II. The results indicate that the active forms of all three nuclear polymerases are concentrated in their own dedicated transcription sites or 'factories', suggesting that different regions of the nucleus specialize in the transcription of different types of gene. PMID:10205177

  18. Characterization of monoclonal antibodies that specifically recognize the palm subdomain of hepatitis C virus nonstructural protein 5B polymerase.

    PubMed

    Ingravallo, P; Lahser, F; Xia, E; Sodowich, B; Lai, V C; Hong, Z; Zhong, W

    2001-06-01

    The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is an RNA-dependent RNA polymerase (RdRp) which plays an essential role in viral RNA replication. Antibodies that specifically recognize NS5B will have utilities in monitoring NS5B production and subcellular localization, as well as in structure-function studies. In this report, three mouse monoclonal antibodies (mAbs), 16A9C9, 16D9A4 and 20A12C7, against a recombinant NS5B protein (genotype 1a, H-77 strain) were produced. These mAbs specifically recognize HCV NS5B, but not RdRps of polivirus (PV), bovine viral diarrhea virus (BVDV) or GB virus B (GBV-B). The mAbs can readily detect NS5B in cellular lysates of human osteosarcoma Saos2 cells constitutively expressing the nonstructural region of HCV (NS3-NS4A-NS4B-NS5A-NS5B). NS5B proteins of different HCV genotypes/subtypes (1a, 1b, 2a, 2c, 5a) showed varied affinity for these mAbs. Interestingly, the epitopes for the mAbs were mapped to the palm subdomain (amino acid 188-370) of the HCV RdRp as determined by immunoblotting analysis of a panel of HCV/GBV-B chimeric NS5B proteins. The binding site was mapped between amino acid 231 and 267 of NS5B for 16A9C9, and between 282 and 372 for 16D9A4 and 20A12C7. Furthermore, these mAbs showed no inhibitory effect on the NS5B polymerase activity in vitro.

  19. Angiotensin-converting enzyme (ACE) alleles in the Quechua, a high altitude South American native population.

    PubMed

    Rupert, J L; Devine, D V; Monsalve, M V; Hochachka, P W

    1999-01-01

    Recently it was reported that an allelic variant of the gene encoding angiotensin-converting enzyme (ACE) was significantly over-represented in a cohort of elite British mountaineers. It was proposed that this may be evidence for a specific genetic factor influencing the human capacity for physical performance. The implication that this allele could enhance performance at high altitude prompted us to determine its frequency in Quechua speaking natives living at altitudes greater than 3000m on the Andean Altiplano in South America. We found that the frequency of the putative performance allele in the Quechuas, although significantly higher than in Caucasians, was not different from lowland Native American populations. This observation suggests that, although the higher frequency of the 'performance allele' may have facilitated the migration of the ancestral Quechua to the highlands, the ACE insertion allele has not been subsequently selected for in this high altitude population.

  20. 3D structure of the influenza virus polymerase complex: Localization of subunit domains

    PubMed Central

    Area, Estela; Martín-Benito, Jaime; Gastaminza, Pablo; Torreira, Eva; Valpuesta, José M.; Carrascosa, José L.; Ortín, Juan

    2004-01-01

    The 3D structure of the influenza virus polymerase complex was determined by electron microscopy and image processing of recombinant ribonucleoproteins (RNPs). The RNPs were generated by in vivo amplification using cDNAs of the three polymerase subunits, the nucleoprotein, and a model virus-associated RNA containing 248 nt. The polymerase structure obtained is very compact, with no apparent boundaries among subunits. The position of specific regions of the PB1, PB2, and PA subunits was determined by 3D reconstruction of either RNP–mAb complexes or tagged RNPs. This structural model is available for the polymerase of a negative-stranded RNA virus and provides a general delineation of the complex and its interaction with the template-associated nucleoprotein monomers in the RNP. PMID:14691253

  1. JAK2V617F mutation is associated with special alleles in essential thrombocythemia.

    PubMed

    Hsiao, Hui-Hua; Liu, Yi-Chang; Tsai, Hui-Jen; Lee, Ching-Ping; Hsu, Jui-Feng; Lin, Sheng-Fung

    2011-03-01

    Janus kinase 2 mutation (JAK2V617F) has been identified in myeloproliferative neoplasms. Furthermore, special single nucleoside polymorphisms (SNPs) have been found to be associated with the JAK2V617F mutation. Therefore, the associations among JAK2V617F and special SNPs and the allelic location between them were investigated in patients with essential thrombocythemia (ET). A total of 61 patients with ET and 106 healthy individuals were enrolled. The PCR-RFLP method was applied to investigate the pattern of three SNPs, rs10974944, rs12343867, and rs12340895. Allele-specific PCR was used to examine the allelic location between rs10974944 and JAK2V617F. Among the patients with ET, 34 (55.7%, 34/61) were JAK2V617F positive (heterozygous) while the other 27 (44.3%, 27/61) were negative, and there were no MPLW515L/K mutations noted. The pattern of special SNPs in JAK2V617F(+) was significantly different from that in normal individuals (p <0.05), while there was no difference between JAK2V617F(-) patients and normal individuals. Allele-specific PCR showed high association of a cis-location between the special G-allele of rs10974944 and JAK2V617F(+). Based on this small numbered study, the results show the association between special SNPs and JAK2V617F mutation and a cis-location between the special G-allelic form of rs10974944 and the JAK2V617F mutation. These data highlight a close relationship between them in patients with ET.

  2. The allele combinations of three loci based on, liver, stomach cancers, hematencephalon, COPD and normal population: A preliminary study.

    PubMed

    Gai, Liping; Liu, Hui; Cui, Jing-Hui; Yu, Weijian; Ding, Xiao-Dong

    2017-03-20

    The purpose of this study was to examine the specific allele combinations of three loci connected with the liver cancers, stomach cancers, hematencephalon and patients with chronic obstructive pulmonary disease (COPD) and to explore the feasibility of the research methods. We explored different mathematical methods for statistical analyses to assess the association between the genotype and phenotype. At the same time we still analyses the statistical results of allele combinations of three loci by difference value method and ratio method. All the DNA blood samples were collected from patients with 50 liver cancers, 75 stomach cancers, 50 hematencephalon, 72 COPD and 200 normal populations. All the samples were from Chinese. Alleles from short tandem repeat (STR) loci were determined using the STR Profiler plus PCR amplification kit (15 STR loci). Previous research was based on combinations of single-locus alleles, and combinations of cross-loci (two loci) alleles. Allele combinations of three loci were obtained by computer counting and stronger genetic signal was obtained. The methods of allele combinations of three loci can help to identify the statistically significant differences of allele combinations between liver cancers, stomach cancers, patients with hematencephalon, COPD and the normal population. The probability of illness followed different rules and had apparent specificity. This method can be extended to other diseases and provide reference for early clinical diagnosis. Copyright © 2016. Published by Elsevier B.V.

  3. Swine Leukocyte Antigen Diversity in Canadian Specific Pathogen-Free Yorkshire and Landrace Pigs

    PubMed Central

    Gao, Caixia; Quan, Jinqiang; Jiang, Xinjie; Li, Changwen; Lu, Xiaoye; Chen, Hongyan

    2017-01-01

    The highly polymorphic swine major histocompatibility complex (MHC), termed swine leukocyte antigen (SLA), is associated with different levels of immunologic responses to infectious diseases, vaccines, and transplantation. Pig breeds with known SLA haplotypes are important genetic resources for biomedical research. Canadian Yorkshire and Landrace pigs represent the current specific pathogen-free (SPF) breeding stock maintained in the isolation environment at the Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences. In this study, we identified 61 alleles at five polymorphic SLA loci (SLA-1, SLA-2, SLA-3, DRB1, and DQB1) representing 17 class I haplotypes and 11 class II haplotypes using reverse transcription-polymerase chain reaction (RT-PCR) sequence-based typing and PCR-sequence specific primers methods in 367 Canadian SPF Yorkshire and Landrace pigs. The official designation of the alleles has been assigned by the SLA Nomenclature Committee of the International Society for Animal Genetics and released in updated Immuno Polymorphism Database-MHC SLA sequence database [Release 2.0.0.3 (2016-11-03)]. The submissions confirmed some unassigned alleles and standardized nomenclatures of many previously unconfirmed alleles in the GenBank database. Three class I haplotypes, Hp-37.0, 63.0, and 73.0, appeared to be novel and have not previously been reported in other pig populations. One crossover within the class I region and two between class I and class II regions were observed, resulting in three new recombinant haplotypes. The presence of the duplicated SLA-1 locus was confirmed in three class I haplotypes Hp-28.0, Hp-35.0, and Hp-63.0. Furthermore, we also analyzed the functional diversities of 19 identified frequent SLA class I molecules in this study and confirmed the existence of four supertypes using the MHCcluster method. These results will be useful for studying the adaptive immune response and immunological phenotypic differences in

  4. Structure of a preternary complex involving a prokaryotic NHEJ DNA polymerase.

    PubMed

    Brissett, Nigel C; Martin, Maria J; Pitcher, Robert S; Bianchi, Julie; Juarez, Raquel; Green, Andrew J; Fox, Gavin C; Blanco, Luis; Doherty, Aidan J

    2011-01-21

    In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication

    PubMed Central

    Lapenta, Fabio; Montón Silva, Alejandro; Brandimarti, Renato; Lanzi, Massimiliano; Gratani, Fabio Lino; Vellosillo Gonzalez, Perceval; Perticarari, Sofia; Hochkoeppler, Alejandro

    2016-01-01

    DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics. PMID:27050298

  6. The acylphosphatase (Acyp) alleles associate with male hybrid sterility in Drosophila.

    PubMed

    Michalak, Pawel; Ma, Daina

    2008-06-15

    Hybrid defects are believed to result from genetic incompatibilities between genes that have evolved in separate parental lineages. These genetic dysfunctions on the hybrid genomic background, also known as Dobzhansky-Muller incompatibilities, can be an incipient signature of speciation, and as such - a subject of active research. Here we present evidence that Acyp locus (CG16870) that encodes acylphosphatase, a small enzyme that catalyzes the hydrolysis of acylphosphates and participates in ion transport across biological membranes, is involved in genetic incompatibilities leading to male sterility in hybrids between Drosophila simulans and D. mauritiana. There is a strong association between Acyp alleles (genotype) and the sterility/fertility pattern (phenotype), as well as between the phenotype, the genotype and its transcriptional activity. Allele-specific expression in hybrids heterozygous for Acyp suggests a cis-type regulation of this gene, where an allele from one of the parental species (D. simulans) is consistently overexpressed.

  7. Implications of HLA-allele associations for the study of type IV drug hypersensitivity reactions.

    PubMed

    Sullivan, A; Watkinson, J; Waddington, J; Park, B K; Naisbitt, D J

    2018-03-01

    Type IV drug hypersensitivity remains an important clinical problem and an obstacle to the development of new drugs. Several forms of drug hypersensitivity are associated with expression of specific HLA alleles. Furthermore, drug-specific T-lymphocytes have been isolated from patients with reactions. Despite this, controversy remains as to how drugs interact with immune receptors to stimulate a T-cell response. Areas covered: This article reviews the pathways of T-cell activation by drugs and how the ever increasing number of associations between expression of HLA alleles and susceptibility to hypersensitivity is impacting on our research effort to understanding this form of iatrogenic disease. Expert opinion: For a drug to activate a T-cell, a complex is formed between HLA molecules, an HLA binding peptide, the drug and the T-cell receptor. T-cell responses can involve drugs and stable or reactive metabolites bound covalently or non-covalently to any component of this complex. Recent research has linked the HLA associations to the disease through the characterization of drug-specific T-cell responses restricted to specific alleles. However, there is now a need to identify the additional genetic or environment factors that determine susceptibility and use our increased knowledge to develop predictive immunogenicity tests that offer benefit to Pharma developing new drugs.

  8. The effect of wild card designations and rare alleles in forensic DNA database searches.

    PubMed

    Tvedebrink, Torben; Bright, Jo-Anne; Buckleton, John S; Curran, James M; Morling, Niels

    2015-05-01

    Forensic DNA databases are powerful tools used for the identification of persons of interest in criminal investigations. Typically, they consist of two parts: (1) a database containing DNA profiles of known individuals and (2) a database of DNA profiles associated with crime scenes. The risk of adventitious or chance matches between crimes and innocent people increases as the number of profiles within a database grows and more data is shared between various forensic DNA databases, e.g. from different jurisdictions. The DNA profiles obtained from crime scenes are often partial because crime samples may be compromised in quantity or quality. When an individual's profile cannot be resolved from a DNA mixture, ambiguity is introduced. A wild card, F, may be used in place of an allele that has dropped out or when an ambiguous profile is resolved from a DNA mixture. Variant alleles that do not correspond to any marker in the allelic ladder or appear above or below the extent of the allelic ladder range are assigned the allele designation R for rare allele. R alleles are position specific with respect to the observed/unambiguous allele. The F and R designations are made when the exact genotype has not been determined. The F and R designation are treated as wild cards for searching, which results in increased chance of adventitious matches. We investigated the probability of adventitious matches given these two types of wild cards. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Direct detection of Streptococcus mutans in human dental plaque by polymerase chain reaction.

    PubMed

    Igarashi, T; Yamamoto, A; Goto, N

    1996-10-01

    Streptococcus mutans is an etiological agent in human dental caries. A method for the detection of S. mutans directly from human dental plaque by polymerase chain reaction has been developed. Oligonucleotide primers specific for a portion of the dextranase gene (dexA) of S. mutans Ingbritt (serotype c) were designed to amplify a 1272-bp DNA fragment by polymerase chain reaction. The present method specifically detected S. mutans (serotypes c, e and f), but none of the other mutans streptococci: S. cricetus (serotype a), S. rattus (serotype b), S. sobrinus (serotypes d and g), and S. downei (serotype h), other gram-positive bacteria (16 strains of 12 species of cocci and 18 strains of 12 species of bacilli) nor gram-negative bacteria (1 strain of 1 species of cocci and 20 strains of 18 species of bacilli). The method was capable of detecting 1 pg of the chromosomal DNA purified from S. mutans Ingbritt and as few as 12 colony-forming units of S. mutans cells. The S. mutans cells in human dental plaque were also directly detected. Seventy clinical isolates of S. mutans isolated from the dental plaque of 8 patients were all positive by the polymerase chain reaction. These results suggest that the dexA polymerase chain reaction is suitable for the specific detection and identification of S. mutans.

  10. Isothermal recombinase polymerase amplification assay applied to the detection of group B streptococci in vaginal/anal samples.

    PubMed

    Daher, Rana K; Stewart, Gale; Boissinot, Maurice; Bergeron, Michel G

    2014-04-01

    Group B streptococcal infections are the leading cause of sepsis and meningitis in newborns. A rapid and reliable method for the detection of this pathogen at the time of delivery is needed for the early treatment of neonates. Isothermal amplification techniques such as recombinase polymerase amplification have advantages relative to PCR in terms of the speed of reaction and simplicity. We studied the clinical performance of recombinase polymerase amplification for the screening of group B streptococci in vaginal/anal samples from 50 pregnant women. We also compared the limit of detection and the analytical specificity of this isothermal assay to real-time PCR (RT-PCR). Compared to RT-PCR, the recombinase polymerase amplification assay showed a clinical sensitivity of 96% and a clinical specificity of 100%. The limit of detection was 98 genome copies and the analytical specificity was 100% for a panel of 15 bacterial and/or fungal strains naturally found in the vaginal/anal flora. Time-to-result for the recombinase polymerase amplification assay was <20 min compared to 45 min for the RT-PCR assay; a positive sample could be detected as early as 8 min. We demonstrate the potential of isothermal recombinase polymerase amplification assay as a clinically useful molecular diagnostic tool that is simple and faster than PCR/RT-PCR. Recombinase polymerase amplification offers great potential for nucleic acid-based diagnostics at the point of care.

  11. Identification of Brucella spp. by using the polymerase chain reaction.

    PubMed Central

    Herman, L; De Ridder, H

    1992-01-01

    The application of two synthetic oligonucleotides as probes and as primers in the polymerase chain reaction is presented for a specific, sensitive, and quick identification of Brucella spp. The specific oligonucleotide sequences were chosen on the basis of a 16S rRNA sequence alignment between Brucella abortus and Agrobacterium tumefaciens. Images PMID:1377903

  12. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    PubMed Central

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315

  13. Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon.

    PubMed Central

    Eissenberg, J C; Ayyagari, R; Gomes, X V; Burgers, P M

    1997-01-01

    The importance of the interdomain connector loop and of the carboxy-terminal domain of Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) for functional interaction with DNA polymerases delta (Poldelta) and epsilon (Pol epsilon) was investigated by site-directed mutagenesis. Two alleles, pol30-79 (IL126,128AA) in the interdomain connector loop and pol30-90 (PK252,253AA) near the carboxy terminus, caused growth defects and elevated sensitivity to DNA-damaging agents. These two mutants also had elevated rates of spontaneous mutations. The mutator phenotype of pol30-90 was due to partially defective mismatch repair in the mutant. In vitro, the mutant PCNAs showed defects in DNA synthesis. Interestingly, the pol30-79 mutant PCNA (pcna-79) was most defective in replication with Poldelta, whereas pcna-90 was defective in replication with Pol epsilon. Protein-protein interaction studies showed that pcna-79 and pcna-90 failed to interact with Pol delta and Pol epsilon, respectively. In addition, pcna-90 was defective in interaction with the FEN-1 endo-exonuclease (RTH1 product). A loss of interaction between pcna-79 and the smallest subunit of Poldelta, the POL32 gene product, implicates this interaction in the observed defect with the polymerase. Neither PCNA mutant showed a defect in the interaction with replication factor C or in loading by this complex. Processivity of DNA synthesis by the mutant holoenzyme containing pcna-79 was unaffected on poly(dA) x oligo(dT) but was dramatically reduced on a natural template with secondary structure. A stem-loop structure with a 20-bp stem formed a virtually complete block for the holoenzyme containing pcna-79 but posed only a minor pause site for wild-type holoenzyme, indicating a function of the POL32 gene product in allowing replication past structural blocks. PMID:9343398

  14. DASH-2: Flexible, Low-Cost, and High-Throughput SNP Genotyping by Dynamic Allele-Specific Hybridization on Membrane Arrays

    PubMed Central

    Jobs, Magnus; Howell, W. Mathias; Strömqvist, Linda; Mayr, Torsten; Brookes, Anthony J.

