Sample records for alleviate heat stress

  1. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs.

    PubMed

    Liu, Fan; Celi, Pietro; Chauhan, Surinder Singh; Cottrell, Jeremy James; Leury, Brian Joseph; Dunshea, Frank Rowland

    2018-02-01

    Heat stress (HS) triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE) can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. A total of 24 pigs were given either a control diet (17 IU/kg VE) or a high VE (200 IU/kg VE; HiVE) diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity) or HS (35°C, 35% to 45% humidity, 8 h daily) conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all p<0.05 for diet×temperature) the loss of blood CO 2 partial pressure and bicarbonate, as well as the increase in blood pH in the heat-stressed pigs. The HS reduced (p = 0.003) plasma biological antioxidant potential (BAP) and tended to increase (p = 0.067) advanced oxidized protein products (AOPP) in the heat-stressed pigs, suggesting HS triggers oxidative stress. The HiVE diet did not affect plasma BAP or AOPP. Only under TN conditions the HiVE diet reduced the plasma reactive oxygen metabolites (p<0.05 for diet× temperature). A short-term supplementation with 200 IU/kg VE partially alleviated respiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

  2. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves.

    PubMed

    Wang, Li-Jun; Fan, Ling; Loescher, Wayne; Duan, Wei; Liu, Guo-Jie; Cheng, Jian-Shan; Luo, Hai-Bo; Li, Shao-Hua

    2010-02-23

    Although the effect of salicylic acid (SA) on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side). In this study, the impact of SA pretreatment on photosynthesis was evaluated in the leaves of young grapevines before heat stress (25 degrees C), during heat stress (43 degrees C for 5 h), and through the following recovery period (25 degrees C). Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. The levels of heat shock proteins (HSPs) in the chloroplast were also investigated. SA did not significantly (P < 0.05) influence the net photosynthesis rate (Pn) of leaves before heat stress. But, SA did alleviate declines in Pn and Rubisco activation state, and did not alter negative changes in PSII parameters (donor side, acceptor side and reaction center QA) under heat stress. Following heat treatment, the recovery of Pn in SA-treated leaves was accelerated compared with the control (H2O-treated) leaves, and, donor and acceptor parameters of PSII in SA-treated leaves recovered to normal levels more rapidly than in the controls. Rubisco, however, was not significantly (P < 0.05) influenced by SA. Before heat stress, SA did not affect level of HSP 21, but the HSP21 immune signal increased in both SA-treated and control leaves during heat stress. During the recovery period, HSP21 levels remained high through the end of the experiment in the SA-treated leaves, but decreased in controls. SA pretreatment alleviated the heat stress induced decrease in Pn mainly through maintaining higher Rubisco activation state, and it accelerated the recovery of Pn mainly through effects on PSII function. These effects of SA may be related in part to enhanced levels of HSP21.

  3. Strong, sudden cooling alleviates the inflammatory responses in heat-stressed dairy cows based on iTRAQ proteomic analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Jianbo; Min, Li; Zheng, Nan; Fan, Caiyun; Zhao, Shengguo; Zhang, Yangdong; Wang, Jiaqi

    2018-02-01

    This study was designed to investigate the effects of sudden cooling on the physiological responses of 12 heat-stressed Holstein dairy cows using an isobaric tags for relative and absolute quantification (iTRAQ) labeling approach. Plasma samples were collected from these cows during heat stress (HS), and after strong, sudden cooling in the summer (16 days later). We compared plasma proteomic data before and after sudden cooling to identify the differentially abundant proteins. The results showed that sudden cooling in summer effectively alleviated the negative consequences of HS on body temperature and production variables. Expressions of plasma hemoglobin alpha and hemoglobin beta were upregulated, whereas lipopolysaccharide-binding protein (LBP) and haptoglobin were downregulated in this process. The increase of hemoglobin after cooling may improve oxygen transport and alleviate the rise in respiration rates in heat-stressed dairy cows. The decrease of LBP and haptoglobin suggests that the inflammatory responses caused by HS are relieved after cooling. Our findings provide new insight into the physiological changes that occur when heat-stressed dairy cows experience strong, sudden cooling.

  4. Astragaloside-IV Alleviates Heat-Induced Inflammation by Inhibiting Endoplasmic Reticulum Stress and Autophagy.

    PubMed

    Dong, Zhiwei; Zhou, Jian; Zhang, Ying; Chen, Yajie; Yang, Zichen; Huang, Guangtao; Chen, Yu; Yuan, Zhiqiang; Peng, Yizhi; Cao, Tongtong

    2017-01-01

    Thermal injury is the main cause of pulmonary disease in stroke after burn and can be life threatening. Heat-induced inflammation is an important factor that triggers a series of induces pathological changes. However, this mechanism underlying heat-induced inflammation in thermal inhalation injury remains unclear. Studies have revealed that astragaloside-IV (AS-IV), a natural compound extracted from Astragalus membranaceus, has protective effects in inflammatory diseases. Here, we investigated whether the protective effects of AS-IV occur because of the suppression of heat-induced endoplasmic reticulum (ER) stress and excessive autophagy Methods: AS-IV was administered to Wistar rats after thermal inhalation injury and 16HBE140-cells were treated with AS-IV. TNF-α, IL-6, and IL-8 levels were determined by ELISA and real-time PCR. ER stress and autophagy were determined by western blot. Autophagic flux was measured by recording the fluorescence emission of the fusion protein mRFP-GFP-LC3 by dynamic live-cell imaging. AS-IV had protective effects against heat-induced reactive oxygen species production and attenuated ER stress. AS IV alleviated heat-induced excessive autophagy in vitro and in vivo. Excessive autophagy was attenuated by the PERK inhibitor GSK2656157 and eIF2α siRNA, suggesting that heat stress-induced autophagy can activate the PERK-eIF2α pathway. Beclin 1 and Atg5 siRNAs inhibited the upregulation of the inflammatory cytokines TNF-α, IL-6, and IL-8 after heat exposure. Thus, AS-IV may attenuate inflammatory responses by disrupting the crosstalk between autophagy and the PERK-eIF2α pathway and may be an ideal agent for treating inflammatory pulmonary diseases. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Adaptation to hot climate and strategies to alleviate heat stress in livestock production.

    PubMed

    Renaudeau, D; Collin, A; Yahav, S; de Basilio, V; Gourdine, J L; Collier, R J

    2012-05-01

    Despite many challenges faced by animal producers, including environmental problems, diseases, economic pressure, and feed availability, it is still predicted that animal production in developing countries will continue to sustain the future growth of the world's meat production. In these areas, livestock performance is generally lower than those obtained in Western Europe and North America. Although many factors can be involved, climatic factors are among the first and crucial limiting factors of the development of animal production in warm regions. In addition, global warming will further accentuate heat stress-related problems. The objective of this paper was to review the effective strategies to alleviate heat stress in the context of tropical livestock production systems. These strategies can be classified into three groups: those increasing feed intake or decreasing metabolic heat production, those enhancing heat-loss capacities, and those involving genetic selection for heat tolerance. Under heat stress, improved production should be possible through modifications of diet composition that either promotes a higher intake or compensates the low feed consumption. In addition, altering feeding management such as a change in feeding time and/or frequency, are efficient tools to avoid excessive heat load and improve survival rate, especially in poultry. Methods to enhance heat exchange between the environment and the animal and those changing the environment to prevent or limit heat stress can be used to improve performance under hot climatic conditions. Although differences in thermal tolerance exist between livestock species (ruminants > monogastrics), there are also large differences between breeds of a species and within each breed. Consequently, the opportunity may exist to improve thermal tolerance of the animals using genetic tools. However, further research is required to quantify the genetic antagonism between adaptation and production traits to evaluate

  6. Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs.

    PubMed

    Liu, Fan; Cottrell, Jeremy J; Furness, John B; Rivera, Leni R; Kelly, Fletcher W; Wijesiriwardana, Udani; Pustovit, Ruslan V; Fothergill, Linda J; Bravo, David M; Celi, Pietro; Leury, Brian J; Gabler, Nicholas K; Dunshea, Frank R

    2016-07-01

    What is the central question of this study? Oxidative stress may play a role in compromising intestinal epithelial barrier integrity in pigs subjected to heat stress, but it is unknown whether an increase of dietary antioxidants (selenium and vitamin E) could alleviate gut leakiness in heat-stressed pigs. What is the main finding and its importance? Levels of dietary selenium (1.0 p.p.m.) and vitamin E (200 IU kg(-1) ) greater than those usually recommended for pigs reduced intestinal leakiness caused by heat stress. This finding suggests that oxidative stress plays a role in compromising intestinal epithelial barrier integrity in heat-stressed pigs and also provides a nutritional strategy for mitigating these effects. Heat stress compromises the intestinal epithelial barrier integrity of mammals through mechanisms that may include oxidative stress. Our objective was to test whether dietary supplementation with antioxidants, selenium (Se) and vitamin E (VE), protects intestinal epithelial barrier integrity in heat-stressed pigs. Female growing pigs (n = 48) were randomly assigned to four diets containing from 0.2 p.p.m. Se and 17 IU kg(-1) VE (control, National Research Council recommended) to 1.0 p.p.m. Se and 200 IU kg(-1) VE for 14 days. Six pigs from each dietary treatment were then exposed to either thermoneutral (20°C) or heat-stress conditions (35°C 09.00-17.00 h and 28°C overnight) for 2 days. Transepithelial electrical resistance and fluorescein isothiocyanate-dextran (4 kDa; FD4) permeability were measured in isolated jejunum and ileum using Ussing chambers. Rectal temperature, respiratory rate and intestinal HSP70 mRNA abundance increased (all P < 0.001), and respiratory alkalosis occurred, suggesting that pigs were heat stressed. Heat stress also increased FD4 permeability and decreased transepithelial electrical resistance (both P < 0.01). These changes were associated with changes indicative of oxidative stress, a decreased

  7. Hand immersion in cold water alleviating physiological strain and increasing tolerance to uncompensable heat stress.

    PubMed

    Khomenok, Gennadi A; Hadid, Amir; Preiss-Bloom, Orahn; Yanovich, Ran; Erlich, Tomer; Ron-Tal, Osnat; Peled, Amir; Epstein, Yoram; Moran, Daniel S

    2008-09-01

    The current study examines the use of hand immersion in cold water to alleviate physiological strain caused by exercising in a hot climate while wearing NBC protective garments. Seventeen heat acclimated subjects wearing a semi-permeable NBC protective garment and a light bulletproof vest were exposed to a 125 min exercise-heat stress (35 degrees C, 50% RH; 5 km/h, 5% incline). The heat stress exposure routine included 5 min rest in the chamber followed by two 50:10 min work-rest cycles. During the control trial (CO), there was no intervention, whilst in the intervention condition the subjects immersed their hands and forearms in a 10 degrees C water bath (HI). The results demonstrated that hand immersion in cold water significantly reduced physiological strain. In the CO exposure during the first and second resting periods, the average rectal temperature (T (re)) practically did not decrease. With hand immersion, the mean (SD) T (re) decreased by 0.45 (0.05 degrees C) and 0.48 degrees C (0.06 degrees C) during the first and second rest periods respectively (P < 0.005). Significant decreases in skin temperature, sweat rate, heart rate, and heat storage was also noted in the HI vs. the CO trials. Tolerance time in the HI exposure were longer than in the CO exposure (only 12 subjects in the CO trial endured the entire heat exposure session, as opposed to all 17 subjects in the HI group). It is concluded that hand immersion in cold water for 10 min is an effective method for decreasing the physiological strain caused by exercising under heat stress while wearing NBC protective garments. The method is convenient, simple, and allows longer working periods in hot or contaminated areas with shorter resting periods.

  8. The importance of propolis in alleviating the negative physiological effects of heat stress in quail chicks

    PubMed Central

    Ibrahim, Rania M.; Desoky, Adel A.; Safaa, Hosam M.; El-Sayed, Osama A.; Abass, Ahmed O.

    2017-01-01

    Heat stress is one of the most detrimental confrontations in tropical and subtropical regions of the world, causing considerable economic losses in poultry production. Propolis, a resinous product of worker honeybees, possesses several biological activities that could be used to alleviate the deleterious effects of high environmental temperature on poultry production. The current study was aimed at evaluating the effects of propolis supplementation to Japanese quail (Coturnix coturnix japonica) diets on the production performance, intestinal histomorphology, relative physiological and immunological parameters, and selected gene expression under heat stress conditions. Three hundred one-day-old Japanese quail chicks were randomly distributed into 20 wired-cages. At 28 d of age, the birds were divided into 2 temperature treatment groups; a normal at 24°C (C group) and a heat stress at 35°C (HS group). The birds in each group were further assigned to 2 subgroups; one of them was fed on a basal diet without propolis supplementation (-Pr subgroup) while the other was supplemented with propolis (+Pr subgroup). Production performance including body weight gain, feed intake and feed conversion ratio were measured. The intestinal histomorphological measurements were also performed for all treatment groups. Relative physiological parameters including body temperature, corticosterone hormone level, malondialdehyde (MDA) and free triiodothyronine hormone (fT3), as well as the relative immunological parameters including the total white blood cells count (TWBC’s), heterophil/lymphocyte (H/L) ratio and lymphocyte proliferation index, were also measured. Furthermore, the mRNA expression for toll like receptor 5 (TLR5), cysteine-aspartic protease-6 (CASP6) and heat shock proteins 70 and 90 (Hsp70 and Hsp90) genes was quantified in this study. The quail production performance was significantly (P<0.05) impaired by HS treatment, while Pr treatment significantly improved the quail

  9. The importance of propolis in alleviating the negative physiological effects of heat stress in quail chicks.

    PubMed

    Mehaisen, Gamal M K; Ibrahim, Rania M; Desoky, Adel A; Safaa, Hosam M; El-Sayed, Osama A; Abass, Ahmed O

    2017-01-01

    Heat stress is one of the most detrimental confrontations in tropical and subtropical regions of the world, causing considerable economic losses in poultry production. Propolis, a resinous product of worker honeybees, possesses several biological activities that could be used to alleviate the deleterious effects of high environmental temperature on poultry production. The current study was aimed at evaluating the effects of propolis supplementation to Japanese quail (Coturnix coturnix japonica) diets on the production performance, intestinal histomorphology, relative physiological and immunological parameters, and selected gene expression under heat stress conditions. Three hundred one-day-old Japanese quail chicks were randomly distributed into 20 wired-cages. At 28 d of age, the birds were divided into 2 temperature treatment groups; a normal at 24°C (C group) and a heat stress at 35°C (HS group). The birds in each group were further assigned to 2 subgroups; one of them was fed on a basal diet without propolis supplementation (-Pr subgroup) while the other was supplemented with propolis (+Pr subgroup). Production performance including body weight gain, feed intake and feed conversion ratio were measured. The intestinal histomorphological measurements were also performed for all treatment groups. Relative physiological parameters including body temperature, corticosterone hormone level, malondialdehyde (MDA) and free triiodothyronine hormone (fT3), as well as the relative immunological parameters including the total white blood cells count (TWBC's), heterophil/lymphocyte (H/L) ratio and lymphocyte proliferation index, were also measured. Furthermore, the mRNA expression for toll like receptor 5 (TLR5), cysteine-aspartic protease-6 (CASP6) and heat shock proteins 70 and 90 (Hsp70 and Hsp90) genes was quantified in this study. The quail production performance was significantly (P<0.05) impaired by HS treatment, while Pr treatment significantly improved the quail

  10. Thermotolerance induced at a mild temperature of 40°C alleviates heat shock-induced ER stress and apoptosis in HeLa cells.

    PubMed

    Bettaieb, Ahmed; Averill-Bates, Diana A

    2015-01-01

    Hyperthermia (39-45°C) has emerged as an alternate prospect for cancer therapy in combination with radiation and chemotherapy. Despite promising progress in the clinic, molecular mechanisms involved in hyperthermia-induced cell death are not clear. Hyperthermia causes protein denaturation/aggregation, which results in cell death by apoptosis and/or necrosis. Hyperthermia also induces thermotolerance, which renders cells resistant to subsequent exposure to lethal heat shock. This study investigates the role of both lethal (42-43°C) and mild (40°C) hyperthermia in regulating ER stress and ER stress-induced apoptosis in HeLa cells. The ability of mild thermotolerance induced at 40°C to alleviate either or both of these processes is also determined. Hyperthermia (42-43°C) induced ER stress, revealed by phosphorylation of PERK, eIF2α and IRE1α, cleavage of ATF6 and increased expression of BiP and sXBP1. Real-time PCR revealed that mRNA levels of ATF6, ATF4, BiP, sXBP1 and CHOP increased in cells exposed to hyperthermia. Moreover, hyperthermia caused disruption of calcium homeostasis and activated the calpain-calpastatin proteolytic system and ER resident caspase 4. Pre-exposure to mild hyperthermia (40°C) alleviated the induction of cytotoxicity and ER stress by hyperthermia (42-43°C) and protected cells against ER stress-induced apoptosis. ShRNA-mediated depletion of Hsp72 abrogated protective effects of mild thermotolerance (40°C) against heat-shock induced ER stress and sensitized cells to ER stress-mediated apoptosis. Our findings show that Hsp72 contributes to the protective effects of mild hyperthermia (40°C) against hyperthermia-induced ER stress and apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Alleviating Stress for Women Administrators.

    ERIC Educational Resources Information Center

    Ten Elshof, Annette; Tomlinson, Elaine

    1981-01-01

    Describes a workshop designed to help women administrators assess individual stress levels. Stress can be alleviated through exercise, support groups or networking, sleep and diet, relaxation, guided fantasy, and planned activity. The long-term implications include preventing illness and making women more effective within the administrative…

  12. Alleviative effects of α-lipoic acid supplementation on acute heat stress-induced thermal panting and the level of plasma nonesterified fatty acids in hypothyroid broiler chickens.

    PubMed

    Hamano, Y

    2012-01-01

    1. The present study was conducted to examine the effects of α-lipoic acid on hypothyroidism-induced negative growth performance and whether α-lipoic acid alleviates acute heat stress in relation to hypothyroid status. 2. Female broiler chickens (14 d-old) were fed diets supplemented with α-lipoic acid (100 mg/kg) and an antithyroid substance, propylthiouracil (200 mg/kg), for 20 d under thermoneutral conditions (25°C). At 42 d of age, chickens were exposed to a high ambient temperature (36°C, 60% RH) for 4 h. 3. Under the thermoneutral condition, propylthiouracil administration decreased feed efficiency and concomitantly increased adipose tissue and thyroid gland weights. Plasma nonesterified fatty acids and triacylglycerol were also increased by propylthiouracil administration. However, α-lipoic acid supplementation did not affect the hypothyroidism-induced effects. 4. In hypothyroid chickens, the rise in respiratory rate induced by heat exposure was greatly inhibited by α-lipoic acid administration at 1 h, but this effect had disappeared at 4 h. In addition, a similar inhibitory effect on the concentrations of plasma nonesterified fatty acids was subsequently observed at 4 h. 5. Therefore, the present study suggested that α-lipoic acid alleviates acute heat stress if chickens are in a hypothyroid status.

  13. Chinese Herbal Medicines as Potential Agents for Alleviation of Heat Stress in Poultry

    PubMed Central

    MD Saadand, Salwani; Idrus, Zulkifli; Diao, Xiao Ping

    2017-01-01

    Heat stress negatively affects the productivity of chickens in commercial poultry farms in humid tropics. In this study, the concentrations and types of the antioxidant compounds of eight Chinese herbal medicines, which have previously demonstrated promising effects on suppressing heat stress as a mixture, were investigated using reversed-phase High Performance Liquid Chromatography, spectrophotometry, Liquid Chromatography Mass Spectrometry, and Gas-Liquid Chromatography. Our results provided the levels of phenolic compounds, total amounts of sugars, and total unsaturated fatty acids in the herbal extracts. Apart from the detection and quantification of the active ingredients of herbs that have the potential to mitigate heat stress in poultry, results of this study also provide useful data for developing an efficient and accurate formulation of the herbs' mixtures in order to induce positive effects against heat stress in in vivo studies. PMID:29209556

  14. Mechanisms of orthostatic intolerance during heat stress

    PubMed Central

    Schlader, Zachary J.; Wilson, Thad E.; Crandall, Craig G.

    2017-01-01

    Heat stress profoundly and unanimously reduces orthostatic tolerance. This review aims to provide an overview of the numerous and multifactorial mechanisms by which this occurs in humans. Potential causal factors include changes in arterial and venous vascular resistance and blood distribution, and the modulation of cardiac output, all of which contribute to the inability to maintain cerebral perfusion during heat and orthostatic stress. A number of countermeasures have been established to improve orthostatic tolerance during heat stress, which alleviate heat stress induced central hypovolemia (e.g., volume expansion) and/or increase peripheral vascular resistance (e.g., skin cooling). Unfortunately, these countermeasures can often be cumbersome to use with populations prone to syncopal episodes. Identifying the mechanisms of inter-individual differences in orthostatic intolerance during heat stress has proven elusive, but could provide greater insights into the development of novel and personalized countermeasures for maintaining or improving orthostatic tolerance during heat stress. This development will be especially impactful in occuational settings and clinical situations that present with orthostatic intolerance and/or central hypovolemia. Such investigations should be considered of vital importance given the impending increased incidence of heat events, and associated cardiovascular challenges that are predicted to occur with the ensuing changes in climate. PMID:26723547

  15. Habitat odor can alleviate innate stress responses in mice.

    PubMed

    Matsukawa, Mutsumi; Imada, Masato; Aizawa, Shin; Sato, Takaaki

    2016-01-15

    Predatory odors, which can induce innate fear and stress responses in prey species, are frequently used in the development of animal models for several psychiatric diseases including post-traumatic stress disorder (PTSD) following a life-threatening event. We have previously shown that odors can be divided into at least three types; odors that act as (1) innate stressors, (2) as innate relaxants, or (3) have no innate effects on stress responses. Here, we attempted to verify whether an artificial odor, which had no innate effect on predatory odor-induced stress, could alleviate stress if experienced in early life as a habitat odor. In the current study, we demonstrated that the innate responses were changed to counteract stress following a postnatal experience. Moreover, we suggest that inhibitory circuits involved in stress-related neuronal networks and the concentrations of norepinephrine in the hippocampus may be crucial in alleviating stress induced by the predatory odor. Overall, these findings may be important for understanding the mechanisms involved in differential odor responses and also for the development of pharmacotherapeutic interventions that can alleviate stress in illnesses like PTSD. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  17. Irradiation with low-dose gamma ray enhances tolerance to heat stress in Arabidopsis seedlings.

    PubMed

    Zhang, Liang; Zheng, Fengxia; Qi, Wencai; Wang, Tianqi; Ma, Lingyu; Qiu, Zongbo; Li, Jingyuan

    2016-06-01

    Gamma irradiation at low doses can stimulate the tolerance to environmental stress in plants. However, the knowledge regarding the mechanisms underlying the enhanced tolerance induced by low-dose gamma irradiation is far from fully understood. In this study, to investigate the physiological and molecular mechanisms of heat stress alleviated by low-dose gamma irradiation, the Arabidopsis seeds were exposed to a range of doses before subjected to heat treatment. Our results showed that 50-Gy gamma irradiation maximally promoted seedling growth in response to heat stress. The production rate of superoxide radical and contents of hydrogen peroxide and malondialdehyde in the seedlings irradiated with 50-Gy dose under heat stress were significantly lower than those of controls. The activities of antioxidant enzymes, glutathione (GSH) content and proline level in the gamma-irradiated seedlings were significantly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components related to heat tolerance were stimulated by low-dose gamma irradiation under heat shock. Our results suggest that low-dose gamma irradiation can modulate the physiological responses as well as gene expression related to heat tolerance, thus alleviating the stress damage in Arabidopsis seedlings. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effect of drought and heat stresses on plant growth and yield: a review

    NASA Astrophysics Data System (ADS)

    Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K.

    2013-12-01

    Drought and heat stresses are important threat limitations to plant growth and sustainable agriculture worldwide. Our objective is to provide a review of plant responses and adaptations to drought and elevated temperature including roots, shoots, and final yield and management approaches for alleviating adverse effects of the stresses based mostly on recent literature. The sections of the paper deal with plant responses including root growth, transpiration, photosynthesis, water use efficiency, phenotypic flexibility, accumulation of compounds of low molecular mass (eg proline and gibberellins), and expression of some genes and proteins for increasing the tolerance to the abiotic stresses. Soil and crop management practices to alleviate negative effects of drought and heat stresses are also discussed. Investigations involving determination of plant assimilate partitioning, phenotypic plasticity, and identification of most stress-tolerant plant genotypes are essential for understanding the complexity of the responses and for future plant breeding. The adverse effects of drought and heat stress can be mitigated by soil management practices, crop establishment, and foliar application of growth regulators by maintaining an appropriate level of water in the leaves due to osmotic adjustment and stomatal performance.

  19. Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle.

    PubMed

    Mujahid, Ahmad; Akiba, Yukio; Toyomizu, Masaaki

    2009-09-01

    We have previously shown that avian uncoupling protein (avUCP) is downregulated on exposure to acute heat stress, stimulating mitochondrial reactive oxygen species (ROS) production and oxidative damage. In this study, we investigated whether upregulation of avUCP could attenuate oxidative damage caused by acute heat stress. Broiler chickens (Gallus gallus) were fed either a control diet or an olive oil-supplemented diet (6.7%), which has been shown to increase the expression of UCP3 in mammals, for 8 days and then exposed either to heat stress (34 degrees C, 12 h) or kept at a thermoneutral temperature (25 degrees C). Skeletal muscle mitochondrial ROS (measured as H(2)O(2)) production, avUCP expression, oxidative damage, mitochondrial membrane potential, and oxygen consumption were studied. We confirmed that heat stress increased mitochondrial ROS production and malondialdehyde levels and decreased the amount of avUCP. As expected, feeding birds an olive oil-supplemented diet increased the expression of avUCP in skeletal muscle mitochondria and decreased ROS production and oxidative damage. Studies on mitochondrial function showed that heat stress increased membrane potential in state 4, which was reversed by feeding birds an olive oil-supplemented diet, although no differences in basal proton leak were observed between control and heat-stressed groups. These results show that under heat stress, mitochondrial ROS production and olive oil-induced reduction of ROS production may occur due to changes in respiratory chain activity as well as avUCP expression in skeletal muscle mitochondria.

  20. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review

    PubMed Central

    Fournel, Sébastien; Ouellet, Véronique; Charbonneau, Édith

    2017-01-01

    Simple Summary The severity of heat stress issues on dairy cows will increase as global warming progresses. Fortunately, major advances in environmental management, including fans, misters, sprinklers, and cooled waterbeds, can attenuate the effects of thermal stress on cow health, production, and reproduction. These cooling systems were, however, tested in subtropical areas and their efficiency in northern regions is uncertain. This article assesses the potential of existing technologies to cool cows in humid continental climates through calculation of heat stress indices. Abstract Heat stress negatively affects the health and performance of dairy cows, resulting in considerable economic losses for the industry. In future years, climate change will exacerbate these losses by making the climate warmer. Physical modification of the environment is considered to be the primary means of reducing adverse effects of hot weather conditions. At present, to reduce stressful heat exposure and to cool cows, dairy farms rely on shade screens and various forms of forced convection and evaporative cooling that may include fans and misters, feed-line sprinklers, and tunnel- or cross-ventilated buildings. However, these systems have been mainly tested in subtropical areas and thus their efficiency in humid continental climates, such as in the province of Québec, Canada, is unclear. Therefore, this study reviewed the available cooling applications and assessed their potential for northern regions. Thermal stress indices such as the temperature-humidity index (THI) were used to evaluate the different cooling strategies. PMID:28468329

  1. Inorganic zinc supplementation modulates heat shock and immune response in heat stressed peripheral blood mononuclear cells of periparturient dairy cows.

    PubMed

    Sheikh, Aasif Ahmad; Aggarwal, Anjali; B, Indu; Aarif, Ovais

    2017-06-01

    Thermal stress in India is one of the major constraints affecting dairy cattle productivity. Every attempt should be made to ameliorate the heat and calving related stress in high producing dairy cows for higher economic returns. In the current study, inorganic zinc was tried to alleviate the adverse effects of thermal stress in periparturient cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were chosen for the experiment. The blood samples were collected periparturiently on three occasions viz. -21, 0 and +21 days relative to calving. The in vitro study was conducted after isolating peripheral blood mononuclear cells (PBMC) from whole blood. The cultured PBMC were subjected to three different levels of exposures viz. 37°C as control, 42°C to induce thermal stress and 42°C + zinc to ameliorate the adverse effects of high temperature. Heat shock lead to a significant (P<0.05) rise in the level of heat shock proteins (HSP). HSP was more on the day of calving as well. KF showed more HSP concentration than Sahiwal breed indicating the heat bearing capacity of later. Zinc treatment to thermally stressed PBMC caused a fall in the HSP concentration in both the breeds during periparturient period. Moreover, heat stress increased significantly (P<0.05) the Interleukin 6 (IL-6) concentration which declined upon zinc supplementation to PBMC. IL-6 levels decreased periparturiently. Heat and calving related stress caused a fall in the IL-12 levels which increased significantly (P<0.05) with zinc supplementation. These findings suggest that zinc supplementation attenuates the HSP response and augments immunity in PBMC of periparturient dairy cows. The study could help to alleviate the heat stress and potentiate immunity by providing mineral supplements in periparturient dairy cattle habituating tropics. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Advances in the Breeding and Genetics of Heat Tolerance to Alleviate the Effects of Climate Change, with a Focus on Common Bean

    USDA-ARS?s Scientific Manuscript database

    Crop plants are broadly sensitive to high ambient temperatures during reproductive development while breeding efforts are helping to alleviate the impact of heat stress. Common bean, Phaseolus vulgaris L., is sensitive to moderately high ambient temperature, where temperatures greater than 25C have ...

  3. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum)

    PubMed Central

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  4. Heat stress, the follicle, and its enclosed oocyte: mechanisms and potential strategies to improve fertility in dairy cows.

    PubMed

    Roth, Z

    2008-07-01

    Reduced reproductive performance of lactating cows during the summer is associated with decreased thermoregulatory competence due to intensive genetic selection for high milk production. This review examines the immediate and delayed effects of heat stress on follicular function and describes some potential strategies for their alleviation. It focuses on how heat stress affects the follicle and its enclosed oocyte, suggesting that perturbations in the follicular microenvironment, to which the oocytes are exposed for long periods of development, reduce their developmental competence. Among the potential alterations are reduction in gonadotropin secretion, alteration in follicular growth, attenuation of dominance, and disruption of steroidogenesis. Evaporative cooling methods are the most common strategy used to alleviate the effect of heat stress; however, there is a compelling need to find additional ways to improve fertility during the summer and autumn. Hormonal treatment to enhance removal of the impaired follicles by synchronization of follicular waves with GnRH and PGF2 alpha is suggested. An alternative method is stimulation of follicular growth by a brief treatment with bST or FSH. Other strategies, such as timed AI and embryo transfer, have been recently used, making the optimization of embryo cryopreservation procedures highly relevant. Protection of the ovarian pool of oocytes from thermal stress via nutritional manipulations or administration of antioxidants or other survival factors should also be considered. A better understanding of the underlying mechanisms by which heat stress impairs fertility may lead to the development of additional approaches to alleviate these effects.

  5. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes.

    PubMed

    Oskoueian, Ehsan; Abdullah, Norhani; Idrus, Zulkifli; Ebrahimi, Mahdi; Goh, Yong Meng; Shakeri, Majid; Oskoueian, Armin

    2014-10-02

    Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. The PKC extract possessed free radical scavenging activity with values significantly (p < 0.05) lower than silymarin as the reference antioxidant. Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p < 0.05). Treatment of heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p < 0.05). The real time PCR and western blot analyses revealed the significant (p < 0.05) up-regulation of oxidative stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.

  6. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review

    PubMed Central

    Evelin, Heikham; Kapoor, Rupam; Giri, Bhoopander

    2009-01-01

    Background Salt stress has become a major threat to plant growth and productivity. Arbuscular mycorrhizal fungi colonize plant root systems and modulate plant growth in various ways. Scope This review addresses the significance of arbuscular mycorrhiza in alleviation of salt stress and their beneficial effects on plant growth and productivity. It also focuses on recent progress in unravelling biochemical, physiological and molecular mechanisms in mycorrhizal plants to alleviate salt stress. Conclusions The role of arbuscular mycorrhizal fungi in alleviating salt stress is well documented. This paper reviews the mechanisms arbuscular mycorrhizal fungi employ to enhance the salt tolerance of host plants such as enhanced nutrient acquisition (P, N, Mg and Ca), maintenance of the K+ : Na+ ratio, biochemical changes (accumulation of proline, betaines, polyamines, carbohydrates and antioxidants), physiological changes (photosynthetic efficiency, relative permeability, water status, abscissic acid accumulation, nodulation and nitrogen fixation), molecular changes (the expression of genes: PIP, Na+/H+ antiporters, Lsnced, Lslea and LsP5CS) and ultra-structural changes. Theis review identifies certain lesser explored areas such as molecular and ultra-structural changes where further research is needed for better understanding of symbiosis with reference to salt stress for optimum usage of this technology in the field on a large scale. This review paper gives useful benchmark information for the development and prioritization of future research programmes. PMID:19815570

  7. Causes and Alleviation of Occupational Stress in Child Care Work

    ERIC Educational Resources Information Center

    Dillenburger, Karola

    2004-01-01

    Occupational stress in not a new phenomenon in the working population. However, in the helping professions it has only recently attracted attention. The survey reported here was carried out in order to assess the extent of occupational stress, identify its causes, and suggest ways in which occupational stress can be alleviated. Field social…

  8. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus).

    PubMed

    Xie, Jingjing; Tang, Li; Lu, Lin; Zhang, Liyang; Xi, Lin; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2014-01-01

    Heat stress due to high environmental temperature negatively influences animal performances. To better understand the biological impact of heat stress, laying broiler breeder chickens were subjected either to acute (step-wisely increasing temperature from 21 to 35°C within 24 hours) or chronic (32°C for 8 weeks) high temperature exposure. High temperature challenges significantly elevated body temperature of experimental birds (P<0.05). However, oxidation status of lipid and protein and expression of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) 70 and 90 were differently affected by acute and chronic treatment. Tissue-specific responses to thermal challenge were also found among heart, liver and muscle. In the heart, acute heat challenge affected lipid oxidation (P = 0.05) and gene expression of all 4 HSF gene expression was upregulated (P<0.05). During chronic heat treatment, the HSP 70 mRNA level was increased (P<0.05) and HSP 90 mRNA (P<0.05) was decreased. In the liver, oxidation of protein was alleviated during acute heat challenge (P<0.05), however, gene expression HSF2, 3 and 4 and HSP 70 were highly induced (P<0.05). HSP90 expression was increased by chronic thermal treatment (P<0.05). In the muscle, both types of heat stress increased protein oxidation, but HSFs and HSPs gene expression remained unaltered. Only tendencies to increase were observed in HSP 70 (P = 0.052) and 90 (P = 0.054) gene expression after acute heat stress. The differential expressions of HSF and HSP genes in different tissues of laying broiler breeder chickens suggested that anti-heat stress mechanisms might be provoked more profoundly in the heart, by which the muscle was least protected during heat stress. In addition to HSP, HSFs gene expression could be used as a marker during acute heat stress.

  9. Heat Stress

    MedlinePlus

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  10. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review.

    PubMed

    Fournel, Sébastien; Ouellet, Véronique; Charbonneau, Édith

    2017-05-02

    Heat stress negatively affects the health and performance of dairy cows, resulting in considerable economic losses for the industry. In future years, climate change will exacerbate these losses by making the climate warmer. Physical modification of the environment is considered to be the primary means of reducing adverse effects of hot weather conditions. At present, to reduce stressful heat exposure and to cool cows, dairy farms rely on shade screens and various forms of forced convection and evaporative cooling that may include fans and misters, feed-line sprinklers, and tunnel- or cross-ventilated buildings. However, these systems have been mainly tested in subtropical areas and thus their efficiency in humid continental climates, such as in the province of Québec, Canada, is unclear. Therefore, this study reviewed the available cooling applications and assessed their potential for northern regions. Thermal stress indices such as the temperature-humidity index (THI) were used to evaluate the different cooling strategies.

  11. Occupational heat stress assessment and protective strategies in the context of climate change

    NASA Astrophysics Data System (ADS)

    Gao, Chuansi; Kuklane, Kalev; Östergren, Per-Olof; Kjellstrom, Tord

    2018-03-01

    Global warming will unquestionably increase the impact of heat on individuals who work in already hot workplaces in hot climate areas. The increasing prevalence of this environmental health risk requires the improvement of assessment methods linked to meteorological data. Such new methods will help to reveal the size of the problem and design appropriate interventions at individual, workplace and societal level. The evaluation of occupational heat stress requires measurement of four thermal climate factors (air temperature, humidity, air velocity and heat radiation); available weather station data may serve this purpose. However, the use of meteorological data for occupational heat stress assessment is limited because weather stations do not traditionally and directly measure some important climate factors, e.g. solar radiation. In addition, local workplace environmental conditions such as local heat sources, metabolic heat production within the human body, and clothing properties, all affect the exchange of heat between the body and the environment. A robust occupational heat stress index should properly address all these factors. This article reviews and highlights a number of selected heat stress indices, indicating their advantages and disadvantages in relation to meteorological data, local workplace environments, body heat production and the use of protective clothing. These heat stress and heat strain indices include Wet Bulb Globe Temperature, Discomfort Index, Predicted Heat Strain index, and Universal Thermal Climate Index. In some cases, individuals may be monitored for heat strain through physiological measurements and medical supervision prior to and during exposure. Relevant protective and preventive strategies for alleviating heat strain are also reviewed and proposed.

  12. Occupational heat stress assessment and protective strategies in the context of climate change.

    PubMed

    Gao, Chuansi; Kuklane, Kalev; Östergren, Per-Olof; Kjellstrom, Tord

    2018-03-01

    Global warming will unquestionably increase the impact of heat on individuals who work in already hot workplaces in hot climate areas. The increasing prevalence of this environmental health risk requires the improvement of assessment methods linked to meteorological data. Such new methods will help to reveal the size of the problem and design appropriate interventions at individual, workplace and societal level. The evaluation of occupational heat stress requires measurement of four thermal climate factors (air temperature, humidity, air velocity and heat radiation); available weather station data may serve this purpose. However, the use of meteorological data for occupational heat stress assessment is limited because weather stations do not traditionally and directly measure some important climate factors, e.g. solar radiation. In addition, local workplace environmental conditions such as local heat sources, metabolic heat production within the human body, and clothing properties, all affect the exchange of heat between the body and the environment. A robust occupational heat stress index should properly address all these factors. This article reviews and highlights a number of selected heat stress indices, indicating their advantages and disadvantages in relation to meteorological data, local workplace environments, body heat production and the use of protective clothing. These heat stress and heat strain indices include Wet Bulb Globe Temperature, Discomfort Index, Predicted Heat Strain index, and Universal Thermal Climate Index. In some cases, individuals may be monitored for heat strain through physiological measurements and medical supervision prior to and during exposure. Relevant protective and preventive strategies for alleviating heat strain are also reviewed and proposed.

  13. Residual stress alleviation of aircraft metal structures reinforced with filamentary composites

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1973-01-01

    Methods to eliminate or reduce residual stresses in aircraft metal structures reinforced by filamentary composites are discussed. Residual stress level reductions were achieved by modifying the manufacturing procedures used during adhesive bonding. The residual stress alleviation techniques involved various forms of mechanical constraint which were applied to the components during bonding. Nine methods were evaluated, covering a wide range in complexity. All methods investigated during the program affected the residual stress level. In general, residual stresses were reduced by 70 percent or more from the stress level produced by conventional adhesive bonding procedures.

  14. Thermomechanical Stress in Cryopreservation Via Vitrification With Nanoparticle Heating as a Stress-Moderating Effect.

    PubMed

    Eisenberg, David P; Bischof, John C; Rabin, Yoed

    2016-01-01

    This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided-the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.

  15. Melatonin Has the Potential to Alleviate Cinnamic Acid Stress in Cucumber Seedlings

    PubMed Central

    Li, Juanqi; Li, Yang; Tian, Yongqiang; Qu, Mei; Zhang, Wenna; Gao, Lihong

    2017-01-01

    Cinnamic acid (CA), which is a well-known major autotoxin secreted by the roots in cucumber continuous cropping, has been proven to exhibit inhibitory regulation of plant morphogenesis and development. Melatonin (MT) has been recently demonstrated to play important roles in alleviating plant abiotic stresses. To investigate whether MT supplementation could improve cucumber seedling growth under CA stress, we treated cucumber seeds and seedlings with/without MT under CA- or non-stress conditions, and then tested their effects on cucumber seedling growth, morphology, nutrient element content, and plant hormone. Overall, 10 μM MT best rescued cucumber seedling growth under 0.4 mM CA stress. MT was found to alleviate CA-stressed seedling growth by increasing the growth rates of cotyledons and leaves and by stimulating lateral root growth. Additionally, MT increased the allocation of newly gained dry weight in roots and improved the tolerance of cucumber seedlings to CA stress by altering the nutrient elements and hormone contents of the whole plant. These results strongly suggest that the application of MT can effectively improve cucumber seedling tolerance to CA stress through the perception and integration of morphology, nutrient element content and plant hormone signaling crosstalk. PMID:28751899

  16. Effects of Heat Stress on the Well-Being, Fertility, and Hatchability of Chickens in the Northern Guinea Savannah Zone of Nigeria: A Review

    PubMed Central

    Ayo, J. O.; Obidi, J. A.; Rekwot, P. I.

    2011-01-01

    The paper examines heat stress and its adverse effects as a hindrance to profitable poultry production in the tropics, with emphasis on the Northern Guinea Savannah zone of Nigeria. It elucidates the general negative effects of heat stress on physiological parameters of domestic chickens, and the specific impact of the stress on reproduction in the tropics. The deleterious effects are expressed in poor poultry well-being and reproductive performance. It is concluded that measures aimed at alleviating heat stress in domestic chickens must be adopted in order to enhance reproductive and, consequently, efficiency of modern poultry production in the tropics. PMID:23738109

  17. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    PubMed Central

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  18. Chromium picolinate, rather than biotin, alleviates performance and metabolic parameters in heat-stressed quail.

    PubMed

    Sahin, N; Sahin, K; Onderci, M; Gursu, M F; Cikim, G; Vijaya, J; Kucuk, O

    2005-08-01

    1. The effects of chromium picolinate and biotin supplementation alone and in combination on performance, carcase characteristics, malondialdehyde (MDA), vitamin C, vitamin E, glucose and cholesterol levels were evaluated in Japanese quail exposed to high ambient temperature. 2. Two hundred and forty quails (10d old) were assigned randomly to 4 dietary treatments at room temperature (22 degrees C; thermoneutral, TN) or ambient (34 degrees C for 8 h/d; heat stress, HS). Both TN and HS were fed either on a basal (control) diet or the basal diet supplemented with 400 microg of Cr/kg (Cr group), 0.5 mg of biotin/kg of diet (biotin group) or both (Cr + Biotin group). 3. Supplementing the diet of heat-stressed quails with chromium picolinate improved live weight gain, feed intake, feed efficiency and carcase traits. Biotin supplementation during TN and HS conditions did not have any beneficial effects on body weight gain, feed intake, feed efficiency or carcase traits. 4. Either in combination or alone, chromium picolinate increased serum concentrations of vitamins C and E, but decreased MDA, glucose and cholesterol concentrations in birds kept at high ambient temperature. There was no difference in vitamins C and E and MDA concentrations between birds given chromium picolinate and birds receiving chromium picolinate plus biotin, while glucose and cholesterol levels were significantly lower in all groups. The lowest concentrations of cholesterol and glucose were found in the combination group under both TN and HS conditions. An interaction between diet and temperature was detected for glucose and cholesterol concentrations. 5. Excretion rates for zinc, iron and chromium were lower in TN groups than in the corresponding HS groups. Supplementing diet with chromium picolinate and chromium picolinate plus biotin decreased excretion of minerals while biotin alone did not effect excretion of minerals. 6. Chromium supplementation, but not biotin supplementation, attenuated the

  19. Glutamine alleviates heat stress-induced impairment of intestinal morphology, intestinal inflammatory response, and barrier integrity in broilers.

    PubMed

    Wu, Q J; Liu, N; Wu, X H; Wang, G Y; Lin, L

    2018-05-17

    The aim of this study was to investigate the protective effect of glutamine (Gln) on the intestinal morphology, intestinal inflammatory response, and barrier integrity in broilers exposed to high ambient temperature. Three-hundred-sixty 21-d-old Arbor Acres broilers (half male and half female) were randomly allocated to 4 treatment groups in a completely randomized design, each of which included 6 replicates with 15 birds per replicate, for 21 d. The 4 treatment groups were as follows: the control group, in which birds were kept in a thermoneutral room at 22 ± 1°C (no stress, NS; fed a basal diet); the heat stress group (36 ± 1°C for 10 h/d from 08:00 to 18:00 h and 22 ± 1°C for the remaining time, heat stress (HT); fed a basal diet); and heat stress + Gln group (0.5 and 1.0% Gln, respectively). Compared to the NS group, broilers in the HT group had lower villus height (P < 0.05), higher crypt depth (P < 0.05), higher D-lactic acid and diamine oxidase (DAO) activity (P < 0.05), higher soluble intercellular adhesion molecule-1 (sICAM-1) concentration (P < 0.05), higher tumor necrosis factor (TNF)-α/interleukin (IL)-10 (P < 0.05), and lower tight junction protein expression levels (P < 0.05). Compared with birds in the HT, birds in the HT + Gln group exhibited increased villus height (P < 0.05), decreased D-lactate and DAO activity (P < 0.05), decreased sICAM-1 concentration (P < 0.05), and mediate the secretion of cytokines (P < 0.05), as well as increased zonula occludens-1 (ZO-1), claudin-1, and occludin mRNA expression levels (P < 0.05). In conclusion, these results indicate that supplementation with Gln was effective in partially ameliorating the adverse effects of heat stress on intestinal barrier function in broilers by promoting epithelial cell proliferation and renewal, modifying the function of the intestinal mucosa barrier, and regulating the secretion of cytokines.

  20. Methane alleviates copper-induced seed germination inhibition and oxidative stress in Medicago sativa.

    PubMed

    Samma, Muhammad Kaleem; Zhou, Heng; Cui, Weiti; Zhu, Kaikai; Zhang, Jing; Shen, Wenbiao

    2017-02-01

    Recent results discovered the protective roles of methane (CH 4 ) against oxidative stress in animals. However, the possible physiological roles of CH 4 in plants are still unknown. By using physiological, histochemical and molecular approaches, the beneficial role of CH 4 in germinating alfalfa seeds upon copper (Cu) stress was evaluated. Endogenous production of CH 4 was significantly increased in Cu-stressed alfalfa seeds, which was mimicked by 0.39 mM CH 4 . The pretreatment with CH 4 significantly alleviated the inhibition of seed germination and seedling growth induced by Cu stress. Cu accumulation was obviously blocked as well. Meanwhile, α/β amylase activities and sugar contents were increased, all of which were consistent with the alleviation of seed germination inhibition triggered by CH 4 . The Cu-triggered oxidative stress was also mitigated, which was confirmed by the decrease of lipid peroxidation and reduction of Cu-induced loss of plasma membrane integrity in CH 4 -pretreated alfalfa seedlings. The results of antioxidant enzymes, including ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (POD) total or isozymatic activities, and corresponding transcripts (APX1/2, Cu/Zn SOD and Mn-SOD), indicated that CH 4 reestablished cellular redox homeostasis. Further, Cu-induced proline accumulation was partly impaired by CH 4 , which was supported by the alternation of proline metabolism. Together, these results indicated that CH 4 performs an advantageous effect on the alleviation of seed germination inhibition caused by Cu stress, and reestablishment of redox homeostasis mainly via increasing antioxidant defence.

  1. Regulation of photochemical energy transfer accompanied by structural changes in thylakoid membranes of heat-stressed wheat.

    PubMed

    Marutani, Yoko; Yamauchi, Yasuo; Miyoshi, Akihito; Inoue, Kanako; Ikeda, Ken-ichi; Mizutani, Masaharu; Sugimoto, Yukihiro

    2014-12-11

    Photosystems of higher plants alleviate heat-induced damage in the presence of light under moderate stressed conditions; however, in the absence of light (i.e., in the dark), the same plants are damaged more easily. (Yamauchi and Kimura, 2011) We demonstrate that regulating photochemical energy transfer in heat-treated wheat at 40 °C with light contributed to heat tolerance of the photosystem. Chlorophyll fluorescence analysis using heat-stressed wheat seedlings in light showed increased non-photochemical quenching (NPQ) of chlorophyll fluorescence, which was due to thermal dissipation that was increased by state 1 to state 2 transition. Transmission electron microscopy revealed structural changes in thylakoid membranes, including unstacking of grana regions under heat stress in light. It was accompanied by the phosphorylation of thylakoid proteins such as D1 and D2 proteins and the light harvesting complex II proteins Lhcb1 and Lhcb2. These results suggest that heat stress at 40 °C in light induces state 1 to state 2 transition for the preferential excitation of photosystem I (PSI) by phosphorylating thylakoid proteins more strongly. Structural changes of thylakoid membrane also assist the remodeling of photosystems and regulation of energy distribution by transition toward state 2 probably contributes to plastoquione oxidation; thus, light-driven electrons flowing through PSI play a protective role against PSII damage under heat stress.

  2. Arctigenin alleviates ER stress via activating AMPK

    PubMed Central

    Gu, Yuan; Sun, Xiao-xiao; Ye, Ji-ming; He, Li; Yan, Shou-sheng; Zhang, Hao-hao; Hu, Li-hong; Yuan, Jun-ying; Yu, Qiang

    2012-01-01

    Aim: To investigate the protective effects of arctigenin (ATG), a phenylpropanoid dibenzylbutyrolactone lignan from Arctium lappa L (Compositae), against ER stress in vitro and the underlying mechanisms. Methods: A cell-based screening assay for ER stress regulators was established. Cell viability was measured using MTT assay. PCR and Western blotting were used to analyze gene and protein expression. Silencing of the CaMKKβ, LKB1, and AMPKα1 genes was achieved by RNA interference (RNAi). An ATP bioluminescent assay kit was employed to measure the intracellular ATP levels. Results: ATG (2.5, 5 and 10 μmol/L) inhibited cell death and unfolded protein response (UPR) in a concentration-dependent manner in cells treated with the ER stress inducer brefeldin A (100 nmol/L). ATG (1, 5 and 10 μmol/L) significantly attenuated protein synthesis in cells through inhibiting mTOR-p70S6K signaling and eEF2 activity, which were partially reversed by silencing AMPKα1 with RNAi. ATG (1-50 μmol/L) reduced intracellular ATP level and activated AMPK through inhibiting complex I-mediated respiration. Pretreatment of cells with the AMPK inhibitor compound C (25 μmol/L) rescued the inhibitory effects of ATG on ER stress. Furthermore, ATG (2.5 and 5 μmol/L) efficiently activated AMPK and reduced the ER stress and cell death induced by palmitate (2 mmol/L) in INS-1 β cells. Conclusion: ATG is an effective ER stress alleviator, which protects cells against ER stress through activating AMPK, thus attenuating protein translation and reducing ER load. PMID:22705729

  3. Ascorbic Acid Alleviates Damage from Heat Stress in the Photosystem II of Tall Fescue in Both the Photochemical and Thermal Phases

    PubMed Central

    Chen, Ke; Zhang, Minna; Zhu, Huihui; Huang, Meiyu; Zhu, Qing; Tang, Diyong; Han, Xiaole; Li, Jinlin; Sun, Jie; Fu, Jinmin

    2017-01-01

    L-Ascorbate (Asc) plays important roles in plant development, hormone signaling, the cell cycle and cellular redox system, etc. The higher content of Asc in plant chloroplasts indicates its important role in the photosystem. The objective of this study was to study the roles of Asc in tall fescue leaves against heat stress. After a heat stress treatment, we observed a lower value of the maximum quantum yield for primary photochemistry (φPo), which reflects the inhibited activity of the photochemical phase of photosystem II (PSII). Moreover, we observed a higher value of efficiency of electron transfer from QB to photosystem I acceptors (δR0), which reflects elevated activity of the thermal phase of the photosystem of the tall fescue. The addition of Asc facilitate the behavior of the photochemical phase of the PSII by lowering the ROS content as well as that of the alternative electron donor to provide electron to the tyrosine residue of the D1 protein. Additionally, exogenous Asc reduces the activity of the thermal phase of the photosystem, which could contribute to the limitation of energy input into the photosystem in tall fescue against heat stress. Synthesis of the Asc increased under heat stress treatment. However, under heat stress this regulation does not occur at the transcription level and requires further study. PMID:28848577

  4. Fluvoxamine alleviates ER stress via induction of Sigma-1 receptor

    PubMed Central

    Omi, T; Tanimukai, H; Kanayama, D; Sakagami, Y; Tagami, S; Okochi, M; Morihara, T; Sato, M; Yanagida, K; Kitasyoji, A; Hara, H; Imaizumi, K; Maurice, T; Chevallier, N; Marchal, S; Takeda, M; Kudo, T

    2014-01-01

    We recently demonstrated that endoplasmic reticulum (ER) stress induces sigma-1 receptor (Sig-1R) expression through the PERK pathway, which is one of the cell's responses to ER stress. In addition, it has been demonstrated that induction of Sig-1R can repress cell death signaling. Fluvoxamine (Flv) is a selective serotonin reuptake inhibitor (SSRI) with a high affinity for Sig-1R. In the present study, we show that treatment of neuroblastoma cells with Flv induces Sig-1R expression by increasing ATF4 translation directly, through its own activation, without involvement of the PERK pathway. The Flv-mediated induction of Sig-1R prevents neuronal cell death resulting from ER stress. Moreover, Flv-induced ER stress resistance reduces the infarct area in mice after focal cerebral ischemia. Thus, Flv, which is used frequently in clinical practice, can alleviate ER stress. This suggests that Flv could be a feasible therapy for cerebral diseases caused by ER stress. PMID:25032855

  5. Unraveling Main Limiting Sites of Photosynthesis under Below- and Above-Ground Heat Stress in Cucumber and the Alleviatory Role of Luffa Rootstock.

    PubMed

    Li, Hao; Ahammed, Golam J; Zhou, Guona; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Photosynthesis is one of the most thermo-sensitive processes in plants. Although the severity of heat stress could be attenuated by grafting approach, the primary damaged site of photosynthesis system under heat stress and the regulatory mechanism of rootstock-mediated heat tolerance are poorly understood. In the current study, cucumber plants grafted onto their own roots and heat-tolerant luffa roots were exposed to root-zone heat (25/40°C) and aerial heat (40/25°C) individually and in combination (40/40°C) to understand the response of photosynthetic process by investigating energy absorption and distribution, electron transport in photosystem (PS) II and I, and CO2 assimilation. According to the results, root-zone heat stress inhibited photosynthesis mainly through decreasing Rubisco activity, while aerial heat stress mainly through inhibiting PSII acceptor side. The imbalance in light absorption and utilization resulted in accumulation of reactive oxygen species that caused damage to photosynthetic apparatus, forming a vicious cycle. On the contrary, grafting cucumber onto heat-tolerant luffa rootstock alleviated heat-induced photosynthetic inhibition and oxidative stress by maintaining higher root vitality, HSP70 accumulation, and antioxidant potential.

  6. Water availability as dominant control of heat stress responses in two contrasting tree species.

    PubMed

    Ruehr, Nadine K; Gast, Andreas; Weber, Christina; Daub, Baerbel; Arneth, Almut

    2016-02-01

    Heat waves that trigger severe droughts are predicted to increase globally; however, we lack an understanding of how trees respond to the combined change of extreme temperatures and water availability. Here, we studied the impacts of two consecutive heat waves as well as post-stress recovery in young Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) and Robinia pseudoacacia L. (black locust) growing under controlled conditions. Responses were compared under water supply close to the long-term average and under reduced irrigation to represent drought. Exposure to high temperatures (+10 °C above ambient) and vapour pressure deficit strongly affected the trees in terms of water relations, photosynthesis and growth. Douglas-fir used water resources conservatively, and transpiration decreased in response to mild soil water limitation. In black locust, heat stress led to pronounced tree water deficits (stem diameter shrinkage), accompanied by leaf shedding to alleviate stress on the hydraulic system. The importance of water availability during the heat waves became further apparent by a concurrent decline in photosynthesis and stomatal conductance with increasing leaf temperatures in both species, reaching the lowest rates in the heat-drought treatments. Stress severity determined both the speed and the amount of recovery. Upon release of stress, photosynthesis recovered rapidly in drought-treated black locust, while it remained below control rates in heat (t = -2.4, P < 0.05) and heat-drought stressed trees (t = 2.96, P < 0.05). In Douglas-fir, photosynthesis recovered quickly, while water-use efficiency increased in heat-drought trees because stomatal conductance remained reduced (t = -2.92, P < 0.05). Moreover, Douglas-fir was able to compensate for stem-growth reductions following heat (-40%) and heat-drought stress (-68%), but most likely at the expense of storage and other growth processes. Our results highlight the importance of studying heat waves alongside

  7. Heat loss through the glabrous skin surfaces of heavily insulated, heat-stressed individuals.

    PubMed

    Grahn, D A; Dillon, J L; Heller, H C

    2009-07-01

    Insulation reduces heat exchange between a body and the environment. Glabrous (nonhairy) skin surfaces (palms of the hands, soles of the feet, face, and ears) constitute a small percentage of total body surface area but contain specialized vascular structures that facilitate heat loss. We have previously reported that cooling the glabrous skin surfaces is effective in alleviating heat stress and that the application of local subatmospheric pressure enhances the effect. In this paper, we compare the effects of cooling multiple glabrous skin surfaces with and without vacuum on thermal recovery in heavily insulated heat-stressed individuals. Esophageal temperatures (T(es)) and heart rates were monitored throughout the trials. Water loss was determined from pre- and post-trial nude weights. Treadmill exercise (5.6 km/h, 9-16% slope, and 25-45 min duration) in a hot environment (41.5 degrees C, 20-30% relative humidity) while wearing insulating pants and jackets was used to induce heat stress (T(es)>or=39 degrees C). For postexercise recovery, the subjects donned additional insulation (a balaclava, winter gloves, and impermeable boot covers) and rested in the hot environment for 60 min. Postexercise cooling treatments included control (no cooling) or the application of a 10 degrees C closed water circulating system to (a) the hand(s) with or without application of a local subatmospheric pressure, (b) the face, (c) the feet, or (d) multiple glabrous skin regions. Following exercise induction of heat stress in heavily insulated subjects, the rate of recovery of T(es) was 0.4+/-0.2 degrees C/h(n=12), but with application of cooling to one hand, the rate was 0.8+/-0.3 degrees C/h(n=12), and with one hand cooling with subatmospheric pressure, the rate was 1.0+/-0.2 degrees C/h(n=12). Cooling alone yielded two responses, one resembling that of cooling with subatmospheric pressure (n=8) and one resembling that of no cooling (n=4). The effect of treating multiple surfaces was

  8. Ticagrelor protects against AngII-induced endothelial dysfunction by alleviating endoplasmic reticulum stress.

    PubMed

    Wang, Xiaoyu; Han, Xuejie; Li, Minghui; Han, Yu; Zhang, Yun; Zhao, Shiqi; Li, Yue

    2018-05-16

    Ticagrelor has been reported to decrease cardiovascular mortality compared with clopidogrel. This benefit cannot be fully explained by the more efficient platelet inhibition. Many studies demonstrated that ticagrelor improved endothelial function, leaving the mechanism elusive though. The present study aims to investigate whether ticagrelor protects against endothelial dysfunction induced by angiotensinII (AngII) through alleviating endoplasmic reticulum (ER) stress. Male Sprague Dawley rats were infused with AngII or vehicle and administrated with ticagrelor or vehicle for 14 days. Reactive oxygen species (ROS) was detected. Aortas from normal mice were incubated with endoplasmic reticulum stress inducer tunicamycin with or without ticagrelor. Vasorecactivity was measured on wire myography. Rat aortic endothelial cells (RAECs) were pretreated with ticagrelor followed by AngII or tunicamycin. Endothelial nitric oxide synthase (eNOS) phosphorylation and ER stress markers were determined by western blotting. Impaired endothelial function, induction of ER stress, reduced eNOS phosphorylation and elevated ROS generation was restored by ticagrelor treatment in vivo. In addition, tunicamycin induced endothelial dysfunction was improved by ticagrelor. In vitro, the induction of ER stress and inhibited eNOS phosphorylation in REACs exposed to AngII as well as tunicamycin was reversed by co-culturing with ticagrelor. In conclusion, ticagrelor protects against AngII-induced endothelial dysfunction via alleviating ER stress. Copyright © 2017. Published by Elsevier Inc.

  9. Effect of γ-aminobutyric acid on digestive enzymes, absorption function, and immune function of intestinal mucosa in heat-stressed chicken.

    PubMed

    Chen, Z; Xie, J; Wang, B; Tang, J

    2014-10-01

    To explore the effect of dietary γ-aminobutyric acid (GABA) on digestive enzyme activity, absorption function and immune function of intestinal mucosa in heat-stressed Wenchang chicken were studied. One-day-old male Wenchang chickens were randomly divided into a control group (CK), heat stress group (HS), and GABA+HS group. The chickens from the GABA+HS group were administered with 0.2 mL of GABA solution daily. Chickens from HS and GABA+HS groups were subjected to heat stress treatment at 40 ± 0.5°C for 2 h during 1300 to 1500 h every day. Blood was drawn and 0.5 cm-long duodenum, jejunum, and ileum were collected from the chickens on d 3, 5, 7, 9, 12, and 15. Results showed that the activity of Ca²⁺-Mg²⁺-adenosine triphosphatase (ATPase), Na⁺-K⁺-ATPase, maltase, sucrase, and alkaline phosphatase, the contents of secretory IgA, glutathione, and d-xylose, and the number of lymphocytes in HS group were significantly lower than those in the CK group. Among them, some were rescued after the treatment of GABA as the time extension. For maltase, d-xylose, alkaline phosphatase, and Na⁺-K⁺-ATPase, it required 5 to 7 d for achieving the significant effect. For sucrase, 12 d for the alleviation effect was required. In the case of other parameters, no alleviation was observed during the whole period of the study. We have concluded that HS can inhibit the activity of digestive enzymes and reduce absorption and immune functions of intestinal mucosa. γ-Aminobutyric acid can effectively alleviate these inhibitory effects. ©2014 Poultry Science Association Inc.

  10. Heat stress: Impact on livestock well-being and productivity and mitigation strategies to alleviate the negative effects

    USDA-ARS?s Scientific Manuscript database

    Heat stress (HS) is a multi-factorial problem that negatively impacts livestock health and productivity and is closely linked with animal welfare. While HS may not be harmful when animals are able to adapt, the physiological changes that occur to ensure survival may impede the efficient conversion o...

  11. Tranilast-induced stress alleviation in solid tumors improves the efficacy of chemo- and nanotherapeutics in a size-independent manner

    NASA Astrophysics Data System (ADS)

    Papageorgis, Panagiotis; Polydorou, Christiana; Mpekris, Fotios; Voutouri, Chrysovalantis; Agathokleous, Eliana; Kapnissi-Christodoulou, Constantina P.; Stylianopoulos, Triantafyllos

    2017-04-01

    Accumulation of mechanical stresses during cancer progression can induce blood and lymphatic vessel compression, creating hypo-perfusion, hypoxia and interstitial hypertension which decrease the efficacy of chemo- and nanotherapies. Stress alleviation treatment has been recently proposed to reduce mechanical stresses in order to decompress tumor vessels and improve perfusion and chemotherapy. However, it remains unclear if it improves the efficacy of nanomedicines, which present numerous advantages over traditional chemotherapeutic drugs. Furthermore, we need to identify safe and well-tolerated pharmaceutical agents that reduce stress levels and may be added to cancer patients’ treatment regimen. Here, we show mathematically and with a series of in vivo experiments that stress alleviation improves the delivery of drugs in a size-independent manner. Importantly, we propose the repurposing of tranilast, a clinically approved anti-fibrotic drug as stress-alleviating agent. Using two orthotopic mammary tumor models, we demonstrate that tranilast reduces mechanical stresses, decreases interstitial fluid pressure (IFP), improves tumor perfusion and significantly enhances the efficacy of different-sized drugs, doxorubicin, Abraxane and Doxil, by suppressing TGFβ signaling and expression of extracellular matrix components. Our findings strongly suggest that repurposing tranilast could be directly used as a promising strategy to enhance, not only chemotherapy, but also the efficacy of cancer nanomedicine.

  12. Arbuscular mycorrhizal fungi alleviate boron toxicity in Puccinellia tenuiflora under the combined stresses of salt and drought.

    PubMed

    Liu, Chunguang; Dai, Zheng; Cui, Mengying; Lu, Wenkai; Sun, Hongwen

    2018-05-11

    To investigate the effect of arbuscular mycorrhizal fungi (AMF) on boron (B) toxicity in plants under the combined stresses of salt and drought, Puccinellia tenuiflora was grown in the soil with the inoculation of Funneliformis mosseae and Claroideoglomus etunicatum. After three weeks of treatment, the plants were harvested to determine mycorrhizal colonization rates, plant biomass, as well as tissue B, phosphorus, sodium, and potassium concentrations. The results show that the combined stresses reduced mycorrhizal colonization. Mycorrhizal inoculation significantly increased plant biomass while reduced shoot B concentrations. Mycorrhizal inoculation also slightly increased shoot phosphorus and potassium concentrations, and reduced shoot sodium concentrations. F. mosseae and C. etunicatum were able to alleviate the combined stresses of B, salt, and drought. The two fungal species and their combination showed no significant difference in the alleviation of B toxicity. It is inferred that AMF is able to alleviate B toxicity in P. tenuiflora by increasing biomass and reducing tissue B concentrations. The increase in plant phosphorus and potassium, as well as the decrease in sodium accumulation that induced by AMF, can help plant tolerate the combined stresses of salt and drought. Our findings suggest that F. mosseae and C. etunicatum are potential candidates for facilitating the phytoremediation of B-contaminated soils with salt and drought stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet.

    PubMed

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27%) and liver triglycerides (314.75%) compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  14. Improved Heat-Stress Algorithm

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Fehn, Steven

    2007-01-01

    NASA Dryden presents an improved and automated site-specific algorithm for heat-stress approximation using standard atmospheric measurements routinely obtained from the Edwards Air Force Base weather detachment. Heat stress, which is the net heat load a worker may be exposed to, is officially measured using a thermal-environment monitoring system to calculate the wet-bulb globe temperature (WBGT). This instrument uses three independent thermometers to measure wet-bulb, dry-bulb, and the black-globe temperatures. By using these improvements, a more realistic WBGT estimation value can now be produced. This is extremely useful for researchers and other employees who are working on outdoor projects that are distant from the areas that the Web system monitors. Most importantly, the improved WBGT estimations will make outdoor work sites safer by reducing the likelihood of heat stress.

  15. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    PubMed

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings

    PubMed Central

    Gao, Guizhen; Li, Jun; Li, Hao; Li, Feng; Xu, Kun; Yan, Guixin; Chen, Biyun; Qiao, Jiangwei; Wu, Xiaoming

    2014-01-01

    DNA methylation is responsive to various biotic and abiotic stresses. Heat stress is a serious threat to crop growth and development worldwide. Heat stress results in an array of morphological, physiological and biochemical changes in plants. The relationship between DNA methylation and heat stress in crops is relatively unknown. We investigated the differences in methylation levels and changes in the cytosine methylation patterns in seedlings of two rapeseed genotypes (heat-sensitive and heat-tolerant) under heat stress. Our results revealed that the methylation levels were different between a heat-tolerant genotype and a heat-sensitive one under control conditions. Under heat treatment, methylation increased more in the heat-sensitive genotype than in the heat-tolerant genotype. More DNA demethylation events occurred in the heat-tolerant genotype, while more DNA methylation occurred in the heat-sensitive genotype. A large and diverse set of genes were affected by heat stress via cytosine methylation changes, suggesting that these genes likely play important roles in the response and adaption to heat stress in Brassica napus L. This study indicated that the changes in DNA methylation differed between heat-tolerant and heat-sensitive genotypes of B. napus in response to heat stress, which further illuminates the molecular mechanisms of the adaption to heat stress in B. napus. PMID:24987298

  17. Effect of patchouli alcohol on the regulation of heat shock-induced oxidative stress in IEC-6 cells.

    PubMed

    Liu, Xiaoxi; Jiang, Linshu; Liu, Fenghua; Chen, Yuping; Xu, Lei; Li, Deyin; Ma, Yunfei; Li, Huanrong; Xu, Jianqin

    2016-08-01

    Purpose Patchouli alcohol (PA) is used to treat gastrointestinal dysfunction. The purpose of this study was to ascertain the function of PA in the regulated process of oxidative stress in rat intestinal epithelial cells (IEC-6). Materials and methods Oxidative stress was stimulated by exposing IEC-6 cells to heat shock (42 °C for 3 h). IEC-6 cells in treatment groups were pretreated with various concentrations of PA (10, 40, and 80 ng/mL) for 3 h before heat shock. Results Heat shock caused damage to the morphology of IEC-6 cells, and increased reactive oxygen species (ROS) level and malondialdehyde (MDA) content. Moreover, mRNA and protein expression by target genes related to oxidative stress in heat shock were also altered. Specifically, the mRNA expression by HSP70, HSP90, GSH-px, NRF2 nd HO-1were all increased, and Nrf2 and Keap1 protein expression were increased after heat shock. However, pretreatment with PA weakened the level of damage to the cellular morphology, and decreased the MDA content caused by heat shock, indicating PA had cytoprotective activities. Pretreatment with PA at high dose significantly increased generation of intracellular ROS. Compared with the heat shock group alone, PA pretreatment significantly decreased the mRNA expression by HSP70, HSP90, SOD, CAT, GSH-px, KEAP1 and HO-1. Furthermore, the high dose of PA significantly increased Nrf2 protein expression, while both the intermediate and high dose of PA significantly increased HO-1 protein expression. Conclusion Heat-shock-induced oxidative stress in IEC-6 cells, and PA could alleviate the Nrf2-Keap1 cellular oxidative stress responses.

  18. Heat Stress Effects on Growing-Finishing Swine

    USDA-ARS?s Scientific Manuscript database

    Understanding the factors that create heat stress, the response of the animals while under heat stress, and the signs of heat-stressed swine are essential to making rational decisions for the selection, design, and management of their environments. Heat stressors include combinations of environment...

  19. Heat stress and cardiovascular, hormonal, and heat shock proteins in humans.

    PubMed

    Iguchi, Masaki; Littmann, Andrew E; Chang, Shuo-Hsiu; Wester, Lydia A; Knipper, Jane S; Shields, Richard K

    2012-01-01

    Conditions such as osteoarthritis, obesity, and spinal cord injury limit the ability of patients to exercise, preventing them from experiencing many well-documented physiologic stressors. Recent evidence indicates that some of these stressors might derive from exercise-induced body temperature increases. To determine whether whole-body heat stress without exercise triggers cardiovascular, hormonal, and extracellular protein responses of exercise. Randomized controlled trial. University research laboratory. Twenty-five young, healthy adults (13 men, 12 women; age = 22.1 ± 2.4 years, height = 175.2 ± 11.6 cm, mass = 69.4 ± 14.8 kg, body mass index = 22.6 ± 4.0) volunteered. Participants sat in a heat stress chamber with heat (73°C) and without heat (26°C) stress for 30 minutes on separate days. We obtained blood samples from a subset of 13 participants (7 men, 6 women) before and after exposure to heat stress. Extracellular heat shock protein (HSP72) and catecholamine plasma concentration, heart rate, blood pressure, and heat perception. After 30 minutes of heat stress, body temperature measured via rectal sensor increased by 0.8°C. Heart rate increased linearly to 131.4 ± 22.4 beats per minute (F₆,₂₄ = 186, P < .001) and systolic and diastolic blood pressure decreased by 16 mm Hg (F₆,₂₄ = 10.1, P < .001) and 5 mm Hg (F₆,₂₄ = 5.4, P < .001), respectively. Norepinephrine (F₁,₁₂ = 12.1, P = .004) and prolactin (F₁,₁₂ = 30.2, P < .001) increased in the plasma (58% and 285%, respectively) (P < .05). The HSP72 (F₁,₁₂ = 44.7, P < .001) level increased with heat stress by 48.7% ± 53.9%. No cardiovascular or blood variables showed changes during the control trials (quiet sitting in the heat chamber with no heat stress), resulting in differences between heat and control trials. We found that whole-body heat stress triggers some of the physiologic responses observed with exercise. Future studies are necessary to investigate whether

  20. Dietary L-arginine supplement alleviates hepatic heat stress and improves feed conversion ratio of Pekin ducks exposed to high environmental temperature.

    PubMed

    Zhu, W; Jiang, W; Wu, L Y

    2014-12-01

    The current intensive indoor production system of commercial Pekin ducks never allows adequate water for swimming or wetting. Therefore, heat stress is a key factor affecting health and growth of ducks in the hot regions and season. Experiment 1 was conducted to study whether heat stress was deleterious to certain organs of ducks. Forty-one-day-old mixed-sex Pekin ducks were randomly allocated to four electrically heated battery brooders comprised of 10 ducks each. Ducks were suddenly exposed to 37 °C ambient temperature for 3 h and then slaughtered, in one brooder at 21 days and in another brooder at 49 days of age. The results showed that body weight and weight of immune organs, particularly liver markedly decreased in acute heat stress ducks compared with the control. Experiment 2 was carried out to investigate the influences of dietary L-arginine (Arg) supplement on weight and compositions of certain lymphoid organs, and growth performance in Pekin ducks, under daily cyclic hot temperature environment. A total of 151-day-old mixed-sex Pekin ducks were randomly divided into one negative control and two treatment groups, fed experimental diets supplemented with 0, 5, and 10 g L-Arginine (L-Arg)/kg to the basal diet respectively. Ducks were exposed to cyclic high temperature simulating natural summer season. The results showed that the addition of L-Arg improves feed conversion ratio (FCR) during a period of 7-week trial, as well as increases hepatic weight relative to body weight at 21 days, while decreases the hepatic water content at 49 days of age. This study indicated that the liver was more sensitive to acute heat stress, and the hepatic relative weight and chemical composition could be regulated by dietary L-Arg supplementation in Pekin ducks being reared at high ambient temperature. These beneficial effects of Arg on liver might be a cause of improved FCR. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  1. Effect of γ-Aminobutyric Acid-producing Lactobacillus Strain on Laying Performance, Egg Quality and Serum Enzyme Activity in Hy-Line Brown Hens under Heat Stress.

    PubMed

    Zhu, Y Z; Cheng, J L; Ren, M; Yin, L; Piao, X S

    2015-07-01

    Heat-stress remains a costly issue for animal production, especially for poultry as they lack sweat glands, and alleviating heat-stress is necessary for ensuring animal production in hot environment. A high γ-aminobutyric acid (GABA)-producer Lactobacillus strain was used to investigate the effect of dietary GABA-producer on laying performance and egg quality in heat-stressed Hy-line brown hens. Hy-Line brown hens (n = 1,164) at 280 days of age were randomly divided into 4 groups based on the amount of freeze-dried GABA-producer added to the basal diet as follows: i) 0 mg/kg, ii) 25 mg/kg, iii) 50 mg/kg, and iv) 100 mg/kg. All hens were subjected to heat-stress treatment through maintaining the temperature and the relative humidity at 28.83±3.85°C and 37% to 53.9%, respectively. During the experiment, laying rate, egg weight and feed intake of hens were recorded daily. At the 30th and 60th day after the start of the experiment, biochemical parameters, enzyme activity and immune activity in serum were measured. Egg production, average egg weight, average daily feed intake, feed conversion ratio and percentage of speckled egg, soft shell egg and misshaped egg were significantly improved (p<0.05) by the increasing supplementation of the dietary GABA-producer. Shape index, eggshell thickness, strength and weight were increased linearly with increasing GABA-producer supplementation. The level of calcium, phosphorus, glucose, total protein and albumin in serum of the hens fed GABA-producing strain supplemented diet was significantly higher (p<0.05) than that of the hens fed the basal diet, whereas cholesterol level was decreased. Compared with the basal diet, GABA-producer strain supplementation increased serum level of glutathione peroxidase (p = 0.009) and superoxide dismutase. In conclusion, GABA-producer played an important role in alleviating heat-stress, the isolated GABA-producer strain might be a potential natural and safe probiotic to use to improve laying

  2. Effects of heat stress on mammalian reproduction

    PubMed Central

    Hansen, Peter J.

