Sample records for allowable time step

  1. Newmark local time stepping on high-performance computing architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rietmann, Max, E-mail: max.rietmann@erdw.ethz.ch; Institute of Geophysics, ETH Zurich; Grote, Marcus, E-mail: marcus.grote@unibas.ch

    In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strongmore » element-size contrasts (more than 100x). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.« less

  2. Molecular dynamics based enhanced sampling of collective variables with very large time steps.

    PubMed

    Chen, Pei-Yang; Tuckerman, Mark E

    2018-01-14

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  3. Molecular dynamics based enhanced sampling of collective variables with very large time steps

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Yang; Tuckerman, Mark E.

    2018-01-01

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  4. Adaptive time stepping for fluid-structure interaction solvers

    DOE PAGES

    Mayr, M.; Wall, W. A.; Gee, M. W.

    2017-12-22

    In this work, a novel adaptive time stepping scheme for fluid-structure interaction (FSI) problems is proposed that allows for controlling the accuracy of the time-discrete solution. Furthermore, it eases practical computations by providing an efficient and very robust time step size selection. This has proven to be very useful, especially when addressing new physical problems, where no educated guess for an appropriate time step size is available. The fluid and the structure field, but also the fluid-structure interface are taken into account for the purpose of a posteriori error estimation, rendering it easy to implement and only adding negligible additionalmore » cost. The adaptive time stepping scheme is incorporated into a monolithic solution framework, but can straightforwardly be applied to partitioned solvers as well. The basic idea can be extended to the coupling of an arbitrary number of physical models. Accuracy and efficiency of the proposed method are studied in a variety of numerical examples ranging from academic benchmark tests to complex biomedical applications like the pulsatile blood flow through an abdominal aortic aneurysm. Finally, the demonstrated accuracy of the time-discrete solution in combination with reduced computational cost make this algorithm very appealing in all kinds of FSI applications.« less

  5. Adaptive time stepping for fluid-structure interaction solvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayr, M.; Wall, W. A.; Gee, M. W.

    In this work, a novel adaptive time stepping scheme for fluid-structure interaction (FSI) problems is proposed that allows for controlling the accuracy of the time-discrete solution. Furthermore, it eases practical computations by providing an efficient and very robust time step size selection. This has proven to be very useful, especially when addressing new physical problems, where no educated guess for an appropriate time step size is available. The fluid and the structure field, but also the fluid-structure interface are taken into account for the purpose of a posteriori error estimation, rendering it easy to implement and only adding negligible additionalmore » cost. The adaptive time stepping scheme is incorporated into a monolithic solution framework, but can straightforwardly be applied to partitioned solvers as well. The basic idea can be extended to the coupling of an arbitrary number of physical models. Accuracy and efficiency of the proposed method are studied in a variety of numerical examples ranging from academic benchmark tests to complex biomedical applications like the pulsatile blood flow through an abdominal aortic aneurysm. Finally, the demonstrated accuracy of the time-discrete solution in combination with reduced computational cost make this algorithm very appealing in all kinds of FSI applications.« less

  6. Multiple time step integrators in ab initio molecular dynamics.

    PubMed

    Luehr, Nathan; Markland, Thomas E; Martínez, Todd J

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  7. Adaptive time steps in trajectory surface hopping simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spörkel, Lasse, E-mail: spoerkel@kofo.mpg.de; Thiel, Walter, E-mail: thiel@kofo.mpg.de

    2016-05-21

    Trajectory surface hopping (TSH) simulations are often performed in combination with active-space multi-reference configuration interaction (MRCI) treatments. Technical problems may arise in such simulations if active and inactive orbitals strongly mix and switch in some particular regions. We propose to use adaptive time steps when such regions are encountered in TSH simulations. For this purpose, we present a computational protocol that is easy to implement and increases the computational effort only in the critical regions. We test this procedure through TSH simulations of a GFP chromophore model (OHBI) and a light-driven rotary molecular motor (F-NAIBP) on semiempirical MRCI potential energymore » surfaces, by comparing the results from simulations with adaptive time steps to analogous ones with constant time steps. For both test molecules, the number of successful trajectories without technical failures rises significantly, from 53% to 95% for OHBI and from 25% to 96% for F-NAIBP. The computed excited-state lifetime remains essentially the same for OHBI and increases somewhat for F-NAIBP, and there is almost no change in the computed quantum efficiency for internal rotation in F-NAIBP. We recommend the general use of adaptive time steps in TSH simulations with active-space CI methods because this will help to avoid technical problems, increase the overall efficiency and robustness of the simulations, and allow for a more complete sampling.« less