    2003-01-01

    Genotyping technologies need to be continually improved in terms of their flexibility, cost-efficiency, and throughput, to push forward genome variation analysis. To this end, we have leveraged the inherent simplicity of dynamic allele-specific hybridization (DASH) and coupled it to recent innovations of centrifugal arrays and iFRET. We have thereby created a new genotyping platform we term DASH-2, which we demonstrate and evaluate in this report. The system is highly flexible in many ways (any plate format, PCR multiplexing, serial and parallel array processing, spectral-multiplexing of hybridization probes), thus supporting a wide range of application scales and objectives. Precision is demonstrated to be in the range 99.8–100%, and assay costs are 0.05 USD or less per genotype assignment. DASH-2 thus provides a powerful new alternative for genotyping practice, which can be used without the need for expensive robotics support. PMID:12727908

  15. The prevalence of PI*S and PI*Z SERPINA1 alleles in healthy individuals and COPD patients in Saudi Arabia: A case-control study.

    PubMed

    Al-Jameil, Noura; Hassan, Amina A; Hassanato, Rana; Isac, Sree R; Otaiby, Maram Al; Al-Shareef, Fadwa; Al-Maarik, Basmah; Ajeyan, Iman Al; Al-Bahloul, Khloud; Ghani, Samina; Al-Torbak, Dana

    2017-10-01

    Alpha-1 antitrypsin (AAT) is an acute phase protein produced in hepatocytes. Its deficiency affects the lungs and liver. A case-control study was carried out to determine the prevalence of 2 common deficiency alleles, PI*S and PI*Z, for alpha-1 antitrypsin deficiency (AATD) in both healthy and chronic obstructive pulmmonary disease (COPD)-affected Saudi populations and to clarify the importance of genetic tests in the screening of people at risk for COPD.One thousand blood samples from healthy individuals and 1000 from COPD-affected Saudi individuals were genotyped for the above-mentioned alleles, using real-time polymerase chain reaction (PCR), with the exclusion of any other nationalities. Data were analyzed by determining the allele and genotype frequencies through gene counting and its confidence intervals. The allele frequencies, derived by the Hardy-Weinberg equilibrium method, were analyzed by Pearson Chi-squared tests. The confidence intervals for genotype frequencies were calculated using exploratory software for confidence intervals.Of the 1000 COPD patients included in our study, the prevalence of PI*S and PI*Z was 21.8% and 7.7%, respectively, while within the 1000 normal samples, these alleles occurred in 8.9% of patients for PI*S and 1.6% for PI*Z. The AAT deficiency genotype frequencies (PI*ZZ, PI*SS, and PI*SZ) were 6.5 per 1000 and 87 per 1000 for normal and COPD-affected Saudi individuals.Our results indicated a high prevalence of AATD alleles in the normal Saudi population and an association between AAT deficiency and pulmonary disease development. Additionally, our research confirms the importance of genetic screening to achieve early and accurate diagnosis of AATD.

  16. A matching-allele model explains host resistance to parasites.

    PubMed

    Luijckx, Pepijn; Fienberg, Harris; Duneau, David; Ebert, Dieter

    2013-06-17

    The maintenance of genetic variation and sex despite its costs has long puzzled biologists. A popular idea, the Red Queen Theory, is that under rapid antagonistic coevolution between hosts and their parasites, the formation of new rare host genotypes through sex can be advantageous as it creates host genotypes to which the prevailing parasite is not adapted. For host-parasite coevolution to lead to an ongoing advantage for rare genotypes, parasites should infect specific host genotypes and hosts should resist specific parasite genotypes. The most prominent genetics capturing such specificity are matching-allele models (MAMs), which have the key feature that resistance for two parasite genotypes can reverse by switching one allele at one host locus. Despite the lack of empirical support, MAMs have played a central role in the theoretical development of antagonistic coevolution, local adaptation, speciation, and sexual selection. Using genetic crosses, we show that resistance of the crustacean Daphnia magna against the parasitic bacterium Pasteuria ramosa follows a MAM. Simulation results show that the observed genetics can explain the maintenance of genetic variation and contribute to the maintenance of sex in the facultatively sexual host as predicted by the Red Queen Theory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Microsatellite Interruptions Stabilize Primate Genomes and Exist as Population-Specific Single Nucleotide Polymorphisms within Individual Human Genomes

    PubMed Central

    Ananda, Guruprasad; Hile, Suzanne E.; Breski, Amanda; Wang, Yanli; Kelkar, Yogeshwar; Makova, Kateryna D.; Eckert, Kristin A.

    2014-01-01

    Interruptions of microsatellite sequences impact genome evolution and can alter disease manifestation. However, human polymorphism levels at interrupted microsatellites (iMSs) are not known at a genome-wide scale, and the pathways for gaining interruptions are poorly understood. Using the 1000 Genomes Phase-1 variant call set, we interrogated mono-, di-, tri-, and tetranucleotide repeats up to 10 units in length. We detected ∼26,000–40,000 iMSs within each of four human population groups (African, European, East Asian, and American). We identified population-specific iMSs within exonic regions, and discovered that known disease-associated iMSs contain alleles present at differing frequencies among the populations. By analyzing longer microsatellites in primate genomes, we demonstrate that single interruptions result in a genome-wide average two- to six-fold reduction in microsatellite mutability, as compared with perfect microsatellites. Centrally located interruptions lowered mutability dramatically, by two to three orders of magnitude. Using a biochemical approach, we tested directly whether the mutability of a specific iMS is lower because of decreased DNA polymerase strand slippage errors. Modeling the adenomatous polyposis coli tumor suppressor gene sequence, we observed that a single base substitution interruption reduced strand slippage error rates five- to 50-fold, relative to a perfect repeat, during synthesis by DNA polymerases α, β, or η. Computationally, we demonstrate that iMSs arise primarily by base substitution mutations within individual human genomes. Our biochemical survey of human DNA polymerase α, β, δ, κ, and η error rates within certain microsatellites suggests that interruptions are created most frequently by low fidelity polymerases. Our combined computational and biochemical results demonstrate that iMSs are abundant in human genomes and are sources of population-specific genetic variation that may affect genome stability. The

  18. RNA polymerase gene, microorganism having said gene and the production of RNA polymerase by the use of said microorganism

    DOEpatents

    Kotani, Hirokazu; Hiraoka, Nobutsugu; Obayashi, Akira

    1991-01-01

    SP6 bacteriophage RNA polymerase is produced by cultivating a new microorganism (particularly new strains of Escherichia coli) harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene and recovering SP6 bacteriophage RNA polymerase from the culture broth. SP6 bacteriophage RNA polymerase gene is provided as are new microorganisms harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene.

  19. Allelic genealogies in sporophytic self-incompatibility systems in plants.

    PubMed

    Schierup, M H; Vekemans, X; Christiansen, F B

    1998-11-01

    Expectations for the time scale and structure of allelic genealogies in finite populations are formed under three models of sporophytic self-incompatibility. The models differ in the dominance interactions among the alleles that determine the self-incompatibility phenotype: In the SSIcod model, alleles act codominantly in both pollen and style, in the SSIdom model, alleles form a dominance hierarchy, and in SSIdomcod, alleles are codominant in the style and show a dominance hierarchy in the pollen. Coalescence times of alleles rarely differ more than threefold from those under gametophytic self-incompatibility, and transspecific polymorphism is therefore expected to be equally common. The previously reported directional turnover process of alleles in the SSIdomcod model results in coalescence times lower and substitution rates higher than those in the other models. The SSIdom model assumes strong asymmetries in allelic action, and the most recessive extant allele is likely to be the most recent common ancestor. Despite these asymmetries, the expected shape of the allele genealogies does not deviate markedly from the shape of a neutral gene genealogy. The application of the results to sequence surveys of alleles, including interspecific comparisons, is discussed.

  20. Natural variation in male-induced ‘cost-of-mating’ and allele-specific association with male reproductive genes in Drosophila melanogaster

    PubMed Central

    Fiumera, Anthony C; Dumont, Bethany L; Clark, Andrew G

    2006-01-01

    One of the most sharply defined sexual conflicts arises when the act of mating is accompanied by an inflated risk of death. Several reports have documented an increased death rate of female Drosophila as a result of recurrent mating. Transgenic and mutation experiments have further identified components of seminal fluid that are at least in part responsible for this toxicity. Variation among males in their tendency for matings to be toxic to their partners has also been documented, but here for the first time we identify polymorphism within particular genes conferring differential post-mating female mortality. Such polymorphism is important, as it raises the challenge of whether sexual conflict models can provide means for maintenance of polymorphism. Using a set of second chromosome extraction lines, we scored differences in post-mating female fecundity and longevity subsequent to mating, and identified significant among-line differences. Seventy polymorphisms in ten male reproductive genes were scored and permutation tests were used to identify significant associations between genotype and phenotype. One polymorphism upstream of PEBII and an amino acid substitution in CG17331 were both associated with male-induced female mortality. The same allele of CG17331 that is toxic to females also induces greater refractoriness to remating in the females, providing an example of an allele-specific sexual conflict. Postcopulatory sexual selection could lead to sexual conflict by favouring males that prevent their mates from mating, even when there is a viability cost to those females. PMID:16612893

  1. Whole genome sequencing of Oryza sativa L. cv. Seeragasamba identifies a new fragrance allele in rice

    PubMed Central

    Bindusree, Ganigara; Natarajan, Purushothaman; Kalva, Sukesh

    2017-01-01

    Fragrance of rice is an important trait that confers a large economic benefit to the farmers who cultivate aromatic rice varieties. Several aromatic rice varieties have limited geographic distribution, and are endowed with variety-specific unique fragrances. BADH2 was identified as a fragrance gene in 2005, and it is essential to identify the fragrance alleles from diverse geographical locations and genetic backgrounds. Seeragasamba is a short-grain aromatic rice variety of the indica type, which is cultivated in a limited area in India. Whole genome sequencing of this variety identified a new badh2 allele (badh2-p) with an 8 bp insertion in the promoter region of the BADH2 gene. When the whole genome sequences of 76 aromatic varieties in the 3000 rice genome project were analyzed, the badh2-p allele was present in 13 varieties (approximately 17%) of both indica and japonica types. In addition, the badh2-p allele was present in 17 varieties that already had the loss-of-function allele, badh2-E7. Taken together, the frequency of badh2-p allele (approximately 40%) was found to be greater than that of the badh2-E7 allele (approximately 34%) among the aromatic rice varieties. Therefore, it is suggested to include badh2-p as a predominant allele when screening for fragrance alleles in aromatic rice varieties. PMID:29190814

  2. International ring trial for the validation of an event-specific Golden Rice 2 quantitative real-time polymerase chain reaction method.

    PubMed

    Jacchia, Sara; Nardini, Elena; Bassani, Niccolò; Savini, Christian; Shim, Jung-Hyun; Trijatmiko, Kurniawan; Kreysa, Joachim; Mazzara, Marco

    2015-05-27

    This article describes the international validation of the quantitative real-time polymerase chain reaction (PCR) detection method for Golden Rice 2. The method consists of a taxon-specific assay amplifying a fragment of rice Phospholipase D α2 gene, and an event-specific assay designed on the 3' junction between transgenic insert and plant DNA. We validated the two assays independently, with absolute quantification, and in combination, with relative quantification, on DNA samples prepared in haploid genome equivalents. We assessed trueness, precision, efficiency, and linearity of the two assays, and the results demonstrate that both the assays independently assessed and the entire method fulfill European and international requirements for methods for genetically modified organism (GMO) testing, within the dynamic range tested. The homogeneity of the results of the collaborative trial between Europe and Asia is a good indicator of the robustness of the method.

  3. HLA-DRB1 alleles associated with polymyalgia rheumatica in northern Italy: correlation with disease severity

    PubMed Central

    Salvarani, C.; Boiardi, L.; Mantovani, V.; Ranzi, A.; Cantini, F.; Olivieri, I.; Bragliani, M.; Collina, E.; Macchioni, P.

    1999-01-01

    OBJECTIVE—To examine the association of HLA-DRB1 alleles with polymyalgia rheumatica (PMR) in a Mediterranean country and to explore the role of HLA-DRB1 genes in determining disease severity.
METHODS—A five year prospective follow up study of 92 consecutive PMR patients diagnosed by the secondary referral centre of rheumatology of Reggio Emilia, Italy was conducted. HLA-DRB1 alleles were determined in the 92 patients, in 29 DR4 positive rheumatoid arthritis (RA) patients, and in 148 controls from the same geographical area by polymerase chain reaction amplification and oligonucleotide hybridisation.
RESULTS—No significant differences were observed in the frequencies of HLA-DRB1 types and in the expression of HLA-DRB 70-74 shared motif between PMR and controls. The frequency of the patients with double dose of epitope was low and not significantly different in PMR and in controls. No significant differences in the distribution of HLA-DR4 subtypes were observed between DR4+ PMR, DR+ RA, and DR4+ controls. Results of the univariate analysis indicated that an erythrocyte sedimentation rate (ESR) at diagnosis > 72 mm 1st h, the presence of HLA-DR1, DR10, rheumatoid epitope, and the type of rheumatoid epitope were significant risk factors associated with relapse/recurrence. Cox proportional hazards modelling identified two variables that independently increased the risk of relapse/recurrence: ESR at diagnosis > 72 mm 1st h (RR=1.5) and type 2 (encoded by a non-DR4 allele) rheumatoid epitope (RR=2.7).
CONCLUSION—These data from a Mediterranean country showed no association of rheumatoid epitope with PMR in northern Italian patients. A high ESR at diagnosis and the presence of rheumatoid epitope encoded by a non-DR4 allele are independent valuable markers of disease severity.

 PMID:10225816

  4. Identification, genealogical structure and population genetics of S-alleles in Malus sieversii, the wild ancestor of domesticated apple.

    PubMed

    Ma, X; Cai, Z; Liu, W; Ge, S; Tang, L

    2017-09-01

    The self-incompatibility (SI) gene that is specifically expressed in pistils encodes the SI-associated ribonuclease (S-RNase), functioning as the female-specificity determinant of a gametophytic SI system. Despite extensive surveys in Malus domestica, the S-alleles have not been fully investigated for Malus sieversii, the primary wild ancestor of the domesticated apple. Here we screened the M. sieversii S-alleles via PCR amplification and sequencing, and identified 14 distinct alleles in this species. By contrast, nearly 40 are present in its close wild relative, Malus sylvestris. We further sequenced 8 nuclear genes to provide a neutral reference, and investigated the evolution of S-alleles via genealogical and population genetic analyses. Both shared ancestral polymorphism and an excess of non-synonymous substitution were detected in the S-RNases of the tribe Maleae in Rosaceae, indicating the action of long-term balancing selection. Approximate Bayesian Computations based on the reference neutral loci revealed a severe bottleneck in four of the six studied M. sieversii populations, suggesting that the low number of S-alleles found in this species is mainly the result of diversity loss due to a drastic population contraction. Such a bottleneck may lead to ambiguous footprints of ongoing balancing selection detected at the S-locus. This study not only elucidates the constituents and number of S-alleles in M. sieversii but also illustrates the potential utility of S-allele number shifts in demographic inference for self-incompatible plant species.