    2009-01-01

    Heat stress can have large effects on most aspects of reproductive function in mammals. These include disruptions in spermatogenesis and oocyte development, oocyte maturation, early embryonic development, foetal and placental growth and lactation. These deleterious effects of heat stress are the result of either the hyperthermia associated with heat stress or the physiological adjustments made by the heat-stressed animal to regulate body temperature. Many effects of elevated temperature on gametes and the early embryo involve increased production of reactive oxygen species. Genetic adaptation to heat stress is possible both with respect to regulation of body temperature and cellular resistance to elevated temperature. PMID:19833646

  3. Ascophyllum nodosum Seaweed Extract Alleviates Drought Stress in Arabidopsis by Affecting Photosynthetic Performance and Related Gene Expression.

    PubMed

    Santaniello, Antonietta; Scartazza, Andrea; Gresta, Francesco; Loreti, Elena; Biasone, Alessandro; Di Tommaso, Donatella; Piaggesi, Alberto; Perata, Pierdomenico

    2017-01-01

    Drought represents one of the most relevant abiotic stress affecting growth and yield of crop plants. In order to improve the agricultural productivity within the limited water and land resources, it is mandatory to increase crop yields in presence of unfavorable environmental stresses. The use of biostimulants, often containing seaweed extracts, represents one of the options for farmers willing to alleviate abiotic stress consequences on crops. In this work, we investigated the responses of Arabidopsis plants treated with an extract from the brown alga Ascophyllum nodosum (ANE), under drought stress conditions, demonstrating that ANE positively influences Arabidopsis survival. Pre-treatment with ANE induced a partial stomatal closure, associated with changes in the expression levels of genes involved in ABA-responsive and antioxidant system pathways. The pre-activation of these pathways results in a stronger ability of ANE-treated plants to maintain a better photosynthetic performance compared to untreated plants throughout the dehydration period, combined with a higher capacity to dissipate the excess of energy as heat in the reaction centers of photosystem II. Our results suggest that drought stressed plants treated with ANE are able to maintain a strong stomatal control and relatively higher values of both water use efficiency (WUE) and mesophyll conductance during the last phase of dehydration. Simultaneously, the activation of a pre-induced antioxidant defense system, in combination with a more efficient energy dissipation mechanism, prevents irreversible damages to the photosynthetic apparatus. In conclusion, pre-treatment with ANE is effective to acclimate plants to the incoming stress, promoting an increased WUE and dehydration tolerance.

  4. Ascophyllum nodosum Seaweed Extract Alleviates Drought Stress in Arabidopsis by Affecting Photosynthetic Performance and Related Gene Expression

    PubMed Central

    Santaniello, Antonietta; Scartazza, Andrea; Gresta, Francesco; Loreti, Elena; Biasone, Alessandro; Di Tommaso, Donatella; Piaggesi, Alberto; Perata, Pierdomenico

    2017-01-01

    Drought represents one of the most relevant abiotic stress affecting growth and yield of crop plants. In order to improve the agricultural productivity within the limited water and land resources, it is mandatory to increase crop yields in presence of unfavorable environmental stresses. The use of biostimulants, often containing seaweed extracts, represents one of the options for farmers willing to alleviate abiotic stress consequences on crops. In this work, we investigated the responses of Arabidopsis plants treated with an extract from the brown alga Ascophyllum nodosum (ANE), under drought stress conditions, demonstrating that ANE positively influences Arabidopsis survival. Pre-treatment with ANE induced a partial stomatal closure, associated with changes in the expression levels of genes involved in ABA-responsive and antioxidant system pathways. The pre-activation of these pathways results in a stronger ability of ANE-treated plants to maintain a better photosynthetic performance compared to untreated plants throughout the dehydration period, combined with a higher capacity to dissipate the excess of energy as heat in the reaction centers of photosystem II. Our results suggest that drought stressed plants treated with ANE are able to maintain a strong stomatal control and relatively higher values of both water use efficiency (WUE) and mesophyll conductance during the last phase of dehydration. Simultaneously, the activation of a pre-induced antioxidant defense system, in combination with a more efficient energy dissipation mechanism, prevents irreversible damages to the photosynthetic apparatus. In conclusion, pre-treatment with ANE is effective to acclimate plants to the incoming stress, promoting an increased WUE and dehydration tolerance. PMID:28824691

  5. Production and physiological responses of heat-stressed lactating dairy cattle to conductive cooling.

    PubMed

    Perano, Kristen M; Usack, Joseph G; Angenent, Largus T; Gebremedhin, Kifle G

    2015-08-01

    The objective of this research was to test the effectiveness of conductive cooling in alleviating heat stress of lactating dairy cows. A conductive cooling system was built with waterbeds (Dual Chamber Cow Waterbeds, Advanced Comfort Technology Inc., Reedsburg, WI) modified to circulate chilled water. The experiment lasted 7 wk. Eight first-lactation Holstein cows producing 34.4±3.7kg/d of milk at 166±28 d in milk were used in the study. Milk yield, dry matter intake (DMI), and rectal temperature were recorded twice daily, and respiration rate was recorded 5 times per day. During wk 1, the cows were not exposed to experimental heat stress or conductive cooling. For the remaining 6 wk, the cows were exposed to heat stress from 0900 to 1700h each day. During these 6 wk, 4 of the 8 cows were cooled with conductive cooling (experimental cows), and the other 4 were not cooled (control cows). The study consisted of 2 thermal environment exposures (temperature-humidity index mean ± standard deviation of 80.7±0.9 and 79.0±1.0) and 2 cooling water temperatures (circulating water through the water mattresses at temperatures of 4.5°C and 10°C). Thus, a total of 4 conductive cooling treatments were tested, with each treatment lasting 1 wk. During wk 6, the experimental and control cows were switched and the temperature-humidity index of 79.0±1.0 with 4.5°C cooling water treatment was repeated. During wk 7, waterbeds were placed directly on concrete stalls without actively cooling the water. Least squares means and P-values for the different treatments were calculated with multivariate mixed models. Conductively cooling the cows with 4.5°C water decreased rectal temperature by 1.0°C, decreased respiration rate by 18 breaths/min, increased milk yield by 5%, and increased DMI by 14% compared with the controls. When the results from the 2 cooling water temperatures (4.5°C and 10°C circulating water) were compared, we found that the rectal temperature from 4.5

  6. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period.

    PubMed

    Rout, P K; Kaushik, R; Ramachandran, N

    2016-07-01

    It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5

  7. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa

    PubMed Central

    Shen, Wenbiao

    2012-01-01

    This work examines the involvement of haem oxygenase-1 (HO-1) in salicylic acid (SA)-induced alleviation of oxidative stress as a result of cadmium (Cd) stress in alfalfa (Medicago sativa L.) seedling roots. CdCl2 exposure caused severe growth inhibition and Cd accumulation, which were potentiated by pre-treatment with zinc protoporphyrin (ZnPPIX), a potent HO-1 inhibitor. Pre-treatment of plants with the HO-1 inducer haemin or SA, both of which could induce MsHO1 gene expression, significantly reduced the inhibition of growth and Cd accumulation. The alleviation effects were also evidenced by a decreased content of thiobarbituric acid-reactive substances (TBARS). The antioxidant behaviour was confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Furthermore, haemin and SA pre-treatment modulated the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), and guaiacol peroxidase (POD), or their corresponding transcripts. Significant enhancement of the ratios of reduced/oxidized homoglutathione (hGSH), ascorbic acid (ASA)/dehydroascorbate (DHA), and NAD(P)H/NAD(P)+, and expression of their metabolism genes was observed, consistent with a decreased reactive oxygen species (ROS) distribution in the root tips. These effects are specific for HO-1, since ZnPPIX blocked the above actions, and the aggravated effects triggered by SA plus ZnPPIX were differentially reversed when carbon monoxide (CO) or bilirubin (BR), two catalytic by-products of HO-1, was added. Together, the results suggest that HO-1 is involved in the SA-induced alleviation of Cd-triggered oxidative stress by re-establishing redox homeostasis. PMID:22915740

  8. Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton.

    PubMed

    Irizarry, I; White, J F

    2017-04-01

    Cotton seeds are frequently treated with acid to remove fibres and reduce seed-transmitted diseases. This process also eliminates beneficial bacteria on the seed surface. The goal of this research was to seek and apply beneficial bacteria to acid delinted cotton seeds to evaluate their growth-promoting and salt stress alleviating effects in seedlings. Bacteria were isolated from non-cultivated plants in the Malvaceae. Seeds were collected from Portia tree (Thespesia populnea) and wild cotton (Gossypium hirsutum) from coastal and arid areas of Puerto Rico. Bacillus amyloliquefaciens, Curtobacterium oceanosedimentum and Pseudomonas oryzihabitans were inoculated onto acid delinted cotton seeds. Bacteria increased cotton seed germination and length of emerging seedling radicles. Cotton seeds were inoculated with B. amyloliquefaciens to evaluate growth and root architecture of non-stressed and salt stressed seedlings. Inoculating cotton seeds with B. amyloliquefaciens led to a greater percentage of seedlings with expanded cotyledons after 8 days, enhanced primary and lateral root growth, and altered root architecture. Similar results were obtained when okra seeds were inoculated with B. amyloliquefaciens. The data supported the hypothesis that non-cultivated plants in the Malvaceae growing in stressful environments possess bacteria that promote growth, alter root architecture and alleviate salt stress of cotton and okra seedlings. This study demonstrated the effects of applying beneficial bacteria on acid delinted cotton seeds. Inoculating seeds with salt stress alleviating bacteria could improve the growth of crop seedlings that are vulnerable to soil salinization. © 2017 The Society for Applied Microbiology.

  9. Quantifying Livestock Heat Stress Impacts in the Sahel

    NASA Astrophysics Data System (ADS)

    Broman, D.; Rajagopalan, B.; Hopson, T. M.

    2014-12-01

    Livestock heat stress, especially in regions of the developing world with limited adaptive capacity, has a largely unquantified impact on food supply. Though dominated by ambient air temperature, relative humidity, wind speed, and solar radiation all affect heat stress, which can decrease livestock growth, milk production, reproduction rates, and mortality. Indices like the thermal-humidity index (THI) are used to quantify the heat stress experienced from climate variables. Livestock experience differing impacts at different index critical thresholds that are empirically determined and specific to species and breed. This lack of understanding has been highlighted in several studies with a limited knowledge of the critical thresholds of heat stress in native livestock breeds, as well as the current and future impact of heat stress,. As adaptation and mitigation strategies to climate change depend on a solid quantitative foundation, this knowledge gap has limited such efforts. To address the lack of study, we have investigated heat stress impacts in the pastoral system of Sub-Saharan West Africa. We used a stochastic weather generator to quantify both the historic and future variability of heat stress. This approach models temperature, relative humidity, and precipitation, the climate variables controlling heat stress. Incorporating large-scale climate as covariates into this framework provides a better historical fit and allows us to include future CMIP5 GCM projections to examine the climate change impacts on heat stress. Health and production data allow us to examine the influence of this variability on livestock directly, and are considered in conjunction with the confounding impacts of fodder and water access. This understanding provides useful information to decision makers looking to mitigate the impacts of climate change and can provide useful seasonal forecasts of heat stress risk. A comparison of the current and future heat stress conditions based on

  10. Human Cardiovascular Responses to Passive Heat Stress

    PubMed Central

    Crandall, Craig G.; Wilson, Thad E.

    2016-01-01

    Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur. PMID:25589263

  11. Development of SMA Actuated Morphing Airfoil for Wind Turbine Load Alleviation

    NASA Astrophysics Data System (ADS)

    Karakalas, A.; Machairas, T.; Solomou, A.; Riziotis, V.; Saravanos, D.

    Wind turbine rotor upscaling has entered a range of rotor diameters where the blade structure cannot sustain the increased aerodynamic loads without novel load alleviation concepts. Research on load alleviation using morphing blade sections is presented. Antagonistic shape memory alloy (SMA) actuators are implemented to deflect the section trailing edge (TE) to target shapes and target time-series relating TE movement with changes in lift coefficient. Challenges encountered by the complex thermomechanical response of morphing section and the enhancement of SMA transient response to achieve frequencies meaningful for aerodynamic load alleviation are addressed. Using a recently developed finite element for SMA actuators [1], actuator configurations are considered for fast cooling and heating cycles. Numerical results quantify the attained ranges of TE angle movement, the moving time period and the developed stresses. Estimations of the attained variations of lift coefficient vs. time are also presented to assess the performance of the morphing section.

  12. Eicosapentaenoic Acid Enhances Heat Stress-Impaired Intestinal Epithelial Barrier Function in Caco-2 Cells

    PubMed Central

    Xiao, Guizhen; Tang, Liqun; Yuan, Fangfang; Zhu, Wei; Zhang, Shaoheng; Liu, Zhifeng; Geng, Yan; Qiu, Xiaowen

    2013-01-01

    Objective Dysfunction of the intestinal epithelial tight junction (TJ) barrier is known to have an important etiologic role in the pathophysiology of heat stroke. N-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a role in maintaining and protecting the TJ structure and function. This study is aimed at investigating whether n-3 PUFAs could alleviate heat stress-induced dysfunction of intestinal tight junction. Methods Human intestinal epithelial Caco-2 cells were pre-incubated with EPA, DHA or arachidonic acid (AA) and then exposed to heat stress. Transepithelial electrical resistance (TEER) and Horseradish Peroxidase (HRP) permeability were measured to analyze barrier integrity. Levels of TJ proteins, including occludin, ZO-1 and claudin-2, were analyzed by Western blot and localized by immunofluorescence microscopy. Messenger RNA levels were determined by quantitative real time polymerase chain reaction (Q-PCR). TJ morphology was observed by transmission electron microscopy. Results EPA effectively attenuated the decrease in TEER and impairment of intestinal permeability in HRP flux induced by heat exposure. EPA significantly elevated the expression of occludin and ZO-1, while DHA was less effective and AA was not at all effective. The distortion and redistribution of TJ proteins, and disruption of morphology were also effectively prevented by pretreatment with EPA. Conclusion This study indicates for the first time that EPA is more potent than DHA in protecting against heat-induced permeability dysfunction and epithelial barrier damage of tight junction. PMID:24066055

  13. Physiological tolerance to uncompensated heat stress in soldiers: effects of various types of body cooling systems.

    PubMed

    Jovanović, Dalibor; Karkalić, Radovan; Zeba, Snjezana; Pavlović, Miroslav; Radaković, Sonja S

    2014-03-01

    In military services, emergency situations when soldiers are exposed to a combination of nuclear, biological and chemical (NBC) contamination combined with heat stress, are frequent and complex. In these specific conditions, usage of personal body cooling systems may be effective in reducing heat stress. The present study was conducted in order to evaluate the efficiency of four various types of contemporary personal body cooling systems based on the "Phase Change Material" (PCM), and its effects on soldiers' subjective comfort and physiological performance during exertional heat stress in hot environments. Ten male soldiers were voluntarily subjected to exertional heat stress tests (EHSTs) consisted of walking on a treadmill (5.5 km/h) in hot conditions (40 degreesC) in climatic chamber, wearing NBC isolating impermeable protective suits. One of the tests was performed without any additional cooling solution (NOCOOL), and four tests were performed while using different types of cooling systems: three in a form of vests and one as underwear. Physiological strain was determined by the mean skin temperature (Tsk), tympanic temperature (Tty), and heart rate values (HR), while sweat rates (SwR) indicated changes in hydration status. In all the cases EHST induced physiological response manifested through increasing Tty, HR and SwR. Compared to NOCOOL tests, when using cooling vests, Tty and Tsk were significantly lower (on 35th min, for 0.44 +/- 0.03 and 0.49 +/- 0.05 degrees C, respectively; p < 0.05), as well as the average SwR (0.17 +/- 0.03 L/m2/h). When using underwear, the values of given parameters were not significantly different compared to NOCOOL tests. Using a body cooling system based on PCM in the form of vest under NBC protective clothes during physical activity in hot conditions, reduces sweating and alleviates heat stress manifested by increased core and skin temperatures and heart rate values. These effects directly improve heat tolerance, hydration

  14. Effect of epigallocatechin gallate on growth performance and antioxidant capacity in heat-stressed broilers.

    PubMed

    Xue, Bo; Song, Jiao; Liu, Longzhou; Luo, Jingxian; Tian, Guangming; Yang, Ye

    2017-10-01

    This study investigated the effects of epigallocatechin gallate (EGCG) on the growth performance and antioxidant capacity of 35-d-old broilers exposed to heat stress. Broilers, 14 d of age, were divided into four groups with six replicates per group (eight chickens/replicate). Thermoneutral group (Group TN) was fed the basal diet and maintained at 28°C for 24 h/d. The heat-stressed groups were housed at 35°C for 12 h/d and 28°C for 12 h/d and fed the basal diet supplemented with EGCG at 0, 300 and 600 mg/kg diet (Groups HS0, HS 300 and HS600, respectively). Compared with Group TN, heat-stressed groups showed significantly reduced gain, feed intake and serum total protein and glucose levels; inhibited serum alkaline phosphatase activities; and increased serum levels of uric acid, cholesterol and triglycerides and the activity of serum creatine kinase, lactate dehydrogenase and aspartate aminotransferase (p < 0.05). Compared with Group HS0, Group HS600 exhibited an increased gain and feed intake; and normalised blood parameters and enzyme activities. Compared with Group TN, the expression of antioxidant-related liver proteins was decreased in Group HS0 and increased in Groups HS300 and HS600 (p < 0.05). The results suggest that EGCG can improve the growth performance and alleviate the oxidant damage by modulating the antioxidant properties of broilers.

  15. Developmental competence of bovine embryos from heat-stressed ova.

    PubMed

    Edwards, J L; Bogart, A N; Rispoli, L A; Saxton, A M; Schrick, F N

    2009-02-01

    Because multiple ovulation embryo transfer procedures are occasionally performed in cows experiencing heat stress, the goal of this study was to assess the developmental competence of otherwise morphologically normal embryos from heat-stressed ova. To this end, the ability of compact morulae from heat-stressed and non-heat-stressed bovine ova to undergo blastocyst development after culture at 38.5 or 41.0 degrees C was examined. It was hypothesized that heat-induced perturbations in the ooplasm carry over to increase the susceptibility of the preattachment embryo to heat stress. Initially, ova were matured at 38.5 or 41.0 degrees C. The consequences of heat stress did not include altered cleavage, but did reduce the proportion of 8- to 16-cell-stage embryos (55.3 vs. 50.6%; SEM +/- 1.9). Although proportionately fewer, compact morulae from heat-stressed ova were equivalent in quality to those from non-heat-stressed ova (2.1 and 2.1; SEM = 0.04). Culture of compact morulae from non-heat-stressed ova at 41.0 degrees C did not affect blastocyst development (71.9 and 71.5%; SEM = 3.0). Furthermore, the development of compact morulae from heat-stressed ova was similar to that of non-heat-stressed ova after culture at 38.5 degrees C (68.2 vs. 71.9 and 71.5%; SEM = 3.0). However, blastocyst development was reduced when compact morulae from heat-stressed ova were cultured at 41.0 degrees C (62.3 vs. 71.9, 71.5 and 68.2; SEM = 3.1). In summary, reduced compaction rates of heat-stressed ova explained in part why fewer develop to the blastocyst stage after fertilization. The thermolability of the few embryos that develop from otherwise developmentally challenged ova emphasizes the importance of minimizing exposure to stressor(s) during oocyte maturation.

  16. Effects of heat stress on baroreflex function in humans

    NASA Technical Reports Server (NTRS)

    Crandall, Craig G.; Cui, Jian; Wilson, Thad E.

    2003-01-01

    INTRODUCTION: Heat stress significantly reduces orthostatic tolerance in humans. The mechanism(s) causing this response remain unknown. The purpose of this review article is to present data pertaining to the hypothesis that reduced orthostatic tolerance in heat stressed individuals is a result of heat stress induced alterations in baroflex function. METHODS: In both normothermic and heat stressed conditions baroreflex responsiveness was assessed via pharmacological and non-pharmacological methods. In addition, the effects of heat stress on post-synaptic vasoconstrictor responsiveness were assessed. RESULTS: Generally, whole body heating did not alter baroreflex sensitivity defined as the gain of the linear portion of the baroreflex curve around the operating point. However, whole body heating shifted the baroreflex curve to the prevailing (i.e. elevated) heart rate and muscle sympathetic nerve activity. Finally, the heat stress impaired vasoconstrictor responses to exogenous administration of adrenergic agonists. CONCLUSION: Current data do not support the hypothesis that reduced orthostatic tolerance associated with heat stress in humans is due to impaired baroreflex responsiveness. This phenomenon may be partially due to the effects of heat stress on reducing vasoconstrictor responsiveness.

  17. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress.

    PubMed

    Zhou, Rong; Yu, Xiaqing; Ottosen, Carl-Otto; Rosenqvist, Eva; Zhao, Liping; Wang, Yinlei; Yu, Wengui; Zhao, Tongmin; Wu, Zhen

    2017-01-25

    Abiotic stresses due to environmental factors could adversely affect the growth and development of crops. Among the abiotic stresses, drought and heat stress are two critical threats to crop growth and sustainable agriculture worldwide. Considering global climate change, incidence of combined drought and heat stress is likely to increase. The aim of this study was to shed light on plant growth performance and leaf physiology of three tomatoes cultivars ('Arvento', 'LA1994' and 'LA2093') under control, drought, heat and combined stress. Shoot fresh and dry weight, leaf area and relative water content of all cultivars significantly decreased under drought and combined stress as compared to control. The net photosynthesis and starch content were significantly lower under drought and combined stress than control in the three cultivars. Stomata and pore length of the three cultivars significantly decreased under drought and combined stress as compared to control. The tomato 'Arvento' was more affected by heat stress than 'LA1994' and 'LA2093' due to significant decreases in shoot dry weight, chlorophyll a and carotenoid content, starch content and NPQ (non-photochemical quenching) only in 'Arvento' under heat treatment. By comparison, the two heat-tolerant tomatoes were more affected by drought stress compared to 'Arvento' as shown by small stomatal and pore area, decreased sucrose content, Φ PSII (quantum yield of photosystem II), ETR (electron transport rate) and q L (fraction of open PSII centers) in 'LA1994' and 'LA2093'. The three cultivars showed similar response when subjected to the combination of drought and heat stress as shown by most physiological parameters, even though only 'LA1994' and 'LA2093' showed decreased F v /F m (maximum potential quantum efficiency of photosystem II), Φ PSII , ETR and q L under combined stress. The cultivars differing in heat sensitivity did not show difference in the combined stress sensitivity, indicating that selection for

  18. Dietary glutamine supplementation improves growth performance, meat quality and colour stability of broilers under heat stress.

    PubMed

    Dai, S F; Wang, L K; Wen, A Y; Wang, L X; Jin, G M

    2009-05-01

    1. The present study was conducted to investigate the effects of dietary glutamine (Gln) supplementation on growth performance, carcase characteristics and meat quality in broilers exposed to high ambient temperature. 2. A total of 240 35-d-old male Arbor Acres broilers were randomly assigned to 4 treatment groups (three replicates of 20 birds per cage). The broilers were kept in a temperature-controlled room at either 23 degrees C (no-stress groups, NS) or 28 degrees C (heat stress groups, HS). The broilers were fed either on a basal diet (control, NS) or on the basal diet supplemented with 0, 0.5 or 1.0% Gln (HS). 3. Compared with the NS, the HS (0% Gln) group gained less weight and consumed less feed, had lower final body weight, gain-to-feed ratio, and abdominal fat yield. Breast meat in HS (0% Gln) had lower pH, water-holding capacity (WHC), a* value, ether extract (EE) content and crude protein (CP) content, and had higher shear force (SF) and L* value. 4. Linear increase were found in groups supplemented with Gln (0, 0.5% and 1.0%) for final body weight, weight gain, feed consumption, gain-to-feed ratio and abdominal fat yield. Supplementation with Gln improved breast meat pH, WHC, SF, L* value, a* value, EE content and CP content in broilers exposed to heat stress. No significant difference was observed in all the indices determined between the HS (1% Gln) and the NS. 5. Heat stress caused obvious breast meat discoloration in L*, a* and b* values. However, dietary supplementation with Gln gave a better colour stability. 6. The results indicated that dietary supplementation with Gln may alleviate heat stress-caused deterioration in growth performance, carcase characteristics, meat quality and meat colour stability of broilers.

  19. Cytosolic phosphoenolpyruvate carboxykinase is a response gene involved in porcine adipocyte adaptation to heat stress.

    PubMed

    Qu, Huan; Ajuwon, Kolapo M

    2018-05-04

    Heat stress (HS) leads to increased lipid storage and expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) in pig adipocytes. However, the importance of PCK1 activation and lipid storage in the adaptive response to HS is unknown. Therefore, in vitro experiments were conducted to investigate the effect of PCK1 inhibition with 3-mercaptopicolinic acid (3MPA) on lipid storage and adipocyte response during HS. In vitro culture of adipocytes under HS (41.0 °C) increased (P < 0.05) triacylglycerol accumulation compared with control (37.0 °C). HS increased (P < 0.05) reactive oxygen species level and 3MPA further upregulated (P < 0.05) its level. Heat shock protein 70 (HSP70) gene expression was induced (P < 0.05) by HS compared to control, and PCK1 inhibition with 3MPA attenuated (P < 0.05) its induction by HS. The endoplasmic reticulum (ER) stress markers, C/EBP homologous protein (CHOP) was also upregulated by HS and 3MPA further upregulated (P < 0.05) CHOP mRNA level. These results suggest that with inhibition of PCK1 during HS, in vitro cultured adipocytes were less able to induce adaptive responses such as upregulation of HSP70 and triglycerides, and this exacerbated ER stress during HS. Thus, PCK1 may function to alleviate ER stress that occurs during HS.

  20. Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage.

    PubMed

    Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tej Kumar; Satheesh, Viswanathan; Kohli, Deshika; Basavarajappa, Santosh Halasabala; Chellapilla, Bharadwaj; Kumar, Jitendra; Jain, Pradeep Kumar; Srinivasan, R

    2018-05-01

    The heat stress transcription factors (Hsfs) play a prominent role in thermotolerance and eliciting the heat stress response in plants. Identification and expression analysis of Hsfs gene family members in chickpea would provide valuable information on heat stress responsive Hsfs. A genome-wide analysis of Hsfs gene family resulted in the identification of 22 Hsf genes in chickpea in both desi and kabuli genome. Phylogenetic analysis distinctly separated 12 A, 9 B, and 1 C class Hsfs, respectively. An analysis of cis-regulatory elements in the upstream region of the genes identified many stress responsive elements such as heat stress elements (HSE), abscisic acid responsive element (ABRE) etc. In silico expression analysis showed nine and three Hsfs were also expressed in drought and salinity stresses, respectively. Q-PCR expression analysis of Hsfs under heat stress at pod development and at 15 days old seedling stage showed that CarHsfA2, A6, and B2 were significantly upregulated in both the stages of crop growth and other four Hsfs (CarHsfA2, A6a, A6c, B2a) showed early transcriptional upregulation for heat stress at seedling stage of chickpea. These subclasses of Hsfs identified in this study can be further evaluated as candidate genes in the characterization of heat stress response in chickpea.

  1. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    PubMed

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    PubMed Central

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  3. Drivers and barriers to heat stress resilience.

    PubMed

    Hatvani-Kovacs, Gertrud; Belusko, Martin; Skinner, Natalie; Pockett, John; Boland, John

    2016-11-15

    Heatwaves are the most dangerous natural hazard to health in Australia. The frequency and intensity of heatwaves will increase due to climate change and urban heat island effects in cities, aggravating the negative impacts of heatwaves. Two approaches exist to develop population heat stress resilience. Firstly, the most vulnerable social groups can be identified and public health services can prepare for the increased morbidity. Secondly, the population level of adaptation and the heat stress resistance of the built environment can be increased. The evaluation of these measures and their efficiencies has been fragmented across research disciplines. This study explored the relationships between the elements of heat stress resilience and their potential demographic and housing drivers and barriers. The responses of a representative online survey (N=393) about heat stress resilience at home and work from Adelaide, South Australia were analysed. The empirical findings demonstrate that heat stress resistant buildings increased adaptation capacity and decreased the number of health problems. Air-conditioning increased dependence upon it, limited passive adaptation and only people living in homes with whole-house air-conditioning had less health problems during heatwaves. Tenants and respondents with pre-existing health conditions were the most vulnerable, particularly as those with health conditions were not aware of their vulnerability. The introduction of an Energy Performance Certificate is proposed and discussed as an effective incentive to increase the heat stress resistance of and the general knowledge about the built environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress.

    PubMed

    Zeferino, C P; Komiyama, C M; Pelícia, V C; Fascina, V B; Aoyagi, M M; Coutinho, L L; Sartori, J R; Moura, A S A M T

    2016-01-01

    The objective of this study was to determine if a diet supplemented simultaneously with vitamins C and E would alleviate the negative effects of heat stress, applied between 28 and 42 days of age, on performance, carcass and meat quality traits of broiler chickens. A total of 384 male broiler chickens were assigned to a completely randomized design, with a 2×3 factorial arrangement (diet with or without vitamin supplementation and two ambient temperatures plus a pair-feeding group) and 16 replicates. Chickens were kept in thermoneutral conditions up to 28 days of age. They were then housed in groups of four per cage, in three environmentally controlled chambers: two thermoneutral (22.5 and 22.6°C) and one for heat stress (32°C). Half the chickens were fed a diet supplemented with vitamins C (257 to 288 mg/kg) and E (93 to 109 mg/kg). In the thermoneutral chambers, half of the chickens were pair-fed to heat stressed chickens, receiving each day the average feed intake recorded in the heat stress chamber in the previous day. Meat physical quality analyses were performed on the pectoralis major muscle. No ambient temperature×diet supplementation interaction effects were detected on performance, carcass, or meat quality traits. The supplemented diet resulted in lower growth performance, attributed either to a carry-over effect of the lower initial BW, or to a possible catabolic effect of vitamins C and E when supplemented simultaneously at high levels. Heat stress reduced slaughter and carcass weights, average daily gain and feed intake, and increased feed conversion. Growth performance of pair-fed chickens was similar to that of heat stressed chickens. Exposure to heat stress increased carcass and abdominal fat percentages, but reduced breast, liver and heart percentages. Pair-fed chickens showed the lowest fat percentage and their breast percentage was similar to controls. Heat stress increased meat pH and negatively affected meat color and cooking loss. In pair

  5. Re-evaluating occupational heat stress in a changing climate.

    PubMed

    Spector, June T; Sheffield, Perry E

    2014-10-01

    The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  6. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    PubMed

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  7. An experimental study of the validity of the heat-field concept for sonic-boom alleviation

    NASA Technical Reports Server (NTRS)

    Swigart, R. J.

    1974-01-01

    An experimental program was carried out in the NASA-Langley 4 ft x 4 ft supersonic pressure tunnel to investigate the validity of the heat-field concept for sonic boom alleviation. The concept involves heating the flow about a supersonic aircraft in such a manner as to obtain an increase in effective aircraft length and yield an effective aircraft shape that will result in a shock-free pressure signature on the ground. First, a basic body-of-revolution representing an SST configuration with its lift equivalence in volume was tested to provide a baseline pressure signature. Second, a model having a 5/2-power area distribution which, according to theory, should yield a linear pressure rise with no front shock wave was tested. Third, the concept of providing the 5/2-power area distribution by using an off-axis slender fin below the basic body was investigated. Then a substantial portion (approximately 40 percent) of the solid fin was replaced by a heat field generated by passing heated nitrogen through the rear of the fin.

  8. Carbon monoxide alleviates lipopolysaccharide-induced oxidative stress injury through suppressing the expression of Fis1 in NR8383 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Jia; Yu, Jian-bo, E-mail: yujianbo11@126.com; Liu, Wei

    Acute respiratory distress syndrome (ARDS) is one of the most devastating complications of sepsis lacking of effective therapy. Mitochondrial dynamics undergoing continuous fusion and fission play a crucial role in mitochondrial structure and function. Fis1, as a small protein located on the outer membrane of mitochondria, has been thought to be an important protein mediated mitochondrial fission. During ARDS, alveolar macrophages suffer from increased oxidative stress and apoptosis, and also accompanied by disrupted mitochondrial dynamics. In addition, as one of the products of heme degradation catalyzed by heme oxygenase, carbon monoxide (CO) possesses powerful protective properties in vivo or inmore » vitro models, such as anti-inflammatory, antioxidant and anti-apoptosis function. However, there is little evidence that CO alleviates oxidative stress damage through altering mitochondrial fission in alveolar macrophages. In the present study, our results showed that CO increased cell vitality, improved mitochondrial SOD activity, reduced reactive oxygen species (ROS) production and inhibited cell apoptosis in NR8383 exposed to LPS. Meanwhile, CO decreased the expression of Fis1, increased mitochondrial membrane potential and sustained elongation of mitochondria in LPS-incubated NR8383. Overall, our study underscored a critical role of CO in suppressing the expression of Fis1 and alleviating LPS- induced oxidative stress damage in alveolar macrophages. - Highlights: • LPS exposure triggered cell injury in NR8383. • CO alleviated LPS-induced oxidative stress damage in alveolar macrophages. • CO inhibited Fis1 levels and improved mitochondrial function in LPS-induced NR8383.« less

  9. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review.

    PubMed

    Ali, Shafaqat; Rizwan, Muhammad; Qayyum, Muhammad Farooq; Ok, Yong Sik; Ibrahim, Muhammad; Riaz, Muhammad; Arif, Muhammad Saleem; Hafeez, Farhan; Al-Wabel, Mohammad I; Shahzad, Ahmad Naeem

    2017-05-01

    Drought and salt stress negatively affect soil fertility and plant growth. Application of biochar, carbon-rich material developed from combustion of biomass under no or limited oxygen supply, ameliorates the negative effects of drought and salt stress on plants. The biochar application increased the plant growth, biomass, and yield under either drought and/or salt stress and also increased photosynthesis, nutrient uptake, and modified gas exchange characteristics in drought and salt-stressed plants. Under drought stress, biochar increased the water holding capacity of soil and improved the physical and biological properties of soils. Under salt stress, biochar decreased Na + uptake, while increased K + uptake by plants. Biochar-mediated increase in salt tolerance of plants is primarily associated with improvement in soil properties, thus increasing plant water status, reduction of Na + uptake, increasing uptake of minerals, and regulation of stomatal conductance and phytohormones. This review highlights both the potential of biochar in alleviating drought and salt stress in plants and future prospect of the role of biochar under drought and salt stress in plants.

  10. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    PubMed

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Heat stress intervention research in construction: gaps and recommendations.

    PubMed

    Yang, Yang; Chan, Albert Ping-Chuen

    2017-06-08

    Developing heat stress interventions for construction workers has received mounting concerns in recent years. However, limited efforts have been exerted to elaborate the rationale, methodology, and practicality of heat stress intervention in the construction industry. This study aims to review previous heat stress intervention research in construction, to identify the major research gaps in methodological issues, and to offer detailed recommendations for future studies. A total of 35 peer-reviewed journal papers have been identified to develop administrative, environmental or personal engineering interventions to safeguard construction workers. It was found that methodological limitations, such as arbitrary sampling methods and unreliable instruments, could be the major obstacle in undertaking heat stress intervention research. To bridge the identified research gaps, this study then refined a research framework for conducting heat stress intervention studies in the construction industry. The proposed research strategy provides researchers and practitioners with fresh insights into expanding multidisciplinary research areas and solving practical problems in the management of heat stress. The proposed research framework may foster the development of heat stress intervention research in construction, which further aids researchers, practitioners, and policymakers in formulating proper intervention strategies.

  12. Drivers of self-reported heat stress in the Australian labour force.

    PubMed

    Zander, Kerstin K; Moss, Simon A; Garnett, Stephen T

    2017-01-01

    Heat stress causes reductions in well-being and health. As average annual temperatures increase, heat stress is expected to affect more people. While most research on heat stress has explored how exposure to heat affects functioning of the human organism, stress from heat can be manifest long before clinical symptoms are evident, with profound effects on behavior. Here we add to the little research conducted on these subclinical effects of environmental heat using results from an Australian-wide cross-sectional study of nearly 2000 respondents on their self-reported level of heat stress. Slightly less than half (47%) of the respondents perceived themselves as at least sometimes, often or very often stressed by heat during the previous 12 months. Health status and smoking behavior had the expected impact on self-reported perceived heat stress. There were also regional differences with people living in South Australia, Victoria and New South Wales most likely to have reported to have felt heat stressed. People generally worried about climate change, who had been influenced by recent heat waves and who thought there was a relationship between climate change and health were also more likely to have been heat stressed. Surprisingly average maximum temperatures did not significantly explain heat stress but stress was greater among people who perceived the day of the survey as hotter than usual. Currently heat stress indices are largely based on monitoring the environment and physical limitations to people coping with heat. Our results suggest that psychological perceptions of heat need to be considered when predicting how people will be affected by heat under climate change and when developing heat relief and climate change adaptation plans, at work, at home or in public spaces. We further conclude that the perception of temperature and heat stress complements measures that assess heat exposure and heat strain. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Occupational Heat Stress Profiles in Selected Workplaces in India.

    PubMed

    Venugopal, Vidhya; Chinnadurai, Jeremiah S; Lucas, Rebekah A I; Kjellstrom, Tord

    2015-12-29

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers' perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses.

  14. Occupational Heat Stress Profiles in Selected Workplaces in India

    PubMed Central

    Venugopal, Vidhya; Chinnadurai, Jeremiah S.; Lucas, Rebekah A. I.; Kjellstrom, Tord

    2015-01-01

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers’ perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses. PMID:26729144

  15. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    PubMed

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Heat stress alters genome-wide profiles of circular RNAs in Arabidopsis.

    PubMed

    Pan, Ting; Sun, Xiuqiang; Liu, Yangxuan; Li, Hui; Deng, Guangbin; Lin, Honghui; Wang, Songhu

    2018-02-01

    1599 novel circRNAs and 1583 heat stress-specific circRNAs were identified in Arabidopsis. Heat stress enhanced accumulation of circRNAs remarkably. Heat stress altered the sizes of circRNAs, numbers of circularized exons and alterative circularization events. A putative circRNA-mediated ceRNA networks under heat stress was established. Heat stress retards plant growth and destabilizes crop yield. The noncoding RNAs were demonstrated to be involved in plant response to heat stress. As a newly-characterized class of noncoding RNAs, circular RNAs (circRNAs) play important roles in transcriptional and post-transcriptional regulation. A few recent investigations indicated that plant circRNAs were differentially expressed under abiotic stress. However, little is known about how heat stress mediates biogenesis of circRNAs in plants. Here, we uncovered 1599 previously-unknown circRNAs and 1583 heat-specific circRNAs, by RNA-sequencing and bioinformatic analysis. Our results indicated that much more circRNAs were expressed under heat stress than in control condition. Besides, heat stress also increased the length of circRNAs, the quantity of circularized exons, and alternative circularization events. Moreover, we observed a positive correlation between expression patterns of some circRNAs and their parental genes. The prediction of ceRNA (competing endogenous RNA) networks indicated that differentially-expressed circRNAs could influence expression of many important genes, that participate in response to heat stress, hydrogen peroxide, and phytohormone signaling pathways, by interacting with the corresponding microRNAs. Together, our observations indicated that heat stress had great impacts on the biogenesis of circRNAs. Heat-induced circRNAs might participate in plant response to heat stress through the circRNA-mediated ceRNA networks.

  17. Heat shock protein 70 as a biomarker of heat stress in a simulated hot cockpit.

    PubMed

    Kumar, Yadunanda; Chawla, Anuj; Tatu, Utpal

    2003-07-01

    Fighter pilots are frequently exposed to high temperatures during high-speed low-level flight. Heat strain can result in temporary impairment of cognitive functions and when severe, loss of consciousness and consequent loss of life and equipment. Induction of stress proteins is a highly conserved stress response mechanism from bacteria to humans. Induced stress protein levels are known to be cytoprotective and have been correlated with stress tolerance. Although many studies on the heat shock response mechanisms have been performed in cell culture and animal model systems, there is very limited information on stress protein induction in human subjects. Heat shock proteins (Hsp), especially Hsp70, may be induced in human subjects exposed to high temperatures in a hot cockpit designed to simulate heat stress experienced in low flying sorties. Six healthy volunteers were subjected to heat stress at 55 degrees C in a high temperature cockpit simulator for a period of 1 h at 30% humidity. Physiological parameters such as oral and skin temperatures, heart rate, and sweat rate were monitored regularly during this time. The level of Hsp70 in leukocytes was examined before and after the heat exposure in each subject. Hsp70 was found to be significantly induced in all the six subjects exposed to heat stress. The level of induced Hsp70 appears to correlate with other strain indicators such as accumulative circulatory strain and Craig's modified index. The usefulness of Hsp70 as a molecular marker of heat stress in humans is discussed.

  18. Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato

    PubMed Central

    Ahammed, Golam Jalal; Yu, Jingquan

    2013-01-01

    Heavy metal pollution often occurs together with organic contaminants. Brassinosteroids (BRs) induce plant tolerance to several abiotic stresses, including phenanthrene (PHE) and cadmium (Cd) stress. However, the role of BRs in PHE+Cd co-contamination-induced stress amelioration is unknown. Here, the interactive effects of PHE, Cd, and 24-epibrassinolide (EBR; a biologically active BR) were investigated in tomato plants. The application of Cd (100 µM) alone was more phytotoxic than PHE applied alone (100 µM); however, their combined application resulted in slightly improved photosynthetic activity and pigment content compared with Cd alone after a 40 d exposure. Accumulation of reactive oxygen species and membrane lipid peroxidation were induced by PHE and/or Cd; however, the differences in effect were insignificant between Cd and PHE+Cd. The foliar application of EBR (0.1 µM) to PHE- and/or Cd-stressed plants alleviated photosynthetic inhibition and oxidative stress by causing enhancement of the activity of the enzymes and related transcript levels of the antioxidant system, secondary metabolism, and the xenobiotic detoxification system. Additionally, PHE and/or Cd residues were significantly decreased in both the leaves and roots after application of EBR, more specifically in PHE+Cd-stressed plants when treated with EBR, indicating a possible improvement in detoxification of these pollutants. The findings thus suggest a potential interaction of EBR and PHE for Cd stress alleviation. These results advocate a positive role for EBR in reducing pollutant residues for food safety and also strengthening phytoremediation. PMID:23201830

  19. A SAL1 Loss-of-Function Arabidopsis Mutant Exhibits Enhanced Cadmium Tolerance in Association with Alleviation of Endoplasmic Reticulum Stress.

    PubMed

    Xi, Hongmei; Xu, Hua; Xu, Wenxiu; He, Zhenyan; Xu, Wenzhong; Ma, Mi

    2016-06-01

    SAL1, as a negative regulator of stress response signaling, has been studied extensively for its role in plant response to environmental stresses. However, the role of SAL1 in cadmium (Cd) stress response and the underlying mechanism is still unclear. Using an Arabidopsis thaliana loss-of-function mutant of SAL1, we assessed Cd resistance and further explored the Cd toxicity mechanism through analysis of the endoplasmic reticulum (ER) stress response. The loss of SAL1 function greatly improved Cd tolerance and significantly attenuated ER stress in Arabidopsis. Exposure to Cd induced an ER stress response in Arabidopsis as evidenced by unconventional splicing of AtbZIP60 and up-regulation of ER stress-responsive genes. Damage caused by Cd was markedly reduced in the ER stress response double mutant bzip28 bzip60 or by application of the ER stress-alleviating chemical agents, tauroursodeoxycholic acid (TUDCA) and 4-phenyl butyric acid (4-PBA), in wild-type plants. The Cd-induced ER stress in Arabidopsis was also alleviated by loss of function of SAL1. These results identified SAL1 as a new component mediating Cd toxicity and established the role of the ER stress response in Cd toxicity. Additionally, the attenuated ER stress in the sal1 mutant might also shed new light on the mechanism of diverse abiotic stress resistance in the SAL1 loss-of-function mutants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Occupational Heat Stress and Kidney Health: From Farms to Factories.

    PubMed

    Nerbass, Fabiana B; Pecoits-Filho, Roberto; Clark, William F; Sontrop, Jessica M; McIntyre, Christopher W; Moist, Louise

    2017-11-01

    Millions of workers around the world are exposed to high temperatures, intense physical activity, and lax labor practices that do not allow for sufficient rehydration breaks. The extent and consequences of heat exposure in different occupational settings, countries, and cultural contexts is not well studied. We conducted an in-depth review to examine the known effects of occupational heat stress on the kidney. We also examined methods of heat-stress assessment, strategies for prevention and mitigation, and the economic consequences of occupational heat stress. Our descriptive review summarizes emerging evidence that extreme occupational heat stress combined with chronic dehydration may contribute to the development of CKD and ultimately kidney failure. Rising global temperatures, coupled with decreasing access to clean drinking water, may exacerbate the effects of heat exposure in both outdoor and indoor workers who are exposed to chronic heat stress and recurrent dehydration. These changes create an urgent need for health researchers and industry to identify work practices that contribute to heat-stress nephropathy, and to test targeted, robust prevention and mitigation strategies. Preventing occupational heat stress presents a great challenge for a concerted multidisciplinary effort from employers, health authorities, engineers, researchers, and governments.

  1. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi

    PubMed Central

    Asrar, Abdul-Wasea A.; Elhindi, Khalid M.

    2010-01-01

    The effect of an arbuscular mycorrhizal fungus “AMF” (Glomus constrictum Trappe) on growth, pigments, and phosphorous content of marigold (Tagetes erecta) plant grown under different levels of drought stress was investigated. The applied drought stress levels reduced growth vigor (i.e. plant height, shoot dry weight, flower diameter as well as its fresh and dry weights) of mycorrhizal and non-mycorrhizal plant as compared to control plant (non-drought stressed plant). The presence of mycorrhizal fungus, however, stimulated all growth parameters of the treated plant comparing to non-mycorrhizal treated plant. The photosynthetic pigments (carotene in flowers and chlorophylls a and b in leaves) were also stimulated by the mycorrhizal fungi of well-watered as well as of water-stressed plants. The total pigments of mycorrhizal plants grown under well-watered conditions were higher than those of non-mycorrhizal ones by 60%. In most cases, drought-stressed mycorrhizal plants were significantly better than those of the non-mycorrhizal plants. So, the overall results suggest that mycorrhizal fungal colonization affects host plant positively on growth, pigments, and phosphorous content, flower quality and thereby alleviates the stress imposed by water with holding. PMID:23961109

  2. Dietary Supplementation of Chromium Can Alleviate Negative Impacts of Heat Stress on Performance, Carcass Yield, and Some Blood Hematology and Chemistry Indices of Growing Japanese Quail.

    PubMed

    El-Kholy, Mohamed Soliman; El-Hindawy, Mohamed Mohamed; Alagawany, Mahmoud; Abd El-Hack, Mohamed Ezzat; El-Sayed, Sabry Abd El-Gawad Abd El-Halim

    2017-09-01

    The main objective of this work was to investigate the impact of dietary chromium supplementation on growth indices, carcass yield, and some hematological and biochemical blood parameters of growing Japanese quails subjected to heat stress. A total of 360 unsexed 2-week-old Japanese quail chicks were used in a 2 × 3 factorial arrangement that had two ambient temperatures (23 ± 2 and 33 ± 2 °C) and three dietary chromium (0.00, 500, and 1000 μg Cr/kg diet as chromium picolinate). For induction of heat stress, the room temperature was set at 33 ± 2 °C from 2 to 6 weeks of age. Results showed that body weight, body weight gain, and feed intake were decreased for birds subjected to heat stress condition during 2 to 4 and 2 to 6 weeks of age. Feed conversion was not significantly (P > 0.05) affected by high ambient temperature throughout the experiment. Carcass, dressing, liver, and heart percentages were not influenced by the ambient temperature or dietary chromium or their combinations. Significant temperature × chromium combinations were observed for hemoglobin value (P = 0.025) and packed cell volume (P = 0.001). Cholesterol and glucose in plasma were increased (P = 0.004 or 0.022) in quails subjected to heat stress condition. Plasma measurements of total proteins, albumin, globulin, lipids, glucose, and A/G ratio of quail chicks were not influenced (P > 0.05) by chromium, while cholesterol was increased with increasing chromium level (P = 0.033). High ambient temperature or dietary chromium levels or their interactions did not (P > 0.05) affect plasma levels of aspartate transaminase (AST), alanine transaminase (ALT), triiodothyronine (T3), thyroxin (T4), or T3/T4 ratio of growing quails. From these observations, it can be concluded that dietary chromium supplementation of growing Japanese quail subjected to heat stress condition could beneficially affect growth performance and carcasses, as well as modulate the hematological

  3. Perceived heat stress and health effects on construction workers.

    PubMed

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure.

  4. Perceived heat stress and health effects on construction workers

    PubMed Central

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Introduction: Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. Materials and Methods: This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. Results: The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. Conclusion: This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure

  5. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress.

    PubMed

    Tang, Shu; Chen, Hongbo; Cheng, Yanfen; Nasir, Mohammad Abdel; Kemper, Nicole; Bao, Endong

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42˚C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480‑min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB.

  6. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress

    PubMed Central

    TANG, SHU; CHEN, HONGBO; CHENG, YANFEN; NASIR, MOHAMMAD ABDEL; KEMPER, NICOLE; BAO, ENDONG

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42°C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480-min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB. PMID:26719858

  7. Effect of passive heat stress and exercise in the heat on arterial stiffness.

    PubMed

    Caldwell, Aaron R; Robinson, Forrest B; Tucker, Matthew A; Arcement, Cash H; Butts, Cory L; McDermott, Brendon P; Ganio, Matthew S

    2017-08-01

    Prior evidence indicates that acute heat stress and aerobic exercise independently reduce arterial stiffness. The combined effects of exercise and heat stress on PWV are unknown. The purpose of this study was to determine the effects of heat stress with passive heating and exercise in the heat on arterial stiffness. Nine participants (n = 3 females, 47 ± 11 years old; 24.1 ± 2.8 kg/m 2 ) completed four trials. In a control trial, participants rested supine (CON). In a passive heating trial (PH), participants were heated with a water-perfusion suit. In two other trials, participants cycled at ~50% of [Formula: see text] in a hot (~40 °C; HC trial) or cool (~15 °C; CC trial) environment. Arterial stiffness, measured by PWV, was obtained at baseline and after each intervention (immediately, 15, 30, 45, and 60 min post). Central PWV (C PWV ) was assessed between the carotid/femoral artery sites. Upper and lower peripheral PWV was assessed using the radial/carotid (U PWV ) and dorsalis pedis/femoral (L PWV ) artery sites. The mean body temperature (T B ) was calculated from the skin and rectal temperatures. No significant changes in T B were observed during the CON and CC trials. As expected, the PH and HC trials elevated T B 2.69 ± 0.23 °C and 1.67 ± 0.27 °C, respectively (p < 0.01). PWV did not change in CON, CC, or HC (p > 0.05). However, in the PH trial, U PWV was reduced immediately (-107 ± 81 cm/s) and 15 min (-93 ± 82 cm/s) post-heating (p < 0.05). Heat stress via exercise in the heat does not acutely change arterial stiffness. However, passive heating reduces U PWV , indicating that heat stress has an independent effect on PWV.

  8. Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy.

    PubMed

    Ichinoseki-Sekine, Noriko; Yoshihara, Toshinori; Kakigi, Ryo; Sugiura, Takao; Powers, Scott K; Naito, Hisashi

    2014-09-01

    Mechanical ventilation (MV) is a life-saving intervention in patients who are incapable of maintaining adequate pulmonary gas exchange due to respiratory failure or other disorders. However, prolonged MV is associated with the development of respiratory muscle weakness. We hypothesized that a single exposure to whole body heat stress would increase diaphragm expression of heat shock protein 72 (HSP72) and that this treatment would protect against MV-induced diaphragmatic atrophy. Adult male Wistar rats (n = 38) were randomly assigned to one of four groups: an acutely anesthetized control group (CON) with no MV; 12-h controlled MV group (CMV); 1-h whole body heat stress (HS); or 1-h whole body heat stress 24 h prior to 12-h controlled MV (HSMV). Compared with CON animals, diaphragmatic HSP72 expression increased significantly in the HS and HSMV groups (P < 0.05). Prolonged MV resulted in significant atrophy of type I, type IIa, and type IIx fibers in the costal diaphragm (P < 0.05). Whole body heat stress attenuated this effect. In contrast, heat stress did not protect against MV-induced diaphragm contractile dysfunction. The mechanisms responsible for this heat stress-induced protection remain unclear but may be linked to increased expression of HSP72 in the diaphragm. Copyright © 2014 the American Physiological Society.

  9. CSP41b, a protein identified via FOX hunting using Eutrema salsugineum cDNAs, improves heat and salinity stress tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Ariga, Hirotaka; Tanaka, Tomoko; Ono, Hirokazu; Sakata, Yoichi; Hayashi, Takahisa; Taji, Teruaki

    2015-08-14

    Eutrema salsugineum (also known as Thellungiella salsuginea and formerly Thellungiella halophila), a species closely related to Arabidopsis thaliana, shows tolerance not only to salt stress, but also to chilling, freezing, and high temperatures. To identify genes responsible for stress tolerance, we conducted Full-length cDNA Over-eXpressing gene (FOX) hunting among a collection of E. salsugineum cDNAs that were stress-induced according to gene ontology analysis or over-expressed in E. salsugineum compared with A. thaliana. We identified E. salsugineum CSP41b (chloroplast stem-loop-binding protein of 41 kDa; also known as CRB, chloroplast RNA binding; named here as EsCSP41b) as a gene that can confer heat and salinity stress tolerance on A. thaliana. A. thaliana CSP41b is reported to play an important role in the proper functioning of the chloroplast: the atcsp41b mutant is smaller and paler than wild-type plants and shows altered chloroplast morphology and photosynthetic performance. We observed that AtCSP41b-overexpressing transgenic A. thaliana lines also exhibited marked heat tolerance and significant salinity stress tolerance. The EsCSP41b-overexpressing transgenic A. thaliana lines showed significantly higher photosynthesis activity than wild-type plants not only under normal growth conditions but also under heat stress. In wild-type plants, the expression levels of both EsCSP41b and AtCSP41b were significantly reduced under heat or salinity stress. We conclude that maintenance of CSP41b expression under abiotic stresses may alleviate photoinhibition and improve survival under such stresses. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Mitigation of heat stress-related complications by a yeast fermentate product.

    PubMed

    Giblot Ducray, Henri Alexandre; Globa, Ludmila; Pustovyy, Oleg; Reeves, Stuart; Robinson, Larry; Vodyanoy, Vitaly; Sorokulova, Iryna

    2016-08-01

    Heat stress results in a multitude of biological and physiological responses which can become lethal if not properly managed. It has been shown that heat stress causes significant adverse effects in both human and animals. Different approaches have been proposed to mitigate the adverse effects caused by heat stress, among which are special diet and probiotics. We characterized the effect of the yeast fermentate EpiCor (EH) on the prevention of heat stress-related complications in rats. We found that increasing the body temperature of animals from 37.1±0.2 to 40.6±0.2°C by exposure to heat (45°C for 25min) resulted in significant morphological changes in the intestine. Villi height and total mucosal thickness decreased in heat-stressed rats pre-treated with PBS in comparison with control animals not exposed to the heat. Oral treatment of rats with EH before heat stress prevented the traumatic effects of heat on the intestine. Changes in intestinal morphology of heat-stressed rats, pre-treated with PBS resulted in significant elevation of lipopolysaccharides (LPS) level in the serum of these animals. Pre-treatment with EH was effective in the prevention of LPS release into the bloodstream of heat-stressed rats. Our study revealed that elevation of body temperature also resulted in a significant increase of the concentration of vesicles released by erythrocytes in rats, pre-treated with PBS. This is an indication of a pathological impact of heat on the erythrocyte structure. Treatment of rats with EH completely protected their erythrocytes from this heat-induced pathology. Finally, exposure to heat stress conditions resulted in a significant increase of white blood cells in rats. In the group of animals pre-treated with EH before heat stress, the white blood cell count remained the same as in non-heated controls. These results showed the protective effect of the EH product in the prevention of complications, caused by heat stress. Copyright © 2016 The Authors

  11. Influence of thiourea application on some physiological and molecular criteria of sunflower (Helianthus annuus L.) plants under conditions of heat stress.

    PubMed

    Akladious, Samia Ageeb

    2014-05-01

    High temperature is a major factor limiting the growth of plant species during summer. Understanding the mechanisms of plant tolerance to high temperature would help in developing effective management practices and heat-tolerant cultivars through breeding or biotechnology. The present investigation was carried out to study the role of thiourea in enhancing the tolerance of sunflower plants to heat stress. Sunflower plants were subjected to temperature stress by exposing plants to 35 or 45 °C for 12 h. Two levels of thiourea (10 and 20 mM) were applied before sowing (seed treatment). The results indicated that the plants exposed to temperature stress exhibited a significant decline in growth parameters, chlorophylls, relative leaf water content, oil content, leaf nutrient status, and nitrate reductase activity. Treatment with thiourea, especially when applied at 10 mM, improved the above parameters and induced non-enzymatic and enzymatic antioxidants responsible for antioxidation. SDS-PAGE of protein revealed that high-temperature treatments alone or in combination with thiourea were associated with the disappearance of some bands or the appearance of unique ones. The result of RAPD analysis using five primers showed variable qualitative and quantitative changes. These findings confirm the effectiveness of applying thiourea on alleviating heat injuries in sunflower plants.

  12. Ghrelin alleviates anxiety- and depression-like behaviors induced by chronic unpredictable mild stress in rodents.

    PubMed

    Huang, Hui-Jie; Zhu, Xiao-Cang; Han, Qiu-Qin; Wang, Ya-Lin; Yue, Na; Wang, Jing; Yu, Rui; Li, Bing; Wu, Gen-Cheng; Liu, Qiong; Yu, Jin

    2017-05-30

    As a regulator of food intake, ghrelin also plays a key role in mood disorders. Previous studies reported that acute ghrelin administration defends against depressive symptoms of chronic stress. However, the effects of long-term ghrelin on rodents under chronic stress hasn't been revealed. In this study, we found chronic peripheral administration of ghrelin (5nmol/kg/day for 2 weeks, i.p.) could alleviate anxiety- and depression-like behaviors induced by chronic unpredictable mild stress (CUMS). The depression-like behaviors were assessed by the forced swimming test (FST), and anxiety-like behaviors were assessed by the open field test (OFT) and the elevated plus maze test (EPM). Meanwhile, we observed that peripheral acylated ghrelin, together with gastral and hippocampal ghrelin prepropeptide mRNA level, were significantly up-regulated in CUMS mice. Besides, the increased protein level of growth hormone secretagogue receptor (GHSR) in hippocampus were also detected. These results suggested that the endogenous ghrelin/GHSR pathway activated by CUMS plays a role in homeostasis. Further results showed that central treatment of ghrelin (10μg/rat/day for 2 weeks, i.c.v.) or GHRP-6 (the agonist of GHSR, 10μg/rat/day for 2 weeks, i.c.v.) significantly alleviated the depression-like behaviors induced by CUMS in FST and sucrose preference test (SPT). Based on these results, we concluded that central GHSR is involved in the antidepressant-like effect of exogenous ghrelin treatment, and ghrelin/GHSR may have the inherent neuromodulatory properties against depressive symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Alleviation of Salt Stress in Pepper (Capsicum annum L.) Plants by Plant Growth-Promoting Rhizobacteria.

    PubMed

    Hahm, Mi-Seon; Son, Jin-Soo; Hwang, Ye-Ji; Kwon, Duk-Kee; Ghim, Sa-Youl

    2017-10-28

    In the present study, we demonstrate that the growth of salt-stressed pepper plants is improved by inoculation with plant growth-promoting rhizobacteria (PGPR). Three PGPR strains ( Microbacterium oleivorans KNUC7074, Brevibacterium iodinum KNUC7183, and Rhizobium massiliae KNUC7586) were isolated from the rhizosphere of pepper plants growing in saline soil, and pepper plants inoculated with these PGPR strains exhibited significantly greater plant height, fresh weight, dry weight, and total chlorophyll content than non-inoculated plants. In addition, salt-stressed pepper plants that were inoculated with B. iodinum KNUC7183 and R. massiliae KNUC7586 possessed significantly different total soluble sugar and proline contents from non-inoculated controls, and the activity of several antioxidant enzymes (ascorbate peroxidase, guaiacol peroxidase, and catalase) was also elevated in PGPR-treated plants under salt stress. Overall, these results suggest that the inoculation of pepper plants with M. oleivorans KNUC7074, B. iodinum KNUC7183, and R. massiliae KNUC7586 can alleviate the harmful effects of salt stress on plant growth.

  14. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress.

    PubMed

    Shi, Yu; Zhang, Yi; Yao, Hejin; Wu, Jiawen; Sun, Hao; Gong, Haijun

    2014-05-01

    The beneficial effects of silicon on plant growth and development under drought have been widely reported. However, little information is available on the effects of silicon on seed germination under drought. In this work, the effects of exogenous silicon (0.5 mM) on the seed germination and tolerance performance of tomato (Solanum lycopersicum L.) bud seedlings under water deficit stress simulated by 10% (w/v) polyethylene glycol (PEG-6000) were investigated in four cultivars ('Jinpengchaoguan', 'Zhongza No.9', 'Houpi L402' and 'Oubao318'). The results showed that the seed germination percentage was notably decreased in the four cultivars under water stress, and it was significantly improved by added silicon. Compared with the non-silicon treatment, silicon addition increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the production of superoxide anion (O2·) and hydrogen peroxide (H2O2) in the radicles of bud seedlings under water stress. Addition of silicon decreased the total phenol concentrations in radicles under water stress, which might contribute to the decrease of peroxidase (POD) activity, as observed in the in vivo and in vitro experiments. The decrease of POD activity might contribute to a less accumulation of hydroxyl radical (·OH) under water stress. Silicon addition also decreased the concentrations of malondialdehyde (MDA) in the radicles under stress, indicating decreased lipid peroxidation. These results suggest that exogenous silicon could improve seed germination and alleviate oxidative stress to bud seedling of tomato by enhancing antioxidant defense. The positive effects of silicon observed in a silicon-excluder also suggest the active involvement of silicon in biochemical processes in plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Water Replacement Schedules in Heat Stress

    ERIC Educational Resources Information Center

    Londeree, Ben R.; and others

    1969-01-01

    Although early ingestion of cold water appears to lead to greater relief from heat stress during physical exertion than late ingestion, this difference is reduced toward the end of an hour's work in high heat and humidity. (CK)

  16. Turning Anxiety into Creativity: Using Postmodern Principles to Alleviate Anxiety and Stress through the Art Curriculum and Beyond

    ERIC Educational Resources Information Center

    Ferry, Lisa Marie

    2016-01-01

    The purpose of this action research study is to help students alleviate their anxiety and stress symptoms using activities based on Olivia Gude's postmodern principles. The activities included are the participants own take-along visual art journal kit and classroom projects. Professional learning outcomes include the knowledge to equip teachers…

  17. Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves.

    PubMed

    Qing, Xuejiao; Zhao, Xiaohu; Hu, Chengxiao; Wang, Peng; Zhang, Ying; Zhang, Xuan; Wang, Pengcheng; Shi, Hanzhi; Jia, Fen; Qu, Chanjuan

    2015-04-01

    The beneficial role of selenium (Se) in alleviation of chromium (Cr)-induced oxidative stress is well established. However, little is known about the underlying mechanism. The impacts of exogenous Se (0.1mg/L) on Cr(1mg/L)-induced oxidative stress and antioxidant systems in leaves of cabbage (Brassica campestris L. ssp. Pekinensis) were investigated by using cellular and biochemical approaches. The results showed that supplementation of the medium with Se was effective in reducing Cr-induced increased levels of lipid peroxides and superoxide free radicals (O(-)2(·)), as well as increasing activities of superoxide dismutase (SOD) and peroxidase (POD). Meanwhile, 1mg/L Cr induced loss of plasma membrane integrity, growth inhibition, as well as ultrastructural changes of leaves were significantly reversed due to Se supplementation in the medium. In addition, Se application significantly altered the subcellular distribution of Cr which transported from mitochondria, nucleus and the cell-wall material to the soluble fraction and chloroplasts. However, Se application did no significant alteration of Cr effects on osmotic adjustment accumulating products. The study suggested that Se is able to protect leaves of cabbage against Cr toxicity by alleviation of Cr induced oxidative stress, and re-distribution of Cr in the subcellular of the leaf. Furthermore, free radicals, lipid peroxides, activity of SOD and POD, and subcellular distribution of Cr can be considered the efficient biomarkers to indicate the efficiency of Se to detoxification Cr. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    PubMed

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  19. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows.

    PubMed

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-06-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (P<0.05). Adiponectin is strongly associated with AMPK. The increases of adiponectin and AMPK may be one of the mechanisms to maintain homeostasis in heat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat

  20. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows*

    PubMed Central

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-01-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (P<0.05). Adiponectin is strongly associated with AMPK. The increases of adiponectin and AMPK may be one of the mechanisms to maintain homeostasis in heat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat

  1. Biochemical analysis of 'kerosene tree' Hymenaea courbaril L. under heat stress.

    PubMed

    Gupta, Dinesh; Eldakak, Moustafa; Rohila, Jai S; Basu, Chhandak

    2014-01-01

    Hymenaea courbaril or jatoba is a tropical tree known for its medically important secondary metabolites production. Considering climate change, the goal of this study was to investigate differential expression of proteins and lipids produced by this tree under heat stress conditions. Total lipid was extracted from heat stressed plant leaves and various sesquiterpenes produced by the tree under heat stress were identified. Gas chromatographic and mass spectrometric analysis were used to study lipid and volatile compounds produced by the plant. Several volatiles, isoprene, 2-methyl butanenitrile, β ocimene and a numbers of sesquiterpenes differentially produced by the plant under heat stress were identified. We propose these compounds were produced by the tree to cope up with heat stress. A protein gel electrophoresis (2-D DIGE) was performed to study differential expression of proteins in heat stressed plants. Several proteins were found to be expressed many folds different in heat stressed plants compared to the control. These proteins included heat shock proteins, histone proteins, oxygen evolving complex, and photosynthetic proteins, which, we believe, played key roles in imparting thermotolerance in Hymenaea tree. To the best of our knowledge, this is the first report of extensive molecular physiological study of Hymenaea trees under heat stress. This work will open avenues of further research on effects of heat stress in Hymenaea and the findings can be applied to understand how global warming can affect physiology of other plants.

  2. Proteomics Analysis of Alfalfa Response to Heat Stress

    PubMed Central

    Li, Weimin; Wei, Zhenwu; Qiao, Zhihong; Wu, Zinian; Cheng, Lixiang; Wang, Yuyang

    2013-01-01

    The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin) seedlings were exposed to 25°C (control) and 40°C (heat stress) in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and differentially expressed protein spots were identified by mass spectrometry (MS). Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa. PMID:24324825

  3. Heat stress responses modulate calcium regulations and electrophysiological characteristics in atrial myocytes.

    PubMed

    Chen, Yao-Chang; Kao, Yu-Hsun; Huang, Chun-Feng; Cheng, Chen-Chuan; Chen, Yi-Jen; Chen, Shih-Ann

    2010-04-01

    Heat stress-induced responses change the ionic currents and calcium homeostasis. However, the molecular insights into the heat stress responses on calcium homeostasis remain unclear. The purposes of this study were to examine the mechanisms of heat stress responses on calcium handling and electrophysiological characteristics in atrial myocytes. We used indo-1 fluorimetric ratio technique and whole-cell patch clamp to investigate the intracellular calcium, action potentials, and ionic currents in isolated rabbit single atrial cardiomyocytes with or without (control) exposure to heat stress (43 degrees C, 15 min) 5+/-1 h before experiments. The expressions of sarcoplasmic reticulum ATPase (SERCA2a), and Na(+)-Ca(2+) exchanger (NCX) in the control and heat stress-treated atrial myocytes were evaluated by Western blot and real-time PCR. As compared with control myocytes, the heat stress-treated myocytes had larger sarcoplasmic reticulum calcium content and larger intracellular calcium transient with a shorter decay portion. Heat stress-treated myocytes also had larger L-type calcium currents, transient outward potassium currents, but smaller NCX currents. Heat stress responses increased the protein expressions, SERCA2a, NCX, and heat shock protein. However, heat stress responses did not change the RNA expression of SERCA2a and NCX. In conclusion, heat stress responses change calcium handling through protein but not RNA regulation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).

    PubMed

    Shaw, Arun K; Bhardwaj, Pardeep K; Ghosh, Supriya; Roy, Sankhajit; Saha, Suman; Sherpa, Ang R; Saha, Samir K; Hossain, Zahed

    2016-02-01

    The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.

  5. Stress-induced cardiomyopathy caused by heat stroke.

    PubMed

    Chen, Wei-Ta; Lin, Cheng-Hsin; Hsieh, Ming-Hsiung; Huang, Chun-Yao; Yeh, Jong-Shiuan

    2012-07-01

    Heat stroke is defined by central nervous system abnormalities and failure of proper maintenance of thermoregulation as a result of high core body temperature ensuing from exposure to high environmental temperatures or strenuous exercise. Common complications include acute respiratory distress syndrome, disseminated intravascular coagulation, acute renal injury, hepatic injury, and rhabdomyolysis. Myocardial injury may also occur during heat stroke, resulting in cardiac enzyme increase and ST-segment changes on the ECG. Such findings might behave as diagnostic pitfalls by mimicking the presentation of coronary artery occlusive myocardial infarction. A previous case report described a patient with heat stroke and ST-segment elevation, in which the definite cause of the ST-segment elevation was unclear; however, acute myocardial infarction caused by coronary artery disease was ruled out according to the clinical signs, serial ECG changes, and serum level of cardiac biomarkers. Stress-induced cardiomyopathy (Takotsubo cardiomyopathy) was suspected, but it could not be confirmed because of the lack of coronary angiography. We herein report a case of heat stroke presenting with ST-segment elevation and cardiogenic shock. Coronary angiography was performed and coronary artery occlusive myocardial infarction was ruled out because of the presence of patent coronary arteries. Left ventriculography showed midventricular and apical hypokinesis, and stress-induced cardiomyopathy was then determined to be the appropriate diagnosis. Heat stroke causes increase of serum catecholamine levels, in which oversecretion and abnormal responses to catecholamines are a possible cause of stress-induced cardiomyopathy. Catecholamines may therefore be the key in linking heat stroke and stress-induced cardiomyopathy. Copyright © 2011. Published by Mosby, Inc.

  6. Sensing the heat stress by Mammalian cells.

    PubMed

    Cates, Jordan; Graham, Garrett C; Omattage, Natalie; Pavesich, Elizabeth; Setliff, Ian; Shaw, Jack; Smith, Caitlin Lee; Lipan, Ovidiu

    2011-08-11

    The heat-shock response network controls the adaptation and survival of the cell against environmental stress. This network is highly conserved and is connected with many other signaling pathways. A key element of the heat-shock network is the heat-shock transcription factor-1 (HSF), which is transiently activated by elevated temperatures. HSF translocates to the nucleus upon elevated temperatures, forming homotrimeric complexes. The HSF homotrimers bind to the heat shock element on the DNA and control the expression of the hsp70 gene. The Hsp70 proteins protect cells from thermal stress. Thermal stress causes the unfolding of proteins, perturbing thus the pathways under their control. By binding to these proteins, Hsp70 allows them to refold and prevents their aggregation. The modulation of the activity of the hsp70-promoter by the intensity of the input stress is thus critical for cell's survival. The promoter activity starts from a basal level and rapidly increases once the stress is applied, reaches a maximum level and attenuates slowely back to the basal level. This phenomenon is the hallmark of many experimental studies and of all computational network analysis. The molecular construct used as a measure of the response to thermal stress is a Hsp70-GFP fusion gene transfected in Chinese hamster ovary (CHO) cells. The time profile of the GFP protein depends on the transient activity, Transient(t), of the heat shock system. The function Transient(t) depends on hsp70 promoter activity, transcriptional regulation and the translation initiation effects elicited by the heat stress. The GFP time profile is recorded using flow cytometry measurements, a technique that allows a quantitative measurement of the fluorescence of a large number of cells (104). The GFP responses to one and two heat shocks were measured for 261 conditions of different temperatures and durations. We found that: (i) the response of the cell to two consecutive shocks (i.e., no recovery time in

  7. Outdoor occupational environments and heat stress in IRAN.

    PubMed

    Heidari, Hamidreza; Golbabaei, Farideh; Shamsipour, Aliakbar; Rahimi Forushani, Abbas; Gaeini, Abbasali

    2015-01-01

    The present study aimed at demonstrating the heat stress situation (distribution and intensity) based on a standard and common heat stress index, Wet Bulb Globe Temperature (WBGT), during hot seasons and interpret the obtained results considering global warming and rising temperature in different parts of the country based on climate changes studied in Iran. Heat stress assessment was done using WBGT index. Environmental parameters were measured simultaneously in the early, middle and end of shift work. The personal parameters including cloth thermal insulation and metabolic rate of 242 participants from 9 climatic categories were recorded for estimating effective WBGT (measured WBGT plus cloth adjustment factor as well as metabolic rate effect). The values of the indicator were categorized in the statistical software media and then linked to the climatic zoning of the data in the GIS information layers, in which, WBGT values relating to selected stations were given generalization to similar climatic regionalization. The obtained results showed that in the summer about 60 % and more than 75 % of the measurements relating to 12 pm and 3 pm, respectively, were in heat stress situations (i.e. the average amount of heat stress index was higher than 28 °C). These values were found to be about 20-25 % in the spring. Moreover, only in the early hours of shift work in spring could safe conditions be seen throughout the country. This situation gradually decreased in the middle of the day hours and was replaced by the warning status and stress. And finally, in the final hours of shift work thermal stresses reached their peaks. These conditions for the summer were worse. Regarding several studies related to climate change in Iran and the results of present study, heat stress, especially in the central and southern parts of Iran, can be exacerbated in the decades to come if climate change and rising temperature occurs. Therefore, paying attention to this critical issue

  8. Methylglyoxal alleviates cadmium toxicity in wheat (Triticum aestivum L).

    PubMed

    Li, Zhong-Guang; Duan, Xiang-Qiu; Xia, Yan-Mei; Wang, Yue; Zhou, Zhi-Hao; Min, Xiong

    2017-02-01

    Methylglyoxal alleviates cadmium toxicity in wheat (Triticum aestivum L) by improving plant growth. For a long time, the reactive α, β-carbonyl ketoaldehyde methylglyoxal (CH3COCHO; MG) has been regarded as merely a toxic metabolite in plants, but, now, emerging as a signal molecule in plants. In this study, cadmium (Cd) stress decreased plant height, root length, fresh weight (FW), and dry weight (DW) in a concentration-dependent manner, indicating that Cd had toxic effects on the growth of wheat seedlings. The toxic effects of Cd were alleviated by exogenously applied MG in a dosage dependent fashion, and 700 mM MG reached significant differences, but this alleviating effect was eliminated by the treatment with N-acetyl-L-cysteine (NAC, MG scavenger), suggesting that MG could mitigate Cd toxicity in wheat. This study reported for the first time that MG could alleviate Cd toxicity in wheat, uncovering a new possible physiological function for MG, and opening a novel line of research in plant stress biology.

  9. Prior Heat Stress Effects Fatigue Recovery of the Elbow Flexor Muscles

    PubMed Central

    Iguchi, Masaki; Shields, Richard K.