  8. Adaptive time steps in trajectory surface hopping simulations

    NASA Astrophysics Data System (ADS)

    Spörkel, Lasse; Thiel, Walter

    2016-05-01

    Trajectory surface hopping (TSH) simulations are often performed in combination with active-space multi-reference configuration interaction (MRCI) treatments. Technical problems may arise in such simulations if active and inactive orbitals strongly mix and switch in some particular regions. We propose to use adaptive time steps when such regions are encountered in TSH simulations. For this purpose, we present a computational protocol that is easy to implement and increases the computational effort only in the critical regions. We test this procedure through TSH simulations of a GFP chromophore model (OHBI) and a light-driven rotary molecular motor (F-NAIBP) on semiempirical MRCI potential energy surfaces, by comparing the results from simulations with adaptive time steps to analogous ones with constant time steps. For both test molecules, the number of successful trajectories without technical failures rises significantly, from 53% to 95% for OHBI and from 25% to 96% for F-NAIBP. The computed excited-state lifetime remains essentially the same for OHBI and increases somewhat for F-NAIBP, and there is almost no change in the computed quantum efficiency for internal rotation in F-NAIBP. We recommend the general use of adaptive time steps in TSH simulations with active-space CI methods because this will help to avoid technical problems, increase the overall efficiency and robustness of the simulations, and allow for a more complete sampling.

  9. Enforcing the Courant-Friedrichs-Lewy condition in explicitly conservative local time stepping schemes

    NASA Astrophysics Data System (ADS)

    Gnedin, Nickolay Y.; Semenov, Vadim A.; Kravtsov, Andrey V.

    2018-04-01

    An optimally efficient explicit numerical scheme for solving fluid dynamics equations, or any other parabolic or hyperbolic system of partial differential equations, should allow local regions to advance in time with their own, locally constrained time steps. However, such a scheme can result in violation of the Courant-Friedrichs-Lewy (CFL) condition, which is manifestly non-local. Although the violations can be considered to be "weak" in a certain sense and the corresponding numerical solution may be stable, such calculation does not guarantee the correct propagation speed for arbitrary waves. We use an experimental fluid dynamics code that allows cubic "patches" of grid cells to step with independent, locally constrained time steps to demonstrate how the CFL condition can be enforced by imposing a constraint on the time steps of neighboring patches. We perform several numerical tests that illustrate errors introduced in the numerical solutions by weak CFL condition violations and show how strict enforcement of the CFL condition eliminates these errors. In all our tests the strict enforcement of the CFL condition does not impose a significant performance penalty.

  10. Enforcing the Courant–Friedrichs–Lewy condition in explicitly conservative local time stepping schemes

    DOE PAGES

    Gnedin, Nickolay Y.; Semenov, Vadim A.; Kravtsov, Andrey V.

    2018-01-30

    In this study, an optimally efficient explicit numerical scheme for solving fluid dynamics equations, or any other parabolic or hyperbolic system of partial differential equations, should allow local regions to advance in time with their own, locally constrained time steps. However, such a scheme can result in violation of the Courant-Friedrichs-Lewy (CFL) condition, which is manifestly non-local. Although the violations can be considered to be "weak" in a certain sense and the corresponding numerical solution may be stable, such calculation does not guarantee the correct propagation speed for arbitrary waves. We use an experimental fluid dynamics code that allows cubicmore » "patches" of grid cells to step with independent, locally constrained time steps to demonstrate how the CFL condition can be enforced by imposing a condition on the time steps of neighboring patches. We perform several numerical tests that illustrate errors introduced in the numerical solutions by weak CFL condition violations and show how strict enforcement of the CFL condition eliminates these errors. In all our tests the strict enforcement of the CFL condition does not impose a significant performance penalty.« less