  5. MHC Class I Chain-Related Gene A Polymorphisms and Linkage Disequilibrium with HLA-B and HLA-C Alleles in Ocular Toxoplasmosis

    PubMed Central

    Ayo, Christiane Maria; Camargo, Ana Vitória da Silveira; Frederico, Fábio Batista; Siqueira, Rubens Camargo; Previato, Mariana; Murata, Fernando Henrique Antunes; Silveira-Carvalho, Aparecida Perpétuo; Barbosa, Amanda Pires; Brandão de Mattos, Cinara de Cássia; de Mattos, Luiz Carlos

    2015-01-01

    This study investigated whether polymorphisms of the MICA (major histocompatibility complex class I chain-related gene A) gene are associated with eye lesions due to Toxoplasma gondii infection in a group of immunocompetent patients from southeastern Brazil. The study enrolled 297 patients with serological diagnosis of toxoplasmosis. Participants were classified into two distinct groups after conducting fundoscopic exams according to the presence (n = 148) or absence (n = 149) of ocular scars/lesions due to toxoplasmosis. The group of patients with scars/lesions was further subdivided into two groups according to the type of the ocular manifestation observed: primary (n = 120) or recurrent (n = 28). Genotyping of the MICA and HLA alleles was performed by the polymerase chain reaction-sequence specific oligonucleotide technique (PCR-SSO; One Lambda®) and the MICA-129 polymorphism (rs1051792) was identified by nested polymerase chain reaction (PCR-RFLP). Significant associations involving MICA polymorphisms were not found. Although the MICA*002~HLA-B*35 haplotype was associated with increased risk of developing ocular toxoplasmosis (P-value = 0.04; OR = 2.20; 95% CI = 1.05–4.60), and the MICA*008~HLA-C*07 haplotype was associated with protection against the development of manifestations of ocular toxoplasmosis (P-value = 0.009; OR: 0.44; 95% CI: 0.22–0.76), these associations were not statistically significant after adjusting for multiple comparisons. MICA polymorphisms do not appear to influence the development of ocular lesions in patients diagnosed with toxoplasmosis in this study population. PMID:26672749

  6. A rapid and reliable PCR method for genotyping the ABO blood group. II: A2 and O2 alleles.

    PubMed

    O'Keefe, D S; Dobrovic, A

    1996-01-01

    PCR permits direct genotyping of individuals at the ABO locus. Several methods have been reported for genotyping ABO that rely on differentiating the A, B, and O alleles at specific base substitutions. However, the O allele as defined by serology comprises at least two alleles (O1 and O2) at the molecular level, and most current ABO genotyping methods only take into account the O1 allele. Determining the presence of the O2 allele is critical, as this not-infrequent allele would be mistyped as an A or a B allele by standard PCR typing methods. Furthermore, none of the methods to date distinguish between the A1 and A2 alleles, even though 10% of all white persons are blood group A2. We have developed a method for genotyping the ABO locus that takes the O2 and A2 alleles into account. Typing for A2 and O2 by diagnostic restriction enzyme digestion is a sensitive, nonradioactive assay that provides a convenient method useful for forensic and paternity testing and for clarifying anomalous serological results.

  7. Identification of Stmm3 locus Conferring Resistance to Late-stage Chemically Induced Skin Papillomas on Mouse Chromosome 4 by Congenic Mappingand Allele-specific Alteration Analysis

    PubMed Central

    Saito, Megumi; Okumura, Kazuhiro; Miura, Ikuo; Wakana, Shigeharu; Kominami, Ryo; Wakabayashi, Yuichi

    2014-01-01

    Genome-wide association studies have revealed that many low-penetrance cancer susceptibility loci are located throughout the genome; however, a very limited number of genes have been identified so far. Using a forward genetics approach to map such loci in a mouse skin cancer model, we previously identified strong genetic loci conferring resistance to chemically induced skin papillomas on chromosome 4 and 7 with a large number of [(FVB/N × MSM/Ms) F1 × FVB/N] backcross mice. In this report, we describe a combination of congenic mapping and allele-specific alteration analysis of the loci on chromosome 4. We used linkage analysis and a congenic mouse strain, FVB.MSM-Stmm3 to refine the location of Stmm3 (Skin tumor modifier of MSM 3) locus within a physical interval of about 34 Mb on distal chromosome 4. In addition, we used patterns of allele-specific imbalances in tumors from N2 and N10 congenic mice to narrow down further the region of Stmm3 locus to a physical distance of about 25 Mb. Furthermore, immunohistochemical analysis showed papillomas from congenic mice had less proliferative activity. These results suggest that Stmm3 responsible genes may have an influence on papilloma formation in the two-stage skin carcinogenesis by regulating papilloma growth rather than development. PMID:25077764

  8. Design principles of a microtubule polymerase

    PubMed Central

    Geyer, Elisabeth A; Miller, Matthew P; Brautigam, Chad A; Biggins, Sue

    2018-01-01

    Stu2/XMAP215 microtubule polymerases use multiple tubulin-binding TOG domains and a lattice-binding basic region to processively promote faster elongation. How the domain composition and organization of these proteins dictate polymerase activity, end localization, and processivity is unknown. We show that polymerase activity does not require different kinds of TOGs, nor are there strict requirements for how the TOGs are linked. We identify an unexpected antagonism between the tubulin-binding TOGs and the lattice-binding basic region: lattice binding by the basic region is weak when at least two TOGs engage tubulins, strong when TOGs are empty. End-localization of Stu2 requires unpolymerized tubulin, at least two TOGs, and polymerase competence. We propose a ‘ratcheting’ model for processivity: transfer of tubulin from TOGs to the lattice activates the basic region, retaining the polymerase at the end for subsequent rounds of tubulin binding and incorporation. These results clarify design principles of the polymerase. PMID:29897335

  9. BRF1 mutations alter RNA polymerase III–dependent transcription and cause neurodevelopmental anomalies

    PubMed Central

    Hög, Friederike; Dentici, Maria Lisa; Tan, Perciliz L.; Sowada, Nadine; Medeira, Ana; Gueneau, Lucie; Thiele, Holger; Kousi, Maria; Lepri, Francesca; Wenzeck, Larissa; Blumenthal, Ian; Radicioni, Antonio; Schwarzenberg, Tito Livio; Mandriani, Barbara; Fischetto, Rita; Morris-Rosendahl, Deborah J.; Altmüller, Janine; Reymond, Alexandre; Nürnberg, Peter; Merla, Giuseppe; Dallapiccola, Bruno; Katsanis, Nicholas; Cramer, Patrick; Kubisch, Christian

    2015-01-01

    RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III–related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development. PMID:25561519

  10. Prediction of striatal D2 receptor binding by DRD2/ANKK1 TaqIA allele status

    PubMed Central

    Eisenstein, Sarah A.; Bogdan, Ryan; Love-Gregory, Latisha; Corral-Frías, Nadia S.; Koller, Jonathan M.; Black, Kevin J.; Moerlein, Stephen M.; Perlmutter, Joel S.; Barch, Deanna M.; Hershey, Tamara

    2016-01-01

    In humans, the A1 (T) allele of the dopamine (DA) D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) TaqIA (rs1800497) single nucleotide polymorphism has been associated with reduced striatal DA D2/D3 receptor (D2/D3R) availability. However, radioligands used to estimate D2/D3R are displaceable by endogenous DA and are non-selective for D2R, leaving the relationship between TaqIA genotype and D2R specific binding uncertain. Using the positron emission tomography (PET) radioligand, (N‐[11C]methyl)benperidol ([11C]NMB), which is highly selective for D2R over D3R and is not displaceable by endogenous DA, the current study examined whether DRD2/ANKK1 TaqIA genotype predicts D2R specific binding in 2 independent samples. Sample 1 (n = 39) was composed of obese and non-obese adults; sample 2 (n = 18) was composed of healthy controls, unmedicated individuals with schizophrenia, and siblings of individuals with schizophrenia. Across both samples, A1 allele carriers (A1+) had 5-12% less striatal D2R specific binding relative to individuals homozygous for the A2 allele (A1−), regardless of body mass index or diagnostic group. This reduction is comparable to previous PET studies of D2/D3R availability (10-14%). The pooled effect size for the difference in total striatal D2R binding between A1+ and A1− was large (0.84). In summary, in line with studies using displaceable D2/D3R radioligands, our results indicate that DRD2/ANKK1 TaqIA allele status predicts striatal D2R specific binding as measured by D2R-selective [11C]NMB. These findings support the hypothesis that DRD2/ANKK1 TaqIA allele status may modify D2R, perhaps conferring risk for certain disease states. GRAPHICAL ABSTRACT We investigated the difference in striatal dopamine D2 receptor binding, as measured by PET with (N-[11C]methyl)benperidol ([11C]NMB), between A1 allele carriers (A1+) and individuals homozygous for the A2 allele (A1−) of the DRD2/ANKK1 TaqIA single nucleotide

  11. Understanding the loss-of-function in a triple missense mutant of DNA polymerase β found in prostate cancer.

    PubMed

    An, Changlong; Beard, William A; Chen, Desheng; Wilson, Samuel H; Makridakis, Nick M

    2013-10-01

    Human DNA polymerase (pol) β is essential for base excision repair. We previously reported a triple somatic mutant of pol β (p.P261L/T292A/I298T) found in an early onset prostate tumor. This mutation abolishes polymerase activity, and the wild-type allele was not present in the tumor, indicating a complete deficiency in pol β function. The effect on polymerase activity is unexpected because the point mutations that comprise the triple mutant are not part of the active site. Herein, we demonstrate the mechanism of this loss-of-function. In order to understand the effect of the individual point mutations we biochemically analyzed all single and double mutants that comprise the triple mutant. We found that the p.I298T mutation is responsible for a marked instability of the triple mutant protein at 37˚C. At room temperature the triple mutant's low efficiency is also due to a decrease in the apparent binding affinity for the dNTP substrate, which is due to the p.T292A mutation. Furthermore, the triple mutant displays lower fidelity for transversions in vitro, due to the p.T292A mutation. We conclude that distinct mutations of the triple pol β mutant are responsible for the loss of activity, lower fidelity, and instability observed in vitro.

  12. Direct measurement of the poliovirus RNA polymerase error frequency in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.D.; Stokes, M.A.M.; Flanegan, J.B.

    1988-02-01

    The fidelity of RNA replication by the poliovirus-RNA-dependent RNA polymerase was examined by copying homopolymeric RNA templates in vitro. The poliovirus RNA polymerase was extensively purified and used to copy poly(A), poly(C), or poly(I) templates with equimolar concentrations of noncomplementary and complementary ribonucleotides. The error frequency was expressed as the amount of a noncomplementary nucleotide incorporated divided by the total amount of complementary and noncomplementary nucleotide incorporated. The polymerase error frequencies were very high, depending on the specific reaction conditions. The activity of the polymerase on poly(U) and poly(G) was too low to measure error frequencies on these templates. Amore » fivefold increase in the error frequency was observed when the reaction conditions were changed from 3.0 mM Mg{sup 2+} (pH 7.0) to 7.0 mM Mg{sup 2+} (pH 8.0). This increase in the error frequency correlates with an eightfold increase in the elongation rate that was observed under the same conditions in a previous study.« less

  13. HLA-B*3531, a hybrid of B35 and B61, implications for diagnostic approaches to alleles with complex ancestral compositions.

    PubMed

    Elsner, H-A; Himmel, A; Steitz, M; Hammer, P; Schmitz, G; Ballas, M; Blasczyk, R

    2002-07-01

    The serological characterization of allelic variants that have been generated by large-scale interallelic recombination events indicates which residues may be involved in the formation of epitopes crucial for serological recognition. The allelic product of HLA-B*3531 is composed of B35 in its alpha1 domain and of B61(40) in its alpha2 domain. Both specificities are only weakly detectable with available sera. Allelic products with 'mixed' serology also represent a challenge to DNA-based HLA typing methods, as only the sequence motif of one ancestral allele may be recognized. In this case the hidden specificity would not be considered in the matching process and might not be recognized as an antigen 'unacceptable' to the recipient.

  14. Association of Allelic Interaction of Single Nucleotide Polymorphisms of Influx and Efflux Transporters Genes With Nonhematologic Adverse Events of Docetaxel in Breast Cancer Patients.

    PubMed

    Jabir, Rafid Salim; Ho, Gwo Fuang; Annuar, Muhammad Azrif Bin Ahmad; Stanslas, Johnson

    2018-05-04

    Nonhematologic adverse events (AEs) of docetaxel constitute an extra burden in the treatment of cancer patients and necessitate either a dose reduction or an outright switch of docetaxel for other regimens. These AEs are frequently associated with genetic polymorphisms of genes encoding for proteins involved docetaxel disposition. Therefore, we investigated that association in Malaysian breast cancer patients. A total of 110 Malaysian breast cancer patients were enrolled in the present study, and their blood samples were investigated for different single nucleotide polymorphisms using polymerase chain reaction restriction fragment length polymorphism. AEs were evaluated using the Common Terminology Criteria for Adverse Events, version 4.0. Fatigue, nausea, oral mucositis, and vomiting were the most common nonhematologic AEs. Rash was associated with heterozygous and mutant genotypes of ABCB1 3435C>T (P < .05). Moreover, patients carrying the GG genotype of ABCB1 2677G>A/T reported more fatigue than those carrying the heterozygous genotype GA (P < .05). The presence of ABCB1 3435-T, ABCC2 3972-C, ABCC2 1249-G, and ABCB1 2677-G alleles was significantly associated with nausea and oral mucositis. The coexistence of ABCB1 3435-C, ABCC2 3972-C, ABCC2 1249-G, and ABCB1 2677-A was significantly associated with vomiting (P < .05). The prevalence of nonhematologic AEs in breast cancer patients treated with docetaxel has been relatively high. The variant allele of ABCB1 3435C>T polymorphism could be a potential predictive biomarker of docetaxel-induced rash, and homozygous wild-type ABCB1 2677G>A/T might predict for a greater risk of fatigue. In addition, the concurrent presence of specific alleles could be predictive of vomiting, nausea, and oral mucositis. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Human minisatellite alleles detectable only after PCR amplification.

    PubMed

    Armour, J A; Crosier, M; Jeffreys, A J

    1992-01-01

    We present evidence that a proportion of alleles at two human minisatellite loci is undetected by standard Southern blot hybridization. In each case the missing allele(s) can be identified after PCR amplification and correspond to tandem arrays too short to detect by hybridization. At one locus, there is only one undetected allele (population frequency 0.3), which contains just three repeat units. At the second locus, there are at least five undetected alleles (total population frequency 0.9) containing 60-120 repeats; they are not detected because these tandem repeats give very poor signals when used as a probe in standard Southern blot hybridization, and also cross-hybridize with other sequences in the genome. Under these circumstances only signals from the longest tandemly repeated alleles are detectable above the nonspecific background. The structures of these loci have been compared in human and primate DNA, and at one locus the short human allele containing three repeat units is shown to be an intermediate state in the expansion of a monomeric precursor allele in primates to high copy number in the longer human arrays. We discuss the implications of such loci for studies of human populations, minisatellite isolation by cloning, and the evolution of highly variable tandem arrays.

  16. Mining the human phenome using allelic scores that index biological intermediates.

    PubMed

    Evans, David M; Brion, Marie Jo A; Paternoster, Lavinia; Kemp, John P; McMahon, George; Munafò, Marcus; Whitfield, John B; Medland, Sarah E; Montgomery, Grant W; Timpson, Nicholas J; St Pourcain, Beate; Lawlor, Debbie A; Martin, Nicholas G; Dehghan, Abbas; Hirschhorn, Joel; Smith, George Davey

    2013-10-01

    It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure

  17. [Cloning and sequencing of KIR2DL1 framework gene cDNA and identification of a novel allele].

    PubMed

    Sun, Ge; Wang, Chang; Zhen, Jianxin; Zhang, Guobin; Xu, Yunping; Deng, Zhihui

    2016-10-01

    To develop an assay for cDNA cloning and haplotype sequencing of KIR2DL1 framework gene and determine the genotype of an ethnic Han from southern China. Total RNA was isolated from peripheral blood sample, and complementary DNA (cDNA) transcript was synthesized by RT-PCR. The entire coding sequence of the KIR2DL1 framework gene was amplified with a pair of KIR2DL1-specific PCR primers. The PCR products with a length of approximately 1.2 kb were then subjected to cloning and haplotype sequencing. A specific target fragment of the KIR2DL1 framework gene was obtained. Following allele separation, a wild-type KIR2DL1*00302 allele and a novel variant allele, KIR2DL1*031, were identified. Sequence alignment with KIR2DL1 alleles from the IPD-KIR Database showed that the novel allele KIR2DL1*031 has differed from the closest allele KIR2DL1*00302 by a non-synonymous mutation at CDS nt 188A>G (codon 42 GAG>GGG) in exon 4, which has caused an amino acid change Glu42Gly. The sequence of the novel allele KIR2DL1*031 was submitted to GenBank under the accession number KP025960 and to the IPD-KIR Database under the submission number IWS40001982. A name KIR2DL1*031 has been officially assigned by the World Health Organization (WHO) Nomenclature Committee. An assay for cDNA cloning and haplotype sequencing of KIR2DL1 has been established, which has a broad applications in KIR studies at allelic level.

  18. Design of an F1 hybrid breeding strategy for ryegrasses based on selection of self-incompatibility locus-specific alleles

    PubMed Central

    Pembleton, Luke W.; Shinozuka, Hiroshi; Wang, Junping; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.

    2015-01-01

    Relatively modest levels of genetic gain have been achieved in conventional ryegrass breeding when compared to cereal crops such as maize, current estimates indicating an annual improvement of 0.25–0.6% in dry matter production. This property is partially due to an inability to effectively exploit heterosis through the formation of F1 hybrids. Controlled crossing of ryegrass lines from geographically distant origins has demonstrated the occurrence of heterosis, which can result in increases of dry matter production in the order of 25%. Although capture of hybrid vigor offers obvious advantages for ryegrass cultivar production, to date there have been no effective and commercially suitable methods for obtaining high proportions of F1 hybrid seed. Continued advances in fine-scale genetic and physical mapping of the gametophytic self-incompatibility (SI) loci (S and Z) of ryegrasses are likely in the near future to permit the identification of closely linked genetic markers that define locus-specific haplotypes, allowing prediction of allelic variants and hence compatibility between different plant genotypes. Given the availability of such information, a strategy for efficient generation of ryegrass cultivars with a high proportion of F1 hybrid individuals has been simulated, which is suitable for commercial implementation. Through development of two parental pools with restricted diversity at the SI loci, relative crossing compatibility between pools is increased. Based on simulation of various levels of SI allele diversity restriction, the most effective scheme will generate 83.33% F1 hybrids. Results from the study, including the impact of varying flowering time, are discussed along with a proposed breeding design for commercial application. PMID:26442077

  19. DNA polymerase preference determines PCR priming efficiency.

    PubMed

    Pan, Wenjing; Byrne-Steele, Miranda; Wang, Chunlin; Lu, Stanley; Clemmons, Scott; Zahorchak, Robert J; Han, Jian

    2014-01-30

    Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3' hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3' end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification efficiencies among three commercially

  20. Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation

    PubMed Central

    Cropley, Jennifer E.; Suter, Catherine M.; Beckman, Kenneth B.; Martin, David I. K.