    2011-01-01

    Introduction Long-lasting alterations in hormones, neurotransmitters and stress proteins after hyperthermia may be responsible for the impairment in motor performance during muscle fatigue. Methods Subjects (n = 25) performed a maximal intermittent fatigue task of elbow flexion after sitting in either 73 or 26 deg C to examine the effects of prior heat stress on fatigue mechanisms. Results The heat stress increased the tympanic and rectal temperatures by 2.3 and 0.82 deg C, respectively, but there was full recovery prior to the fatigue task. While prior heat stress had no effects on fatigue-related changes in volitional torque, EMG activity, torque relaxation rate, MEP size and SP duration, prior heat stress acutely increased the pre-fatigue relaxation rate and chronically prevented long-duration fatigue (p < 0.05). Discussion These findings indicate that prior passive heat stress alone does not alter voluntary activation during fatigue, but prior heat stress and exercise produce longer-term protection against long-duration fatigue. PMID:21674526

  10. Management of heat stress in the livestock industry

    USDA-ARS?s Scientific Manuscript database

    Heat stress costs the animal industry over $1.7 billion annually. Annual losses average $369 million in the beef cattle industry and $299 million in the swine industry. The impacts of a single heat stress event on individual animals are quite varied. Brief events often cause little or no effect. ...

  11. Hormetic heat shock and HSF-1 overexpression improve C. elegans survival and proteostasis by inducing autophagy.

    PubMed

    Kumsta, Caroline; Hansen, Malene

    2017-06-03

    The cellular recycling process of macroautophagy/autophagy is an essential homeostatic system induced by various stresses, but it remains unclear how autophagy contributes to organismal stress resistance. In a recent study, we report that a mild and physiologically beneficial ("hormetic") heat shock as well as overexpression of the heat-shock responsive transcription factor HSF-1 systemically increases autophagy in C. elegans. Accordingly, we found HSF-1- and heat stress-inducible autophagy to be required for C. elegans thermoresistance and longevity. Moreover, a hormetic heat shock or HSF-1 overexpression alleviated PolyQ protein aggregation in an autophagy-dependent manner. Collectively, we demonstrate a critical role for autophagy in C. elegans stress resistance and hormesis, and reveal a requirement for autophagy in HSF-1 regulated functions in the heat-shock response, proteostasis, and aging.

  12. Exogenous Calcium Alleviates Photoinhibition of PSII by Improving the Xanthophyll Cycle in Peanut (Arachis Hypogaea) Leaves during Heat Stress under High Irradiance

    PubMed Central

    Yang, Sha; Wang, Fang; Guo, Feng; Meng, Jing-Jing; Li, Xin-Guo; Dong, Shu-Ting; Wan, Shu-Bo

    2013-01-01

    Peanut is one of the calciphilous plants. Calcium (Ca) serves as a ubiquitous central hub in a large number of signaling pathways. The effect of exogenous calcium nitrate [Ca(NO3)2] (6 mM) on the dissipation of excess excitation energy in the photosystem II (PSII) antenna, especially on the level of D1 protein and the xanthophyll cycle in peanut plants under heat (40°C) and high irradiance (HI) (1 200 µmol m−2 s−1) stress were investigated. Compared with the control plants [cultivated in 0 mM Ca(NO3)2 medium], the maximal photochemical efficiency of PSII (Fv/Fm) in Ca2+-treated plants showed a slighter decrease after 5 h of stress, accompanied by higher non-photochemical quenching (NPQ), higher expression of antioxidative genes and less reactive oxygen species (ROS) accumulation. Meanwhile, higher content of D1 protein and higher ratio of (A+Z)/(V+A+Z) were also detected in Ca2+-treated plants under such stress. These results showed that Ca2+ could help protect the peanut photosynthetic system from severe photoinhibition under heat and HI stress by accelerating the repair of D1 protein and improving the de-epoxidation ratio of the xanthophyll cycle. Furthermore, EGTA (a chelant of Ca ion), LaCl3 (a blocker of Ca2+ channel in cytoplasmic membrane), and CPZ [a calmodulin (CaM) antagonist] were used to analyze the effects of Ca2+/CaM on the variation of (A+Z)/(V+A+Z) (%) and the expression of violaxanthin de-epoxidase (VDE). The results indicated that CaM, an important component of the Ca2+ signal transduction pathway, mediated the expression of the VDE gene in the presence of Ca to improve the xanthophyll cycle. PMID:23940721

  13. Effect of exercise, heat stress and dehydration on myocardial performance.

    PubMed

    Fehling, P C; Haller, J M; Lefferts, W K; Hultquist, E M; Wharton, M; Rowland, T W; Smith, D L

    2015-06-01

    Myocardial dysfunction is a well-documented outcome of extended periods of high cardiac output. Whether similar effects occur during firefighting, an occupation characterized by repeated periods of work compounded by dehydration and heat stress, is uncertain. To investigate the independent and combined effects of moderate heat stress and dehydration on indicators of myocardial performance following intermittent, submaximal treadmill exercise while wearing personal protective equipment (PPE). Twelve aerobically fit young men (age 21.5±2.6 years; maximal oxygen uptake [VO2max] 60.3±4.4ml kg(-1) min(-1)) performed intermittent treadmill walking exercise consisting of three 20min bouts at an intensity of ~40% VO2max separated by two periods of rest in four different conditions in random order: (i) no heat stress-euhydrated, (ii) heat stress-euhydrated (heat stress created by wearing PPE, (iii) no heat stress-dehydrated and (iv) heat stress-dehydrated. We measured core temperature by a telemetric gastrointestinal pill. We determined cardiac variables by standard echocardiographic techniques immediately before and ~30min after exercise. We recorded no significant changes in markers of systolic (ejection fraction, shortening fraction, tissue Doppler-S) or diastolic (mitral peak E velocity, tissue Doppler-E' and E/E') function following exercise in any of the four conditions. In this model of exercise designed to mimic the work, heat stress and dehydration associated with firefighting activities, we observed no negative effects on myocardial inotropic or lusitropic function. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Epigallocatechin-3-gallate prevents lipid peroxidation and enhances antioxidant defense system via modulating hepatic nuclear transcription factors in heat-stressed quails.

    PubMed

    Sahin, K; Orhan, C; Tuzcu, M; Ali, S; Sahin, N; Hayirli, A

    2010-10-01

    Epigallocatechin-3-gallate (EGCG), a polyphenol derived from green tea, exerts antioxidant effects. Oxidative stress is one of the consequences of heat stress (HS), which also depresses performance in poultry. This experiment was conducted to elucidate the action mode of EGCG in alleviation of oxidative stress in heat-stressed quail (Coturnix coturnix japonica). A total of 180 five-week-old female Japanese quails were reared either at 22°C for 24 h/d (thermoneutral, TN) or 34°C for 8 h/d (HS) for 12 wk. Birds in both environments were randomly fed 1 of 3 diets: basal diet and basal diet added with 200 or 400 mg of EGCG/kg of diet. Each of the 2×3 factorially arranged groups was replicated in 10 cages, each containing 3 quails. Performance variables [feed intake (FI) and egg production (EP)], oxidative stress biomarkers [malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)] and hepatic transcription factors [nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)] were analyzed using 2-way ANOVA. Exposure to HS caused reductions in FI by 9.7% and EP by 14.4%, increased hepatic MDA level by 84.8%, and decreased hepatic SOD, CAT, and GSH-Px activities by 25.8, 52.3, and 45.5%, respectively (P<0.0001 for all). The hepatic NF-κB expression was greater (156 vs. 82%) and Nrf2 expression was lower (84 vs. 118%) for quails reared under the HS environment than for those reared under the TN environment (P<0.0001 for both). In response to increasing supplemental EGCG level, there were linear increases in FI from 29.6 to 30.9 g/d and EP from 84.3 to 90.1%/d, linear decreases in hepatic MDA level from 2.82 to 1.72 nmol/g and Nrf2 expression from 77.5 to 123.3%, and linear increases in hepatic SOD (146.4 to 182.2), CAT (36.2 to 47.1), and GSH-Px (13.5 to 18.5) activities (U/mg of protein) and NF-κB expression (149.7 to 87.3%) (P<0.0001 for all). Two

  15. Heat-Stress and Light-Stress Induce Different Cellular Pathologies in the Symbiotic Dinoflagellate during Coral Bleaching

    PubMed Central

    Downs, C. A.; McDougall, Kathleen E.; Woodley, Cheryl M.; Fauth, John E.; Richmond, Robert H.; Kushmaro, Ariel; Gibb, Stuart W.; Loya, Yossi; Ostrander, Gary K.; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching. PMID:24324575

  16. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    PubMed

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  17. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats.

    PubMed

    Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee

    2015-03-01

    Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function.

  18. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats

    PubMed Central

    Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee

    2015-01-01

    Purpose: Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Methods: Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. Results: A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Conclusions: Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function. PMID:25833478

  19. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yanyan; Gao, Chao; Shi, Yanru

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin.more » The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.« less

  20. Effects of heat stress and starvation on clonal odontoblast-like cells.

    PubMed

    Morotomi, Takahiko; Kitamura, Chiaki; Toyono, Takashi; Okinaga, Toshinori; Washio, Ayako; Saito, Noriko; Nishihara, Tatsuji; Terashita, Masamichi; Anan, Hisashi

    2011-07-01

    Heat stress during restorative procedures, particularly under severe starvation conditions, can trigger damage to dental pulp. In the present study, we examined effects of heat stress on odontoblastic activity and inflammatory responses in an odontoblast-like cell line (KN-3) under serum-starved conditions. Viability, nuclear structures, and inflammatory responses of KN-3 cells were examined in culture medium containing 10% or 1% serum after exposure to heat stress at 43°C for 45 minutes. Gene expression of extracellular matrices, alkaline phosphatase activity, and detection of extracellular calcium deposition in cells exposed to heat stress were also examined. Reduced viability and apoptosis were transiently induced in KN-3 cells during the initial phases after heat stress; thereafter, cells recovered their viability. The cytotoxic effects of heat stress were enhanced under serum-starved conditions. Heat stress also strongly up-regulated expression of heat shock protein 25 as well as transient expression of tumor necrosis factor-alpha, interleukin-6, and cyclooxygenase-2 in KN-3 cells. In contrast, expression of type-1 collagen, runt-related transcription factor 2, and dentin sialophosphoprotein were not inhibited by heat stress although starvation suppressed ALP activity and delayed progression of calcification. Odontoblast-like cells showed thermoresistance with transient inflammatory responses and without loss of calcification activity, and their thermoresistance and calcification activity were influenced by nutritional status. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Cerium Improves Growth of Maize Seedlings via Alleviating Morphological Structure and Oxidative Damages of Leaf under Different Stresses.

    PubMed

    Hong, Fashui; Qu, Chunxiang; Wang, Ling

    2017-10-18

    It had been indicated that cerium (Ce) could promote maize growth involving photosynthetic improvement under potassium (K) deficiency, salt stress, and combined stress of K + deficiency and salt stress. However, whether the improved growth is related to leaf morphological structure, oxidative stress in maize leaves is not well understood. The present study showed that K + deficiency, salt stress, and their combined stress inhibited growth of maize seedlings, affecting the formation of appendages of leaf epidermal cells, and stomatal opening, which may be due to increases in H 2 O 2 and malondialdehyde levels, and reductions in Ca 2+ content, ratios of glutathione/oxidized glutathione, ascorbic acid/dehydroascorbic acid, and the activities of superoxide dismutase, catalase, ascorbic acid peroxidase, guaiacol peroxidase, and glutathione reductase in leaves under different stresses. The adverse effects caused by combined stress were higher than those of single stress. Furthermore, our findings demonstrated that adding Ce 3+ could significantly promote seedling growth, and alleviate morphological and structural damage of leaf, decrease oxidative stress and increase antioxidative capacity in maize leaves caused by different stresses.

  2. Heat-stressed structural components in combustion-engine design

    NASA Technical Reports Server (NTRS)

    Kraemer, Otto

    1938-01-01

    Heated structural parts alter their shape. Anything which hinders free heat expansion will give rise to heat stresses. Design rules are thus obtained for the heated walls themselves as well as for the adjoining parts. An important guiding principle is that of designing the heat-conducting walls as thin as possible.

  3. A spatial analysis of heat stress related emergency room visits in rural Southern Ontario during heat waves.

    PubMed

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Kelton, David F

    2015-08-06

    In Southern Ontario, climate change may have given rise to an increasing occurrence of heat waves since the year 2000, which can cause heat stress to the general public, and potentially have detrimental health consequences. Heat waves are defined as three consecutive days with temperatures of 32 °C and above. Heat stress is the level of discomfort. A variety of heat stress indices have been proposed to measure heat stress (e.g., the heat stress index (HSI)), and has been shown to predict increases in morbidity and/or mortality rates in humans and other species. Maps visualizing the distribution of heat stress can provide information about related health risks and insight for control strategies. Information to inform heat wave preparedness models in Ontario was previously only available for major metropolitan areas. Hospitals in communities of fewer than 100,000 individuals were recruited for a pilot study by telephone. The number of people visiting the emergency room or 24-hour urgent care service was collected for a total of 27 days, covering three heat waves and six 3-day control periods from 2010-2012. The heat stress index was spatially predicted using data from 37 weather stations across Southern Ontario by geostatistical kriging. Poisson regression modeling was applied to determine the rate of increased number of emergency room visits in rural hospitals with respect to the HSI. During a heat wave, the average rate of emergency room visits was 1.11 times higher than during a control period (IRR = 1.11, CI95% (IRR) = (1.07,1.15), p ≤ 0.001). In a univariable model, HSI was not a significant predictor of emergency room visits, but when accounting for the confounding effect of a spatial trend polynomial in the hospital location coordinates, a one unit increase in HSI predicted an increase in daily emergency rooms visits by 0.4% (IRR = 1.004, CI95%(IRR) = (1.0005,1.007), p = 0.024) across the region. One high-risk cluster and no low risk

  4. A deterministic evaluation of heat stress mitigation and feed cost under climate change within the smallholder dairy sector.

    PubMed

    York, L; Heffernan, C; Rymer, C; Panda, N

    2017-05-01

    In the global South, dairying is often promoted as a means of poverty alleviation. Yet, under conditions of climate warming, little is known regarding the ability of small-scale dairy producers to maintain production and/or the robustness of possible adaptation options in meeting the challenges presented, particularly heat stress. The authors created a simple, deterministic model to explore the influence of breed and heat stress relief options on smallholder dairy farmers in Odisha, India. Breeds included indigenous Indian (non-descript), low-grade Jersey crossbreed and high-grade Jersey crossbreed. Relief strategies included providing shade, fanning and bathing. The impact of predicted critical global climate parameters, a 2°C and 4°C temperature rise were explored. A feed price scenario was modelled to illustrate the importance of feed in impact estimation. Feed costs were increased by 10% to 30%. Across the simulations, high-grade Jersey crossbreeds maintained higher milk yields, despite being the most sensitive to the negative effects of temperature. Low-capital relief strategies were the most effective at reducing heat stress impacts on household income. However, as feed costs increased the lower-grade Jersey crossbreed became the most profitable breed. The high-grade Jersey crossbreed was only marginally (4.64%) more profitable than the indigenous breed. The results demonstrate the importance of understanding the factors and practical trade-offs that underpin adaptation. The model also highlights the need for hot-climate dairying projects and programmes to consider animal genetic resources alongside environmentally sustainable adaptation measures for greatest poverty impact.

  5. Vitamin C and sodium bicarbonate enhance the antioxidant ability of H9C2 cells and induce HSPs to relieve heat stress.

    PubMed

    Yin, Bin; Tang, Shu; Sun, Jiarui; Zhang, Xiaohui; Xu, Jiao; Di, Liangjiao; Li, Zhihong; Hu, Yurong; Bao, Endong

    2018-02-13

    Heat stress is exacerbated by global warming and affects human and animal health, leading to heart damage caused by imbalances in reactive oxygen species (ROS) and the antioxidant system, acid-base chemistry, electrolytes and respiratory alkalosis. Vitamin C scavenges excess ROS, and sodium bicarbonate maintains acid-base and electrolyte balance, and alleviates respiratory alkalosis. Herein, we explored the ability of vitamin C alone and in combination with equimolar sodium bicarbonate (Vitamin C-Na) to stimulate endogenous antioxidants and heat shock proteins (HSPs) to relieve heat stress in H9C2 cells. Control, vitamin C (20 μg/ml vitamin C for 16 h) and vitamin C-Na (20 μg/ml vitamin C-Na for 16 h) groups were heat-stressed for 1, 3 or 5 h. Granular and vacuolar degeneration, karyopyknosis and damage to nuclei and mitochondria were clearly reduced in treatment groups, as were apoptosis, lactate dehydrogenase activity and ROS and malondialdehyde levels, while superoxide dismutase activity was increased. Additionally, CRYAB, Hsp27, Hsp60 and Hsp70 mRNA levels were upregulated at 3 h (p < 0.01), and protein levels were increased for CRYAB at 0 h (p < 0.05) and 1 h (p < 0.01), and for Hsp70 at 3 and 5 h (p < 0.01). Thus, pre-treatment with vitamin C or vitamin C-Na might protect H9C2 cells against heat damage by enhancing the antioxidant ability and upregulating CRYAB and Hsp70.

  6. Effects of heat stress on bovine preimplantation embryos produced in vitro

    PubMed Central

    SAKATANI, Miki

    2017-01-01

    Summer heat stress decreases the pregnancy rate in cattle and has been thought to be associated with the early embryonic death caused by the elevation of maternal body temperature. In vitro cultures have been widely used for the evaluation of effects of heat stress on oocytes, fertilization, preimplantation, and embryonic development. Susceptibility to heat stress is present in developmental stages from oocytes to cleavage-stage (before embryonic gene activation, EGA) embryos, leading to a consequent decrease in developmental competence. On the other hand, advanced-stage embryos such as morula or blastocysts have acquired thermotolerance. The mechanism for the developmental stage-dependent change in thermotolerance is considered to be the accumulation of antioxidants in embryos in response to heat-inducible production of reactive oxygen species. The supplementation of antioxidants to the culture media has been known to neutralize the detrimental effects of heat stress. Besides, EGA could be involved in acquisition of thermotolerance in later stages of embryos. Morulae or blastocysts can repair heat-induced unfolded proteins or prevent DNA damage occurring in processes such as apoptosis. Therefore, embryo transfer (ET) that can bypass the heat-sensitive stage could be a good solution to improve the pregnancy rate under heat stress. However, frozen-thawed ET could not improve the pregnancy rate as expected. Frozen-thawed blastocysts were more sensitive to heat stress and showed less proliferation upon heat exposure, compared to fresh blastocysts. Therefore, further research is required to improve the reduction in pregnancy rates due to summer heat stress. PMID:28496018

  7. Effects of heat stress on bovine preimplantation embryos produced in vitro.

    PubMed

    Sakatani, Miki

    2017-08-19

    Summer heat stress decreases the pregnancy rate in cattle and has been thought to be associated with the early embryonic death caused by the elevation of maternal body temperature. In vitro cultures have been widely used for the evaluation of effects of heat stress on oocytes, fertilization, preimplantation, and embryonic development. Susceptibility to heat stress is present in developmental stages from oocytes to cleavage-stage (before embryonic gene activation, EGA) embryos, leading to a consequent decrease in developmental competence. On the other hand, advanced-stage embryos such as morula or blastocysts have acquired thermotolerance. The mechanism for the developmental stage-dependent change in thermotolerance is considered to be the accumulation of antioxidants in embryos in response to heat-inducible production of reactive oxygen species. The supplementation of antioxidants to the culture media has been known to neutralize the detrimental effects of heat stress. Besides, EGA could be involved in acquisition of thermotolerance in later stages of embryos. Morulae or blastocysts can repair heat-induced unfolded proteins or prevent DNA damage occurring in processes such as apoptosis. Therefore, embryo transfer (ET) that can bypass the heat-sensitive stage could be a good solution to improve the pregnancy rate under heat stress. However, frozen-thawed ET could not improve the pregnancy rate as expected. Frozen-thawed blastocysts were more sensitive to heat stress and showed less proliferation upon heat exposure, compared to fresh blastocysts. Therefore, further research is required to improve the reduction in pregnancy rates due to summer heat stress.

  8. DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress.

    PubMed

    Kim, Byunghyuk; Cooke, Howard J; Rhee, Kunsoo

    2012-02-01

    Mammalian male germ cells should be maintained below body temperature for proper development. Here, we investigated how male germ cells respond to heat stress. A short exposure of mouse testes to core body temperature induced phosphorylation of eIF2α and the formation of stress granules (SGs) in male germ cells. We observed that DAZL, a germ cell-specific translational regulator, was translocated to SGs upon heat stress. Furthermore, SG assembly activity was significantly diminished in the early male germ cells of Dazl-knockout mice. The DAZL-containing SGs played a protective role against heat stress-induced apoptosis by the sequestration of specific signaling molecules, such as RACK1, and the subsequent blockage of the apoptotic MAPK pathway. Based on these results, we propose that DAZL is an essential component of the SGs, which prevent male germ cells from undergoing apoptosis upon heat stress.

  9. Insect heat shock proteins during stress and diapause.

    PubMed

    King, Allison M; MacRae, Thomas H

    2015-01-07

    Insect heat shock proteins include ATP-independent small heat shock proteins and the larger ATP-dependent proteins, Hsp70, Hsp90, and Hsp60. In concert with cochaperones and accessory proteins, heat shock proteins mediate essential activities such as protein folding, localization, and degradation. Heat shock proteins are synthesized constitutively in insects and induced by stressors such as heat, cold, crowding, and anoxia. Synthesis depends on the physiological state of the insect, but the common function of heat shock proteins, often working in networks, is to maintain cell homeostasis through interaction with substrate proteins. Stress-induced expression of heat shock protein genes occurs in a background of protein synthesis inhibition, but in the course of diapause, a state of dormancy and increased stress tolerance, these genes undergo differential regulation without the general disruption of protein production. During diapause, when ATP concentrations are low, heat shock proteins may sequester rather than fold proteins.

  10. Rubisco activase and wheat productivity under heat stress conditions

    USDA-ARS?s Scientific Manuscript database

    Rubisco activase (RCA) constrains the photosynthetic potential of plants at high temperature (heat stress). We hypothesized that endogenous levels of RCA could serve as an important determinant of plant productivity under heat stress conditions. In this study, we investigated the possible relation...

  11. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A., E-mail: ksooa@dongguk.ac.kr

    2015-08-21

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We alsomore » demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1{sup −/−}) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. - Highlights: • The expression level of BAG3 is induced by heat stress. • BAG3 translocates to the nucleus upon heat stress. • BAG3 interacts with HSF1 and co-localizes to the nucleus. • BAG3 is a key regulator for HSF1 nuclear shuttling.« less

  12. Genetic effects of heat stress on milk yield of Thai Holstein crossbreds.

    PubMed

    Boonkum, W; Misztal, I; Duangjinda, M; Pattarajinda, V; Tumwasorn, S; Sanpote, J

    2011-01-01

    The threshold for heat stress on milk yield of Holstein crossbreds under climatic conditions in Thailand was investigated, and genetic effects of heat stress on milk yield were estimated. Data included 400,738 test-day milk yield records for the first 3 parities from 25,609 Thai crossbred Holsteins between 1990 and 2008. Mean test-day milk yield ranged from 12.6 kg for cows with <87.5% Holstein genetics to 14.4 kg for cows with ≥93.7% Holstein genetics. Daily temperature and humidity data from 26 provincial weather stations were used to calculate a temperature-humidity index (THI). Test-day milk yield varied little with THI for first parity except above a THI of 82 for cows with ≥93.7% Holstein genetics. For third parity, test-day milk yield started to decline after a THI of 74 for cows with ≥87.5% Holstein genetics and declined more rapidly after a THI of 82. A repeatability test-day model with parities as correlated traits was used to estimate heat stress parameters; fixed effects included herd-test month-test year and breed groups, days in milk, calving age, and parity; random effects included 2 additive genetic effects, regular and heat stress, and 2 permanent environment, regular and heat stress. The threshold for effect of heat stress on test-day milk yield was set to a THI of 80. All variance component estimates increased with parity; the largest increases were found for effects associated with heat stress. In particular, genetic variance associated with heat stress quadrupled from first to third parity, whereas permanent environmental variance only doubled. However, permanent environmental variance for heat stress was at least 10 times larger than genetic variance. Genetic correlations among parities for additive effects without heat stress considered ranged from 0.88 to 0.96. Genetic correlations among parities for additive effects of heat stress ranged from 0.08 to 0.22, and genetic correlations between effects regular and heat stress effects ranged

  13. Heat-stress-related mortality in five cities in Southern Ontario: 1980-1996.

    PubMed

    Smoyer, K E; Rainham, D G; Hewko, J N

    2000-11-01

    The Toronto-Windsor corridor of Southern Ontario, Canada, experiences hot and humid weather conditions in summer, thus exposing the population to heat stress and a greater risk of mortality. In the event of a climate change, heat-stress conditions may become more frequent and severe in Southern Ontario. To assess the impact of summer weather on health, we analyzed heat-related mortality in the elderly (older than 64 years) in the metropolitan areas of Windsor, London, Kitchener-Waterloo-Cambridge, Hamilton, and Toronto for a 17-year period. Demographic, socioeconomic, and housing factors were also evaluated to assess their effect on the potential of the population to adapt and their vulnerability to heat stress. Heat-stress days were defined as those with an apparent temperature (heat index) above 32 degrees C. Mortality among the elderly was significantly higher on heat-stress days than on non-heat-stress days in all cities except Windsor. The strongest relationships occurred in Toronto and London, followed by Hamilton. Cities with the greatest heat-related mortality have relatively high levels of urbanization and high costs of living. Even without the warming induced by a climate change, (1) vulnerability is likely to increase as the population ages, and (2) ongoing urban development and sprawl are expected to intensify heat-stress conditions in Southern Ontario. Actions should be taken to reduce vulnerability to heat stress conditions, and to develop a comprehensive hot weather watch/warning system for the region.

  14. Geraniol alleviates diabetic cardiac complications: Effect on cardiac ischemia and oxidative stress.

    PubMed

    El-Bassossy, Hany M; Ghaleb, Hanna; Elberry, Ahmed A; Balamash, Khadijah S; Ghareib, Salah A; Azhar, Ahmad; Banjar, Zainy

    2017-04-01

    The present study was planned to assess the possible protective effect of geraniol on cardiovascular complications in an animal model with diabetes. Diabetes was induced in rats by a single streptozotocin injection. In the treated group, geraniol (150mgkg -1 day -1 ) was administered orally starting from the 15th day after induction of diabetes, and ending after 7 weeks; diabetic control rats were given vehicle for the same period. At the end of the study, cardiac contractility was assessed by using a Millar microtip catheter in anesthetised rats, and cardiac conductivity determined by a surface ECG. Serum levels of glucose, cholesterol, triglyceride and adiponectin as well as urine 8-isoprostane were determined. In addition, cardiac superoxide dismutase (SOD) and catalase activity were measured. Geraniol administration significantly alleviated the attenuated cardiac systolic function associated with diabetes as indicated by inhibiting the decrease in the rate of rise (dP/dt max ) in ventricular pressure and the increase in systolic duration observed in diabetic rats. In addition, geraniol alleviated impaired diastolic function as shown by inhibiting the decrease in the rate of fall (dP/dt min ) in ventricular pressure and increased isovolumic relaxation constant (Tau) observed in diabetic rats. ECG recordings showed that geraniol prevented any increase in QTc and T-peak-T-end intervals, and markers of LV ischemia and arrhythmogenesis, seen in diabetic animals. Geraniol suppressed the exaggerated oxidative stress as evidenced by preventing the increase in 8-isoprotane. In diabetic heart tissue, geraniol prevented the inhibition in catalase activity but did not affect the heart SOD. Geraniol partially reduced hyperglycemia, prevented the hypercholesterolemia, but did not affect the serum level of adiponectin in diabetic animals. Results obtained in this study suggest that geraniol provides a potent protective effect against cardiac dysfunction induced by diabetes

  15. Effect of Heat Stress on Concentrations of Faecal Cortisol Metabolites in Dairy Cows.

    PubMed

    Rees, A; Fischer-Tenhagen, C; Heuwieser, W

    2016-06-01

    The negative impact of heat stress on health and productivity of dairy cows is well known. Heat stress can be quantified with the temperature-humidity index (THI) and is defined as a THI ≥ 72. Additionally, animal welfare is affected in cows living under heat stress conditions. Finding a way to quantify heat stress in dairy cows has been of increasing interest over the past decades. Therefore, the objective of this study was to evaluate concentrations of faecal glucocorticoid metabolites [i.e. 11,17-dioxoandrostanes (11,17-DOA)] as an indirect stress parameter in dairy cows without heat stress (DOA 0), with heat stress on a single day (acute heat stress, DOA 1) or with more than a single day of heat stress (chronic heat stress, DOA 2). Cows were housed in five farms under moderate European climates. Two statistical approaches (approach 1 and approach 2) were assessed. Using approach 1, concentrations of faecal 11,17-DOA were compared among DOA 0, DOA 1 and DOA 2 samples regardless of their origin (i.e. cow, unpaired comparison with a one-way anova). Using approach 2, a cow was considered as its own control; that is 11,17-DOA was treated as a cow-specific factor and only paired samples were included in the analysis for this approach (paired comparison with t-tests). In approach 1 (p = 0.006) and approach 2 (p = 0.038), 11,17-DOA values of cows under acute heat stress were higher compared to those of cows without heat stress. Our results also indicate that acute heat stress has to be considered as a confounder in studies measuring faecal glucocorticoid metabolites in cows to evaluate other stressful situations. © 2016 Blackwell Verlag GmbH.

  16. Calibration of Heat Stress Monitor and its Measurement Uncertainty

    NASA Astrophysics Data System (ADS)

    Ekici, Can

    2017-07-01

    Wet-bulb globe temperature (WBGT) equation is a heat stress index that gives information for the workers in the industrial areas. WBGT equation is described in ISO Standard 7243 (ISO 7243 in Hot environments—estimation of the heat stress on working man, based on the WBGT index, ISO, Geneva, 1982). WBGT is the result of the combined quantitative effects of the natural wet-bulb temperature, dry-bulb temperature, and air temperature. WBGT is a calculated parameter. WBGT uses input estimates, and heat stress monitor measures these quantities. In this study, the calibration method of a heat stress monitor is described, and the model function for measurement uncertainty is given. Sensitivity coefficients were derived according to GUM. Two-pressure humidity generators were used to generate a controlled environment. Heat stress monitor was calibrated inside of the generator. Two-pressure humidity generator, which is located in Turkish Standard Institution, was used as the reference device. This device is traceable to national standards. Two-pressure humidity generator includes reference temperature Pt-100 sensors. The reference sensor was sheltered with a wet wick for the calibration of natural wet-bulb thermometer. The reference sensor was centred into a black globe that has got 150 mm diameter for the calibration of the black globe thermometer.

  17. On Time Domain Analysis of Photoplethysmogram Signals for Monitoring Heat Stress

    PubMed Central

    Elgendi, Mohamed; Fletcher, Rich; Norton, Ian; Brearley, Matt; Abbott, Derek; Lovell, Nigel H.; Schuurmans, Dale

    2015-01-01

    There are a limited number of studies on heat stress dynamics during exercise using the photoplethysmogram (PPG) and its second derivative (APG). However, we investigate the most suitable index from short PPG signal recordings for heat stress assessment. The APG waveform consists of a, b, c and d waves in systole and an e wave in diastole. Our preliminary results indicate that the use of the energy of aa area, derived from PPG signals measured from emergency responders in tropical conditions, is promising in determining the heat stress level using 20-s recordings. After examining 14 time domain features using leave-one-out cross-validation, we found that the aa energy extracted from PPG signals is the most informative feature for classifying heat-stressed subjects, with an overall accuracy of 79%. Moreover, the combination of the aa energy with the traditional heart rate variability index of heat stress (i.e., the square root of the mean of the squares of the successive aa intervals) improved the heat stress detection to an overall accuracy of 83%. PMID:26404271

  18. On Time Domain Analysis of Photoplethysmogram Signals for Monitoring Heat Stress.

    PubMed

    Elgendi, Mohamed; Fletcher, Rich; Norton, Ian; Brearley, Matt; Abbott, Derek; Lovell, Nigel H; Schuurmans, Dale

    2015-09-25

    There are a limited number of studies on heat stress dynamics during exercise using the photoplethysmogram (PPG) and its second derivative (APG). However, we investigate the most suitable index from short PPG signal recordings for heat stress assessment. The APG waveform consists of a, b, c and d waves in systole and an e wave in diastole. Our preliminary results indicate that the use of the energy of aa area, derived from PPG signals measured from emergency responders in tropical conditions, is promising in determining the heat stress level using 20-s recordings. After examining 14 time domain features using leave-one-out cross-validation, we found that the aa energy extracted from PPG signals is the most informative feature for classifying heat-stressed subjects, with an overall accuracy of 79%. Moreover, the combination of the aa energy with the traditional Sensors 2015, 15 24717 heart rate variability index of heat stress (i.e., the square root of the mean of the squares of the successive aa intervals) improved the heat stress detection to an overall accuracy of 83%.

  19. Post-Heading Heat Stress in Rice of South China during 1981-2010

    PubMed Central

    Shi, Peihua; Tang, Liang; Wang, Lihuan; Sun, Ting; Liu, Leilei; Cao, Weixing; Zhu, Yan

    2015-01-01

    Frequent extreme heat events are the serious threat to rice production, but the historical trend of heat stress associated with phenology shift and its impact on rice yield over a long period are poorly known. Based on the analysis of observed climate and phenology data from 228 stations in South China during 1981-2010, the spatio-temporal variation of post-heading heat stress was investigated among two single-season rice sub-regions in the northern Middle and Lower Reaches of Yangtze River (S-NMLYtz) and Southwest Plateau (S-SWP), and two double-season early rice sub-regions in the southern Middle and Lower Reaches of Yangtze River (DE-SMLYtz) and Southern China (DE-SC). Post-heading heat stress was more severe in DE-SMLYtz, west S-NMLYtz and east S-SWP than elsewhere, because of rice exposure to the hot season during post-heading stage. The spatial variation of post-heading heat stress was greater in single-season rice region than in double-season early rice region due to the greater spatial variation of heading and maturity dates. Post-heading heat stress increased from 1981 to 2010 in most areas, with significant increases in the east of double-season early rice region and west S-SWP. Phenology shift during 1981-2010 mitigated the increasing trends of heat stress in most areas, but not in west S-SWP. Post-heading heat stress played a dominated role in the reduction of rice yield in South China. Grain yield was more sensitive to post-heading heat stress in double-season early rice region than that in single-season rice region. Rice yield decreased by 1.5%, 6.2%, 9.7% and 4.6% in S-NMLYtz, S-SWP, DE-SMLYtz and DE-SC, respectively, because of post-heading heat stress during 1981-2010, although there were some uncertainties. Given the current level and potential increase of post-heading heat stress in South China, the specific adaptation or mitigation strategies are necessary for different sub-regions to stabilize rice production under heat stress. PMID:26110263

  20. Finite element residual stress analysis of induction heating bended ferritic steel piping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residualmore » stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.« less

  1. Investigation of countermeasure for unloading-related muscle plasticity: role of heat stress

    NASA Astrophysics Data System (ADS)

    Goto, K.; Kobayashi, T.; Kojima, A.; Akema, T.; Sugiura, T.; Yamada, S.; Ohira, Y.; Yoshioka, T.

    We have been studying the mechanisms responsible for unloading- or loading-related muscle plasticity. The purpose of the current study was to investigate the effects of heat stress on the growth of mammalian skeletal muscles in vivo. Male Wistar rats (7 weeks old) were divided into two groups: control (n = 24) and heat stress (n = 24). Rats of heat stressed group were exposed to environmental heat stress (41°C for 60 min) in a heat chamber without anesthesia. The soleus muscles were dissected 1, 3, 7, and 14 days after the heat exposure. The wet weights of muscle relative to body weights in heat stressed group were significantly higher than control group 7 days after the exposure (p<0.05). The relative proportion of 5-bromo-2'-deoxyuridine- and proliferating cell nuclear antigen-positive nuclei, that are indicators for the cell proliferation, were increased 1 day after heating (p<0.05). Pax7-positive nuclei, that are indicators for the muscle satellite cells, were also increased 3 day after heat exposure. The expression of phosphorylated p70 S6 kinase was increased 1 day following heat exposure. These results suggest that heat stress could promote cell proliferation, activate satellite cells, and induce muscular hypertrophy.

  2. Camelid heat stress: 15 cases (2003–2011)

    PubMed Central

    Norton, Piper L.; Gold, Jenifer R.; Russell, Karen E.; Schulz, Kara L.; Porter, Brian F.

    2014-01-01

    This case series describes novel findings associated with heat stress in 15 cases in South American camelids that had no pre-existing illnesses and which had clinical signs of illness after exposure to a warm environment. Novel findings include decreased packed cell volume and albumin concentration and mild spinal axonal degeneration. Heat stress should be considered in weak camelids with a history of hyperthermia. PMID:25320390

  3. Factors of subjective heat stress of urban citizens in contexts of everyday life

    NASA Astrophysics Data System (ADS)

    Kunz-Plapp, Tina; Hackenbruch, Julia; Schipper, Janus Willem

    2016-04-01

    Heat waves and the consequent heat stress of urban populations have a growing relevance in urban risk management and strategies of urban adaptation to climate change. In this context, social science studies on subjective experiencing of heat as stress by urban citizens are a new emerging field. To contribute to the understanding of self-reported subjective heat stress and its major determinants in a daily life perspective, we conducted a questionnaire survey with 323 respondents in Karlsruhe, Germany, after heat waves in July and August 2013. Statistical data analysis showed that subjective heat stress is an issue permeating everyday activities. Subjective heat stress at home was lower than at work and in general. Subjective heat stress in general, at home, and at work was determined by the health impairments experienced during the heat and the feeling of being helplessly exposed to the heat. For subjective heat stress at home, characteristics of the residential building and the built environment additionally played a role. Although the rate of implemented coping measures was rather high, coping measures showed no uniform effect for the subjective heat stress. We conclude that in terms of urban adaptation strategies, further research is needed to understand how various processes of daily social (work) life enable or limit individual coping and that communication strategies are important for building capacities to better cope with future heat waves.

  4. Post-heading heat stress and yield impact in winter wheat of China.

    PubMed

    Liu, Bing; Liu, Leilei; Tian, Liying; Cao, Weixing; Zhu, Yan; Asseng, Senthold

    2014-02-01

    Wheat is sensitive to high temperatures, but the spatial and temporal variability of high temperature and its impact on yield are often not known. An analysis of historical climate and yield data was undertaken to characterize the spatial and temporal variability of heat stress between heading and maturity and its impact on wheat grain yield in China. Several heat stress indices were developed to quantify heat intensity, frequency, and duration between heading and maturity based on measured maximum temperature records of the last 50 years from 166 stations in the main wheat-growing region of China. Surprisingly, heat stress between heading and maturity was more severe in the generally cooler northern wheat-growing regions than the generally warmer southern regions of China, because of the delayed time of heading with low temperatures during the earlier growing season and the exposure of the post-heading phase into the warmer part of the year. Heat stress between heading and maturity has increased in the last decades in most of the main winter wheat production areas of China, but the rate was higher in the south than in the north. The correlation between measured grain yields and post-heading heat stress and average temperature were statistically significant in the entire wheat-producing region, and explained about 29% of the observed spatial and temporal yield variability. A heat stress index considering the duration and intensity of heat between heading and maturity was required to describe the correlation of heat stress and yield variability. Because heat stress is a major cause of yield loss and the number of heat events is projected to increase in the future, quantifying the future impact of heat stress on wheat production and developing appropriate adaptation and mitigation strategies are critical for developing food security policies in China and elsewhere. © 2013 John Wiley & Sons Ltd.

  5. Occupational heat stress in Australian workplaces

    PubMed Central

    Jay, Ollie; Brotherhood, John R.

    2016-01-01

    ABSTRACT The aim of this review was to summarize the current state of knowledge on heat stress risk within typical Australian occupational settings. We assessed identified occupations (mining, agriculture, construction, emergency services) for heat production and heat loss potential, and resultant levels of physiological heat strain. A total of 29 reports were identified that assessed in-situ work settings in Northern Territory, South Australia, Western Australia, Queensland, New South Wales and Victoria, that measured physiological responses and characterized the thermal environment. Despite workers across all industries being regularly exposed to high ambient temperatures (32–42°C) often coupled with high absolute humidity (max: 33 hPa), physiological strain is generally low in terms of core temperature (<38°C) and dehydration (<1 % reduction in mass) by virtue of the low energy demands of many tasks, and self-regulated pacing of work possible in most jobs. Heat stress risk is higher in specific jobs in agriculture (e.g. sheep shearing), deep underground mining, and emergency services (e.g., search/rescue and bushfire fighting). Heat strain was greatest in military-related activities, particularly externally-paced marching with carried loads which resulted in core temperatures often exceeding 39.5°C despite being carried out in cooler environments. The principal driver of core temperature elevations in most jobs is the rate of metabolic heat production. A standardized approach to evaluating the risk of occupational heat strain in Australian workplaces is recommended defining the individual parameters that alter human heat balance. Future research should also more closely examine female workers and occupational activities within the forestry and agriculture/horticulture sector. PMID:28349081

  6. Effects of cyclic heat stress or vitamin C supplementation during cyclic heat stress on HSP70, inflammatory cytokines, and the antioxidant defense system in Sprague Dawley rats.

    PubMed

    Yun, Seo-Hyun; Moon, Yang-Soo; Sohn, Sea-Hwan; Jang, In-Surk

    2012-01-01

    A total of 21 male SD rats were divided into three groups to investigate the effects of consecutive cyclic heat stress or vitamin C under heat stress on heat shock protein (HSP) 70, inflammatory cytokines, and antioxidant systems. The heat stress (HS) and vitamin C supplementation during heat stress (HS+VC) groups were exposed to cyclic heat stress (23 to 38 to 23°C) for 2 h on each of seven consecutive days. The HS+VC group had free access to water containing 0.5% vitamin C throughout the experiment. Hepatic HSP70 mRNA in the HS group was significantly (P<0.05) higher than that in the control (CON) or HS+VC group. The mRNA levels of tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) in the HS group were greater (P<0.05) than those in the CON group. The HS+VC group showed significantly (P<0.05) lower mRNA levels of hepatic interleukin-6 and TNF-α than the HS group. However, thymic HSP70 and inflammatory cytokines were unaffected by treatments. In the hepatic antioxidant system, the mRNA and activity of glutathione peroxidase (GPX) were greater (P<0.05) in the HS than in the CON group, whereas the HS+VC group showed markedly (P<0.05) lower GPX mRNA and activity than the HS group. However, superoxide dismutase, glutathione S-transferase, and malondialdehyde were unaffected by treatments. In conclusion, cyclic heat stress activated hepatic HSP70, TNF-α, iNOS, and GPX genes, whereas vitamin C during heat stress ameliorated heat stress-induced cellular responses in rats.

  7. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress.

    PubMed

    Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A

    2015-08-21

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1(-/-)) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Carotid baroreflex responsiveness in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.

    2000-01-01

    The effects of whole body heating on human baroreflex function are relatively unknown. The purpose of this project was to identify whether whole body heating reduces the maximal slope of the carotid baroreflex. In 12 subjects, carotid-vasomotor and carotid-cardiac baroreflex responsiveness were assessed in normothermia and during whole body heating. Whole body heating increased sublingual temperature (from 36.4 +/- 0.1 to 37.4 +/- 0.1 degrees C, P < 0.01) and increased heart rate (from 59 +/- 3 to 83 +/- 3 beats/min, P < 0. 01), whereas mean arterial blood pressure (MAP) was slightly decreased (from 88 +/- 2 to 83 +/- 2 mmHg, P < 0.01). Carotid-vasomotor and carotid-cardiac responsiveness were assessed by identifying the maximal gain of MAP and heart rate to R wave-triggered changes in carotid sinus transmural pressure. Whole body heating significantly decreased the responsiveness of the carotid-vasomotor baroreflex (from -0.20 +/- 0.02 to -0.13 +/- 0.02 mmHg/mmHg, P < 0.01) without altering the responsiveness of the carotid-cardiac baroreflex (from -0.40 +/- 0.05 to -0.36 +/- 0.02 beats x min(-1) x mmHg(-1), P = 0.21). Carotid-vasomotor and carotid-cardiac baroreflex curves were shifted downward and upward, respectively, to accommodate the decrease in blood pressure and increase in heart rate that accompanied the heat stress. Moreover, the operating point of the carotid-cardiac baroreflex was shifted closer to threshold (P = 0.02) by the heat stress. Reduced carotid-vasomotor baroreflex responsiveness, coupled with a reduction in the functional reserve for the carotid baroreflex to increase heart rate during a hypotensive challenge, may contribute to increased susceptibility to orthostatic intolerance during a heat stress.

  9. Sulfur Dioxide Enhances Endogenous Hydrogen Sulfide Accumulation and Alleviates Oxidative Stress Induced by Aluminum Stress in Germinating Wheat Seeds

    PubMed Central

    Zhu, Dong-Bo; Hu, Kang-Di; Guo, Xi-Kai; Liu, Yong; Hu, Lan-Ying; Li, Yan-Hong; Wang, Song-Hua; Zhang, Hua

    2015-01-01

    Aluminum ions are especially toxic to plants in acidic soils. Here we present evidences that SO2 protects germinating wheat grains against aluminum stress. SO2 donor (NaHSO3/Na2SO3) pretreatment at 1.2 mM reduced the accumulation of superoxide anion, hydrogen peroxide, and malondialdehyde, enhanced the activities of guaiacol peroxidase, catalase, and ascorbate peroxidase, and decreased the activity of lipoxygenase in germinating wheat grains exposed to Al stress. We also observed higher accumulation of hydrogen sulfide (H2S) in SO2-pretreated grain, suggesting the tight relation between sulfite and sulfide. Wheat grains geminated in water for 36 h were pretreated with or without 1 mM SO2 donor for 12 h prior to exposure to Al stress for 48 h and the ameliorating effects of SO2 on wheat radicles were studied. SO2 donor pretreatment reduced the content of reactive oxygen species, protected membrane integrity, and reduced Al accumulation in wheat radicles. Gene expression analysis showed that SO2 donor pretreatment decreased the expression of Al-responsive genes TaWali1, TaWali2, TaWali3, TaWali5, TaWali6, and TaALMT1 in radicles exposed to Al stress. These results suggested that SO2 could increase endogenous H2S accumulation and the antioxidant capability and decrease endogenous Al content in wheat grains to alleviate Al stress. PMID:26078810

  10. Whole body heat stress increases motor cortical excitability and skill acquisition in humans

    PubMed Central

    Littmann, Andrew E.; Shields, Richard K.

    2015-01-01

    Objective Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress 1) facilitated motor cortex excitability and 2) improved motor task acquisition compared to no heat stress. Methods Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 minutes of heat stress at 73° C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Results Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (P < 0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p < 0.05) during a novel movement task using the FDI. Conclusions Passive environmental heat stress 1) increases motor cortical excitability, and 2) enhances performance in a motor skill acquisition task. Significance Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. PMID:26616546

  11. Whole body heat stress increases motor cortical excitability and skill acquisition in humans.

    PubMed

    Littmann, Andrew E; Shields, Richard K

    2016-02-01

    Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress (1) facilitated motor cortex excitability and (2) improved motor task acquisition compared to no heat stress. Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 min of heat stress at 73 °C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (p<0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p<0.05) during a novel movement task using the FDI. Passive environmental heat stress (1) increases motor cortical excitability, and (2) enhances performance in a motor skill acquisition task. Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones.

    PubMed

    Li, Lijie; Gu, Wanrong; Li, Jing; Li, Congfeng; Xie, Tenglong; Qu, Danyang; Meng, Yao; Li, Caifeng; Wei, Shi

    2018-05-15

    Drought stress (DS) is a major environmental factor limiting plant growth and crop productivity worldwide. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to DS. The effects of exogenous Spd on plant growth, photosynthetic performance, and chloroplast ultrastructure as well as changes in endogenous polyamines (PAs) and phytohormones were investigate in DS-resistant (Xianyu 335) and DS-sensitive (Fenghe 1) maize seedlings under well-watered and DS treatments. Exogenous Spd alleviated the stress-induced reduction in growth, photosynthetic pigment content, photosynthesis rate (P n ) and photochemical quenching (q P ) parameters, including the maximum photochemistry efficiency of photosystem II (PSII) (F v /F m ), PSII operating efficiency (ФPSII), and qP coefficient. Exogenous Spd further enhanced stress-induced elevation in non-photochemical quenching (NPQ) and the de-epoxidation state of the xanthophyll cycle (DEPS). Microscopic analysis revealed that seedlings displayed a more ordered arrangement of chloroplast ultrastructure upon Spd application during DS. Exogenous Spd increased the endogenous PA concentrations in the stressed plants. Additionally, exogenous Spd increased indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin A 3 (GA 3 ) and decreased salicylic acid (SA) and jasmonate (JA) concentrations under DS. These results indicate that exogenous Spd can alleviate the growth inhibition and damage to the structure and function of the photosynthetic apparatus caused by DS and that this alleviation may be associated with changes in endogenous PAs and phytohormones. This study contributes to advances in the knowledge of Spd-induced drought tolerance. Copyright © 2018. Published by Elsevier Masson SAS.

  13. [Alleviation effects of melatonin and Ca2+ on melon seedlings under salt stress].

    PubMed

    Gao, Qing Hai; Guo, Yuan Yuan; Wu, Yan; Jia, Shuang Shuang

    2017-06-18

    To assess the role of exogenous melatonin (MT) and Ca 2+ in melon under salt stress, the content of mineral elements (Cl - , Na + , K + , Mg 2+ , Ca 2+ ), the values of Na + /K + , Na + /Ca 2+ , Na + /Mg 2+ , the activity of H + -ATP, the accumulation of osmotic substances and membrane lipid peroxidation in melon under salt stress were investigated in the environmental conditions (day/night 25/18 ℃) controlled by artificial climate chamber. The results showed that salt stress significantly inhibited growth of the melon seedlings with the increased contents of Cl - and Na + in roots and lea-ves, and the decreased contents of K + , Mg 2+ and Ca 2+ , compared with the control. Under salt stress, exogenous application of MT or Ca 2+ remarkably reduced the contents of Cl - and Na + in roots and leaves, increased the contents of K + , Mg 2+ and Ca 2+ , and decreased values of Na + /K + , Na + /Ca 2+ and Na + /Mg 2+ . Additionally, exogenous melatonin or Ca 2+ increased H + -ATP activity and osmotic adjustments, and further alleviated cell membrane injuries imposed by salt stress, displaying lower MDA content and relative conductivity. Collectively, this work suggested that single or combined applications of exogenous MT and Ca 2+ effectively reduced the content of Cl - and Na + , improved ion balance by enhancing H + -ATP activity, and increased the content of osmotic adjustment substances for ameliorating membrane lipid peroxidation, thereby enhancing plant adaptation to salt stress, especially combined applications of exogenous MT and Ca 2+ . Our results further showed that the combined application of exogenous MT and Ca 2+ resulted in a synergistic effect on increasing salt tolerance in melon seedlings.

  14. Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses.

    PubMed

    Penella, Consuelo; Nebauer, Sergio G; Bautista, Alberto San; López-Galarza, Salvador; Calatayud, Ángeles

    2014-06-15

    nitrate reductase activity in the roots was observed, mainly in plants grafted onto the sensitive rootstocks, as well as the ungrafted plants, and this was associated with the lessened flux to the leaves. This study suggests that PEG-induced water stress can be partially alleviated by using tolerant accessions as rootstocks. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. New guidelines are needed to manage heat stress in elite sports--The Fédération Internationale de Volleyball (FIVB) Heat Stress Monitoring Programme.

    PubMed

    Bahr, Roald; Reeser, Jonathan C

    2012-09-01

    There seems to be a discrepancy between the available heat stress guidelines and the actual risk of heat-related illness among professional beach volleyball players competing under hot and humid conditions. To monitor heat stress and record cases of heat-related medical forfeits on the Swatch FIVB Beach Volleyball World Tour. The FIVB Heat Stress Monitoring Protocol covered events on the FIVB Beach Volleyball World Tour and FIVB Beach Volleyball World Championships during the 2009, 2010 and 2011 seasons (51 events, most of these double gender). The protocol consisted of (1) measuring the Wet Bulb Globe Temperature (WBGT) on centre court prior to the start of every match, and (2) recording any heat-related medical forfeits during the tournament. Data were collected during 48 of 51 events. There were nine events where the peak WBGT exceeded the US Navy Black flag conditions of >32.3°C and an additional two events where the peak WBGT exceeded 31°C, (meeting Red flag conditions.) In two events, the average WBGT equalled at least 31°C. One case of a medical forfeit related to heat stress was recorded over the 3-year surveillance period: an athlete whose fluid balance was compromised from a 3-day bout of acute gastroenteritis. The incidence of significant heat illness among athletes competing on the FIVB Beach Volleyball World Tour appears to be quite low, even though weather conditions frequently result in a WBGT index >32°C. Currently available guidelines appear to be inadequate to fully assess the risk of heat stress and too conservative to inform safety decisions in professional beach volleyball.

  16. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy

    PubMed Central

    Glaser, Jason; Lemery, Jay; Rajagopalan, Balaji; Diaz, Henry F.; García-Trabanino, Ramón; Taduri, Gangadhar; Madero, Magdalena; Amarasinghe, Mala; Abraham, Georgi; Anutrakulchai, Sirirat; Jha, Vivekanand; Stenvinkel, Peter; Roncal-Jimenez, Carlos; Lanaspa, Miguel A.; Correa-Rotter, Ricardo; Sheikh-Hamad, David; Burdmann, Emmanuel A.; Andres-Hernando, Ana; Milagres, Tamara; Weiss, Ilana; Kanbay, Mehmet; Wesseling, Catharina; Sánchez-Lozada, Laura Gabriela

    2016-01-01

    Climate change has led to significant rise of 0.8°C–0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions. PMID:27151892

  17. Identification Approach to Alleviate Effects of Unmeasured Heat Gains for MIMO Building Thermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Jie; Kim, Donghun; Braun, James E.

    It is important to have practical methods for constructing a good mathematical model for a building's thermal system for energy audits, retrofit analysis and advanced building controls, e.g. model predictive control. Identification approaches based on semi-physical model structures are popular in building science for those purposes. However conventional gray box identification approaches applied to thermal networks would fail when significant unmeasured heat gains present in estimation data. Although this situation is very common and practical, there has been little research to tackle this issue in building science. This paper presents an overall identification approach to alleviate influences of unmeasured disturbances,more » and hence to obtain improved gray-box building models. The approach was applied to an existing open space building and the performance is demonstrated.« less

  18. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea).

    PubMed

    Iqbal, Noushina; Umar, Shahid; Khan, Nafees A

    2015-04-15

    Proline content and ethylene production have been shown to be involved in salt tolerance mechanisms in plants. To assess the role of nitrogen (N) in the protection of photosynthesis under salt stress, the effect of N (0, 5, 10, 20 mM) on proline and ethylene was studied in mustard (Brassica juncea). Sufficient N (10 mM) optimized proline production under non-saline conditions through an increase in proline-metabolizing enzymes, leading to osmotic balance and protection of photosynthesis through optimal ethylene production. Excess N (20 mM), in the absence of salt stress, inhibited photosynthesis and caused higher ethylene evolution but lower proline production compared to sufficient N. In contrast, under salt stress with an increased demand for N, excess N optimized ethylene production, which regulates the proline content resulting in recovered photosynthesis. The effect of excess N on photosynthesis under salt stress was further substantiated by the application of the ethylene biosynthesis inhibitor, 1-aminoethoxy vinylglycine (AVG), which inhibited proline production and photosynthesis. Without salt stress, AVG promoted photosynthesis in plants receiving excess N by inhibiting stress ethylene production. The results suggest that a regulatory interaction exists between ethylene, proline and N for salt tolerance. Nitrogen differentially regulates proline production and ethylene formation to alleviate the adverse effect of salinity on photosynthesis in mustard. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. On thermal stress failure of the SNAP-19A RTG heat shield

    NASA Technical Reports Server (NTRS)

    Pitts, W. C.; Anderson, L. A.

    1974-01-01

    Results of a study on thermal stress problems in an amorphous graphite heat shield that is part of the launch-abort protect system for the SNAP-19A radio-isotope thermoelectric generators (RTG) that will be used on the Viking Mars Lander are presended. The first result is from a thermal stress analysis of a full-scale RTG heat source that failed to survive a suborbital entry flight test, possibly due to thermal stress failure. It was calculated that the maximum stress in the heat shield was only 50 percent of the ultimate strength of the material. To provide information on the stress failure criterion used for this calculation, some heat shield specimens were fractured under abort entry conditions in a plasma arc facility. It was found that in regions free of stress concentrations the POCO graphite heat shield material did fracture when the local stress reached the ultimate uniaxial stress of the material.

  20. Subjective heat stress of urban citizens: influencing factors and coping strategies

    NASA Astrophysics Data System (ADS)

    Kunz-Plapp, Tina; Hackenbruch, Julia; Schipper, Hans

    2014-05-01

    Given urbanization trend and a higher probability of heat waves in Europe, heat discomfort or heat stress for the population in cities is a growing concern that is addressed from various perspectives, such as urban micro climate, urban and spatial planning, human health, work performance and economic impacts. This presentation focuses on subjective heat stress experienced by urban citizens. In order to better understand individual subjective heat stress of urban citizens and how different measures to cope with heat stress in everyday life are applied, a questionnaire survey was conducted in Karlsruhe, Germany. Karlsruhe is located in one of the warmest regions in Germany and holds the German temperature record of 40.2°C in August 2003. In 2013, two hot weather periods with continuous heat warnings by the German Weather Service for 7 and 8 days occurred during the last 10 days of July and first 10 days of August 2013 with an inofficial maximum temperature of again 40.2°C on July 27th in Karlsruhe (not taken by the official network of the German Weather Service). The survey data was collected in the six weeks after the heat using an online-questionnaire on the website of the South German Climate Office that was announced via newspapers and social media channels to reach a wide audience in Karlsruhe. The questionnaire was additionally sent as paper version to groups of senior citizens to ensure having enough respondents from this heat sensitive social group in the sample. The 428 respondents aged 17-94 show differences in subjective heat stress experienced at home, at work and during various typical activities in daily routine. They differ also in the measures they used to adjust to and cope with the heat such as drinking more, evading the heat, seeking cooler places, changing daily routines, or use of air condition. Differences in heat stress can be explained by housing type, age, subjective health status, employment, and different coping measures and strategies

  1. Exercise-induced heat stress disrupts the shear-dilatory relationship.

    PubMed

    Ives, Stephen J; Lefferts, Wesley K; Wharton, Margret; Fehling, Patricia C; Smith, Denise L

    2016-12-01

    What is the central question of this study? Although heat stress is known to increase cardiovascular strain, no study, to date, had explored the potential impact of exercise-induced heat stress on vascular function. What is the main finding and its importance? We found that acute exercise tended to reduce flow-mediated dilatation (FMD), owing in part to reduced reactive hyperaemia/shear stimulus; thus, when FMD is normalized to shear no postexercise deficit exists. Exercise-induced heat stress increased reactive hyperaemia, shear rate, coupled with a sustained FMD postexercise, suggests that exercise-induced heat stress increases the amount of shear stimulus to elicit a similar response, indicating reduced vascular responsiveness, or reserve, which might increase cardiovascular susceptibility. Heat stress increases cardiovascular strain and is of particular concern in occupations, such as firefighting, in which individuals are required to perform strenuous work while wearing personal protective equipment. Sudden cardiac events are associated with strenuous activity and are the leading cause of duty-related death among firefighters, accounting for ∼50% of duty-related fatalities per year. Understanding the acute effects of exercise-induced heat stress (EIHS) on vascular endothelial function may provide insight into the mechanisms precipitating acute coronary events in firefighters. The purpose of this study, therefore, was to determine the effects of EIHS on vascular endothelial function. Using a balanced crossover design, 12 healthy men performed 100 min of moderate-intensity, intermittent exercise with and without EIHS (personal protective equipment or cooling vest, respectively). Measurements of flow-mediated dilatation (FMD), reactive hyperaemia and shear rate area under the curve (SR AUC ) were performed pre- and postexercise. During EIHS, core temperature was significantly higher (38 ± 0.1 versus 37 ± 0.1°C). Postexercise FMD tended to be suppressed

  2. Sympathetic activity during passive heat stress in healthy aged humans

    PubMed Central

    Gagnon, Daniel; Schlader, Zachary J; Crandall, Craig G

    2015-01-01

    Abstract Cardiovascular adjustments during heat stress are generally attenuated in healthy aged humans, which could be due to lower increases in sympathetic activity compared to the young. We compared muscle sympathetic nerve activity (MSNA) between 11 young (Y: 28 ± 4 years) and 10 aged (A: 70 ± 5 years) subjects prior to and during passive heating. Furthermore, MSNA responses were compared when a cold pressor test (CPT) and lower body negative pressure (LBNP) were superimposed upon heating. Baseline MSNA burst frequency (Y: 15 ± 4 vs. A: 31 ± 3 bursts min−1, P ≤ 0.01) and burst incidence (Y: 26 ± 8 vs. A: 50 ± 7 bursts (100 cardiac cycles (CC))−1, P ≤ 0.01) were greater in the aged. Heat stress increased core temperature to a similar extent in both groups (Y: +1.2 ± 0.1 vs. A: +1.2 ± 0.0°C, P = 0.99). Absolute levels of MSNA remained greater in the aged during heat stress (burst frequency: Y: 47 ± 6 vs. A: 63 ± 11 bursts min−1, P ≤ 0.01; burst incidence: Y: 48 ± 8 vs. A: 67 ± 9 bursts (100 CC)−1, P ≤ 0.01); however, the increase in both variables was similar between groups (both P ≥ 0.1). The CPT and LBNP further increased MSNA burst frequency and burst incidence, although the magnitude of increase was similar between groups (both P ≥ 0.07). These results suggest that increases in sympathetic activity during heat stress are not attenuated in healthy aged humans. Key points Cardiovascular adjustments to heat stress are attenuated in healthy aged individuals, which could contribute to their greater prevalence of heat-related illnesses and deaths during heat waves. The attenuated cardiovascular adjustments in the aged could be due to lower increases in sympathetic nerve activity during heat stress. We examined muscle sympathetic nerve activity (MSNA) and plasma catecholamine concentrations in healthy young and aged individuals during whole-body passive heat stress. The main finding

  3. Heat stress assessment in artistic glass units

    PubMed Central

    d’AMBROSIO ALFANO, Francesca Romana; PALELLA, Boris Igor; RICCIO, Giuseppe; BARTALINI, Massimo; STRAMBI, Fabio; MALCHAIRE, Jacques

    2017-01-01

    Heat stress in glass industry is mainly studied in large and highly mechanized manufacturing Units. To the contrary, few studies were carried out in small factories specialized in hand-made products. To stress the need of combined objective and medical surveys in these environments, this paper deals with a simultaneous climatic and physiological investigation of working conditions in artistic crystal glass factories in Tuscany (Italy). The microclimatic monitoring, through a continuous survey has been carried out in early spring. The main physiological parameters (metabolic rate, heart rate, tympanic temperature and water loss) were measured over the whole shifts. The results show that, despite the arduousness of the working conditions, the heat stress levels are physiologically tolerable. The predictions made using the PHS model at the Analysis level described in ISO 15265 agree closely to the observed values, validating the use of PHS model in these conditions. This model was then used to analyse what is likely to be the situation during the summer. It is concluded that the heat constraint will be very high and that some steps must be taken from the spring to monitor closely the exposed workers in the summer and take measures to prevent any heat accident. PMID:29109359

  4. Heat stress assessment in artistic glass units.

    PubMed

    d'AMBROSIO Alfano, Francesca Romana; Palella, Boris Igor; Riccio, Giuseppe; Bartalini, Massimo; Strambi, Fabio; Malchaire, Jacques

    2018-04-07

    Heat stress in glass industry is mainly studied in large and highly mechanized manufacturing Units. To the contrary, few studies were carried out in small factories specialized in hand-made products. To stress the need of combined objective and medical surveys in these environments, this paper deals with a simultaneous climatic and physiological investigation of working conditions in artistic crystal glass factories in Tuscany (Italy). The microclimatic monitoring, through a continuous survey has been carried out in early spring. The main physiological parameters (metabolic rate, heart rate, tympanic temperature and water loss) were measured over the whole shifts. The results show that, despite the arduousness of the working conditions, the heat stress levels are physiologically tolerable. The predictions made using the PHS model at the Analysis level described in ISO 15265 agree closely to the observed values, validating the use of PHS model in these conditions. This model was then used to analyse what is likely to be the situation during the summer. It is concluded that the heat constraint will be very high and that some steps must be taken from the spring to monitor closely the exposed workers in the summer and take measures to prevent any heat accident.

  5. Genome-wide analysis of the heat stress response in Zebu (Sahiwal) cattle.

    PubMed

    Mehla, Kusum; Magotra, Ankit; Choudhary, Jyoti; Singh, A K; Mohanty, A K; Upadhyay, R C; Srinivasan, Surendran; Gupta, Pankaj; Choudhary, Neelam; Antony, Bristo; Khan, Farheen

    2014-01-10

    Environmental-induced hyperthermia compromises animal production with drastic economic consequences to global animal agriculture and jeopardizes animal welfare. Heat stress is a major stressor that occurs as a result of an imbalance between heat production within the body and its dissipation and it affects animals at cellular, molecular and ecological levels. The molecular mechanism underlying the physiology of heat stress in the cattle remains undefined. The present study sought to evaluate mRNA expression profiles in the cattle blood in response to heat stress. In this study we report the genes that were differentially expressed in response to heat stress using global scale genome expression technology (Microarray). Four Sahiwal heifers were exposed to 42°C with 90% humidity for 4h followed by normothermia. Gene expression changes include activation of heat shock transcription factor 1 (HSF1), increased expression of heat shock proteins (HSP) and decreased expression and synthesis of other proteins, immune system activation via extracellular secretion of HSP. A cDNA microarray analysis found 140 transcripts to be up-regulated and 77 down-regulated in the cattle blood after heat treatment (P<0.05). But still a comprehensive explanation for the direction of fold change and the specific genes involved in response to acute heat stress still remains to be explored. These findings may provide insights into the underlying mechanism of physiology of heat stress in cattle. Understanding the biology and mechanisms of heat stress is critical to developing approaches to ameliorate current production issues for improving animal performance and agriculture economics. © 2013 Elsevier B.V. All rights reserved.

  6. Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress.

    PubMed

    Baumgard, L H; Rhoads, R P

    2012-06-01

    Heat stress compromises efficient animal production by marginalizing nutrition, management, and genetic selection efforts to maximize performance endpoints. Modifying farm infrastructure has yielded modest success in mitigating heat stress-related losses, yet poor production during the summer remains arguably the costliest issue facing livestock producers. Reduced output (e.g., milk yield and muscle growth) during heat stress was traditionally thought to result from decreased nutrient intake (i.e., a classic biological response shared by all animals during environmental-induced hyperthermia). Our recent observations have begun to challenge this belief and indicate heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independently of nutrient intake or energy balance. Alterations in systemic physiology support a shift in carbohydrate metabolism, evident by increased basal and stimulated circulating insulin concentrations. Perhaps most intriguing given the energetic shortfall of the heat-stressed animal is the apparent lack of basal adipose tissue mobilization coupled with a reduced responsiveness to lipolytic stimuli. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake through coordinated changes in fuel supply and utilization by multiple tissues. Interestingly, the systemic, cellular, and molecular changes appear conserved amongst different species and physiological states. Ultimately, these changes result in the reprioritization of fuel selection during heat stress, which appears to be primarily responsible for reduced ruminant animal productivity during the warm summer months.

  7. Naringin Alleviates Diabetic Kidney Disease through Inhibiting Oxidative Stress and Inflammatory Reaction.

    PubMed

    Chen, Fenqin; Zhang, Ning; Ma, Xiaoyu; Huang, Ting; Shao, Ying; Wu, Can; Wang, Qiuyue

    2015-01-01

    Naringin, a flavanone glycoside extracted from Citrus grandis Osbeck, has a wide range of pharmacological effects. In the present study we aimed at demonstrating the protective effect of naringin against diabetic kidney disease (DKD) and elucidating its possible molecular mechanism underlying. The beneficial effect of naringin was assessed in rats with streptozotocin (STZ)-induced diabetes and high glucose-induced HBZY-1 cells. According to our results, first we found that naringin relieved kidney injury, improved renal function and inhibited collagen formation and renal interstitial fibrosis. Second, we confirmed that naringin restrained oxidative stress by activating Nrf2 antioxidant pathway. Moreover, the results suggested that naringin significantly resisted inflammatory reaction by inhibiting NF- κ B signaling pathway. Taken together, our results demonstrate that naringin effectively alleviates DKD, which provide theoretical basis for naringin clinically used to treatment of DKD.

  8. Naringin Alleviates Diabetic Kidney Disease through Inhibiting Oxidative Stress and Inflammatory Reaction

    PubMed Central

    Chen, Fenqin; Zhang, Ning; Ma, Xiaoyu; Huang, Ting; Shao, Ying; Wu, Can; Wang, Qiuyue

    2015-01-01

    Naringin, a flavanone glycoside extracted from Citrus grandis Osbeck, has a wide range of pharmacological effects. In the present study we aimed at demonstrating the protective effect of naringin against diabetic kidney disease (DKD) and elucidating its possible molecular mechanism underlying. The beneficial effect of naringin was assessed in rats with streptozotocin (STZ)-induced diabetes and high glucose-induced HBZY-1 cells. According to our results, first we found that naringin relieved kidney injury, improved renal function and inhibited collagen formation and renal interstitial fibrosis. Second, we confirmed that naringin restrained oxidative stress by activating Nrf2 antioxidant pathway. Moreover, the results suggested that naringin significantly resisted inflammatory reaction by inhibiting NF- κ B signaling pathway. Taken together, our results demonstrate that naringin effectively alleviates DKD, which provide theoretical basis for naringin clinically used to treatment of DKD. PMID:26619044

  9. Temperature and blood flow distribution in the human leg during passive heat stress

    PubMed Central

    Chiesa, Scott T.; Trangmar, Steven J.

    2016-01-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. PMID:26823344

  10. Alleviating Parenting Stress in Parents with Intellectual Disabilities: A Randomized Controlled Trial of a Video-Feedback Intervention to Promote Positive Parenting

    ERIC Educational Resources Information Center

    Hodes, Marja W.; Meppelder, Marieke; Moor, Marleen; Kef, Sabina; Schuengel, Carlo

    2017-01-01

    Background: Adapted parenting support may alleviate the high levels of parenting stress experienced by many parents with intellectual disabilities. Methods: Parents with mild intellectual disabilities or borderline intellectual functioning were randomized to experimental (n = 43) and control (n = 42) conditions. Parents in both groups received…

  11. Role and regulation of autophagy in heat stress responses of tomato plants

    PubMed Central

    Zhou, Jie; Wang, Jian; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    As sessile organisms, plants are constantly exposed to a wide spectrum of stress conditions such as high temperature, which causes protein misfolding. Misfolded proteins are highly toxic and must be efficiently removed to reduce cellular proteotoxic stress if restoration of native conformations is unsuccessful. Although selective autophagy is known to function in protein quality control by targeting degradation of misfolded and potentially toxic proteins, its role and regulation in heat stress responses have not been analyzed in crop plants. In the present study, we found that heat stress induced expression of autophagy-related (ATG) genes and accumulation of autophagosomes in tomato plants. Virus-induced gene silencing (VIGS) of tomato ATG5 and ATG7 genes resulted in increased sensitivity of tomato plants to heat stress based on both increased development of heat stress symptoms and compromised photosynthetic parameters of heat-stressed leaf tissues. Silencing of tomato homologs for the selective autophagy receptor NBR1, which targets ubiquitinated protein aggregates, also compromised tomato heat tolerance. To better understand the regulation of heat-induced autophagy, we found that silencing of tomato ATG5, ATG7, or NBR1 compromised heat-induced expression of not only the targeted genes but also other autophagy-related genes. Furthermore, we identified two tomato genes encoding proteins highly homologous to Arabidopsis WRKY33 transcription factor, which has been previously shown to interact physically with an autophagy protein. Silencing of tomato WRKY33 genes compromised tomato heat tolerance and reduced heat-induced ATG gene expression and autophagosome accumulation. Based on these results, we propose that heat-induced autophagy in tomato is subject to cooperative regulation by both WRKY33 and ATG proteins and plays a critical role in tomato heat tolerance, mostly likely through selective removal of heat-induced protein aggregates. PMID:24817875

  12. Effects of rumen-protected γ-aminobutyric acid on performance and nutrient digestibility in heat-stressed dairy cows.

    PubMed

    Cheng, J B; Bu, D P; Wang, J Q; Sun, X Z; Pan, L; Zhou, L Y; Liu, W

    2014-09-01

    This experiment was conducted to investigate the effects of rumen-protected γ-aminobutyric acid (GABA) on performance and nutrient digestibility in heat-stressed dairy cows. Sixty Holstein dairy cows (141±15 d in milk, 35.9±4.3kg of milk/d, and parity 2.0±1.1) were randomly assigned to 1 of 4 treatments according to a completely randomized block design. Treatments consisted of 0 (control), 40, 80, or 120mg of true GABA/kg of dry matter (DM). The trial lasted 10wk. The average temperature-humidity indices at 0700, 1400, and 2200h were 78.4, 80.2, and 78.7, respectively. Rectal temperatures decreased linearly at 0700, 1400, and 2200h with increasing GABA concentration. Supplementation of GABA had no effect on respiration rates at any time point. Dry matter intake, energy-corrected milk, 4% fat-corrected milk, and milk fat yield tended to increase linearly with increasing GABA concentration. Supplementation of GABA affected, in a quadratic manner, milk protein and lactose concentrations, and milk protein yield, and the peak values were reached at a dose of 40mg of GABA/kg. Milk urea nitrogen concentration responded quadratically. Total solids content increased linearly with increasing GABA concentration. Supplementation of GABA had no effect on milk yield, lactose production, total solids, milk fat concentration, somatic cell score, or feed efficiency. Apparent total-tract digestibilities of DM, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber were similar among treatments. These results indicate that rumen-protected GABA supplementation to dairy cows can alleviate heat stress by reducing rectal temperature, increase DM intake and milk production, and improve milk composition. The appropriate supplemental GABA level for heat-stressed dairy cows is 40mg/kg of DM. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens.

    PubMed

    Liu, L L; He, J H; Xie, H B; Yang, Y S; Li, J C; Zou, Y

    2014-01-01

    This study investigated the effects of dietary resveratrol at 0, 200, 400, or 600 mg/kg of diet on the performance, immune organ growth index, serum parameters, and expression levels of heat shock protein (Hsp) 27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius, thymus, and spleen of 42-d-old female black-boned chickens exposed to heat stress at 37 ± 2°C for 15 d. The results showed that heat stress reduced daily feed intake and BW gain; decreased serum glutathione (GSH), growth hormone, and insulin-like growth factor-1 levels; and inhibited GSH peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities compared with birds subjected to thermo-neutral circumstances. Chickens that were fed diets supplemented with resveratrol exhibited a linear increase in feed intake and BW gain (P < 0.001); serum GSH, growth hormone, and insulin-like growth factor-1 levels (P ≤ 0.01); and GSH-Px, SOD, and CAT activities (P < 0.001) compared with chickens that were fed diets without resveratrol during heat stress. In contrast, serum malonaldehyde concentrations were decreased (P < 0.001) in the chickens fed a resveratrol-supplemented diet. Heat stress also reduced (P < 0.05) the growth index of the bursa of Fabricus and spleen; however, it had no effect on the growth index of the thymus. The growth index of the bursa of Fabricius and spleen increased (P < 0.05) upon heat stress and coincided with an increase in supplemental resveratrol levels. The expression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen were increased (P < 0.01), but those of Hsp27 and Hsp90 mRNA in thymus were decreased (P < 0.01) under heat stress compared with no heat stress. Resveratrol attenuated the heat stress-induced overexpression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen and increased the low expression of Hsp27 and Hsp90 mRNA in thymus upon heat stress. The results suggest that supplemental resveratrol improves growth performance

  14. On the use of wearable physiological monitors to assess heat strain during occupational heat stress.

    PubMed

    Notley, Sean R; Flouris, Andreas D; Kenny, Glen P

    2018-05-04

    Workers in many industries are required to perform arduous work in high heat stress conditions, which can lead to rapid increases in body temperature that elevate the risk of heat-related illness or even death. Traditionally, effort to mitigate work-related heat injury has been directed to the assessment of environmental heat stress (e.g., wet-bulb globe temperature), rather than the associated physiological strain responses (e.g., heart rate, skin and core temperatures). However, since a workers physiological response to a given heat stress is modified independently by inter-individual factors (e.g., age, sex, chronic disease, others) and intra-individual factors both within (e.g., medication use, fitness, acclimation and hydration state, others) and beyond a workers control (e.g., shift duration, illness, others), it becomes challenging to protect workers on an individual basis from heat-related injury without assessing those physiological responses. Recent advancements in wearable technology have made it possible to monitor one or more physiological indices of heat strain. Nonetheless, information on the utility of the wearable systems available for assessing occupational heat strain is unavailable. This communication is therefore directed at identifying the physiological indices of heat strain that may be quantified in the workplace and evaluating the wearable monitoring systems available for assessing those responses. Finally, emphasis is directed to the barriers associated with implementing these devices to assist in mitigating work-related heat injury. This information is fundamental for protecting worker health and could also be utilized to prevent heat illnesses in vulnerable people during leisure or athletic activities in the heat.