  11. Asynchronous adaptive time step in quantitative cellular automata modeling

    PubMed Central

    Zhu, Hao; Pang, Peter YH; Sun, Yan; Dhar, Pawan

    2004-01-01

    Background The behaviors of cells in metazoans are context dependent, thus large-scale multi-cellular modeling is often necessary, for which cellular automata are natural candidates. Two related issues are involved in cellular automata based multi-cellular modeling: how to introduce differential equation based quantitative computing to precisely describe cellular activity, and upon it, how to solve the heavy time consumption issue in simulation. Results Based on a modified, language based cellular automata system we extended that allows ordinary differential equations in models, we introduce a method implementing asynchronous adaptive time step in simulation that can considerably improve efficiency yet without a significant sacrifice of accuracy. An average speedup rate of 4–5 is achieved in the given example. Conclusions Strategies for reducing time consumption in simulation are indispensable for large-scale, quantitative multi-cellular models, because even a small 100 × 100 × 100 tissue slab contains one million cells. Distributed and adaptive time step is a practical solution in cellular automata environment. PMID:15222901

  12. 40 CFR 35.2025 - Allowance and advance of allowance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... advance of allowance. (a) Allowance. Step 2+3 and Step 3 grant agreements will include an allowance for facilities planning and design of the project and Step 7 agreements will include an allowance for facility... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Allowance and advance of allowance. 35...

  13. Enabling fast, stable and accurate peridynamic computations using multi-time-step integration

    DOE PAGES

    Lindsay, P.; Parks, M. L.; Prakash, A.

    2016-04-13

    Peridynamics is a nonlocal extension of classical continuum mechanics that is well-suited for solving problems with discontinuities such as cracks. This paper extends the peridynamic formulation to decompose a problem domain into a number of smaller overlapping subdomains and to enable the use of different time steps in different subdomains. This approach allows regions of interest to be isolated and solved at a small time step for increased accuracy while the rest of the problem domain can be solved at a larger time step for greater computational efficiency. Lastly, performance of the proposed method in terms of stability, accuracy, andmore » computational cost is examined and several numerical examples are presented to corroborate the findings.« less

  14. A local time stepping algorithm for GPU-accelerated 2D shallow water models

    NASA Astrophysics Data System (ADS)

    Dazzi, Susanna; Vacondio, Renato; Dal Palù, Alessandro; Mignosa, Paolo

    2018-01-01

    In the simulation of flooding events, mesh refinement is often required to capture local bathymetric features and/or to detail areas of interest; however, if an explicit finite volume scheme is adopted, the presence of small cells in the domain can restrict the allowable time step due to the stability condition, thus reducing the computational efficiency. With the aim of overcoming this problem, the paper proposes the application of a Local Time Stepping (LTS) strategy to a GPU-accelerated 2D shallow water numerical model able to handle non-uniform structured meshes. The algorithm is specifically designed to exploit the computational capability of GPUs, minimizing the overheads associated with the LTS implementation. The results of theoretical and field-scale test cases show that the LTS model guarantees appreciable reductions in the execution time compared to the traditional Global Time Stepping strategy, without compromising the solution accuracy.

  15. The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task.

    PubMed

    Du, Yue; Clark, Jane E

    2018-05-03

    This protocol describes a modified serial reaction time (SRT) task used to study implicit motor sequence learning. Unlike the classic SRT task that involves finger-pressing movements while sitting, the modified SRT task requires participants to step with both feet while maintaining a standing posture. This stepping task necessitates whole body actions that impose postural challenges. The foot-stepping task complements the classic SRT task in several ways. The foot-stepping SRT task is a better proxy for the daily activities that require ongoing postural control, and thus may help us better understand sequence learning in real-life situations. In addition, response time serves as an indicator of sequence learning in the classic SRT task, but it is unclear whether response time, reaction time (RT) representing mental process, or movement time (MT) reflecting the movement itself, is a key player in motor sequence learning. The foot-stepping SRT task allows researchers to disentangle response time into RT and MT, which may clarify how motor planning and movement execution are involved in sequence learning. Lastly, postural control and cognition are interactively related, but little is known about how postural control interacts with learning motor sequences. With a motion capture system, the movement of the whole body (e.g., the center of mass (COM)) can be recorded. Such measures allow us to reveal the dynamic processes underlying discrete responses measured by RT and MT, and may aid in elucidating the relationship between postural control and the explicit and implicit processes involved in sequence learning. Details of the experimental set-up, procedure, and data processing are described. The representative data are adopted from one of our previous studies. Results are related to response time, RT, and MT, as well as the relationship between the anticipatory postural response and the explicit processes involved in implicit motor sequence learning.