    2006-01-01

    Environmental effects on phenotype can be mediated by epigenetic modifications. The epigenetic state of the murine Avy allele is highly variable, and determines phenotypic effects that vary in a mosaic spectrum that can be shifted by in utero exposure to methyl donor supplementation. We have asked if methyl donor supplementation affects the germ-line epigenetic state of the Avy allele. We find that the somatic epigenetic state of Avy is affected by in utero methyl donor supplementation only when the allele is paternally contributed. Exposure to methyl donor supplementation during midgestation shifts Avy phenotypes not only in the mice exposed as fetuses, but in their offspring. This finding indicates that methyl donors can change the epigenetic state of the Avy allele in the germ line, and that the altered state is retained through the epigenetic resetting that takes place in gametogenesis and embryogenesis. Thus a mother's diet may have an enduring influence on succeeding generations, independent of later changes in diet. Although other reports have suggested such heritable epigenetic changes, this study demonstrates that a specific mammalian gene can be subjected to germ-line epigenetic change. PMID:17101998

  1. Diverse vacA allelic types of Helicobacter pylori in Korea and clinical correlation.

    PubMed

    Choe, Yon Ho; Kim, Pum Soo; Lee, Don Haeng; Kim, Hyung Kil; Kim, Young Soo; Shin, Yong Woon; Hwang, Tae Sook; Kim, Hyeon Joo; Song, Sun Uk; Choi, Mi Sook

    2002-06-01

    Helicobacter pylori has a diversity of vacA allelic types. The purpose of this study was to correlate the vacA status and the clinical outcome. After constructing specific primers for the vacA signal sequence, H. pylori-positive antral biopsy specimens were examined for the vacA status in 25 gastric ulcers, 31 duodenal ulcers, 22 gastric cancers, 42 chronic gastritis, and 8 gastroduodenal ulcers. The relationship between the vacA allele and the clinical disease was examined. The vacA genotype s1c/m1 is predominant in Korea (71/128, 55.5%). Other strains including s1b or s2 were not found in this study. s1c/m1 was more prominent in duodenal ulcers, than in gastric ulcers (p=0.041) and cancer (p=0.029). Seven out of 8 patients with gastric and coexistent duodenal ulcers had the s1c/m1 allele. No statistical differences in the positive rates of the s1a/m1, s1a/m2, and s1c/m2 alleles among the disease groups were found. In conclusion, s1c/m1 is the main vacA allele in Korea and it is particularly associated with duodenal ulcers.

  2. HLA alleles influence the clinical signature of amoxicillin-clavulanate hepatotoxicity.

    PubMed

    Stephens, Camilla; López-Nevot, Miguel-Ángel; Ruiz-Cabello, Francisco; Ulzurrun, Eugenia; Soriano, Germán; Romero-Gómez, Manuel; Moreno-Casares, Antonia; Lucena, M Isabel; Andrade, Raúl J

    2013-01-01

    The genotype-phenotype interaction in drug-induced liver injury (DILI) is a subject of growing interest. Previous studies have linked amoxicillin-clavulanate (AC) hepatotoxicity susceptibility to specific HLA alleles. In this study we aimed to examine potential associations between HLA class I and II alleles and AC DILI with regards to phenotypic characteristics, severity and time to onset in Spanish AC hepatotoxicity cases. High resolution genotyping of HLA loci A, B, C, DRB1 and DQB1 was performed in 75 AC DILI cases and 885 controls. The distributions of class I alleles A*3002 (P/Pc = 2.6E-6/5E-5, OR 6.7) and B*1801 (P/Pc = 0.008/0.22, OR 2.9) were more frequently found in hepatocellular injury cases compared to controls. In addition, the presence of the class II allele combination DRB1*1501-DQB1*0602 (P/Pc = 5.1E-4/0.014, OR 3.0) was significantly increased in cholestatic/mixed cases. The A*3002 and/or B*1801 carriers were found to be younger (54 vs 65 years, P = 0.019) and were more frequently hospitalized than the DRB1*1501-DQB1*0602 carriers. No additional alleles outside those associated with liver injury patterns were found to affect potential severity as measured by Hy's Law criteria. The phenotype frequencies of B*1801 (P/Pc = 0.015/0.42, OR 5.2) and DRB1*0301-DQB1*0201 (P/Pc = 0.0026/0.07, OR 15) were increased in AC DILI cases with delayed onset compared to those corresponding to patients without delayed onset, while the opposite applied to DRB1*1302-DQB1*0604 (P/Pc = 0.005/0.13, OR 0.07). HLA class I and II alleles influence the AC DILI signature with regards to phenotypic expression, latency presentation and severity in Spanish patients.

  3. HLA Alleles Influence the Clinical Signature of Amoxicillin-Clavulanate Hepatotoxicity

    PubMed Central

    Stephens, Camilla; López-Nevot, Miguel-Ángel; Ruiz-Cabello, Francisco; Ulzurrun, Eugenia; Soriano, Germán; Romero-Gómez, Manuel; Moreno-Casares, Antonia; Lucena, M. Isabel; Andrade, Raúl J.

    2013-01-01

    Background and Aim The genotype-phenotype interaction in drug-induced liver injury (DILI) is a subject of growing interest. Previous studies have linked amoxicillin-clavulanate (AC) hepatotoxicity susceptibility to specific HLA alleles. In this study we aimed to examine potential associations between HLA class I and II alleles and AC DILI with regards to phenotypic characteristics, severity and time to onset in Spanish AC hepatotoxicity cases. Methods High resolution genotyping of HLA loci A, B, C, DRB1 and DQB1 was performed in 75 AC DILI cases and 885 controls. Results The distributions of class I alleles A*3002 (P/Pc = 2.6E-6/5E-5, OR 6.7) and B*1801 (P/Pc = 0.008/0.22, OR 2.9) were more frequently found in hepatocellular injury cases compared to controls. In addition, the presence of the class II allele combination DRB1*1501-DQB1*0602 (P/Pc = 5.1E-4/0.014, OR 3.0) was significantly increased in cholestatic/mixed cases. The A*3002 and/or B*1801 carriers were found to be younger (54 vs 65 years, P = 0.019) and were more frequently hospitalized than the DRB1*1501-DQB1*0602 carriers. No additional alleles outside those associated with liver injury patterns were found to affect potential severity as measured by Hy’s Law criteria. The phenotype frequencies of B*1801 (P/Pc = 0.015/0.42, OR 5.2) and DRB1*0301-DQB1*0201 (P/Pc = 0.0026/0.07, OR 15) were increased in AC DILI cases with delayed onset compared to those corresponding to patients without delayed onset, while the opposite applied to DRB1*1302-DQB1*0604 (P/Pc = 0.005/0.13, OR 0.07). Conclusions HLA class I and II alleles influence the AC DILI signature with regards to phenotypic expression, latency presentation and severity in Spanish patients. PMID:23874514

  4. Natural Allelic Variations in Highly Polyploidy Saccharum Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jian; Yang, Xiping; Resende, Jr., Marcio F. R.

    Sugarcane ( Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designedmore » based on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWAmem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non-redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp. diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. Furthermore, the target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes.« less

  5. Natural Allelic Variations in Highly Polyploidy Saccharum Complex

    DOE PAGES

    Song, Jian; Yang, Xiping; Resende, Jr., Marcio F. R.; ...

    2016-06-08

    Sugarcane ( Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designedmore » based on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWAmem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non-redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp. diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. Furthermore, the target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes.« less

  6. Alleles versus mutations: Understanding the evolution of genetic architecture requires a molecular perspective on allelic origins.

    PubMed

    Remington, David L

    2015-12-01

    Perspectives on the role of large-effect quantitative trait loci (QTL) in the evolution of complex traits have shifted back and forth over the past few decades. Different sets of studies have produced contradictory insights on the evolution of genetic architecture. I argue that much of the confusion results from a failure to distinguish mutational and allelic effects, a limitation of using the Fisherian model of adaptive evolution as the lens through which the evolution of adaptive variation is examined. A molecular-based perspective reveals that allelic differences can involve the cumulative effects of many mutations plus intragenic recombination, a model that is supported by extensive empirical evidence. I discuss how different selection regimes could produce very different architectures of allelic effects under a molecular-based model, which may explain conflicting insights on genetic architecture from studies of variation within populations versus between divergently selected populations. I address shortcomings of genome-wide association study (GWAS) practices in light of more suitable models of allelic evolution, and suggest alternate GWAS strategies to generate more valid inferences about genetic architecture. Finally, I discuss how adopting more suitable models of allelic evolution could help redirect research on complex trait evolution toward addressing more meaningful questions in evolutionary biology. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  7. A novel variant of DNA polymerase ζ, Rev3ΔC, highlights differential regulation of Pol32 as a subunit of polymerase δ versus ζ in Saccharomyces cerevisiae

    PubMed Central

    Siebler, Hollie M.; Lada, Artem G.; Baranovskiy, Andrey G.; Tahirov, Tahir H.; Pavlov, Youri I.

    2014-01-01

    Unrepaired DNA lesions often stall replicative DNA polymerases and are bypassed by translesion synthesis (TLS) to prevent replication fork collapse. Mechanisms of TLS are lesion- and species-specific, with a prominent role of specialized DNA polymerases with relaxed active sites. After nucleotide(s) are incorporated across from the altered base(s), the aberrant primer termini are typically extended by DNA polymerase ζ (pol ζ). As a result, pol ζ is responsible for most DNA damage-induced mutations. The mechanisms of sequential DNA polymerase switches in vivo remain unclear. The major replicative DNA polymerase δ (pol δ) shares two accessory subunits, called Pol31/Pol32 in yeast, with pol ζ. Inclusion of Pol31/Pol32 in the pol δ/pol ζ holoenzymes requires a [4Fe–4S] cluster in C-termini of the catalytic subunits. Disruption of this cluster in Pol ζ or deletion of POL32 attenuates induced mutagenesis. Here we describe a novel mutation affecting the catalytic subunit of pol ζ, rev3ΔC, which provides insight into the regulation of pol switches. Strains with Rev3ΔC, lacking the entire C-terminal domain and therefore the platform for Pol31/Pol32 binding, are partially proficient in Pol32-dependent UV-induced mutagenesis. This suggests an additional role of Pol32 in TLS, beyond being a pol ζ subunit, related to pol δ. In search for members of this regulatory pathway, we examined the effects of Maintenance of Genome Stability 1 (Mgs1) protein on mutagenesis in the absence of Rev3–Pol31/Pol32 interaction. Mgs1 may compete with Pol32 for binding to PCNA. Mgs1 overproduction suppresses induced mutagenesis, but had no effect on UV-mutagenesis in the rev3ΔC strain, suggesting that Mgs1 exerts its inhibitory effect by acting specifically on Pol32 bound to pol ζ. The evidence for differential regulation of Pol32 in pol δ and pol ζ emphasizes the complexity of polymerase switches. PMID:24819597

  8. Recombinase Polymerase Amplification-Based Assay to Diagnose Giardia in Stool Samples

    PubMed Central

    Crannell, Zachary Austin; Cabada, Miguel Mauricio; Castellanos-Gonzalez, Alejandro; Irani, Ayesha; White, Arthur Clinton; Richards-Kortum, Rebecca

    2015-01-01

    Giardia duodenalis is one of the most commonly identified parasites in stool samples. Although relatively easy to treat, giardiasis can be difficult to detect as it presents similar to other diarrheal diseases. Here, we present a recombinase polymerase amplification-based Giardia (RPAG) assay to detect the presence of Giardia in stool samples. The RPAG assay was characterized on the bench top using stool samples spiked with Giardia cysts where it showed a limit-of-detection nearly as low as the gold standard polymerase chain reaction assay. The RPAG assay was then tested in the highlands of Peru on 104 stool samples collected from the surrounding communities where it showed 73% sensitivity and 95% specificity against a polymerase chain reaction and microscopy composite gold standard. Further improvements in clinical sensitivity will be needed for the RPAG assay to have clinical relevance. PMID:25510713

  9. Specific detection of Neospora caninum oocysts in fecal samples from experimentally-infected dogs using the polymerase chain reaction.

    PubMed

    Hill, D E; Liddell, S; Jenkins, M C; Dubey, J P

    2001-04-01

    Neospora caninum oocysts, passed in the feces of a definitive host (dog), were isolated, and genomic DNA was extracted. A polymerase cahin reaction (PCR) targeting the N. caninum-specific Nc 5 genomic sequence was performed using the isolated DNA. A synthesized competitor molecule containing part of the Nc 5 sequence was included in the assay as a check against false-negative PCR results and to quantify N. caninum oocyst DNA in fecal samples. A standard curve of the ratio of fluorescence intensity of PCR-amplified competitor to that of oocyst DNA was constructed to compare oocyst equivalents from fecal samples containing unknown numbers of N. caninum oocysts and to assess the sensitivity of the assay. The specificity of the assay was determined using the Nc 5-specific primers in PCR assays against other parasites likely to be found in canine feces. Genomic DNA sequences from the canine coccidians Hammondia heydorni, Cryptosporidium parvum, Sarcocystis cruzi, S. tenella, and Isospora ohioensis and the canine helminth parasites Strongyloides stercoralis, Toxocara canis, Dipylidium caninum, and Ancylostoma caninum were not amplified. In addition, genomic DNA sequences from oocysts of coccidian parasites that might contaminate dog feces, such as Hammondia hammondi, Toxoplasma gondii, or Eimeria tenella, were not amplified in the PCR assay. The assay should be useful in epidemiological surveys of both domestic and wild canine hosts and in investigations of oocyst biology in experimental infections.

  10. Caucasian and Asian Specific Rheumatoid Arthritis Risk Loci Reveal Limited Replication and Apparent Allelic Heterogeneity in North Indians

    PubMed Central

    Prasad, Pushplata; Kumar, Ashok; Gupta, Rajiva; Juyal, Ramesh C.; B. K., Thelma

    2012-01-01

    Genome-wide association studies and meta-analysis indicate that several genes/loci are consistently associated with rheumatoid arthritis (RA) in European and Asian populations. To evaluate the transferability status of these findings to an ethnically diverse north Indian population, we performed a replication analysis. We investigated the association of 47 single-nucleotide polymorphisms (SNPs) at 43 of these genes/loci with RA in a north Indian cohort comprising 983 RA cases and 1007 age and gender matched controls. Genotyping was done using Infinium human 660w-quad. Association analysis by chi-square test implemented in plink was carried out in two steps. Firstly, association of the index or surrogate SNP (r2>0.8, calculated from reference GIH Hap-Map population) was tested. In the second step, evidence for allelic/locus heterogeneity at aforementioned genes/loci was assessed for by testing additional flanking SNPs in linkage equilibrium with index/surrogate marker. Of the 44 European specific index SNPs, neither index nor surrogate SNPs were present for nine SNPs in the genotyping array. Of the remaining 35, associations were replicated at seven genes namely PTPN22 (rs1217407, p = 3×10−3); IL2–21 (rs13119723, p = 0.008); HLA-DRB1 (rs660895, p = 2.56×10−5; rs6457617, p = 1.6×10−09; rs13192471, p = 6.7×10−16); TNFA1P3 (rs9321637, p = 0.03); CCL21 (rs13293020, p = 0.01); IL2RA (rs2104286, p = 1.9×10−4) and ZEB1 (rs2793108, p = 0.006). Of the three Asian specific loci tested, rs2977227 in PADI4 showed modest association (p<0.02). Further, of the 140 SNPs (in LE with index/surrogate variant) tested, association was observed at 11 additional genes: PTPRC, AFF3, CD28, CTLA4, PXK, ANKRD55, TAGAP, CCR6, BLK, CD40 and IL2RB. This study indicates limited replication of European and Asian index SNPs and apparent allelic heterogeneity in RA etiology among north Indians warranting independent GWAS in this population

  11. Blocked recombinase polymerase amplification for mutation analysis of PIK3CA gene.

    PubMed

    Martorell, Sara; Palanca, Sarai; Maquieira, Ángel; Tortajada-Genaro, Luis A

    2018-03-01

    A blocked recombinase polymerase amplification (blocked-RPA) approach has been developed for the enrichment of mutated templates in heterogeneous specimens as tumor tissues. This isothermal amplification technique opens alternative solutions for meeting the technological demand of physician office laboratories. Herein, the detection of mutations in PIK3CA gene, such as p.E545K, and p.H1047L, is presented. The main element was an oligonucleotide (dideoxycytidine functionalized at 3'-end) which matched with wild-type sequence in the target locus. The amplification was performed operating at 37 °C during 40 min. The results demonstrated that the competition between the upstream primer and the blocker reduced the percentage of amplified wild-type allele, making the detection of the present mutation easier. For mutation discrimination, a fast hybridization assay was performed in microarray format on plastic chip and colorimetric detection. This approach enabled the reliable discrimination of specific mutations against a background of up to 95% wild-type DNA. The applicability of the method, based on the combination of blocked-RPA and low-cost chip hybridization, was successfully proven for the genotyping of various cancer cell lines as well as tumor tissues. The assignations agreed with those provided by next-generation sequencing. Therefore, these investigations would support a personalized approach to patient care based on the molecular signature of human cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Type 2 Diabetes Risk Alleles Demonstrate Extreme Directional Differentiation among Human Populations, Compared to Other Diseases

    PubMed Central

    Chen, Rong; Corona, Erik; Sikora, Martin; Dudley, Joel T.; Morgan, Alex A.; Moreno-Estrada, Andres; Nilsen, Geoffrey B.; Ruau, David; Lincoln, Stephen E.; Bustamante, Carlos D.; Butte, Atul J.