  15. Heat and drought stresses in crops and approaches for their mitigation

    NASA Astrophysics Data System (ADS)

    Lamaoui, Mouna; Jemo, Martin; Datla, Raju; Bekkaoui, Faouzi

    2018-02-01

    Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavourable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.

  16. Heat and Drought Stresses in Crops and Approaches for Their Mitigation.

    PubMed

    Lamaoui, Mouna; Jemo, Martin; Datla, Raju; Bekkaoui, Faouzi

    2018-01-01

    Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.

  17. Recent changes of rice heat stress in Jiangxi province, southeast China.

    PubMed

    Huang, Jin; Zhang, Fangmin; Xue, Yan; Lin, Jie

    2017-04-01

    Around the intensity, frequency, duration, accumulated temperature, and even extremes of high-temperature events, nine selected temperature-related indices were used to explore the space and time changes of rice heat stress in Jiangxi province, southeast China. Several statistical methods including Mann-Kendall trend test (M-K test) and principal component analysis (PCA) were used in this study, and main results were listed as follows: (1) The changes in the intensity indices for high-temperature events were more significant, it was mainly embodied in that more than 80 % of stations had positive trends. (2) R-mode PCA was applied to the multiannual average values of nine selected indices of whole stations, and the results showed that the higher hazard for rice heat stress could be mainly detected in the middle and northeast area of Jiangxi. (3) S-mode PCA was applied to the integrated heat stress index series, and the results demonstrated that Jiangxi could be divided into four sub-regions with different variability in rice heat stress. However, all the sub-regions are dominated by increasing tendencies in rice heat stress since 1990. (4) Further analysis indicated that the western north Pacific sub-tropical high (WPSH) had the significant dominant influence on the rice heat stress in Jiangxi province.

  18. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants.

    PubMed

    Tan, Wei; Meng, Qing wei; Brestic, Marian; Olsovska, Katarina; Yang, Xinghong

    2011-11-15

    Effects of exogenous calcium chloride (CaCl(2)) (20 mM) on photosynthetic gas exchange, photosystem II photochemistry, and the activities of antioxidant enzymes in tobacco plants under high temperature stress (43°C for 2 h) were investigated. Heat stress resulted in a decrease in net photosynthetic rate (P(n)), stomatal conductance as well as the apparent quantum yield (AQY) and carboxylation efficiency (CE) of photosynthesis. Heat stress also caused a decrease of the maximal photochemical efficiency of primary photochemistry (F(v)/F(m)). On the other hand, CaCl(2) application improved P(n), AQY, and CE as well as F(v)/F(m) under high temperature stress. Heat stress reduced the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), whereas the activities of these enzymes either decreased less or increased in plants pretreated with CaCl(2); glutathione reductase (GR) activity increased under high temperature, and it increased more in plants pretreated with CaCl(2). There was an obvious accumulation of H(2)O(2) and O(2)(-) under high temperature, but CaCl(2) application decreased the contents of H(2)O(2) and O(2)(-) under heat stress conditions. Heat stress induced the level of heat shock protein 70 (HSP70), while CaCl(2) pretreatment enhanced it. These results suggested that photosynthesis was improved by CaCl(2) application in heat-stressed plants and such an improvement was associated with an improvement in stomatal conductance and the thermostability of oxygen-evolving complex (OEC), which might be due to less accumulation of reactive oxygen species. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy.

    PubMed

    Glaser, Jason; Lemery, Jay; Rajagopalan, Balaji; Diaz, Henry F; García-Trabanino, Ramón; Taduri, Gangadhar; Madero, Magdalena; Amarasinghe, Mala; Abraham, Georgi; Anutrakulchai, Sirirat; Jha, Vivekanand; Stenvinkel, Peter; Roncal-Jimenez, Carlos; Lanaspa, Miguel A; Correa-Rotter, Ricardo; Sheikh-Hamad, David; Burdmann, Emmanuel A; Andres-Hernando, Ana; Milagres, Tamara; Weiss, Ilana; Kanbay, Mehmet; Wesseling, Catharina; Sánchez-Lozada, Laura Gabriela; Johnson, Richard J

    2016-08-08

    Climate change has led to significant rise of 0.8°C-0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions. Copyright © 2016 by the American Society of Nephrology.

  20. Protective effects of zymosan on heat stress-induced immunosuppression and apoptosis in dairy cows and peripheral blood mononuclear cells.

    PubMed

    Sun, Yuhang; Liu, Jin; Ye, Gengping; Gan, Fang; Hamid, Mohammed; Liao, Shengfa; Huang, Kehe

    2018-06-02

    Dairy cows exposed to heat stress (HS) show decreased performance and immunity, but increased heat shock protein expressions and apoptosis. Zymosan, an extract from yeast cell walls, has been shown to modulate immune responses and defense against oxidative stress. However, few literatures are available about the effects of zymosan on immune responses and other parameters of the dairy cows under HS. Here, both primary peripheral blood mononuclear cell (PBMC) and dairy cow models were established to assess the effects of zymosan on performance, immunity, heat shock protein, and apoptosis-related gene expressions of dairy cows under HS. In vitro study showed that proliferation, IL-2 production, and Bcl-2/Bax-α ratio of cow primary PBMC were reduced, whereas hsp70 mRNA and protein expressions, as well as Annexin V-bing, were increased when PBMCs were exposed to heat. In contrast, zymosan significantly reversed these above changes induced by the HS. In the in vivo study, 40 Holstein dairy cows were randomly selected and assigned into zymosan group (supplemental zymosan; n = 20) and control group (no supplemental zymosan; n = 20). The results showed that zymosan improved significantly the dry matter intake and milk yield, increased IgA, IL-2, and tumor necrosis factor-α (TNF-α) contents in sera, as well as hepatic Bcl-2/Bax-α ratio, but decreased respiration rate and hepatic hsp70 expressions in the dairy cows under HS. Taken together, zymosan could alleviate HS-induced immunosuppression and apoptosis and improve significantly the productive performance and immunity of dairy cows under HS.

  1. Managing heat and immune stress in athletes with evidence-based strategies.

    PubMed

    Pyne, David B; Guy, Joshua H; Edwards, Andrew M

    2014-09-01

    Heat and immune stress can affect athletes in a wide range of sports and environmental conditions. The classical thermoregulatory model of heat stress has been well characterized, as has a wide range of practical strategies largely centered on cooling and heat-acclimation training. In the last decade evidence has emerged of an inflammatory pathway that can also contribute to heat stress. Studies are now addressing the complex and dynamic interplay between hyperthermia, the coagulation cascade, and a systemic inflammatory response occurring after transient damage to the gastrointestinal tract. Damage to the intestinal mucosal membrane increases permeability, resulting in leakage of endotoxins into the circulation. Practical strategies that target both thermoregulatory and inflammatory causes of heat stress include precooling; short-term heat-acclimation training; nutritional countermeasures including hydration, energy replacement, and probiotic supplementation; pacing strategies during events; and postevent cooling measures. Cooperation between international, national, and local sporting organizations is required to ensure that heat-management policies and strategies are implemented effectively to promote athletes' well-being and performance.

  2. Heat stress mortality and desired adaptation responses of healthcare system in Poland

    NASA Astrophysics Data System (ADS)

    Błażejczyk, Anna; Błażejczyk, Krzysztof; Baranowski, Jarosław; Kuchcik, Magdalena

    2018-03-01

    Heat stress is one of the environmental factors influencing the health of individuals and the wider population. There is a large body of research to document significant increases in mortality and morbidity during heat waves all over the world. This paper presents key results of research dealing with heat-related mortality (HRM) in various cities in Poland which cover about 25% of the country's population. Daily mortality and weather data reports for the years 1991-2000 were used. The intensity of heat stress was assessed by the universal thermal climate index (UTCI). The research considers also the projections of future bioclimate to the end of twenty-first century. Brain storming discussions were applied to find necessary adaptation strategies of healthcare system (HCS) in Poland, to minimise negative effects of heat stress. In general, in days with strong and very strong heat stress, ones must expect increase in mortality (in relation to no thermal stress days) of 12 and 47%, respectively. Because of projected rise in global temperature and heat stress frequency, we must expect significant increase in HRM to the end of twenty-first century of even 165% in comparison to present days. The results of research show necessity of urgent implementation of adaptation strategies to heat in HCS.

  3. Thermotolerance and responses to short duration heat stress in tropical and temperate species

    NASA Astrophysics Data System (ADS)

    Marias, D.; Meinzer, F. C.; Still, C. J.

    2017-12-01

    Temperature and heat waves are predicted to increase throughout the 21st century in both tropical and temperate regions. Tropical species are vulnerable to heat stress because of the higher radiation load and the narrower distribution of temperatures typically experienced compared to extratropical species. Germinant seedlings are also vulnerable to heat stress because they inhabit the boundary layer close to the soil surface where intense heating occurs. We quantified the effect of leaf age and heat stress duration (45 min, 90 min) on leaf thermotolerance and whole plant physiological responses to heat stress in Coffea arabica (COAR) saplings. We also evaluated leaf thermotolerance and whole plant responses to heat stress of seedlings in two populations each of Pinus ponderosa (PIPO) and Pseudotsuga menziesii (PSME) from contrasting climates. Thermotolerance of detached leaves/needles was evaluated using chlorophyll fluorescence (FV/FM, FO) and electrolyte leakage. After exposure of whole plants to a simulated heat wave in a growth chamber, we monitored FV/FM, photosynthesis (A), stomatal conductance (gs), non-structural carbohydrates (NSCs), and carbon isotope ratios (δ13C). In COAR, thermotolerance and rate of recovery increased with leaf age. Following heat treatment, reductions in A and gs led to reduced intrinsic water use efficiency (iWUE) and increased leaf temperatures. NSC results suggested that starch was converted to sugars for recovery from heat stress and phloem transport was inhibited. Plants failed to flower in both heat stress duration treatments. In PIPO and PSME, heat treatment induced significant reductions in FV/FM and A. NSC results suggested that starch was converted to glucose + fructose to aid recovery from heat-induced damage. Populations from drier sites had greater δ13C values than those from wetter sites, consistent with higher iWUE of populations from drier climates. Thermotolerance and heat stress responses appeared to be

  4. Exploring Heat Stress Relief Measures among the Australian Labour Force

    PubMed Central

    Zander, Kerstin K.; Mathew, Supriya; Garnett, Stephen T.

    2018-01-01

    Australia experiences frequent heat waves and generally high average temperatures throughout the continent with substantial impacts on human health and the economy. People adapt to heat by adopting various relief measures in their daily lives including changing their behaviour. Many labour intensive outdoor industries implement standards for heat stress management for their workforce. However, little is known about how people cope with heat at their workplaces apart from studies targeting some specific industries where labourers are exposed to extreme heat. Here, we analysed responses from 1719 people in the Australian labour force to self-reported heat stress and associated coping mechanisms. Three quarters of respondents experienced heat stress at their workplace with fatigue and headache being the two most frequently stated symptoms. Almost all of those who were affected by heat would hydrate (88%), 67% would cool, and 44% would rest as a strategy for coping with heat. About 10% intended to change their jobs because of heat stress in the workplace. We found differences in heat relief measures across gender, education, health, level of physical intensity of job, and time spent working outside. People working in jobs that were not very demanding physically were more likely to choose cooling down as a relief measure, while those in labour intensive jobs and jobs that required considerable time outside were more likely to rest. This has potential consequences for their productivity and work schedules. Heat affects work in Australia in many types of industry with impact dependent on workforce acclimatisation, yet public awareness and work relief plans are often limited to outdoor and labour intensive industries. Industries and various levels of government in all sectors need to implement standards for heat management specific to climate zones to help people cope better with high temperatures as well as plan strategies in anticipation of projected temperature

  5. Exploring Heat Stress Relief Measures among the Australian Labour Force.

    PubMed

    Zander, Kerstin K; Mathew, Supriya; Garnett, Stephen T

    2018-02-26

    Australia experiences frequent heat waves and generally high average temperatures throughout the continent with substantial impacts on human health and the economy. People adapt to heat by adopting various relief measures in their daily lives including changing their behaviour. Many labour intensive outdoor industries implement standards for heat stress management for their workforce. However, little is known about how people cope with heat at their workplaces apart from studies targeting some specific industries where labourers are exposed to extreme heat. Here, we analysed responses from 1719 people in the Australian labour force to self-reported heat stress and associated coping mechanisms. Three quarters of respondents experienced heat stress at their workplace with fatigue and headache being the two most frequently stated symptoms. Almost all of those who were affected by heat would hydrate (88%), 67% would cool, and 44% would rest as a strategy for coping with heat. About 10% intended to change their jobs because of heat stress in the workplace. We found differences in heat relief measures across gender, education, health, level of physical intensity of job, and time spent working outside. People working in jobs that were not very demanding physically were more likely to choose cooling down as a relief measure, while those in labour intensive jobs and jobs that required considerable time outside were more likely to rest. This has potential consequences for their productivity and work schedules. Heat affects work in Australia in many types of industry with impact dependent on workforce acclimatisation, yet public awareness and work relief plans are often limited to outdoor and labour intensive industries. Industries and various levels of government in all sectors need to implement standards for heat management specific to climate zones to help people cope better with high temperatures as well as plan strategies in anticipation of projected temperature

  6. Temperature and blood flow distribution in the human leg during passive heat stress.

    PubMed

    Chiesa, Scott T; Trangmar, Steven J; González-Alonso, José

    2016-05-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. Copyright © 2016 the American Physiological Society.

  7. Development of accumulated heat stress index based on time-weighted function

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Sun; Byun, Hi-Ryong; Kim, Do-Woo

    2016-05-01

    Heat stress accumulates in the human body when a person is exposed to a thermal condition for a long time. Considering this fact, we have defined the accumulated heat stress (AH) and have developed the accumulated heat stress index (AHI) to quantify the strength of heat stress. AH represents the heat stress accumulated in a 72-h period calculated by the use of a time-weighted function, and the AHI is a standardized index developed by the use of an equiprobability transformation (from a fitted Weibull distribution to the standard normal distribution). To verify the advantage offered by the AHI, it was compared with four thermal indices the humidex, the heat index, the wet-bulb globe temperature, and the perceived temperature used by national governments. AH and the AHI were found to provide better detection of thermal danger and were more useful than other indices. In particular, AH and the AHI detect deaths that were caused not only by extremely hot and humid weather, but also by the persistence of moderately hot and humid weather (for example, consecutive daily maximum temperatures of 28-32 °C), which the other indices fail to detect.

  8. Biophysical aspects of human thermoregulation during heat stress.

    PubMed

    Cramer, Matthew N; Jay, Ollie

    2016-04-01

    Humans maintain a relatively constant core temperature through the dynamic balance between endogenous heat production and heat dissipation to the surrounding environment. In response to metabolic or environmental disturbances to heat balance, the autonomic nervous system initiates cutaneous vasodilation and eccrine sweating to facilitate higher rates of dry (primarily convection and radiation) and evaporative transfer from the body surface; however, absolute heat losses are ultimately governed by the properties of the skin and the environment. Over the duration of a heat exposure, the cumulative imbalance between heat production and heat dissipation leads to body heat storage, but the consequent change in core temperature, which has implications for health and safety in occupational and athletic settings particularly among certain clinical populations, involves a complex interaction between changes in body heat content and the body's morphological characteristics (mass, surface area, and tissue composition) that collectively determine the body's thermal inertia. The aim of this review is to highlight the biophysical aspects of human core temperature regulation by outlining the principles of human energy exchange and examining the influence of body morphology during exercise and environmental heat stress. An understanding of the biophysical factors influencing core temperature will enable researchers and practitioners to better identify and treat individuals/populations most vulnerable to heat illness and injury during exercise and extreme heat events. Further, appropriate guidelines may be developed to optimize health, safety, and work performance during heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effects of late-gestation heat stress on immunity and performance of calves.

    PubMed

    Dahl, G E; Tao, S; Monteiro, A P A

    2016-04-01

    Lactating cows that experience heat stress will have reduced dry matter intake and milk yield and shift metabolism, which ultimately reduces the efficiency of milk production. Dry cows that are heat stressed similarly experience lower intake, reduced mammary growth, and compromised immune function that ultimately results in a poorer transition into lactation and lower milk yield in the next lactation. A recent focus in our laboratory is on the effects of late gestation, in utero heat stress on calf survival and performance. We have completed a series of studies to examine preweaning growth and health, and later reproductive and productive responses, in an attempt to quantify acute and persistent effects of in utero heat strain. Late gestation heat stress results in calves with lower body weight at birth, shorter stature at weaning, and failure to achieve the same weight or height at 12 mo of age observed in calves from dams that are cooled when dry. A portion of the reduced growth may result from the lower immune status observed in calves heat stressed in utero, which begins with poorer apparent efficiency of immunoglobulin absorption and extends to lower survival rates through puberty. Heat-stressed calves, however, have permanent shifts in metabolism that are consistent with greater peripheral accumulation of energy and less lean growth relative to those from cooled dams. Comparing reproductive performance in calves heat stressed versus those cooled in utero, we observe that the cooled heifers require fewer services to attain pregnancy and become pregnant at an earlier age. Tracking the milk production in calves that were heat stressed in utero versus those cooled in late gestation revealed a significant reduction of yield in the first lactation, approximately 5 kg/d through 35 wk of lactation, despite similar body weight and condition score at calving. These observations indicate that a relatively brief period of heat stress in late gestation dramatically alters

  10. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  11. A comparison of THI indices leads to a sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity stress.

    PubMed

    Berman, A; Horovitz, Talia; Kaim, M; Gacitua, H

    2016-10-01

    The combined temperature-humidity heat stress is estimated in farm animals by indices derived of an index based on human thermal comfort sensation. The latter index consists of temperature and humidity measures that sum to form the temperature-humidity index (THI). The hitherto unknown relative contribution of temperature and humidity to the THI was examined. A temperature-humidity data set (temperature 20-42 °C and relative humidity 10-70 %) was used to assess by regression procedures the relative weights of temperature and humidity in the variance of THI values produced by six commonly used heat stress indices. The temperature (Ta) effect was predominant (0.82-0.95 of variance) and humidity accounted for only 0.05 to 0.12 of THI variance, half of the variance encountered in animal responses to variable humidity heat stress. Significant difference in THI values was found between indices in the relative weights of temperature and humidity. As in THI indices, temperature and humidity are expressed in different physical units, their sum has no physical attributes, and empirical evaluations assess THI relation to animal responses. A sensible heat THI was created, in which at higher temperatures humidity reaches 0.25 of sensible heat, similarly to evaporative heat loss span in heat stressed animals. It relates to ambient temperature-humidity similarly to present THI; its values are similar to other THI but greater at higher humidity. In warm conditions, mean animal responses are similar in both indices. The higher sensitivity to humidity makes this index preferable for warm-humid conditions.

  12. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.

    PubMed

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.

  13. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?

    PubMed

    Esperk, T; Kjaersgaard, A; Walters, R J; Berger, D; Blanckenhorn, W U

    2016-05-01

    Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to non-acclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and

  14. Electroacupuncture alleviates stress-induced visceral hypersensitivity through an opioid system in rats

    PubMed Central

    Zhou, Yuan-Yuan; Wanner, Natalie J; Xiao, Ying; Shi, Xuan-Zheng; Jiang, Xing-Hong; Gu, Jian-Guo; Xu, Guang-Yin

    2012-01-01

    AIM: To investigate whether stress-induced visceral hypersensitivity could be alleviated by electroacupuncture (EA) and whether EA effect was mediated by endogenous opiates. METHODS: Six to nine week-old male Sprague-Dawley rats were used in this study. Visceral hypersensitivity was induced by a 9-d heterotypic intermittent stress (HIS) protocol composed of 3 randomly stressors, which included cold restraint stress at 4 °C for 45 min, water avoidance stress for 60 min, and forced swimming stress for 20 min, in adult male rats. The extent of visceral hypersensitivity was quantified by electromyography or by abdominal withdrawal reflex (AWR) scores of colorectal distension at different distention pressures (20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg). AWR scores either 0, 1, 2, 3 or 4 were obtained by a blinded observer. EA or sham EA was performed at classical acupoint ST-36 (Zu-San-Li) or BL-43 (Gao-Huang) in both hindlimbs of rats for 30 min. Naloxone (NLX) or NLX methiodide (m-NLX) was administered intraperitoneally to HIS rats in some experiments. RESULTS: HIS rats displayed an increased sensitivity to colorectal distention, which started from 6 h (the first measurement), maintained for 24 h, and AWR scores returned to basal levels at 48 h and 7 d after HIS compared to pre-HIS baseline at different distention pressures. The AWR scores before HIS were 0.6 ± 0.2, 1.3 ± 0.2, 1.9 ± 0.2 and 2.3 ± 0.2 for 20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg distention pressures, respectively. Six hours after termination of the last stressor, the AWR scores were 2.0 ± 0.1, 2.5 ± 0.1, 2.8 ± 0.2 and 3.5 ± 0.2 for 20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg distention pressures, respectively. EA given at classical acupoint ST-36 in both hindlimbs for 30 min significantly attenuated the hypersensitive responses to colorectal distention in HIS rats compared with sham EA treatment [AWRs at 20 mmHg: 2.0 ± 0.2 vs 0.7 ± 0.1, P = 4.23 711 E-4; AWRs at 40 mmHg: 2.6 ± 0.2 vs 1.5 ± 0.2, P

  15. Heat stress and carbon monoxide exposure during C-130 vehicle transportation.

    PubMed

    Dor, Alex; Pokroy, Russell; Goldstein, Liav; Barenboim, Erez; Zilberberg, Michal

    2005-04-01

    Running gasoline engines in a confined space causes heat stress and carbon monoxide (CO) buildup. Loading the C-130 aircraft by driving the vehicles onto the platform may expose the C-130 cabin crew to these environmental hazards. This study was aimed at investigating heat stress and CO exposure in the C-130 cabin during vehicle airlift. There were four summer flights (two two-vehicle, two three-vehicle; 2 d, 2 nights) studied. The cabin heat stress index (wet bulb globe temperature, WBGT) and CO levels before vehicle loading (control) were compared with those after vehicle loading. Furthermore, two- and three-vehicle transportations, as well as day and night transportations, were compared. Ground temperature ranged from 18.2 to 33.4 degrees C. Mean heat stress index was higher in vehicle transportation than control flights, the greatest difference being 5.9 degrees C (p < 0.001). The WBGT levels exceeded the recommended exposure limit in 28 of 38 measurements during day flights. The cabin heat stress increased sharply with vehicle loading, and continued to increase for a range of 60-140 min after loading. Elevated cabin CO levels were found in three-vehicle flights as compared with two, and in night flights as compared with day. In hot climates, C-130 vehicle transportation may exacerbate heat stress. The in-flight heat stress can be predicted by the ambient temperature, duration of the vehicle transportation, and number of transported vehicles. The cabin CO level is related to the number of transported vehicles. We recommend the use of effective environmental control systems during C-130 vehicle transportation in hot climates.

  16. Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress.

    PubMed

    Liu, Guo-Tian; Wang, Jun-Fang; Cramer, Grant; Dai, Zhan-Wu; Duan, Wei; Xu, Hong-Guo; Wu, Ben-Hong; Fan, Pei-Ge; Wang, Li-Jun; Li, Shao-Hua

    2012-09-28

    Grapes are a major fruit crop around the world. Heat stress can significantly reduce grape yield and quality. Changes at the molecular level in response to heat stress and subsequent recovery are poorly understood. To elucidate the effect of heat stress and subsequent recovery on expression of genes by grape leaves representing the classic heat stress response and thermotolerance mechanisms, transcript abundance of grape (Vitis vinifera L.) leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts), followed by quantitative Real-Time PCR validation for some transcript profiles. We found that about 8% of the total probe sets were responsive to heat stress and/or to subsequent recovery in grape leaves. The heat stress and recovery responses were characterized by different transcriptional changes. The number of heat stress-regulated genes was almost twice the number of recovery-regulated genes. The responsive genes identified in this study belong to a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism, transcription factors, signal transduction, and development. We have identified some common genes and heat shock factors (HSFs) that were modulated differentially by heat stress and recovery. Most HSP genes were upregulated by heat stress but were downregulated by the recovery. On the other hand, some specific HSP genes or HSFs were uniquely responsive to heat stress or recovery. The effect of heat stress and recovery on grape appears to be associated with multiple processes and mechanisms including stress-related genes, transcription factors, and metabolism. Heat stress and recovery elicited common up- or downregulated genes as well as unique sets of responsive genes. Moreover, some genes were regulated in opposite directions by heat stress and recovery. The results indicated HSPs, especially small HSPs

  17. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants.

    PubMed

    Islam, Faisal; Yasmeen, Tahira; Riaz, Muhammad; Arif, Muhammad Saleem; Ali, Shafaqat; Raza, Syed Hammad

    2014-12-01

    Plant-associated bacteria can have beneficial effects on the growth and health of their host. However, the role of plant growth promoting bacteria (PGPR), under metal stress, has not been widely investigated. The present study investigated the possible mandatory role of plant growth promoting rhizobacteria in protecting plants from zinc (Zn) toxicity. The exposure of maize plants to 50µM zinc inhibited biomass production, decreased chlorophyll, total soluble protein and strongly increased accumulation of Zn in both root and shoot. Similarly, Zn enhanced hydrogen peroxide, electrolyte leakage and lipid peroxidation as indicated by malondaldehyde accumulation. Pre-soaking with novel Zn tolerant bacterial strain Proteus mirabilis (ZK1) isolated zinc (Zn) contaminated soil, alleviated the negative effect of Zn on growth and led to a decrease in oxidative injuries caused by Zn. Furthermore, strain ZK1 significantly enhanced the activities of catalase, guaiacol peroxidase, superoxide dismutase and ascorbic acid but lowered the Proline accumulation in Zn stressed plants. The results suggested that the inoculation of Zea mays plants with P. mirabilis during an earlier growth period could be related to its plant growth promoting activities and avoidance of cumulative damage upon exposure to Zn, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Cows exposed to heat stress during fetal life exhibit improved thermal tolerance.

    PubMed

    Ahmed, B M S; Younas, U; Asar, T O; Dikmen, S; Hansen, P J; Dahl, G E

    2017-08-01

    Maternal heat stress during late gestation affects calf function during postnatal life. The objective of the present study was to evaluate whether calves that experience heat stress in utero have altered thermoregulatory responses to acute heat stress later in life. Specifically, the hypothesis was that heat stress in utero would improve the response to acute heat stress at maturity. Females were born to dams exposed to heat stress or cooled during late gestation preceding their birth. All animals were raised postnatally under identical management. Twelve lactating Holstein cows that were exposed to in utero heat stress (HT) and 12 that were exposed to in utero control (CON) were used. A heat stress challenge was conducted in 3 blocks using 4 HT and 4 CON cows matched according to milk yield, stage of lactation, and parity. Each challenge consisted of transfer from a barn with shade and evaporative cooling to one with shade but no additional cooling for 48 h. The challenge was replicated twice for each block. Sweating rate, respiration rate, rectal temperature (RT), and skin temperature were measured on each cow at 0900, 1100, 1300, 1500, and 1700 h for 2 consecutive days. Mean ambient temperature across 6 challenge days was 26.15 ± 4.75°C. Tendencies for differences at 1700 h were observed between treatments for RT (HT: 39.5 ± 0.1; CON: 39.6 ± 0.1°C; = 0.065), however, there was no difference in respiration rate (HT: 77.6 ± 1.6; CON: 79.5 ± 1.6 bpm; = 0.85). Sweating rate for shaved skin (HT: 29.4 ± 2.0; CON: 36.0 ± 2.0 g/mh; = 0.057) and for non-shaved skin (HT: 22.5 ± 1.5; CON: 29.2 ± 1.2 g/mh; = 0.01) differed between groups. However, there was no effect on skin temperature at the shaved location (HT: 36.2 ± 0.2; CON: 36.0 ± 0.2°C; = 0.81), but there was a tendency for differences for the non-shaved area (HT: 35.4 ± 0.2; CON: 34.9 ± 0.2°C; = 0.097). Cows that underwent in utero heat stress had greater skin temperature at 1700 h vs. in utero

  19. Coptidis Rhizoma Prevents Heat Stress-Induced Brain Damage and Cognitive Impairment in Mice

    PubMed Central

    Moon, Minho; Huh, Eugene; Song, Eun Ji; Hwang, Deok-Sang; Lee, Tae Hee; Oh, Myung Sook

    2017-01-01

    Heat stress conditions lead to neuroinflammation, neuronal death, and memory loss in animals. Coptidis Rhizoma (CR) exhibits potent fever-reducing effects and has been used as an important traditional medicinal herb for treating fever. However, to date, the effects of antipyretic CR on heat-induced brain damages have not been investigated. In this study, CR significantly reduced the elevation of ear and rectal temperatures after exposure to heat in mice. Additionally, CR attenuated hyperthermia-induced stress responses, such as release of cortisol into the blood, and upregulation of heat shock protein and c-Fos in the hypothalamus and hippocampus of mice. The administration of CR inhibited gliosis and neuronal loss induced by thermal stress in the hippocampal CA3 region. Treatment with CR also reduced the heat stress-induced expression of nuclear factor kappa β, tumor necrosis factor-α, and interleukin-1β (IL-1β) in the hippocampus. Moreover, CR significantly decreased proinflammatory mediators such as IL-9 and IL-13 in the heat-stressed hypothalamus. Furthermore, CR attenuated cognitive dysfunction triggered by thermal stress. These results indicate that CR protects the brain against heat stress-mediated brain damage via amelioration of hyperthermia and neuroinflammation in mice, suggesting that fever-reducing CR can attenuate thermal stress-induced neuropathology. PMID:28946610

  20. Seasonal heat stress affects adipose tissue proteome toward enrichment of the Nrf2-mediated oxidative stress response in late-pregnant dairy cows.

    PubMed

    Zachut, M; Kra, G; Livshitz, L; Portnick, Y; Yakoby, S; Friedlander, G; Levin, Y

    2017-03-31

    Environmental heat stress and metabolic stress during transition from late gestation to lactation are main factors limiting production in dairy cattle, and there is a complex interaction between them. Many proteins expressed in adipose tissue are involved in metabolic responses to stress. We aimed to investigate the effects of seasonal heat stress on adipose proteome in late-pregnant cows, and to identify biomarkers of heat stress. Late pregnant cows during summer heat stress (S, n=18), or during the winter season (W, n=12) were used. Subcutaneous adipose tissue biopsies sampled 14days prepartum from S (n=10) and W (n=8) were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nano-LC-MS/MS). Plasma concentrations of malondialdehyde and cortisol were higher in S than in W cows. Proteomic analysis revealed that 107/1495 proteins were differentially abundant in S compared to W (P<0.05 and fold change of at least ±1.5). Top canonical pathways in S vs. W adipose were Nrf2-mediated oxidative stress response, acute-phase response, and FXR/RXR and LXR/RXR activation. Novel biomarkers of heat stress in adipose tissue were found. These findings indicate that seasonal heat stress has a unique effect on adipose tissue in late-pregnant cows. This work shows that seasonal heat stress increases plasma concentrations of the oxidative stress marker malondialdehyde and cortisol in transition dairy cows. As many proteins expressed in the adipose tissue are involved in metabolic responses to stress, we investigated the effects of heat stress on the proteome of adipose tissue from late-pregnant cows during summer or winter seasons. We demonstrated that heat stress enriches several stress-related pathways, such as the Nrf2-mediated oxidative stress response and the acute-phase response in adipose tissues. Thus, environmental heat stress has a unique effect on adipose tissue in late-pregnant cows, as part of the regulatory adaptations to chronic heat load during

  1. Pectinase-treated Panax ginseng protects heat stress-induced testicular damage in rats.

    PubMed

    Kim, Min Kyoung; Cha, Kyu-Min; Hwang, Seock-Yeon; Park, Un-Kyu; Seo, Seok Kyo; Lee, Sang-Ho; Jeong, Min-Sik; Cho, SiHyun; Kopalli, Spandana Rajendra; Kim, Si-Kwan

    2017-06-01

    Testicular hyperthermia is well studied to cause impaired spermatogenesis. In the present study, the protective effect of enzymatically modified (pectinase-treated) Panax ginseng (GINST) against intermittent sub-chronic heat stress-induced testicular damage in rats was investigated. Male Sprague-Dawley rats were divided into four groups: normal control (NC), heat-stressed control (HC), heat-stressed plus GINST-100 mg/kg/day (HG100) and heat-stressed plus GINST-200 mg/kg/day (HG200) treatment groups. GINST (100 and 200 mg/kg/day) was mixed separately with a regular pellet diet and was administered orally for 8 weeks starting from 1 week before heat exposure. Parameters such as organ weight, blood chemistry, sperm kinetic values, expression of antioxidant enzymes, spermatogenesis molecules and sex hormone receptors levels were measured. Data revealed that kidney and epididymis weight were significantly ( P  < 0.05) decreased with heat stress and recovered by GINST treatment. Further, the altered levels of blood chemistry panels and sperm kinetic values in heat stress-induced rats were attenuated when GINST was administered ( P  < 0.05). Furthermore, the expression levels of antioxidant-related enzymes (GSTM5 and GPX4), spermatogenesis-related proteins (CREB1 and INHA) and sex hormone receptors (androgen receptor, luteinizing hormone receptor and follicle-stimulating hormone receptor) were reduced by heat stress; however, GINST treatment effectively ameliorated these changes. In conclusion, GINST was effective in reducing heat-induced damage in various male fertility factors in vivo and has considerable potential to be developed as a useful supplement in improving male fertility. © 2017 Society for Reproduction and Fertility.

  2. Açaí (Euterpe oleracea Mart.) attenuates alcohol-induced liver injury in rats by alleviating oxidative stress and inflammatory response.

    PubMed

    Zhou, Jianyu; Zhang, Jianjun; Wang, Chun; Qu, Shengsheng; Zhu, Yingli; Yang, Zhihui; Wang, Linyuan

    2018-01-01

    The present study aimed to investigate the therapeutic effects of Euterpe oleracea Mart. (EO) on alcoholic liver diseases (ALD). A total of 30 Wistar rats were randomly divided into three groups (10 rats per group), including alcohol group (alcohol intake), EO group (alcohol + EO puree intake) and control group (distilled water intake). The activity of superoxide dismutase (SOD) and alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and the levels of cholesterol (CHO), triglyceride (TG), malondialdehyde (MDA) and glutathione (GSH) in the serum as well as the liver tissue levels of interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) were measured. Histopathological changes in liver tissues were observed by hematoxylin and eosin staining. Reverse-transcription quantitative PCR analysis was performed for detecting the expression of nuclear factor (NF)-κB and CD68. The results indicated that EO intake significantly decreased ALT, AST, ALP, TG and CHO as well as the hepatic index in alcohol-treated rats. In addition, EO treatment relieved alcohol-induced oxidative stress by decreasing the levels of MDA and TG, and increasing the activity of SOD and GSH levels. In addition, the expression of TNF-α, TGF-β, IL-8, NF-κB and CD-68 in the liver were decreased by EO treatment. Furthermore, EO intake alleviated the histopathological liver damage, including severe steatosis and abundant infiltrated inflammatory cells. In conclusion, EO alleviated alcohol-induced liver injury in rats by alleviating oxidative stress and inflammatory response.

  3. Açaí (Euterpe oleracea Mart.) attenuates alcohol-induced liver injury in rats by alleviating oxidative stress and inflammatory response

    PubMed Central

    Zhou, Jianyu; Zhang, Jianjun; Wang, Chun; Qu, Shengsheng; Zhu, Yingli; Yang, Zhihui; Wang, Linyuan

    2018-01-01

    The present study aimed to investigate the therapeutic effects of Euterpe oleracea Mart. (EO) on alcoholic liver diseases (ALD). A total of 30 Wistar rats were randomly divided into three groups (10 rats per group), including alcohol group (alcohol intake), EO group (alcohol + EO puree intake) and control group (distilled water intake). The activity of superoxide dismutase (SOD) and alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and the levels of cholesterol (CHO), triglyceride (TG), malondialdehyde (MDA) and glutathione (GSH) in the serum as well as the liver tissue levels of interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) were measured. Histopathological changes in liver tissues were observed by hematoxylin and eosin staining. Reverse-transcription quantitative PCR analysis was performed for detecting the expression of nuclear factor (NF)-κB and CD68. The results indicated that EO intake significantly decreased ALT, AST, ALP, TG and CHO as well as the hepatic index in alcohol-treated rats. In addition, EO treatment relieved alcohol-induced oxidative stress by decreasing the levels of MDA and TG, and increasing the activity of SOD and GSH levels. In addition, the expression of TNF-α, TGF-β, IL-8, NF-κB and CD-68 in the liver were decreased by EO treatment. Furthermore, EO intake alleviated the histopathological liver damage, including severe steatosis and abundant infiltrated inflammatory cells. In conclusion, EO alleviated alcohol-induced liver injury in rats by alleviating oxidative stress and inflammatory response. PMID:29399060

  4. The Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue.

    PubMed

    Zhang, Liang; Hu, Tao; Amombo, Erick; Wang, Guangyang; Xie, Yan; Fu, Jinmin

    2017-01-01

    Tall fescue ( Festuca arundinacea Schreb) is a typical cool-season grass that is widely used in turf and pasture. However, high temperature as an abiotic stress seriously affects its utilization. The objective of this study was to explore the effect of spermidine (Spd) on heat stress response of tall fescue. The samples were exposed to 22°C (normal condition) or 44°C (heat stress) for 4 h. The results showed that exogenous Spd partially improved the quality of tall fescue leaves under normal temperature conditions. Nevertheless, after heat stress treatment, exogenous Spd significantly decreased the electrolyte leakage of tall fescue leaves. Spd also profoundly reduced the H 2 O 2 and O 2 ⋅- content and increased antioxidant enzymes activities. In addition, PAs can also regulate antioxidant enzymes activities including SOD, POD, and APX which could help to scavenge ROS. Moreover, application of Spd could also remarkably increase the chlorophyll content and had a positive effect on the chlorophyll α fluorescence transients under high temperature. The Spd reagent enhanced the performance of photosystem II (PSII) as observed by the JIP-test. Under heat stress, the Spd profoundly improved the partial potentials at the steps of energy bifurcations (PI ABS and PI total ) and the quantum yields and efficiencies (φP 0 , δR 0 , φR 0 , and γRC). Exogenous Spd could also reduce the specific energy fluxes per Q A - reducing PSII reaction center (RC) (TP 0 /RC and ET 0 /RC). Additionally, exogenous Spd improved the expression level of psbA and psbB , which encoded the proteins of PSII core reaction center complex. We infer that PAs can stabilize the structure of nucleic acids and protect RNA from the degradation of ribonuclease. In brief, our study indicates that exogenous Spd enhances the heat tolerance of tall fescue by maintaining cell membrane stability, increasing antioxidant enzymes activities, improving PSII, and relevant gene expression.

  5. Active and passive heat stress similarly compromise tolerance to a simulated hemorrhagic challenge.

    PubMed

    Pearson, J; Lucas, R A I; Schlader, Z J; Zhao, J; Gagnon, D; Crandall, C G

    2014-10-01

    Passive heat stress increases core and skin temperatures and reduces tolerance to simulated hemorrhage (lower body negative pressure; LBNP). We tested whether exercise-induced heat stress reduces LBNP tolerance to a greater extent relative to passive heat stress, when skin and core temperatures are similar. Eight participants (6 males, 32 ± 7 yr, 176 ± 8 cm, 77.0 ± 9.8 kg) underwent LBNP to presyncope on three separate and randomized occasions: 1) passive heat stress, 2) exercise in a hot environment (40°C) where skin temperature was moderate (36°C, active 36), and 3) exercise in a hot environment (40°C) where skin temperature was matched relative to that achieved during passive heat stress (∼38°C, active 38). LBNP tolerance was quantified using the cumulative stress index (CSI). Before LBNP, increases in core temperature from baseline were not different between trials (1.18 ± 0.20°C; P > 0.05). Also before LBNP, mean skin temperature was similar between passive heat stress (38.2 ± 0.5°C) and active 38 (38.2 ± 0.8°C; P = 0.90) trials, whereas it was reduced in the active 36 trial (36.6 ± 0.5°C; P ≤ 0.05 compared with passive heat stress and active 38). LBNP tolerance was not different between passive heat stress and active 38 trials (383 ± 223 and 322 ± 178 CSI, respectively; P = 0.12), but both were similarly reduced relative to active 36 (516 ± 147 CSI, both P ≤ 0.05). LBNP tolerance is not different between heat stresses induced either passively or by exercise in a hot environment when skin temperatures are similarly elevated. However, LBNP tolerance is influenced by the magnitude of the elevation in skin temperature following exercise induced heat stress. Copyright © 2014 the American Physiological Society.

  6. Heat stress management program improving worker health and operational effectiveness: a case study.

    PubMed

    Huss, Rosalyn G; Skelton, Scott B; Alvis, Kimberly L; Shane, Leigh A

    2013-03-01

    Heat stress monitoring is a vital component of an effective health and safety program when employees work in exceptionally warm environments. Workers at hazardous waste sites often wear personal protective equipment (PPE), which increases the body heat stress load. No specific Occupational Safety and Health Administration (OSHA) regulations address heat stress; however, OSHA does provide several guidance documents to assist employers in addressing this serious workplace health hazard. This article describes a heat stress and surveillance plan implemented at a hazardous waste site as part of the overall health and safety program. The PPE requirement for work at this site, coupled with extreme environmental temperatures, made heat stress a significant concern. Occupational health nurses and industrial hygienists developed a monitoring program for heat stress designed to prevent the occurrence of significant heat-related illness in site workers. The program included worker education on the signs of heat-related illness and continuous physiologic monitoring to detect early signs of heat-related health problems. Biological monitoring data were collected before workers entered the exclusion zone and on exiting the zone following decontamination. Sixty-six site workers were monitored throughout site remediation. More than 1,700 biological monitoring data points were recorded. Outcomes included improved worker health and safety, and increased operational effectiveness. Copyright 2013, SLACK Incorporated.

  7. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers.

    PubMed

    Sahin, K; Orhan, C; Tuzcu, M; Sahin, N; Hayirli, A; Bilgili, S; Kucuk, O

    2016-05-01

    This study was conducted to evaluate the effects of dietary lycopene supplementation on growth performance, antioxidant status, and muscle nuclear transcription factor [Kelch like-ECH-associated protein 1 (Keap1) and (erythroid-derived 2)-like 2 (Nrf2)] expressions in broiler chickens exposed to heat stress (HS). A total of 180 one-day-old male broiler chicks (Ross 308) were assigned randomly to one of 2×3 factorially arranged treatments: two housing temperatures (22°C for 24 h/d; thermoneutral, TN or 34°C for 8 h/d HS) and three dietary lycopene levels (0, 200, or 400 mg/kg). Each treatment consisted of three replicates of 10 birds. Birds were reared to 42 d of age. Heat stress caused reductions in feed intake and weight gain by 12.2 and 20.7% and increased feed efficiency by 10.8% (P<0.0001 for all). Increasing dietary lycopene level improved performance in both environments. Birds reared under the HS environment had lower serum and muscle lycopene concentration (0.34 vs. 0.50 μg/mL and 2.80 vs. 2.13 μg/g), activities of superoxide dismutase (151 vs. 126 U/mL and 131 vs. 155 U/mg protein), glutathione peroxidase (184 vs. 154 U/mL and 1.39 vs. 1.74 U/mg protein), and higher malondialdehyde (MDA) concentration (0.53 vs. 0.83 μg/mL and 0.78 vs. 0.45 μg/ mg protein) than birds reared under the TN environment. Changes in levels of lycopene and MDA and activities of enzymes in serum and muscle varied by the environmental temperature as dietary lycopene level increased. Moreover, increasing dietary lycopene level suppressed muscle Keap1 expression and enhanced muscle Nrf2 expression, which had increased by 150% and decreased by 40%, respectively in response to HS. In conclusion, lycopene supplementation alleviates adverse effects of HS on performance through modulating expressions of stress-related nuclear transcription factors. © 2016 Poultry Science Association Inc.

  8. The effects of glutathione depletion on thermotolerance and heat stress protein synthesis.

    PubMed Central

    Russo, A.; Mitchell, J. B.; McPherson, S.

    1984-01-01

    The effects of cellular glutathione depletion by buthionine sulfoximine on the development of thermotolerance and synthesis of heat stress protein was studied. Cellular glutathione levels were found to increase rapidly following an acute heat treatment of either 12 min at 45.5 degrees C or 1 h at 43 degrees C and remain elevated for prolonged periods. Glutathione depletion and prevention of glutathione synthesis by buthionine sulfoximine resulted in inhibition of the development of thermotolerance and a decrease in total protein as well as specific heat stress proteins. While the degree of inhibition of thermotolerance was similar for both glutathione depletion protocols, inhibition in heat stress protein synthesis was greater when glutathione was depleted to low levels prior to heating. The possible role of glutathione and the cellular redox state to thermotolerance and synthesis of heat stress protein is discussed. Images Figure 2 PMID:6733022

  9. [Influence of anisodamine on heat-stress in rats].

    PubMed

    Tang, Wenchun; Wang, Baofang; Xu, Xiaobo; Liu, Guangchao; Duan, Yongjian

    2002-02-01

    To study whether previously intravenous injection of anisodamine can prevent endotoxemia of heat stroke of rats. Experimental animals were randomly divided into two groups, their average artery pressure, heart rate, survival time, survival rate and rectal temperature were measured at an environmental temperature of 38 degrees C-40 degrees C and 50%-60% retative humidity. Blood samples for endotoxins analyses were taken both before and after heat-stress. During heat stress, the animals of rectal temperature of the experimental and control groups continuously increased and two hours later, separately to (42.7 +/- 0.6) degree C and (43.1 +/- 0.5) degree C, without statistic difference(P > 0.05), and to (44.6 +/- 0.4) degree C and (44.2 +/- 0.3) degree C prior to death, with statistic difference(P < 0.05). Before the experiment, the contents of endotoxins of portal vein blood were (45.7 +/- 5.2) pg/ml and (42.6 +/- 5.4) pg/ml, and that of systemic blood was (14.8 +/- 4.5) pg/ml and (13.9 +/- 7.2) pg/ml, without statistic difference(P > 0.05). Two hours later, the contents of portal vein blood separately increased to (122.2 +/- 16.7) pg/ml and (49.7 +/- 10.2) pg/ml, obviously higher than that before heat-stress(P < 0.01). And there were clear statistic difference between the two groups(P < 0.01). The changing tendency of the heart rhythm is almost the same in two groups, that is, first rose and then fell. But it is without statistic difference before and two hours later(P > 0.05): before heat-stress, the average artery pressures were (13.3 +/- 0.6) kPa and (13.6 +/- 0.5) kPa, without statistic difference(P > 0.05), and two hours later, were (9.6 +/- 0.5) kPa and (8.6 +/- 0.6) kPa, with obvious statistic difference(P < 0.01). The survival time of the animals were (166.5 +/- 16.9) min and (144.5 +/- 18.2) min with obvious statistic difference(P < 0.01), the survival rate of heat stressed rats in the experimental group were obviously higher than control group(P < 0.01 or P

  10. BREEDING AND GENETICS SYMPOSIUM: Resilience and lessons from studies in genetics of heat stress.

    PubMed

    Misztal, I

    2017-04-01

    Production environments are expected to change, mostly to a hotter climate but also possibly more extreme and drier. Can the current generation of farm animals cope with the changes or should it be specifically selected for changing conditions? In general, genetic selection produces animals with a smaller environmental footprint but also with smaller environmental flexibility. Some answers are coming from heat-stress research across species, with heat tolerance partly understood as a greater environmental flexibility. Specific studies in various species show the complexities of defining and selecting for heat tolerance. In Holsteins, the genetic component for effect of heat stress on production approximately doubles in second and quadruples in third parity. Cows with elevated body temperature have the greatest production under heat stress but probably are at risk for increased mortality. In hot but less intensive environments, the effect of heat stress on production is minimal, although the negative effect on fertility remains. Mortality peaks under heat stress and increases with parity. In Angus, the effect of heat stress is stronger only in selected regions, probably because of adaptation of calving seasons to local conditions and crossbreeding. Genetically, the direct effect shows variability because of heat stress, but the maternal effect does not, probably because dams shield calves from environmental challenges. In pigs, the effect of heat stress is strong for commercial farms but almost nothing for nucleus farms, which have lower pig density and better heat abatement. Under intensive management, heat stress is less evident in drier environments because of more efficient cooling. A genetic component of heat stress exists, but it is partly masked by improving management and selection based on data from elite farms. Genetic selection may provide superior identification of heat-tolerant animals, but a few cycles may be needed for clear results. Also, simple

  11. Peripheral vascular responses to heat stress after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Looft-Wilson, Robin C.; Gisolfi, Carl V.

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether hindlimb suspension (which simulates the effects of microgravity) results in impaired hemodynamic responses to heat stress or alterations in mesenteric small artery sympathetic nerve innervation. METHODS: Over 28 d, 16 male Sprague-Dawley rats were hindlimb-suspended, and 13 control rats were housed in the same type of cage. After the treatment, mean arterial pressure (MAP), colonic temperature (Tcol), and superior mesenteric and iliac artery resistances (using Doppler flowmetry) were measured during heat stress [exposure to 42 degrees C until the endpoint of 80 mm Hg blood pressure was reached (75 +/- 9 min); endpoint Tcore = 43.6 +/- 0.2] while rats were anesthetized (sodium pentobarbital, 50 mg x kg(-1) BW). RESULTS: Hindlimb-suspended and control rats exhibited similar increases in Tcol, MAP, and superior mesenteric artery resistance, and similar decreases in iliac resistance during heat stress (endpoint was a fall in MAP below 80 mm Hg). Tyrosine hydroxylase immunostaining indicated similar sympathetic nerve innervation in small mesenteric arteries from both groups. CONCLUSION: Hindlimb suspension does not alter the hemodynamic or thermoregulatory responses to heat stress in the anesthetized rat or mesenteric sympathetic nerve innervation, suggesting that this sympathetic pathway is intact.

  12. Heat Stress Monitor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The heavy, cumbersome body protection suits worn by members of hazardous materials response teams cause marked elevation of body temperatures, which can reduce effectiveness and lead to heat stress and injury. The CorTemp System, marketed by Human Technologies, Inc., provides the basis for a body temperature monitoring alarm system. Encased in a three-quarter-inch ingestible capsule, the system includes a mini-thermometer, miniature telemetry system, a microbattery and temperature sensor. It makes its way through the digestive system, continuously monitoring temperature. Findings are sent to the recorder by telemetry, and then displayed and stored for transfer to a computer.

  13. Cardiopulmonary baroreceptor control of muscle sympathetic nerve activity in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Etzel, R. A.; Farr, D. B.

    1999-01-01

    Whole body heating decreases central venous pressure (CVP) while increasing muscle sympathetic nerve activity (MSNA). In normothermia, similar decreases in CVP elevate MSNA, presumably via cardiopulmonary baroreceptor unloading. The purpose of this project was to identify whether increases in MSNA during whole body heating could be attributed to cardiopulmonary baroreceptor unloading coincident with the thermal challenge. Seven subjects were exposed to whole body heating while sublingual temperature, skin blood flow, heart rate, arterial blood pressure, and MSNA were monitored. During the heat stress, 15 ml/kg warmed saline was infused intravenously over 7-10 min to increase CVP and load the cardiopulmonary baroreceptors. We reported previously that this amount of saline was sufficient to return CVP to pre-heat stress levels. Whole body heating increased MSNA from 25 +/- 3 to 39 +/- 3 bursts/min (P < 0. 05). Central blood volume expansion via rapid saline infusion did not significantly decrease MSNA (44 +/- 4 bursts/min, P > 0.05 relative to heat stress period) and did not alter mean arterial blood pressure (MAP) or pulse pressure. To identify whether arterial baroreceptor loading decreases MSNA during heat stress, in a separate protocol MAP was elevated via steady-state infusion of phenylephrine during whole body heating. Increasing MAP from 82 +/- 3 to 93 +/- 4 mmHg (P < 0.05) caused MSNA to decrease from 36 +/- 3 to 15 +/- 4 bursts/min (P < 0.05). These data suggest that cardiopulmonary baroreceptor unloading during passive heating is not the primary mechanism resulting in elevations in MSNA. Moreover, arterial baroreceptors remain capable of modulating MSNA during heat stress.

  14. Phosphorus improves arsenic phytoremediation by Anadenanthera peregrina by alleviating induced oxidative stress.

    PubMed

    Gomes, M P; Carvalho, M; Carvalho, G S; Marques, T C L L S M; Garcia, Q S; Guilherme, L R G; Soares, A M

    2013-01-01

    Due to similarities in their chemical behaviors, studies examining interactions between arsenic (As)--in special arsenate--and phosphorus (P) are important for better understanding arsenate uptake, toxicity, and accumulation in plants. We evaluated the effects of phosphate addition on plant biomass and on arsenate and phosphate uptake by Anadenanthera peregrina, an important Brazilian savanna legume. Plants were grown for 35 days in substrates that received combinations of 0, 10, 50, and 100 mg kg(-1) arsenate and 0, 200, and 400 mg kg(-1) phosphate. The addition of P increased the arsenic-phytoremediation capacity of A. peregrina by increasing As accumulation, while also alleviating As-induced oxidative stress. Arsenate phytotoxicity in A. peregrina is due to lipid peroxidation, but not hydrogen peroxide accumulation. Added P also increased the activity of important reactive oxygen species-scavenging enzymes (catalase and ascorbate peroxidase) that help prevent lipid peroxidation in leaves. Our findings suggest that applying P represents a feasible strategy for more efficient As phytoremediation using A. peregrina.

  15. Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010-2012.

    PubMed

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Hand, Karen; Kelton, David F

    2015-11-27

    Heat stress is a physiological response to extreme environmental heat such as heat waves. Heat stress can result in mortality in dairy cows when extreme heat is both rapidly changing and has a long duration. As a result of climate change, heat waves, which are defined as 3 days of temperatures of 32 °C or above, are an increasingly frequent extreme weather phenomenon in Southern Ontario. Heat waves are increasing the risk for on-farm dairy cow mortality in Southern Ontario. Heat stress indices (HSIs) are generally based on temperature and humidity and provide a relative measure of discomfort which can be used to predict increased risk of on-farm dairy cow mortality. In what follows, the heat stress distribution was described over space and presented with maps. Similarly, on-farm mortality was described and mapped. The goal of this study was to demonstrate that heat waves and related HSI increases during 2010-2012 were associated with increased on-farm dairy cow mortality in Southern Ontario. Mortality records and farm locations for all farms registered in the CanWest Dairy Herd Improvement Program in Southern Ontario were retrieved for 3 heat waves and 6 three-day control periods from 2010 to 2012. A random sample of controls (2:1) was taken from the data set to create a risk-based hybrid design. On-farm heat stress was estimated using data from 37 weather stations and subsequently interpolated across Southern Ontario by geostatistical kriging. A Poisson regression model was applied to assess the on-farm mortality in relation to varying levels of the HSI. For every one unit increase in HSI the on-farm mortality rate across Southern Ontario increases by 1.03 times (CI95% (IRR) = (1.025,1.035); p = ≤ 0.001). With a typical 8.6 unit increase in HSI from a control period to a heat wave, mortality rates are predicted to increase by 1.27 times. Southern Ontario was affected by heat waves, as demonstrated by high levels of heat stress and increased on-farm mortality

  16. Early in vitro fertilization improves development of bovine ova heat stressed during in vitro maturation.

    PubMed

    Schrock, G E; Saxton, A M; Schrick, F N; Edwards, J L

    2007-09-01

    The objectives were to examine the development of embryos derived from control (38.5 degrees C) or heat-stressed ova [41.0 degrees C during the first 12 h of in vitro maturation (hIVM)] when in vitro fertilization (IVF) was performed at 16, 18, 20, 24, or 30 hIVM. Effects of heat stress in compromising ovum development depended on when IVF was performed (in vitro maturation temperature x IVF time interaction). When IVF was performed at 24 or 30 hIVM, fewer heat-stressed ova developed to the blastocyst stage compared with the respective controls. In contrast, when IVF was performed at 16, 18, or 20 hIVM, more heat-stressed ova developed to the blastocyst stage compared with the respective controls. Performing IVF earlier than usual was beneficial, because the ability of heat-stressed ova to develop to the blastocyst stage was improved when IVF was performed at 18 or 20 vs. 24 hIVM. Blastocyst stage and quality were equivalent to non-heat-stressed controls regardless of IVF time. Control ova undergoing IVF at 20, 24, 30, or 32 hIVM and heat-stressed ova undergoing IVF at 16, 18, 20, or 24 hIVM were compared for blastocyst development by multisource regression. Although linear and quadratic slopes were similar, heat stress reduced the peak and shifted the developmental response of ova by 7.3 h. In other words, obtaining optimal blastocyst development from heat-stressed ova would depend on performing IVF at 19.5 hIVM compared with 26.7 hIVM for non-heat-stressed controls. Heat-induced reductions in peak blastocyst development significantly reduced the window of time available to perform IVF and obtain > or = 20% blastocyst development. In summary, results support an effect of heat stress to hasten developmentally important events during oocyte maturation. The inability of earlier IVF to fully restore the development of heat-stressed ova to that of non-heat-stressed controls highlights the importance of further study.

  17. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean.

    PubMed

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak; Rohila, Jai S

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  18. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    PubMed Central

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2. PMID:27034942

  19. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502

    PubMed Central

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism. PMID:28464023

  20. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.

    PubMed

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.

  1. Heat stress presenting with encephalopathy and MRI findings of diffuse cerebral injury and hemorrhage.

    PubMed

    Guerrero, Waldo R; Varghese, Shaun; Savitz, Sean; Wu, Tzu Ching

    2013-06-17

    Heat stress results in multiorgan failure and CNS injury. There a few case reports in the literature on the neurological consequences of heat stress. We describe a patient with heat stress presenting with encephalopathy and bilateral cerebral, cerebellar, and thalamic lesions and intraventricular hemorrhage on MRI. Heat stress should be in the differential diagnosis of patients presenting with encephalopathy and elevated serum inflammatory markers especially if the history suggests a preceding episode of hyperthermia.

  2. Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress.

    PubMed

    Liu, Hsiang-Chin; Lämke, Jörn; Lin, Siou-Ying; Hung, Meng-Ju; Liu, Kuan-Ming; Charng, Yee-Yung; Bäurle, Isabel

    2018-05-11

    Plants can be primed by a stress cue to mount a faster or stronger activation of defense mechanisms upon a subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress; however, the underlying mechanisms are poorly understood. Here, we report that dozens of Arabidopsis thaliana genes display transcriptional memory, i.e. stronger upregulation after a recurring heat stress, that lasts for at least three days. We define a set of transcription factors involved in this memory response and show that the transcriptional memory results in enhanced transcriptional activation within minutes after the onset of a heat stress cue. Further, we show that the transcriptional memory is active in all tissues. It may last for up to a week, and is associated with histone H3 lysine 4 hyper-methylation during this time. This transcriptional memory is cis-encoded, as we identify a promoter fragment that confers memory onto a heterologous gene. In summary, heat-induced transcriptional memory is a widespread and sustained response, and our study provides a framework for future mechanistic studies of somatic stress memory in higher plants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. The rpoE operon regulates heat stress response in Burkholderia pseudomallei.

    PubMed

    Vanaporn, Muthita; Vattanaviboon, Paiboon; Thongboonkerd, Visith; Korbsrisate, Sunee

    2008-07-01

    Burkholderia pseudomallei is a gram-negative bacterium and the causative agent of melioidosis, one of the important lethal diseases in tropical regions. In this article, we demonstrate the crucial role of the B. pseudomallei rpoE locus in the response to heat stress. The rpoE operon knockout mutant exhibited growth retardation and reduced survival when exposed to a high temperature. Expression analysis using rpoH promoter-lacZ fusion revealed that heat stress induction of rpoH, which encodes heat shock sigma factor (sigma(H)), was abolished in the B. pseudomallei rpoE mutant. Analysis of the rpoH promoter region revealed sequences sharing high homology to the consensus sequence of sigma(E)-dependent promoters. Moreover, the putative heat-induced sigma(H)-regulated heat shock proteins (i.e. GroEL and HtpG) were also absent in the rpoE operon mutant. Altogether, our data suggest that the rpoE operon regulates B. pseudomallei heat stress response through the function of rpoH.

  4. Summary: Disabled Submarine Heat Stress Conference

    DTIC Science & Technology

    2009-09-11

    by dry bulb thermometer and humidity using either a sling psychrometer or a portable battery-powered electronic device providing a direct readout of...and sling psychrometer in each compartment 3) One battery-powered electronic thermometer/hygrometer in each compartment Heat Stress When-To

  5. Heat stress affects carbohydrate metabolism during cold-induced sweetening of potato (Solanum tuberosum L.).

    PubMed

    Herman, Derek J; Knowles, Lisa O; Knowles, N Richard

    2017-03-01

    Tolerance to heat stress for retention of low-temperature sweetening-resistant phenotype in potato is conferred by insensitivity of acid invertase activity to cold induction. Heat stress exacerbated cold sweetening (buildup of reducing sugars) of the LTS (low-temperature sweetening)-susceptible potato (Solanum tuberosum L.) cultivars, Ranger Russet and Russet Burbank, and completely abolished the resistance to cold sweetening in the LTS-resistant cultivars/clones, Sage Russet, GemStar Russet, POR06V12-3 and A02138-2. Payette Russet and EGA09702-2, however, demonstrated considerable tolerance to heat stress for retention of their LTS-resistant phenotype. Heat-primed Payette Russet and EGA09702-2 tubers accumulated fourfold more sucrose when subsequently stored at 4 °C, while reducing sugar concentrations also increased marginally but remained low relative to the non-heat-tolerant LTS-resistant clones, resulting in light-colored fries. By contrast, sucrose concentrations in heat-primed tubers of the non-heat-tolerant clones remained unchanged during LTS, but reducing sugars increased fivefold, resulting in darkening of processed fries. Acid invertase activity increased in the LTS-susceptible and non-heat-tolerant LTS-resistant cultivars/clones during cold storage. However, Payette Russet tubers maintained very low invertase activity regardless of heat stress and cold storage treatments, as was the case for Innate ® Russet Burbank (W8) tubers, where silenced invertase conferred robust tolerance to heat stress for retention of LTS-resistant phenotype. Importantly, heat-stressed tubers of Payette Russet, EGA09702-2 and Innate ® Russet Burbank (W8) demonstrated similar low reducing sugar and high sucrose-accumulating phenotypes when stored at 4 °C. Tolerance to heat stress for retention of LTS-resistant phenotype in Payette Russet and likely its maternal parent, EGA09702-2, is, therefore, conferred by the ability to maintain low invertase activity during cold

  6. Gel-free/label-free proteomic analysis of developing rice grains under heat stress.

    PubMed

    Timabud, Tarinee; Yin, Xiaojian; Pongdontri, Paweena; Komatsu, Setsuko

    2016-02-05

    High temperature markedly reduces the yields and quality of rice grains. To identify the mechanisms underlying heat stress-induced responses in rice grains, proteomic technique was used. Developing Khao Dawk Mali 105 rice grains at the milky, dough, and mature stages were treated at 40 °C for 3 days. Aromatic compounds were decreased in rice grains under heat stress. The protein abundance involved in glycolysis and tricarboxylic acid cycle, including glyceraldehyde 3-phosphate dehydrogenase and citrate synthase, was changed in milky and dough grains after heat treatment; however, none changes in mature grains. The abundance involved in amino acid metabolism was increased in dough grains, but decreased in milky grains. In addition, the abundance involved in starch and sucrose metabolism, such as starch synthase, ADP-glucose pyrophosphorylase, granule-bound starch synthase, and alpha amylase, was decreased in milky grains, but increased in dough grains. A number of redox homeostasis-related proteins, such as ascorbate peroxidase and peroxiredoxin, were increased in developing rice grains treated with heat stress. These results suggest that in response to heat stress, the abundance of numerous proteins involved in redox homeostasis and carbohydrate biosynthetic pathways may play a major role in the development of KDML105 rice grains. Yield of Khao Dawk Mali 105 rice, which is an economical aromatic rice, was disrupted by environmental stress. Rice grains developed under heat stress caused loss of aroma compound. To identify the mechanism of heat response in rice grain, gel-free/label-free proteomic technique was used. The abundance of proteins involved in glycolysis and tricarboxylic acid cycle was disrupted by heat stress. High temperature limited starch biosynthesis; however, it enhanced sugar biosynthesis in developing rice grains. Redox homeostasis related proteins were disrupted by heat stress. These results suggest that proteins involved in redox homeostasis

  7. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings.

    PubMed

    Feng, Dayun; Wang, Bao; Wang, Lei; Abraham, Neeta; Tao, Kai; Huang, Lu; Shi, Wei; Dong, Yushu; Qu, Yan

    2017-04-01

    Melatonin has demonstrated a potential protective effect in central nervous system. Thus, it is interesting to determine whether pre-ischemia melatonin administration could protect against cerebral ischemia/reperfusion (IR)-related injury and the underlying molecular mechanisms. In this study, we revealed that IR injury significantly activated endoplasmic reticulum (ER) stress and autophagy in a middle cerebral artery occlusion mouse model. Pre-ischemia melatonin treatment was able to attenuate IR-induced ER stress and autophagy. In addition, with tandem RFP-GFP-LC3 adeno-associated virus, we demonstrated pre-ischemic melatonin significantly alleviated IR-induced autophagic flux. Furthermore, we showed that IR induced neuronal apoptosis through ER stress related signalings. Moreover, IR-induced autophagy was significantly blocked by ER stress inhibitor (4-PBA), as well as ER-related signaling inhibitors (PERK inhibitor, GSK; IRE1 inhibitor, 3,5-dibromosalicylaldehyde). Finally, we revealed that melatonin significantly alleviated cerebral infarction, brain edema, neuronal apoptosis, and neurological deficiency, which were remarkably abolished by tunicamycin (ER stress activator) and rapamycin (autophagy activator), respectively. In summary, our study provides strong evidence that pre-ischemia melatonin administration significantly protects against cerebral IR injury through inhibiting ER stress-dependent autophagy. Our findings shed light on the novel preventive and therapeutic strategy of daily administration of melatonin, especially among the population with high risk of cerebral ischemic stroke. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Expression dynamics of HSP70 during chronic heat stress in Tharparkar cattle.

    PubMed

    Bharati, Jaya; Dangi, S S; Chouhan, V S; Mishra, S R; Bharti, M K; Verma, V; Shankar, O; Yadav, V P; Das, K; Paul, A; Bag, S; Maurya, V P; Singh, G; Kumar, P; Sarkar, M

    2017-06-01

    Six male Tharparkar cattle aged 2-3 years were selected for the study. The animals were acclimatized in the psychrometric chamber at thermoneutral zone (TNZ) for 15 days and then exposed to 42 °C temperature up to 23 days followed by 12 days of recovery period. Physiological responses were estimated, and peripheral blood mononuclear cells (PBMCs) were isolated at TNZ on day 1, day 5, and day 12; after 6 h of heat stress exposure on day 16 to day 20, day 25, day 30, day 32, day 34, day 36, and day 38; and a recovery period on day 45 and day 50. The PBMCs were cultured to study the effect of thermal challenge on HSP70 messenger RNA (mRNA) expression pattern at different temperature-time combinations. The mRNA and protein expression of HSP70 in PBMCs along with serum extracellular HSP70 (eHSP70) was increased (P < 0.05) and showed two peaks on day 17 and day 32 (2nd and 17th days of thermal challenge, respectively). The HSP70 mRNA expression was increased (P < 0.05) in a temperature- and time-dependent manner in heat stress challenge treatment as compared to control in cultured PBMCs. HSP70 expression was found to be higher (P < 0.05) after 10 days of heat exposure (corresponds to chronic heat stress) as compared to the first 5 days of heat stress (corresponds to short-term heat stress) and control period at TNZ. The present findings indicate that HSP70 is possibly involved in heat stress adaptive response in Tharparkar cattle and the biphasic expression pattern may be providing a second window of protection during chronic heat stress.

  9. Wheat multiple synthetic derivatives: a new source for heat stress tolerance adaptive traits

    PubMed Central

    Elbashir, Awad Ahmed Elawad; Gorafi, Yasir Serag Alnor; Tahir, Izzat Sidahmed Ali; Kim, June-Sik; Tsujimoto, Hisashi

    2017-01-01

    Heat stress is detrimental to wheat (Triticum aestivum L.) productivity. In this study, we aimed to select heat-tolerant plants from a multiple synthetic derivatives (MSD) population and evaluate their agronomic and physiological traits. We selected six tolerant plants from the population with the background of the cultivar ‘Norin 61’ (N61) and established six MNH (MSD population of N61 selected as heat stress-tolerant) lines. We grew these lines with N61 in the field and growth chamber. In the field, we used optimum and late sowings to ensure plant exposure to heat. In the growth chamber, in addition to N61, we used the heat-tolerant cultivars ‘Gelenson’ and ‘Bacanora’. We confirmed that MNH2 and MNH5 lines acquired heat tolerance. These lines had higher photosynthesis and stomata conductance and exhibited no reduction in grain yield and biomass under heat stress compared to N61. We noticed that N61 had relatively good adaptability to heat stress. Our results indicate that the MSD population includes the diversity of Aegilops tauschii and is a promising resource to uncover useful quantitative traits derived from this wild species. Selected lines could be useful for heat stress tolerance breeding. PMID:28744178

  10. The heat-shock protein/chaperone network and multiple stress resistance.

    PubMed

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2017-04-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multistress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat-shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone 'client proteins', many are primary metabolism enzymes and signal transduction components with essential roles for the proper functioning of a cell. HSPs/chaperones are controlled by the action of diverse heat-shock factors, which are recruited under stress conditions. In this review, we give an overview of the regulation of the HSP/chaperone network with a focus on Arabidopsis thaliana. We illustrate the role of HSPs/chaperones in regulating diverse signalling pathways and discuss several basic principles that should be considered for engineering multiple stress resistance in crops through the HSP/chaperone network. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Evaluation of floor cooling on lactating sows under mild and moderate heat stress

    USDA-ARS?s Scientific Manuscript database

    The effectiveness of sow cooling pads during lactation was evaluated under mild and moderate heat stress conditions. The moderate heat stress room was targeted to achieve 32°C from 0800 to 1600 h and 27°C for the rest of the day. The mild heat stress room was targeted to achieve 27°C and 22°C for th...

  12. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis.

    PubMed

    Min, Li; Zheng, Nan; Zhao, Shengguo; Cheng, Jianbo; Yang, Yongxin; Zhang, Yangdong; Yang, Hongjian; Wang, Jiaqi

    2016-03-04

    In this work we employed a comparative proteomic approach to evaluate seasonal heat stress and investigate proteomic alterations in plasma of dairy cows. Twelve lactating Holstein dairy cows were used and the treatments were: heat stress (n = 6) in hot summer (at the beginning of the moderate heat stress) and no heat stress (n = 6) in spring natural ambient environment, respectively. Subsequently, heat stress treatment lasted 23 days (at the end of the moderate heat stress) to investigate the alterations of plasma proteins, which might be employed as long-term moderate heat stress response in dairy cows. Changes in plasma proteins were analyzed by two-dimensional electrophoresis (2-DE) combined with mass spectrometry. Analysis of the properties of the identified proteins revealed that the alterations of plasma proteins were related to inflammation in long-term moderate heat stress. Furthermore, the increase in plasma tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) directly demonstrated that long-term moderate heat stress caused an inflammatory response in dairy cows. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Genetic variation for tolerance to terminal heat stress in Dasypyrum villosum

    USDA-ARS?s Scientific Manuscript database

    Heat stress substantially reduces the grain yield and quality of wheat and poses a major challenge to sustain productivity due to global warming. Across wheat growing regions in the US and globally, wheat often experiences terminal heat stress during the post-flowering period. Dasypyrum villosum, a ...

  14. Modulatory Effect of Monochromatic Blue Light on Heat Stress Response in Commercial Broilers.

    PubMed

    Abdo, Safaa E; El-Kassas, Seham; El-Nahas, Abeer F; Mahmoud, Shawky

    2017-01-01

    In a novel approach, monochromatic blue light was used to investigate its modulatory effect on heat stress biomarkers in two commercial broiler strains (Ross 308 and Cobb 500). At 21 days old, birds were divided into four groups including one group housed in white light, a second group exposed to blue light, a 3rd group exposed to white light + heat stress, and a 4th group exposed to blue light + heat stress. Heat treatment at 33°C lasted for five h for four successive days. Exposure to blue light during heat stress reduced MDA concentration and enhanced SOD and CAT enzyme activities as well as modulated their gene expression. Blue light also reduced the degenerative changes that occurred in the liver tissue as a result of heat stress. It regulated, though variably, liver HSP70 , HSP90 , HSF1 , and HSF3 gene expression among Ross and Cobb chickens. Moreover, the Cobb strain showed better performance than Ross manifested by a significant reduction of rectal temperature in the case of H + B. Furthermore, a significant linear relationship was found between the lowered rectal temperature and the expression of all HSP genes. Generally, the performance of both strains by most assessed parameters under heat stress is improved when using blue light.

  15. Genome scale transcriptional response diversity among ten ecotypes of Arabidopsis thaliana during heat stress

    PubMed Central

    Barah, Pankaj; Jayavelu, Naresh D.; Mundy, John; Bones, Atle M.

    2013-01-01

    In the scenario of global warming and climate change, heat stress is a serious threat to crop production worldwide. Being sessile, plants cannot escape from heat. Plants have developed various adaptive mechanisms to survive heat stress. Several studies have focused on diversity of heat tolerance levels in divergent Arabidopsis thaliana (A. thaliana) ecotypes, but comprehensive genome scale understanding of heat stress response in plants is still lacking. Here we report the genome scale transcript responses to heat stress of 10 A. thaliana ecotypes (Col, Ler, C24, Cvi, Kas1, An1, Sha, Kyo2, Eri, and Kond) originated from different geographical locations. During the experiment, A. thaliana plants were subjected to heat stress (38°C) and transcript responses were monitored using Arabidopsis NimbleGen ATH6 microarrays. The responses of A. thaliana ecotypes exhibited considerable variation in the transcript abundance levels. In total, 3644 transcripts were significantly heat regulated (p < 0.01) in the 10 ecotypes, including 244 transcription factors and 203 transposable elements. By employing a systems genetics approach- Network Component Analysis (NCA), we have constructed an in silico transcript regulatory network model for 35 heat responsive transcription factors during cellular responses to heat stress in A. thaliana. The computed activities of the 35 transcription factors showed ecotype specific responses to the heat treatment. PMID:24409190

  16. The stress heat-flow paradox and thermal results from Cajon Pass

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.