  16. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    NASA Astrophysics Data System (ADS)

    Särkimäki, K.; Hirvijoki, E.; Terävä, J.

    2018-01-01

    We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.

  17. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkimaki, Konsta; Hirvijoki, E.; Terava, J.

    Here, we report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell–Jüttner statistics. The implementation is based on the Beliaev–Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space.

  18. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    DOE PAGES

    Sarkimaki, Konsta; Hirvijoki, E.; Terava, J.

    2017-10-12

    Here, we report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell–Jüttner statistics. The implementation is based on the Beliaev–Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space.

  19. Efficient variable time-stepping scheme for intense field-atom interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, C.; Kosloff, R.

    1993-03-01

    The recently developed Residuum method [Tal-Ezer, Kosloff, and Cerjan, J. Comput. Phys. 100, 179 (1992)], a Krylov subspace technique with variable time-step integration for the solution of the time-dependent Schroedinger equation, is applied to the frequently used soft Coulomb potential in an intense laser field. This one-dimensional potential has asymptotic Coulomb dependence with a softened'' singularity at the origin; thus it models more realistic phenomena. Two of the more important quantities usually calculated in this idealized system are the photoelectron and harmonic photon generation spectra. These quantities are shown to be sensitive to the choice of a numerical integration scheme:more » some spectral features are incorrectly calculated or missing altogether. Furthermore, the Residuum method allows much larger grid spacings for equivalent or higher accuracy in addition to the advantages of variable time stepping. Finally, it is demonstrated that enhanced high-order harmonic generation accompanies intense field stabilization and that preparation of the atom in an intermediate Rydberg state leads to stabilization at much lower laser intensity.« less

  20. On the correct use of stepped-sine excitations for the measurement of time-varying bioimpedance.

    PubMed

    Louarroudi, E; Sanchez, B

    2017-02-01

    When a linear time-varying (LTV) bioimpedance is measured using stepped-sine excitations, a compromise must be made: the temporal distortions affecting the data depend on the experimental time, which in turn sets the data accuracy and limits the temporal bandwidth of the system that needs to be measured. Here, the experimental time required to measure linear time-invariant bioimpedance with a specified accuracy is analyzed for different stepped-sine excitation setups. We provide simple equations that allow the reader to know whether LTV bioimpedance can be measured through repeated time- invariant stepped-sine experiments. Bioimpedance technology is on the rise thanks to a plethora of healthcare monitoring applications. The results presented can help to avoid distortions in the data while measuring accurately non-stationary physiological phenomena. The impact of the work presented is broad, including the potential of enhancing bioimpedance studies and healthcare devices using bioimpedance technology.

  1. Error correction in short time steps during the application of quantum gates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, L.A. de, E-mail: leonardo.castro@usp.br; Napolitano, R.D.J.

    2016-04-15

    We propose a modification of the standard quantum error-correction method to enable the correction of errors that occur due to the interaction with a noisy environment during quantum gates without modifying the codification used for memory qubits. Using a perturbation treatment of the noise that allows us to separate it from the ideal evolution of the quantum gate, we demonstrate that in certain cases it is necessary to divide the logical operation in short time steps intercalated by correction procedures. A prescription of how these gates can be constructed is provided, as well as a proof that, even for themore » cases when the division of the quantum gate in short time steps is not necessary, this method may be advantageous for reducing the total duration of the computation.« less