    2012-01-01

    Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D) demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may contribute to the observed

  13. Heat-shock-specific phosphorylation and transcriptional activity of RNA polymerase II.

    PubMed

    Egyházi, E; Ossoinak, A; Lee, J M; Greenleaf, A L; Mäkelä, T P; Pigon, A

    1998-07-10

    The carboxyl-terminal domain (CTD) of the largest RNA polymerase II (pol II) subunit is a target for extensive phosphorylation in vivo. Using in vitro kinase assays it was found that several different protein kinases can phosphorylate the CTD including the transcription factor IIH-associated CDK-activating CDK7 kinase (R. Roy, J. P. Adamczewski, T. Seroz, W. Vermeulen, J. P. Tassan, L. Schaeffer, E. A. Nigg, J. H. Hoeijmakers, and J. M. Egly, 1994, Cell 79, 1093-1101). Here we report the colocalization of CDK7 and the phosphorylated form of CTD (phosphoCTD) to actively transcribing genes in intact salivary gland cells of Chironomus tentans. Following a heat-shock treatment, both CDK7 and pol II staining disappear from non-heat-shock genes concomitantly with the abolishment of transcriptional activity of these genes. In contrast, the actively transcribing heat-shock genes, manifested as chromosomal puff 5C on chromosome IV (IV-5C), stain intensely for phosphoCTD, but are devoid of CDK7. Furthermore, the staining of puff IV-5C with anti-PCTD antibodies was not detectably influenced by the TFIIH kinase and transcription inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). Following heat-shock treatment, the transcription of non-heat-shock genes was completely eliminated, while newly formed heat-shock gene transcripts emerged in a DRB-resistant manner. Thus, heat shock in these cells induces a rapid clearance of CDK7 from the non-heat-shock genes, indicating a lack of involvement of CDK7 in the induction and function of the heat-induced genes. The results taken together suggest the existence of heat-shock-specific CTD phosphorylation in living cells. This phosphorylation is resistant to DRB treatment, suggesting that not only phosphorylation but also transcription of heat-shock genes is DRB resistant and that CDK7 in heat shock cells is not associated with TFIIH.

  14. Different domains of the murine RNA polymerase I-specific termination factor mTTF-I serve distinct functions in transcription termination.

    PubMed

    Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I

    1995-03-15

    Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions.

  15. Different domains of the murine RNA polymerase I-specific termination factor mTTF-I serve distinct functions in transcription termination.

    PubMed Central

    Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I

    1995-01-01

    Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions. Images PMID:7720715

  16. Homology between DNA polymerases of poxviruses, herpesviruses, and adenoviruses: nucleotide sequence of the vaccinia virus DNA polymerase gene.

    PubMed Central

    Earl, P L; Jones, E V; Moss, B

    1986-01-01

    A 5400-base-pair segment of the vaccinia virus genome was sequenced and an open reading frame of 938 codons was found precisely where the DNA polymerase had been mapped by transfer of a phosphonoacetate-resistance marker. A single nucleotide substitution changing glycine at position 347 to aspartic acid accounts for the drug resistance of the mutant vaccinia virus. The 5' end of the DNA polymerase mRNA was located 80 base pairs before the methionine codon initiating the open reading frame. Correspondence between the predicted Mr 108,577 polypeptide and the 110,000 purified enzyme indicates that little or no proteolytic processing occurs. Extensive homology, extending over 435 amino acids, was found upon comparing the DNA polymerase of vaccinia virus and DNA polymerase of Epstein-Barr virus. A highly conserved sequence of 14 amino acids in the carboxyl-terminal regions of the above DNA polymerases is also present at a similar location in adenovirus DNA polymerase. This structure, which is predicted to form a turn flanked by beta-pleated sheets, may form part of an essential binding or catalytic site that accounts for its presence in DNA polymerases of poxviruses, herpesviruses, and adenoviruses. Images PMID:3012524

  17. Two Orangutan Species Have Evolved Different KIR Alleles and Haplotypes1

    PubMed Central

    Guethlein, Lisbeth A.; Norman, Paul J.; Heijmans, Corinne M. C.; de Groot, Natasja G.; Hilton, Hugo G.; Babrzadeh, Farbod; Abi-Rached, Laurent; Bontrop, Ronald E.; Parham, Peter

    2017-01-01

    The immune and reproductive functions of human Natural Killer (NK) cells are regulated by interactions of the C1 and C2 epitopes of HLA-C with C1-specific and C2-specific lineage III killer cell immunoglobulin-like receptors (KIR). This rapidly evolving and diverse system of ligands and receptors is restricted to humans and great apes. In this context, the orangutan has particular relevance because it represents an evolutionary intermediate, one having the C1 epitope and corresponding KIR, but lacking the C2 epitope. Through a combination of direct sequencing, KIR genotyping and data mining from the Great Ape Genome Project (GAGP) we characterized the KIR alleles and haplotypes for panels of ten Bornean orangutans and 19 Sumatran orangutans. The orangutan KIR haplotypes have between five and ten KIR genes. The seven orangutan lineage III KIR genes all locate to the centromeric region of the KIR locus, whereas their human counterparts also populate the telomeric region. One lineage III KIR gene is Bornean-specific, one is Sumatran-specific and five are shared. Of twelve KIR gene-content haplotypes five are Bornean-specific, five are Sumatran-specific and two are shared. The haplotypes have different combinations of genes encoding activating and inhibitory C1 receptors that can be of higher or lower affinity. All haplotypes encode an inhibitory C1 receptor, but only some haplotypes encode an activating C1 receptor. Of 130 KIR alleles, 55 are Bornean-specific, 65 are Sumatran specific and ten are shared. PMID:28264973

  18. Nucleation and Spread of an Invasive Allele

    NASA Astrophysics Data System (ADS)

    Korniss, Gyorgy; Caraco, Thomas

    2005-03-01

    We analyze a prototypical discrete spatial model for the spread of an invasive allele when individuals compete preemptively for common limiting resources. Initially, the population is genetically monomorphic with the resident allele at high density. The invasive allele is introduced through rare, but recurrent, mutation. The mutant allele is the better competitor (has an individual-level advantage) but its spread is limited by the local availability of resources. We find that each successful introduction of the mutant leads to strong spatial clustering. Spatial patterns in simulation resemble nucleation and subsequent growth, articulately described by Avrami's law in sufficiently large systemsootnotetextG. Korniss and T. Caraco, J. Theor. Biol. (in press, 2004); http://www.rpi.edu/ korniss/Research/JTB04.pdf.

  19. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution.

    PubMed

    Bera, Bidhan Ch; Virmani, Nitin; Kumar, Naveen; Anand, Taruna; Pavulraj, S; Rash, Adam; Elton, Debra; Rash, Nicola; Bhatia, Sandeep; Sood, Richa; Singh, Raj Kumar; Tripathi, Bhupendra Nath

    2017-08-23

    Equine influenza is a major health problem of equines worldwide. The polymerase genes of influenza virus have key roles in virus replication, transcription, transmission between hosts and pathogenesis. Hence, the comprehensive genetic and codon usage bias of polymerase genes of equine influenza virus (EIV) were analyzed to elucidate the genetic and evolutionary relationships in a novel perspective. The group - specific consensus amino acid substitutions were identified in all polymerase genes of EIVs that led to divergence of EIVs into various clades. The consistent amino acid changes were also detected in the Florida clade 2 EIVs circulating in Europe and Asia since 2007. To study the codon usage patterns, a total of 281,324 codons of polymerase genes of EIV H3N8 isolates from 1963 to 2015 were systemically analyzed. The polymerase genes of EIVs exhibit a weak codon usage bias. The ENc-GC3s and Neutrality plots indicated that natural selection is the major influencing factor of codon usage bias, and that the impact of mutation pressure is comparatively minor. The methods for estimating host imposed translation pressure suggested that the polymerase acidic (PA) gene seems to be under less translational pressure compared to polymerase basic 1 (PB1) and polymerase basic 2 (PB2) genes. The multivariate statistical analysis of polymerase genes divided EIVs into four evolutionary diverged clusters - Pre-divergent, Eurasian, Florida sub-lineage 1 and 2. Various lineage specific amino acid substitutions observed in all polymerase genes of EIVs and especially, clade 2 EIVs underwent major variations which led to the emergence of a phylogenetically distinct group of EIVs originating from Richmond/1/07. The codon usage bias was low in all the polymerase genes of EIVs that was influenced by the multiple factors such as the nucleotide compositions, mutation pressure, aromaticity and hydropathicity. However, natural selection was the major influencing factor in defining the

  20. Association of HLA-A, B, DRB1 alleles and haplotypes with HIV-1 infection in Chongqing, China

    PubMed Central

    2009-01-01

    Background The human immunodeficiency virus type 1(HIV-1) epidemic in Chongqing, China, is increasing rapidly with the dominant subtype of CRF07_BC over the past 3 years. Since human leukocyte antigen (HLA) polymorphisms have shown strong association with susceptibility/resistance to HIV-1 infection from individuals with different ethnic backgrounds, a recent investigation on frequencies of HLA class I and class II alleles in a Chinese cohort also indicated that similar correlation existed in HIV infected individuals from several provinces in China, however, such information is unavailable in Chongqing, southwest China. Methods In this population-based study, we performed polymerase chain reaction analysis with sequence-specific oligonucleotide probes (PCR-SSOP) for intermediate-low-resolution HLA typing in a cohort of 549 HIV-1 infected individuals, another 2475 healthy subjects from the Han nationality in Chongqing, China, were selected as population control. We compared frequencies of HLA-A, B, DRB1 alleles, haplotypes and genotypes between the two groups, and analyzed their association with HIV-1 susceptibility or resistance. Results The genetic profile of HLA (A, B, DRB1) alleles of HIV-1 infected individuals from Chongqing Han of China was obtained. Several alleles of HLA-B such as B*46 (P = 0.001, OR = 1.38, 95%CI = 1.13-1.68), B*1501G(B62) (P = 0.013, OR = 1.42, 95%CI = 1.08-1.88), B*67 (P = 0.022, OR = 2.76, 95%CI = 1.16-6.57), B*37 (P = 0.014, OR = 1.93, 95%CI = 1.14-3.28) and B*52 (P = 0.038, OR = 1.64, 95%CI = 1.03-2.61) were observed to have association with susceptibility to HIV-1 infection in this population. In addition, the haplotype analysis revealed that A*11-B*46, A*24-B*54 and A*01-B*37 for 2-locus, and A*11-B*46-DRB1*09, A*02-B*46-DRB1*08, A*11-B*4001G-DRB1*15, A*02-B*4001G-DRB1*04, A*11-B*46-DRB1*08 and A*02-B*4001G-DRB1*12 for 3-locus had significantly overrepresented in HIV-1 infected individuals, whereas A*11-B*1502G, A*11-B*1502G-DRB1

  1. Association of HLA-A, B, DRB1 alleles and haplotypes with HIV-1 infection in Chongqing, China.

    PubMed

    Huang, Xia; Ling, Hua; Mao, Wei; Ding, Xianbin; Zhou, Quanhua; Han, Mei; Wang, Fang; Cheng, Lei; Xiong, Hongyan

    2009-12-12

    The human immunodeficiency virus type 1(HIV-1) epidemic in Chongqing, China, is increasing rapidly with the dominant subtype of CRF07_BC over the past 3 years. Since human leukocyte antigen (HLA) polymorphisms have shown strong association with susceptibility/resistance to HIV-1 infection from individuals with different ethnic backgrounds, a recent investigation on frequencies of HLA class I and class II alleles in a Chinese cohort also indicated that similar correlation existed in HIV infected individuals from several provinces in China, however, such information is unavailable in Chongqing, southwest China. In this population-based study, we performed polymerase chain reaction analysis with sequence-specific oligonucleotide probes (PCR-SSOP) for intermediate-low-resolution HLA typing in a cohort of 549 HIV-1 infected individuals, another 2475 healthy subjects from the Han nationality in Chongqing, China, were selected as population control. We compared frequencies of HLA-A, B, DRB1 alleles, haplotypes and genotypes between the two groups, and analyzed their association with HIV-1 susceptibility or resistance. The genetic profile of HLA (A, B, DRB1) alleles of HIV-1 infected individuals from Chongqing Han of China was obtained. Several alleles of HLA-B such as B*46 (P = 0.001, OR = 1.38, 95%CI = 1.13-1.68), B*1501G(B62) (P = 0.013, OR = 1.42, 95%CI = 1.08-1.88), B*67 (P = 0.022, OR = 2.76, 95%CI = 1.16-6.57), B*37 (P = 0.014, OR = 1.93, 95%CI = 1.14-3.28) and B*52 (P = 0.038, OR = 1.64, 95%CI = 1.03-2.61) were observed to have association with susceptibility to HIV-1 infection in this population. In addition, the haplotype analysis revealed that A*11-B*46, A*24-B*54 and A*01-B*37 for 2-locus, and A*11-B*46-DRB1*09, A*02-B*46-DRB1*08, A*11-B*4001G-DRB1*15, A*02-B*4001G-DRB1*04, A*11-B*46-DRB1*08 and A*02-B*4001G-DRB1*12 for 3-locus had significantly overrepresented in HIV-1 infected individuals, whereas A*11-B*1502G, A*11-B*1502G-DRB1*12 and A*33-B*58-DRB1*13 were

  2. Comprehensive analysis of DNA polymerase III α subunits and their homologs in bacterial genomes

    PubMed Central

    Timinskas, Kęstutis; Balvočiūtė, Monika; Timinskas, Albertas; Venclovas, Česlovas

    2014-01-01

    The analysis of ∼2000 bacterial genomes revealed that they all, without a single exception, encode one or more DNA polymerase III α-subunit (PolIIIα) homologs. Classified into C-family of DNA polymerases they come in two major forms, PolC and DnaE, related by ancient duplication. While PolC represents an evolutionary compact group, DnaE can be further subdivided into at least three groups (DnaE1-3). We performed an extensive analysis of various sequence, structure and surface properties of all four polymerase groups. Our analysis suggests a specific evolutionary pathway leading to PolC and DnaE from the last common ancestor and reveals important differences between extant polymerase groups. Among them, DnaE1 and PolC show the highest conservation of the analyzed properties. DnaE3 polymerases apparently represent an ‘impaired’ version of DnaE1. Nonessential DnaE2 polymerases, typical for oxygen-using bacteria with large GC-rich genomes, have a number of features in common with DnaE3 polymerases. The analysis of polymerase distribution in genomes revealed three major combinations: DnaE1 either alone or accompanied by one or more DnaE2s, PolC + DnaE3 and PolC + DnaE1. The first two combinations are present in Escherichia coli and Bacillus subtilis, respectively. The third one (PolC + DnaE1), found in Clostridia, represents a novel, so far experimentally uncharacterized, set. PMID:24106089

  3. Polymorphisms in PTK2 are associated with skeletal muscle specific force: an independent replication study.

    PubMed

    Stebbings, Georgina K; Williams, A G; Morse, C I; Day, S H

    2017-04-01

    The aim of the study was to investigate two single nucleotide polymorphisms (SNP) in PTK2 for associations with human muscle strength phenotypes in healthy men. Measurement of maximal isometric voluntary knee extension (MVC KE ) torque, net MVC KE torque and vastus lateralis (VL) specific force, using established techniques, was completed on 120 Caucasian men (age = 20.6 ± 2.3 year; height = 1.79 ± 0.06 m; mass = 75.0 ± 10.0 kg; mean ± SD). All participants provided either a blood (n = 96) or buccal cell sample, from which DNA was isolated and genotyped for the PTK2 rs7843014 A/C and rs7460 A/T SNPs using real-time polymerase chain reaction. Genotype frequencies for both SNPs were in Hardy-Weinberg equilibrium (X 2  ≤ 1.661, P ≥ 0.436). VL specific force was 8.3% higher in rs7843014 AA homozygotes than C-allele carriers (P = 0.017) and 5.4% higher in rs7460 AA homozygotes than T-allele carriers (P = 0.029). No associations between either SNP and net MVC KE torque (P ≥ 0.094) or peak MVC KE torque (P ≥ 0.107) were observed. These findings identify a genetic contribution to the inter-individual variability within muscle specific force and provides the first independent replication, in a larger Caucasian cohort, of an association between these PTK2 SNPs and muscle specific force, thus extending our understanding of the influence of genetic variation on the intrinsic strength of muscle.

  4. Recombinase polymerase amplification-based assay to diagnose Giardia in stool samples.

    PubMed

    Crannell, Zachary Austin; Cabada, Miguel Mauricio; Castellanos-Gonzalez, Alejandro; Irani, Ayesha; White, Arthur Clinton; Richards-Kortum, Rebecca

    2015-03-01

    Giardia duodenalis is one of the most commonly identified parasites in stool samples. Although relatively easy to treat, giardiasis can be difficult to detect as it presents similar to other diarrheal diseases. Here, we present a recombinase polymerase amplification-based Giardia (RPAG) assay to detect the presence of Giardia in stool samples. The RPAG assay was characterized on the bench top using stool samples spiked with Giardia cysts where it showed a limit-of-detection nearly as low as the gold standard polymerase chain reaction assay. The RPAG assay was then tested in the highlands of Peru on 104 stool samples collected from the surrounding communities where it showed 73% sensitivity and 95% specificity against a polymerase chain reaction and microscopy composite gold standard. Further improvements in clinical sensitivity will be needed for the RPAG assay to have clinical relevance. © The American Society of Tropical Medicine and Hygiene.