    1988-01-01

    Conventional friction models predict a substantial thermal anomaly associated with active traces of strike-slip faults, but no such anomaly is observed from over 100 heat-flow determinations along 1000 km of the San Andreas fault. The Cajon Pass well is being drilled to bring deep heat-flow and stress data to bear on this paradox. Preliminary stress results from Cajon Pass and a new interpretation of regional data by Mark D. Zoback and colleagues suggests that the maximum compressive stress near the fault is almost normal to the trace, and hence the resolved shear stress is low and the fault, weak. The heat-flow data show large variability with depth, probably from three-dimensional structure, and an overall decrease from over 90 mW/m2 in the upper kilometer to less than 80 mW/m2 in the lower 300 m with no evidence of advective heat transfer. -from Authors

  17. CURCUMIN ALLEVIATES LUMBAR RADICULOPATHY BY REDUCING NEUROINFLAMMATION, OXIDATIVE STRESS AND NOCICEPTIVE FACTORS

    PubMed Central

    Xiao, L.; Ding, M.; Fernandez, A.; Zhao, P.; Jin, L.; Li, X.

    2017-01-01

    Current non-surgical treatments for lumbar radiculopathy [e.g. epidural steroids and Tumour necrosis factor-α (TNF-α) antagonists] are neither effective nor safe. As a non-toxic natural product, curcumin possesses an exceptional anti-inflammatory profile. We hypothesised that curcumin alleviates lumbar radiculopathy by attenuating neuroinflammation, oxidative stress and nociceptive factors. In a dorsal root ganglion (DRG) culture, curcumin effectively inhibited TNF-α-induced neuroinflammation, in a dose-dependent manner, as shown by mRNA and protein expression of IL-6 and COX-2. Such effects might be mediated via protein kinase B (AKT) and extracellular signal regulated kinase (ERK) pathways. Also, a similar effect in combating TNF-α-induced neuroinflammation was observed in isolated primary neurons. In addition, curcumin protected neurons from TNF-α-triggered excessive reactive oxygen species (ROS) production and cellular apoptosis and, accordingly, promoted mRNA expression of the anti-oxidative enzymes haem oxygenase-1, catalase and superoxide dismutase-2. Intriguingly, electronic von Frey test suggested that intraperitoneal injection of curcumin significantly abolished ipsilateral hyperalgesia secondary to disc herniation in mice, for up to 2 weeks post-surgery. Such in vivo pain alleviation could be attributed to the suppression, observed in DRG explant culture, of TNF-α-elicited neuropeptides, such as substance P and calcitonin gene-related peptide. Surprisingly, micro-computed tomography (µCT) data suggested that curcumin treatment could promote disc height recovery following disc herniation. Alcian blue/picrosirius red staining confirmed that systemic curcumin administration promoted regeneration of extracellular matrix proteins, visualised by presence of abundant newly-formed collagen and proteoglycan content in herniated disc. Our study provided pre-clinical evidence for expediting this natural, non-toxic pleiotropic agent to become a new and safe

  18. Curcumin alleviates lumbar radiculopathy by reducing neuroinflammation, oxidative stress and nociceptive factors.

    PubMed

    Xiao, L; Ding, M; Fernandez, A; Zhao, P; Jin, L; Li, X

    2017-05-09

    Current non-surgical treatments for lumbar radiculopathy [e.g. epidural steroids and Tumour necrosis factor-α (TNF-α) antagonists] are neither effective nor safe. As a non-toxic natural product, curcumin possesses an exceptional anti-inflammatory profile. We hypothesised that curcumin alleviates lumbar radiculopathy by attenuating neuroinflammation, oxidative stress and nociceptive factors. In a dorsal root ganglion (DRG) culture, curcumin effectively inhibited TNF-α-induced neuroinflammation, in a dose-dependent manner, as shown by mRNA and protein expression of IL-6 and COX-2. Such effects might be mediated via protein kinase B (AKT) and extracellular signal regulated kinase (ERK) pathways. Also, a similar effect in combating TNF-α-induced neuroinflammation was observed in isolated primary neurons. In addition, curcumin protected neurons from TNF-α-triggered excessive reactive oxygen species (ROS) production and cellular apoptosis and, accordingly, promoted mRNA expression of the anti-oxidative enzymes haem oxygenase-1, catalase and superoxide dismutase-2. Intriguingly, electronic von Frey test suggested that intraperitoneal injection of curcumin significantly abolished ipsilateral hyperalgesia secondary to disc herniation in mice, for up to 2 weeks post-surgery. Such in vivo pain alleviation could be attributed to the suppression, observed in DRG explant culture, of TNF-α-elicited neuropeptides, such as substance P and calcitonin gene-related peptide. Surprisingly, micro-computed tomography (μCT) data suggested that curcumin treatment could promote disc height recovery following disc herniation. Alcian blue/picrosirius red staining confirmed that systemic curcumin administration promoted regeneration of extracellular matrix proteins, visualised by presence of abundant newly-formed collagen and proteoglycan content in herniated disc. Our study provided pre-clinical evidence for expediting this natural, non-toxic pleiotropic agent to become a new and safe

  19. Schisandrin B alleviates acute oxidative stress via modulating Nrf2/Keap1-mediated antioxidant pathway.

    PubMed

    Ying, Wu; Li, Zheng-Cai; Li-Qing, Yao; Mai, Li; Mei, Tang

    2018-05-09

    Schisandrin B (Sch B), one of Fructus Schisandrae's main effective components, protects neurons from oxidative stress in the central nervous system. Here we investigated the neuroprotective effect of Sch B in the acute oxidative stress damage and attempted to define the possible mechanisms. From the elevated plus maze (EPM) and open field test (OFT), we found that forcing swimming, an acute stressor, significantly induced anxiety-like behavior which was alleviated by Sch B (p.o.) treatment. In addition, the Sch B treatment suppressed toxicity, malondialdehyde (MDA) and reactive oxygen species (ROS), an important factor for neuron damage. The antioxidant molecules under the control of Nrf2 pathway, such as superoxide dismutase (SOD) and glutathione (GSH), were significantly increased by Sch B treatment. Moreover, a higher percentage of intact cells in the amygdala further verified the neuroprotective effect of Sch B in Nissl staining. Several proteins such as Nrf2 and its endogenous inhibitor Keap1, were abnormal expressed in force swimming mice but were significantly reversed by Sch B treatment. Herein, our results suggested that Sch B may be a potential therapeutic agent against anxiety disease that is associated with oxidative stress. The possible mechanism is attributed to its neuroprotection through enhancing antioxidant effect.

  20. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings.

    PubMed

    Tripathi, Durgesh Kumar; Singh, Swati; Singh, Vijay Pratap; Prasad, Sheo Mohan; Dubey, Nawal Kishore; Chauhan, Devendra Kumar

    2017-01-01

    The role of silicon (Si) in alleviating biotic as well as abiotic stresses is well known. However, the potential of silicon nanoparticle (SiNP) in regulating abiotic stress and associated mechanisms have not yet been explored. Therefore, in the present study hydroponic experiments were conducted to investigate whether Si or SiNp are more effective in the regulation of UV-B stress. UV-B (ambient and enhanced) radiation caused adverse effect on growth of wheat (Triticum aestivum) seedlings, which was accompanied by declined photosynthetic performance and altered vital leaf structures. Levels of superoxide radical and H 2 O 2 were enhanced by UV-B as also evident from their histochemical stainings, which was accompanied by increased lipid peroxidation (LPO) and electrolyte leakage. Activities of superoxide dismutase and ascorbate peroxidase were inhibited by UV-B while catalase and guaiacol peroxidase, and all non-enzymatic antioxidants were stimulated by UV-B. Although, nitric oxide (NO) content was increased at all tested combinations, but its maximum content was observed under SiNps together with UV-B enhanced treatment. Pre-additions of SiNp as well as Si protected wheat seedlings against UV-B by regulating oxidative stress through enhanced antioxidants. Data indicate that SiNp might have protected wheat seedlings through NO-mediated triggering of antioxidant defense system, which subsequently counterbalance reactive oxygen species-induced damage to photosynthesis. Further, SiNp appear to be more effective in reducing UV-B stress than Si, which is related to its greater availability to wheat seedlings. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Reynolds stress and heat flux in spherical shell convection

    NASA Astrophysics Data System (ADS)

    Käpylä, P. J.; Mantere, M. J.; Guerrero, G.; Brandenburg, A.; Chatterjee, P.

    2011-07-01

    Context. Turbulent fluxes of angular momentum and enthalpy or heat due to rotationally affected convection play a key role in determining differential rotation of stars. Their dependence on latitude and depth has been determined in the past from convection simulations in Cartesian or spherical simulations. Here we perform a systematic comparison between the two geometries as a function of the rotation rate. Aims: Here we want to extend the earlier studies by using spherical wedges to obtain turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. In particular, we want to clarify whether the sharp equatorial profile of the horizontal Reynolds stress found in earlier Cartesian models is also reproduced in spherical geometry. Methods: We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs, and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results: For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong "banana cells". Their effect in the

  2. Comparison of heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion.

    PubMed

    Zhao, Yijie; Yi, Wen; Chan, Albert P C; Chan, Daniel W M

    2017-10-01

    A hot environment combined with physically demanding tasks can subject workers to a higher risk of heat stress. A series of regulations and guidelines have been proposed to design appropriate anti-heat stress work uniform to reduce body heat strain. The present study aimed to examine heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion in the heat. 10 healthy males performed intermittent treadmill running/walking to exhaustion, followed by 30min passive recovery sitting in a climatic chamber, which simulated the hot and humid outdoor environment (34°C temperature, 60% relative humidity, 0.3m/s air velocity, and 450W/m 2 solar radiation). The participants took part in five wear trials in counter-balanced order, including Sportswear, CIC Uniform, NEW Uniform, ICEBANK Cooling Vest, and NEW Cooling Vest, which have different levels of cooling capacity. Core temperature, skin temperature, heart rate, sweat loss, ratings of perceived exertion, and thermal sensations were measured throughout the entire heat exposure period. Physiological heat strain indices, including the physiological strain index (PhSI) and the perceptual strain index (PeSI), were used as a yardstick to quantify and compare the rate of recovery. Significantly lower physiological strain was observed in the newly developed NEW Uniform and NEW Cooling Vest groups compared with the commonly worn CIC Uniform group during recovery. At the end of the recovery period, participants in NEW Cooling Vest achieved the highest recovery (42.18% in PhSI and 81.08% in PeSI), followed by ICEBANK Cooling Vest, Sportswear, NEW Uniform, and CIC Uniform. The cooling capacity of anti-heat stress clothing ensembles and the recovery time significantly affect the rate of recovery in PhSI and PeSI, which may benefit the industry by formulating the appropriate work-rest schedule by considering the clothing effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of heat stress on blood rheology in different pigs breeds.

    PubMed

    Waltz, Xavier; Baillot, Michelle; Connes, Philippe; Gourdine, Jean-Luc; Philibert, Lucien; Beltan, Eric; Chalabi, Tawfik; Renaudeau, David

    2014-01-01

    The main objectives of the present work were to test the effects of heat stress on blood rheology and to determine whether the responses can change according to the pig breeds. Thirty-six pigs from three pig's lines (n = 12 for each line) with assumed different tolerance to heat stress were compared: Large White (LW, little tolerance), Creole (CR, good tolerance) and LW × CR pigs (produced from a cross between LW and CR lines). In a first period, all pigs were exposed to a 9-d period of thermo-neutral environment (24°C; d-9 to d-1; P0). At the end of P0, six pigs from each line were slaughtered (n = 18). Then in a second period, the remaining pigs (6/breed; n = 18) were exposed to a 5-d period of heat stress (32°C; d + 1 -d + 5; P1) and thereafter slaughtered at d + 5. Rectal and skin temperatures, as well as respiratory rate, were recorded on d-1 and d + 5. At slaughter, blood was sampled for hematological and hemorheological measurements. Heat stress caused a rise of the skin temperature and respiratory rate without any changes in the rectal temperature or on the hematological and hemorheological parameters when all pigs' lines were considered. We observed a pig line effect on blood viscosity at high shear rate (375 s-1) and red blood cell deformability at 30 Pa with CR pigs having lower blood viscosity and higher red blood cell deformability than LW pigs. While the changes of blood viscosity under heat stress did not reach statistical significance in LW and CR lines, blood viscosity (at 375 s-1) increased above the temperate values in the LW × CR line. Red blood cell deformability at 30 Pa was higher in CR pigs exposed to heat stress compared to LW pigs in the same condition. In conclusion, thermal loading caused physiological stress but did not widely change the hematological and hemorheological profiles. Although some blood rheological parameters seem to vary with the pig breeds, the responses to heat stress are very similar.

  4. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    PubMed

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  5. Heat stress but not inbreeding affects offensive sperm competitiveness in Callosobruchus maculatus

    PubMed Central

    Lieshout, Emile; Tomkins, Joseph L; Simmons, Leigh W

    2013-01-01

    Environmental and genetic stress have well-known detrimental effects on ejaculate quality, but their concomitant effect on male fitness remains poorly understood. We used competitive fertilization assays to expose the effects of stress on offensive sperm competitive ability in the beetle Callosobruchus maculatus, a species where ejaculates make up more than 5% of male body mass. To examine the effects of environmental and genetic stress, males derived from outcrosses or sib matings were heat shocked at 50°C for 50 min during the pupal stage, while their siblings were maintained at a standard rearing temperature of 28°C. Heat-shocked males achieved only half the offensive paternity success of their siblings. While this population exhibited inbreeding depression in body size, sperm competitiveness was unaffected by inbreeding, nor did the effect of heat shock stress on sperm competitiveness depend on inbreeding status. In contrast, pupal emergence success was increased by 34% among heat-stressed individuals, regardless of their inbreeding status. Heat-shocked males' ejaculate size was 19% reduced, but they exhibited 25% increased mating duration in single mating trials. Our results highlight both the importance of stress in postcopulatory sexual selection, and the variability among stressors in affecting male fitness. PMID:24101978

  6. Heat stress but not inbreeding affects offensive sperm competitiveness in Callosobruchus maculatus.

    PubMed

    Lieshout, Emile; Tomkins, Joseph L; Simmons, Leigh W

    2013-09-01

    Environmental and genetic stress have well-known detrimental effects on ejaculate quality, but their concomitant effect on male fitness remains poorly understood. We used competitive fertilization assays to expose the effects of stress on offensive sperm competitive ability in the beetle Callosobruchus maculatus, a species where ejaculates make up more than 5% of male body mass. To examine the effects of environmental and genetic stress, males derived from outcrosses or sib matings were heat shocked at 50°C for 50 min during the pupal stage, while their siblings were maintained at a standard rearing temperature of 28°C. Heat-shocked males achieved only half the offensive paternity success of their siblings. While this population exhibited inbreeding depression in body size, sperm competitiveness was unaffected by inbreeding, nor did the effect of heat shock stress on sperm competitiveness depend on inbreeding status. In contrast, pupal emergence success was increased by 34% among heat-stressed individuals, regardless of their inbreeding status. Heat-shocked males' ejaculate size was 19% reduced, but they exhibited 25% increased mating duration in single mating trials. Our results highlight both the importance of stress in postcopulatory sexual selection, and the variability among stressors in affecting male fitness.

  7. The response of contrasting tomato genotypes to combined heat and drought stress.

    PubMed

    Nankishore, Alliea; Farrell, Aidan D

    2016-09-01

    Efforts to maximize yields of food crops can be undermined by abiotic stress factors, particularly those related to climate change. Here, we use a range of physiological methods to detect the individual and combined effects of heat and drought stress on three contrasting varieties of tomato: Hybrid 61, Moskvich, and Nagcarlang. Seedlings were acclimated under the following treatment regimes: CONTROL (25-36°C; well-watered), DRY (25-36°C; 20% field capacity), HOT (25-42°C; well-watered) and HOT+DRY (25-42°C; 20% field capacity). In each treatment, stomatal conductance, leaf temperature, chlorophyll content, and several chlorophyll fluorescence variables (both in situ and in vitro following a heat shock treatment) were measured. Plants from the HOT treatment remained statistically similar to the CONTROL plants in most of the measured parameters, while those from the DRY treatment and especially the HOT+DRY treatment showed clear effects of abiotic stress. Hybrid 61 showed considerable resilience to heat and drought stress compared to the other varieties, with significantly cooler leaves (one day after treatments imposed) and significantly higher Fv/Fm values both in situ and in vitro. The genotypic differences in resilience to heat stress were only apparent under water-limited conditions, highlighting the need to consider leaf temperature rather than air temperature when testing for tolerance to heat stress. The most effective parameters for discriminating genotypic variation in heat and drought stress were in vitro Fv/Fm and chlorophyll content. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. The efficacy of radiant heat controls on workers' heat stress around the blast furnace of a steel industry.

    PubMed

    Giahi, Omid; Darvishi, Ebrahim; Aliabadi, Mohsen; Khoubi, Jamshid

    2015-01-01

    Workers' exposure to excessive heat in molten industries is mainly due to radiant heat from hot sources. The aim of this study was to evaluate the efficacy of radiant heat controls on workers heat stress around a typical blast furnace. Two main interventions were applied for reducing radiant heat around the blast furnace of a steel industry located in western Iran. These included using a heat absorbing system in the furnace body and installing reflective aluminum barrier in the main workstation. Heat stress indexes were measured before and after each intervention using the digital WBGT-meter. The results showed MRT and WBGT indexes decreased by 20 °C and 3.9 °C, respectively after using heat absorbing system and also decreased by 18.6 °C and 2.5 °C, respectively after installing a reflective barrier. These indexes decrease by 26.5 °C and 5.2 °C, respectively due to the simultaneous application of the two interventions which were statistically significant (p < 0.001). The core body temperature of workers decreased by 2.6 °C after the application of interventions which was also significant (p < 0.05). The results confirmed heat control at source can be considered as a first solution for reducing radiant heat of blast furnaces. However, the simultaneous application of interventions could noticeably reduce worker heat stress. The results provide reliable information in order to implement the effective heat controls in typical hot steel industries.

  9. Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress.

    PubMed

    McLoughlin, Fionn; Basha, Eman; Fowler, Mary E; Kim, Minsoo; Bordowitz, Juliana; Katiyar-Agarwal, Surekha; Vierling, Elizabeth

    2016-10-01

    The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were created in Arabidopsis (Arabidopsis thaliana) and shown to have reduced and enhanced tolerance, respectively, to extreme heat stress. Affinity purification of CI and CII sHSPs from heat-stressed seedlings recovered eukaryotic translation elongation factor (eEF) 1B (α-, β-, and γ-subunits) and eukaryotic translation initiation factor 4A (three isoforms), although the association with CI sHSPs was stronger and additional proteins involved in translation were recovered with CI sHSPs. eEF1B subunits became partially insoluble during heat stress and, in the CI and CII RNAi lines, showed reduced recovery to the soluble cell fraction after heat stress, which was also dependent on HSP101. Furthermore, after heat stress, CI sHSPs showed increased retention in the insoluble fraction in the CII RNAi line and vice versa. Immunolocalization revealed that both CI and CII sHSPs were present in cytosolic foci, some of which colocalized with HSP101 and with eEF1Bγ and eEF1Bβ. Thus, CI and CII sHSPs have both unique and overlapping functions and act either directly or indirectly to protect specific translation factors in cytosolic stress granules. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Modulatory effect of betaine on expression dynamics of HSPs during heat stress acclimation in goat (Capra hircus).

    PubMed

    Dangi, Satyaveer Singh; Dangi, Saroj K; Chouhan, V S; Verma, M R; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2016-01-10

    Changing climatic scenario with expected global rise in surface temperature compelled more focus of research over decoding heat stress response mechanism of animals and mitigation of heat stress. Recently betaine, a trimethyl form of glycine has been found to ameliorate heat stress in some species of animals. To overcome deleterious effect of heat stress, an attempt was taken to investigate the effect of betaine supplementation on heat stress mitigation in goats. Eighteen female Barbari goats were taken and randomly divided into 3 groups (n=6) such as control, HS (Heat stressed), HS+B (Heat stressed administered with betaine). Except for the control group, other groups were exposed to repeated heat stress (42 °C) for 6 h for sixteen consecutive days. Blood samples were collected at the end of heat exposure on day 1 (Initial heat stress acclimation - IHSA), day 6 (Short term heat stress acclimation - STHSA) and day 16 (Long term heat stress acclimation - LTHSA). When the groups were compared between different heat stress acclimatory phases, expression of all HSPs (HSP60, HSP70, HSP90 and HSP105/110) showed a similar pattern with a first peak on IHSA, reaching a basal level on STHSA followed by second peak on LTHSA. The messenger RNA (mRNA) and protein expression of HSPs was observed to be higher (P<0.05) in HS group than HS+B group except HSP90 on IHSA and HSP60 on STHSA. HSP105/110 expression was highest (P<0.05) on LTHSA. Immunocytochemical analysis revealed that HSPs were mainly localized both in nucleus and cytoplasm of PBMCs. In conclusion, heat stress increases HSPs expression and betaine administration was shown to have a dwindling effect on expression of HSPs, suggesting a possible role of this chemical chaperone on heat stress amelioration. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Beyond the extreme: Recovery dynamics following heat and drought stress in trees

    NASA Astrophysics Data System (ADS)

    Ruehr, N.; Duarte, A. G.; Arneth, A.

    2016-12-01

    Plant recovery processes following extreme events can have profound impacts on forest carbon and water cycling. However, large knowledge gaps persist on recovery dynamics of tree physiological processes following heat and drought stress. To date, few experimental studies exist that include recovery responses in stress research. We synthesized recent research on tree recovery processes related to carbon and water exchange following heat and drought stress, and show that the intensity of stress can affect the pace of recovery with large variations among tree species and processes. Following stress release, leaf water potential recovers instantaneously upon rewatering as found in most studies. Transpiration (T), stomatal conductance (gs) and photosynthesis (A) often lag behind, with lowest recovery following severe stress. Interestingly, the patterns in heat and drought stress recovery apparently differ. While A recovers generally more quickly than gs following drought, which increases water-use-efficiency, both gs and A tend to remain reduced following heat events. The pace of recovery following heat events likely depends on water availability during stress and temperature maxima reached (photosynthetic impairment at temperatures > 40°C). Slow recovery during the initial post-stress days might result from hydraulic limitation and elevated levels of abscisic acid. The mechanisms resulting in a continued impairment of T and gs during a later stage of the recovery period (from weeks up to months) are still elusive. Feedback loops from the photosynthetic machinery, reduced mesophyll conductance or leaf morphological changes may play an important role. In summary, post-stress recovery can substantially affect tree carbon and water cycling. Thus, in order to estimate the impacts of extreme climate events on forest ecosystems in the long-term, we need a better understanding of recovery dynamics and their limitations in terms of stress timing, intensity and duration.

  12. Spatially distinct effects of preceding precipitation on heat stress over eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Xingcai; Tang, Qiuhong; Zhang, Xuejun; Groisman, Pavel; Sun, Siao; Lu, Hui; Li, Zhe

    2017-11-01

    In many terrestrial regions, higher than usual surface temperatures are associated with (or are even induced by) surface moisture deficits. When in the warm season temperatures become anomalously high, their extreme values affect human beings causing heat stress. Besides increased temperature, rising humidity may also have substantial implications for bodily thermal comfort. However, the effects of surface moisture on heat stress, when considering both temperature and humidity, are less known. In this study, the relationship between the number of hot days in July as indicated by the wet-bulb globe temperature and the preceding three months of precipitation was assessed over eastern China. It is found that the probability of occurrence of above the average number of hot days exceeds 0.7 after a preceding precipitation deficit in northeastern China, but is less than 0.3 in southeastern China. Generally, over eastern China, the precipitation in the preceding months is negatively correlated with temperature and positively correlated with specific humidity in July. The combined effects generate a spatially distinct pattern: precipitation deficits in preceding months enhance heat stress in northeastern China while in southern China these deficits are associated with reduction of heat stress. In the south, abundant preceding precipitation tends to increase atmospheric humidity that is instrumental for the increase of heat stress. These results contribute predictive information about the probability of mid-summer heat stress in eastern China a few weeks ahead of its occurrence.

  13. Spatially distinct effects of preceding precipitation on heat stress over Eastern China

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Liu, X.; Zhang, X.; Groisman, P. Y.; Sun, S.; Lu, H.; Li, Z.

    2017-12-01

    In many terrestrial regions, higher than usual surface temperatures are associated with (or even are induced by) surface moisture deficits. When in the warm season temperatures become anomalously high, their extreme values affect human beings causing heat stress. Besides increased temperature, rising humidity may also have substantial implications for human body thermal comfort. However, effects of surface moisture on heat stress, when considering both temperature and humidity, are less known. In this study, the relationship between the number of hot days in July as indicated by the wet-bulb globe temperature (WBGT) and preceding 3-month precipitation was assessed over Eastern China. It is found that the probability of occurrence of the above-the-average number of hot days exceeds 0.7 after preceding precipitation deficit in northeastern China, but is less than 0.3 in southeastern China. Generally, over Eastern China, precipitation in preceding months is negatively correlated with temperature and positively correlated with specific humidity in July. The combined effects generate a spatially distinct pattern: precipitation deficits in preceding months enhance heat stress in northeastern China while in southern China these deficits are associated with reduction of heat stress. In the south, abundant preceding precipitation tends to increase atmospheric humidity that is instrumental for increase of heat stress. These results contribute predictive information about the probability of mid-summer heat stress in Eastern China a few weeks ahead of its occurrence.

  14. Modulatory Effect of Monochromatic Blue Light on Heat Stress Response in Commercial Broilers

    PubMed Central

    Abdo, Safaa E.; Mahmoud, Shawky

    2017-01-01

    In a novel approach, monochromatic blue light was used to investigate its modulatory effect on heat stress biomarkers in two commercial broiler strains (Ross 308 and Cobb 500). At 21 days old, birds were divided into four groups including one group housed in white light, a second group exposed to blue light, a 3rd group exposed to white light + heat stress, and a 4th group exposed to blue light + heat stress. Heat treatment at 33°C lasted for five h for four successive days. Exposure to blue light during heat stress reduced MDA concentration and enhanced SOD and CAT enzyme activities as well as modulated their gene expression. Blue light also reduced the degenerative changes that occurred in the liver tissue as a result of heat stress. It regulated, though variably, liver HSP70, HSP90, HSF1, and HSF3 gene expression among Ross and Cobb chickens. Moreover, the Cobb strain showed better performance than Ross manifested by a significant reduction of rectal temperature in the case of H + B. Furthermore, a significant linear relationship was found between the lowered rectal temperature and the expression of all HSP genes. Generally, the performance of both strains by most assessed parameters under heat stress is improved when using blue light. PMID:28698764

  15. Aspirin upregulates αB-Crystallin to protect the myocardium against heat stress in broiler chickens

    PubMed Central

    Tang, Shu; Yin, Bin; Song, Erbao; Chen, Hongbo; Cheng, Yanfen; Zhang, Xiaohui; Bao, Endong; Hartung, Joerg

    2016-01-01

    We established in vivo and in vitro models to investigate the role of αB-Crystallin (CryAB) and assess the ability of aspirin (ASA) to protect the myocardium during prolonged heat stress. Thirty-day-old chickens were divided into three groups (n = 90): heat stress (HS, 40±1 °C); ASA(−)HS(+), 1 mg/kg ASA orally 2 h before heat stress; and ASA(+)HS(−), pretreated with aspirin, no heat stress (25 °C). Hearts were excised after 0, 1, 2, 3, 5, 7, 10, 15 and 24 h. Heat stress increased body temperature, though the ASA(−)HS(+) group had significantly higher temperatures than the ASA(+)HS(+) group at all time points. Compared to ASA(+)HS(+), the ASA(−)HS(+) group displayed increased sensitivity to heat stress. Pathological analysis revealed the ASA (+)HS(+) myocardium showed less severe changes (narrowed, chaotic fibers; fewer necrotic cells) than the ASA(−)HS(+) group (bleeding and extensive cell death). In vitro, ASA-pretreatment significantly increased primary chicken myocardial cell survival during heat stress. ELISAs indicated ASA induced CryAB in vivo to protect against heat stress-induced myocardial damage, but ASA did not induce CryAB in primary chicken myocardial cells. The mechanisms by which ASA induces the expression of CryAB in vivo and protects the myocardium during heat stress merit further research. PMID:27857180

  16. Heat stress in pregnant sows: Thermal responses and subsequent performance of sows and their offspring.

    PubMed

    Lucy, Matthew C; Safranski, Timothy J

    2017-09-01

    Seasonal infertility is a significant problem in the swine industry, and may be influenced by photoperiod and heat stress. Heat stress during gestation in particular affects pregnancy, resulting in long-term developmental damage to the offspring. This review summarizes what is known about how heat stress on the pregnant sow affects lactation and her offspring. Sows responded to heat stress during gestation with increased rectal temperature, respiration rate, and skin temperature, and tended to reduce their activity-which may have changed their body composition, increasing the adipose-to-muscle ratio. Heat stress during gestation caused temporary insulin resistance during lactation, but this metabolic state did not seem to affect health, lactation, or rebreeding performance of the sow. Heat-stressed sows also presented with a shorter gestation period and reduced litter birth weight, although weaning weights are not affected when these sows are moved to thermoneutral conditions for lactation. The offspring of gestational heat-stressed sows, however, possessed unique phenotypes, including elevated body temperature, greater fat deposition, and impaired gonad development. Thus, gestational heat stress may significantly impact a herd through its effects on sows and their offspring. Further work is necessary to determine the magnitude of the effects across fa cilities and breeds. © 2017 Wiley Periodicals, Inc.

  17. Kidney Diseases in Agricultural Communities: A Case Against Heat-Stress Nephropathy.

    PubMed

    Herath, Chula; Jayasumana, Channa; De Silva, P Mangala C S; De Silva, P H Chaminda; Siribaddana, Sisira; De Broe, Marc E

    2018-03-01

    The beginning of the 21st century has seen the emergence of a new chronic tubulo-interstitial kidney disease of uncertain cause among agricultural communities in Central America and Sri Lanka. Despite many similarities in demography, presentation, clinical features, and renal histopathology in affected individuals in these regions, a toxic etiology has been considered mainly in Sri Lanka, whereas the predominant hypothesis in Central America has been that recurrent acute kidney injury (AKI) caused by heat stress leads to chronic kidney disease (CKD). This is termed the heat stress/dehydration hypothesis . This review attempts to demonstrate that there is sparse evidence for the occurrence of significant AKI among manual workers who are at high risk, and that there is little substantial evidence that an elevation of serum creatinine < 0.3 mg/dl in previously healthy people will lead to CKD even with recurrent episodes. It is also proposed that the extent of global warming over the last half-century was not sufficient to have caused a drastic change in the effects of heat stress on renal function in manual workers. Comparable chronic tubulo-interstitial kidney disease is not seen in workers exposed to heat in most tropical regions, although the disease is seen in individuals not exposed to heat stress in the affected regions. The proposed pathogenic mechanisms of heat stress causing CKD have not yet been proved in humans or demonstrated in workers at risk. It is believed that claims of a global warming nephropathy in relation to this disease may be premature and without convincing evidence.

  18. Thermal Indices and Thermophysiological Modeling for Heat Stress.

    PubMed

    Havenith, George; Fiala, Dusan

    2015-12-15

    The assessment of the risk of human exposure to heat is a topic as relevant today as a century ago. The introduction and use of heat stress indices and models to predict and quantify heat stress and heat strain has helped to reduce morbidity and mortality in industrial, military, sports, and leisure activities dramatically. Models used range from simple instruments that attempt to mimic the human-environment heat exchange to complex thermophysiological models that simulate both internal and external heat and mass transfer, including related processes through (protective) clothing. This article discusses the most commonly used indices and models and looks at how these are deployed in the different contexts of industrial, military, and biometeorological applications, with focus on use to predict related thermal sensations, acute risk of heat illness, and epidemiological analysis of morbidity and mortality. A critical assessment is made of tendencies to use simple indices such as WBGT in more complex conditions (e.g., while wearing protective clothing), or when employed in conjunction with inappropriate sensors. Regarding the more complex thermophysiological models, the article discusses more recent developments including model individualization approaches and advanced systems that combine simulation models with (body worn) sensors to provide real-time risk assessment. The models discussed in the article range from historical indices to recent developments in using thermophysiological models in (bio) meteorological applications as an indicator of the combined effect of outdoor weather settings on humans. Copyright © 2015 John Wiley & Sons, Inc.

  19. Work-related heat stress concerns in automotive industries: a case study from Chennai, India

    PubMed Central

    Ayyappan, Ramalingam; Sankar, Sambandam; Rajkumar, Paramasivan; Balakrishnan, Kalpana

    2009-01-01

    Background Work-related heat stress assessments, the quantification of thermal loads and their physiological consequences have mostly been performed in non-tropical developed country settings. In many developing countries (many of which are also tropical), limited attempts have been made to create detailed job-exposure profiles for various sectors. We present here a case study from Chennai in southern India that illustrates the prevalence of work-related heat stress in multiple processes of automotive industries and the efficacy of relatively simple controls in reducing prevalence of the risk through longitudinal assessments. Methods We conducted workplace heat stress assessments in automotive and automotive parts manufacturing units according to the protocols recommended by NIOSH, USA. Sites for measurements included indoor locations with process-generated heat exposure, indoor locations without direct process-generated heat exposure and outdoor locations. Nearly 400 measurements of heat stress were made over a four-year period at more than 100 locations within eight units involved with automotive or automotive parts manufacturing in greater Chennai metropolitan area. In addition, cross-sectional measurements were made in select processes of glass manufacturing and textiles to estimate relative prevalence of heat stress. Results Results indicate that many processes even in organised large-scale industries have yet to control heat stress-related hazards adequately. Upwards of 28% of workers employed in multiple processes were at risk of heat stress-related health impairment in the sectors assessed. Implications of longitudinal baseline data for assessing efficacy of interventions as well as modelling potential future impacts from climate change (through contributions from worker health and productivity impairments consequent to increases in ambient temperature) are described. Conclusions The study re-emphasises the need for recognising heat stress as an important

  20. Crop Production under Drought and Heat Stress: Plant Responses and Management Options

    PubMed Central

    Fahad, Shah; Bajwa, Ali A.; Nazir, Usman; Anjum, Shakeel A.; Farooq, Ayesha; Zohaib, Ali; Sadia, Sehrish; Nasim, Wajid; Adkins, Steve; Saud, Shah; Ihsan, Muhammad Z.; Alharby, Hesham; Wu, Chao; Wang, Depeng; Huang, Jianliang

    2017-01-01

    Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical, and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological, and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions, and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future. PMID:28706531

  1. Effects of betaine on biological functions in meat-type ducks exposed to heat stress.

    PubMed

    Park, S O; Kim, W K

    2017-05-01

    Heat stress in hot seasons is a major problem in poultry production, particularly in humid areas. The aim of this study was to determine the pharmacodynamics of betaine on the blood and cecal short chain fatty acid profile in meat-type ducks exposed to heat stress. Three-hundred-sixty meat-type ducks (Anas platyrhynchos domesticus) were randomly allocated into 4 treatments: C (heat stress control without betaine), T1 (700 ppm betaine), T2 (1,000 ppm betaine), and T3 (1,300 ppm betaine). Each treatment had 6 replicated pens with 15 meat-type ducks per pen. The study was conducted for 42 days. Our findings revealed that the betaine group had higher body weight gain compared to the control group under heat stress (P < 0.05). Betaine supplementation resulted in more significant improvement in hematological indicators such as RBCs and platelet counts than the heat stress control group (P < 0.05). Under the heat-wave environment, supplementation of betaine manifested a significant decrease in blood pH (P < 0.05) but not in electrolytes (Na+, K+ and Cl-) and gas concentration. The concentration of short chain fatty acids (SCFA) in the cecum was higher than the control under heat stress conditions. The total SCFA, acetic acid, and propionic acid production was higher in the betaine supplemented groups compared to the heat stress control group (P < 0.05). Results showed that betaine supplementation has beneficial effects in meat-type ducks under heat stress on short chain fatty acid levels, blood biochemical parameters, and body weight. © 2016 Poultry Science Association Inc.

  2. Low-level laser effects on bacterial cultures submitted to heat stress

    NASA Astrophysics Data System (ADS)

    Gonçalves, E. M.; Guimarães, O. R.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2016-06-01

    Low-level lasers have been used worldwide to treat a number of diseases, pain relief, and wound healing. Some studies demonstrated that low-level laser radiations induce effects depending on the physiological state and DNA repair mechanisms of cells. In this work we evaluated the effects of low-level red and infrared lasers on Escherichia coli cells deficient in SOS responses submitted to heat stress. Exponential and stationary E. coli cultures of wild type (AB1157), RecA deficient (AB2463) and LexA deficient (AB2494), both SOS response deficient, were exposed to low-level red and infrared lasers at different fluences and submitted to heat stress (42 °C, 20 min). After that, cell survival and morphology were evaluated. Previous exposure to red, but not infrared lasers, increases survival fractions and decreases the area ratios of E. coli AB1157 cells submitted to heat stress. Our research suggests that a low-level red laser increases cell viability and protects cells from morphological alteration in E. coli cultures submitted to heat stress depending on laser wavelength and SOS response.

  3. Clostridium thermocellum Transcriptomic Profiles after Exposure to Furfural or Heat Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Charlotte M; Yang, Shihui; Rodriguez, Jr., Miguel

    2013-01-01

    Background The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP)biocatalyst for cellulosic ethanol production. It is capable of both cellulose solubilization and its fermentation to produce lignocellulosic ethanol. Intolerance to stresses routinely encountered during industrial fermentations may hinder the commercial development of this organism. A previous C. thermocellum ethanol stress study showed that largest transcriptomic response was in genes and proteins related to nitrogen uptake and metabolism. Results In this study, C. thermocellum was grown to mid-exponential phase and treated with furfural or heat to a final concentration of 3 g.L-1 or 68 C respectively to investigate generalmore » and specific physiological and regulatory stress responses. Samples were taken at 10, 30, 60 and 120 min post-shock, and from untreated control fermentations, for transcriptomic analyses and fermentation product determinations and compared to a published dataset from an ethanol stress study. Urea uptake genes were induced following furfural stress, but not to the same extent as ethanol stress and transcription from these genes was largely unaffected by heat stress. The largest transcriptomic response to furfural stress was genes for sulfate transporter subunits and enzymes in the sulfate assimilatory pathway, although these genes were also affected late in the heat and ethanol stress responses. Lactate production was higher in furfural treated culture, although the lactate dehydrogenase gene was not differentially expressed under this condition. Other redox related genes such as a copy of the rex gene, a bifunctional acetaldehyde-CoA/alcohol dehydrogenase and adjacent genes did show lower expression after furfural stress compared to the control, heat and ethanol fermentation profiles. Heat stress induced expression from chaperone related genes and overlap was observed with the responses to the other stresses. This study suggests

  4. Invited review: heat stress effects during late gestation on dry cows and their calves.

    PubMed

    Tao, S; Dahl, G E

    2013-07-01

    In dairy cattle, late gestation is a critical period for fetal growth and physiological transition into the next lactation. Environmental factors, such as temperature and light, exert dramatic effects on the production, health, and well-being of animals during this period and after parturition. The aim of this review was to introduce effects of heat stress during late gestation on dairy cattle, and discuss the biological mechanisms that underlie the observed production and health responses in the dam and her fetus. Relative to cooled cows, cows that are heat stressed during late gestation have impaired mammary growth before parturition and decreased milk production in the subsequent lactation. In response to higher milk yield, cows cooled prepartum undergo a series of homeorhetic adaptations in early lactation to meet higher demand for milk synthesis compared with heat-stressed cows, but no direct effect of environmental heat stress on metabolism exists during the dry period. Prepartum cooling improves immune status of transition cows and evidence suggests that altered prolactin signaling in immune cells mediates the effects of heat stress on immune function. Late-gestation heat stress compromises placental development, which results in fetal hypoxia, malnutrition, and eventually fetal growth retardation. Maternal heat stress may also have carryover effects on the postnatal growth of offspring, but direct evidence is still lacking. Emerging evidence suggests that offspring from prepartum heat-stressed cows have compromised passive immunity and impaired cell-mediated immune function compared with those from cooled cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress.

    PubMed

    Sawka, Michael N; Leon, Lisa R; Montain, Scott J; Sonna, Larry A

    2011-10-01

    This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  6. Histological, ultrastructural and heat shock protein 70 (HSP70) responses to heat stress in the sea cucumber Apostichopus japonicus.

    PubMed

    Xu, Dongxue; Sun, Lina; Liu, Shilin; Zhang, Libin; Yang, Hongsheng

    2015-08-01

    The aquaculture industry for Apostichopus japonicus has suffered severe economic and resource losses due to high temperature in recent summers. There is increasing concern about the effect of high temperature on this species. Histological, ultrastructural and HSP70 responses to heat stress were investigated in the intestine of A. japonicus. Tissue degradation was observed in muscular, submucosal and mucosal layers, with significant decrease in plicae circulares of the mucosal layer. Ultrastructural damage intensified with increasing stress time, and indicators of cell apoptosis were evident after 192 h heat stress. Immunostaining showed HSP70 mainly in mucosa and serosa, with faint staining in non-stressed individuals (the control group) and denser staining under stress (the 6, 48 and 192 h groups). Western blot detection confirmed ocurrence of HSP70 in all groups and significant up-regulation under stress. The rapid and persistent response of HSP70 implies its critical role in the heat shock response of A. japonicus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress.

    PubMed

    Wang, Guodong; Kong, Fanying; Zhang, Song; Meng, Xia; Wang, Yong; Meng, Qingwei

    2015-06-01

    Photosynthesis is one of the biological processes most sensitive to heat stress in plants. Carbon assimilation, which depends on ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is one of the major sites sensitive to heat stress in photosynthesis. In this study, the roles of a tomato (Solanum lycopersicum) chloroplast-targeted DnaJ protein (SlCDJ2) in resisting heat using sense and antisense transgenic tomatoes were examined. SlCDJ2 was found to be uniformly distributed in the thylakoids and stroma of the chloroplasts. Under heat stress, sense plants exhibited higher chlorophyll contents and fresh weights, and lower accumulation of reactive oxygen species (ROS) and membrane damage. Moreover, Rubisco activity, Rubisco large subunit (RbcL) content, and CO2 assimilation capacity were all higher in sense plants and lower in antisense plants compared with wild-type plants. Thus, SlCDJ2 contributes to maintenance of CO2 assimilation capacity mainly by protecting Rubisco activity under heat stress. SlCDJ2 probably achieves this by keeping the levels of proteolytic enzymes low, which prevents accelerated degradation of Rubisco under heat stress. Furthermore, a chloroplast heat-shock protein 70 was identified as a binding partner of SlCDJ2 in yeast two-hybrid assays. Taken together, these findings establish a role for SlCDJ2 in maintaining Rubisco activity in plants under heat stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Betaine prevented fructose-induced NAFLD by regulating LXRα/PPARα pathway and alleviating ER stress in rats.

    PubMed

    Ge, Chen-Xu; Yu, Rong; Xu, Min-Xuan; Li, Pei-Qin; Fan, Chen-Yu; Li, Jian-Mei; Kong, Ling-Dong

    2016-01-05

    Betaine has been proven effective in treating nonalcoholic fatty liver disease (NAFLD) in animal models, however, its molecular mechanisms remain elusive. The aims of this study were to explore the mechanisms mediating the anti-inflammatory and anti-lipogenic actions of betaine in fructose-fed rats. In this study, betaine improved insulin resistance, reduced body weight gain and serum lipid levels, and prevented hepatic lipid accumulation in fructose-fed rats. It up-regulated hepatic expression of liver X receptor-alpha (LXRα) and peroxisome proliferator-activated receptor-alpha (PPARα), with the attenuation of the changes of their target genes, including hepatic carnitine palmitoyl transferase (CPT) 1α, glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1, apolipoprotein B, sterol regulatory element-binding protein 1c and adipocyte differentiation-related protein, involved in fatty acid oxidation and lipid storage in these model rats. Furthermore, betaine alleviated ER stress and inhibited acetyl-CoA carboxylase α, CPT II, stearoyl-CoA desaturase 1 and fatty acid synthase expression involved in fatty acid synthesis in the liver of fructose-fed rats. Betaine suppressed hepatic gluconeogenesis in fructose-fed rats by moderating protein kinase B -forkhead box protein O1 pathway, as well as p38 mitogen-activated protein kinase and mammalian target of rapamycin activity. Moreover, betaine inhibited hepatic nuclear factor kappa B /nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome activation-mediated inflammation in this animal model. These results demonstrated that betaine ameliorated hepatic lipid accumulation, gluconeogenesis, and inflammation through restoring LXRα and PPARα expression and alleviating ER stress in fructose-fed rats. This study provides the potential mechanisms of betaine involved in the treatment of NAFLD. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Alleviating Parenting Stress in Parents with Intellectual Disabilities: A Randomized Controlled Trial of a Video-feedback Intervention to Promote Positive Parenting.

    PubMed

    Hodes, Marja W; Meppelder, Marieke; de Moor, Marleen; Kef, Sabina; Schuengel, Carlo

    2017-05-01

    Adapted parenting support may alleviate the high levels of parenting stress experienced by many parents with intellectual disabilities. Parents with mild intellectual disabilities or borderline intellectual functioning were randomized to experimental (n = 43) and control (n = 42) conditions. Parents in both groups received care-as-usual. The experimental group also received an adapted version of video-feedback intervention for positive parenting and learning difficulties (VIPP-LD). Measures of parenting stress were obtained pre-test, post-test and 3-month follow-up. Randomization to the experimental group led to a steeper decline in parenting stress related to the child compared to the control group (d = 0.46). No statistically significant effect on stress related to the parent's own functioning or situation was found. The results of the study suggest the feasibility of reducing parenting stress in parents with mild intellectual disability (MID) through parenting support, to the possible benefit of their children. © 2016 John Wiley & Sons Ltd.

  10. Executive Well-Being: Stress and Administrators.

    ERIC Educational Resources Information Center

    Giammatteo, Michael C.; Giammatteo, Dolores M.

    This booklet explains the meaning and sources of stress, presents a model differentiating among several approaches to dealing with stress, and offers advice and self-help exercises to aid in alleviating the causes of stress. Each chapter topic is a component of the stress alleviation model: stress awareness, tolerance, stress reduction, and stress…

  11. Expression of HSPs: an adaptive mechanism during long-term heat stress in goats ( Capra hircus)

    NASA Astrophysics Data System (ADS)

    Dangi, Satyaveer Singh; Gupta, Mahesh; Dangi, Saroj K.; Chouhan, Vikrant Singh; Maurya, V. P.; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2015-08-01

    Menacing global rise in surface temperature compelled more focus of research over understanding heat stress response mechanism of animals and mitigation of heat stress. Twenty-four goats divided into four groups ( n = 6) such as NHS (non-heat-stressed), HS (heat-stressed), HS + VC (heat-stressed administered with vitamin C), and HS + VE + Se (heat-stressed administered with vitamin E and selenium). Except NHS group, other groups were exposed to repeated heat stress (42 °C) for 6 h on 16 consecutive days. Blood samples were collected at the end of heat exposure on days 1, 6, 11, and 16. When groups compared between days, expression of all heat shock proteins (HSPs) showed a similar pattern as first peak on day 1, reached to basal level on the sixth day, and followed by second peak on day 16. The relative messenger RNA (mRNA) and protein expression of HSP 60, HSP70, and HSP90 was observed highest ( P < 0.05) in HS group, followed by antioxidant-administered group on days 1 and 16, which signifies that antioxidants have dampening effect on HSP expression. HSP105/110 expression was highest ( P < 0.05) on day 16. We conclude that HSP expression pattern is at least two-peak phenomenon, i.e., primary window of HSP protection on the first day followed by second window of protection on day 16. HSP60, HSP70, and HSP90 play an important role during the initial phase of heat stress acclimation whereas HSP105/110 joins this cascade at later phase. Antioxidants may possibly attenuate the HSP expression by reducing the oxidative stress.

  12. The development of the Hong Kong Heat Index for enhancing the heat stress information service of the Hong Kong Observatory.

    PubMed

    Lee, K L; Chan, Y H; Lee, T C; Goggins, William B; Chan, Emily Y Y

    2016-07-01

    This paper presents a study to develop a heat index, for use in hot and humid sub-tropical climate in Hong Kong. The study made use of hospitalization data and heat stress measurement data in Hong Kong from 2007 to 2011. The heat index, which is called Hong Kong Heat Index (HKHI), is calculated from the natural wet bulb temperature, the globe temperature, and the dry bulb temperature together with a set of coefficients applicable to the high humidity condition in the summer of Hong Kong. Analysis of the response of hospitalization rate to variation in HKHI and two other heat indices, namely Wet Bulb Globe Temperature (WBGT) and Net Effective Temperature (NET), revealed that HKHI performed generally better than WBGT and NET in reflecting the heat stress impact on excess hospitalization ratio in Hong Kong. Based on the study results, two reference criteria of HKHI were identified to establish a two-tier approach for the enhancement of the heat stress information service in Hong Kong.

  13. Effects of heat stress on working populations when facing climate change.

    PubMed

    Lundgren, Karin; Kuklane, Kalev; Gao, Chuansi; Holmér, Ingvar

    2013-01-01

    It is accepted that the earth's climate is changing in an accelerating pace, with already documented implications for human health and the environment. This literature review provides an overview of existing research findings about the effects of heat stress on the working population in relation to climate change. In the light of climate change adaptation, the purpose of the literature review was to explore recent and previous research into the impacts of heat stress on humans in an occupational setting. Heat stress in the workplace has been researched extensively in the past however, in the contemporary context of climate change, information is lacking on its extent and implications. The main factors found to exacerbate heat stress in the current and future workplace are the urban 'heat island effect', physical work, individual differences, and the developing country context where technological fixes are often not applicable. There is also a lack of information on the effects on vulnerable groups such as elderly people and pregnant women. As increasing temperatures reduce work productivity, world economic productivity could be condensed, affecting developing countries in the tropical climate zone disproportionately. Future research is needed taking an interdisciplinary approach, including social, economic, environmental and technical aspects.

  14. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.

    PubMed

    Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan

    2016-05-01

    Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT-CERES-Wheat, DSSAT-Nwheat, APSIM-Wheat, and WheatGrow) were evaluated with 4 years of environment-controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30-0.60%, total aboveground biomass was reduced by 0.37-0.43%, and grain yield was reduced by 1.0-1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies. © 2016 John Wiley & Sons Ltd.

  15. Effects of City Expansion on Heat Stress under Climate Change Conditions

    PubMed Central

    Argüeso, Daniel; Evans, Jason P.; Pitman, Andrew J.; Di Luca, Alejandro

    2015-01-01

    We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990–2009) and future (2040–2059) simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort. PMID:25668390

  16. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress.

    PubMed

    Suzuki, Nobuhiro; Bassil, Elias; Hamilton, Jason S; Inupakutika, Madhuri A; Zandalinas, Sara Izquierdo; Tripathy, Deesha; Luo, Yuting; Dion, Erin; Fukui, Ginga; Kumazaki, Ayana; Nakano, Ruka; Rivero, Rosa M; Verbeck, Guido F; Azad, Rajeev K; Blumwald, Eduardo; Mittler, Ron

    2016-01-01

    Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses.

  17. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress

    PubMed Central

    Suzuki, Nobuhiro; Bassil, Elias; Hamilton, Jason S.; Inupakutika, Madhuri A.; Zandalinas, Sara Izquierdo; Tripathy, Deesha; Luo, Yuting; Dion, Erin; Fukui, Ginga; Kumazaki, Ayana; Nakano, Ruka; Rivero, Rosa M.; Verbeck, Guido F.; Azad, Rajeev K.; Blumwald, Eduardo; Mittler, Ron

    2016-01-01

    Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses. PMID:26824246

  18. Treadmill exercise alleviates chronic mild stress-induced depression in rats.

    PubMed

    Lee, Taeck-Hyun; Kim, Kijeong; Shin, Mal-Soon; Kim, Chang-Ju; Lim, Baek-Vin

    2015-12-01

    Depression is a major cause of disability and one of the most common public health problems. In the present study, antidepressive effect of treadmill exercise on chronic mild stress (CMS)-induced depression in rats was investigated. For this, sucrose intake test, immunohistochemistry for 5-bromo-2'-deoxyuridine, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot analysis for brain-derived neurotrophic factor, cyclic adenosine monophosphate response element binding protein, and endothelial nitric oxide synthase were conducted. Following adaptation to the animal vivarium and two baseline fluid intake tests, the animals were divided into four groups: the control group, the CMS-induced depression group, the CMS-induced depression and exercise group, and the CMS-induced depression and fluoxetine-treated group. The animals in the CMS groups were exposed to the CMS conditions for 8 weeks and those in the control group were exposed to the control conditions for 8 weeks. After 4 weeks of CMS, the rats in the CMS-induced depression and exercise group were made to run on a motorized treadmill for 30 min once a day for 4 weeks. In the present results, treadmill exercise alleviated CMS-induced depressive symptoms. Treadmill exercise restored sucrose consumption, increased cell proliferation, and decreased apoptotic cell death. The present results suggest the possibility that exercise may improve symptoms of depression.

  19. Heat strain and heat stress for workers wearing protective suits at a hazardous waste site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paull, J.M.; Rosenthal, F.S.

    1987-05-01

    In order to evaluate the effects of heat stress when full body protective suits are worn, heart rates, oral temperatures and environmental parameters were measured for five unacclimatized male workers (25-33 years of age) who performed sampling activities during hazardous waste clean-up operations. The protective ensembles included laminated PVC-Tyvec chemical resistant hood suits with rubber boots, gloves, full facepiece dual cartridge respirators and hard hats. For comparison, measurements also were performed when the men worked at a similar level of activity while they wore ordinary work clothes. A comparison of the heart rates for the men working with and withoutmore » suits indicated that wearing the suits imposed a heat stress equivalent to adding 6/sup 0/ to 11/sup 0/C (11/sup 0/ to 20/sup 0/F) to the ambient WBGT index. A similar result was obtained by calculating the WBGT in the microclimate inside the suits and comparing it to the ambient WBGT. These results indicate the following: 1) there exists a significant risk of heat injury during hazardous waste work when full body protective clothing is worn, and 2) threshold limit values for heat stress established by the ACGIH must be lowered substantially before extending them to cover workers under these conditions.« less

  20. Apigenin Alleviates Endotoxin-Induced Myocardial Toxicity by Modulating Inflammation, Oxidative Stress, and Autophagy

    PubMed Central

    Li, Fang; Lang, Fangfang; Zhang, Huilin; Xu, Liangdong; Wang, Yidan; Zhai, Chunxiao

    2017-01-01

    Apigenin, a component in daily diets, demonstrates antioxidant and anti-inflammatory properties. Here, we intended to explore the mechanism of apigenin-mediated endotoxin-induced myocardial injury and its role in the interplay among inflammation, oxidative stress, and autophagy. In our lipopolysaccharide- (LPS-) induced myocardial injury model, apigenin ameliorated cardiac injury (lactate dehydrogenase (LDH) and creatine kinase (CK)), cell death (TUNEL staining, DNA fragmentation, and PARP activity), and tissue damage (cardiac troponin I (cTnI) and cardiac myosin light chain-1 (cMLC1)) and improved cardiac function (ejection fraction (EF) and end diastolic left ventricular inner dimension (LVID)). Apigenin also alleviated endotoxin-induced myocardial injury by modulating oxidative stress (nitrotyrosine and protein carbonyl) and inflammatory cytokines (TNF-α, IL-1β, MIP-1α, and MIP-2) along with their master regulator NFκB. Apigenin modulated redox homeostasis, and its anti-inflammatory role might be associated with its ability to control autophagy. Autophagy (determined by LAMP1, ATG5, and p62), its transcriptional regulator transcription factor EB (TFEB), and downstream target genes including vacuolar protein sorting-associated protein 11 (Vps11) and microtubule-associated proteins 1A/1B light chain 3B (Map1lc3) were modulated by apigenin. Thus, our study demonstrated that apigenin may lead to potential development of new target in sepsis treatment or other myocardial oxidative and/or inflammation-induced injuries. PMID:28828145

  1. Apigenin Alleviates Endotoxin-Induced Myocardial Toxicity by Modulating Inflammation, Oxidative Stress, and Autophagy.

    PubMed

    Li, Fang; Lang, Fangfang; Zhang, Huilin; Xu, Liangdong; Wang, Yidan; Zhai, Chunxiao; Hao, Enkui

    2017-01-01

    Apigenin, a component in daily diets, demonstrates antioxidant and anti-inflammatory properties. Here, we intended to explore the mechanism of apigenin-mediated endotoxin-induced myocardial injury and its role in the interplay among inflammation, oxidative stress, and autophagy. In our lipopolysaccharide- (LPS-) induced myocardial injury model, apigenin ameliorated cardiac injury (lactate dehydrogenase (LDH) and creatine kinase (CK)), cell death (TUNEL staining, DNA fragmentation, and PARP activity), and tissue damage (cardiac troponin I (cTnI) and cardiac myosin light chain-1 (cMLC1)) and improved cardiac function (ejection fraction (EF) and end diastolic left ventricular inner dimension (LVID)). Apigenin also alleviated endotoxin-induced myocardial injury by modulating oxidative stress (nitrotyrosine and protein carbonyl) and inflammatory cytokines (TNF- α , IL-1 β , MIP-1 α , and MIP-2) along with their master regulator NF κ B. Apigenin modulated redox homeostasis, and its anti-inflammatory role might be associated with its ability to control autophagy. Autophagy (determined by LAMP1, ATG5, and p62), its transcriptional regulator transcription factor EB (TFEB), and downstream target genes including vacuolar protein sorting-associated protein 11 (Vps11) and microtubule-associated proteins 1A/1B light chain 3B (Map1lc3) were modulated by apigenin. Thus, our study demonstrated that apigenin may lead to potential development of new target in sepsis treatment or other myocardial oxidative and/or inflammation-induced injuries.

  2. Communicating the deadly consequences of global warming for human heat stress

    NASA Astrophysics Data System (ADS)

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-04-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  3. Communicating the deadly consequences of global warming for human heat stress

    PubMed Central

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-01-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations. PMID:28348220

  4. Communicating the deadly consequences of global warming for human heat stress.

    PubMed

    Matthews, Tom K R; Wilby, Robert L; Murphy, Conor

    2017-04-11

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  5. Whole-body heat stress and exercise stimulate the appearance of platelet microvesicles in plasma with limited influence of vascular shear stress.

    PubMed

    Wilhelm, Eurico N; González-Alonso, José; Chiesa, Scott T; Trangmar, Steven J; Kalsi, Kameljit K; Rakobowchuk, Mark

    2017-11-01

    Intense, large muscle mass exercise increases circulating microvesicles, but our understanding of microvesicle dynamics and mechanisms inducing their release remains limited. However, increased vascular shear stress is generally thought to be involved. Here, we manipulated exercise-independent and exercise-dependent shear stress using systemic heat stress with localized single-leg cooling (low shear) followed by single-leg knee extensor exercise with the cooled or heated leg (Study 1, n  = 8) and whole-body passive heat stress followed by cycling (Study 2, n  = 8). We quantified femoral artery shear rates (SRs) and arterial and venous platelet microvesicles (PMV-CD41 + ) and endothelial microvesicles (EMV-CD62E + ). In Study 1, mild passive heat stress while one leg remained cooled did not affect [microvesicle] ( P  ≥ 0.05). Single-leg knee extensor exercise increased active leg SRs by ~12-fold and increased arterial and venous [PMVs] by two- to threefold, even in the nonexercising contralateral leg ( P  < 0.05). In Study 2, moderate whole-body passive heat stress increased arterial [PMV] compared with baseline (mean±SE, from 19.9 ± 1.5 to 35.5 ± 5.4 PMV . μ L -1. 10 3 , P  < 0.05), and cycling with heat stress increased [PMV] further in the venous circulation (from 27.5 ± 2.2 at baseline to 57.5 ± 7.2 PMV . μ L -1. 10 3 during cycling with heat stress, P  < 0.05), with a tendency for increased appearance of PMV across exercising limbs. Taken together, these findings demonstrate that whole-body heat stress may increase arterial [PMV], and intense exercise engaging either large or small muscle mass promote PMV formation locally and systemically, with no influence upon [EMV]. Local shear stress, however, does not appear to be the major stimulus modulating PMV formation in healthy humans. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological

  6. Intermittent hyperthyreosis -- a heat stress syndrome.

    PubMed

    Sulman, F G; Tal, E; Pfeifer, Y; Superstine

    1975-09-01

    Intermittent hyperthyreosis occurs under various forms of stress, especially heat stress. The clinician may diagnose such cases as masked or apathetic hyperthyroidism or "forme fruste" hyperthyreosis or thyroid autonomy. As most routine and standard tests may here yield inconsistent results, it is the patients' anamnesis which may provide the clue. Our Bioclimatology Unit has now seen over 100 cases in which thyroid hypersensitivity towards heat was the most prominent syndrome: 10-15% of weather-sensitive patients are affected. The patients complain before or during heat spells of such contradictory symptoms as insomnia, irritability, tension, tachycardia, palpitations, precordial pain, dyspnoe, flushes with sweating or chills, tremor, abdominal pain or diarrhea, polyuria or pollakisuria, weight loss in spite of ravenous appetite, fatigue, exhaustion, depression, adynamia, lack of concentration and confusion. Determination of urinary neurohormones allows a differential diagnosis, intermittent hyperthyreosis being characterized by three cardinal symptoms: 1. tachycardia -- every case with more than 80 pulse beats being suspect (not specific); 2. urinary histamine -- every case excreting more than 90 mug/day being suspect. Again the drawback of this test is its lack of specificity, as histamine may also be increased in cases of allergy and spondylitis; 3. urinary thyroxine -- every case excreting more than 20 mug/day T-4 being suspect. This is the only specific test. Therapy should make use of lithium carbonate and beta-blockers. Propyl thiouracil is rarely required.

  7. Effect of acute heat stress on plant nutrient metabolism proteins

    USDA-ARS?s Scientific Manuscript database

    Abrupt heating decreased the levels (per unit total root protein) of all but one of the nutrient metabolism proteins examined, and for most of the proteins, effects were greater for severe vs. moderate heat stress. For many of the nutrient metabolism proteins, initial effects of heat (1 d) were r...

  8. Low, medium and high heat tolerant strains of Listeria monocytogenes and increased heat stress resistance after exposure to sublethal heat

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes exhibits sophisticated adaptive mechanisms to counteract higher levels of lethal acid, heat, salt or oxidative stresses after pre-exposure to sublethal concentrations of homogenous stress. A group of 37 strains representing all 13 serotypes of Listeria monocytogenes with initi...

  9. Apoptosis in response to heat stress is positively associated with heat-shock protein 90 expression in chicken myocardial cells in vitro.

    PubMed

    Zhang, Xiao-Hui; Wu, Hong; Tang, Shu; Li, Qiao-Ning; Xu, Jiao; Zhang, Miao; Su, Ya-Nan; Yin, Bin; Zhao, Qi-Ling; Kemper, Nicole; Hartung, Joerg; Bao, En-Dong

    2017-06-30

    To determine heat-shock protein (Hsp)90 expression is connected with cellular apoptotic response to heat stress and its mechanism, chicken ( Gallus gallus ) primary myocardial cells were treated with the Hsp90 promoter, aspirin, and its inhibitor, geldanamycin (GA), before heat stress. Cellular viability, heat-stressed apoptosis and reactive oxygen species level under different treatments were measured, and the expression of key proteins of the signaling pathway related to Hsp90 and their colocalization with Hsp90 were detected. The results showed that aspirin treatment increased the expression of protein kinase B (Akt), the signal transducer and activator of transcription (STAT)-3 and p-IKKα/β and the colocalization of Akt and STAT-3 with Hsp90 during heat stress, which was accompanied by improved viability and low apoptosis. GA significantly inhibited Akt expression and p-IKKα/β level, but not STAT-3 quantity, while the colocalization of Akt and STAT-3 with Hsp90 was weakened, followed by lower cell viability and higher apoptosis. Aspirin after GA treatment partially improved the stress response and apoptosis rate of tested cells caused by the recovery of Akt expression and colocalization, rather than the level of STAT-3 (including its co-localization with Hsp90) and p-IKKα/β. Therefore, Hsp90 expression has a positive effect on cellular capacity to resist heat-stressed injury and apoptosis. Moreover, inhibition of Hsp90 before stress partially attenuated its positive effects.

  10. Transcription of four Rhopalosiphum padi (L.) heat shock protein genes and their responses to heat stress and insecticide exposure.

    PubMed

    Li, Yuting; Zhao, Qi; Duan, Xinle; Song, Chunman; Chen, Maohua

    2017-03-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.), a worldwide destructive pest, is more heat tolerant than other wheat aphids, and it has developed resistance to different insecticides. Heat shock proteins (HSPs) play an important role in coping with environmental stresses. To investigate Hsp transcriptional responses to heat and insecticide stress, four full-length Hsp genes from R. padi (RpHsp60, RpHsc70, RpHsp70-1, and RpHsp70-2) were cloned. Four RpHsps were expressed during all R. padi developmental stages, but at varying levels. The mRNA levels of RpHsps were increased under thermal stress and reached maximal induction at a lower temperature (36°C) in the alate morph than in the apterous morph (37°C or 38°C). RpHsp expressions under heat stress suggest that RpHsp70-1 and RpHsp70-2 are inducible in both apterous and alate morphs, RpHsc70 is only heat-inducible in apterous morph, and RpHsp60 exhibits poor sensitivity to heat stress. The pretreatment at 37°C significantly increase both the survival rate and the RpHsps expression level of R. padi at subsequent lethal temperature. Under exposure to two sublethal concentrations (LC 10 and LC 30 ) of beta-cypermethrin, both RpHsp70-1 and RpHsp70-2 expressions were induced and reached a maximum 24h after exposure. In contrast, expression of RpHsp60 was not induced by either sublethal concentration of beta-cypermethrin. Moreover, the responses of RpHsp70-1 and RpHsp70-2 to heat shock were more sensitive than those to beta-cypermethrin. These results suggest that induction of RpHsp expression is related to thermal tolerance, and that RpHsp70-1 and RpHsp70-2 are the primary genes involved in the response to both heat and pesticide stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Scaling and Thermal Evolution of Internally Heated Planets: Yield Stress and Thermal History.

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.; Moore, W. B.

    2014-12-01

    Using coupled 3D mantle convection and planetary tectonics models of bi-stable systems, we show how system behaviors for mobile-lid and stagnant-lid states scale as functions of internal heating rates (Q) and basal Ra (Rab). With parameter ranges for temperature- and depth-dependant viscosities: 1e4 - 3e4, Rab: 1e5- 3e5, Q: 0 - 100, and yield stress: 1e4 - 2e5, it can be shown the internal temperatures, velocities, heat fluxes, and system behaviors for mobile-lid and stagnant-lid states diverge, for equivalent parameter values, as a function of increasing Q. For the mobile-lid regime, yielding behavior in the upper boundary layer strongly influences the dynamics of the system. Internal temperatures, and consequently temperature-dependant viscosities, vary strongly as a function of yield stress for a given Q. The temperature distribution across the upper and lower mantles are sub-adiabatic for low to moderate yield stress, and adiabatic to super-adiabatic for high yield stresses. Across the parameter range considered, and for fixed yield stress, the Nu across the basal boundary (Nub) is positive and only weakly dependant on Q (varies by ~ 9%). Nub varies strongly as a function of yield stress (maximum variation of ~84%). Both mobile-lid velocities and lid-thicknesses are yield stress dependant for a given Q and Ra. In contrast to mobile-lids, the stagnant-lid regime is governed by the relative inefficiency of heat transport through the surface boundary layer. Internal temperatures are yield stress independent, and are on average 30% greater. Nub has a strong dependence on heating rates and surface boundary layer thicknesses. Within the parameter space considered, the maximum stagnant-lid Nub corresponds to the minimum mobile-lid Nub (for high yield stress), and decreases with increasing Q. For high Q, super-heated stagnant-lids may develop, with Nub< 0, and changes in trends for system behaviors. Planets with high levels of internal heating and/or high yield

  12. Climate change projections of heat stress in Europe: From meteorological variables to impacts on productivity

    NASA Astrophysics Data System (ADS)

    Casanueva, Ana; Kotlarski, Sven; Liniger, Mark A.

    2017-04-01

    Future climate change is likely to have important impacts in many socio-economic sectors. In particular, higher summer temperatures or more prolonged heat waves may be responsible for health problems and productivity losses related to heat stress, especially affecting people exposed to such situations (e.g. working under outside settings or in non-acclimatized workplaces). Heat stress on the body under work load and consequently their productivity loss can be described through heat stress indices that are based on multiple meteorological parameters such as temperature, humidity, wind and radiation. Exploring the changes of these variables under a warmer climate is of prime importance for the Impacts, Adaptation and Vulnerability communities. In particular, the H2020 project HEAT-SHIELD aims at analyzing the impact of climate change on heat stress in strategic industries in Europe (manufacturing, construction, transportation, tourism and agriculture) within an inter-sectoral framework (climate scientists, biometeorologists, physiologists and stakeholders). In the present work we explore present and future heat stress over Europe using an ensemble of the state-of-the-art RCMs from the EURO-CORDEX initiative. Since RCMs cannot be directly used in impact studies due to their partly substantial biases, a standard bias correction method (empirical quantile mapping) is applied to correct the individual variables that are then used to derive heat stress indices. The objectives of this study are twofold, 1) to test the ability of the separately bias corrected variables to reproduce the main characteristics of heat stress indices in present climate conditions and 2) to explore climate change projections of heat stress indices. We use the wet bulb globe temperature (WBGT) as primary heat stress index, considering two different versions for indoor (or in the shade, based on temperature and humidity conditions) and outdoor settings (including also wind and radiation). The WBGT

  13. Residual stresses in AM fabricated ball during a heating process

    NASA Astrophysics Data System (ADS)

    Burenin, A. A.; Murashkin, E. V.; Dats, E. P.

    2018-05-01

    The present study is devoted to the problem of residual stresses calculation in AM fabricated ball during heating. Strains of the ball are assumed to be small, which allows to use the apparatus of the theory of thermoelastoplastic akin to Prandtl and Reuss. The problem of the evolution of the field of residual stresses in the ball at a given temperature on its external border is solved. The heat conduction equation and the equilibrium equations may be independently integrated when the hypothesis of the insignificance of the coupled effects of thermal and mechanical processes is adopted. The fields of residual stresses and displacements are computed.

  14. Effects of heat shock protein 90 expression on pectoralis major oxidation in broilers exposed to acute heat stress.

    PubMed

    Hao, Y; Gu, X H

    2014-11-01

    This study was conducted to determine the effects of heat shock protein 90 (HSP90) expression on pH, lipid peroxidation, heat shock protein 70 (HSP70), and glucocorticoid receptor (GR) expression of pectoralis major in broilers exposed to acute heat stress. In total, 90 male broilers were randomly allocated to 3 groups: control (CON), heat stress (HS), or geldanamycin treatment (GA). On d 41, the broilers in the GA group were injected intraperitoneally with GA (5 μg/kg of BW), and the broilers in the CON and HS groups were injected intraperitoneally with saline. Twenty-four hours later, the broilers in the CON group were moved to environmental chambers controlled at 22°C for 2 h, and the broilers in the HS and GA groups were moved to environmental chambers controlled at 40°C for 2 h. The pH values of the pectoralis major after 30 min and 24 h of chilling after slaughter of HS and GA broilers were significantly lower (P < 0.01) than those of the CON broilers. Heat stress caused significant increases in sera corticosterone and lactic dehydrogenase, the activity of malondialdehyde and superoxide dismutase, the expression of HSP90 and HSP70, and nuclear expression of GR protein in the pectoralis major (P < 0.05). Heat stress induced a significant decrease in GR protein expression in the cytoplasm and GR mRNA expression. Furthermore, the low expression of HSP90 significantly increased levels of lactic dehydrogenase and malondialdehyde and GR protein expression in the cytoplasm under heat stress (P < 0.01), and significantly decreased nuclear GR protein expression (P < 0.01). Heat shock protein 90 was positively correlated with corticosterone and superoxide dismutase activities (P < 0.01), and HSP90 mRNA was negatively correlated with pH after chilling for 24 h. The results demonstrated that HSP90 plays a pivotal role in protecting cells from oxidation. ©2014 Poultry Science Association Inc.

  15. Cutaneous interstitial nitric oxide concentration does not increase during heat stress in humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; MacLean, D. A.

    2001-01-01

    Inhibition of cutaneous nitric oxide (NO) synthase reduces the magnitude of cutaneous vasodilation during whole body heating in humans. However, this observation is insufficient to conclude that NO concentration increases in the skin during a heat stress. This study was designed to test the hypothesis that whole body heating increases cutaneous interstitial NO concentration. This was accomplished by placing 2 microdialysis membranes in the forearm dermal space of 12 subjects. Both membranes were perfused with lactated Ringer solutions at a rate of 2 microl/min. In both normothermia and during whole body heating via a water perfused suit, dialysate from these membranes were obtained and analyzed for NO using the chemiluminescence technique. In six of these subjects, after the heat stress, the membranes were perfused with a 1 M solution of acetylcholine to stimulate NO release. Dialysate from these trials was also assayed to quantify cutaneous interstitial NO concentration. Whole body heating increased skin temperature from 34.6 +/- 0.2 to 38.8 +/- 0.2 degrees C (P < 0.05), which increased sublingual temperature (36.4 +/- 0.1 to 37.6 +/- 0.1 degrees C; P < 0.05), heart rate (63 +/- 5 to 93 +/- 5 beats/min; P < 0.05), and skin blood flow over the membranes (21 +/- 4 to 88 +/- 10 perfusion units; P < 0.05). NO concentration in the dialysate did not increase significantly during of the heat stress (7.6 +/- 0.7 to 8.6 +/- 0.8 microM; P > 0.05). After the heat stress, administration of acetylcholine in the perfusate significantly increased skin blood flow (128 +/- 6 perfusion units) relative to both normothermic and heat stress values and significantly increased NO concentration in the dialysate (15.8 +/- 2.4 microM). These data suggest that whole body heating does not increase cutaneous interstitial NO concentration in forearm skin. Rather, NO may serve in a permissive role in facilitating the effects of an unknown neurotransmitter, leading to cutaneous vasodilation

  16. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra.

    PubMed

    Kask, Kaia; Kännaste, Astrid; Talts, Eero; Copolovici, Lucian; Niinemets, Ülo

    2016-09-01

    Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress-dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25-44 °C (long-term stress) or shock-heating leaves to 45-50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long-term stress and collapse of photosynthetic activity after heat shock stress were associated with non-stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long-term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long-term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat-stressed B. nigra plants, especially upon chronic stress that leads to induction responses. © 2016 John Wiley & Sons Ltd.

  17. Whole body heat stress attenuates the pressure response to muscle metaboreceptor stimulation in humans.

    PubMed

    Cui, Jian; Blaha, Cheryl; Sinoway, Lawrence I

    2016-11-01

    The effects of whole body heat stress on sympathetic and cardiovascular responses to stimulation of muscle metaboreceptors and mechanoreceptors remains unclear. We examined the muscle sympathetic nerve activity (MSNA), blood pressure, and heart rate in 14 young healthy subjects during fatiguing isometric handgrip exercise, postexercise circulatory occlusion (PECO), and passive muscle stretch during PECO. The protocol was performed under normothermic and whole body heat stress (increase internal temperature ~0.6°C via a heating suit) conditions. Heat stress increased the resting MSNA and heart rate. Heat stress did not alter the mean blood pressure (MAP), heart rate, and MSNA responses (i.e., changes) to fatiguing exercise. During PECO, whole body heat stress accentuated the heart rate response [change (Δ) of 5.8 ± 1.5 to Δ10.0 ± 2.1 beats/min, P = 0.03], did not alter the MSNA response (Δ16.4 ± 2.8 to Δ17.3 ± 3.8 bursts/min, P = 0.74), and lowered the MAP response (Δ20 ± 2 to Δ12 ± 1 mmHg, P < 0.001). Under normothermic conditions, passive stretch during PECO evoked significant increases in MAP and MSNA (both P < 0.001). Of note, heat stress prevented the MAP and MSNA responses to stretch during PECO (both P > 0.05). These data suggest that whole body heat stress attenuates the pressor response due to metaboreceptor stimulation, and the sympathetic nerve response due to mechanoreceptor stimulation. Copyright © 2016 the American Physiological Society.