  2. Considerations for the independent reaction times and step-by-step methods for radiation chemistry simulations

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Devroye, Luc

    2017-10-01

    Ionizing radiation interacts with the water molecules of the tissues mostly by ionizations and excitations, which result in the formation of the radiation track structure and the creation of radiolytic species such as H.,.OH, H2, H2O2, and e-aq. After their creation, these species diffuse and may chemically react with the neighboring species and with the molecules of the medium. Therefore radiation chemistry is of great importance in radiation biology. As the chemical species are not distributed homogeneously, the use of conventional models of homogeneous reactions cannot completely describe the reaction kinetics of the particles. Actually, many simulations of radiation chemistry are done using the Independent Reaction Time (IRT) method, which is a very fast technique to calculate radiochemical yields but which do not calculate the positions of the radiolytic species as a function of time. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time-consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. The SBS and IRT methods are both based on the Green's functions of the diffusion equation (GFDE). In this paper, several sampling algorithms of the GFDE and for the IRT method are presented. We show that the IRT and SBS methods are exactly equivalent for 2-particles systems for diffusion and partially diffusion-controlled reactions between non-interacting particles. We also show that the results obtained with the SBS simulation method with periodic boundary conditions are in agreement with the predictions by classical reaction kinetics theory, which is an important step towards using this method for modelling of biochemical networks and metabolic pathways involved in oxidative stress. Finally, the first simulation results obtained with the code RITRACKS (Relativistic Ion Tracks) are presented.

  3. The prevalence of upright non-stepping time in comparison to stepping time in 11-13 year old school children across seasons.

    PubMed

    McCrorie, P Rw; Duncan, E; Granat, M H; Stansfield, B W

    2012-11-01

    Evidence suggests that behaviours such as standing are beneficial for our health. Unfortunately, little is known of the prevalence of this state, its importance in relation to time spent stepping or variation across seasons. The aim of this study was to quantify, in young adolescents, the prevalence and seasonal changes in time spent upright and not stepping (UNSt(time)) as well as time spent upright and stepping (USt(time)), and their contribution to overall upright time (U(time)). Thirty-three adolescents (12.2 ± 0.3 y) wore the activPAL activity monitor during four school days on two occasions: November/December (winter) and May/June (summer). UNSt(time) contributed 60% of daily U(time) at winter (Mean = 196 min) and 53% at summer (Mean = 171 min); a significant seasonal effect, p < 0.001. USt(time) was significantly greater in summer compared to winter (153 min versus 131 min, p < 0.001). The effects in UNSt(time) could be explained through significant seasonal differences during the school hours (09:00-16:00), whereas the effects in USt(time) could be explained through significant seasonal differences in the evening period (16:00-22:00). Adolescents spent a greater amount of time upright and not stepping than they did stepping, in both winter and summer. The observed seasonal effects for both UNSt(time) and USt(time) provide important information for behaviour change intervention programs.

  4. Large time-step stability of explicit one-dimensional advection schemes

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1993-01-01

    There is a wide-spread belief that most explicit one-dimensional advection schemes need to satisfy the so-called 'CFL condition' - that the Courant number, c = udelta(t)/delta(x), must be less than or equal to one, for stability in the von Neumann sense. This puts severe limitations on the time-step in high-speed, fine-grid calculations and is an impetus for the development of implicit schemes, which often require less restrictive time-step conditions for stability, but are more expensive per time-step. However, it turns out that, at least in one dimension, if explicit schemes are formulated in a consistent flux-based conservative finite-volume form, von Neumann stability analysis does not place any restriction on the allowable Courant number. Any explicit scheme that is stable for c is less than 1, with a complex amplitude ratio, G(c), can be easily extended to arbitrarily large c. The complex amplitude ratio is then given by exp(- (Iota)(Nu)(Theta)) G(delta(c)), where N is the integer part of c, and delta(c) = c - N (less than 1); this is clearly stable. The CFL condition is, in fact, not a stability condition at all, but, rather, a 'range restriction' on the 'pieces' in a piece-wise polynomial interpolation. When a global view is taken of the interpolation, the need for a CFL condition evaporates. A number of well-known explicit advection schemes are considered and thus extended to large delta(t). The analysis also includes a simple interpretation of (large delta(t)) total-variation-diminishing (TVD) constraints.