  5. Use of allele scores as instrumental variables for Mendelian randomization

    PubMed Central

    Burgess, Stephen; Thompson, Simon G

    2013-01-01

    Background An allele score is a single variable summarizing multiple genetic variants associated with a risk factor. It is calculated as the total number of risk factor-increasing alleles for an individual (unweighted score), or the sum of weights for each allele corresponding to estimated genetic effect sizes (weighted score). An allele score can be used in a Mendelian randomization analysis to estimate the causal effect of the risk factor on an outcome. Methods Data were simulated to investigate the use of allele scores in Mendelian randomization where conventional instrumental variable techniques using multiple genetic variants demonstrate ‘weak instrument’ bias. The robustness of estimates using the allele score to misspecification (for example non-linearity, effect modification) and to violations of the instrumental variable assumptions was assessed. Results Causal estimates using a correctly specified allele score were unbiased with appropriate coverage levels. The estimates were generally robust to misspecification of the allele score, but not to instrumental variable violations, even if the majority of variants in the allele score were valid instruments. Using a weighted rather than an unweighted allele score increased power, but the increase was small when genetic variants had similar effect sizes. Naive use of the data under analysis to choose which variants to include in an allele score, or for deriving weights, resulted in substantial biases. Conclusions Allele scores enable valid causal estimates with large numbers of genetic variants. The stringency of criteria for genetic variants in Mendelian randomization should be maintained for all variants in an allele score. PMID:24062299

  6. RNA Polymerase in Mumps Virion

    PubMed Central

    Bernard, Jacqueline P.; Northrop, Robert L.

    1974-01-01

    Mumps virions of the Enders' strain were examined for polymerase activity in vitro. An RNA-dependent RNA polymerase was found to be associated with the virion. The general properties of the reaction appear to be similar to those described for other paramyxoviruses. PMID:4836602

  7. DNA Polymerase Eta and Chemotherapeutic Agents

    PubMed Central

    2011-01-01

    Abstract The discovery of human DNA polymerase eta (pol η) has a major impact on the fields of DNA replication/repair fields. Since the discovery of human pol η, a number of new DNA polymerases with the ability to bypass various DNA lesions have been discovered. Among these polymerases, pol η is the most extensively studied lesion bypass polymerase with a defined major biological function, that is, to replicate across the cyclobutane pyrimidine dimers introduced by UV irradiation. Cyclobutane pyrimidine dimer is a major DNA lesion that causes distortion of DNA structure and block the replicative DNA polymerases during DNA replication process. Genetic defects in the pol η gene, Rad30, results in a disease called xeroderma pigmentosum variant. This review focuses on the overall properties of pol η and the mechanism that involved in regulating its activity in cells. In addition, the role of pol η in the action of DNA-targeting anticancer compounds is also discussed. Antioxid. Redox Signal. 14, 2521–2529. PMID:21050139

  8. Frequencies of immune hypersensitivity reaction-associated HLA class I alleles in healthy South African Indian and mixed ancestry populations determined by a novel real-time PCR assay.

    PubMed

    Loubser, S; Paximadis, M; Gentle, N; Puren, A; Gray, C M; Tiemessen, C T

    2014-10-01

    We have determined the frequencies of human leucocyte antigen (HLA)-B*57:01, HLA-B*35:05, HLA-C*04 and HLA-C*08 in healthy individuals of South African Indian (SAI) ethnicity (n = 50) and South African mixed (SAM) ancestry (n = 50) using real-time allele-specific polymerase chain reaction (AS-PCR) assay. HLA-B*57:01 associates with immune hypersensitivity reaction (IHR) in individuals exposed to abacavir (ABC), while nevirapine (NVP) IHR associates with HLA-B*35:05, HLA-C*04 and HLA-C*08. Real-time AS-PCR assays typically use less DNA, are more cost-effective and rapid compared with conventional genotyping methods, such as sequence-based typing (SBT). The assay was developed using samples of known HLA class I genotype and subsequently applied to the SAI and SAM samples. HLA-B*57:01 was detected in SAM and SAI populations at frequencies of 8.0% and 12.0%, respectively, while HLA-B*35:05 was not found in SAI individuals, but was present in 6.0% of SAM individuals. HLA-C*04 was detected in 22.0% and 24.0% of SAM and SAI individuals, respectively, while 10.0% and 8.0% of SAM and SAI individuals, respectively, were HLA-C*08 positive. This study reports the development of a novel real-time AS-PCR assay to identify HLA class I alleles associated with ABC and NVP IHR and has established the frequencies of these alleles present in healthy SAI and SAM populations. Using South African demographic data, our hypothetical analysis suggests that a substantial number of individuals would benefit from the assay. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation.

    PubMed

    Cropley, Jennifer E; Suter, Catherine M; Beckman, Kenneth B; Martin, David I K

    2006-11-14

    Environmental effects on phenotype can be mediated by epigenetic modifications. The epigenetic state of the murine A vy allele is highly variable, and determines phenotypic effects that vary in a mosaic spectrum that can be shifted by in utero exposure to methyl donor supplementation. We have asked if methyl donor supplementation affects the germ-line epigenetic state of the A vy allele. We find that the somatic epigenetic state of A vy is affected by in utero methyl donor supplementation only when the allele is paternally contributed. Exposure to methyl donor supplementation during midgestation shifts A vy phenotypes not only in the mice exposed as fetuses, but in their offspring. This finding indicates that methyl donors can change the epigenetic state of the A vy allele in the germ line, and that the altered state is retained through the epigenetic resetting that takes place in gametogenesis and embryogenesis. Thus a mother's diet may have an enduring influence on succeeding generations, independent of later changes in diet. Although other reports have suggested such heritable epigenetic changes, this study demonstrates that a specific mammalian gene can be subjected to germ-line epigenetic change.

  10. Lack of association between HLA-A, -B and -DRB1 alleles and the development of SARS: a cohort of 95 SARS-recovered individuals in a population of Guangdong, southern China.

    PubMed

    Xiong, P; Zeng, X; Song, M S; Jia, S W; Zhong, M H; Xiao, L L; Lan, W; Cai, C; Wu, X W; Gong, F L; Wang, W

    2008-02-01

    Severe acute respiratory syndrome (SARS), caused by infection with a novel coronavirus (SARS-CoV), was the first major novel infectious disease at the beginning of the 21st century, with China especially affected. SARS was characterized by high infectivity, morbidity and mortality, and the confined pattern of the disease spreading among the countries of South-East and East Asia suggested the existence of susceptible factor(s) in these populations. Studies in the populations of Hong Kong and Taiwan showed an association of human leucocyte antigen (HLA) polymorphisms with the development and/or severity of SARS, respectively. The aim of the present study was to define the genotypic patterns of HLA-A, -B and -DRB1 loci in SARS patients and a co-resident population of Guangdong province, southern China, where the first SARS case was reported. The samples comprised 95 cases of recovered SARS patients and 403 unrelated healthy controls. HLA -A, -B and -DRB1 alleles were genotyped using polymerase chain reaction with sequence-specific primers. The severity of the disease was assessed according to the history of lung infiltration, usage of assisted ventilation and occurrence of lymphocytopenia. Although the allelic frequencies of A23, A34, B60, DRB1*12 in the SARS group were slightly higher, and A33, -B58 and -B61 were lower than in the controls, no statistical significance was found when the Pc value was considered. Similarly, no association of HLA alleles with the severity of the disease was detected. Thus, variations in the major histocompatibility complex are unlikely to have contributed significantly to either the susceptibility or the severity of SARS in the population of Guangdong.

  11. HLA alleles and HLA-B27 haplotypes associated with susceptibility and severity of ankylosing spondylitis in a Portuguese population.

    PubMed

    Pimentel-Santos, F M; Matos, M; Ligeiro, D; Mourão, A F; Ribeiro, C; Costa, J; Santos, H; Barcelos, A; Pinto, P; Cruz, M; Sousa, E; Santos, R A; Fonseca, J E; Trindade, H; Guedes-Pinto, H; Branco, J C

    2013-12-01

    Human leukocyte antigen (HLA)-B27 is the mostly known major histocompatibility complex (MHC) gene associated with ankylosing spondylitis (AS). Nonetheless, there is substantial evidence that other MHC genes appear to be associated with the disease, although it has not yet been established whether these associations are driven by direct associations or by linkage disequilibrium (LD) mechanisms. We aimed to investigate the contributions of HLA class I and II alleles and B27-haplotypes for AS in a case-control study. A total of 188 HLA-B27 AS cases and 189 HLA-B27 healthy controls were selected and typed for HLA class I and II by the Luminex polymerase chain reaction-sequence specific oligonucleotide probe (PCR-SSOP) method. Allelic and haplotypic distributions were estimated by maximum likelihood method using Arlequin v3.11 and statistical analysis were performed by Stata10.1. No associations were found between non-HLA-B27 loci and AS susceptibility, but several associations were observed for phenotypic features of the disease. DRB1*08 was identified as a risk factor for uveitis and DQB1*04 seems to provide protection for AS severity (functional, metrological and radiological indexes). A*02/B27/C*02/DRB1*01/DQB1*05 [P<0.0001; odds ratio (OR) = 39.06; 95% confidence interval (CI) (2.34-651)] is the only haplotype that seems to confer susceptibility to AS. Moreover, the haplotype A*02/B27/C*01/DRB1*08/DQB1*04 seems to provide protection for disease functional and radiological repercussions. Our findings are compatible with the hypothesis that other genes within the HLA region besides HLA-B27 might play some role in AS susceptibility and severity. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Polymorphisms of alcohol metabolizing enzymes in indigenous Mexican population: unusual high frequency of CYP2E1*c2 allele.

    PubMed

    Gordillo-Bastidas, Elizabeth; Panduro, Arturo; Gordillo-Bastidas, Daniela; Zepeda-Carrillo, Eloy A; García-Bañuelos, Jesús J; Muñoz-Valle, José F; Bastidas-Ramírez, Blanca E

    2010-01-01

    Alcohol abuse represents the major identified etiological factor of cirrhosis in México. ADH1B, ALDH2, and CYP2E1 have been considered candidate genes in alcohol-related diseases. Controversial results probably due to ethnic differences, among other factors, have been reported. Mexican Mestizos (MES) derive from the combination of indigenous, Spaniard, and African genes. Huichols (HUI) constitute an indigenous group from western Mexico with no racial admixture. We determined ADH1B*2, ALDH2*2, and CYP2E1*c2 allele frequencies in healthy HUI and MES from western Mexico. Lipid and hepatic profile were also carried out. One hundred and one HUI and 331 MES subjects were studied. Genotype and allele frequency were assessed through polymerase chain reaction-restriction fragment length polymorphism after DNA isolation from peripheral leukocytes. Commercial kits for lipid and hepatic determinations were used. Polymorphic allele distribution in HUI was: 0%ADH1B*2, 0.5%ALDH2*2, 51.5%CYP2E1*c2; in MES: 3.4%ADH1B*2, 0%ALDH2*2, 16.1%CYP2E1*c2. Frequency of ADH1B*2 was statistically (p < 0.001) lower in HUI than MES. CYP2E1*c2 polymorphic allele was significantly higher (p < 0.0001) in HUI than MES. Hepatic profile was normal in both groups. HUI showed a better lipid profile than MES independently of genotype. Huichols exhibited the highest CYP2E1*c2 allele frequency of the world documented up to this date; meanwhile, ADH1B*2 and ALDH2*2 were practically absent. This feature could be useful in the understanding of Mexican population gene composition, alcohol metabolism, and alcoholic liver disease development. However, further association studies are necessary. The heterogeneity of Mexican population was evidenced by the significantly different distribution of CYP2E1*c2 allele observed among different regions of the country. Lipid and hepatic values were not associated to genotype. This report constitutes the first study dealing with gene polymorphisms of alcohol metabolizing

  13. Schizophrenia and neurotrophin-3 alleles.

    PubMed

    Jŏnsson, E; Brené, S; Zhang, X R; Nimgaonkar, V L; Tylec, A; Schalling, M; Sedvall, G

    1997-05-01

    Studies of brain anatomy and premorbid functioning indicate that schizophrenia may be of neurodevelopmental origin. In the neurotrophic factor neurotrophin-3 (NT-3) gene, the A3/147-bp allele in a dinucleotide repeat polymorphism located in the promoter region was found to be associated with schizophrenia in a Japanese study. Another NT-3 polymorphism (Glu63Gly) indicated an association with schizophrenic patients with a putative neurodevelopmental form of the disease. We examined Swedish schizophrenic patients (n = 109) and control subjects (n = 78) for the same two NT-3 polymorphisms, as well as a third silent exonic polymorphism (at Pro55). No significant difference was found between the two groups. However, in a meta-analysis including the present and previous studies of Caucasian subjects, the A3/147-bp allele frequency was found to be significantly higher in the schizophrenic patients. In the present study, carriers of the A3/147 bp allele tended to have an earlier age of onset and to display more extrapyramidal symptoms. In the silent exonic polymorphism (at Pro55), female schizophrenic patients had higher adenine and lower guanine allele frequencies than control female subjects. Together with previous studies, the results provide some support for an association between the NT-3 gene and certain forms of schizophrenia. This warrants further investigation of NT-3 and other neurotrophic factors with additional polymorphisms and larger patient samples.

  14. Ancestry-specific and sex-specific risk alleles identified in a genome-wide gene-by-alcohol dependence interaction study of risky sexual behaviors.

    PubMed

    Polimanti, Renato; Zhao, Hongyu; Farrer, Lindsay A; Kranzler, Henry R; Gelernter, Joel

    2017-12-01

    We previously mapped loci for the genome-wide association studies (GWAS) and genome-wide gene-by-alcohol dependence interaction (GW-GxAD) analyses of risky sexual behaviors (RSB). This study extends those findings by analyzing the ancestry- and sex-specific AD-stratified effects on RSB. We examined the concordance of findings for the AD-stratified GWAS and the GW-GxAD analysis of RSB, with concordance defined as genome-wide significance in one analysis and at least nominal significance in the second analysis. A total of 2,173 African-American (AA) and 1,751 European-American (EA) subjects were investigated. Information regarding RSB (lifetime experiences of unprotected sex and multiple sexual partners) and DSM-IV diagnosis of lifetime AD were derived from the Semi-Structured Assessment for Drug Dependence and Alcoholism (SSADDA). In our ancestry- and sex-specific analyses, we identified four independent genome-wide significant (GWS) loci (p < 5*10 -8 ) and one suggestive locus (p < 6*10 -8 ). In men, we observed a GWS signal in FAM162A (rs2002594, p = 4.96*10 -8 ). In women, there was a suggestive locus in PLGRKT (rs3824435, p = 5.52*10 -8 ). In AAs, there was a GWS signal in GRK5 (rs1316543, p = 1.25*10 -9 ). In AA men, we observed an intergenic GWS signal (rs12898370, p = 4.49*10 -8 ) near LINGO1. In EA men, there was a GWS signal in CCSER1 (rs62313897; p = 7.93*10 -10 ). The loci identified in this GWAS implicate molecular mechanisms related to psychiatric illness and personality features, suggesting that the interplay between AD and RSB is mediated by alleles associated with behavioral traits. © 2017 Wiley Periodicals, Inc.

  15. Identification of a synonymous polymorphism within the cytochrome P4502C9 gene that interferes with identification of the CYP2C9*2 allele.

    PubMed

    Womack, Edward P; Reynolds, Kristen K; Valdes, Roland; Linder, Mark W

    2007-10-01

    Cytochrome P450 2C9 (CYP4502C9) genotyping is useful in dosage adjustments for several critical drug therapies, including warfarin. Potential interference compromising these genotyping results could lead to inappropriate dose adjustments that may result in adverse drug reactions. During routine clinical CYP4502C9 genotyping using multiplex allele-specific primer extension, an ambiguous result was obtained for determination of the CYP2C9 430C>T substitution, which defines the CYP2C9*2 allele. In this one patient sample submitted for CYP2C9 genotyping, the ratio for the variant 430T allele signal to the total signal (C+T alleles) was 0.29. This is above the expected ratio to be classified as wild-type (<0.15) and below the minimum expected ratio (>0.3) when the genotype is heterozygous at the 430 position. The mean fluorescence intensity for the 430C allele was consistent with that observed in subjects who are heterozygous at this nucleotide position. However, the corresponding signal for the 430T allele indicated the absence of the CYP2C9*2 allele. This suggests the assay was not able to determine the correct nucleotide at position 430 for one of the two alleles in this patient. Subsequent sequencing to investigate the allele-specific primer extension failure revealed the presence of a rare C>T nucleotide substitution at position 429. We tested this subject's CYP2C9 genotype using AvaII restriction endonuclease digestion and found that this rare substitution causes false-positive identification of the CYP2C9*2 allele when using this method. We developed a DpnII endonuclease digestion assay to specifically detect the CYP2C9 429C>T substitution and tested 100 randomly selected samples obtained from unrelated individuals. The 429C>T polymorphism was not identified in this sample set, which indicates an allele frequency of less than 2.0% (95% confidence interval, 0.0-1.8%) in the general population. Despite the rarity of this polymorphism, it has important implications

  16. A Role for MINIYO and QUATRE-QUART2 in the Assembly of RNA Polymerases II, IV, and V in Arabidopsis.

    PubMed

    Li, Yaoxi; Yuan, Yuxiang; Fang, Xiaofeng; Lu, Xiuli; Lian, Bi; Zhao, Gaozhan; Qi, Yijun

    2018-02-01

    RNA polymerases IV and V (Pol IV and Pol V) are required for the generation of noncoding RNAs in RNA-directed DNA methylation (RdDM). Their subunit compositions resemble that of Pol II. The mechanism and accessory factors involved in their assembly remain largely unknown. In this study, we identified mutant alleles of MINIYO ( IYO ), QUATRE-QUART2 ( QQT2 ), and NUCLEAR RNA POLYMERASE B11/D11/E11 ( NRPB/D/E11 ) that cause defects in RdDM in Arabidopsis thaliana We found that Pol IV-dependent small interfering RNAs and Pol V-dependent transcripts were greatly reduced in the mutants. NRPE1, the largest subunit of Pol V, failed to associate with other Pol V subunits in the iyo and qqt2 mutants, suggesting the involvement of IYO and QQT2 in Pol V assembly. In addition, we found that IYO and QQT2 were mutually dependent for their association with the NRPE3 subassembly prior to the assembly of Pol V holoenzyme. Finally, we show that IYO and QQT2 are similarly required for the assembly of Pol II and Pol IV. Our findings reveal IYO and QQT2 as cofactors for the assembly of Pol II, Pol IV, and Pol V and provide mechanistic insights into how RNA polymerases are assembled in plants. © 2018 American Society of Plant Biologists. All rights reserved.