  18. Scenario-neutral Food Security Risk Assessment: A livestock Heat Stress Case Study

    NASA Astrophysics Data System (ADS)

    Broman, D.; Rajagopalan, B.; Hopson, T. M.

    2015-12-01

    Food security risk assessments can provide decision-makers with actionable information to identify critical system limitations, and alternatives to mitigate the impacts of future conditions. The majority of current risk assessments have been scenario-led and results are limited by the scenarios - selected future states of the world's climate system and socioeconomic factors. A generic scenario-neutral framework for food security risk assessments is presented here that uses plausible states of the world without initially assigning likelihoods. Measures of system vulnerabilities are identified and system risk is assessed for these states. This framework has benefited greatly by research in the water and natural resource fields to adapt their planning to provide better risk assessments. To illustrate the utility of this framework we develop a case study using livestock heat stress risk within the pastoral system of West Africa. Heat stress can have a major impact not only on livestock owners, but on the greater food production system, decreasing livestock growth, milk production, and reproduction, and in severe cases, death. A heat stress index calculated from daily weather is used as a vulnerability measure and is computed from historic daily weather data at several locations in the study region. To generate plausible states, a stochastic weather generator is developed to generate synthetic weather sequences at each location, consistent with the seasonal climate. A spatial model of monthly and seasonal heat stress provide projections of current and future livestock heat stress measures across the study region, and can incorporate in seasonal climate and other external covariates. These models, when linked with empirical thresholds of heat stress risk for specific breeds offer decision-makers with actionable information for use in near-term warning systems as well as for future planning. Future assessment can indicate under which states livestock are at greatest risk

  19. Identification of Reference Genes and Analysis of Heat Shock Protein Gene Expression in Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum, after Exposure to Heat Stress.

    PubMed

    Liu, Yong-Nan; Lu, Xiao-Xiao; Ren, Ang; Shi, Liang; Jiang, Ai-Liang; Yu, Han-Shou; Zhao, Ming-Wen

    2017-01-01

    Ganoderma lucidum has been considered an emerging model species for studying how environmental factors regulate the growth, development, and secondary metabolism of Basidiomycetes. Heat stress, which is one of the most important environmental abiotic stresses, seriously affects the growth, development, and yield of microorganisms. Understanding the response to heat stress has gradually become a hotspot in microorganism research. But suitable reference genes for expression analysis under heat stress have not been reported in G. lucidum. In this study, we systematically identified 11 candidate reference genes that were measured using reverse transcriptase quantitative polymerase chain reaction, and the gene expression stability was analyzed under heat stress conditions using geNorm and NormFinder. The results show that 5 reference genes-CYP and TIF, followed by UCE2, ACTIN, and UBQ1-are the most stable genes under our experimental conditions. Moreover, the relative expression levels of 3 heat stress response genes (hsp17.4, hsp70, and hsp90) were analyzed under heat stress conditions with different normalization strategies. The results show that use of a gene with unstable expression (SAND) as the reference gene leads to biased data and misinterpretations of the target gene expression level under heat stress.

  20. 5-Aminolevulinic Acid (ALA) Alleviated Salinity Stress in Cucumber Seedlings by Enhancing Chlorophyll Synthesis Pathway.

    PubMed

    Wu, Yue; Jin, Xin; Liao, Weibiao; Hu, Linli; Dawuda, Mohammed M; Zhao, Xingjie; Tang, Zhongqi; Gong, Tingyu; Yu, Jihua

    2018-01-01

    5-Aminolevulinic acid (ALA) is a common precursor of tetrapyrroles as well as a crucial growth regulator in higher plants. ALA has been proven to be effective in improving photosynthesis and alleviating the adverse effects of various abiotic stresses in higher plants. However, little is known about the mechanism of ALA in ameliorating the photosynthesis of plant under abiotic stress. In this paper, we studied the effects of exogenous ALA on salinity-induced damages of photosynthesis in cucumber ( Cucumis sativus L.) seedlings. We found that the morphology (plant height, leave area), light utilization capacity of PS II [qL, Y(II)] and gas exchange capacity (Pn, gs, Ci, and Tr) were significantly retarded under NaCl stress, but these parameters were all recovered by the foliar application of 25 mg L -1 ALA. Besides, salinity caused heme accumulation and up-regulation of gene expression of ferrochelatase ( HEMH ) with suppression of other genes involved in chlorophyll synthesis pathway. Exogenously application of ALA under salinity down-regulated the heme content and HEMH expression, but increased the gene expression levels of glutamyl-tRNA reductase ( HEMA1 ), Mg-chelatase ( CHLH ), and protochlorophyllide oxidoreductase ( POR ). Moreover, the contents of intermediates involved in chlorophyll branch were increased by ALA, including protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-Proto IX, protochlorophyllide (Pchlide), and chlorophyll (Chl a and Chl b ) under salt stress. Ultrastructural observation of mesophyll cell showed that the damages of photosynthetic apparatus under salinity were fixed by ALA. Collectively, the chlorophyll biosynthesis pathway was enhanced by exogenous ALA to improve the tolerance of cucumber under salinity.

  1. Heat stress responses in spermatozoa: Mechanisms and consequences for cattle fertility.

    PubMed

    Rahman, Mohammad Bozlur; Schellander, Karl; Luceño, Núria Llamas; Van Soom, Ann

    2018-06-01

    Currently, the world is facing the negative impact of global warming on all living beings. Adverse effects of global warming are also becoming obvious in dairy cattle breeding. In dairy bulls, low fertility has frequently been reported during summer season especially in tropical or subtropical conditions. Typically, spermatozoa at post-meiotic stages of development are more susceptible to heat stress. During this period extensive incorporation of histone modifications and hyperacetylation turns the chromatin into an unstable conformation. These unstable forms of chromatin are thought to be more vulnerable to heat stress, which may have an effect on chromatin condensation of spermatozoa. Spermatozoa with altered chromatin condensation perturb the dynamics of DNA methylation reprogramming in the paternal pronucleus resulting in disordered active DNA demethylation followed by de novo methylation patterns. In addition, there was a tendency of decreased size in both paternal and maternal pronuclei after fertilization of oocytes with heat-stressed spermatozoa, leading to lower fertilization rates. In this review, we will focus on the mechanisms of heat stress-induced sperm defects and provide more detailed insights into sperm-borne epigenetic regulations. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Alleviation effect of arbutin on oxidative stress generated through tyrosinase reaction with l-tyrosine and l-DOPA

    PubMed Central

    2014-01-01

    Background Hydroxyl radical that has the highest reactivity among reactive oxygen species (ROS) is generated through l-tyrosine-tyrosinase reaction. Thus, the melanogenesis might induce oxidative stress in the skin. Arbutin (p-hydroxyphenyl-β-d-glucopyranoside), a well-known tyrosinase inhibitor has been widely used for the purpose of skin whitening. The aim of the present study was to examine if arbutin could suppress the hydroxyl radical generation via tyrosinase reaction with its substrates, l-tyrosine and l-DOPA. Results The hydroxyl radical, which was determined by an electron spin resonance-spin trapping technique, was generated by the addition of not only l-tyrosine but l-DOPA to tyrosinase in a concentration dependent manner. Arbutin could inhibit the hydroxyl radical generation in the both reactions. Conclusion It is presumed that arbutin could alleviate oxidative stress derived from the melanogenic pathway in the skin in addition to its function as a whitening agent in cosmetics. PMID:25297374

  3. Selenium Alleviates Oxidative Stress and Lung Damage Induced by Aluminum Chloride in Adult Rats: Biochemical and Histological Approach.

    PubMed

    Ghorbel, Imen; Elwej, Awatef; Chaabane, Mariem; Jamoussi, Kamel; Mnif, Hela; Boudawara, Tahia; Zeghal, Najiba

    2017-03-01

    Our study pertains to the potential ability of selenium, used as a nutritional supplement, to alleviate oxidative stress induced by aluminum chloride in the lung tissue. Rats have received during 21 days either aluminum chloride (AlCl 3 ) (400 ppm) via drinking water, AlCl 3 associated with Na 2 SeO 3 (0.5 mg/kg of diet), or only Na 2 SeO 3 . Exposure of rats to AlCl 3 induced lung oxidative stress with an increase of malondialdehyde, hydrogen peroxide, and protein carbonyls levels. An alteration of lactate dehydrogenase activities and antioxidant redox status, enzymatic (catalase, superoxide dismutase, and glutathione peroxidase), and non-enzymatic (non-protein thiols, glutathione, metallothionein, and vitamin C) was also observed. These biochemical modifications were substantiated by histopathological data showing alveolar edema, a large number of hemosiderin-laden macrophages, and emphysema. Se supplementation attenuated the levels of oxidative stress by restoring antioxidant state and improved lung histological damage. Our results revealed that Se, a trace element with antioxidant properties, was effective in preventing lung damage.

  4. Dexmedetomidine alleviates anxiety-like behaviors and cognitive impairments in a rat model of post-traumatic stress disorder.

    PubMed

    Ji, Mu-Huo; Jia, Min; Zhang, Ming-Qiang; Liu, Wen-Xue; Xie, Zhong-Cong; Wang, Zhong-Yun; Yang, Jian-Jun

    2014-10-03

    Post-traumatic stress disorder (PTSD) is a psychiatric disease that has substantial health implications, including high rates of health morbidity and mortality, as well as increased health-related costs. Although many pharmacological agents have proven the effects on the development of PTSD, current pharmacotherapies typically only produce partial improvement of PTSD symptoms. Dexmedetomidine is a selective, short-acting α2-adrenoceptor agonist, which has anxiolytic, sedative, and analgesic effects. We therefore hypothesized that dexmedetomidine possesses the ability to prevent the development of PTSD and alleviate its symptoms. By using the rat model of PTSD induced by five electric foot shocks followed by three weekly exposures to situational reminders, we showed that the stressed rats displayed pronounced anxiety-like behaviors and cognitive impairments compared to the controls. Notably, repeated administration of 20μg/kg dexmedetomidine showed impaired fear conditioning memory, decreased anxiety-like behaviors, and improved spatial cognitive impairments compared to the vehicle-treated stressed rats. These data suggest that dexmedetomidine may exert preventive and protective effects against anxiety-like behaviors and cognitive impairments in the rats with PTSD after repeated administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Role of work uniform in alleviating perceptual strain among construction workers.

    PubMed

    Yang, Yang; Chan, Albert Ping-Chuen

    2017-02-07

    This study aims to examine the benefits of wearing a new construction work uniform in real-work settings. A field experiment with a randomized assignment of an intervention group to a newly designed uniform and a control group to a commercially available trade uniform was executed. A total of 568 sets of physical, physiological, perceptual, and microclimatological data were obtained. A linear mixed-effects model (LMM) was built to examine the cause-effect relationship between the Perceptual Strain Index (PeSI) and heat stressors including wet bulb globe temperature (WBGT), estimated workload (relative heart rate), exposure time, trade, workplace, and clothing type. An interaction effect between clothing and trade revealed that perceptual strain of workers across four trades was significantly alleviated by 1.6-6.3 units in the intervention group. Additionally, the results of a questionnaire survey on assessing the subjective sensations on the two uniforms indicated that wearing comfort was improved by 1.6-1.8 units when wearing the intervention type. This study not only provides convincing evidences on the benefits of wearing the newly designed work uniform in reducing perceptual strain but also heightens the value of the field experiment in heat stress intervention studies.

  6. Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress1[OPEN

    PubMed Central

    Basha, Eman; Fowler, Mary E.; Kim, Minsoo; Bordowitz, Juliana; Katiyar-Agarwal, Surekha

    2016-01-01

    The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were created in Arabidopsis (Arabidopsis thaliana) and shown to have reduced and enhanced tolerance, respectively, to extreme heat stress. Affinity purification of CI and CII sHSPs from heat-stressed seedlings recovered eukaryotic translation elongation factor (eEF) 1B (α-, β-, and γ-subunits) and eukaryotic translation initiation factor 4A (three isoforms), although the association with CI sHSPs was stronger and additional proteins involved in translation were recovered with CI sHSPs. eEF1B subunits became partially insoluble during heat stress and, in the CI and CII RNAi lines, showed reduced recovery to the soluble cell fraction after heat stress, which was also dependent on HSP101. Furthermore, after heat stress, CI sHSPs showed increased retention in the insoluble fraction in the CII RNAi line and vice versa. Immunolocalization revealed that both CI and CII sHSPs were present in cytosolic foci, some of which colocalized with HSP101 and with eEF1Bγ and eEF1Bβ. Thus, CI and CII sHSPs have both unique and overlapping functions and act either directly or indirectly to protect specific translation factors in cytosolic stress granules. PMID:27474115

  7. Forkhead Box M1 Is Regulated by Heat Shock Factor 1 and Promotes Glioma Cells Survival under Heat Shock Stress*

    PubMed Central

    Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun

    2013-01-01

    The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351

  8. Boechera Species Exhibit Species-Specific Responses to Combined Heat and High Light Stress

    PubMed Central

    Gallas, Genna; Waters, Elizabeth R.

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species. PMID:26030823

  9. Patterns of gene expression associated with recovery and injury in heat-stressed rats.

    PubMed

    Stallings, Jonathan D; Ippolito, Danielle L; Rakesh, Vineet; Baer, Christine E; Dennis, William E; Helwig, Bryan G; Jackson, David A; Leon, Lisa R; Lewis, John A; Reifman, Jaques

    2014-12-03

    The in vivo gene response associated with hyperthermia is poorly understood. Here, we perform a global, multiorgan characterization of the gene response to heat stress using an in vivo conscious rat model. We heated rats until implanted thermal probes indicated a maximal core temperature of 41.8°C (Tc,Max). We then compared transcriptomic profiles of liver, lung, kidney, and heart tissues harvested from groups of experimental animals at Tc,Max, 24 hours, and 48 hours after heat stress to time-matched controls kept at an ambient temperature. Cardiac histopathology at 48 hours supported persistent cardiac injury in three out of six animals. Microarray analysis identified 78 differentially expressed genes common to all four organs at Tc,Max. Self-organizing maps identified gene-specific signatures corresponding to protein-folding disorders in heat-stressed rats with histopathological evidence of cardiac injury at 48 hours. Quantitative proteomics analysis by iTRAQ (isobaric tag for relative and absolute quantitation) demonstrated that differential protein expression most closely matched the transcriptomic profile in heat-injured animals at 48 hours. Calculation of protein supersaturation scores supported an increased propensity of proteins to aggregate for proteins that were found to be changing in abundance at 24 hours and in animals with cardiac injury at 48 hours, suggesting a mechanistic association between protein misfolding and the heat-stress response. Pathway analyses at both the transcript and protein levels supported catastrophic deficits in energetics and cellular metabolism and activation of the unfolded protein response in heat-stressed rats with histopathological evidence of persistent heat injury, providing the basis for a systems-level physiological model of heat illness and recovery.

  10. Differential Response to Heat Stress in Outer and Inner Onion Bulb Scales.

    PubMed

    Galsurker, Ortal; Doron-Faigenboim, Adi; Teper-Bamnolker, Paula; Daus, Avinoam; Lers, Amnon; Eshel, Dani

    2018-05-18

    Brown protective skin formation in onion bulbs can be induced by rapid postharvest heat treatment. Onions that were peeled to different depths and were exposed to heat stress showed that only the outer scale formed dry brown skin, whereas the inner scales maintained high water content and did not change color. Our results reveal that browning of the outer scale during heat treatment is due to an enzymatic process that is associated with high levels of oxidation components, such as peroxidase and quercetin glucoside. De-novo transcriptome analysis revealed differential molecular responses of the outer and inner scales to the heat stress. Genes involved in lipid metabolism, oxidation pathways and cell-wall modification were highly expressed in the outer scale during heating. Defense-response-related genes such as those encoding heat-shock proteins, antioxidative stress defense or production of osmoprotectant metabolites were mostly induced in the inner scale in response to the heat exposure. These transcriptomic data led to a conceptual model that suggests sequential processes for browning development and desiccation of the outer scales versus processes associated with defense response and heat tolerance in the inner scale. Thus, the observed physiological differences between the outer and inner scales is supported by the identified molecular differences.

  11. Spermine alleviates drought stress in white clover with different resistance by influencing carbohydrate metabolism and dehydrins synthesis.

    PubMed

    Li, Zhou; Jing, Wen; Peng, Yan; Zhang, Xin Quan; Ma, Xiao; Huang, Lin Kai; Yan, Yan-Hong

    2015-01-01

    The objective of this research was to analyse whether ameliorating drought stress through exogenously applied spermine (Spm) was related to carbohydrate metabolism, dehydrins accumulation and the transcription of genes encoding dehydrins in two white clovers (drought-susceptible cv. 'Ladino' and drought-resistant cv. 'Haifa') under controlled drying conditions for 10 days. The results show that the application of Spm effectively alleviates negative effects caused by drought stress in both cultivars. Exogenous Spm led to accumulation of more water-soluble carbohydrates (WSC), sucrose, fructose and sorbitol in both cultivars under drought stress, and also significantly elevated glucose content in leaves of drought-resistant cv. 'Haifa', but had no effect on drought-susceptible cv. 'Ladino'. Accordingly, the key enzyme activities of sucrose and sorbitol metabolism changed along with the application of Spm under drought stress. Spm induced a significant increase in sucrose phosphate synthase (SPS) or sorbitol dehydrogenase (SDH) activity, but decrease in sucrose synthetase (SS) activity when two cultivars were subjected to drought. In addition, the improved accumulation of dehydrins induced by exogenous Spm coincided with three genes expression which was responsible for dehydrins synthesis. But Spm-induced transcript level of dehydrin genes increased earlier in cv. 'Ladino' than that in cv. 'Haifa'. Thus, these results suggest that ameliorating drought stress through exogenously applied Spm may be associated with increased carbohydrate accumulation and dehydrins synthesis. There are differences between drought-susceptible and -resistant white clover cultivars related to Spm regulation of WSC metabolism and dehydrins expression.

  12. [Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].

    PubMed

    Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng

    2015-09-01

    The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination.

  13. Baroreceptor unloading does not limit forearm sweat rate during severe passive heat stress.

    PubMed

    Schlader, Zachary J; Gagnon, Daniel; Lucas, Rebekah A I; Pearson, James; Crandall, Craig G

    2015-02-15

    This study tested the hypothesis that sweat rate during passive heat stress is limited by baroreceptor unloading associated with heat stress. Two protocols were performed in which healthy subjects underwent passive heat stress that elicited an increase in intestinal temperature of ∼1.8°C. Upon attaining this level of hyperthermia, in protocol 1 (n = 10, 3 females) a bolus (19 ml/kg) of warm (∼38°C) isotonic saline was rapidly (5-10 min) infused intravenously to elevate central venous pressure (CVP), while in protocol 2 (n = 11, 5 females) phenylephrine was infused intravenously (60-120 μg/min) to return mean arterial pressure (MAP) to normothermic levels. In protocol 1, heat stress reduced CVP from 3.9 ± 1.9 mmHg (normothermia) to -0.6 ± 1.4 mmHg (P < 0.001), while saline infusion returned CVP to normothermic levels (5.1 ± 1.7 mmHg; P > 0.999). Sweat rate was elevated by heat stress (1.21 ± 0.44 mg·cm(-2)·min(-1)) but remained unchanged during rapid saline infusion (1.26 ± 0.47 mg·cm(-2)·min(-1), P = 0.5), whereas cutaneous vascular conductance increased from 77 ± 10 to 101 ± 20% of local heating max (P = 0.029). In protocol 2, MAP was reduced with heat stress from 85 ± 7 mmHg to 76 ± 8 mmHg (P = 0.048). Although phenylephrine infusion returned MAP to normothermic levels (88 ± 7 mmHg; P > 0.999), sweat rate remained unchanged during phenylephrine infusion (1.39 ± 0.22 vs. 1.41 ± 0.24 mg·cm(-2)·min(-1); P > 0.999). These data indicate that both cardiopulmonary and arterial baroreceptor unloading do not limit increases in sweat rate during passive heat stress. Copyright © 2015 the American Physiological Society.

  14. Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace

    NASA Astrophysics Data System (ADS)

    Hosseini-Vashan, S. J.; Golian, A.; Yaghobfar, A.

    2016-08-01

    for secondary antibody response to sheep red blood cells and titer against Newcastle disease virus and increased the heterophil/lymphocyte ratio. The supplementation with 5 % of DTP completely alleviated the negative effects of HS on immune responses. The ash, Ca, and P contents of the tibia bone were decreased under HS. The ash and Ca contents of the tibia were not significantly different between thermoneutral and heat-stressed broilers supplemented with 5 % DTP. In conclusion, dietary supplementation of DTP, particularly 5 % DTP, to broiler diet attenuated the detrimental effects of HS on the activities of serum enzymes, oxidative status, immune response, and bone composition.

  15. The effects of acclimatization on blood clotting parameters in exertional heat stress.

    PubMed

    Vesić, Zoran; Vukasinović-Vesić, Milica; Dincić, Dragan; Surbatović, Maja; Radaković, Sonja S

    2013-07-01

    Exertional heat stress is a common problem in military services. Considering the coagulation abnormalities are of major importance in development of severe heat stroke, we wanted to examine changes in hemostatic parameters in soldiers during exertional heat stress test as well as the effects of a 10-day passive or active acclimatization in a climatic chamber. A total of 40 male soldiers with high aerobic capacity performed exertional heat stress test (EHST) either in cool [20 degrees C, 16 degrees C wet bulb globe temperature (WBGT)], or hot (40 degrees C, 29 degrees C, (WBGT) environment, unacclimatized (U) or after 10 days of passive (P) or active (A) acclimatization. Physiological strain was measured by tympanic temperatures (Tty) and heart rates (HR). Platelet count (PC), antithrombin III (AT), and prothrombin time (PT) were assessed in blood samples collected before and immediately after the EHST. EHST in hot conditions induced physiological heat stress (increase in Tty and HR), with a significant increase in prothrombin time in the groups U and A. Platelet counts were significantly higher after the EHST compared to the basic levels in all the investigated groups, regardless environmental conditions and acclimatization state. Antithrombin levels were not affected by EHST whatsoever. In the trained soldiers, physiological heat stress caused mild changes in some serum parameters of blood clotting such as prothrombin time, while others such as antithrombin levels were not affected. Platelet counts were increased after EHST in all groups. A 10-day passive or active acclimatization in climatic chamber showed no effect on parameters investigated.

  16. Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: evidence for differential thermal sensitivities.

    PubMed

    Zeng, Tao; Li, Jin-jun; Wang, De-qian; Li, Guo-qin; Wang, Gen-lin; Lu, Li-zhi

    2014-11-01

    Rising temperatures are severely affecting the mortality, laying performance, and meat quality of duck. Our aim was to investigate the effect of acute heat stress on the expression of heat shock proteins (HSPs: HSP90, 70, 60, 40, and 10) and inflammatory factors (nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)) and antioxidant enzyme activity (superoxide dismutase (SOD), malondialdehybe (MDA), catalase (CAT), total antioxidant capacity (T-AOC)) in livers of ducks and to compare the thermal tolerance of Pekin and Muscovy ducks exposed to acute heat stress. Ducks were exposed to heat at 39 ± 0.5 °C for 1 h and then returned to 20 °C for 1 h followed by a 3-h recovery period. The liver and other tissues were collected from each individual for analysis. The mRNA levels of HSPs (70, 60, and 40) increased in both species, except for HSP10, which was upregulated in Muscovy ducks and had no difference in Pekin ducks after heat stress. Simultaneously, the mRNA level of HSP90 decreased in the stress group in both species. Morphological analysis indicated that heat stress induced tissue injury in both species, and the liver of Pekin ducks was severely damaged. The activities of several antioxidant enzymes increased in Muscovy duck liver, but decreased in Pekin duck. The mRNA levels of inflammatory factors were increased after heat stress in both duck species. These results suggested that heat stress could influence HSPs, inflammatory factors expression, and the activities of antioxidant enzymes. Moreover, the differential response to heat stress indicated that the Muscovy duck has a better thermal tolerance than does the Pekin duck.

  17. Continuous fever-range heat stress induces thermotolerance in odontoblast-lineage cells.

    PubMed

    Morotomi, Takahiko; Kitamura, Chiaki; Okinaga, Toshinori; Nishihara, Tatsuji; Sakagami, Ryuji; Anan, Hisashi

    2014-07-01

    Heat shock during restorative procedures can trigger damage to the pulpodentin complex. While severe heat shock has toxic effects, fever-range heat stress exerts beneficial effects on several cells and tissues. In this study, we examined whether continuous fever-range heat stress (CFHS) has beneficial effects on thermotolerance in the rat clonal dental pulp cell line with odontoblastic properties, KN-3. KN-3 cells were cultured at 41°C for various periods, and the expression level of several proteins was assessed by Western blot analysis. After pre-heat-treatment at 41°C for various periods, KN-3 cells were exposed to lethal severe heat shock (LSHS) at 49°C for 10min, and cell viability was examined using the MTS assay. Additionally, the expression level of odontoblast differentiation makers in surviving cells was examined by Western blot analysis. CFHS increased the expression levels of several heat shock proteins (HSPs) in KN-3 cells, and induced transient cell cycle arrest. KN-3 cells, not pre-heated or exposed to CFHS for 1 or 3h, died after exposure to LSHS. In contrast, KN-3 cells exposed to CFHS for 12h were transiently lower on day 1, but increased on day 3 after LSHS. The surviving cells expressed odontoblast differentiation markers, dentine sialoprotein and dentine matrix protein-1. These results suggest that CFHS for 12h improves tolerance to LSHS by inducing HSPs expression and cell cycle arrest in KN-3 cells. The appropriate pretreatment with continuous fever-range heat stress can provide protection against lethal heat shock in KN-3 cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Application of the predicted heat strain model in development of localized, threshold-based heat stress management guidelines for the construction industry.

    PubMed

    Rowlinson, Steve; Jia, Yunyan Andrea

    2014-04-01

    Existing heat stress risk management guidelines recommended by international standards are not practical for the construction industry which needs site supervision staff to make instant managerial decisions to mitigate heat risks. The ability of the predicted heat strain (PHS) model [ISO 7933 (2004). Ergonomics of the thermal environment analytical determination and interpretation of heat stress using calculation of the predicted heat strain. Geneva: International Standard Organisation] to predict maximum allowable exposure time (D lim) has now enabled development of localized, action-triggering and threshold-based guidelines for implementation by lay frontline staff on construction sites. This article presents a protocol for development of two heat stress management tools by applying the PHS model to its full potential. One of the tools is developed to facilitate managerial decisions on an optimized work-rest regimen for paced work. The other tool is developed to enable workers' self-regulation during self-paced work.

  19. Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury*

    PubMed Central

    Mei, Chen; He, Sha-sha; Yin, Peng; Xu, Lei; Shi, Ya-ran; Yu, Xiao-hong; Lyu, An; Liu, Feng-hua; Jiang, Lin-shu

    2016-01-01

    Objective: Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. Materials and methods: An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. Results: HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Conclusions: Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock. PMID:27256675

  20. Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury.

    PubMed

    Mei, Chen; He, Sha-Sha; Yin, Peng; Xu, Lei; Shi, Ya-Ran; Yu, Xiao-Hong; Lyu, An; Liu, Feng-Hua; Jiang, Lin-Shu

    2016-06-01

    Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock.

  1. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    DOE PAGES

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; ...

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. Here in this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identifiedmore » 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. In conclusion, the data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.« less

  2. Heat stress attenuates the increase in arterial blood pressure during the cold pressor test.

    PubMed

    Cui, Jian; Shibasaki, Manabu; Low, David A; Keller, David M; Davis, Scott L; Crandall, Craig G

    2010-11-01

    The mechanisms by which heat stress impairs the control of blood pressure leading to compromised orthostatic tolerance are not thoroughly understood. A possible mechanism may be an attenuated blood pressure response to a given increase in sympathetic activity. This study tested the hypothesis that whole body heating attenuates the blood pressure response to a non-baroreflex-mediated sympathoexcitatory stimulus. Ten healthy subjects were instrumented for the measurement of integrated muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), heart rate, sweat rate, and forearm skin blood flow. Subjects were exposed to a cold pressor test (CPT) by immersing a hand in an ice water slurry for 3 min while otherwise normothermic and while heat stressed (i.e., increase core temperature ~0.7°C via water-perfused suit). Mean responses from the final minute of the CPT were evaluated. In both thermal conditions CPT induced significant increases in MSNA and MAP without altering heart rate. Although the increase in MSNA to the CPT was similar between thermal conditions (normothermia: Δ14.0 ± 2.6; heat stress: Δ19.1 ± 2.6 bursts/min; P = 0.09), the accompanying increase in MAP was attenuated when subjects were heat stressed (normothermia: Δ25.6 ± 2.3, heat stress: Δ13.4 ± 3.0 mmHg; P < 0.001). The results demonstrate that heat stress can attenuate the pressor response to a sympathoexcitatory stimulus.

  3. Management of climatic heat stress risk in construction: a review of practices, methodologies, and future research.

    PubMed

    Rowlinson, Steve; Yunyanjia, Andrea; Li, Baizhan; Chuanjingju, Carrie

    2014-05-01

    Climatic heat stress leads to accidents on construction sites brought about by a range of human factors emanating from heat induced illness, and fatigue leading to impaired capability, physical and mental. It is an occupational characteristic of construction work in many climates and the authors take the approach of re-engineering the whole safety management system rather than focusing on incremental improvement, which is current management practice in the construction industry. From a scientific viewpoint, climatic heat stress is determined by six key factors: (1) air temperature, (2) humidity, (3) radiant heat, and (4) wind speed indicating the environment, (5) metabolic heat generated by physical activities, and (6) "clothing effect" that moderates the heat exchange between the body and the environment. By making use of existing heat stress indices and heat stress management processes, heat stress risk on construction sites can be managed in three ways: (1) control of environmental heat stress exposure through use of an action-triggering threshold system, (2) control of continuous work time (CWT, referred by maximum allowable exposure duration) with mandatory work-rest regimens, and (3) enabling self-paced working through empowerment of employees. Existing heat stress practices and methodologies are critically reviewed and the authors propose a three-level methodology for an action-triggering, localized, simplified threshold system to facilitate effective decisions by frontline supervisors. The authors point out the need for "regional based" heat stress management practices that reflect unique climatic conditions, working practices and acclimatization propensity by local workers indifferent geographic regions. The authors set out the case for regional, rather than international, standards that account for this uniqueness and which are derived from site-based rather than laboratory-based research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Polyhydroxyfullerene Binds Cadmium Ions and Alleviates Metal-Induced Oxidative Stress in Saccharomyces cerevisiae

    PubMed Central

    Pradhan, Arunava; Pinheiro, José Paulo; Seena, Sahadevan; Pascoal, Cláudia

    2014-01-01

    The water-soluble polyhydroxyfullerene (PHF) is a functionalized carbon nanomaterial with several industrial and commercial applications. There have been controversial reports on the toxicity and/or antioxidant properties of fullerenes and their derivatives. Conversely, metals have been recognized as toxic mainly due to their ability to induce oxidative stress in living organisms. We investigated the interactive effects of PHF and cadmium ions (Cd) on the model yeast Saccharomyces cerevisiae by exposing cells to Cd (≤5 mg liter−1) in the absence or presence of PHF (≤500 mg liter−1) at different pHs (5.8 to 6.8). In the absence of Cd, PHF stimulated yeast growth up to 10.4%. Cd inhibited growth up to 79.7%, induced intracellular accumulation of reactive oxygen species (ROS), and promoted plasma membrane disruption in a dose- and pH-dependent manner. The negative effects of Cd on growth were attenuated by the presence of PHF, and maximum growth recovery (53.8%) was obtained at the highest PHF concentration and pH. The coexposure to Cd and PHF decreased ROS accumulation up to 36.7% and membrane disruption up to 30.7% in a dose- and pH-dependent manner. Two mechanisms helped to explain the role of PHF in alleviating Cd toxicity to yeasts: PHF decreased Cd-induced oxidative stress and bound significant amounts of Cd in the extracellular medium, reducing its bioavailability to the cells. PMID:25038095

  5. Daidzein enhances immune function in late lactation cows under heat stress.

    PubMed

    Liu, De-Yi; He, Shao-Jun; Liu, Shi-Qing; Tang, Yi-Guo; Jin, Er-Hui; Chen, Hui-Liang; Li, Sheng-He; Zhong, Liang-Ting

    2014-01-01

    Heat stress decreases natural immunity making cows more vulnerable to diseases. A previous study reported that daidzein can enhance animal resistance to heat stress and regulate animal immunocompetence. However, it is unclear whether daidzein regulates the immune performance of late lactation cows under heat stress. In this study, late lactation cows in four groups were raised in hot weather and fed with basic diet, basic diet plus 200, 300, 400 mg/day daidzein, respectively, and the experimental period was 60 days. Blood was collected to examine the changes of serum total protein (TP), albumin (ALB), immunoglobulin G (IgG), interferon alpha (IFN-α), and interleukin-2 (IL-2). We found the levels of serum IgG and INF-α were significantly higher in late lactation cows after 300 and 400 mg/day daidzein treatment compared to those in the control group and 200 mg/day daidzein treatment (P < 0.05 or P < 0.01). Moreover, 300 and 400 mg/day daidzein treatment markedly increased serum IL-2 (P < 0.01), while the levels of serum TP and ALB were not changed by any concentration of daidzein treatment (P > 0.05). Daidzein can enhance the immunocompetence of late lactation cows and strengthen cow resistance to heat stress. © 2013 Japanese Society of Animal Science.

  6. Heat Stress-Induced PI3K/mTORC2-Dependent AKT Signaling Is a Central Mediator of Hepatocellular Carcinoma Survival to Thermal Ablation Induced Heat Stress

    PubMed Central

    Thompson, Scott M.; Callstrom, Matthew R.; Jondal, Danielle E.; Butters, Kim A.; Knudsen, Bruce E.; Anderson, Jill L.; Lien, Karen R.; Sutor, Shari L.; Lee, Ju-Seog; Thorgeirsson, Snorri S.; Grande, Joseph P.; Roberts, Lewis R.; Woodrum, David A.

    2016-01-01

    Thermal ablative therapies are important treatment options in the multidisciplinary care of patients with hepatocellular carcinoma (HCC), but lesions larger than 2–3 cm are plagued with high local recurrence rates and overall survival of these patients remains poor. Currently no adjuvant therapies exist to prevent local HCC recurrence in patients undergoing thermal ablation. The molecular mechanisms mediating HCC resistance to thermal ablation induced heat stress and local recurrence remain unclear. Here we demonstrate that the HCC cells with a poor prognostic hepatic stem cell subtype (Subtype HS) are more resistant to heat stress than HCC cells with a better prognostic hepatocyte subtype (Subtype HC). Moreover, sublethal heat stress rapidly induces phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dependent-protein kinase B (AKT) survival signaling in HCC cells in vitro and at the tumor ablation margin in vivo. Conversely, inhibition of PI3K/mTOR complex 2 (mTORC2)-dependent AKT phosphorylation or direct inhibition of AKT function both enhance HCC cell killing and decrease HCC cell survival to sublethal heat stress in both poor and better prognostic HCC subtypes while mTOR complex 1 (mTORC1)-inhibition has no impact. Finally, we showed that AKT isoforms 1, 2 and 3 are differentially upregulated in primary human HCCs and that overexpression of AKT correlates with worse tumor biology and pathologic features (AKT3) and prognosis (AKT1). Together these findings define a novel molecular mechanism whereby heat stress induces PI3K/mTORC2-dependent AKT survival signaling in HCC cells and provide a mechanistic rationale for adjuvant AKT inhibition in combination with thermal ablation as a strategy to enhance HCC cell killing and prevent local recurrence, particularly at the ablation margin. PMID:27611696

  7. Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and fruit tissues.

    PubMed

    Savada, Raghavendra P; Ozga, Jocelyn A; Jayasinghege, Charitha P A; Waduthanthri, Kosala D; Reinecke, Dennis M

    2017-10-01

    Ethylene biosynthesis is regulated in reproductive tissues in response to heat stress in a manner to optimize resource allocation to pollinated fruits with developing seeds. High temperatures during reproductive development are particularly detrimental to crop fruit/seed production. Ethylene plays vital roles in plant development and abiotic stress responses; however, little is known about ethylene's role in reproductive tissues during development under heat stress. We assessed ethylene biosynthesis and signaling regulation within the reproductive and associated tissues of pea during the developmental phase that sets the stage for fruit-set and seed development under normal and heat-stress conditions. The transcript abundance profiles of PsACS [encode enzymes that convert S-adenosyl-L-methionine to 1-aminocyclopropane-1-carboxylic acid (ACC)] and PsACO (encode enzymes that convert ACC to ethylene), and ethylene evolution were developmentally, environmentally, and tissue-specifically regulated in the floral/fruit/pedicel tissues of pea. Higher transcript abundance of PsACS and PsACO in the ovaries, and PsACO in the pedicels was correlated with higher ethylene evolution and ovary senescence and pedicel abscission in fruits that were not pollinated under control temperature conditions. Under heat-stress conditions, up-regulation of ethylene biosynthesis gene expression in pre-pollinated ovaries was also associated with higher ethylene evolution and lower retention of these fruits. Following successful pollination and ovule fertilization, heat-stress modified PsACS and PsACO transcript profiles in a manner that suppressed ovary ethylene evolution. The normal ethylene burst in the stigma/style and petals following pollination was also suppressed by heat-stress. Transcript abundance profiles of ethylene receptor and signaling-related genes acted as qualitative markers of tissue ethylene signaling events. These data support the hypothesis that ethylene biosynthesis is

  8. Phenotypic Effects of Salt and Heat Stress over Three Generations in Arabidopsis thaliana

    PubMed Central

    Suter, Léonie; Widmer, Alex

    2013-01-01

    Current and predicted environmental change will force many organisms to adapt to novel conditions, especially sessile organisms such as plants. It is therefore important to better understand how plants react to environmental stress and to what extent genotypes differ in such responses. It has been proposed that adaptation to novel conditions could be facilitated by heritable epigenetic changes induced by environmental stress, independent of genetic variation. Here we assessed phenotypic effects of heat and salt stress within and across three generations using four highly inbred Arabidopsis thaliana genotypes (Col, Cvi, Ler and Sha). Salt stress generally decreased fitness, but genotypes were differently affected, suggesting that susceptibility of A. thaliana to salt stress varies among genotypes. Heat stress at an early rosette stage had less detrimental effects but accelerated flowering in three out of four accessions. Additionally, we found three different modes of transgenerational effects on phenotypes, all harboring the potential of being adaptive: heat stress in previous generations induced faster rosette growth in Sha, both under heat and control conditions, resembling a tracking response, while in Cvi, the phenotypic variance of several traits increased, resembling diversified bet-hedging. Salt stress experienced in earlier generations altered plant architecture of Sha under salt but not control conditions, similar to transgenerational phenotypic plasticity. However, transgenerational phenotypic effects depended on the type of stress as well as on genotype, suggesting that such effects may not be a general response leading to adaptation to novel environmental conditions in A. thaliana. PMID:24244719

  9. Alleviating effects of calcium on cobalt toxicity in two barley genotypes differing in cobalt tolerance.

    PubMed

    Lwalaba, Jonas Lwalaba Wa; Zvobgo, Gerald; Fu, Liangbo; Zhang, Xuelei; Mwamba, Theodore Mulembo; Muhammad, Noor; Mundende, Robert Prince Mukobo; Zhang, Guoping

    2017-05-01

    Cobalt (Co) contamination in soils is becoming a severe issue in environment safety and crop production. Calcium (Ca) , as a macro-nutrient element, shows the antagonism with many divalent heavy metals and the capacity of alleviating oxidative stress in plants. In this study, the protective role of Ca in alleviating Co stress was hydroponically investigated using two barley genotypes differing in Co toxicity tolerance. Barley seedlings exposed to 100µM Co showed the significant reduction in growth and photosynthetic rate, and the dramatic increase in the contents of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH) and oxidized glutathione (GSSG), and the activities of anti-oxidative enzymes, with Ea52 (Co-sensitive) being much more affected than Yan66 (Co-tolerant). Addition of Ca in growth medium alleviated Co toxicity by reducing Co uptake and enhancing the antioxidant capacity. The effect of Ca in alleviating Co toxicity was much greater in Yan66 than in Ea52. The results indicate that the alleviation of Co toxicity in barley plants by Ca is attributed to the reduced Co uptake and enhanced antioxidant capacity. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Heat stress regimes for the investigation of pollen thermotolerance in crop plants.

    PubMed

    Mesihovic, Anida; Iannacone, Rina; Firon, Nurit; Fragkostefanakis, Sotirios

    2016-06-01

    Pollen thermotolerance. Global warming is predicted to increase the frequency and severity of extreme weather phenomena such as heat waves thereby posing a major threat for crop productivity and food security. The yield in case of most crop species is dependent on the success of reproductive development. Pollen development has been shown to be highly sensitive to elevated temperatures while the development of the female gametophyte as well as sporophytic tissues might also be disturbed under mild or severe heat stress conditions. Therefore, assessing pollen thermotolerance is currently of high interest for geneticists, plant biologists and breeders. A key aspect in pollen thermotolerance studies is the selection of the appropriate heat stress regime, the developmental stage that the stress is applied to, as well as the method of application. Literature search reveals a rather high variability in heat stress treatments mainly due to the lack of standardized protocols for different plant species. In this review, we summarize and discuss experimental approaches that have been used in various crops, with special focus on tomato, rice and wheat, as the best studied crops regarding pollen thermotolerance. The overview of stress treatments and the major outcomes of each study aim to provide guidelines for similar research in other crops.

  11. Root Antioxidant Mechanisms in Relation to Root Thermotolerance in Perennial Grass Species Contrasting in Heat Tolerance

    PubMed Central

    Xu, Yi; Burgess, Patrick; Huang, Bingru

    2015-01-01

    Mechanisms of plant root tolerance to high temperatures through antioxidant defense are not well understood. The objective of this study was to investigate whether superior root thermotolerance of heat-tolerant Agrostis scabra relative to its congeneric heat-sensitive Agrostis stolonifera was associated with differential accumulation of reactive oxygen species and antioxidant scavenging systems. A. scabra ‘NTAS’ and A. stolonifera ‘Penncross’ plants were exposed to heat stress (35/30°C, day/night) in growth chambers for 24 d. Superoxide (O2 -) content increased in both A. stolonifera and A. scabra roots under heat stress but to a far lesser extent in A. scabra than in A. stolonifera. Hydrogen peroxide (H2O2) content increased significantly in A. stolonifera roots but not in A. scabra roots responding to heat stress. The content of antioxidant compounds (ascorbate and glutathione) did not differ between A. stolonifera and A. scabra under heat stress. Enzymatic activity of superoxide dismutase was less suppressed in A. scabra than that in A. stolonifera under heat stress, while peroxidase and catalase were more induced in A. scabra than in A. stolonifera. Similarly, their encoded transcript levels were either less suppressed, or more induced in A. scabra roots than those in A. stolonifera during heat stress. Roots of A. scabra exhibited greater alternative respiration rate and lower cytochrome respiration rate under heat stress, which was associated with suppression of O2 - and H2O2 production as shown by respiration inhibitors. Superior root thermotolerance of A. scabra was related to decreases in H2O2 and O2 - accumulation facilitated by active enzymatic antioxidant defense systems and the maintenance of alternative respiration, alleviating cellular damages by heat-induced oxidative stress. PMID:26382960

  12. Root Antioxidant Mechanisms in Relation to Root Thermotolerance in Perennial Grass Species Contrasting in Heat Tolerance.

    PubMed

    Xu, Yi; Burgess, Patrick; Huang, Bingru

    2015-01-01

    Mechanisms of plant root tolerance to high temperatures through antioxidant defense are not well understood. The objective of this study was to investigate whether superior root thermotolerance of heat-tolerant Agrostis scabra relative to its congeneric heat-sensitive Agrostis stolonifera was associated with differential accumulation of reactive oxygen species and antioxidant scavenging systems. A. scabra 'NTAS' and A. stolonifera 'Penncross' plants were exposed to heat stress (35/30°C, day/night) in growth chambers for 24 d. Superoxide (O2(-)) content increased in both A. stolonifera and A. scabra roots under heat stress but to a far lesser extent in A. scabra than in A. stolonifera. Hydrogen peroxide (H2O2) content increased significantly in A. stolonifera roots but not in A. scabra roots responding to heat stress. The content of antioxidant compounds (ascorbate and glutathione) did not differ between A. stolonifera and A. scabra under heat stress. Enzymatic activity of superoxide dismutase was less suppressed in A. scabra than that in A. stolonifera under heat stress, while peroxidase and catalase were more induced in A. scabra than in A. stolonifera. Similarly, their encoded transcript levels were either less suppressed, or more induced in A. scabra roots than those in A. stolonifera during heat stress. Roots of A. scabra exhibited greater alternative respiration rate and lower cytochrome respiration rate under heat stress, which was associated with suppression of O2(-) and H2O2 production as shown by respiration inhibitors. Superior root thermotolerance of A. scabra was related to decreases in H2O2 and O2(-) accumulation facilitated by active enzymatic antioxidant defense systems and the maintenance of alternative respiration, alleviating cellular damages by heat-induced oxidative stress.

  13. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster.

    PubMed

    Landis, Gary; Shen, Jie; Tower, John

    2012-11-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging.

  14. Effects of short-term heat stress at the grain formation stage on physicochemical properties of waxy maize starch.

    PubMed

    Gu, Xiaotian; Huang, Tianqi; Ding, Mengqiu; Lu, Weiping; Lu, Dalei

    2018-02-01

    Waxy maize (Zea mays L. sinensis Kulesh) suffers short-term exposure to high temperature during grain filling in southern China. The effects of such exposure are poorly understood. Starch granule size was increased by 5 days' short-term heat stress (35.0 °C) and the increase was higher when the stress was introduced early. Heat stress increased the iodine binding capacity of starches and no difference was observed among the three stages. Starch relative crystallinity was increased and swelling power was decreased only when heat stress was introduced early. Heat stress also increased the pasting viscosity, and this effect became more pronounced with later applications of stress. Heat stress reduced starch gelatinization enthalpy, and the reduction gradually increased with later exposures. Heat stress increased the gelatinization temperature and retrogradation enthalpy and percentage of the samples, with the increases being largest with earlier introduction of high temperature. Heat stress increased the pasting viscosities and retrogradation percentage of starch by causing change in granule size, amylopectin chain length distribution and crystallinity, and the effects observed were more severe with earlier introduction of heat stress after pollination. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. The Impact of Urban Growth and Climate Change on Heat Stress in an Australian City

    NASA Astrophysics Data System (ADS)

    Chapman, S.; Mcalpine, C. A.; Thatcher, M. J.; Salazar, A.; Watson, J. R.

    2017-12-01

    Over half of the world's population lives in urban areas. Most people will therefore be exposed to climate change in an urban environment. One of the climate risks facing urban residents is heat stress, which can lead to illness and death. Urban residents are at increased risk of heat stress due to the urban heat island effect. The urban heat island is a modification of the urban environment and increases temperatures on average by 2°C, though the increase can be much higher, up to 8°C when wind speeds and cloud cover are low. The urban heat island is also expected to increase in the future due to urban growth and intensification, further exacerbating urban heat stress. Climate change alters the urban heat island due to changes in weather (wind speed and cloudiness) and evapotranspiration. Future urban heat stress will therefore be affected by urban growth and climate change. The aim of this study was to examine the impact of urban growth and climate change on the urban heat island and heat stress in Brisbane, Australia. We used CCAM, the conformal cubic atmospheric model developed by the CSIRO, to examine temperatures in Brisbane using scenarios of urban growth and climate change. We downscaled the urban climate using CCAM, based on bias corrected Sea Surface Temperatures from the ACCESS1.0 projection of future climate. We used Representative Concentration Pathway (RCP) 8.5 for the periods 1990 - 2000, 2049 - 2060 and 2089 - 2090 with current land use and an urban growth scenario. The present day climatology was verified using weather station data from the Australian Bureau of Meteorology. We compared the urban heat island of the present day with the urban heat island with climate change to determine if climate change altered the heat island. We also calculated heat stress using wet-bulb globe temperature and apparent temperature for the climate change and base case scenarios. We found the urban growth scenario increased present day temperatures by 0.5°C in the

  16. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants.

    PubMed

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-02-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

  17. Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants

    PubMed Central

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-01-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways. PMID:24598995

  18. Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings.

    PubMed

    Saidi, Issam; Chtourou, Yacine; Djebali, Wahbi

    2014-03-01

    The present study investigated the possible mediatory role of selenium (Se) in protecting plants from cadmium (Cd) toxicity. The exposure of sunflower seedlings to 20μM Cd inhibited biomass production, decreased chlorophyll and carotenoid concentrations and strongly increased accumulation of Cd in both roots and shoots. Similarly, Cd enhanced hydrogen peroxides content and lipid peroxidation as indicated by malondialdehyde accumulation. Pre-soaking seeds with Se (5, 10 and 20μM) alleviated the negative effect of Cd on growth and led to a decrease in oxidative injuries caused by Cd. Furthermore, Se enhanced the activities of catalase, ascorbate peroxidase and glutathione reductase, but lowered that of superoxide dismutase and guaiacol peroxidase. As important antioxidants, ascorbate and glutathione contents in sunflower leaves exposed to Cd were significantly decreased by Se treatment. The data suggest that the beneficial effect of Se during an earlier growth period could be related to avoidance of cumulative damage upon exposure to Cd, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Coadministration of VDR and RXR agonists synergistically alleviates atherosclerosis through inhibition of oxidative stress: An in vivo and in vitro study.

    PubMed

    Lin, L M; Peng, F; Liu, Y P; Chai, D J; Ning, R B; Xu, C S; Lin, J X

    2016-08-01

    Diabetes contributes to atherosclerosis partially through induction of oxidative stress. Both vitamin D receptor (VDR) and retinoid X receptor (RXR) agonists exhibit anti-atherogenic effects. We explored the effects of combination treatment with VDR and RXR agonists (represented by calcitriol and bexarotene, respectively) on atherosclerosis progression and the mechanisms involved, using a diabetes model of mice. The animals were intragastrically fed calcitriol (200 ng/kg, twice-a-week), bexarotene (10 mg/kg, once-daily) either alone or in combination for 12 weeks. VDR and RXR agonists delayed atherosclerosis progression independent of serum lipid and glucose levels, and significantly reduced the protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit gp91phox and nuclear factor-kappa B (NF-κB) subunit p65, as well as plasma biomarkers of oxidative stress and inflammation. Combination therapy alleviated atherosclerosis and inhibited indexes of oxidative stress and inflammation to a greater extent than either monotherapy. In the in vitro study, naturally occurring VDR ligand 1α,25-dihydroxyvitamin D3 (1,25[OH]2D3) and RXR ligand 9-cis retinoic acid (9-cis-RA), both significantly inhibited high-glucose-induced endothelial cell apoptosis. Co-administration of VDR and RXR ligands produced synergistic protection against endothelial apoptosis by antagonizing the protein kinase C /NADPH oxidase/reactive oxygen species pathway. The inhibitory effects of 9-cis-RA on oxidative stress was attenuated when VDR was downregulated by VDR siRNA; however, downregulation of RXR by RXR siRNA imposed no influence on the effects of 1,25(OH)2D3. Combination treatment with VDR and RXR agonists synergistically alleviated diabetic atherosclerosis through inhibition of oxidative stress, and the preventive effects of RXR agonist may partially depend on VDR activation. Copyright © 2016. Published by Elsevier Ireland Ltd.

  20. Heat stress risk in India under the observed and projected 1.5 and 2.0ºC warming

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Kumar, R.; Mukherjee, S.; AghaKouchak, A.; Stone, D. A.; Huber, M.

    2017-12-01

    India has witnessed some of the unprecedented heat waves that caused substantial mortality. Despite the implications of heat stress on labor efficiency, human health, and mortality, the risk of heat stress under the warming climate is largely unexplored in India. Here, using the observations, reanalysis products, and data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs), we show that the risk of heatwaves and heat stress has increased in India during the period of 1979-2017. Both heat waves and heat stress events have become more frequent in the majority of India except the Indo-Gangetic Plain region. In the Indo-Gangetic Plain region, the heat stress has increased while the frequency of heat waves has declined during the observed record of 1979-2017. This contrasting response of heat waves and heat stress in the Gangetic Plain region can be attributed to irrigation and atmospheric aerosols. The risk of heat stress is projected to increase manifold in the majority of India and in the Indo-Gangetic Plain under the 1.5 and 2.0ºC warming scenarios.

  1. Insight into the heat resistance of fish via blood: Effects of heat stress on metabolism, oxidative stress and antioxidant response of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus.

    PubMed

    Lu, Yunliang; Wu, Zhihao; Song, Zongcheng; Xiao, Peng; Liu, Ying; Zhang, Peijun; You, Feng

    2016-11-01

    High temperature has direct confinement on fish survival and growth, especially under the background of global warming. Selection of fish line with heat resistance is an important means to address this problem. In the present study, we analyzed the difference in heat resistance between families of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus, two flatfish species occupying slightly different thermal niches. Then the chosen families were tested to determine their differential response to heat stress (ΔT = +8 °C and +12 °C) in blood, including anaerobic metabolism (lactate), oxidative stress (lipid peroxidation and protein carbonylation) and antioxidant enzymes. Results showed a difference in heat resistance between families of the two species. Among the chosen parameters, growth traits had a significant effect on contents of lactate and malondialdehyd (MDA), and activities of catalase (CAT) and glutathione S-transferase in flounder (P < 0.05), and on MDA content and CAT activity in turbot (P < 0.05). In comparison with heat-sensitive family of each species, levels of all studied parameters were lower and more stable in heat-resistant families after heat stress. What's more, heat resistance of fish significantly influenced contents of lactate and MDA and activity of CAT in flounder (P < 0.05), as well as contents of lactate, MDA and carbonyl and activity of superoxide dismutate (SOD) in turbot (P < 0.05). These results demonstrated that such physiological phenotypes as anaerobic metabolism, oxidative stress and antioxidant enzymes are good biomarkers of fish heat-resistance, being potentially valuable in fish breeding. However, these markers should be applied with more caution when there is a growth discrepancy between fish families. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi.

    PubMed

    Huang, Hsiang-Ting; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-01-01

    Stress granules are a type of cytoplasmic messenger ribonucleoprotein (mRNP) granule formed in response to the inhibition of translation initiation, which typically occurs when cells are exposed to stress. Stress granules are conserved in eukaryotes; however, in filamentous fungi, including Aspergillus oryzae, stress granules have not yet been defined. For this reason, here we investigated the formation and localization of stress granules in A. oryzae cells exposed to various stresses using an EGFP fusion protein of AoPab1, a homolog of Saccharomyces cerevisiae Pab1p, as a stress granule marker. Localization analysis showed that AoPab1 was evenly distributed throughout the cytoplasm under normal growth conditions, and accumulated as cytoplasmic foci mainly at the hyphal tip in response to stress. AoSO, a homolog of Neurospora crassa SO, which is necessary for hyphal fusion, colocalized with stress granules in cells exposed to heat stress. The formation of cytoplasmic foci of AoSO was blocked by treatment with cycloheximide, a known inhibitor of stress granule formation. Deletion of the Aoso gene had effects on the formation and localization of stress granules in response to heat stress. Our results suggest that AoSO is a novel component of stress granules specific to filamentous fungi. The authors would specially like to thank Hiroyuki Nakano and Kei Saeki for generously providing experimental and insightful opinions.

  3. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures

    PubMed Central

    Ghandi, Anfoka; Adi, Moshe; Lilia, Fridman; Linoy, Amrani; Or, Rotem; Mikhail, Kolot; Mouhammad, Zeidan; Henryk, Czosnek; Rena, Gorovits

    2016-01-01

    Cultured tomatoes are often exposed to a combination of extreme heat and infection with Tomato yellow leaf curl virus (TYLCV). This stress combination leads to intense disease symptoms and yield losses. The response of TYLCV-susceptible and resistant tomatoes to heat stress together with viral infection was compared. The plant heat-stress response was undermined in TYLCV infected plants. The decline correlated with the down-regulation of heat shock transcription factors (HSFs) HSFA2 and HSFB1, and consequently, of HSF-regulated genes Hsp17, Apx1, Apx2 and Hsp90. We proposed that the weakened heat stress response was due to the decreased capacity of HSFA2 to translocate into the nuclei of infected cells. All the six TYLCV proteins were able to interact with tomato HSFA2 in vitro, moreover, coat protein developed complexes with HSFA2 in nuclei. Capturing of HSFA2 by viral proteins could suppress the transcriptional activation of heat stress response genes. Application of both heat and TYLCV stresses was accompanied by the development of intracellular large protein aggregates containing TYLCV proteins and DNA. The maintenance of cellular chaperones in the aggregated state, even after recovery from heat stress, prevents the circulation of free soluble chaperones, causing an additional decrease in stress response efficiency. PMID:26792235

  4. Comparative evaluation of human heat stress indices on selected hospital admissions in Sydney, Australia.

    PubMed

    Goldie, James; Alexander, Lisa; Lewis, Sophie C; Sherwood, Steven

    2017-08-01

    To find appropriate regression model specifications for counts of the daily hospital admissions of a Sydney cohort and determine which human heat stress indices best improve the models' fit. We built parent models of eight daily counts of admission records using weather station observations, census population estimates and public holiday data. We added heat stress indices; models with lower Akaike Information Criterion scores were judged a better fit. Five of the eight parent models demonstrated adequate fit. Daily maximum Simplified Wet Bulb Globe Temperature (sWBGT) consistently improved fit more than most other indices; temperature and heatwave indices also modelled some health outcomes well. Humidity and heat-humidity indices better fit counts of patients who died following admission. Maximum sWBGT is an ideal measure of heat stress for these types of Sydney hospital admissions. Simple temperature indices are a good fallback where a narrower range of conditions is investigated. Implications for public health: This study confirms the importance of selecting appropriate heat stress indices for modelling. Epidemiologists projecting Sydney hospital admissions should use maximum sWBGT as a common measure of heat stress. Health organisations interested in short-range forecasting may prefer simple temperature indices. © 2017 The Authors.

  5. Relief of Residual Stress in Streamline Tie Rods by Heat Treatment

    NASA Technical Reports Server (NTRS)

    Pollard, R E; Reinhart, Fred M

    1941-01-01

    About two-thirds of the residual stress in cold-worked SAE 1050 steel tie rods was relieved by heating 30 minutes at 600 degrees Fahrenheit. Cold-worked austenitic stainless-steel tie rods could be heated at temperatures up to 1000 degrees Fahrenheit without lowering the important physical properties. The corrosion resistance, in laboratory corrosion test, of straight 18:8 and titanium-treated 18:8 materials appeared to be impaired after heating at temperatures above 800 degrees or 900 degrees fahrenheit. Columbium-treated and molybdenum-treated 18:8 steel exhibited improved stability over a wide range of temperatures. Tie rods of either material could be heated 30 minutes with safety at any temperature up to 1000 degrees Fahrenheit. At this temperature most of the residual stress would be relieved.

  6. Palliative effects of extra virgin olive oil, gallic acid, and lemongrass oil dietary supplementation on growth performance, digestibility, carcass traits, and antioxidant status of heat-stressed growing New Zealand White rabbits.

    PubMed

    Al-Sagheer, Adham A; Daader, Ahmed H; Gabr, Hassan A; Abd El-Moniem, Elham A

    2017-03-01

    This study explored the effects of supplemental dietary extra virgin olive oil (EVOO), gallic acid (GA), or lemongrass essential oil (LGEO) on growth performance, nutrient digestibility, carcass traits, lipid peroxidation, hematological, and antioxidative status in growing rabbits under heat stress conditions. A total of 48 male growing New Zealand White rabbits were randomly divided into four equal groups, which received a basal diet without any supplementation or supplemented with 15 g EVOO, 500 mg GA, or 400 mg LGEO/kg of diet, for eight consecutive weeks. Results revealed that the overall mean of temperature humidity index was 84.67 ± 0.35, reflecting a state of severe heat stress. Moreover, dietary supplementation with EVOO, GA, or LGEO significantly increased live body weight and daily body weight gain but decreased both feed conversion ratio and daily water consumption. Additionally, a significant increase in both organic matter and crude protein digestibility besides a remarkable elevation in the nutritive values of digestible crude protein, total digestible nutrients, and digestible energy, as well as an increase in the numbers of WBCs, lymphocytes, and heterophils was significant in EVOO-supplemented rabbits. Supplementation with EVOO, GA, or LGEO in the heat-stressed growing rabbit's diet enhanced catalase activity and reduced glutathione content, whereas EVOO-treated rabbits had the highest values. Also, malondialdehyde activity was reduced in response to all tested additives. In conclusion, these findings suggested that addition of EVOO, GA, or LGEO in growing rabbit's diet could be used effectively to alleviate negative impacts of heat stress load on performance, nutrient digestibility, oxidative status, and hemato-biochemical features. Furthermore, among these additives, EVOO achieved the best effects.

  7. Assessment of indoor heat stress variability in summer and during heat warnings: a case study using the UTCI in Berlin, Germany

    NASA Astrophysics Data System (ADS)

    Walikewitz, Nadine; Jänicke, Britta; Langner, Marcel; Endlicher, Wilfried

    2018-01-01

    Humans spend most of their time in confined spaces and are hence primarily exposed to the direct influence of indoor climate. The Universal Thermal Climate Index (UTCI) was obtained in 31 rooms (eight buildings) in Berlin, Germany, during summer 2013 and 2014. The indoor UTCI was determined from measurements of both air temperature and relative humidity and from data of mean radiant temperature and air velocity, which were either measured or modeled. The associated outdoor UTCI was obtained through facade measurements of air temperature and relative humidity, simulation of mean radiant temperature, and wind data from a central weather station. The results show that all rooms experienced heat stress according to UTCI levels, especially during heat waves. Indoor UTCI varied up to 6.6 K within the city and up to 7 K within building. Heat stress either during day or at night occurred on 35 % of all days. By comparing the day and night thermal loads, we identified maximum values above the 32 °C threshold for strong heat stress during the nighttime. Outdoor UTCI based on facade measurements provided no better explanation of indoor UTCI variability than the central weather station. In contrast, we found a stronger relationship of outdoor air temperature and indoor air temperature. Building characteristics, such as the floor level or window area, influenced indoor heat stress ambiguously. We conclude that indoor heat stress is a major hazard, and more effort toward understanding the causes and creating effective countermeasures is needed.

  8. Are adult life history traits in oriental fruit moth affected by a mild pupal heat stress?

    PubMed

    Zheng, Jincheng; Cheng, Xiongbin; Hoffmann, Ary A; Zhang, Bo; Ma, Chun-Sen

    2017-10-01

    Thermal stress at one life stage can affect fitness at a later stage in ectotherms with complex life cycles. Most relevant studies have focused on extreme stress levels, but here we also show substantial fitness effects in a moth when pupae are exposed to a relatively mild and sublethal heat stress. We consider the impact of a 35°C heat stress of 2h in three geographically separate populations of the oriental fruit moth (OFM, Grapholita molesta) from northern, middle and southern China. Heat stress negatively affected fecundity but increased adult heat resistance and adult longevity. Fitness effects were mostly consistent across populations but there were also some population differences. In the Shenyang population from northern China, there was a hormetic effect of heat on female longevity not evident in the other populations. Adults from all populations had higher LT 50 s due to heat stress after pupal exposure to the sublethal stress. These results highlight that the pupal stage is a particularly sensitive window for development and they have implications for seasonal adaptation in uncertain environments as well as changes in pest dynamics under climate warming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of passive heat stress on arterial stiffness in smokers versus non-smokers

    NASA Astrophysics Data System (ADS)

    Moyen, N. E.; Ganio, M. S.; Burchfield, J. M.; Tucker, M. A.; Gonzalez, M. A.; Dougherty, E. K.; Robinson, F. B.; Ridings, C. B.; Veilleux, J. C.

    2016-04-01

    In non-smokers, passive heat stress increases shear stress and vasodilation, decreasing arterial stiffness. Smokers, who reportedly have arterial dysfunction, may have similar improvements in arterial stiffness with passive heat stress. Therefore, we examined the effects of an acute bout of whole-body passive heat stress on arterial stiffness in smokers vs. non-smokers. Thirteen smokers (8.8 ± 5.5 [median = 6] cigarettes per day for >4 years) and 13 non-smokers matched for age, mass, height, and exercise habits (27 ± 8 years; 78.8 ± 15.4 kg; 177.6 ± 6.7 cm) were passively heated to 1.5 °C core temperature ( T C) increase. At baseline and each 0.5 °C T C increase, peripheral (pPWV) and central pulse wave velocity (cPWV) were measured via Doppler ultrasound. No differences existed between smokers and non-smokers for any variables (all p > 0.05), except cPWV slightly increased from baseline (526.7 ± 81.7 cm · s-1) to 1.5 °C Δ T C (579.7 ± 69.8 cm · s-1; p < 0.005), suggesting heat stress acutely increased central arterial stiffness. pPWV did not change with heating (grand mean: baseline = 691.9 ± 92.9 cm · s-1; 1.5 °C Δ T C = 691.9 ± 79.5 cm · s-1; p > 0.05). Changes in cPWV and pPWV during heating correlated ( p < 0.05) with baseline PWV in smokers (cPWV: r = -0.59; pPWV: r = -0.62) and non-smokers (cPWV: r = -0.45; pPWV: r = -0.77). Independent of smoking status, baseline stiffness appears to mediate the magnitude of heating-induced changes in arterial stiffness.

  10. Effect of passive heat stress on arterial stiffness in smokers versus non-smokers.

    PubMed

    Moyen, N E; Ganio, M S; Burchfield, J M; Tucker, M A; Gonzalez, M A; Dougherty, E K; Robinson, F B; Ridings, C B; Veilleux, J C

    2016-04-01

    In non-smokers, passive heat stress increases shear stress and vasodilation, decreasing arterial stiffness. Smokers, who reportedly have arterial dysfunction, may have similar improvements in arterial stiffness with passive heat stress. Therefore, we examined the effects of an acute bout of whole-body passive heat stress on arterial stiffness in smokers vs. non-smokers. Thirteen smokers (8.8 ± 5.5 [median = 6] cigarettes per day for > 4 years) and 13 non-smokers matched for age, mass, height, and exercise habits (27 ± 8 years; 78.8 ± 15.4 kg; 177.6 ± 6.7 cm) were passively heated to 1.5 °C core temperature (T C) increase. At baseline and each 0.5 °C T C increase, peripheral (pPWV) and central pulse wave velocity (cPWV) were measured via Doppler ultrasound. No differences existed between smokers and non-smokers for any variables (all p >  .05), except cPWV slightly increased from baseline (526.7 ± 81.7 cm · s(-1)) to 1.5 °C ΔT C (579.7 ± 69.8 cm · s(-1); p < 0.005), suggesting heat stress acutely increased central arterial stiffness. pPWV did not change with heating (grand mean: baseline = 691.9 ± 92.9 cm · s(-1); 1.5 °C ΔT C = 691.9 ± 79.5 cm · s(-1); p > 0.05). Changes in cPWV and pPWV during heating correlated (p < 0.05) with baseline PWV in smokers (cPWV: r = -0.59; pPWV: r = -0.62) and non-smokers (cPWV: r = -0.45; pPWV: r = -0.77). Independent of smoking status, baseline stiffness appears to mediate the magnitude of heating-induced changes in arterial stiffness.

  11. Ability to Discriminate Between Sustainable and Unsustainable Heat Stress Exposures-Part 2: Physiological Indicators.

    PubMed

    Garzón-Villalba, Ximena P; Wu, Yougui; Ashley, Candi D; Bernard, Thomas E

    2017-07-01

    There are times when it is not practical to assess heat stress using environmental metrics and metabolic rate, and heat strain may provide an alternative approach. Heat strain indicators have been used for decades as tools for monitoring physiological responses to work in hot environments. Common indicators of heat strain are body core temperature (assessed here as rectal temperature Tre), heart rate (HR), and average skin temperature (Tsk). Data collected from progressive heat stress trials were used to (1) demonstrate if physiological heat strain indicators (PHSIs) at the upper limit of Sustainable heat stress were below generally accepted limits; (2) suggest values for PHSIs that demonstrate a Sustainable level of heat stress; (3) suggest alternative PHSIs; and (4) determine if metabolic rate was an effect modifier. Two previous progressive heat stress studies included 176 trials with 352 pairs of Sustainable and Unsustainable exposures over a range of relative humidities and metabolic rates using 29 participants. To assess the discrimination ability of PHSIs, conditional logistic regression and stepwise logistic regression were used to find the best combinations of predictors of Unsustainable exposures. The accuracy of the models was assessed using receiver operating characteristic curves. Current recommendations for physiological heat strain limits were associated with probabilities of Unsustainable greater than 0.5. Screening limits for Sustainable heat stress were Tre of 37.5°C, HR of 105 bpm, and Tsk of 35.8°C. Tsk alone resulted in an area under the curve of 0.85 and the combination of Tsk and HR (area under the curve = 0.88) performed the best. The adjustment for metabolic rate was statistically significant for physiological strain index or ∆Tre-sk as main predictors, but its effect modification was negligible and could be ignored. Based on the receiver operating characteristic curve, PHSIs (Tre, HR, and Tsk) can accurately predict Unsustainable heat

  12. Spermine Alleviates Drought Stress in White Clover with Different Resistance by Influencing Carbohydrate Metabolism and Dehydrins Synthesis

    PubMed Central

    Li, Zhou; Jing, Wen; Peng, Yan; Zhang, Xin Quan; Ma, Xiao; Huang, Lin Kai; Yan, Yan-hong

    2015-01-01

    The objective of this research was to analyse whether ameliorating drought stress through exogenously applied spermine (Spm) was related to carbohydrate metabolism, dehydrins accumulation and the transcription of genes encoding dehydrins in two white clovers (drought-susceptible cv. ‘Ladino’ and drought-resistant cv. ‘Haifa’) under controlled drying conditions for 10 days. The results show that the application of Spm effectively alleviates negative effects caused by drought stress in both cultivars. Exogenous Spm led to accumulation of more water-soluble carbohydrates (WSC), sucrose, fructose and sorbitol in both cultivars under drought stress, and also significantly elevated glucose content in leaves of drought-resistant cv. ‘Haifa’, but had no effect on drought-susceptible cv. ‘Ladino’. Accordingly, the key enzyme activities of sucrose and sorbitol metabolism changed along with the application of Spm under drought stress. Spm induced a significant increase in sucrose phosphate synthase (SPS) or sorbitol dehydrogenase (SDH) activity, but decrease in sucrose synthetase (SS) activity when two cultivars were subjected to drought. In addition, the improved accumulation of dehydrins induced by exogenous Spm coincided with three genes expression which was responsible for dehydrins synthesis. But Spm-induced transcript level of dehydrin genes increased earlier in cv. ‘Ladino’ than that in cv. ‘Haifa’. Thus, these results suggest that ameliorating drought stress through exogenously applied Spm may be associated with increased carbohydrate accumulation and dehydrins synthesis. There are differences between drought-susceptible and -resistant white clover cultivars related to Spm regulation of WSC metabolism and dehydrins expression. PMID:25835290

  13. Environmental harshness, heat stress, and Marmota flaviventris.

    PubMed

    Webb, D R

    1979-01-01

    Yellow-bellied marmots (Marmota flaviventris) were studied at three sites in central Oregon. Juveniles substantially reduced their foraging activity when equivalent black-body temperatures exceeded their upper critical temperature. Inclusion of heat stress into estimates of environmental harshness drastically reduced the differences in available foraging time between high elevation and low elevation sites.

  14. Single nucleotide polymorphisms associated with thermoregulation in lactating dairy cows exposed to heat stress.

    PubMed

    Dikmen, S; Wang, X-z; Ortega, M S; Cole, J B; Null, D J; Hansen, P J

    2015-12-01

    Dairy cows with increased rectal temperature experience lower milk yield and fertility. Rectal temperature during heat stress is heritable, so genetic selection for body temperature regulation could reduce effects of heat stress on production. One aim of the study was to validate the relationship between genotype and heat tolerance for single nucleotide polymorphisms (SNPs) previously associated with resistance to heat stress. A second aim was to identify new SNPs associated with heat stress resistance. Thermotolerance was assessed in lactating Holsteins during the summer by measuring rectal temperature (a direct measurement of body temperature regulation; n = 435), respiration rate (an indirect measurement of body temperature regulation, n = 450) and sweating rate (the major evaporative cooling mechanism in cattle, n = 455). The association between genotype and thermotolerance was evaluated for 19 SNPs previously associated with rectal temperature from a genomewide analysis study (GWAS), four SNPs previously associated with change in milk yield during heat stress from GWAS, 2 candidate gene SNPs previously associated with rectal temperature and respiration rate during heat stress (ATPA1A and HSP70A) and 66 SNPs in genes previously shown to be associated with reproduction, production or health traits in Holsteins. For SNPs previously associated with heat tolerance, regions of BTA4, BTA6 and BTA24 were associated with rectal temperature; regions of BTA6 and BTA24 were associated with respiration rate; and regions of BTA5, BTA26 and BTA29 were associated with sweating rate. New SNPs were identified for rectal temperature (n = 12), respiration rate (n = 8) and sweating rate (n = 3) from among those previously associated with production, reproduction or health traits. The SNP that explained the most variation were PGR and ASL for rectal temperature, ACAT2 and HSD17B7 for respiration rate, and ARL6IP1 and SERPINE2 for sweating rate. ARL6IP1 was associated with all three

  15. Heat index and adjusted temperature as surrogates for wet bulb globe temperature to screen for occupational heat stress.

    PubMed

    Bernard, Thomas E; Iheanacho, Ivory

    2015-01-01

    Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) < alert limit, (2) < exposure limit, (3) hourly time-weighted averages (TWAs) of work and recovery, and (4) a caution zone for an exposure > exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered.

  16. Physical exercise alleviates ER stress in obese humans through reduction in the expression and release of GRP78 chaperone.

    PubMed

    Khadir, Abdelkrim; Kavalakatt, Sina; Abubaker, Jehad; Cherian, Preethi; Madhu, Dhanya; Al-Khairi, Irina; Abu-Farha, Mohamed; Warsame, Samia; Elkum, Naser; Dehbi, Mohammed; Tiss, Ali

    2016-09-01

    Perturbation of the endoplasmic reticulum (ER) homeostasis has emerged as one of the prominent features of obesity and diabetes. This occurs when the adaptive unfolded protein response (UPR) fails to restore ER function in key metabolic tissues. We previously reported increased inflammation and impaired heat shock response (HSR) in obese human subjects that were restored by physical exercise. Here, we investigated the status of ER stress chaperone; glucose-regulated protein 78 (GRP78) and its downstream UPR pathways in human obese, and their modulation by a supervised 3-month physical exercise. Subcutaneous adipose tissue (SAT) and blood samples were collected from non-diabetic adult human lean (n=40) and obese (n=40, at baseline and after 3months of physical exercise). Transcriptomic profiling was used as a primary screen to identify differentially expressed genes and it was carried out on SAT samples using the UPR RT(2) Profiler PCR Array. Conventional RT-PCR, immunohistochemistry, immunofluorescence, Western blot and ELISA were used to validate the transcriptomic data. Correlation analyses with the physical, clinical and biochemical outcomes were performed using Pearson's rank correlation coefficient. Levels of GRP78 and its three downstream UPR arms; activating transcription factor-6 (ATF6), inositol-requiring enzyme-1α (IRE1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK) were increased in obese subjects. More interestingly, higher levels of circulating GRP78 protein were found in obese compared to lean subjects which correlated negatively with maximum oxygen uptake (VO2 Max) but positively with high-sensitivity C-reactive protein (hsCRP) and obesity indicators such as BMI, percentage body fat (PBF) and waist circumference. GRP78 increased secretion in obese was further confirmed in vitro using 3T3-L1 preadipocyte cells under ER stress. Finally, we showed that physical exercise significantly attenuated the expression and release of GRP78

  17. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Roots provide support, water and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined the response of these plant organs to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to whole roots. We identified 2,013 genes differentially regulated in root hairsmore » in response to heat stress. Our gene regulatory module analysis identified ten, key modules that controlled the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from roots and root hairs. These experiments identified a variety of proteins whose expression changed within 3 hours of application of heat stress. Most of these proteins were predicted to play a role in thermotolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.« less

  18. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster

    PubMed Central

    Landis, Gary; Shen, Jie; Tower, John

    2012-01-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging. PMID:23211361

  19. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.