  5. One step screening of retroviral producer clones by real time quantitative PCR.

    PubMed

    Towers, G J; Stockholm, D; Labrousse-Najburg, V; Carlier, F; Danos, O; Pagès, J C

    1999-01-01

    Recombinant retroviruses are obtained from either stably or transiently transfected retrovirus producer cells. In the case of stably producing lines, a large number of clones must be screened in order to select the one with the highest titre. The multi-step selection of high titre producing clones is time consuming and expensive. We have taken advantage of retroviral endogenous reverse transcription to develop a quantitative PCR assay on crude supernatant from producing clones. We used Taqman PCR technology, which, by using fluorescence measurement at each cycle of amplification, allows PCR product quantification. Fluorescence results from specific degradation of a probe oligonucleotide by the Taq polymerase 3'-5' exonuclease activity. Primers and probe sequences were chosen to anneal to the viral strong stop species, which is the first DNA molecule synthesised during reverse transcription. The protocol consists of a single real time PCR, using as template filtered viral supernatant without any other pre-treatment. We show that the primers and probe described allow quantitation of serially diluted plasmid to as few as 15 plasmid molecules. We then test 200 GFP-expressing retroviral-producing clones either by FACS analysis of infected cells or by using the quantitative PCR. We confirm that the Taqman protocol allows the detection of virus in supernatant and selection of high titre clones. Furthermore, we can determine infectious titre by quantitative PCR on genomic DNA from infected cells, using an additional set of primers and probe to albumin to normalise for the genomic copy number. We demonstrate that real time quantitative PCR can be used as a powerful and reliable single step, high throughput screen for high titre retroviral producer clones.

  6. Short-term Time Step Convergence in a Climate Model

    DOE PAGES

    Wan, Hui; Rasch, Philip J.; Taylor, Mark; ...

    2015-02-11

    A testing procedure is designed to assess the convergence property of a global climate model with respect to time step size, based on evaluation of the root-mean-square temperature difference at the end of very short (1 h) simulations with time step sizes ranging from 1 s to 1800 s. A set of validation tests conducted without sub-grid scale parameterizations confirmed that the method was able to correctly assess the convergence rate of the dynamical core under various configurations. The testing procedure was then applied to the full model, and revealed a slow convergence of order 0.4 in contrast to themore » expected first-order convergence. Sensitivity experiments showed without ambiguity that the time stepping errors in the model were dominated by those from the stratiform cloud parameterizations, in particular the cloud microphysics. This provides a clear guidance for future work on the design of more accurate numerical methods for time stepping and process coupling in the model.« less

  7. Progress Report on Alloy 617 Time Dependent Allowables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Julie Knibloe

    2015-06-01

    Time dependent allowable stresses are required in the ASME Boiler and Pressure Vessel Code for design of components in the temperature range where time dependent deformation (i.e., creep) is expected to become significant. There are time dependent allowable stresses in Section IID of the Code for use in the non-nuclear construction codes, however, there are additional criteria that must be considered in developing time dependent allowables for nuclear components. These criteria are specified in Section III NH. St is defined as the lesser of three quantities: 100% of the average stress required to obtain a total (elastic, plastic, primary andmore » secondary creep) strain of 1%; 67% of the minimum stress to cause rupture; and 80% of the minimum stress to cause the initiation of tertiary creep. The values are reported for a range of temperatures and for time increments up to 100,000 hours. These values are determined from uniaxial creep tests, which involve the elevated temperature application of a constant load which is relatively small, resulting in deformation over a long time period prior to rupture. The stress which is the minimum resulting from these criteria is the time dependent allowable stress St. In this report data from a large number of creep and creep-rupture tests on Alloy 617 are analyzed using the ASME Section III NH criteria. Data which are used in the analysis are from the ongoing DOE sponsored high temperature materials program, form Korea Atomic Energy Institute through the Generation IV VHTR Materials Program and historical data from previous HTR research and vendor data generated in developing the alloy. It is found that the tertiary creep criterion determines St at highest temperatures, while the stress to cause 1% total strain controls at low temperatures. The ASME Section III Working Group on Allowable Stress Criteria has recommended that the uncertainties associated with determining the onset of tertiary creep and the lack of significant