  17. The expanding polymerase universe.

    PubMed

    Goodman, M F; Tippin, B

    2000-11-01

    Over the past year, the number of known prokaryotic and eukaryotic DNA polymerases has exploded. Many of these newly discovered enzymes copy aberrant bases in the DNA template over which 'respectable' polymerases fear to tread. The next step is to unravel their functions, which are thought to range from error-prone copying of DNA lesions, somatic hypermutation and avoidance of skin cancer, to restarting stalled replication forks and repairing double-stranded DNA breaks.

  18. Frequencies of CYP2D6 mutant alleles in a normal Japanese population and metabolic activity of dextromethorphan O-demethylation in different CYP2D6 genotypes

    PubMed Central

    Kubota, T; Yamaura, Y; Ohkawa, N; Hara, H; Chiba, K

    2000-01-01

    Aims To determine the frequencies of 11 CYP2D6 mutant alleles (CYP2D6*2,*3,*4,*5,*8,*10,*11,*12,*14,*17 and *18), and their relation to the metabolic capacity of CYP2D6 in Japanese subjects. Methods One hundred and sixty-two unrelated healthy Japanese subjects were genotyped with the polymerase chain reaction amplification method and 35 subjects were phenotyped with dextromethorphan. Results The frequencies of CYP2D6*2,*5, *10 and *14 were 12.9, 6.2, 38.6 and 2.2% in our Japanese subjects, respectively. CYP2D6*3, *4, *8, *11, *12, *17 and *18 were not detected. The mean log metabolic ratio of dextromethorphan in subjects with genotypes predicting intermediate metabolizers was significantly greater than that of heterozygotes for functional and defective alleles. Conclusions CYP2D6*5 and CYP2D6*14 are the major defective alleles found in Japanese subjects. In addition, CYP2D6*10 may play a more important role than previously thought for the treatment of Japanese patients with drugs metabolized by CYP2D6. PMID:10886115

  19. AtDMC1, the Arabidopsis homologue of the yeast DMC1 gene: characterization, transposon-induced allelic variation and meiosis-associated expression.

    PubMed

    Klimyuk, V I; Jones, J D

    1997-01-01

    Based on homologies between the yeast DMC1 and the lily LIM15 meiosis-specific genes, degenerate PCR primers were designed that amplified the Arabidopsis DMC1 gene (AtDMC1). AtDMC1 genomic DNA (8 kb) was sequenced, and the transcript was characterized by reverse transcriptase-polymerase chain reaction (RT-PCR) and by 5' and 3' RACE (rapid amplification of cDNA ends). The AtDMC1 gene contains 15 exons and 14 introns. RNA in situ hybridization analysis showed that expression of the AtDMC1 is restricted to pollen mother cells in anthers and to megaspore mother cells in ovules. The AtDMC1 promoter was fused to the GUS reporter gene, and conferred meiosis-associated expression in both male and female floral lineages. Comparison of AtDMC1 isolated from Landsberg erecta ecotype to its Columbia allele ArLIM15, revealed the presence of a 1874 bp transposon-like element within the promoter region of ArLIM15. RT-PCR analysis showed that the expression levels of AtDMC1 and ArLIM15 are similar. Possible uses for the AtDMC1 promoter are discussed.

  20. [Association study between 834+7G/A and +1332C/T polymorphisms in the growth arrest specific 6 gene and risk of severe preeclampsia in Chinese population].

    PubMed

    Ye, Liyan; Guan, Linbo; Fan, Ping; Liu, Xinghui; Liu, Rui; Chen, Jinxin; Zhu, Yue; Wei, Xin; Liu, Yu; Bai, Huai

    2017-02-10

    To investigate the relationship between polymorphisms of the growth arrest specific 6 (GAS6) gene and severe preeclampsia in a South West Han Chinese population. Blood samples from 167 patients with severe preeclampsia and 312 normal pregnant women as controls from Han Chinese in Chengdu area were analyzed by polymerase chain reaction-restriction fragment length polymorphisms. C and T allele frequencies for +1332C/T site were 85.63% and 14.37% in the patient group, respectively, and 78.04% and 21.96% in control group, respectively. The TT genotype and variant T allelic frequencies of the +1332C/T polymorphism were significantly lower in patients with severe preeclampsia than in the control group (both P<0.05), and the odds ratio for the risk of severe preeclampsia was 0.602 (95%CI: 0.401-0.904) in carriers for the variant T allele (χ 2 =6.045, P=0.014). G and A allele frequencies for 834+7G/A site were 72.75% and 27.25% in case group, respectively, and 74.36% and 25.64% in control group, respectively. The genotype and allele frequencies of the 834+7G/A polymorphism in patients with severe preeclampsia and controls showed no significant differences (both P>0.05). In addition, there was no significant association between the polymorphisms and blood pressure levels in the patient or control groups. The variant GAS6+1332 T allele is associated with a decreased risk for severe preeclampsia in a South West Han Chinese population. On the other hand, the 834+7G/A polymorphism has no effect on the severe preeclampsia.

  1. Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya.

    PubMed

    Wardle, Josephine; Burgers, Peter M J; Cann, Isaac K O; Darley, Kate; Heslop, Pauline; Johansson, Erik; Lin, Li-Jung; McGlynn, Peter; Sanvoisin, Jonathan; Stith, Carrie M; Connolly, Bernard A

    2008-02-01

    Family B DNA polymerases from archaea such as Pyrococcus furiosus, which live at temperatures approximately 100 degrees C, specifically recognize uracil in DNA templates and stall replication in response to this base. Here it is demonstrated that interaction with uracil is not restricted to hyperthermophilic archaea and that the polymerase from mesophilic Methanosarcina acetivorans shows identical behaviour. The family B DNA polymerases replicate the genomes of archaea, one of the three fundamental domains of life. This publication further shows that the DNA replicating polymerases from the other two domains, bacteria (polymerase III) and eukaryotes (polymerases delta and epsilon for nuclear DNA and polymerase gamma for mitochondrial) are also unable to recognize uracil. Uracil occurs in DNA as a result of deamination of cytosine, either in G:C base-pairs or, more rapidly, in single stranded regions produced, for example, during replication. The resulting G:U mis-pairs/single stranded uracils are promutagenic and, unless repaired, give rise to G:C to A:T transitions in 50% of the progeny. The confinement of uracil recognition to polymerases of the archaeal domain is discussed in terms of the DNA repair pathways necessary for the elimination of uracil.

  2. The D allele of the angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism is associated with worse functional outcome of ischaemic stroke.

    PubMed

    Malueka, Rusdy Ghazali; Dwianingsih, Ery Kus; Sutarni, Sri; Bawono, Rheza Gandi; Bayuangga, Halwan Fuad; Gofir, Abdul; Setyopranoto, Ismail

    2017-12-29

    Insertion/deletion polymorphism in ACE gene (ACE I/D) is known to be associated with the occurrence of ischaemic stroke through its effect on pathogenesis of atherosclerosis and hypertension. This study was aimed to examine the association between this polymorphism with functional outcome of ischaemic stroke. This was a cross-sectional study. The subjects were patients with ischaemic stroke in a reference hospital in Yogyakarta, Indonesia. Data on demographic characteristics, stroke risk factors, comorbidities and stroke severity were assessed on admission. The functional outcome, Barthel index (BI), was assessed when the patients were discharged from the hospital. ACE I/D genotypes of the patients were identified by polymerase chain reaction (PCR). In total, 61 patients were included. Of these, 38 patients (62.3%) had II polymorphism, 22 patients (36.1%) had ID polymorphism and 1 patient (1.6%) had DD polymorphism in the ACE gene. There were significant differences in the functional outcomes between patients without D allele (II polymorphisms) and patients with D allele (ID and DD polymorphism) (mean BI on discharge: 75 ± 23.57 and 60.65 ± 27.15, respectively; p = 0.034). Multiple linear regression model showed that the availability of D allele is an independent variable negatively associated with functional outcome as assessed by BI (β = -0.232, p = 0.024). This study showed that the D allele in ACE I/D polymorphism is associated with worse functional outcomes. This highlights the possibility of further research to improve functional outcomes of ischaemic stroke by inhibiting the ACE system.

  3. Transient expression and activity of human DNA polymerase iota in loach embryos.

    PubMed

    Makarova, Irina V; Kazakov, Andrey A; Makarova, Alena V; Khaidarova, Nella V; Kozikova, Larisa V; Nenasheva, Valentina V; Gening, Leonid V; Tarantul, Vyacheslav Z; Andreeva, Ludmila E

    2012-02-01

    Human DNA polymerase iota (Pol ι) is a Y-family DNA polymerase with unusual biochemical properties and not fully understood functions. Pol ι preferentially incorporates dGTP opposite template thymine. This property can be used to monitor Pol ι activity in the presence of other DNA polymerases, e.g. in cell extracts of tissues and tumors. We have now confirmed the specificity and sensitivity of the method of Pol ι activity detection in cell extracts using an animal model of loach Misgurnus fossilis embryos transiently expressing human Pol ι. The overexpression of Pol ι was shown to be accompanied by an increase in abnormalities in development and the frequency of pycnotic nuclei in fish embryos. Further analysis of fish embryos with constitutive or regulated Pol ι expression may provide insights into Pol ι functions in vertebrate animals.

  4. The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer's disease of humans and mice.

    PubMed

    Cacciottolo, Mafalda; Christensen, Amy; Moser, Alexandra; Liu, Jiahui; Pike, Christian J; Smith, Conor; LaDu, Mary Jo; Sullivan, Patrick M; Morgan, Todd E; Dolzhenko, Egor; Charidimou, Andreas; Wahlund, Lars-Olof; Wiberg, Maria Kristofferson; Shams, Sara; Chiang, Gloria Chia-Yi; Finch, Caleb E

    2016-01-01

    The apolipoprotein APOE4 allele confers greater risk of Alzheimer's disease (AD) for women than men, in conjunction with greater clinical deficits per unit of AD neuropathology (plaques, tangles). Cerebral microbleeds, which contribute to cognitive dysfunctions during AD, also show APOE4 excess, but sex-APOE allele interactions are not described. We report that elderly men diagnosed for mild cognitive impairment and AD showed a higher risk of cerebral cortex microbleeds with APOE4 allele dose effect in 2 clinical cohorts (ADNI and KIDS). Sex-APOE interactions were further analyzed in EFAD mice carrying human APOE alleles and familial AD genes (5XFAD (+/-) /human APOE(+/+)). At 7 months, E4FAD mice had cerebral cortex microbleeds with female excess, in contrast to humans. Cerebral amyloid angiopathy, plaques, and soluble Aβ also showed female excess. Both the cerebral microbleeds and cerebral amyloid angiopathy increased in proportion to individual Aβ load. In humans, the opposite sex bias of APOE4 allele for microbleeds versus the plaques and tangles is the first example of organ-specific, sex-linked APOE allele effects, and further shows AD as a uniquely human condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Robust Identification of Local Adaptation from Allele Frequencies

    PubMed Central

    Günther, Torsten; Coop, Graham

    2013-01-01

    Comparing allele frequencies among populations that differ in environment has long been a tool for detecting loci involved in local adaptation. However, such analyses are complicated by an imperfect knowledge of population allele frequencies and neutral correlations of allele frequencies among populations due to shared population history and gene flow. Here we develop a set of methods to robustly test for unusual allele frequency patterns and correlations between environmental variables and allele frequencies while accounting for these complications based on a Bayesian model previously implemented in the software Bayenv. Using this model, we calculate a set of “standardized allele frequencies” that allows investigators to apply tests of their choice to multiple populations while accounting for sampling and covariance due to population history. We illustrate this first by showing that these standardized frequencies can be used to detect nonparametric correlations with environmental variables; these correlations are also less prone to spurious results due to outlier populations. We then demonstrate how these standardized allele frequencies can be used to construct a test to detect SNPs that deviate strongly from neutral population structure. This test is conceptually related to FST and is shown to be more powerful, as we account for population history. We also extend the model to next-generation sequencing of population pools—a cost-efficient way to estimate population allele frequencies, but one that introduces an additional level of sampling noise. The utility of these methods is demonstrated in simulations and by reanalyzing human SNP data from the Human Genome Diversity Panel populations and pooled next-generation sequencing data from Atlantic herring. An implementation of our method is available from http://gcbias.org. PMID:23821598

  6. Uneven segregation of sporophytic self-incompatibility alleles in Arabidopsis lyrata.

    PubMed

    Bechsgaard, J; Bataillon, T; Schierup, M H

    2004-05-01

    Self-incompatibility in Arabidopsis lyrata is sporophytically controlled by the multi-allelic S-locus. Self-incompatibility alleles (S-alleles) are under strong negative frequency dependent selection because pollen carrying common S-alleles have fewer mating opportunities. Population genetics theory predicts that deleterious alleles can accumulate if linked to the S-locus. This was tested by studying segregation of S-alleles in 11 large full sib families in A. lyrata. Significant segregation distortion leading to an up to fourfold difference in transmission rates was found in six families. Differences in transmission rates were not significantly different in reciprocal crosses and the distortions observed were compatible with selection acting at the gametic stage alone. The S-allele with the largest segregation advantage is also the most recessive, and is very common in natural populations concordant with its apparent segregation advantage. These results imply that frequencies of S-alleles in populations of A. lyrata cannot be predicted based on simple models of frequency-dependent selection alone.

  7. Allelic variants of hereditary prions: The bimodularity principle.

    PubMed

    Tikhodeyev, Oleg N; Tarasov, Oleg V; Bondarev, Stanislav A

    2017-01-02

    Modern biology requires modern genetic concepts equally valid for all discovered mechanisms of inheritance, either "canonical" (mediated by DNA sequences) or epigenetic. Applying basic genetic terms such as "gene" and "allele" to protein hereditary factors is one of the necessary steps toward these concepts. The basic idea that different variants of the same prion protein can be considered as alleles has been previously proposed by Chernoff and Tuite. In this paper, the notion of prion allele is further developed. We propose the idea that any prion allele is a bimodular hereditary system that depends on a certain DNA sequence (DNA determinant) and a certain epigenetic mark (epigenetic determinant). Alteration of any of these 2 determinants may lead to establishment of a new prion allele. The bimodularity principle is valid not only for hereditary prions; it seems to be universal for any epigenetic hereditary factor.

  8. Osteogensis imperfecta type I is commonly due to a COLIAI null allel of type I collagen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willing, M.C.; Pruchno, C.J.; Atkinson, M.

    Dermal fibroblasts from most individuals with osteogenesis imperfecta (OI) type I produce about half the normal amount of type I procollagen, as a result of decreased synthesis of one of its constituent chains, pro[alpha](I). To test the hypothesis that decreased synthesis of pro[alpha](I) chains results from mutations in the COL1A1 gene, the authors used primer extension with nucleotide-specific chain termination to measure the contribution of individual COL1A1 alleles to the mRNA pool in fibroblasts from affected individuals. A polymorphic Mn/I restriction endonuclease site in the 3'-untranslated region of COL1A1 was used to distinguish the transcripts of the two alleles inmore » heterozygous individuals. Twenty-three individuals from 21 unrelated families were studied. In each case there was marked diminution in steady-state mRNA levels from one COL1A2 allele. Loss of an allele through deletion or rearrangement was not the cause of the diminished COL1A1 mRNA levels. Primer extension with nucleotide-specific chain termination allows identification of the mutant COL1A1 allele in cell strains that are heterozygous for an expressed polymorphism. It is applicable to sporadic cases, to small families, and to large families in whom key individuals are uninformative at the polymorphic sites used in linkage analysis, making it a useful adjunct to the biochemical screening of collagenous proteins for OI. 40 refs., 3 figs., 1 tab.« less

  9. A rapid, highly accurate method for quantifying CALR mutant allele burden in persons with myeloproliferative neoplasms.