    PubMed

    Fragkostefanakis, Sotirios; Röth, Sascha; Schleiff, Enrico; Scharf, Klaus-Dieter

    2015-09-01

    Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops. © 2014 John Wiley & Sons Ltd.

  20. Brown seaweed- (Tasco) treated conserved forage enhances antioxidant status and immune function in heat-stressed wether lambs.

    PubMed

    Saker, K E; Fike, J H; Veit, H; Ward, D L

    2004-04-01

    Twenty-seven wether lambs were utilized to evaluate select innate immunity and oxidative stress in response to diet and heat stress. Dietary treatments were: (i) control (tall fescue) hay = no Tasco (tradename for the extract of the brown seaweed, Ascophyllum nodosum, Acadian Sealants Ltd, Nova Scotia, Canada); (ii) pre-harvest Tasco-Forage-treated hay and (iii) control hay + post-harvest Tasco-EX. Tasco-Forage and Tasco-EX are two forms of the Tasco extract that are either applied to foliage or used for direct feeding, respectively. All lambs were supplemented with soyabean meal and trace mineralized salt. Heat stress was applied for 10 days with measurements obtained at days 0, 4 and 10. A heat x treatment interaction indicated hay with Tasco enhanced monocyte oxidative burst through short duration (p < 0.05) and long duration (p < 0.10) heat stress. Phagocytic activity was influenced by days of heat stress (p < 0.001) and treatment (p = 0.02) with post-harvest Tasco lambs exhibiting the greatest immune enhancement (p < 0.05). Red and white blood cell glutathione peroxidase increased by heat stress day 10 in Tasco lambs. Superoxide dismutase activity was increased and lipid hydroperoxide metabolites minimized (p < 0.01) through long duration heat stress in the pre-harvest Tasco group. Tasco treatment of tall fescue hay prior to harvest appears to provide residual effects on animal antioxidant availability in short-duration heat stress. Tasco supplementation to post-harvest fescue hay enhances immune function and protects against prolonged heat-induced oxidative stress.

  1. Resveratrol alleviates diabetes-induced testicular dysfunction by inhibiting oxidative stress and c-Jun N-terminal kinase signaling in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faid, Iman; Al-Hussaini, Heba; Kilarkaje, Narayana, E-mail: knarayana@hsc.edu.kw

    Diabetes adversely affects reproductive functions in humans and animals. The present study investigated the effects of Resveratrol on diabetes-induced alterations in oxidative stress, c-Jun N-terminal kinase (JNK) signaling and apoptosis in the testis. Adult male Wistar rats (13–15 weeks; n = 6/group) were segregated into 1) normal control, 2) Resveratrol-treated (5 mg/kg; ip; given during last 3 weeks), 3) Streptozotocin-induced diabetic and, 4) Resveratrol-treated diabetic groups, and euthanized on day 42 after the confirmation of diabetes. Resveratrol did not normalize blood glucose levels in diabetic rats. Resveratrol supplementation recovered diabetes-induced decreases in reproductive organ weights, sperm count and motility, intra-testicularmore » levels of superoxide dismutase, catalase, and glutathione peroxidase and an increase in 4-hydroxynonenal activities (P < 0.05). Resveratrol also recovered diabetes-induced increases in JNK signaling pathway proteins, namely, ASK1 (apoptosis signal-regulating kinase 1), JNKs (46 and 54 kDa isoforms) and p-JNK to normal control levels (P < 0.05). Interestingly, the expression of a down-stream target of ASK1, MKK4 (mitogen-activated protein kinase kinase 4) and its phosphorylated form (p-MKK4) did not change in experimental groups. Resveratrol inhibited diabetes-induced increases in AP-1 (activator protein-1) components, c-Jun and ATF2 (activating transcription factor 2), but not their phosphorylated forms, to normal control levels (P < 0.05). Further, Resveratrol inhibited diabetes-induced increase in cleaved-caspase-3 to normal control levels. In conclusion, Resveratrol alleviates diabetes-induced apoptosis in testis by modulating oxidative stress, JNK signaling pathway and caspase-3 activities, but not by inhibiting hyperglycemia, in rats. These results suggest that Resveratrol supplementation may be a useful strategy to treat diabetes-induced testicular dysfunction. - Highlights: • Resveratrol up

  2. Heat stress disorders and headache: a case of new daily persistent headache secondary to heat stroke.

    PubMed

    Di Lorenzo, C; Ambrosini, A; Coppola, G; Pierelli, F

    2009-01-01

    Headache is considered as a common symptom of heat stress disorders (HSD), but no forms of secondary headache from heat exposure are reported in the International Classification of Headache Disorders-2 Edition (ICHD-II). Heat-stroke (HS) is the HSD most severe condition, it may be divided into two forms: classic (due to a long period environmental heat exposure) and exertional (a severe condition caused by strenuous physical exercises in heat environmental conditions). Here we report the case of a patient who developed a headache clinical picture fulfilling the diagnostic criteria for new daily persistent headache (NDPH), after an exertional HS, and discuss about possible pathophysiological mechanisms and classification aspects of headache induced by heat conditions.

  3. Heat stress disorders and headache: a case of new daily persistent headache secondary to heat stroke

    PubMed Central

    Di Lorenzo, C; Ambrosini, A; Coppola, G; Pierelli, F

    2009-01-01

    Headache is considered as a common symptom of heat stress disorders (HSD), but no forms of secondary headache from heat exposure are reported in the International Classification of Headache Disorders-2 Edition (ICHD-II). Heat-stroke (HS) is the HSD most severe condition, it may be divided into two forms: classic (due to a long period environmental heat exposure) and exertional (a severe condition caused by strenuous physical exercises in heat environmental conditions). Here we report the case of a patient who developed a headache clinical picture fulfilling the diagnostic criteria for new daily persistent headache (NDPH), after an exertional HS, and discuss about possible pathophysiological mechanisms and classification aspects of headache induced by heat conditions. PMID:21686677

  4. Baroreflex modulation of sympathetic nerve activity to muscle in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Cui, Jian; Wilson, Thad E.; Crandall, Craig G.

    2002-01-01

    To identify whether whole body heating alters arterial baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA and beat-by-beat arterial blood pressure were recorded in seven healthy subjects during acute hypotensive and hypertensive stimuli in both normothermic and heat stress conditions. Whole body heating significantly increased sublingual temperature (P < 0.01), MSNA (P < 0.01), heart rate (P < 0.01), and skin blood flow (P < 0.001), whereas mean arterial blood pressure did not change significantly (P > 0.05). During both normothermic and heat stress conditions, MSNA increased and then decreased significantly when blood pressure was lowered and then raised via intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure during heat stress (-128.3 +/- 13.9 U x beats(-1) x mmHg(-1)) was similar (P = 0.31) with normothermia (-140.6 +/- 21.1 U x beats(-1) x mmHg(-1)). Moreover, no significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. These data suggest that arterial baroreflex modulation of MSNA and heart rate are not altered by whole body heating, with the exception of an upward shift of these baroreflex curves to accommodate changes in these variables that occur with whole body heating.

  5. Heat stress increases myonuclear number and fiber size via satellite cell activation in rat regenerating soleus fibers.

    PubMed

    Oishi, Yasuharu; Hayashida, Mari; Tsukiashi, Shinsuke; Taniguchi, Kohachi; Kami, Katsuya; Roy, Roland R; Ohira, Yoshinobu

    2009-11-01

    To investigate the effects of heat stress (hyperthermia) on muscle degeneration-regeneration, the soleus muscles of adult male Wistar rats were injected bilaterally with a single injection of bupivacaine. The rats were assigned to a sedentary control (Con), heat stress (Heat), bupivacaine-injected (BPVC), or bupivacaine-injected plus heat stress (BPVC+Heat) group. Heat stress was induced in the Heat and BPVC+Heat groups by immersion of the lower half of the body into water maintained at 42 +/- 1 degrees C for 30 min 48 h after the injection of bupivacaine and every other day during the following 1 or 2 wk. The soleus muscles in all groups were excised 24 h after the final bout of heat stress. Mean muscle weight, fiber cross-sectional area, myonuclear number, and heat shock protein 72 (Hsp72) and calcineurin protein levels were lower in the BPVC than in the Con or Heat groups at both time points. In contrast, several of these parameters in the BPVC+Heat group were not different or higher than in the Con or Heat groups at the 1- and/or 2-wk time points. The number of total and activated satellite cells, estimated by analyses of Pax7-negative, M-cadherin-negative, and MyoD-positive nuclei, was greater in BPVC+Heat than in all other groups. Combined, the results indicate that heat stress-related activation of satellite cells and upregulation of Hsp72 and calcineurin expression played important roles in the regeneration of the soleus fibers after bupivacaine injection.

  6. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance.

    PubMed

    Casaretto, José A; El-Kereamy, Ashraf; Zeng, Bin; Stiegelmeyer, Suzy M; Chen, Xi; Bi, Yong-Mei; Rothstein, Steven J

    2016-04-29

    Plant response mechanisms to heat and drought stresses have been considered in strategies for generating stress tolerant genotypes, but with limited success. Here, we analyzed the transcriptome and improved tolerance to heat stress and drought of maize plants over-expressing the OsMYB55 gene. Over-expression of OsMYB55 in maize decreased the negative effects of high temperature and drought resulting in improved plant growth and performance under these conditions. This was evidenced by the higher plant biomass and reduced leaf damage exhibited by the transgenic lines compared to wild type when plants were subjected to individual or combined stresses and during or after recovery from stress. A global transcriptomic analysis using RNA sequencing revealed that several genes induced by heat stress in wild type plants are constitutively up-regulated in OsMYB55 transgenic maize. In addition, a significant number of genes up-regulated in OsMYB55 transgenic maize under control or heat treatments have been associated with responses to abiotic stresses including high temperature, dehydration and oxidative stress. The latter is a common and major consequence of imposed heat and drought conditions, suggesting that this altered gene expression may be associated with the improved stress tolerance in these transgenic lines. Functional annotation and enrichment analysis of the transcriptome also pinpoint the relevance of specific biological processes for stress responses. Our results show that expression of OsMYB55 can improve tolerance to heat stress and drought in maize plants. Enhanced expression of stress-associated genes may be involved in OsMYB55-mediated stress tolerance. Possible implications for the improved tolerance to heat stress and drought of OsMYB55 transgenic maize are discussed.

  7. Environmental heat stress enhances crystallization in urine

    NASA Astrophysics Data System (ADS)

    Setyawan, H.; Pratiwi, Q. C.; Sjarifah, I.; Atmojo, T. B.; Khotijah

    2018-03-01

    Over the past several decades, agriculture and plantations have been used as the main livelihood of most of the Karanganyar residents. However, these two sources of living are now replaced by industrial areas that employ thousands of people in that district. The development of this industry triggers multiple environmental impacts, including ecosystem and temperature changes. In consequence, there is an increase in air temperature that can cause a variety of diseases, especially in the workplace. According to the International Labour Organization (ILO) data in 2013, one worker dies every 15 second due to a work accident and 160 workers are suffering from the occupational disease. In Indonesia, the incidence of crystallization in urine is actually still unknown, but it is estimated that there are 170,000 cases annually. A high temperature or called heat stress is one among many factors causing this disease to appear. The workers in the textile industry, especially in the Finishing Department Kusumahadi Co. Ltd that exposed heat stress from the finishing machines and inadequate ventilation. This hot working climate causes the human body to adapt in the form of body cooling mechanism or called sweating This adaptation can cause an increase in sweat production and decrease the production of urine. If it is not followed by consuming the recommended amount of water intake, it can result in the precipitation of body salts that, in a long time, will cause crystallization in urine. The research used the analytic observational designs for a cross-sectional study. There were 34 samples collected from 57 finishing workers. The data were analyzed using Spearman correlation test. The results showed that heat stress (p=0,015) and water intake (p=0,034) has a significant correlation with crystallization in urine.

  8. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging.

    PubMed

    Zang, Xinshan; Geng, Xiaoli; Wang, Fei; Liu, Zhenshan; Zhang, Liyuan; Zhao, Yue; Tian, Xuejun; Ni, Zhongfu; Yao, Yingyin; Xin, Mingming; Hu, Zhaorong; Sun, Qixin; Peng, Huiru

    2017-01-14

    The yield of wheat (Triticum aestivum L.), an important crop, is adversely affected by heat stress in many regions of the world. However, the molecular mechanisms underlying thermotolerance are largely unknown. A novel ferritin gene, TaFER, was identified from our previous heat stress-responsive transcriptome analysis of a heat-tolerant wheat cultivar (TAM107). TaFER was mapped to chromosome 5B and named TaFER-5B. Expression pattern analysis revealed that TaFER-5B was induced by heat, polyethylene glycol (PEG), H 2 O 2 and Fe-ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA). To confirm the function of TaFER-5B in wheat, TaFER-5B was transformed into the wheat cultivar Jimai5265 (JM5265), and the transgenic plants exhibited enhanced thermotolerance. To examine whether the function of ferritin from mono- and dico-species is conserved, TaFER-5B was transformed into Arabidopsis, and overexpression of TaFER-5B functionally complemented the heat stress-sensitive phenotype of a ferritin-lacking mutant of Arabidopsis. Moreover, TaFER-5B is essential for protecting cells against heat stress associated with protecting cells against ROS. In addition, TaFER-5B overexpression also enhanced drought, oxidative and excess iron stress tolerance associated with the ROS scavenging. Finally, TaFER-5B transgenic Arabidopsis and wheat plants exhibited improved leaf iron content. Our results suggest that TaFER-5B plays an important role in enhancing tolerance to heat stress and other abiotic stresses associated with the ROS scavenging.

  9. Antioxidant defence and stress protein induction following heat stress in the Mediterranean snail Xeropicta derbentina.

    PubMed

    Troschinski, Sandra; Dieterich, Andreas; Krais, Stefanie; Triebskorn, Rita; Köhler, Heinz-R

    2014-12-15

    The Mediterranean snail Xeropicta derbentina (Pulmonata, Hygromiidae), being highly abundant in Southern France, has the need for efficient physiological adaptations to desiccation and over-heating posed by dry and hot environmental conditions. As a consequence of heat, oxidative stress manifests in these organisms, which, in turn, leads to the formation of reactive oxygen species (ROS). In this study, we focused on adaptations at the biochemical level by investigation of antioxidant defences and heat shock protein 70 (Hsp70) induction, both essential mechanisms of the heat stress response. We exposed snails to elevated temperature (25, 38, 40, 43 and 45°C) in the laboratory and measured the activity of the antioxidant enzymes catalase (CAT) and glutathione peroxidase (GPx), determined the Hsp70 level and quantified lipid peroxidation. In general, we found a high constitutive level of CAT activity in all treatments, which may be interpreted as a permanent protection against ROS, i.e. hydrogen peroxide. CAT and GPx showed temperature-dependent activity: CAT activity was significantly increased in response to high temperatures (43 and 45°C), whereas GPx exhibited a significantly increased activity at 40°C, probably in response to high levels of lipid peroxides that occurred in the 38°C treatment. Hsp70 showed a maximum induction at 40°C, followed by a decrease at higher temperatures. Our results reveal that X. derbentina possesses a set of efficient mechanisms to cope with the damaging effects of heat. Furthermore, we demonstrated that, besides the well-documented Hsp70 stress response, antioxidant defence plays a crucial role in the snails' competence to survive extreme temperatures. © 2014. Published by The Company of Biologists Ltd.

  10. Transient heat stress compromises the resistance of wheat (Poales: Poaceae) seedlings to Hessian fly (Diptera: Cecidomyiidae) infestation.

    PubMed

    Currie, Yaleaka; Moch, John; Underwood, Joshua; Kharabsheh, Hamzah; Quesenberry, Amy; Miyagi, Risa; Thomas, Carolyn; Boney, Melanie; Woods, Samantha; Chen, Ming-Shun; Zhu, Lieceng

    2014-02-01

    Heat stress exerts a profound impact on the resistance of plants to parasites. In this research, we investigated the impact of an acute transient heat stress on the resistance of the wheat line 'Molly,' which contains the R gene H13, to an avirulent Hessian fly (Mayetiola destructor (Say)) population. We found that a significant portion of Molly seedlings stressed at 40 degrees C for 6 h during or after the initial Hessian fly larval attack became susceptible to otherwise avirulent insects, whereas unstressed control plants remained 100% resistant. Specifically, 77.8, 73.3, 83.3, and 46.7% of plants heat stressed at 0, 6,12, and 24 h, respectively, after the initial larval attack became susceptible. Biochemical analysis revealed that heat stress caused a transient decrease in 12-oxo-phytodienoic acid, but an increase in salicylic acid accumulation in Molly plants. The change in phytohormones after heat stress and Hessian fly infestation was not observed in 'Newton,' a near-isogenic but Hessian fly susceptible wheat line. Instead, heat stress caused a relatively prolonged reduction in palmitoleic acid. The role of phytohormones in heat-induced loss of wheat resistance was discussed.

  11. Short communication: Effect of heat stress on markers of autophagy in the mammary gland during the dry period.

    PubMed

    Wohlgemuth, S E; Ramirez-Lee, Y; Tao, S; Monteiro, A P A; Ahmed, B M; Dahl, G E

    2016-06-01

    Heat stress (HT) during the dry period compromises mammary gland (MG) growth, thus negatively affecting subsequent milk yield. Cooling during the late dry period, when mammary tissue proliferates, is a common management practice. However, it neglects MG involution during the early dry period, a process that is accomplished by both apoptosis and autophagy. Our objective was to evaluate the effect of HT on MG autophagy during the early dry period. Holstein cows were dried off ~45d before expected calving and randomly assigned to 1 of 2 treatments: HT or cooling (CL). All cows were housed in the same free stall barn during the dry period, but only the stall area for CL cows was equipped with soakers and fans. Rectal temperature and respiration rate were measured daily during the dry period. Mammary gland biopsies were collected from each cow 3d before dry-off and on d 3, 7, 14, and 22±2 after dry-off. Autophagy in the MG was determined by measuring protein expression of 2 autophagic markers, autophagy-related protein 7 and microtubule-associated protein light chain 3 (LC3). The average temperature-humidity index during the dry period was 77.7, which indicated that HT and CL cows were exposed to significant heat stress. However, the cooling system effectively alleviated heat strain in CL cows by decreasing the rectal temperature (39.0 vs. 39.4°C) and respiration rate (47.3 vs. 71.2 breaths per minute) relative to HT cows. Protein expression of autophagy-related protein 7, a marker for early autophagosome formation, did not change within or between groups. In contrast, protein expression of LC3-II, a marker of autophagosomes, and its precursor LC3-I showed a dynamic expression pattern in MG from CL cows during the early dry period. Relative to HT cows, MG from CL cows displayed higher expression of LC3-I and LC3-II on d 7 and lower expression of LC3-II on d 14 and 22 after dry-off. Collectively, our data provide a possible mechanistic explanation for the impairment of

  12. Urban heat stress: novel survey suggests health and fitness as future avenue for research and adaptation strategies

    NASA Astrophysics Data System (ADS)

    Schuster, Christian; Honold, Jasmin; Lauf, Steffen; Lakes, Tobia

    2017-04-01

    Extreme heat has tremendous adverse effects on human health. Heat stress is expected to further increase due to urbanization, an aging population, and global warming. Previous research has identified correlations between extreme heat and mortality. However, the underlying physical, behavioral, environmental, and social risk factors remain largely unknown and comprehensive quantitative investigation on an individual level is lacking. We conducted a new cross-sectional household questionnaire survey to analyze individual heat impairment (self-assessed and reported symptoms) and a large set of potential risk factors in the city of Berlin, Germany. This unique dataset (n = 474) allows for the investigation of new relationships, especially between health/fitness and urban heat stress. Our analysis found previously undocumented associations, leading us to generate new hypotheses for future research: various health/fitness variables returned the strongest associations with individual heat stress. Our primary hypothesis is that age, the most commonly used risk factor, is outperformed by health/fitness as a dominant risk factor. Related variables seem to more accurately represent humans’ cardiovascular capacity to handle elevated temperature. Among them, active travel was associated with reduced heat stress. We observed statistical associations for heat exposure regarding the individual living space but not for the neighborhood environment. Heat stress research should further investigate individual risk factors of heat stress using quantitative methodologies. It should focus more on health and fitness and systematically explore their role in adaptation strategies. The potential of health and fitness to reduce urban heat stress risk means that encouraging active travel could be an effective adaptation strategy. Through reduced CO2 emissions from urban transport, societies could reap double rewards by addressing two root causes of urban heat stress: population health and

  13. Acetylcholine released from cholinergic nerves contributes to cutaneous vasodilation during heat stress

    NASA Technical Reports Server (NTRS)

    Shibasaki, Manabu; Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Nitric oxide (NO) contributes to active cutaneous vasodilation during a heat stress in humans. Given that acetylcholine is released from cholinergic nerves during whole body heating, coupled with evidence that acetylcholine causes vasodilation via NO mechanisms, it is possible that release of acetylcholine in the dermal space contributes to cutaneous vasodilation during a heat stress. To test this hypothesis, in seven subjects skin blood flow (SkBF) and sweat rate were simultaneously monitored over three microdialysis membranes placed in the dermal space of dorsal forearm skin. One membrane was perfused with the acetylcholinesterase inhibitor neostigmine (10 microM), the second membrane was perfused with the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 10 mM) dissolved in the aforementioned neostigmine solution (l-NAME(Neo)), and the third membrane was perfused with Ringer solution as a control site. Each subject was exposed to approximately 20 min of whole body heating via a water-perfused suit, which increased mean body temperature from 36.4 +/- 0.1 to 37.5 +/- 0.1 degrees C (P < 0.05). After the heat stress, SkBF at each site was normalized to its maximum value, identified by administration of 28 mM sodium nitroprusside. Mean body temperature threshold for cutaneous vasodilation was significantly lower at the neostigmine-treated site relative to the other sites (neostigmine: 36.6 +/- 0.1 degrees C, l-NAME(Neo): 37.1 +/- 0.1 degrees C, control: 36.9 +/- 0.1 degrees C), whereas no significant threshold difference was observed between the l-NAME(Neo)-treated and control sites. At the end of the heat stress, SkBF was not different between the neostigmine-treated and control sites, whereas SkBF at the l-NAME(Neo)-treated site was significantly lower than the other sites. These results suggest that acetylcholine released from cholinergic nerves is capable of modulating cutaneous vasodilation via NO synthase mechanisms early in the heat stress but

  14. Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L.).

    PubMed

    Lima, Rogério Barbosa; dos Santos, Tiago Benedito; Vieira, Luiz Gonzaga Esteves; Ferrarese, Maria de Lourdes Lúcio; Ferrarese-Filho, Osvaldo; Donatti, Lucélia; Boeger, Maria Regina Torres; Petkowicz, Carmen Lúcia de Oliveira

    2013-03-01

    Coffee plants were subjected to heat stress (37 °C) and compared with control plants (24 °C). Cell wall polysaccharides were extracted using water (W), EDTA (E) and 4M NaOH (H30 and H70). In addition, monolignols were analyzed, and the leaves were observed by microscopy. Plants under heat stress accumulated higher contents of arabinose and galactose in fraction W. Xylose contents were observed to decrease in H30 fractions after the heat stress, whereas galactose and uronic acid increased. H70 fractions from plants exposed to heat stress showed increased xylose contents, whereas the contents of arabinose and glucose decreased. Differences in the molar-mass profiles of polysaccharides were also observed. The primary monolignol contents increased after the heat stress. Structural alterations in palisade cells and ultrastructural damage in chloroplasts were also observed. Our results demonstrate that the chemical profile of coffee cell-wall polymers and structural cell anatomy change under heat stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes.

    PubMed

    Klumpen, Eva; Hoffschröer, Nadine; Zeis, Bettina; Gigengack, Ulrike; Dohmen, Elias; Paul, Rüdiger J

    2017-01-01

    Heat stress in ectotherms involves direct (e.g. protein damage) and/or indirect effects (temperature-induced hypoxia and ROS formation), which cause activation of the transcription factors (TF) heat shock factor 1 (HSF-1) and/or hypoxia-inducible factor 1 (HIF-1). The present study focused on the links between stress (ROS) signals, nuclear (n) and cytoplasmic (c) HSF-1/HIF-1 levels, and stress gene expression on mRNA and protein levels (e.g. heat-shock protein 90, HSP90) upon acute heat and ROS (H 2 O 2 ) stress. Acute heat stress (30°C) evoked fluctuations in ROS level. Different feeding regimens, which affected the glutathione (GSH) level, allowed altering the frequency of ROS fluctuations. Other data showed fluctuation frequency to depend also on ROS production rate. The heat-induced slow or fast ROS fluctuations (at high or low GSH levels) evoked slow or fast fluctuations in the levels of nHIF-1α, nHSF-1 and gene products (mRNAs and protein), albeit after different time delays. Time delays to ROS fluctuations were, for example,shorter for nHIF-1α than for nHSF-1 fluctuations, and nHIF-1α fluctuations preceded and nHSF-1 fluctuations followed fluctuations in HSP90 mRNA level. Cytoplasmic TF levels either changed little (cHIF-1α) or showed a steady increase (cHSF-1). Applying acute H 2 O 2 stress (at 20°C) revealed effects on nHIF-1α and mRNA levels, but no significant effects on nHSF-1 level. Transcriptome data additionally showed coordinated fluctuations of mRNA levels upon acute heat stress, involving mRNAs for HSPs and other stress proteins, with all corresponding genes carrying DNA binding motifs for HIF-1 and HSF-1. This study provided evidence for promoting effects of ROS and HIF-1 on early haemoglobin, HIF-1α and HSP90 mRNA expressions upon heat or ROS stress. The increasing cHSF-1 level likely affected nHSF-1 level and later HSP90 mRNA expression. Heat stress evoked ROS fluctuations, with this stress signal forwarded via nHIF-1 and nHSF-1

  16. Metabolic Effects of Acibenzolar-S-Methyl for Improving Heat or Drought Stress in Creeping Bentgrass

    PubMed Central

    Jespersen, David; Yu, Jingjin; Huang, Bingru

    2017-01-01

    Acibenzolar-S-methyl (ASM) is a synthetic functional analog of salicylic acid which can induce systemic acquired resistance in plants, but its effects on abiotic stress tolerance is not well known. The objectives of this study were to examine effects of acibenzolar-S-methyl on heat or drought tolerance in creeping bentgrass (Agrostis stolonifera) and to determine major ASM-responsive metabolites and proteins associated with enhanced abiotic stress tolerance. Creeping bentgrass plants (cv. ‘Penncross’) were foliarly sprayed with ASM and were exposed to non-stress (20/15°C day/night), heat stress (35/30°C), or drought conditions (by withholding irrigation) in controlled-environment growth chambers. Exogenous ASM treatment resulted in improved heat or drought tolerance, as demonstrated by higher overall turf quality, relative water content, and chlorophyll content compared to the untreated control. Western blotting revealed that ASM application resulted in up-regulation of ATP synthase, HSP-20, PR-3, and Rubisco in plants exposed to heat stress, and greater accumulation of dehydrin in plants exposed to drought stress. Metabolite profiling identified a number of amino acids, organic acids, and sugars which were differentially accumulated between ASM treated and untreated plants under heat or drought stress, including aspartic acid, glycine, citric acid, malic acid, and the sugars glucose, and fructose. Our results suggested that ASM was effective in improving heat or drought tolerance in creeping bentgrass, mainly through enhancing protein synthesis and metabolite accumulation involved in osmotic adjustment, energy metabolism, and stress signaling. PMID:28744300

  17. Differences in response to heat stress due to production level and breed of dairy cows

    NASA Astrophysics Data System (ADS)

    Gantner, Vesna; Bobic, Tina; Gantner, Ranko; Gregic, Maja; Kuterovac, Kresimir; Novakovic, Jurica; Potocnik, Klemen

    2017-09-01

    The climatic conditions in Croatia are deteriorating which significantly increases the frequency of heat stress. This creates a need for an adequate dairy farming strategy. The impact of heat stress can be reduced in many ways, but the best long-term solution includes the genetic evaluation and selection for heat stress resistance. In order to create the basis for genetic evaluation, this research determined the variation in daily milk yield (DMY) and somatic cell count (SCC) as well as the differences in resistance to heat stress due to production level (high, low) and breed (Holstein, Simmental) of dairy cattle breed in Croatia. For statistical analysis, 1,070,554 test-day records from 70,135 Holsteins reared on 5679 farms and 1,300,683 test-day records from 86,013 Simmentals reared on 8827 farms in Croatia provided by the Croatian Agricultural Agency were used. The results of this research indicate that the high-producing cows are much more susceptible to heat stress than low-producing especially Holsteins. Also, the results of this research indicate that Simmental breed, in terms of daily milk production and somatic cell count, could be more resistant to heat stress than Holstein. The following research should determine whether Simmentals are genetically more appropriate for the challenges that are in store for the future milk production in this region. Furthermore, could an adequate production level be achieved with Simmentals by maintaining the heat resistance?

  18. Differences in response to heat stress due to production level and breed of dairy cows.

    PubMed

    Gantner, Vesna; Bobic, Tina; Gantner, Ranko; Gregic, Maja; Kuterovac, Kresimir; Novakovic, Jurica; Potocnik, Klemen

    2017-09-01

    The climatic conditions in Croatia are deteriorating which significantly increases the frequency of heat stress. This creates a need for an adequate dairy farming strategy. The impact of heat stress can be reduced in many ways, but the best long-term solution includes the genetic evaluation and selection for heat stress resistance. In order to create the basis for genetic evaluation, this research determined the variation in daily milk yield (DMY) and somatic cell count (SCC) as well as the differences in resistance to heat stress due to production level (high, low) and breed (Holstein, Simmental) of dairy cattle breed in Croatia. For statistical analysis, 1,070,554 test-day records from 70,135 Holsteins reared on 5679 farms and 1,300,683 test-day records from 86,013 Simmentals reared on 8827 farms in Croatia provided by the Croatian Agricultural Agency were used. The results of this research indicate that the high-producing cows are much more susceptible to heat stress than low-producing especially Holsteins. Also, the results of this research indicate that Simmental breed, in terms of daily milk production and somatic cell count, could be more resistant to heat stress than Holstein. The following research should determine whether Simmentals are genetically more appropriate for the challenges that are in store for the future milk production in this region. Furthermore, could an adequate production level be achieved with Simmentals by maintaining the heat resistance?

  19. Expression of Rice Mature Carbonic Anhydrase Gene Increase E. coli Tolerance to Heat Stress.

    PubMed

    Tianpei, Xiuzi; Mao, Zhinang; Zhu, Yingguo; Li, Shaoqing

    2015-05-01

    Carbonic anhydrate is a zinc-containing metalloenzyme and involved in plant abiotic stress tolerance. In this study, we found that heat stress could induce rice mature carbonic anhydrate gene over-expression in rice plants. An Escherichia coli heterologous expression system was performed to identify the function of rice mature carbonic anhydrate in vitro. By sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), mature OsCA fusion protein was identified and proved to be soluble. The results of spot, survival rate, and growth curve assay demonstrated that the expression of the mature OsCA could enhance the thermo-tolerance of the induced mature OsCA recombinants in comparison with controls under heat stress. Meanwhile, compared with controls, the levels of reactive oxygen species in induced mature OsCA recombinants were apparently low under heat stress, and correspondingly, activities of the critical antioxidant enzymes including superoxide dismutase, catalase, and peroxidase in the induced mature OsCA recombinants were significantly increased. Additionally, relative to controls, the activity of the lactate dehydrogenase decreased in the induced mature OsCA recombinants under heat stress. Based on these results, we suggest that mature OsCA protein could confer the E. coli recombinants' tolerance to heat stress by a synergistic fashion of increasing the antioxidant enzymes' activities to reduce the oxidative damage and maintaining the lactate dehydrogenase (LDH) activity of E. coli.

  20. Role of work uniform in alleviating perceptual strain among construction workers

    PubMed Central

    YANG, Yang; CHAN, Albert Ping-chuen

    2016-01-01

    This study aims to examine the benefits of wearing a new construction work uniform in real-work settings. A field experiment with a randomized assignment of an intervention group to a newly designed uniform and a control group to a commercially available trade uniform was executed. A total of 568 sets of physical, physiological, perceptual, and microclimatological data were obtained. A linear mixed-effects model (LMM) was built to examine the cause-effect relationship between the Perceptual Strain Index (PeSI) and heat stressors including wet bulb globe temperature (WBGT), estimated workload (relative heart rate), exposure time, trade, workplace, and clothing type. An interaction effect between clothing and trade revealed that perceptual strain of workers across four trades was significantly alleviated by 1.6–6.3 units in the intervention group. Additionally, the results of a questionnaire survey on assessing the subjective sensations on the two uniforms indicated that wearing comfort was improved by 1.6–1.8 units when wearing the intervention type. This study not only provides convincing evidences on the benefits of wearing the newly designed work uniform in reducing perceptual strain but also heightens the value of the field experiment in heat stress intervention studies. PMID:27666953

  1. HSF-1 is involved in regulation of ascaroside pheromone biosynthesis by heat stress in Caenorhabditis elegans.

    PubMed

    Joo, Hyoe-Jin; Park, Saeram; Kim, Kwang-Youl; Kim, Mun-Young; Kim, Heekyeong; Park, Donha; Paik, Young-Ki

    2016-03-15

    The nematode worm Caenorhabditis elegans survives by adapting to environmental stresses such as temperature extremes by increasing the concentrations of ascaroside pheromones, termed ascarosides or daumones, which signal early C. elegans larvae to enter a non-aging dauer state for long-term survival. It is well known that production of ascarosides is stimulated by heat stress, resulting in enhanced dauer formation by which worms can adapt to environmental insults. However, the molecular mechanism by which ascaroside pheromone biosynthesis is stimulated by heat stress remains largely unknown. In the present study, we show that the heat-shock transcription factor HSF-1 can mediate enhanced ascaroside pheromone biosynthesis in response to heat stress by activating the peroxisomal fatty acid β-oxidation genes in C. elegans. To explore the potential molecular mechanisms, we examined the four major genes involved in the ascaroside biosynthesis pathway and then quantified the changes in both the expression of these genes and ascaroside production under heat-stress conditions. The transcriptional activation of ascaroside pheromone biosynthesis genes by HSF-1 was quite notable, which is not only supported by chromatin immunoprecipitation assays, but also accompanied by the enhanced production of chemically detectable major ascarosides (e.g. daumones 1 and 3). Consequently, the dauer formation rate was significantly increased by the ascaroside pheromone extracts from N2 wild-type but not from hsf-1(sy441) mutant animals grown under heat-stress conditions. Hence heat-stress-enhanced ascaroside production appears to be mediated at least in part by HSF-1, which seems to be important in adaptation strategies for coping with heat stress in this nematode. © 2016 Authors; published by Portland Press Limited.

  2. Spatio-temporal modelling of heat stress and climate change implications for the Murray dairy region, Australia.

    PubMed

    Nidumolu, Uday; Crimp, Steven; Gobbett, David; Laing, Alison; Howden, Mark; Little, Stephen

    2014-08-01

    The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia's total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12-15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31-42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity.

  3. Spatio-temporal modelling of heat stress and climate change implications for the Murray dairy region, Australia

    NASA Astrophysics Data System (ADS)

    Nidumolu, Uday; Crimp, Steven; Gobbett, David; Laing, Alison; Howden, Mark; Little, Stephen

    2014-08-01

    The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia's total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12-15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31-42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity.

  4. Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating

    PubMed Central

    Tang, Xiaoduan; Xu, Shen; Wang, Xinwei

    2013-01-01

    Micro/nanoparticle induced near-field laser ultra-focusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Knowledge of the temperature and stress in the nanoscale near-field heating region is critical for process control and optimization. At present, probing of the nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (∼100 nm or less) and not immediately accessible for sensing. In this work, we report the first experimental study on nanoscale mapping of particle-induced thermal, stress, and optical fields by using a single laser for both near-field excitation and Raman probing. The mapping results based on Raman intensity variation, wavenumber shift, and linewidth broadening all give consistent conjugated thermal, stress, and near-field focusing effects at a 20 nm resolution (<λ/26, λ = 32 nm). Nanoscale mapping of near-field effects of particles from 1210 down to 160 nm demonstrates the strong capacity of such a technique. By developing a new strategy for physical analysis, we have de-conjugated the effects of temperature, stress, and near-field focusing from the Raman mapping. The temperature rise and stress in the nanoscale heating region is evaluated at different energy levels. High-fidelity electromagnetic and temperature field simulation is conducted to accurately interpret the experimental results. PMID:23555566

  5. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage.

    PubMed

    Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad

    2015-03-01

    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.

  6. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans

    PubMed Central

    Petrie, Michael A.; Kimball, Amy L.; McHenry, Colleen L.; Suneja, Manish; Yen, Chu-Ling; Sharma, Arpit; Shields, Richard K.

    2016-01-01

    Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. Purpose: The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Methods: Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. Results: We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p < 0.05); while vibration induced FOXK2 (2.36 fold change; p < 0.05). Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05) while heat stress repressed PGC-1α (0.74 fold) and ANKRD1 genes (0.51 fold; p < 0.05). Conclusion: These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative

  7. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.

    PubMed

    Petrie, Michael A; Kimball, Amy L; McHenry, Colleen L; Suneja, Manish; Yen, Chu-Ling; Sharma, Arpit; Shields, Richard K

    2016-01-01

    Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p < 0.05); while vibration induced FOXK2 (2.36 fold change; p < 0.05). Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05) while heat stress repressed PGC-1α (0.74 fold) and ANKRD1 genes (0.51 fold; p < 0.05). These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell

  8. Genome wide association of changes in feeding behavior due to heat stress in pigs

    USDA-ARS?s Scientific Manuscript database

    Heat stress negatively impacts pork production, losses include decreased growth, reduced feed intake, and mortality. Therefore, the objective of this study was to identify genetic markers associated with changes in feeding behavior due to heat stress in grow-finish pigs. Data were collected on grow-...

  9. Transcriptome responses to heat- and cold-stress in ladybirds (Cryptolaemus montrouzieri Mulasnt) analyzed by deep-sequencing.

    PubMed

    Zhang, Yuhong; Wu, Hongsheng; Xie, Jiaqin; Jiang, Ruixin; Deng, Congshuang; Pang, Hong

    2015-11-19

    Changed temperature not only threaten agricultural production, but they also affect individual biological behavior, population and community of many insects, and consequently reduce the stability of our ecosystem. Insect's ability to respond to temperature stress evolved through a complex adaptive process, thus resulting in varied temperature tolerance among different insects. Both high and low extreme temperatures are detrimental to insect development since they constitute an important abiotic stress capable of inducing abnormal biological responses. Many studies on heat or cold tolerance of ladybirds have focused on measurements of physiological and biochemical indexes such as supercooling point, higher/lower lethal temperatures, survival rate, dry body weight, water content, and developmental duration. And studies of the molecular mechanisms of ladybird responses to heat or cold stress have focused on single genes, such as those encoding heat shock proteins, but has not been analyzed by transcriptome profiling. In this study, we report the use of Digital Gene Expression (DGE) tag profiling to gain insight into transcriptional events associated with heat- and cold-stress in C. montrouzieri. About 6 million tags (49 bp in length) were sequenced in a heat stress group, a cold stress group and a negative control group. We obtained 687 and 573 genes that showed significantly altered expression levels following heat and cold shock treatments, respectively. Analysis of the global gene expression pattern suggested that 42 enzyme-encoding genes mapped to many Gene Ontology terms are associated with insect's response to heat- and cold-stress. These results provide a global assessment of genes and molecular mechanisms involved in heat and cold tolerance.

  10. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae

    PubMed Central

    Morano, Kevin A.; Grant, Chris M.; Moye-Rowley, W. Scott

    2012-01-01

    A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters. PMID:22209905

  11. Mapping rural community and dairy cow heat stress in Southern Ontario: A common geographic pattern from 2010 to 2012.

    PubMed

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Kelton, David F

    2016-07-03

    Climate change has increased the occurrence of heat waves, causing heat stress among humans and livestock, with potentially fatal consequences. Heat stress maps provide information about related health risks and insight for control strategies. Weather data were collected throughout Southern Ontario, and the heat stress index (HSI) was estimated for 2010-2012. Geostatistical kriging was applied to map heat stress, heat waves, and control periods. Average HSI for each period ranged from 55 to 78 during control periods, and from 65 to 84 during heat waves, surpassing levels where morbidity is known to increase substantially. Heat stress followed a temporally consistent geographic pattern. HSI maps indicate high-risk areas for heat-related illness and indicate areas where agriculture and human health may be at increased risk in future.

  12. Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace.

    PubMed

    Hosseini-Vashan, S J; Golian, A; Yaghobfar, A

    2016-08-01

    total and IgG titers for secondary antibody response to sheep red blood cells and titer against Newcastle disease virus and increased the heterophil/lymphocyte ratio. The supplementation with 5 % of DTP completely alleviated the negative effects of HS on immune responses. The ash, Ca, and P contents of the tibia bone were decreased under HS. The ash and Ca contents of the tibia were not significantly different between thermoneutral and heat-stressed broilers supplemented with 5 % DTP. In conclusion, dietary supplementation of DTP, particularly 5 % DTP, to broiler diet attenuated the detrimental effects of HS on the activities of serum enzymes, oxidative status, immune response, and bone composition.

  13. Multi-model ensemble projections of future extreme heat stress on rice across southern China

    NASA Astrophysics Data System (ADS)

    He, Liang; Cleverly, James; Wang, Bin; Jin, Ning; Mi, Chunrong; Liu, De Li; Yu, Qiang

    2017-08-01

    Extreme heat events have become more frequent and intense with climate warming, and these heatwaves are a threat to rice production in southern China. Projected changes in heat stress in rice provide an assessment of the potential impact on crop production and can direct measures for adaptation to climate change. In this study, we calculated heat stress indices using statistical scaling techniques, which can efficiently downscale output from general circulation models (GCMs). Data across the rice belt in southern China were obtained from 28 GCMs in the Coupled Model Intercomparison Project phase 5 (CMIP5) with two emissions scenarios (RCP4.5 for current emissions and RCP8.5 for increasing emissions). Multi-model ensemble projections over the historical period (1960-2010) reproduced the trend of observations in heat stress indices (root-mean-square error RMSE = 6.5 days) better than multi-model arithmetic mean (RMSE 8.9 days) and any individual GCM (RMSE 11.4 days). The frequency of heat stress events was projected to increase by 2061-2100 in both scenarios (up to 185 and 319% for RCP4.5 and RCP8.5, respectively), especially in the middle and lower reaches of the Yangtze River. This increasing risk of exposure to heat stress above 30 °C during flowering and grain filling is predicted to impact rice production. The results of our study suggest the importance of specific adaption or mitigation strategies, such as selection of heat-tolerant cultivars and adjustment of planting date in a warmer future world.

  14. Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2

    PubMed Central

    Mittler, Ron

    2013-01-01

    Reactive oxygen species play a key role in the response of plants to abiotic stress conditions. Their level is controlled in Arabidopsis thaliana by a large network of genes that includes the H2O2-scavenging enzymes cytosolic ascorbate peroxidase (APX) 1 and 2. Although the function of APX1 has been established under different growth conditions, genetic evidence for APX2 function, as well as for the mode of cooperation between APX1 and APX2, is very limited. This study characterized the response of Arabidopsis mutants deficient in APX1, APX2, and APX1/APX2 to heat, salinity, light, and oxidative stresses. The findings reveal that deficiency in APX2 resulted in a decreased tolerance to light stress, as well as an enhanced tolerance to salinity and oxidative stresses. Interestingly, plants lacking APX2 were more sensitive to heat stress at the seedling stage, but more tolerant to heat stress at the reproductive stage. Cooperation between APX1 and APX2 was evident during oxidative stress, but not during light, salinity, or heat stress. The findings demonstrate a role for APX2 in the response of plants to light, heat, salinity, and oxidative stresses. The finding that plants lacking APX2 produced more seeds under prolonged heat stress conditions suggests that redundant mechanisms activated in APX2-deficient plants during heat stress play a key role in the protection of reproductive tissues from heat-related damage. This finding is very important because heat-associated damage to reproductive tissues in different crops is a major cause for yield loss in agriculture production worldwide. PMID:23183257

  15. Acute Heat Stress Changes Protein Expression in the Testes of a Broiler-Type Strain of Taiwan Country Chickens.

    PubMed

    Wang, Shih-Han; Cheng, Chuen-Yu; Chen, Chao-Jung; Chan, Hong-Lin; Chen, Hsin-Hsin; Tang, Pin-Chi; Chen, Chih-Feng; Lee, Yen-Pai; Huang, San-Yuan

    2018-03-19

    Heat stress leads to decreased fertility in roosters. This study investigated the global protein expression in response to acute heat stress in the testes of a broiler-type strain of Taiwan country chickens (TCCs). Twelve 45-week-old roosters were randomly allocated to the control group maintained at 25°C, and three groups subjected to acute heat stress at 38°C for 4 h, with 0, 2, and 6 h of recovery, respectively. Testis samples were collected for hematoxylin and eosin staining, apoptosis assay, and protein analysis. The results revealed 101 protein spots that differed significantly from the control following exposure to acute heat stress. The proteins that were differentially expressed participated mainly in protein metabolism and other metabolic processes, responses to stimuli, apoptosis, cellular organization, and spermatogenesis. Proteins that negatively regulate apoptosis were downregulated and proteins involved in autophagy and major heat shock proteins (HSP90α, HSPA5, and HSPA8) were upregulated in the testes of heat-stressed chickens. In conclusion, acute heat stress causes a change in protein expression in the testes of broiler-type B strain TCCs and may thus impair cell morphology, spermatogenesis, and apoptosis. The expression of heat shock proteins increased to attenuate the testicular injury induced by acute heat stress.

  16. Brassinolide Increases Potato Root Growth In Vitro in a Dose-Dependent Way and Alleviates Salinity Stress

    PubMed Central

    Xia, Shitou; Su, Yi; Wang, Huiqun; Luo, Weigui; Su, Shengying

    2016-01-01

    Brassinosteroids (BRs) are steroidal phytohormones that regulate various physiological processes, such as root development and stress tolerance. In the present study, we showed that brassinolide (BL) affects potato root in vitro growth in a dose-dependent manner. Low BL concentrations (0.1 and 0.01 μg/L) promoted root elongation and lateral root development, whereas high BL concentrations (1–100 μg/L) inhibited root elongation. There was a significant (P < 0.05) positive correlation between root activity and BL concentrations within a range from 0.01 to 100 μg/L, with the peak activity of 8.238 mg TTC·g−1 FW·h−1 at a BL concentration of 100 μg/L. Furthermore, plants treated with 50 μg/L BL showed enhanced salt stress tolerance through in vitro growth. Under this scenario, BL treatment enhanced the proline content and antioxidant enzymes' (superoxide dismutase, peroxidase, and catalase) activity and reduced malondialdehyde content in potato shoots. Application of BL maintain K+ and Na+ homeostasis by improving tissue K+/Na+ ratio. Therefore, we suggested that the effects of BL on root development from stem fragments explants as well as on primary root development are dose-dependent and that BL application alleviates salt stress on potato by improving root activity, root/shoot ratio, and antioxidative capacity in shoots and maintaining K+/Na+ homeostasis in potato shoots and roots. PMID:27803931

  17. Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat

    PubMed Central

    Wang, Xiao; Xin, Caiyun; Cai, Jian; Zhou, Qin; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2016-01-01

    Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH), the progeny of heat-primed plants (PH) possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1) which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production. PMID:27148324

  18. Analysis of Heat Stress and the Indoor Climate Control Requirements for Movable Refuge Chambers.

    PubMed

    Hao, Xiaoli; Guo, Chenxin; Lin, Yaolin; Wang, Haiqiao; Liu, Heqing

    2016-05-20

    Movable refuge chambers are a new kind of rescue device for underground mining, which is believed to have a potential positive impact on reducing the rate of fatalities. It is likely to be hot and humid inside a movable refuge chamber due to the metabolism of trapped miners, heat generated by equipment and heat transferred from outside. To investigate the heat stress experienced by miners trapped in a movable refuge chamber, the predicted heat strain (PHS) model was used to simulate the heat transfer process between the person and the thermal environment. The variations of heat stress with the temperature and humidity inside the refuge chamber were analyzed. The effects of air temperature outside the refuge chamber and the overall heat transfer coefficient of the refuge chamber shell on the heat stress inside the refuge chamber was also investigated. The relationship between the limit of exposure duration and the air temperature and humidity was numerically analyzed to determine the upper limits of temperature and humidity inside a refuge chamber. Air temperature of 32 °C and relative humidity of 70% are recommended as the design standard for internal thermal environment control of movable refuge chambers.

  19. Analysis of Heat Stress and the Indoor Climate Control Requirements for Movable Refuge Chambers

    PubMed Central

    Hao, Xiaoli; Guo, Chenxin; Lin, Yaolin; Wang, Haiqiao; Liu, Heqing

    2016-01-01

    Movable refuge chambers are a new kind of rescue device for underground mining, which is believed to have a potential positive impact on reducing the rate of fatalities. It is likely to be hot and humid inside a movable refuge chamber due to the metabolism of trapped miners, heat generated by equipment and heat transferred from outside. To investigate the heat stress experienced by miners trapped in a movable refuge chamber, the predicted heat strain (PHS) model was used to simulate the heat transfer process between the person and the thermal environment. The variations of heat stress with the temperature and humidity inside the refuge chamber were analyzed. The effects of air temperature outside the refuge chamber and the overall heat transfer coefficient of the refuge chamber shell on the heat stress inside the refuge chamber was also investigated. The relationship between the limit of exposure duration and the air temperature and humidity was numerically analyzed to determine the upper limits of temperature and humidity inside a refuge chamber. Air temperature of 32 °C and relative humidity of 70% are recommended as the design standard for internal thermal environment control of movable refuge chambers. PMID:27213422

  20. Ethephon increases photosynthetic-nitrogen use efficiency, proline and antioxidant metabolism to alleviate decrease in photosynthesis under salinity stress in mustard.

    PubMed

    Iqbal, Noushina; Umar, Shahid; Per, Tasir S; Khan, Nafees A

    2017-05-04

    Salinity is a serious threat to plant growth and development worldwide reducing agricultural productivity each year. Ethylene is an important phytohormone that affects plants performance under normal and abiotic stress conditions. In this study, role of ethylene was investigated in mitigating salinity stress (100 mM NaCl) effects on photosynthesis in mustard plants subjected to different nitrogen (N; 5 and 10 mM) levels. Plants under salinity stress exhibited marked increase in proline and reduced glutathione (GSH) content and activity of antioxidant enzymes. Nitrogen supplementation at 10 mM was better than 200 µl l -1 ethephon treatment under no stress. However, under salinity stress, both N and ethephon were equally effective. The combined application of 10 mM N and ethephon to salinity stressed plants produced greatest increase in photosynthesis by increasing proline and antioxidant metabolism. Ethylene evolution was high under salinity stress, but treatment of 10 mM N and 200 µl l -1 ethephon greatly decreased ethylene evolution that was equivalent to the 10 mM N treatment alone. This concentration of ethylene decreased the oxidative stress and increased the photosynthetic nitrogen use efficiency (NUE) maximally to increase photosynthesis. The use of ethylene action inhibitor, norbornadiene (NBD) showed reduction in ethylene mediated effects in alleviating salinity. Norbornadiene decreased the photosynthetic-NUE, proline and GSH content that resulted in decrease in photosynthesis under salinity stress. This study indicated that ethylene regulated the proline and antioxidant metabolism under salinity stress to increase photosynthetic functions of mustard grown with low and optimum N. The modulation of ethylene could be adopted in agricultural practices to increase photosynthesis under salinity stress.

  1. Heat Stress Alters Ruminal Fermentation and Digesta Characteristics, and Behavior in Lactating Dairy Cattle

    USDA-ARS?s Scientific Manuscript database

    In a study designed to assess the impact and interaction of nonfiber carbohydrates (NFC) and ruminally degradable protein (RDP) on ruminal characteristics and animal behavior, animals experienced heat stress in the first period (HS), and no/greatly reduced heat stress (NHS) in the second period, all...

  2. Chemical Endoplasmic Reticulum Chaperone Alleviates Doxorubicin-Induced Cardiac Dysfunction.

    PubMed

    Fu, Hai Ying; Sanada, Shoji; Matsuzaki, Takashi; Liao, Yulin; Okuda, Keiji; Yamato, Masaki; Tsuchida, Shota; Araki, Ryo; Asano, Yoshihiro; Asanuma, Hiroshi; Asakura, Masanori; French, Brent A; Sakata, Yasushi; Kitakaze, Masafumi; Minamino, Tetsuo

    2016-03-04

    Doxorubicin is an effective chemotherapeutic agent for cancer, but its use is often limited by cardiotoxicity. Doxorubicin causes endoplasmic reticulum (ER) dilation in cardiomyocytes, and we have demonstrated that ER stress plays important roles in the pathophysiology of heart failure. We evaluated the role of ER stress in doxorubicin-induced cardiotoxicity and examined whether the chemical ER chaperone could prevent doxorubicin-induced cardiac dysfunction. We confirmed that doxorubicin caused ER dilation in mouse hearts, indicating that doxorubicin may affect ER function. Doxorubicin activated an ER transmembrane stress sensor, activating transcription factor 6, in cultured cardiomyocytes and mouse hearts. However, doxorubicin suppressed the expression of genes downstream of activating transcription factor 6, including X-box binding protein 1. The decreased levels of X-box binding protein 1 resulted in a failure to induce the expression of the ER chaperone glucose-regulated protein 78 which plays a major role in adaptive responses to ER stress. In addition, doxorubicin activated caspase-12, an ER membrane-resident apoptotic molecule, which can lead to cardiomyocyte apoptosis and cardiac dysfunction. Cardiac-specific overexpression of glucose-regulated protein 78 by adeno-associated virus 9 or the administration of the chemical ER chaperone 4-phenylbutyrate attenuated caspase-12 cleavage, and alleviated cardiac apoptosis and dysfunction induced by doxorubicin. Doxorubicin activated the ER stress-initiated apoptotic response without inducing the ER chaperone glucose-regulated protein 78, further augmenting ER stress in mouse hearts. Cardiac-specific overexpression of glucose-regulated protein 78 or the administration of the chemical ER chaperone alleviated the cardiac dysfunction induced by doxorubicin and may facilitate the safe use of doxorubicin for cancer treatment. © 2016 American Heart Association, Inc.

  3. Heat stress and antioxidant enzyme activity in bubaline ( Bubalus bubalis) oocytes during in vitro maturation

    NASA Astrophysics Data System (ADS)

    Waiz, Syma Ashraf; Raies-ul-Haq, Mohammad; Dhanda, Suman; Kumar, Anil; Goud, T. Sridhar; Chauhan, M. S.; Upadhyay, R. C.

    2016-09-01

    In vitro environments like heat stress usually increase the production of reactive oxygen species in bubaline oocytes which have been implicated as one of the major causes for reduced developmental competence. Oocytes during meiotic maturation are sensitive to oxidative stress, and heat stress accelerates cellular metabolism, resulting in the higher production of free radicals. Therefore, the aim of present work was to assess the impact of heat stress during meiotic maturation on bubaline cumulus-oocyte complexes (COC), denuded oocytes (DO), and cumulus cell mass in terms of their oxidative status. Accordingly, for control group, COC were matured at 38.5 °C for complete 24 h of meiotic maturation and heat stress of 40.5 and 41.5 °C was applied to COC during the first 12 h of maturation and then moved to 38.5 °C for rest of the 12 h. In another group, COC after maturation were denuded from the surrounding cumulus cells by manual pipetting. Results indicated that the production of reactive oxygen species (ROS), lipid peroxides, and nitric oxide (NO) was significantly ( P < 0.05) higher in the oocytes subjected to heat stress (40.5 and 41.5 °C) during meiotic maturation compared to the oocytes matured under standard in vitro culture conditions (38.5 °C). Also, the antioxidant enzymatic activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were significantly ( P < 0.05) increased in all the treatment groups compared to the control group. Therefore, the present study clearly establishes that heat stress ensues oxidative stress in bubaline oocytes which triggers the induction of antioxidant enzymatic defense system for scavenging the ROS.

  4. Heat Acclimation by Post-Exercise Hot Water Immersion in the Morning Reduces Thermal Strain During Morning and Afternoon Exercise-Heat-Stress.

    PubMed

    Zurawlew, Michael J; Mee, Jessica A; Walsh, Neil P

    2018-05-10

    Recommendations state that to acquire the greatest benefit from heat acclimation the clock-time of heat acclimation sessions should match the clock-time of expected exercise-heat stress. It remains unknown if adaptations by post-exercise hot water immersion (HWI) demonstrate time of day dependent adaptations. Thus, we examined whether adaptations following post-exercise HWI completed in the morning were present during morning and afternoon exercise-heat stress. Ten males completed an exercise-heat stress test commencing in the morning (0945-h: AM) and afternoon (1445-h: PM; 40 min; 65% V̇O 2max treadmill run) before (PRE) and after (POST) heat acclimation. The 6-day heat acclimation intervention involved a daily, 40 min treadmill-run (65% V̇O 2max ) in temperate conditions followed by ≤ 40 min HWI (40°C; 0630-1100-h). Adaptations by 6-day post-exercise HWI in the morning were similar in the morning and afternoon. Reductions in resting rectal temperature (T re ; AM; -0.34 ± 0.24°C, PM; -0.27 ± 0.23°C; P = 0.002), T re at sweating onset (AM; -0.34 ± 0.24°C, PM; -0.31 ± 0.25°C; P = 0.001), and end-exercise T re (AM; -0.47 ± 0.33°C, PM; -0.43 ± 0.29°C; P = 0.001), heart rate (AM; -14 ± 7 beats∙min -1 , PM; -13 ± 6 beats∙min -1 ; P < 0.01), rating of perceived exertion (P = 0.01), and thermal sensation (P = 0.005) were not different in the morning compared to the afternoon. Morning heat acclimation by post-exercise hot water immersion induced adaptions at rest and during exercise-heat stress in the morning and mid-afternoon.

  5. Acute Heat Stress Induces Differential Gene Expressions in the Testes of a Broiler-Type Strain of Taiwan Country Chickens

    PubMed Central

    Wang, Shih-Han; Cheng, Chuen-Yu; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Huang, San-Yuan

    2015-01-01

    The expression of testicular genes following acute heat stress has been reported in layer-type roosters, but few similar studies have been conducted on broilers. This study investigated the effect of acute heat stress on the gene expression in the testes of a broiler-type strain of Taiwan country chickens. Roosters were subjected to acute heat stress (38°C) for 4 h, and then exposed to 25°C, with testes collected 0, 2, and 6 h after the cessation of heat stress, using non-heat-stressed roosters as controls (n = 3 roosters per group). The body temperature and respiratory rate increased significantly (p<0.05) during the heat stress. The numbers of apoptotic cells increased 2 h after the acute heat stress (79 ± 7 vs. 322 ± 192, control vs. heat stress; p<0.05), which was earlier than the time of increase in layer-type roosters. Based on a chicken 44 K oligo microarray, 163 genes were found to be expressed significantly different in the testes of the heat-stressed chickens from those of the controls, including genes involved in the response to stimulus, protein metabolism, signal transduction, cell adhesion, transcription, and apoptosis. The mRNA expressions of upregulated genes, including HSP25, HSP90AA1, HSPA2, and LPAR2, and of downregulated genes, including CDH5, CTNNA3, EHF, CIRBP, SLA, and NTF3, were confirmed through quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, numerous transcripts in the testes exhibited distinct expressions between the heat-stressed broiler-type and layer-type chickens. We concluded that the transcriptional responses of testes to acute heat stress may differ between the broiler-type and layer-type roosters. Whether the differential expression patterns associate with the heat-tolerance in the strains require a further exploration. PMID:25932638

  6. Acute heat stress induces differential gene expressions in the testes of a broiler-type strain of Taiwan country chickens.

    PubMed

    Wang, Shih-Han; Cheng, Chuen-Yu; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Huang, San-Yuan

    2015-01-01

    The expression of testicular genes following acute heat stress has been reported in layer-type roosters, but few similar studies have been conducted on broilers. This study investigated the effect of acute heat stress on the gene expression in the testes of a broiler-type strain of Taiwan country chickens. Roosters were subjected to acute heat stress (38°C) for 4 h, and then exposed to 25°C, with testes collected 0, 2, and 6 h after the cessation of heat stress, using non-heat-stressed roosters as controls (n = 3 roosters per group). The body temperature and respiratory rate increased significantly (p<0.05) during the heat stress. The numbers of apoptotic cells increased 2 h after the acute heat stress (79 ± 7 vs. 322 ± 192, control vs. heat stress; p<0.05), which was earlier than the time of increase in layer-type roosters. Based on a chicken 44 K oligo microarray, 163 genes were found to be expressed significantly different in the testes of the heat-stressed chickens from those of the controls, including genes involved in the response to stimulus, protein metabolism, signal transduction, cell adhesion, transcription, and apoptosis. The mRNA expressions of upregulated genes, including HSP25, HSP90AA1, HSPA2, and LPAR2, and of downregulated genes, including CDH5, CTNNA3, EHF, CIRBP, SLA, and NTF3, were confirmed through quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, numerous transcripts in the testes exhibited distinct expressions between the heat-stressed broiler-type and layer-type chickens. We concluded that the transcriptional responses of testes to acute heat stress may differ between the broiler-type and layer-type roosters. Whether the differential expression patterns associate with the heat-tolerance in the strains require a further exploration.

  7. Characterizing the intra-urban spatiotemporal dynamics of High Heat Stress Zones (Hotspots)

    NASA Astrophysics Data System (ADS)

    Shreevastava, A.; Rao, P. S.; McGrath, G. S.

    2017-12-01

    In this study, we present an innovative framework to characterize the spatio-temporal dynamics of High Heat Stress Zones (Hot spots) created within an Urban area in the event of a Heat Wave. Heat waves are one of the leading causes of weather-related human mortality in many countries, and cities receive its worst brunt. The extreme heat stress within urban areas is often a synergistic combination of large-scale meteorological events, and the locally exacerbated impacts due to Urban Heat Islands (UHI). UHI is typically characterized as the difference between mean temperature of the urban and rural area. As a result, it fails to capture the significant variability that exists within the city itself. This variability arises from the diverse and complex spatial geometries of cities. Previous studies that have attempted to quantify the heat stress at an intra-urban scale are labor intensive, expensive, and difficult to emulate globally as they rely on availability of extensive data and their assimilation. The proposed study takes advantage of the well-established notion of fractal properties of cities to make the methods scalable to other cities where in-situ observational data might not be available. As an input, land surface temperatures are estimated using Landsat data. Using clustering analysis, we probe the emergence of thermal hotspots. The probability distributions (PD) of these hotspots are found to follow a power-law distribution in agreement with fractal characteristics of the city. PDs of several archetypical cities are then investigated to compare the effect of different spatial structures (e.g. monocentric v/s polycentric, sprawl v/s compact). Further, the temporal variability of the distributions on a diurnal as well as a seasonal scale is discussed. Finally, the spatiotemporal dynamics of the urban hotspots under a heat-wave (E.g. Delhi Heat wave, 2015) are compared against the non-heat wave scenarios. In summary, a technique that is globally adaptive and

  8. Daily heat stress treatment rescues denervation-activated mitochondrial clearance and atrophy in skeletal muscle

    PubMed Central

    Tamura, Yuki; Kitaoka, Yu; Matsunaga, Yutaka; Hoshino, Daisuke; Hatta, Hideo

    2015-01-01

    Traumatic nerve injury or motor neuron disease leads to denervation and severe muscle atrophy. Recent evidence indicates that loss of mitochondria and the related reduction in oxidative capacity could be key mediators of skeletal muscle atrophy. As our previous study showed that heat stress increased the numbers of mitochondria in skeletal muscle, we evaluated whether heat stress treatment could have a beneficial impact on denervation-induced loss of mitochondria and subsequent muscle atrophy. Here, we report that daily heat stress treatment (mice placed in a chamber with a hot environment; 40°C, 30 min day−1, for 7 days) rescues the following parameters: (i) muscle atrophy (decreased gastrocnemius muscle mass); (ii) loss of mitochondrial content (decreased levels of ubiquinol–cytochrome c reductase core protein II, cytochrome c oxidase subunits I and IV and voltage-dependent anion channel protein); and (iii) reduction in oxidative capacity (reduced maximal activities of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase) in denervated muscle (produced by unilateral sciatic nerve transection). In order to gain a better understanding of the above mitochondrial adaptations, we also examined the effects of heat stress on autophagy-dependent mitochondrial clearance (mitophagy). Daily heat stress normalized denervation-activated induction of mitophagy (increased mitochondrial microtubule-associated protein 1A/1B-light chain3-II (LC3-II) with and without blocker of autophagosome clearance). The molecular basis of this observation was explained by the results that heat stress attenuated the denervation-induced increase in key proteins that regulate the following steps: (i) the tagging step of mitochondrial clearance (increased mitochondrial Parkin, ubiquitin-conjugated, P62/sequestosome 1 (P62/SQSTM1)); and (ii) the elongation step of autophagosome formation (increased Atg5–Atg12 conjugate and Atg16L). Overall, our results contribute to the better

  9. Pathway to a Phenocopy: Heat Stress Effects in Early Embryogenesis

    PubMed Central

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2015-01-01

    Background Heat shocks applied at the onset of gastrulation in early Drosophila embryos frequently lead to phenocopies of U-shaped mutants – having characteristic failures in the late morphogenetic processes of germband retraction and dorsal closure. The pathway from non-specific heat stress to phenocopied abnormalities is unknown. Results Drosophila embryos subjected to 30-min, 38-°C heat shocks at gastrulation appear to recover and restart morphogenesis. Post-heat-shock development appears normal, albeit slower, until a large fraction of embryos develop amnioserosa holes (diameters > 100 μm). These holes are positively correlated with terminal U-shaped phenocopies. They initiate between amnioserosa cells and open over tens of minutes by evading normal wound healing responses. They are not caused by tissue-wide increases in mechanical stress or decreases in cell-cell adhesion, but instead appear to initiate from isolated apoptosis of amnioserosa cells. Conclusions The pathway from heat shock to U-shaped phenocopies involves the opening of one or more large holes in the amnioserosa that compromise its structural integrity and lead to failures in morphogenetic processes that rely on amnioserosa-generated tensile forces. The proposed mechanism by which heat shock leads to hole initiation and expansion is heterochonicity – i.e., disruption of morphogenetic coordination between embryonic and extra-embryonic cell types. PMID:26498920

  10. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    PubMed Central

    Huang, Chin-Ming; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung; Wei, Ching-Chuan; Chen, Chiachung; Liao, Yin-Tzu; Chen, Fun-Jou

    2011-01-01

    This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP) and heart rate variability (HRV). The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25 ± 4 yr; 29 men and 31 women) were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF) and high-frequency (HF) components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr) (P < .05), but the cold stress significantly increased AIr (P < .01). The spectral energy of RPP did not show any statistical difference in 0 ~ 10 Hz region under both conditions, but in the region of 10 ~ 50 Hz, there was a significant increase (P < .01) in the heat test and a significant decrease in the cold test (P < .01). The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10 ~ 50 Hz (SE10−50 Hz) but not in the region of 0 ~ 10 Hz (SE0−10 Hz). The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses. PMID:21113292

  11. The transcriptional response of the Pacific oyster Crassostrea gigas against acute heat stress.

    PubMed

    Yang, Chuanyan; Gao, Qiang; Liu, Chang; Wang, Lingling; Zhou, Zhi; Gong, Changhao; Zhang, Anguo; Zhang, Huan; Qiu, Limei; Song, Linsheng

    2017-09-01

    The Pacific oyster, Crassostrea gigas, has evolved sophisticated mechanisms to adapt the changing ambient conditions, and protect themselves from stress-induced injuries. In the present study, the expression profiles of mRNA transcripts in the haemocytes of oysters under heat stress were examined to reveal the possible mechanism of heat stress response. There were 23,315, 23,904, 23,123 and 23,672 transcripts identified in the haemocytes of oysters cultured at 25 °C for 0, 6, 12, and 24 h (designed as B, H6, H12, H24), respectively. And 22,330 differentially expressed transcripts (DTs) were yielded in the pairwise comparisons between the above four samples, which corresponded to 8074 genes. There were 9, 12 and 22 Gene Ontology (GO) terms identified in the DT pairwise comparison groups of H6_B, H12_H6 and H24_H12, respectively, and the richest GO terms in biological process category were cellular catabolic process, translational initiation and apoptotic process, respectively. There were 108, 102 and 102 KEGG pathways successfully retrieved from DTs comparison groups DTH6_B, DTH12_H6 and DTH24_H12, respectively, among which 93 pathways were shared by all three comparison groups, and most of them were related to metabolism of protein, carbohydrate and fat. The expression patterns of 12 representative heat stress response-relevant genes detected by quantitative real-time PCR (qRT-PCR) were similar to those obtained from transcriptome analysis. By flow cytometric analysis, the apoptosis rate of haemocytes increased significantly after oysters were treated at 25 °C for 24 h and recovered at 4 °C for 12 h (p < 0.05) and 36 h (p < 0.01), and it also increased significantly when the heat treatment lasted to 60 h (p < 0.01). The present results indicated that, when oysters encountered short term heat stress, the expression of genes related to energy metabolism, as well as unfolded protein response (UPR) and anti-apoptotic system, were firstly regulated to

  12. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants

    PubMed Central

    Buchner, Othmar; STOLL, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2015-01-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv/Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc′) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. PMID:25256247

  13. Association between occupational heat stress and kidney disease among 37,816 workers in the Thai Cohort Study (TCS).

    PubMed

    Tawatsupa, Benjawan; Lim, Lynette L-Y; Kjellstrom, Tord; Seubsman, Sam-ang; Sleigh, Adrian

    2012-01-01

    We examined the relationship between self-reported occupational heat stress and incidence of self-reported doctor-diagnosed kidney disease in Thai workers. Data were derived from baseline (2005) and follow-up (2009) self-report questionnaires from a large national Thai Cohort Study (TCS). Analysis was restricted to full-time workers (n = 17 402 men and 20 414 women) without known kidney disease at baseline. We used logistic regression models to examine the association of incident kidney disease with heat stress at work, after adjustment for smoking, alcohol drinking, body mass index, and a large number of socioeconomic and demographic characteristics. Exposure to heat stress was more common in men than in women (22% vs 15%). A significant association between heat stress and incident kidney disease was observed in men (adjusted odds ratio [OR] = 1.48, 95% CI: 1.01-2.16). The risk of kidney disease was higher among workers reporting workplace heat stress in both 2005 and 2009. Among men exposed to prolonged heat stress, the odds of developing kidney disease was 2.22 times that of men without such exposure (95% CI 1.48-3.35, P-trend <0.001). The incidence of kidney disease was even higher among men aged 35 years or older in a physical job: 2.2% exposed to prolonged heat stress developed kidney disease compared with 0.4% with no heat exposure (adjusted OR = 5.30, 95% CI 1.17-24.13). There is an association between self-reported occupational heat stress and self-reported doctor-diagnosed kidney disease in Thailand. The results indicate a need for occupational health interventions for heat stress among workers in tropical climates.

  14. 21st Century Heat Stress Projections and their Effects on US Livestock

    NASA Astrophysics Data System (ADS)

    McCabe, E.; Buzan, J. R.; Krishnan, S.; Huber, M.

    2016-12-01

    In this study we aim to determine future yield changes in the United States for livestock caused by heat stress, under the high greenhouse gas emissions scenario, representative concentration pathway 8.5 (RCP8.5). We use CMIP5 output and the Community Earth System Model Large Ensemble (CESM LENS), produced by the National Center for Atmospheric Research (NCAR). We apply the HumanIndexMod, a diagnostic heat stress package, to calculate Temperature Humidity Index for Comfort (THIC) and wet bulb temperature (Buzan et al., 2015). THIC is used to assess an animal's behavioral changes as it is subjected to discomfort. Using output from our simulations with the HumanIndexMod, we utilized the agricultural livestock model of St. Pierre et al. (2003). THIC and wet bulb temperatures are all projected by climate models to increase by the end of the century. We found that increases in THIC and heat stress are caused by both temperature and humidity increases. We show the differences for dry matter intake loss and milk loss for the Dairy Cow Model as well as other yield related variables. These variables are estimated to decrease overall production for dairy cattle, finishing hogs, poultry and various livestock. By the end of the 21st century (2071-2100), dairy cow milk production decreases by 14%, and food intake decreases by 11% compared to the beginning of the century (2005-2034). 35% less weight is gained and 19% less food is consumed by hogs the end of the century compared to the beginning of the century. We estimate and discuss resulting yield losses for the livestock industries and the implications of these losses in the United States. These results indicate that the effect of heat stress on livestock production will be highest for dairy cows, finishing hogs, and poultry.References:Buzan, J.R., K. Oleson, and M. Huber. 2015. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geoscien. Model Devel. 8(2): 151-170. St

  15. Exogenous Salicylic Acid Enhances the Resistance of Wheat Seedlings to Hessian Fly (Diptera: Cecidomyiidae) Infestation Under Heat Stress.

    PubMed

    Underwood, Joshua; Moch, John; Chen, Ming-Shun; Zhu, Lieceng

    2014-10-01

    Heat stress exerts significant impact on plant-parasite interactions. Phytohormones, such as salicylic acid (SA), play important roles in plant defense against parasite attacks. Here, we studied the impact of a combination of heat stress and exogenous SA on the resistance of wheat (Triticum aestivum L.) plants to the Hessian fly [Mayetiola destructor (Say)]. We found that the wheat cultivar 'Molly', which contains the resistance gene H13, lost resistance to Hessian fly under heat stress (40°C for 3 and 6 h), and that exogenous application of SA on Molly seedlings right before heat stress can partially prevent the loss of resistance of Molly plants under heat conditions. Our findings have significant implications for understanding the dynamics of plant-insect interactions in the context of heat stress. © 2014 Entomological Society of America.

  16. Five pectinase gene expressions highly responding to heat stress in rice floral organs revealed by RNA-seq analysis.

    PubMed

    Wu, Liquan; Taohua, Zhou; Gui, Wenbin; Xu, Lisen; Li, Juan; Ding, YanFeng

    2015-07-31

    Heat stress hurts rice, and floral organs are mostly sensitive to heat stress. We aimed to unravel molecular responses to heat stress in rice floral organs using Illumina/Solexa sequencing technology for addressing the increasing concern of globle warming. At meiophase of the pollen mother cell (pulvinus flat), the plants were stressed for 3 d at 38 C, and RNA was extracted from the stressed pistil and stamen for RNA-Seq sequencing to build the heat stress transcriptom library. A total of 7178 defferentially expressed genes (DEGs) between the normal and heat stress libraries were significant, 61% up-regulated and 39% down-regulated. The 7178 DEGs were significantly classified to 34 gene ontology (GO) categories, and 11 of the GO categories were significantly enriched. The GO:0016787 for hydrolase activity of molecular function was mostly enriched with the least probability, and included 11 DEGs named Hy1 - Hy11. Expression levels of five DEGs, Hy4 - Hy6 and Hy9 - Hy10 for starch and sucrose metablism via pectinase, increased 12 - 14 times in response to the heat stress. Further investigation of the five DEGs for pectin metabolism and association with reported heat responsive genes may help develop a molecular strategy to remedy heat damage in rice. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis)

    PubMed Central

    Kapila, Neha; Sharma, Ankita; Kishore, Amit; Sodhi, Monika; Tripathi, Pawan K.; Mohanty, Ashok K.