    PubMed

    Yao, Qiu-Mei; Zhou, Jiao; Gale, Robert Peter; Li, Jin-Lan; Li, Ling-Di; Li, Ning; Chen, Shan-Shan; Ruan, Guo-Rui

    2015-10-01

    Calreticulin (CALR) mutations were recently identified in a substantial proportion of persons with essential thrombocythemia (ET) and with primary myelofibrosis (PMF) without JAK2(V617F). Consequently rapid, sensitive, and specific methods to detect and quantify these mutations are needed. We studied samples from 1088 persons with myeloproliferative neoplasms (MPNs) including 421 JAK2(V617F) negative subjects with ET, PMF, polycythemia vera (PV), chronic myeloid leukemia (CML) and hyper-eosinophilic syndrome (HES). Detection of CALR exon 9 mutations was done by PCR amplification followed by fragment length analysis and direct sequencing. Dilution assays were used to determine CALR mutant allele burden. We detected CALR mutations in blood and bone marrow samples from 152 subjects with ET and with PMF but not in samples from normal or persons with PV, CML, or HES. CALR mutant peaks were distinct from wild-type peaks and dilution experiments indicated a sensitivity level of 0.5-5% for a CALR mutant allele in a wild-type background. Diverse types of mutations were detected including deletions, insertions, and complex indels. All mutations were confirmed by direct sequencing. We also used dilution experiments to quantify mutant allele burden. We were able to reproducibly detect mutant allele levels as low 5% (0.5-5%) in a wild-type background. PCR amplification followed by fragment length analysis is a rapid, sensitive, and specific method for screening persons with MPNs for CALR mutations, especially those with ET and PMF and for estimating mutant allele burden.

  10. Evolution of thermophilic DNA polymerases for the recognition and amplification of C2ʹ-modified DNA

    NASA Astrophysics Data System (ADS)

    Chen, Tingjian; Hongdilokkul, Narupat; Liu, Zhixia; Adhikary, Ramkrishna; Tsuen, Shujian S.; Romesberg, Floyd E.

    2016-06-01

    The PCR amplification of oligonucleotides enables the evolution of sequences called aptamers that bind specific targets with antibody-like affinity. However, in many applications the use of these aptamers is limited by nuclease-mediated degradation. In contrast, oligonucleotides that are modified at their sugar C2ʹ positions with methoxy or fluorine substituents are stable to nucleases, but they cannot be synthesized by natural polymerases. Here we report the development of a polymerase-evolution system and its use to evolve thermostable polymerases that efficiently interconvert C2ʹ-OMe-modified oligonucleotides and their DNA counterparts via ‘transcription’ and ‘reverse transcription’ or, more importantly, that PCR-amplify partially C2ʹ-OMe- or C2ʹ-F-modified oligonucleotides. A mechanistic analysis demonstrates that the ability to amplify the modified oligonucleotides evolved by optimizing interdomain interactions that stabilize the catalytically competent closed conformation of the polymerase. The evolved polymerases should find practical applications and the developed evolution system should be a powerful tool for tailoring polymerases to have other types of novel function.

  11. Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways1[OPEN

    PubMed Central

    Lu, Xunli; Dittgen, Jan; Piślewska-Bednarek, Mariola; Molina, Antonio; Schneider, Bernd; Doubský, Jan; Schneeberger, Korbinian; Schulze-Lefert, Paul

    2015-01-01

    Arabidopsis (Arabidopsis thaliana) PENETRATION (PEN) genes quantitatively contribute to the execution of different forms of plant immunity upon challenge with diverse leaf pathogens. PEN3 encodes a plasma membrane-resident pleiotropic drug resistance-type ATP-binding cassette transporter and is thought to act in a pathogen-inducible and PEN2 myrosinase-dependent metabolic pathway in extracellular defense. This metabolic pathway directs the intracellular biosynthesis and activation of tryptophan-derived indole glucosinolates for subsequent PEN3-mediated efflux across the plasma membrane at pathogen contact sites. However, PEN3 also functions in abiotic stress responses to cadmium and indole-3-butyric acid (IBA)-mediated auxin homeostasis in roots, raising the possibility that PEN3 exports multiple functionally unrelated substrates. Here, we describe the isolation of a pen3 allele, designated pen3-5, that encodes a dysfunctional protein that accumulates in planta like wild-type PEN3. The specific mutation in pen3-5 uncouples PEN3 functions in IBA-stimulated root growth modulation, callose deposition induced with a conserved peptide epitope of bacterial flagellin (flg22), and pathogen-inducible salicylic acid accumulation from PEN3 activity in extracellular defense, indicating the engagement of multiple PEN3 substrates in different PEN3-dependent biological processes. We identified 4-O-β-d-glucosyl-indol-3-yl formamide (4OGlcI3F) as a pathogen-inducible, tryptophan-derived compound that overaccumulates in pen3 leaf tissue and has biosynthesis that is dependent on an intact PEN2 metabolic pathway. We propose that a precursor of 4OGlcI3F is the PEN3 substrate in extracellular pathogen defense. These precursors, the shared indole core present in IBA and 4OGlcI3F, and allele-specific uncoupling of a subset of PEN3 functions suggest that PEN3 transports distinct indole-type metabolites in distinct biological processes. PMID:26023163

  12. Allele-dependent differences in quorum-sensing dynamics result in variant expression of virulence genes in Staphylococcus aureus.

    PubMed

    Geisinger, Edward; Chen, John; Novick, Richard P

    2012-06-01

    Agr is an autoinducing, quorum-sensing system that functions in many Gram-positive species and is best characterized in the pathogen Staphylococcus aureus, in which it is a global regulator of virulence gene expression. Allelic variations in the agr genes have resulted in the emergence of four quorum-sensing specificity groups in S. aureus, which correlate with different strain pathotypes. The basis for these predilections is unclear but is hypothesized to involve the phenomenon of quorum-sensing interference between strains of different agr groups, which may drive S. aureus strain isolation and divergence. Whether properties intrinsic to each agr allele directly influence virulence phenotypes within S. aureus is unknown. In this study, we examined group-specific differences in agr autoinduction and virulence gene regulation by utilizing congenic strains, each harboring a unique S. aureus agr allele, enabling a dissection of agr locus-dependent versus genotype-dependent effects on quorum-sensing dynamics and virulence factor production. Employing a reporter fusion to the principal agr promoter, P3, we observed allele-dependent differences in the timing and magnitude of agr activation. These differences were mediated by polymorphisms within the agrBDCA genes and translated to significant variations in the expression of a key transcriptional regulator, Rot, and of several important exoproteins and surface factors involved in pathogenesis. This work uncovers the contribution of divergent quorum-sensing alleles to variant expression of virulence determinants within a bacterial species.

  13. An in vitro ES cell imprinting model shows that imprinted expression of the Igf2r gene arises from an allele-specific expression bias

    PubMed Central

    Latos, Paulina A.; Stricker, Stefan H.; Steenpass, Laura; Pauler, Florian M.; Huang, Ru; Senergin, Basak H.; Regha, Kakkad; Koerner, Martha V.; Warczok, Katarzyna E.; Unger, Christine; Barlow, Denise P.

    2010-01-01

    Genomic imprinting is an epigenetic process that results in parental-specific gene expression. Advances in understanding the mechanism that regulates imprinted gene expression in mammals have largely depended on generating targeted manipulations in embryonic stem (ES) cells that are analysed in vivo in mice. However, genomic imprinting consists of distinct developmental steps, some of which occur in post-implantation embryos, indicating that they could be studied in vitro in ES cells. The mouse Igf2r gene shows imprinted expression only in post-implantation stages, when repression of the paternal allele has been shown to require cis-expression of the Airn non-coding (nc) RNA and to correlate with gain of DNA methylation and repressive histone modifications. Here we follow the gain of imprinted expression of Igf2r during in vitro ES cell differentiation and show that it coincides with the onset of paternal-specific expression of the Airn ncRNA. Notably, although Airn ncRNA expression leads, as predicted, to gain of repressive epigenetic marks on the paternal Igf2r promoter, we unexpectedly find that the paternal Igf2r promoter is expressed at similar low levels throughout ES cell differentiation. Our results further show that the maternal and paternal Igf2r promoters are expressed equally in undifferentiated ES cells, but during differentiation expression of the maternal Igf2r promoter increases up to 10-fold, while expression from the paternal Igf2r promoter remains constant. This indicates, contrary to expectation, that the Airn ncRNA induces imprinted Igf2r expression not by silencing the paternal Igf2r promoter, but by generating an expression bias between the two parental alleles. PMID:19141673

  14. Molecular inversion probe assay for allelic quantitation

    PubMed Central

    Ji, Hanlee; Welch, Katrina

    2010-01-01

    Molecular inversion probe (MIP) technology has been demonstrated to be a robust platform for large-scale dual genotyping and copy number analysis. Applications in human genomic and genetic studies include the possibility of running dual germline genotyping and combined copy number variation ascertainment. MIPs analyze large numbers of specific genetic target sequences in parallel, relying on interrogation of a barcode tag, rather than direct hybridization of genomic DNA to an array. The MIP approach does not replace, but is complementary to many of the copy number technologies being performed today. Some specific advantages of MIP technology include: Less DNA required (37 ng vs. 250 ng), DNA quality less important, more dynamic range (amplifications detected up to copy number 60), allele specific information “cleaner” (less SNP crosstalk/contamination), and quality of markers better (fewer individual MIPs versus SNPs needed to identify copy number changes). MIPs can be considered a candidate gene (targeted whole genome) approach and can find specific areas of interest that otherwise may be missed with other methods. PMID:19488872

  15. Temporal regulation and forespore-specific expression of the spore photoproduct lyase gene by sigma-G RNA polymerase during Bacillus subtilis sporulation.

    PubMed Central

    Pedraza-Reyes, M; Gutiérrez-Corona, F; Nicholson, W L

    1994-01-01

    Bacterial spores are highly resistant to killing by UV radiation and exhibit unique DNA photochemistry. UV irradiation of spore DNA results in formation of spore photoproduct (SP), the thymine dimer 5-thyminyl-5,6-dihydrothymine. Repair of SP occurs during germination of Bacillus subtilis spores by two distinct routes, either by the general nucleotide excision repair (uvr) pathway or by a novel SP-specific monomerization reaction mediated by the enzyme SP lyase, which is encoded by the spl gene. Repair of SP occurs early in spore germination and is independent of de novo protein synthesis, suggesting that the SP repair enzymes are synthesized during sporulation and are packaged in the dormant spore. To test this hypothesis, the expression of a translational spl-lacZ fusion integrated at the spl locus was monitored during B. subtilis growth and sporulation. beta-Galactosidase expression from the spl-lacZ fusion was silent during vegetative growth and was not DNA damage inducible, but it was activated at morphological stage III of sporulation specifically in the forespore compartment, coincident with activation of expression of the stage III marker enzyme glucose dehydrogenase. Expression of the spl-lacZ fusion was shown to be dependent upon the sporulation-specific RNA polymerase containing the sigma-G factor (E sigma G), as spl-lacZ expression was abolished in a mutant harboring a deletion in the sigG gene and restored by expression of the sigG gene in trans. Primer extension analysis of spl mRNA revealed a major extension product initiating upstream from a small open reading frame of unknown function which precedes spl, and it revealed two other shorter minor extension products. All three extension products were present in higher quantities during sporulation and after sigG induction. The three putative transcripts are all preceded by sequences which share homology with the consensus sigma-G factor-type promoter sequence, but in vitro transcription by purified

  16. DNA Polymerase III Star Requires ATP to Start Synthesis on a Primed DNA†

    PubMed Central

    Wickner, William; Kornberg, Arthur

    1973-01-01

    DNA polymerase III star replicates a ϕX174 single-stranded, circular DNA primed with a fragment of RNA. This reaction proceeds in two stages. In stage I, a complex is formed requiring DNA polymerase III star, ATP, spermidine, copolymerase III*, and RNA-primed ϕX174 single-stranded, circular DNA. The complex, isolated by gel filtration, contains ADP and inorganic phosphate (the products of a specific ATP cleavage) as well as spermidine, polymerase III star, and copolymerase III star. In stage II, the chain grows upon addition of deoxynucleoside triphosphates; ADP and inorganic phosphate are discharged and chain elongation is resistant to antibody to copolymerase III star. Thus ATP and copolymerase III star are required to initiate chain growth but not to sustain it. Images PMID:4519657

  17. Allele frequency data for 15 autosomal STR loci in eight Indonesian subpopulations.

    PubMed

    Venables, Samantha J; Daniel, Runa; Sarre, Stephen D; Soedarsono, Nurtami; Sudoyo, Herawati; Suryadi, Helena; van Oorschot, Roland A H; Walsh, Simon J; Widodo, Putut T; McNevin, Dennis

    2016-01-01

    Evolutionary and cultural history can affect the genetic characteristics of a population and influences the frequency of different variants at a particular genetic marker (allele frequency). These characteristics directly influence the strength of forensic DNA evidence and make the availability of suitable allele frequency information for every discrete country or jurisdiction highly relevant. Population sub-structure within Indonesia has not been well characterised but should be expected given the complex geographical, linguistic and cultural architecture of the Indonesian population. Here we use forensic short tandem repeat (STR) markers to identify a number of distinct genetic subpopulations within Indonesia and calculate appropriate population sub-structure correction factors. This data represents the most comprehensive investigation of population sub-structure within Indonesia to date using these markers. The results demonstrate that significant sub-structure is present within the Indonesian population and must be accounted for using island specific allele frequencies and corresponding sub-structure correction factors in the calculation of forensic DNA match statistics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays.

    PubMed

    Choudhary, Nandlal; Wei, G; Govindarajulu, A; Roy, Avijit; Li, Wenbin; Picton, Deric D; Nakhla, M K; Levy, L; Brlansky, R H

    2015-11-01

    Citrus leprosis virus C (CiLV-C), a causal agent of the leprosis disease in citrus, is mostly present in the South and Central America and spreading toward the North America. To enable better diagnosis and inhibit the further spread of this re-emerging virus a quantitative (q) real-time reverse transcription polymerase chain reaction (qRT-PCR) assay is needed for early detection of CiLV-C when the virus is present in low titer in citrus leprosis samples. Using the genomic sequence of CiLV-C, specific primers and probe were designed and synthesized to amplify a 73 nt amplicon from the movement protein (MP) gene. A standard curve of the 73 nt amplicon MP gene was developed using known 10(10)-10(1) copies of in vitro synthesized RNA transcript to estimate the copy number of RNA transcript in the citrus leprosis samples. The one-step qRT-PCR detection assays for CiLV-C were determined to be 1000 times more sensitive when compared to the one-step conventional reverse transcription polymerase chain reaction (RT-PCR) CiLV-C detection method. To evaluate the quality of the total RNA extracts, NADH dehydrogenase gene specific primers (nad5) and probe were included in reactions as an internal control. The one-step qRT-PCR specificity was successfully validated by testing for the presence of CiLV-C in the total RNA extracts of the citrus leprosis samples collected from Belize, Costa Rica, Mexico and Panama. Implementation of the one-step qRT-PCR assays for CiLV-C diagnosis should assist regulatory agencies in surveillance activities to monitor the distribution pattern of CiLV-C in countries where it is present and to prevent further dissemination into citrus growing countries where there is no report of CiLV-C presence. Published by Elsevier B.V.

  19. Stepwise positive association between APOA5 minor allele frequencies and increasing plasma triglyceride quartiles in random patients with hypertriglyceridemia of unclarified origin.

    PubMed

    Hadarits, Ferenc; Kisfali, Péter; Mohás, Márton; Maász, Anita; Sümegi, Katalin; Szabó, Melinda; Hetyésy, Katalin; Valasek, Andrea; Janicsek, Ingrid; Wittmann, István; Melegh, Béla

    2011-03-01

    Apolipoprotein A5 (ApoA5) gene and its protein product play a central role in the complex regulation of circulating triglyceride levels in humans. Naturally occurring variants of the apolipoprotein A5 gene have been associated with increased triglyceride levels and have been found to confer risk for cardiovascular diseases. In our study, four polymorphisms, the T-1131C, IVS3+G476A, T1259C, and C56G alleles of APOA5 were analyzed in a total of 436 patients by polymerase chain reaction-restriction fragment length polymorphism methods. The randomly selected patients were classified into four quartile (q) groups based on triglyceride levels (q1: TG<1.31 mmol/l; q2: 1.31-2.90 mmol/l; q3: 2.91-4.85 mmol/l; q4: TG>4.85 mmol/l). We observed significant stepwise increasing association between the four APOA5 minor allele carrier frequencies and plasma triglyceride quartiles: -1131C (q1: 4.44%; q2: 8.95%; q3: 12.9%; q4: 20.6%), IVS3 + 476A (q1: 4.44%; q2: 5.79%; q3: 11.1%; q4: 19.7%), 1259C (q1: 4.44%; q2: 6.84%; q3: 11.1%; q4: 20.6%) and 56G (q1: 5.64%; q2: 6.31%; q3: 11.16%; q4: 11.9%). The serum total cholesterol and high density lipoprotein-cholesterol levels also showed allele-dependent differences in the quartiles. The findings presented here revealed a special arrangement of APOA5 minor alleles in patients with different serum triglyceride ranges in Hungarians.

  20. Characterization of the treefrog null allele, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttman, S.I.

    1992-04-01

    Spring peeper (Hyla crucifer) tadpoles collected from the waste storage area during the Biological and Ecological Site Characterization of the Feed Materials Production Center (FEMP) in 1986 and 1987 appeared to be unique. A null (inactive) allele was found at the glucose phosphate isomerase enzyme locus in significant frequencies (approximately 20%) each year; this allele did not appear to occur in the offsite sample collected approximately 15km from the FEMP. Null alleles at this locus have not been reported in other amphibian populations; when they have been found in other organisms they have invariably been lethal in the homozygous condition.