    2016-01-01

    The present study aims to identify the heat responsive genes and biological pathways in heat stressed buffalo mammary epithelial cells (MECs). The primary mammary epithelial cells of riverine buffalo were exposed to thermal stress at 42°C for one hour. The cells were subsequently allowed to recover at 37°C and harvested at different time intervals (30 min to 48 h) along with control samples (un-stressed). In order to assess the impact of heat stress in buffalo MECs, several in-vitro cellular parameters (lactate dehydrogenase activity, cell proliferation assay, cellular viability, cell death and apoptosis) and transcriptional studies were conducted. The heat stress resulted in overall decrease in cell viability and cell proliferation of MECs while induction of cellular apoptosis and necrosis. The transcriptomic profile of heat stressed MECs was generated using Agilent 44 K bovine oligonucleotide array and at cutoff criteria of ≥3-or ≤3 fold change, a total of 153 genes were observed to be upregulated while 8 genes were down regulated across all time points post heat stress. The genes that were specifically up-regulated or down-regulated were identified as heat responsive genes. The upregulated genes in heat stressed MECs belonged to heat shock family viz., HSPA6, HSPB8, DNAJB2, HSPA1A. Along with HSPs, genes like BOLA, MRPL55, PFKFB3, PSMC2, ENDODD1, ARID5A, and SENP3 were also upregulated. Microarray data revealed that the heat responsive genes belonged to different functional classes viz., chaperons; immune responsive; cell proliferation and metabolism related. Gene ontology analysis revealed enrichment of several biological processes like; cellular process, metabolic process, response to stimulus, biological regulation, immune system processes and signaling. The transcriptome analysis data was further validated by RT-qPCR studies. Several HSP (HSP40, HSP60, HSP70, HSP90, and HSPB1), apoptotic (Bax and Bcl2), immune (IL6, TNFα and NF-kβ) and oxidative

  18. Untargeted metabolomic analysis of tomato pollen development and heat stress response.

    PubMed

    Paupière, Marine J; Müller, Florian; Li, Hanjing; Rieu, Ivo; Tikunov, Yury M; Visser, Richard G F; Bovy, Arnaud G

    2017-06-01

    Pollen development metabolomics. Developing pollen is among the plant structures most sensitive to high temperatures, and a decrease in pollen viability is often associated with an alteration of metabolite content. Most of the metabolic studies of pollen have focused on a specific group of compounds, which limits the identification of physiologically important metabolites. To get a better insight into pollen development and the pollen heat stress response, we used a liquid chromatography-mass spectrometry platform to detect secondary metabolites in pollen of tomato (Solanum lycopersicum L.) at three developmental stages under control conditions and after a short heat stress at 38 °C. Under control conditions, the young microspores accumulated a large amount of alkaloids and polyamines, whereas the mature pollen strongly accumulated flavonoids. The heat stress treatment led to accumulation of flavonoids in the microspore. The biological role of the detected metabolites is discussed. This study provides the first untargeted metabolomic analysis of developing pollen under a changing environment that can serve as reference for further studies.

  19. Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature.

    PubMed

    Zahoor, Imran; de Koning, Dirk-Jan; Hocking, Paul M

    2017-09-20

    In recent years, the commercial importance of changes in muscle function of broiler chickens and of the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress during transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the identification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens were exposed to control or high ambient temperatures to characterise differences in gene expression between the two genotypes and the two environments. Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P < 0.05) genotype × treatment interaction. This gene set was analysed with the BioLayout Express 3D and Ingenuity Pathway Analysis software and relevant biological pathways and networks were identified. Genes involved in functions related to inflammatory reactions, cell death, oxidative stress and tissue damage were upregulated in control broilers compared with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers. Differences in gene expression between broiler and layer chickens under control and heat stress conditions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed gene networks and pathways were

  20. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice.

    PubMed

    Cheng, Q; Zhou, Y; Liu, Z; Zhang, L; Song, G; Guo, Z; Wang, W; Qu, X; Zhu, Y; Yang, D

    2015-03-01

    As sessile organisms, plants have evolved a wide range of defence pathways to cope with environmental stress such as heat shock. However, the molecular mechanism of these defence pathways remains unclear in rice. In this study, we found that OsHSFA2d, a heat shock transcriptional factor, encodes two main splice variant proteins, OsHSFA2dI and OsHSFA2dII in rice. Under normal conditions, OsHSFA2dII is the dominant but transcriptionally inactive spliced form. However, when the plant suffers heat stress, OsHSFA2d is alternatively spliced into a transcriptionally active form, OsHSFA2dI, which participates in the heat stress response (HSR). Further study found that this alternative splicing was induced by heat shock rather than photoperiod. We found that OsHSFA2dI is localised to the nucleus, whereas OsHSFA2dII is localised to the nucleus and cytoplasm. Moreover, expression of the unfolded protein response (UNFOLDED PROTEIN RESPONSE) sensors, OsIRE1, OsbZIP39/OsbZIP60 and the UNFOLDED PROTEIN RESPONSE marker OsBiP1, was up-regulated. Interestingly, OsbZIP50 was also alternatively spliced under heat stress, indicating that UNFOLDED PROTEIN RESPONSE signalling pathways were activated by heat stress to re-establish cellular protein homeostasis. We further demonstrated that OsHSFA2dI participated in the unfolded protein response by regulating expression of OsBiP1. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery

    PubMed Central

    2014-01-01

    Background High temperature is a major environmental factor limiting grape yield and affecting berry quality. Thermotolerance includes the direct response to heat stress and the ability to recover from heat stress. To better understand the mechanism of the thermotolerance of Vitis, we combined a physiological analysis with iTRAQ-based proteomics of Vitis vinifera cv Cabernet Sauvignon, subjected to 43°C for 6 h, and then followed by recovery at 25/18°C. Results High temperature increased the concentrations of TBARS and inhibited electronic transport in photosynthesis apparatus, indicating that grape leaves were damaged by heat stress. However, these physiological changes rapidly returned to control levels during the subsequent recovery phase from heat stress. One hundred and seventy-four proteins were differentially expressed under heat stress and/or during the recovery phase, in comparison to unstressed controls, respectively. Stress and recovery conditions shared 42 proteins, while 113 and 103 proteins were respectively identified under heat stress and recovery conditions alone. Based on MapMan ontology, functional categories for these dysregulated proteins included mainly photosynthesis (about 20%), proteins (13%), and stress (8%). The subcellular localization using TargetP showed most proteins were located in the chloroplasts (34%), secretory pathways (8%) and mitochondrion (3%). Conclusion On the basis of these findings, we proposed that some proteins related to electron transport chain of photosynthesis, antioxidant enzymes, HSPs and other stress response proteins, and glycolysis may play key roles in enhancing grapevine adaptation to and recovery capacity from heat stress. These results provide a better understanding of the proteins involved in, and mechanisms of thermotolerance in grapevines. PMID:24774513

  2. Genetic component of sensitivity to heat stress for nonreturn rate of Brazilian Holstein cattle.

    PubMed

    Santana, M L; Bignardi, A B; Stefani, G; El Faro, L

    2017-08-01

    The objectives of the present study were: 1) to investigate variation in the genetic component of heat stress for nonreturn rate at 56 days after first artificial insemination (NR56); 2) to identify and characterize the genotype by environment interaction (G × E) due to heat stress for NR56 of Brazilian Holstein cattle. A linear random regression model (reaction norm model) was applied to 51,748 NR56 records of 28,595 heifers and multiparous cows. The decline in NR56 due to heat stress was more pronounced in milking cows compared to heifers. The age of females at first artificial insemination and temperature-humidity index (THI) exerted an important influence on the genetic parameters of NR56. Several evidence of G × E on NR56 were found as the high slope/intercept ratio and frequent intersection of reaction norms. Additionally, the genetic correlation between NR56 at opposite extremes of the THI scale reached estimates below zero, indicating that few of the same genes are responsible for NR56 under conditions of thermoneutrality and heat stress. The genetic evaluation and selection for NR56 in Holstein cattle reared under (sub)tropical conditions should therefore take into consideration the genetic variation on age at insemination and G × E due to heat stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Phenylephrine-induced elevations in arterial blood pressure are attenuated in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Cui, Jian; Wilson, Thad E.; Crandall, Craig G.

    2002-01-01

    To test the hypothesis that phenylephrine-induced elevations in blood pressure are attenuated in heat-stressed humans, blood pressure was elevated via steady-state infusion of three doses of phenylephrine HCl in 10 healthy subjects in both normothermic and heat stress conditions. Whole body heating significantly increased sublingual temperature by 0.5 degrees C, muscle sympathetic nerve activity (MSNA), heart rate, and cardiac output and decreased total peripheral vascular resistance (TPR; all P < 0.005) but did not change mean arterial blood pressure (MAP; P > 0.05). At the highest dose of phenylephrine, the increase in MAP and TPR from predrug baselines was significantly attenuated during the heat stress [DeltaMAP 8.4 +/- 1.2 mmHg; DeltaTPR 0.96 +/- 0.85 peripheral resistance units (PRU)] compared with normothermia (DeltaMAP 15.4 +/- 1.4 mmHg, DeltaTPR 7.13 +/- 1.18 PRU; all P < 0.001). The sensitivity of baroreflex control of MSNA and heart rate, expressed as the slope of the relationship between MSNA and diastolic blood pressure, as well as the slope of the relationship between heart rate and systolic blood pressure, respectively, was similar between thermal conditions (each P > 0.05). These data suggest that phenylephrine-induced elevations in MAP are attenuated in heat-stressed humans without affecting baroreflex control of MSNA or heart rate.

  4. Short Communication: Effect of heat stress on heat-shock protein (Hsp60) mRNA expression in rainbow trout Oncorhynchus mykiss.

    PubMed

    Shi, H N; Liu, Z; Zhang, J P; Kang, Y J; Wang, J F; Huang, J Q; Wang, W M

    2015-05-18

    The enhanced expression of heat shock proteins (hsps) in organisms can be detected in response to many kinds of stressor. For fish, high temperature is an important stressor, and hsp expression is associated with differences in environmental temperature. In this study, rainbow trout (Oncorhynchus mykiss) that were accustomed to an aquatic temperature of 18°C were exposed to an elevated temperature (25°C), and hsp60 expression in the gill, liver, spleen, heart, and head kidney was quantified using real-time polymerase chain reaction in unstressed and heat-stressed animals. The fish responded to heat stress in a time- and tissue-specific manner. Cardiac hsp60 mRNA levels were largely unchanged, and the greatest induction of hsp60 in heat-stressed animals was recorded in the liver, suggesting that protein damage and the consequent requirement for the Hsp60 protein are probably greater in hepatic tissue. Therefore, fish must be provided with optimal temperature conditions in order to realize their potential growth and maximize fish farm profits.

  5. Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice.

    PubMed

    Murtaza, Nida; Baboota, Ritesh K; Jagtap, Sneha; Singh, Dhirendra P; Khare, Pragyanshu; Sarma, Siddhartha M; Podili, Koteswaraiah; Alagesan, Subramanian; Chandra, T S; Bhutani, K K; Boparai, Ravneet K; Bishnoi, Mahendra; Kondepudi, Kanthi Kiran

    2014-11-14

    Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.

  6. Impact of heat stress during seed development on soybean seed metabolome

    USDA-ARS?s Scientific Manuscript database

    Seed development is a temperature-sensitive process that is much more vulnerable than vegetative tissues to abiotic stresses. Climate change is expected to increase the incidence and severity of summer heatwaves, and the impact of heat stress on seed development is expected to become more widespread...

  7. Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Gerecht, Andrea C.; Šupraha, Luka; Langer, Gerald; Henderiks, Jorijntje

    2018-02-01

    Calcifying haptophytes (coccolithophores) sequester carbon in the form of organic and inorganic cellular components (coccoliths). We examined the effect of phosphorus (P) limitation and heat stress on particulate organic and inorganic carbon (calcite) production in the coccolithophore Emiliania huxleyi. Both environmental stressors are related to rising CO2 levels and affect carbon production in marine microalgae, which in turn impacts biogeochemical cycling. Using semi-continuous cultures, we show that P limitation and heat stress decrease the calcification rate in E. huxleyi. However, using batch cultures, we show that different culturing approaches (batch versus semi-continuous) induce different physiologies. This affects the ratio of particulate inorganic (PIC) to organic carbon (POC) and complicates general predictions on the effect of P limitation on the PIC  /  POC ratio. We found heat stress to increase P requirements in E. huxleyi, possibly leading to lower standing stocks in a warmer ocean, especially if this is linked to lower nutrient input. In summary, the predicted rise in global temperature and resulting decrease in nutrient availability may decrease CO2 sequestration by E. huxleyi through lower overall carbon production. Additionally, the export of carbon may be diminished by a decrease in calcification and a weaker coccolith ballasting effect.

  8. Association Between Occupational Heat Stress and Kidney Disease Among 37 816 Workers in the Thai Cohort Study (TCS)

    PubMed Central

    Tawatsupa, Benjawan; Lim, Lynette L-Y; Kjellstrom, Tord; Seubsman, Sam-ang; Sleigh, Adrian

    2012-01-01

    Background We examined the relationship between self-reported occupational heat stress and incidence of self-reported doctor-diagnosed kidney disease in Thai workers. Methods Data were derived from baseline (2005) and follow-up (2009) self-report questionnaires from a large national Thai Cohort Study (TCS). Analysis was restricted to full-time workers (n = 17 402 men and 20 414 women) without known kidney disease at baseline. We used logistic regression models to examine the association of incident kidney disease with heat stress at work, after adjustment for smoking, alcohol drinking, body mass index, and a large number of socioeconomic and demographic characteristics. Results Exposure to heat stress was more common in men than in women (22% vs 15%). A significant association between heat stress and incident kidney disease was observed in men (adjusted odds ratio [OR] = 1.48, 95% CI: 1.01–2.16). The risk of kidney disease was higher among workers reporting workplace heat stress in both 2005 and 2009. Among men exposed to prolonged heat stress, the odds of developing kidney disease was 2.22 times that of men without such exposure (95% CI 1.48–3.35, P-trend <0.001). The incidence of kidney disease was even higher among men aged 35 years or older in a physical job: 2.2% exposed to prolonged heat stress developed kidney disease compared with 0.4% with no heat exposure (adjusted OR = 5.30, 95% CI 1.17–24.13). Conclusions There is an association between self-reported occupational heat stress and self-reported doctor-diagnosed kidney disease in Thailand. The results indicate a need for occupational health interventions for heat stress among workers in tropical climates. PMID:22343327

  9. Tolerence for work-induced heat stress in men wearing liquidcooled garments

    NASA Technical Reports Server (NTRS)

    Blockley, W. V.; Roth, H. P.

    1971-01-01

    An investigation of the heat tolerance in men unable to dispose of metabolic heat as fast as it is produced within the body is discussed. Examinations were made of (a) the effect of work rate (metabolic rate) on tolerance time when body heat storage rate is a fixed quantity, and (b) tolerance time as a function of metabolic rate when heat loss is terminated after a thermal quasi-equilibrium was attained under comfortable conditions of heat transfer. The nature of the physiological mechanisms involved in such heat stress situations, and the possibility of using prediction techniques to establish standard procedures in emergencies involving cooling system failures are also discussed.

  10. Reconsidering betaine as a natural anti-heat stress agent in poultry industry: a review.

    PubMed

    Saeed, Muhammad; Babazadeh, Daryoush; Naveed, Muhammad; Arain, Muhammad Asif; Hassan, Faiz Ul; Chao, Sun

    2017-10-01

    Betaine is found ubiquitously in plants, animals, microorganisms, and rich dietary sources including seafood, spinach, and wheat bran. The chief physiological role of betaine is to function as a methyl donor and an osmolyte. Betaine also acts as an osmolyte, to maintain the avian's cellular water and ion balance to improve the avian's capacity against heat stress via preventing dehydration and osmotic inactivation. It helps in maintaining the protective osmolytic activity, especially in heat-stressed birds. Betaine may promote various intestinal microbes against osmotic variations and thus improve microbial fermentation activity. Previous studies showed that dietary supplementation of betaine in poultry diets could positively affect nutrients' digestibility, reduce abdominal fat weight, and increase breast meat yield. In addition, betaine has been reported to protect internal organs and boost their performance. Its inclusion in poultry diet is sparing essential amino acids like choline and methionine. In addition, it may play an important role in lean meat production by positively affecting the lipid metabolism with increased fatty acids catabolism and thus reducing carcass fat deposition. The aim of this review article was to broaden the knowledge regarding betaine and its importance in the poultry industry to cope with the heat stress problem. Moreover, it should be added to the diet as a natural anti-stressor through different routes (water/feed) to overcome the heat stress problem. However, further studies need to be conducted at the genetic and molecular basis to elucidate the mechanism behind the betaine as a natural anti-heat agent to decrease the heat stress problem in the poultry industry.

  11. Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review

    PubMed Central

    Dash, Soumya; Chakravarty, A. K.; Singh, Avtar; Upadhyay, Arpan; Singh, Manvendra; Yousuf, Saleem

    2016-01-01

    Heat stress has adverse effects on the reproductive performances of dairy cattle and buffaloes. The dairy sector is a more vulnerable to global warming and climate change. The temperature humidity index (THI) is the widely used index to measure the magnitude of heat stress in animals. The objective of this paper was to assess the decline in performances of reproductive traits such as service period, conception rate and pregnancy rate of dairy cattle and buffaloes with respect to increase in THI. The review stated that service period in cattle is affected by season of calving for which cows calved in summer had the longest service period. The conception rate and pregnancy rate in dairy cattle were found decreased above THI 72 while a significant decline in reproductive performances of buffaloes was observed above threshold THI 75. The non-heat stress zone (HSZ) (October to March) is favorable for optimum reproductive performance, while fertility is depressed in HSZ (April to September) and critical HSZ (CHSZ) (May and June). Heat stress in animals has been associated with reduced fertility through its deleterious impact on oocyte maturation and early embryo development. The management strategies viz., nutrition modification, environment modification and timed artificial insemination protocol are to be strictly operated to ameliorate the adverse effects of heat stress in cattle and buffaloes during CHSZ to improve their fertility. The identification of genes associated with heat tolerance, its incorporation into breeding program and the inclusion of THI covariate effects in selection index should be targeted for genetic evaluation of dairy animals in the hot climate. PMID:27057105

  12. Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review.

    PubMed

    Dash, Soumya; Chakravarty, A K; Singh, Avtar; Upadhyay, Arpan; Singh, Manvendra; Yousuf, Saleem

    2016-03-01

    Heat stress has adverse effects on the reproductive performances of dairy cattle and buffaloes. The dairy sector is a more vulnerable to global warming and climate change. The temperature humidity index (THI) is the widely used index to measure the magnitude of heat stress in animals. The objective of this paper was to assess the decline in performances of reproductive traits such as service period, conception rate and pregnancy rate of dairy cattle and buffaloes with respect to increase in THI. The review stated that service period in cattle is affected by season of calving for which cows calved in summer had the longest service period. The conception rate and pregnancy rate in dairy cattle were found decreased above THI 72 while a significant decline in reproductive performances of buffaloes was observed above threshold THI 75. The non-heat stress zone (HSZ) (October to March) is favorable for optimum reproductive performance, while fertility is depressed in HSZ (April to September) and critical HSZ (CHSZ) (May and June). Heat stress in animals has been associated with reduced fertility through its deleterious impact on oocyte maturation and early embryo development. The management strategies viz., nutrition modification, environment modification and timed artificial insemination protocol are to be strictly operated to ameliorate the adverse effects of heat stress in cattle and buffaloes during CHSZ to improve their fertility. The identification of genes associated with heat tolerance, its incorporation into breeding program and the inclusion of THI covariate effects in selection index should be targeted for genetic evaluation of dairy animals in the hot climate.

  13. Heat stress, gastrointestinal permeability and interleukin-6 signaling - Implications for exercise performance and fatigue.

    PubMed

    Vargas, Nicole; Marino, Frank

    2016-01-01

    Exercise in heat stress exacerbates performance decrements compared to normothermic environments. It has been documented that the performance decrements are associated with reduced efferent drive from the central nervous system (CNS), however, specific factors that contribute to the decrements are not completely understood. During exertional heat stress, blood flow is preferentially distributed away from the intestinal area to supply the muscles and brain with oxygen. Consequently, the gastrointestinal barrier becomes increasingly permeable, resulting in the release of lipopolysaccharides (LPS, endotoxin) into the circulation. LPS leakage stimulates an acute-phase inflammatory response, including the release of interleukin (IL)-6 in response to an increasingly endotoxic environment. If LPS translocation is too great, heat shock, neurological dysfunction, or death may ensue. IL-6 acts initially in a pro-inflammatory manner during endotoxemia, but can attenuate the response through signaling the hypothalamic pituitary adrenal (HPA)-axis. Likewise, IL-6 is believed to be a thermoregulatory sensor in the gut during the febrile response, hence highlighting its role in periphery - to - brain communication. Recently, IL-6 has been implicated in signaling the CNS and influencing perceptions of fatigue and performance during exercise. Therefore, due to the cascade of events that occur during exertional heat stress, it is possible that the release of LPS and exacerbated response of IL-6 contributes to CNS modulation during exertional heat stress. The purpose of this review is to evaluate previous literature and discuss the potential role for IL-6 during exertional heat stress to modulate performance in favor of whole body preservation.

  14. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants.

    PubMed

    Buchner, Othmar; Stoll, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2015-04-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv /Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc (')) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  15. Effects of heat acclimation on photosynthesis, antioxidant enzyme activities, and gene expression in orchardgrass under heat stress.

    PubMed

    Zhao, Xin Xin; Huang, Lin Kai; Zhang, Xin Quan; Li, Zhou; Peng, Yan

    2014-09-01

    The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L.).The stomatal conductance (Gs), net photosynthetic rate (Pn), and transpiration rates (Tr) of both heat-acclimated (HA) and non-acclimated (NA) plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night) followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night), in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times) versus the NA (1.8 times) plants, and the intercellular CO2 concentration decreased gently in NA (10.9%) and HA (25.3%) plants after 20 d of treatments compared to 0 days'. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD), catalase (CAT), guaiacol peroxidase (POD), and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance.

  16. The welfare risks and impacts of heat stress on sheep shipped from Australia to the Middle East.

    PubMed

    Phillips, Clive

    2016-12-01

    This review considers the welfare issues confronting sheep due to heat stress on board ships undertaking long distance voyages. Sheep engage in behavioural and physiologic mechanisms to attempt to mitigate heat stress, but the evidence from Australian shipments from 2005 to 2014 is that mortality approximately doubles when sheep are transported from Australia in winter to the Middle East in summer. Much of this increase has been attributed to salmonellosis and inanition, but this may have been mistaken for, or exacerbated by, heat stress. The Australian government's estimate of the heat stress threshold of sheep is substantially higher than that observed under simulated live export conditions, which leads to an underestimate of the importance of heat stress in sheep on voyages where mortality is high. Improved temperature monitoring on ships and the creation of both a robust model of the impact of increased temperatures on sheep morbidity and mortality, and a heat stress scale for sheep would assist in understanding and addressing this welfare concern. The high risk to sheep exported from Australia during summer in the Middle East is sufficient to warrant consideration of restriction of trade during this period. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Comparative physiological and metabolomics analysis of wheat (Triticum aestivum L.) following post-anthesis heat stress

    PubMed Central

    Beecher, Chris; MacDonald, Greg

    2018-01-01

    Genetic improvement for stress tolerance requires a solid understanding of biochemical processes involved with different physiological mechanisms and their relationships with different traits. The objective of this study was to demonstrate genetic variability in altered metabolic levels in a panel of six wheat genotypes in contrasting temperature regimes, and to quantify the correlation between those metabolites with different traits. In a controlled environment experiment, heat stress (35:28 ± 0.08°C) was initiated 10 days after anthesis. Flag leaves were collected 10 days after heat treatment to employ an untargeted metabolomics profiling using LC-HRMS based technique called IROA. High temperature stress produced significant genetic variations for cell and thylakoid membrane damage, and yield related traits. 64 known metabolites accumulated 1.5 fold of higher or lower due to high temperature stress. In general, metabolites that increased the most under heat stress (L-tryptophan, pipecolate) showed negative correlation with different traits. Contrary, the metabolites that decreased the most under heat stress (drummondol, anthranilate) showed positive correlation with the traits. Aminoacyl-tRNA biosysnthesis and plant secondary metabolite biosynthesis pathways were most impacted by high temperature stress. The robustness of metabolic change and their relationship with phenotypes renders those metabolites as potential bio-markers for genetic improvement. PMID:29897945

  18. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress.

    PubMed

    Tremblay, Pascale; Gori, Andrea; Maguer, Jean François; Hoogenboom, Mia; Ferrier-Pagès, Christine

    2016-12-05

    Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals' vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.

  19. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress

    NASA Astrophysics Data System (ADS)

    Tremblay, Pascale; Gori, Andrea; Maguer, Jean François; Hoogenboom, Mia; Ferrier-Pagès, Christine

    2016-12-01

    Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals’ vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.

  20. [The effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell in vitro].

    PubMed

    Pan, Zhiguo; Shao, Yu; Geng, Yan; Chen, Jinghe; Su, Lei

    2015-08-01

    To study the effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell ( HUVEC ) in vitro. HUVEC was cultured in vitro in 5%CO(2) medium at 37 centigrade ( control group ) or 43 centigrade ( heat stress group ) for 1 hour. Coomassie brilliant blue R-250 staining was used to determine the effect of heat stress on the cytoskeleton. The cells in heat stress group were subsequently cultured at 37 centigradein 5%CO(2) medium after heat stress for 1 hour, and cell cycle of HUVEC was determined at 0, 6, 12, 18 and 24 hours with flow cytometry. Under light microscopy normal cytoskeleton was observed in control group, but thicker and shorter cytoskeleton was found after a rise of temperature, and stress fibers were found in heat stress group. The DNA content of HUVEC at all time points in G0/G1 stage was 38.07%-55.19% after heat stress. The DNA content in control group was 48.57%, and it was 54.06%, 55.19%, 48.23%, 38.07%, and 41.03% at 0, 6, 12, 18, 24 hours in G0/G1 stage in heat stress group. DNA content in S phase was 35.33%-48.18%. The DNA content in control group was 44.62%, and it was 35.33%, 39.50%, 42.50%, 48.18%, and 47.99% at 0, 6, 12, 18, 24 hours in S stage in heat stress group. DNA content in G2/M phase was 5.31%-13.75%. The DNA content in control group was 6.81, and it was 10.61%, 5.31%, 9.27%,13.75%, and 10.98% at 0, 6, 12, 18, 24 hours in G2/M stage in heat stress group. It was demonstrated that compared with control group, the DNA content in G0/G1 stage was significantly increased when the HUVEC were separated from heat stress within 6 hours, and it recovered at a similar level as control group at 12 hours. Heat stress can change the cytoskeleton of HUVEC, and cause stagnation at G0/G1 stage in cell cycle.

  1. Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm)

    PubMed Central

    Safronov, Omid; Kreuzwieser, Jürgen; Haberer, Georg; Alyousif, Mohamed S.; Schulze, Waltraud; Al-Harbi, Naif; Arab, Leila; Ache, Peter; Stempfl, Thomas; Kruse, Joerg; Mayer, Klaus X.; Hedrich, Rainer; Rennenberg, Heinz

    2017-01-01

    Plants adapt to the environment by either long-term genome evolution or by acclimatization processes where the cellular processes and metabolism of the plant are adjusted within the existing potential in the genome. Here we studied the adaptation strategies in date palm, Phoenix dactylifera, under mild heat, drought and combined heat and drought by transcriptomic and metabolomic profiling. In transcriptomics data, combined heat and drought resembled heat response, whereas in metabolomics data it was more similar to drought. In both conditions, soluble carbohydrates, such as fucose, and glucose derivatives, were increased, suggesting a switch to carbohydrate metabolism and cell wall biogenesis. This result is consistent with the evidence from transcriptomics and cis-motif analysis. In addition, transcriptomics data showed transcriptional activation of genes related to reactive oxygen species in all three conditions (drought, heat, and combined heat and drought), suggesting increased activity of enzymatic antioxidant systems in cytosol, chloroplast and peroxisome. Finally, the genes that were differentially expressed in heat and combined heat and drought stresses were significantly enriched for circadian and diurnal rhythm motifs, suggesting new stress avoidance strategies. PMID:28570677

  2. Thermometry, calorimetry, and mean body temperature during heat stress.

    PubMed

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  3. Heat Stress Equation Development and Usage for Dryden Flight Research Center (DFRC)

    NASA Technical Reports Server (NTRS)

    Houtas, Franzeska; Teets, Edward H., Jr.

    2012-01-01

    Heat Stress Indices are equations that integrate some or all variables (e.g. temperature, relative humidity, wind speed), directly or indirectly, to produce a number for thermal stress on humans for a particular environment. There are a large number of equations that have been developed which range from simple equations that may ignore basic factors (e.g. wind effects on thermal loading, fixed contribution from solar heating) to complex equations that attempt to incorporate all variables. Each equation is evaluated for a particular use, as well as considering the ease of use and reliability of the results. The meteorology group at the Dryden Flight Research Center has utilized and enhanced the American College of Sports Medicine equation to represent the specific environment of the Mojave Desert. The Dryden WBGT Heat Stress equation has been vetted and implemented as an automated notification to the entire facility for the safety of all personnel and visitors.

  4. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain.

    PubMed

    de Leonardis, Anna Maria; Fragasso, Mariagiovanna; Beleggia, Romina; Ficco, Donatella Bianca Maria; de Vita, Pasquale; Mastrangelo, Anna Maria

    2015-12-19

    Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: "Primadur", an elite cultivar with high yellow index, and "T1303", an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in "Primadur", with a general decrease in "T1303". Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways.

  5. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain

    PubMed Central

    de Leonardis, Anna Maria; Fragasso, Mariagiovanna; Beleggia, Romina; Ficco, Donatella Bianca Maria; de Vita, Pasquale; Mastrangelo, Anna Maria

    2015-01-01

    Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: “Primadur”, an elite cultivar with high yellow index, and “T1303”, an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in “Primadur”, with a general decrease in “T1303”. Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways. PMID:26703576

  6. Early life thermal stress: Impact on future thermotolerance, stress response, behavior, and intestinal morphology in piglets exposed to a heat stress challenge during simulated transport

    USDA-ARS?s Scientific Manuscript database

    Study objectives were to evaluate the impact of early life thermal stress (ELTS) on thermoregulation, stress, and intestinal health of piglets subjected to a future heat stress (HS) challenge during simulated transport. Approximately 7 d after farrowing, 12 first parity gilts and their litters were ...

  7. Strategic plant choices can alleviate climate change impacts: A review.

    PubMed

    Espeland, Erin K; Kettenring, Karin M

    2018-09-15

    Ecosystem-based adaptation (EbA) uses biodiversity and ecosystem services to reduce climate change impacts to local communities. Because plants can alleviate the abiotic and biotic stresses of climate change, purposeful plant choices could improve adaptation. However, there has been no systematic review of how plants can be applied to alleviate effects of climate change. Here we describe how plants can modify climate change effects by altering biological and physical processes. Plant effects range from increasing soil stabilization to reducing the impact of flooding and storm surges. Given the global scale of plant-related activities such as farming, landscaping, forestry, conservation, and restoration, plants can be selected strategically-i.e., planting and maintaining particular species with desired impacts-to simultaneously restore degraded ecosystems, conserve ecosystem function, and help alleviate effects of climate change. Plants are a tool for EbA that should be more broadly and strategically utilized. Copyright © 2018. Published by Elsevier Ltd.

  8. Does the hair influence heat extraction from the head during head cooling under heat stress?

    PubMed Central

    SHIN, Sora; PARK, Joonhee; LEE, Joo-Young

    2015-01-01

    The purpose of this study was to investigate the effects of head hair on thermoregulatory responses when cooling the head under heat stress. Eight young males participated in six experimental conditions: normal hair (100–130 mm length) and cropped hair (5 mm length) with three water inlet temperatures of 10, 15, and 20°C. The head and neck of subjects were cooled by a liquid perfused hood while immersing legs at 42°C water for 60 min in a sitting position at the air temperature of 28°C with 30% RH. The results showed that heat removal from the normal hair condition was not significantly different from the cropped hair condition. Rectal and mean skin temperatures, and sweat rate showed no significant differences between the normal and cropped hair conditions. Heat extraction from the head was significantly greater in 10°C than in 15 or 20°C cooling (p<0.05) for both normal and cropped hair, whereas subjects preferred the 15°C more than the 10 or 20°C cooling regimen. These results indicate that the selection of effective cooling temperature is more crucial than the length of workers’ hair during head cooling under heat stress, and such selection should be under the consideration of subjective perceptions with physiological responses. PMID:26165361

  9. Genetic solutions to infertility caused by heat stress

    USDA-ARS?s Scientific Manuscript database

    Reproductive function in mammals is very susceptible to disruption by heat stress. In lactating dairy cows, for example, pregnancy rates per insemination can be as low as 10-15% in the summer vs. 25-40% in cool weather. Reduced fertility in females is caused by a combination of 1) the negative cons...

  10. Dietary enzymatically treated Artemisia annua L. supplementation alleviates liver oxidative injury of broilers reared under high ambient temperature

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoli; Zhang, Jingfei; He, Jintian; Bai, Kaiwen; Zhang, Lili; Wang, Tian

    2017-09-01

    Heat stress induced by high ambient temperature is a major concern in commercial broiler production. To evaluate the effects of dietary enzymatically treated Artemisia annua L. (EA) supplementation on growth performance and liver oxidative injury of broilers reared under heat stress, a total of 320 22-day-old male broilers were randomly allotted into five groups with eight replicates of eight birds each. Broilers in the control group were housed at 22 ± 1 °C and fed the basal diet. Broilers in the HS, HS-EA1, HS-EA2, and HS-EA3 groups were fed basal diet supplemented with 0, 0.75, 1.00, and 1.25 g/kg EA, respectively, and reared under cyclic high temperature (34 ± 1 °C for 8 h/day and 22 ± 1 °C for 16 h/day). Broilers fed EA diets had higher final body weight, average daily body weight gain, and average daily feed intake, as well as liver concentration of reduced glutathione, activities of antioxidant enzymes, abilities to inhibit hydroxyl radical and superoxide radical (HS-EA2 and HS-EA3), and lower liver concentrations of reactive oxygen metabolites, malondialdehyde, and protein carbonyl (HS-EA1, HS-EA2, and HS-EA3) than HS group ( P < 0.05). EA treatment downregulated the mRNA levels of heat shock proteins 70 and 90, upregulated the mRNA levels of nuclear factor erythroid 2-related factor 2 (HS-EA1, HS-EA2, and HS-EA3) and heme oxygenase 1 (HS-EA2 and HS-EA3) in liver of heat-treated broilers ( P < 0.05). In conclusion, EA alleviated heat stress-induced growth depression and liver oxidative injury in broilers, possibly through improving the antioxidant capacity and regulating the pertinent mRNA expression. The appropriate inclusion level of EA in broiler diet is 1.00-1.25 g/kg.

  11. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    PubMed Central

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  12. Alleviation of chronic heat stress in broilers by dietary supplementation of betaine and turmeric rhizome powder: dynamics of performance, leukocyte profile, humoral immunity, and antioxidant status.

    PubMed

    Akhavan-Salamat, Hossein; Ghasemi, Hossein Ali

    2016-01-01

    Heat stress (HS), one of the most serious climate problems of tropical and subtropical countries, negatively affects the production performance of broilers. Keeping this in view, the current study was aimed at elucidating the effects of supplementing betaine (Bet) and dried turmeric rhizome powder (TRP), either singly or in combination, on growth performance, leukocyte profile, humoral immunity, and antioxidant status in broilers kept under chronic HS. A total of 625 one-day-old Ross male chicks were randomly assigned to five treatment groups (5 replicates of 25 birds per replicate pen). From day 1, the birds were either kept at the thermoneutral zone (TN) or exposed to HS (33 ± 1°C) to the conclusion of study, day 42. THeat stress (HS), one of the most serious climate problems of tropical and subtropical countries, negatively affects the production performance of broilers. Keeping this in view, the current study was aimed at elucidating the effects of supplementing betaine (Bet) and dried turmeric rhizome powder (TRP), either singly or in combination, on growth performance, leukocyte profile, humoral immunity, and antioxidant status in broilers kept under chronic HS. A total of 625 one-day-old Ross male chicks were randomly assigned to five treatment groups (5 replicates of 25 birds per replicate pen). From day 1, the birds were either kept at the thermoneutral zone (TN) or exposed to HS (33 ± 1°C) to the conclusion of study, day 42. The treatment groups were as follows: thermoneutral control (TN-CON), HS-CON, HS-Bet, HS-TRP, and HS-BT (fed Bet and TRP). The results showed that decreases in body weight gain, feed intake, and increases in feed-to-gain ratio and mortality induced by HS were partially restored by dietary supplementation of Bet and TRP. The heterophil/lymphocyte ratio, total, and IgG antibody titers against sheep red blood cell for secondary responses in the HS-TRP and HS-BT groups were also similar to those of the broilers in the TN

  13. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress.

    PubMed

    Wang, Shih-Han; Cheng, Chuen-Yu; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Huang, San-Yuan

    2013-01-15

    Acute heat stress affects genes involved in spermatogenesis in mammals. However, there is apparently no elaborate research on the effects of acute heat stress on gene expression in avian testes. The purpose of this study was to investigate global gene expression in testes of the L2 strain of Taiwan country chicken after acute heat stress. Twelve roosters, 45 weeks old, were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2-hour recovery, and with 6-hour recovery, respectively. Testis samples were collected for RNA isolation and microarray analysis. Based on gene expression profiles, 169 genes were upregulated and 140 genes were downregulated after heat stress using a cutoff value of twofold or greater change. Based on gene ontology analysis, differentially expressed genes were mainly related to response to stress, transport, signal transduction, and metabolism. A functional network analysis displayed that heat shock protein genes and related chaperones were the major upregulated groups in chicken testes after acute heat stress. A quantitative real-time polymerase chain reaction analysis of mRNA expressions of HSP70, HSP90AA1, BAG3, SERPINB2, HSP25, DNAJA4, CYP3A80, CIRBP, and TAGLN confirmed the results of the microarray analysis. Because the HSP genes (HSP25, HSP70, and HSP90AA1) and the antiapoptotic BAG3 gene were dramatically altered in heat-stressed chicken testes, we concluded that these genes were important factors in the avian testes under acute heat stress. Whether these genes could be candidate genes for thermotolerance in roosters requires further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot.

    PubMed

    Wang, Ronghua; Mei, Yi; Xu, Liang; Zhu, Xianwen; Wang, Yan; Guo, Jun; Liu, Liwang

    2018-05-01

    Differential abundance protein species (DAPS) involved in reducing damage and enhancing thermotolerance in radish were firstly identified. Proteomic analysis and omics association analysis revealed a HS-responsive regulatory network in radish. Heat stress (HS) is a major destructive factor influencing radish production and supply in summer, for radish is a cool season vegetable crop being susceptible to high temperature. In this study, the proteome changes of radish taproots under 40 °C treatment at 0 h (Control), 12 h (Heat12) and 24 h (Heat24) were analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification) approach. In total, 2258 DAPS representing 1542 differentially accumulated uniprotein species which respond to HS were identified. A total of 604, 910 and 744 DAPS was detected in comparison of Control vs. Heat12, Control vs. Heat24, and Heat12 vs. Heat24, respectively. Gene ontology and pathway analysis showed that annexin, ubiquitin-conjugating enzyme, ATP synthase, heat shock protein (HSP) and other stress-related proteins were predominately enriched in signal transduction, stress and defense pathways, photosynthesis and energy metabolic pathways, working cooperatively to reduce stress-induced damage in radish. Based on iTRAQ combined with the transcriptomics analysis, a schematic model of a sequential HS-responsive regulatory network was proposed. The initial sensing of HS occurred at the plasma membrane, and then key components of stress signal transduction triggered heat-responsive genes in the plant protective metabolism to re-establish homeostasis and enhance thermotolerance. These results provide new insights into characteristics of HS-responsive DAPS and facilitate dissecting the molecular mechanisms underlying heat tolerance in radish and other root crops.

  15. Whole-body heating decreases skin vascular response to low orthostatic stress in the lower extremities.

    PubMed

    Yamazaki, Fumio; Nakayama, Yoshiro; Sone, Ryoko

    2006-04-01

    To elucidate the influence of heat stress on cutaneous vascular response in the lower extremities during orthostatic stress, a head-up tilt (HUT) test at angles of 15 degrees, 30 degrees, 45 degrees, and 60 degrees for 4 min each was conducted under normothermic control conditions followed by whole-body heat stress produced by a hot water-perfused suit in healthy volunteers. Skin blood flows (SkBF) in the forearm, thigh, and calf were monitored using laser-Doppler flowmetry throughout the experiment. Furthermore, to elucidate the effects of increased core and local skin temperatures on the local vascular response in calf skin under increasing orthostatic stress, the thigh was occluded at 20, 30, 50, 70, and 80 mmHg with a cuff in both the normothermic condition and the whole-body or local heating condition. Significant decreases in forearm SkBF during HUT were observed at an angle of 60 degrees during normothermia and at 30 degrees or more during heating. SkBF in the thigh and calf was decreased significantly by HUT at 15 degrees and above during normothermia, and there was no significant reduction of SkBF in these sites during HUT at the lower angles (15 degrees -45 degrees ) during whole-body heating. Significant decreases of calf SkBF were observed at cuff pressures of 20 mmHg and above during normothermia and of 30 mmHg and above during whole-body and local heating, respectively. These results suggest that SkBF in the lower extremities shows a marked reduction compared with the upper extremities during low orthostatic stress in normothermia, and the enhanced skin vasoconstrictor response in the lower extremities is diminished by both whole-body and local heat stress.

  16. Inhibition of nuclear factor-κB signal by pyrrolidine dithiocarbamate alleviates lipopolysaccharide-induced acute lung injury

    PubMed Central

    Yang, Hongfu; Sun, Rongqing; Ma, Ning; Liu, Qilong; Sun, Xiaoge; Zi, Panpan; Wang, Junsheng; Chao, Ke; Yu, Lei

    2017-01-01

    This study mainly studied the effect of inhibition of nuclear factor-κB (NF-κB) signal by pyrrolidine dithiocarbamate (PDTC) on lipopolysaccharide (LPS)-induced inflammatory response, oxidative stress, and mitochondrial dysfunction in a murine acute lung injury model. The results showed that LPS exposure activated NF-κB and its upstream proteins and caused lung inflammation, oxidative stress, and mitochondrial dysfunction in mice. While inhibition of NF-κB by PDTC adminstration alleviated LPS-induced generation of lymphocytes, IL-1β, and TNF-α. Malondialdehyde, a common oxidative product, was markedly reduced after PDTC treatment in LPS-challenged mice. Furthermore, PDTC alleviated LPS-induced mitochondrial dysfunction via improving ATP synthesis and uncoupling protein 2 expression. In conclusion, inhibition of NF-κB by PDTC alleviated LPS-induced acute lung injury via maintaining inflammatory status, oxidative balance, and mitochondrial function in mice. PMID:28521300

  17. Effects of hydration level and heat stress on thermoregulatory responses, hematological and blood rheological properties in growing pigs.

    PubMed

    Waltz, Xavier; Baillot, Michelle; Connes, Philippe; Bocage, Bruno; Renaudeau, David

    2014-01-01

    Heat stress is one of the major limiting factors of production efficiency in the swine industry. The aims of the present study were 1) to observe if hemorheological and hematological parameters could be associated to physiological acclimation during the first days of heat stress exposure and 2) to determine if water restriction could modulate the effect of thermal heat stress on physiological, hematological and hemorheological parameters. Twelve Large White male pigs were divided into an ad libitum and a water restricted group. All pigs were submitted to one week at 24 °C (D-7 to D-1). Then, at D0, temperature was progressively increased until 32 °C and maintained during one week (D1 to D7). We performed daily measurements of water and feed intake. Physiological (i.e., skin temperature, rectal temperature, respiratory rate), hematological and hemorheological parameters were measured on D-6, D-5, D0, D1, D2 and D7. Water restriction had no effect on physiological, hematological and hemorheological parameters. The first days of heat stress caused an increase in the three physiological parameters followed by a reduction of these parameters suggesting a successful acclimation of pigs to heat stress. We showed an increase in hematocrit, red blood cell aggregation and red blood cell aggregation strength during heat stress. Further, we observed an important release of reticulocytes, an increase of red blood cell deformability and a reduction of feed intake and blood viscosity under heat stress. This study suggests that physiological acute adaptation to heat stress is accompanied by large hematological and hemorheological changes.

  18. Changes in protein expression in testes of L2 strain Taiwan country chickens in response to acute heat stress.

    PubMed

    Wang, Shih-Han; Cheng, Chuen-Yu; Chen, Chao-Jung; Chen, Hsin-Hsin; Tang, Pin-Chi; Chen, Chih-Feng; Lee, Yen-Pai; Huang, San-Yuan

    2014-07-01

    Heat stress causes a decrease of fertility in roosters. Yet, the way acute heat stress affects protein expression remains poorly understood. This study investigated differential protein expression in testes of the L2 strain of Taiwan country chickens following acute heat stress. Twelve 45-week-old roosters were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2 hours of recovery, and with 6 hours of recovery. Testis samples were collected for morphologic assay and protein analysis. Some of the differentially expressed proteins were validated by Western blot and immunohistochemistry. Abnormal and apoptotic spermatogenic cells were observed at 2 hours of recovery after acute heat stress, especially among the spermatocytes. Two-dimensional difference gel electrophoresis revealed that 119 protein spots were differentially expressed in chicken testes following heat stress, and peptide mass fingerprinting revealed that these spots contained 92 distinct proteins. In the heat-stressed samples, the heat shock proteins, chaperonin containing t-complex, and proteasome subunits were downregulated, and glutathione S-transferase, transgelin, and DJ-1 were upregulated. Our results demonstrate that acute heat stress impairs the processes of translation, protein folding, and protein degradation, and thus results in apoptosis and interferes with spermatogenesis. On the other hand, the increased expression of antioxidant enzymes, including glutathione S-transferase and DJ-1, may attenuate heat-induced damage. These findings may have implications for breeding chickens that can tolerate more extreme conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Alleviation of isoproturon toxicity to wheat by exogenous application of glutathione.

    PubMed

    Nemat Alla, Mamdouh M; Hassan, Nemat M

    2014-06-01

    Treatment with the recommended field dose of isoproturon to 7-d-old wheat seedlings significantly decreased shoot height, fresh and dry weights during the subsequent 15days. Meanwhile contents of carotenoids, chlorophylls and anthocyanin as well as activities of δ-aminolevulinate dehydratase (ALA-D), phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) were significantly inhibited. On the other hand, the herbicide significantly increased malondialdehyde (MDA), a naturally occurring product of lipid peroxidation and H2O2, while it significantly decreased the contents of glutathione (GSH) and ascorbic acid (AsA) and reduced the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). These findings indicate an induction of a stress status in wheat seedlings following isoproturon treatment. However, exogenous GSH appeared to limit the toxic effects of isoproturon and seemed to overcome this stress status. Most likely, contents of pigment and activities of enzymes were raised to approximate control levels. Moreover, antioxidants were elevated and the oxidative stress indices seemed to be alleviated by GSH application. These results indicate that exogenous GSH enhances enzymatic and nonenzymatic antioxidants to alleviate the effects of isoproturon. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Noni (Morinda citrifolia) Modulates the Hypothalamic Expression of Stress- and Metabolic-Related Genes in Broilers Exposed to Acute Heat Stress

    PubMed Central

    Rajaei-Sharifabadi, Hossein; Ellestad, Laura; Porter, Tom; Donoghue, Annie; Bottje, Walter G.; Dridi, Sami

    2017-01-01

    Heat stress (HS) adversely affects growth performance and inflicts heavy economic losses to the poultry industry. There is, therefore, a critical need to identify new alternative strategies to alleviate the negative effects induced by HS. The tropic medicinal plant, Morinda citrifolia (Noni), is being used in livestock nutrition, however the literature is limited and conflicting for its impact on growth performance. The present study aimed to determine the effect of Noni on feeding and drinking behavior as well as on the hypothalamic expression of stress- and metabolic-related genes in broiler chickens exposed to acute HS. A total of 480 1 day-old male broiler chicks were randomly assigned to 12 controlled environmental chambers. Birds were subjected to two environmental conditions (TN, 25°C vs. HS, 35°C for 2 h) and fed two diets (control vs. 0.2% Noni) in a 2 × 2 factorial design. Feed intake and core body temperature (BT) were recorded during HS period. Blood was collected and hypothalamic tissues were harvested for target gene and protein analyses. Acute HS-broilers exhibited higher BT (~1°C), spent less time eating with a significant decrease in feed intake, and spent more time drinking along with higher drinking frequency compared to those maintained under TN conditions. Although Noni supplementation did not improve feed intake, it significantly delayed (~30 min) and reduced the BT-induced by HS. At molecular levels and under HS conditions, Noni supplementation down regulated the hypothalamic expression of HSP90 and its related transcription factors HSF1, 2, and 4, increased orexin mRNA levels, and decreased the phosphorylation levels of AMPKα1/2Thr172 and mTORSer2481. Together, these data indicated that Noni supplementation might modulate HS response in broilers through central orexin-AMPK-mTOR pathways. PMID:29259622

  1. Noni (Morinda citrifolia) Modulates the Hypothalamic Expression of Stress- and Metabolic-Related Genes in Broilers Exposed to Acute Heat Stress.

    PubMed

    Rajaei-Sharifabadi, Hossein; Ellestad, Laura; Porter, Tom; Donoghue, Annie; Bottje, Walter G; Dridi, Sami

    2017-01-01

    Heat stress (HS) adversely affects growth performance and inflicts heavy economic losses to the poultry industry. There is, therefore, a critical need to identify new alternative strategies to alleviate the negative effects induced by HS. The tropic medicinal plant, Morinda citrifolia (Noni), is being used in livestock nutrition, however the literature is limited and conflicting for its impact on growth performance. The present study aimed to determine the effect of Noni on feeding and drinking behavior as well as on the hypothalamic expression of stress- and metabolic-related genes in broiler chickens exposed to acute HS. A total of 480 1 day-old male broiler chicks were randomly assigned to 12 controlled environmental chambers. Birds were subjected to two environmental conditions (TN, 25°C vs. HS, 35°C for 2 h) and fed two diets (control vs. 0.2% Noni) in a 2 × 2 factorial design. Feed intake and core body temperature (BT) were recorded during HS period. Blood was collected and hypothalamic tissues were harvested for target gene and protein analyses. Acute HS-broilers exhibited higher BT (~1°C), spent less time eating with a significant decrease in feed intake, and spent more time drinking along with higher drinking frequency compared to those maintained under TN conditions. Although Noni supplementation did not improve feed intake, it significantly delayed (~30 min) and reduced the BT-induced by HS. At molecular levels and under HS conditions, Noni supplementation down regulated the hypothalamic expression of HSP90 and its related transcription factors HSF1, 2, and 4, increased orexin mRNA levels, and decreased the phosphorylation levels of AMPKα1/2 Thr172 and mTOR Ser2481 . Together, these data indicated that Noni supplementation might modulate HS response in broilers through central orexin-AMPK-mTOR pathways.

  2. The development of anti-heat stress clothing for construction workers in hot and humid weather.

    PubMed

    Chan, Albert P C; Guo, Y P; Wong, Francis K W; Li, Y; Sun, S; Han, X

    2016-04-01

    The purpose of this study was to develop anti-heat stress clothing for construction workers in hot and humid weather. Following DeJonge's functional clothing design process, the design situation was explored, including clothing fabric heat/moisture transporting properties and UV protection and the aspects of clothing ergonomic design (mobility, convenience, and safety). The problem structure was derived from the results of the surveys in three local construction sites, which agreed well with the task requirements and observations. Specifications were consequently described and 30 commercially available fabrics were identified and tested. Fabric testing data and design considerations were inputted in S-smart system to predict the thermal functional performance of the clothing. A new uniform prototype was developed and evaluated. The results of all measurements suggest that the new uniform which incorporated fabrics with superior heat/moisture transporting properties and loose-fitting design could reduce the workers' heat stress and improve their comfort and work performance. Practitioner Summary: The construction workers' uniform currently used in Hong Kong during summer was unsatisfactory. Following DeJonge's functional clothing design process, an anti-heat stress uniform was developed by testing 30 fabrics and predicting clothing thermal functional performance using S-smart system. The new uniform could reduce the workers' heat stress and improve their comfort and work performance.

  3. Down-regulation of miR-181a can reduce heat stress damage in PBMCs of Holstein cows.

    PubMed

    Chen, Kun-Lin; Fu, Yuan-Yuan; Shi, Min-Yan; Li, Hui-Xia

    2016-09-01

    Heat stress can weaken the immune system and even increase livestock's susceptibility to disease. MicroRNA (miR) is short non-coding RNA that functions in post-transcriptional regulation of gene expression and some phenotypes. Our recent study found that miR-181a is highly expressed in the serum of heat-stressed Holstein cows, but the potential function of miR-181a is still not clarified. In this study, peripheral blood mononuclear cells (PBMCs), isolated from Holstein cows' peripheral blood, were used to investigate the effects of miR-181a inhibitor on heat stress damage. Our results showed that significant apoptosis and oxidative damage were induced by heat stress in PBMCs. However, with apoptosis, the levels of reactive oxygen species (ROS) and content of malondialdehyde (MDA) were reduced, while the content of glutathione (GSH) and the activity of superoxide dismutase (SOD) were increased even under heat stress conditions after transfecting miR-181a inhibitors to PBMCs. Meanwhile, mRNA expression of bax and caspase-3 was significantly decreased, but mRNA expression of bcl-2 was increased in transfected PBMCs. In conclusion, our results demonstrated that down-regulation of miR-181a can reduce heat stress damage in PBMCs of Holstein cows.

  4. Temporal patterns of cardiac performance and genes encoding heat shock proteins and metabolic sensors of an intertidal limpet Cellana toreuma during sublethal heat stress.

    PubMed

    Zhang, Shu; Han, Guo-dong; Dong, Yun-wei

    2014-04-01

    Intertidal invertebrates develop effective physiological adaptations to cope with the rapidly changing thermal environment in the intertidal zone. In the present study, the temporal patterns of heart rate, protein carbonyl groups, and genes encoding heat shock proteins (hsp70 and hsp90) and metabolic sensors (ampkα, ampkβ and sirt1) were measured to study the effect of sublethal heat stress on the cardiac function, oxidative stress, heat shock response and cellular metabolism of an intertidal limpet Cellana toreuma. All the physiological parameters are sensitive to temperature and duration of heat stress. Spearman correlation analysis revealed that the correlations between heart rate and levels of heat shock proteins mRNA and metabolic sensors mRNA were statistically significant. These results further suggest that cardiac function plays crucial roles in cellular energy metabolism and heat shock responses. The significant increase of protein carbonyl groups at 34°C after 4h exposure indicated that the failure of cardiac function and the increase of anaerobic metabolism partly leads to the increase of protein carbonyl groups. Generally, the physiological responses to heat stress are sensitive to temperature and are energy-consumptive, as indicated by the upregulation of metabolic sensors mRNA. However, the upregulation of heat shock proteins and metabolic sensors at the post-transcriptional level and related functions need to be confirmed in further experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Bacillus amyloliquefaciens supplementation alleviates immunological stress in lipopolysaccharide-challenged broilers at early age.

    PubMed

    Li, Y; Zhang, H; Chen, Y P; Yang, M X; Zhang, L L; Lu, Z X; Zhou, Y M; Wang, T

    2015-07-01

    This study was conducted to investigate the effect of Bacillus amyloliquefaciens ( BA: ) on the immune function of broilers challenged with lipopolysaccharide ( LPS: ). 192 one-day-old male Arbor Acre broiler chickens were randomly distributed into four treatments: 1) broilers fed a basal diet; 2) broilers fed a basal diet supplemented with BA; 3) LPS-challenged broilers fed a basal diet; and 4) LPS-challenged broilers fed a basal diet supplemented with BA. Each treatment consisted of six replicates with eight broilers per replicate. Broilers were intraperitoneally injected with either 500 μg LPS per kg body weight or sterile saline at 16, 18 and 20 d of age. LPS decreased the average daily gain ( ADG: , P = 0.001) and average daily feed intake (P = 0.001). The decreased ADG (P = 0.009) and increased feed conversion ratio (P = 0.047) in LPS-challenged broilers were alleviated by BA. LPS increased the relative spleen weight (P = 0.001). Relative spleen (P = 0.014) and bursa (P = 0.024) weights in the LPS-challenged broilers were reduced by BA. LPS increased white blood cell ( WBC: ) numbers (P = 0.001). However, the WBC numbers (P = 0.042) and the ratio of lymphocytes to WBC (P = 0.020) in LPS-challenged broilers were decreased with BA treatment. LPS decreased plasma lysozyme activity (P = 0.001), but increased concentrations of plasma corticosterone (P = 0.012) and IL-2 (P = 0.020). In contrast, BA increased lysozyme activity in plasma (P = 0.040). LPS increased mRNA abundances of splenic toll-like receptor 4 (P = 0.046), interferon γ (P = 0.008), IL-1β (P = 0.045) and IL-6, (P = 0.006). IL-2 (P = 0.014) and IL-6 (P = 0.074) mRNA abundances in LPS-challenged broilers were reduced by BA, although BA had an opposite effect for IL-10 mRNA expression in those broilers (P = 0.004). In conclusion, BA supplementation could partially alleviate the compromised growth performance and immune status of broilers under immune stress induced by LPS challenge at early age.

  6. Transient heat-stress compromises the resistance of wheat seedlings to Hessian fly (Diptera: Cecidomyiidae) infestation

    USDA-ARS?s Scientific Manuscript database

    Heat-stress exerts profound impact on resistance of plants to parasites. In this research, we investigated the impact of an acute, transient heat-stress on the resistance of the wheat line 'Molly', which contains the resistance gene H13, to an avirulent Hessian fly [Mayetiola destructor (Say)] popu...

  7. Heat stress redistributes blood flow in arteries of the brain during dynamic exercise.

    PubMed

    Sato, Kohei; Oue, Anna; Yoneya, Marina; Sadamoto, Tomoko; Ogoh, Shigehiko

    2016-04-01

    We hypothesized that heat stress would decrease anterior and posterior cerebral blood flow (CBF) during exercise, and the reduction in anterior CBF would be partly associated with large increase in extracranial blood flow (BF). Nine subjects performed 40 min of semirecumbent cycling at 60% of the peak oxygen uptake in hot (35°C; Heat) and thermoneutral environments (25°C; Control). We evaluated BF and conductance (COND) in the external carotid artery (ECA), internal carotid artery (ICA), and vertebral artery (VA) using ultrasonography. During the Heat condition, ICA and VA BF were significantly increased 10 min after the start of exercise (P < 0.05) and thereafter gradually decreased. ICA COND was significantly decreased (P < 0.05), whereas VA COND remained unchanged throughout Heat. Compared with the Control, either BF or COND of ICA and VA at the end of Heat tended to be lower, but not significantly. In contrast, ECA BF and COND at the end of Heat were both higher than levels in the Control condition (P < 0.01). During Heat, a reduction in ICA BF appears to be associated with a decline in end-tidal CO2 tension (r = 0.84), whereas VA BF appears to be affected by a change in cardiac output (r = 0.87). In addition, a change in ECA BF during Heat was negatively correlated with a change in ICA BF (r = -0.75). Heat stress resulted in modification of the vascular response of head and brain arteries to exercise, which resulted in an alteration in the distribution of cardiac output. Moreover, a hyperthermia-induced increase in extracranial BF might compromise anterior CBF during exercise with heat stress. Copyright © 2016 the American Physiological Society.

  8. Heat-Stress effects on the myosin heavy chain phenotype of rat soleus fibers during the early stages of regeneration.

    PubMed

    Oishi, Yasuharu; Roy, Roland R; Ogata, Tomonori; Ohira, Yoshinobu

    2015-12-01

    We investigated heat-stress effects on the adult myosin heavy chain (MyHC) profile of soleus muscle fibers at an early stage of regeneration. Regenerating fibers in adult rats were analyzed 2, 4, or 6 days after bupivacaine injection. Rats were heat stressed by immersion in water (42 ± 1°C) for 30 minutes 24 hours after bupivacaine injection and every other day thereafter. No adult MyHC isoforms were observed after 2 days, whereas some fibers expressed only fast MyHC after 4 days. Heat stress increased fast and slow MyHC in regenerating fibers after 6 days. Regenerating fibers expressing only slow MyHC were observed only in heat-stressed muscles. Bupivacaine injection increased the number of Pax7(+) and MyoD(+) satellite cells in regenerating fibers, more so in heat-stressed rats. The results indicate that heat stress accelerates fast-to-slow MyHC phenotype conversion in regenerating fibers via activation of satellite cells. © 2015 Wiley Periodicals, Inc.

  9. Deubiquitylases USP5 and USP13 are recruited to and regulate heat-induced stress granules through their deubiquitylating activities.

    PubMed

    Xie, Xuan; Matsumoto, Shunsuke; Endo, Akinori; Fukushima, Toshiaki; Kawahara, Hiroyuki; Saeki, Yasushi; Komada, Masayuki

    2018-04-12

    Stress granules are transient cytoplasmic foci induced by various stresses that contain translation-stalled mRNAs and RNA-binding proteins. They are proposed to modulate mRNA translation and stress responses. Here, we show that the deubiquitylases USP5 and USP13 are recruited to heat-induced stress granules. Heat-induced stress granules also contained K48- and K63-linked ubiquitin chains. Depletion of USP5 or USP13 resulted in elevated ubiquitin chain levels and accelerated assembly of heat-induced stress granules, suggesting that these enzymes regulate the stability of the stress granules through their ubiquitin isopeptidase activity. Moreover, disassembly of heat-induced stress granules after returning the cells to normal temperatures was markedly repressed by individual depletion of USP5 or USP13. Finally, overexpression of a ubiquitin mutant lacking the C-terminal diglycine motif caused the accumulation of unanchored ubiquitin chains and the repression of the disassembly of heat-induced stress granules. As unanchored ubiquitin chains are preferred substrates for USP5, we suggest that USP5 regulates the assembly and disassembly of heat-induced stress granules by mediating the hydrolysis of unanchored ubiquitin chains while USP13 regulates stress granules through deubiquitylating protein-conjugated ubiquitin chains.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  10. RNA-Seq Reveals Extensive Transcriptional Response to Heat Stress in the Stony Coral Galaxea fascicularis

    PubMed Central

    Hou, Jing; Xu, Tao; Su, Dingjia; Wu, Ying; Cheng, Li; Wang, Jun; Zhou, Zhi; Wang, Yan

    2018-01-01

    Galaxea fascicularis, a stony coral belonging to family Oculinidae, is widely distributed in Red Sea, the Gulf of Aden and large areas of the Indo-Pacific oceans. So far there is a lack of gene expression knowledge concerning this massive coral. In the present study, G. fascicularis was subjected to heat stress at 32.0 ± 0.5°C in the lab, we found that the density of symbiotic zooxanthellae decreased significantly; meanwhile apparent bleaching and tissue lysing were observed at 10 h and 18 h after heat stress. The transcriptome responses were investigated in the stony coral G. fascicularis during heat bleaching using RNA-seq. A total of 42,028 coral genes were assembled from over 439 million reads. Gene expressions were compared at 10 and 18 h after heat stress. The significantly upregulated genes found in the Control_10h vs. Heat_10h comparison, presented mainly in GO terms related with DNA integration and unfolded protein response; and for the Control_18h vs. Heat_18h comparison, the GO terms include DNA integration. In addition, comparison between groups of Control_10h vs. Heat_10h and Control_18h vs. Heat_18h revealed that 125 genes were significantly upregulated in common between the two groups, whereas 21 genes were significantly downregulated in common, all these differentially expressed genes were found to be involved in stress response, DNA integration and unfolded protein response. Taken together, our results suggest that high temperature could activate the stress response at the early stage, and subsequently induce the bleaching and lysing through DNA integration and unfolded protein response, which are able to disrupt the balance of coral-zooxanthella symbiosis in the stony coral G. fascicularis. PMID:29487614

  11. Expression profile of six stress-related genes and productive performances of fast and slow growing broiler strains reared under heat stress conditions

    PubMed Central

    Rimoldi, Simona; Lasagna, Emiliano; Sarti, Francesca Maria; Marelli, Stefano Paolo; Cozzi, Maria Cristina; Bernardini, Giovanni; Terova, Genciana

    2015-01-01

    High temperature is one of the prominent environmental factors causing economic losses to the poultry industry as it negatively affects growth and production performance in broiler chickens. We used One Step TaqMan real time RT-PCR (reverse transcription polymerase chain reaction) technology to study the effects of chronic heat stress on the expression of genes codifying for the antioxidative enzymes superoxide dismutase (SOD), and catalase (CAT), as well as for heat shock protein (HSP) 70, HSP90, glucocorticoid receptor (NR3C1), and caspase 6 (CASP6) in the liver of two different broiler genetic strains: Red JA Cou Nu Hubbard (CN) and Ross 508 Aviagen (RO). CN is a naked neck slow growing broiler intended for the free range and/or organic markets, whereas RO is selected for fast growing. We also analysed the effect of chronic heat stress on productive performances, and plasma corticosterone levels as well as the association between transcriptomic response and specific SNPs (single nucleotide polymorphisms) in each genetic strain of broiler chickens. RO and CN broilers, 4 weeks of age, were maintained for 4 weeks at either 34 °C or 22 °C. The results demonstrated that there was a genotype and a temperature main effect on the broilers' growth from the 4th to the 8th week of age, but the interaction effect between genotype and temperature resulted not statistically significant. By considering the genotype effect, fast growing broilers (RO) grew more than the slow growing ones (CN), whereas by considering the temperature effect, broilers in unheated conditions grew more than the heat stressed ones. Corticosterone levels increased significantly in the blood of heat stressed broilers, due to the activation of the HPA (hypothalamic–pituitary–adrenocortical axis). Carcass yield at slaughter was of similar values in the 4 cohorts (genotype/temperature combinations or treatment groups), ranging from 86.5 to 88.6%, whereas carcass weight was negatively influenced

  12. The effects of heat stress on morphological properties and intracellular signaling of denervated and intact soleus muscles in rats.

    PubMed

    Ohira, Takashi; Higashibata, Akira; Seki, Masaya; Kurata, Yoichi; Kimura, Yayoi; Hirano, Hisashi; Kusakari, Yoichiro; Minamisawa, Susumu; Kudo, Takashi; Takahashi, Satoru; Ohira, Yoshinobu; Furukawa, Satoshi

    2017-08-01

    The effects of heat stress on the morphological properties and intracellular signaling of innervated and denervated soleus muscles were investigated. Heat stress was applied to rats by immersing their hindlimbs in a warm water bath (42°C, 30 min/day, every other day following unilateral denervation) under anesthesia. During 14 days of experimental period, heat stress for a total of seven times promoted growth-related hypertrophy in sham-operated muscles and attenuated atrophy in denervated muscles. In denervated muscles, the transcription of ubiquitin ligase, atrogin-1/muscle atrophy F-box ( Atrogin-1 ), and muscle RING-finger protein-1 ( MuRF-1 ), genes was upregulated and ubiquitination of proteins was also increased. Intermittent heat stress inhibited the upregulation of Atrogin-1 , but not MuRF-1 transcription. And the denervation-caused reduction in phosphorylated protein kinase B (Akt), 70-kDa heat-shock protein (HSP70), and peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1 α ), which are negative regulators of Atrogin-1 and MuRF-1 transcription, was mitigated. In sham-operated muscles, repeated application of heat stress did not affect Atrogin-1 and MuRF-1 transcription, but increased the level of phosphorylated Akt and HSP70, but not PGC-1 α Furthermore, the phosphorylation of Akt and ribosomal protein S6, which is known to stimulate protein synthesis, was increased immediately after a single heat stress particularly in the sham-operated muscles. The effect of a heat stress was suppressed in denervated muscles. These results indicated that the beneficial effects of heat stress on the morphological properties of muscles were brought regardless of innervation. However, the responses of intracellular signaling to heat stress were distinct between the innervated and denervated muscles. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological

  13. Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions.

    PubMed

    Gruntenko, Nataly Е; Ilinsky, Yury Yu; Adonyeva, Natalya V; Burdina, Elena V; Bykov, Roman A; Menshanov, Petr N; Rauschenbach, Inga Yu

    2017-12-28

    One of the most widespread prokaryotic symbionts of invertebrates is the intracellular bacteria of Wolbachia genus which can be found in about 50% of insect species. Wolbachia causes both parasitic and mutualistic effects on its host that include manipulating the host reproductive systems in order to increase their transmission through the female germline, and increasing the host fitness. One of the mechanisms, promoting adaptation in biological organisms, is a non-specific neuroendocrine stress reaction. In insects, this reaction includes catecholamines, dopamine, serotonin and octopamine, which act as neurotransmitters, neuromodulators and neurohormones. The level of dopamine metabolism correlates with heat stress resistance in Drosophila adults. To examine Wolbachia effect on Drosophila survival under heat stress and dopamine metabolism we used five strains carrying the nuclear background of interbred Bi90 strain and cytoplasmic backgrounds with different genotype variants of Wolbachia (produced by 20 backcrosses of Bi90 males with appropriate source of Wolbachia). Non-infected Bi90 strain (treated with tetracycline for 3 generations) was used as a control group. We demonstrated that two of five investigated Wolbachia variants promote changes in Drosophila heat stress resistance and activity of enzymes that produce and degrade dopamine, alkaline phosphatase and dopamine-dependent arylalkylamine N-acetyltransferase. What is especially interesting, wMelCS genotype of Wolbachia increases stress resistance and the intensity of dopamine metabolism, whereas wMelPop strain decreases them. wMel, wMel2 and wMel4 genotypes of Wolbachia do not show any effect on the survival under heat stress or dopamine metabolism. L-DOPA treatment, known to increase the dopamine content in Drosophila, levels the difference in survival under heat stress between all studied groups. The genotype of symbiont determines the effect that the symbiont has on the stress resistance of the host

  14. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat.

    PubMed

    Ma, Dongyun; Ding, Huina; Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway.

  15. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat

    PubMed Central

    Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway. PMID:27649534

  16. Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows.

    PubMed

    De Rensis, F; Garcia-Ispierto, I; López-Gatius, F

    2015-09-15

    Heat stress has consequences on both the physiology and reproductive performance of cows, but the most dramatic effect for dairy producers is the decrease produced in fertility. The effects of heat stress on fertility include an increased number of days open, reduced conception rate, and larger number of cows suffering different types of anestrus. Once becomes pregnant, heat stress affects also the reproductive success of the cow through its direct effects on the ovary, uterus, gametes, embryo, and early fetus. This article reviews current knowledge of the effects of heat stress on fertility in dairy cows and the hormonal strategies used to mitigate these effects at the farm level. Administration of GnRH at the moment of artificial insemination can improve the conception rate. Breeding synchronization protocols for fixed-time insemination may reduce the calving conception interval and the number of services per conception. Progesterone-based protocols seem resolve better the reproductive disorders related to a hot environment (anestrus) than GnRH-based protocols. The use of combinations of GnRH, eCG, and hCG in progesterone-based protocols can improve results. Progesterone supplementation during the late embryonic and/or early fetal period would be useful in curtailing pregnancy losses, mainly in single pregnancies, whereas a more positive effect of treatment with GnRH than progesterone has been found in twin pregnancies. Melatonin therapy is emerging as a promising strategy to improve the natural reproductive performance of cows suffering conditions of heat stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Internal stress-induced melting below melting temperature at high-rate laser heating

    NASA Astrophysics Data System (ADS)

    Hwang, Yong Seok; Levitas, Valery I.

    2014-06-01

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q ≤1.51×1010K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 1011 K/s and 936.9 K for Q = 1.46 × 1012 K/s.

  18. Silymarin alleviates hepatic oxidative stress and protects against metabolic disorders in high-fat diet-fed mice.

    PubMed

    Feng, Bin; Meng, Ran; Huang, Bin; Shen, Shanmei; Bi, Yan; Zhu, Dalong

    2016-01-01

    Silymarin is a potent antioxidant medicine and has been widely used for the treatment of liver diseases over 30 years. Recent studies suggest that silymarin may benefit patients with glucose intolerance. However, the mechanism underlying the action of silymarin is not clarified. The aim of this work was to assess the impact of silymarin on glucose intolerance in high-fat diet (HFD)-fed mice, and explore the potential therapeutic mechanisms. C57BL/6 mice were fed with HFD for 12 weeks, randomized, and treated orally with vehicle saline or silymarin (30 mg/kg) daily for 30 days. We found that silymarin significantly improved HFD-induced body weight gain, glucose intolerance, and insulin resistance in mice. Silymarin treatment reduced HFD-increased oxidative stress indicators (reactive oxygen species, lipid peroxidation, protein oxidation) and restored HFD-down-regulated activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) in the plasma and/or liver of the HFD-fed mice. Furthermore, silymarin decreased HFD-up-regulated hepatic NADPH oxidase expression and NF-κB activation in mice. Additionally, silymarin treatment mitigated HFD-increased plasma IL-1β, TNF-α levels, and HFD-enhanced hepatic NO, TLR4, and iNOS expression in mice. These novel data indicate that silymarin has potent anti-diabetic actions through alleviating oxidative stress and inflammatory response, partially by inhibiting hepatic NADPH oxidase expression and the NF-κB signaling.

  19. Comparative transcriptional profiling of Gracilariopsis lemaneiformis in response to salicylic acid- and methyl jasmonate-mediated heat resistance

    PubMed Central

    Wang, Chongbin; Zou, Tonglei; Xu, Nianjun; Sun, Xue

    2017-01-01

    Culturing the economically important macroalga Gracilariopsis lemaneiformis (Rhodophyta) is limited due to the high temperatures in the summertime on the southern Chinese coast. Previous studies have demonstrated that two phytohormones, salicylic acid (SA) and methyl jasmonate (MJ), can alleviate the adverse effects of high-temperature stress on Gp. lemaneiformis. To elucidate the molecular mechanisms underlying SA- and MJ-mediated heat tolerance, we performed comprehensive analyses of transcriptome-wide gene expression profiles using RNA sequencing (RNA-seq) technology. A total of 14,644 unigenes were assembled, and 10,501 unigenes (71.71%) were annotated to the reference databases. In the SA, MJ and SA/MJ treatment groups, 519, 830, and 974 differentially expressed unigenes were detected, respectively. Unigenes related to photosynthesis and glycometabolism were enriched by SA, while unigenes associated with glycometabolism, protein synthesis, heat shock and signal transduction were increased by MJ. A crosstalk analysis revealed that 216 genes were synergistically regulated, while 18 genes were antagonistically regulated by SA and MJ. The results indicated that the two phytohormones could mitigate the adverse effects of heat on multiple pathways, and they predominantly acted synergistically to resist heat stress. These results will provide new insights into how SA and MJ modulate the molecular mechanisms that counteract heat stress in algae. PMID:28464018

  20. Evaluation of Transient Pin-Stress Requirements for Spacecraft Launching in Lightning Environments. Pain Free Analysis to Alleviate Those Pin Stress Headaches

    NASA Technical Reports Server (NTRS)

    Edwards, Paul; Terseck, Alex; Trout, Dawn

    2016-01-01

    Spacecraft are generally protected from direct lightning attachment by encapsulation within the payload fairing of a launch vehicle and the ground structures that exist at the launch site. Regardless of where lightning strikes, potentially damaging indirect effects prevail from the coupling of electromagnetic fields into a loop created by outer shield of the payload umbilical. The energy coupled into individual spacecraft circuits is dependent on the umbilical current drive, the cable transfer impedance and the source/ load circuitry, and the reference potential used. Lightning induced transient susceptibility of the spacecraft avionics needs to be fully understood in order to define realistic re-test criteria in the event of a lightning occurrence during the launch campaign. Use of standards such as RTCA/DO-160 & SAE 5412 has some applicability but do not represent the indirect environment adequately. This paper evaluates the launch pad environments, the measurement data available, and computer simulations to provide pain-free analysis to alleviate the transient pin-stress headaches for spacecraft launching in Lightning environments.