  8. Short‐term time step convergence in a climate model

    PubMed Central

    Rasch, Philip J.; Taylor, Mark A.; Jablonowski, Christiane

    2015-01-01

    Abstract This paper evaluates the numerical convergence of very short (1 h) simulations carried out with a spectral‐element (SE) configuration of the Community Atmosphere Model version 5 (CAM5). While the horizontal grid spacing is fixed at approximately 110 km, the process‐coupling time step is varied between 1800 and 1 s to reveal the convergence rate with respect to the temporal resolution. Special attention is paid to the behavior of the parameterized subgrid‐scale physics. First, a dynamical core test with reduced dynamics time steps is presented. The results demonstrate that the experimental setup is able to correctly assess the convergence rate of the discrete solutions to the adiabatic equations of atmospheric motion. Second, results from full‐physics CAM5 simulations with reduced physics and dynamics time steps are discussed. It is shown that the convergence rate is 0.4—considerably slower than the expected rate of 1.0. Sensitivity experiments indicate that, among the various subgrid‐scale physical parameterizations, the stratiform cloud schemes are associated with the largest time‐stepping errors, and are the primary cause of slow time step convergence. While the details of our findings are model specific, the general test procedure is applicable to any atmospheric general circulation model. The need for more accurate numerical treatments of physical parameterizations, especially the representation of stratiform clouds, is likely common in many models. The suggested test technique can help quantify the time‐stepping errors and identify the related model sensitivities. PMID:27660669

  9. Multiple-time-stepping generalized hybrid Monte Carlo methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escribano, Bruno, E-mail: bescribano@bcamath.org; Akhmatskaya, Elena; IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao

    2015-01-01

    Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC).more » The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.« less

  10. GOTHIC: Gravitational oct-tree code accelerated by hierarchical time step controlling

    NASA Astrophysics Data System (ADS)

    Miki, Yohei; Umemura, Masayuki

    2017-04-01

    The tree method is a widely implemented algorithm for collisionless N-body simulations in astrophysics well suited for GPU(s). Adopting hierarchical time stepping can accelerate N-body simulations; however, it is infrequently implemented and its potential remains untested in GPU implementations. We have developed a Gravitational Oct-Tree code accelerated by HIerarchical time step Controlling named GOTHIC, which adopts both the tree method and the hierarchical time step. The code adopts some adaptive optimizations by monitoring the execution time of each function on-the-fly and minimizes the time-to-solution by balancing the measured time of multiple functions. Results of performance measurements with realistic particle distribution performed on NVIDIA Tesla M2090, K20X, and GeForce GTX TITAN X, which are representative GPUs of the Fermi, Kepler, and Maxwell generation of GPUs, show that the hierarchical time step achieves a speedup by a factor of around 3-5 times compared to the shared time step. The measured elapsed time per step of GOTHIC is 0.30 s or 0.44 s on GTX TITAN X when the particle distribution represents the Andromeda galaxy or the NFW sphere, respectively, with 224 = 16,777,216 particles. The averaged performance of the code corresponds to 10-30% of the theoretical single precision peak performance of the GPU.

  11. Split-Step Timing of Professional and Junior Tennis Players

    PubMed Central

    Leskosek, Bojan; Filipcic, Tjasa

    2017-01-01

    Abstract The purpose of the study was to determine the timing of a split-step in three categories of tennis players in four groups of strokes. Subjects were divided into three groups: male and female junior, and male professional tennis players. During two tournaments, all matches were recorded with two fixed video cameras. For every stroke, the timing of the split-step between the opponent’s impact point when hitting the ball and the player’s split-step was measured. A two-way analysis of variance (ANOVA) was used to determine the differences between groups of strokes, players and the interaction Player x Stroke Group. A Tukey post-hoc test was employed to determine specific differences. The results revealed differences between players in detecting the opponent’s movement, stroke and ball flight, which were reflected in different split-step timings. Each tennis player has his/her own timing mechanism which they adapt to various game situations. Response times differ significantly depending on the game situation. On average, they are the lowest in the serve, and then gradually rise from the return of the serve to baseline game, reaching the highest values in specific game situations. Players react faster in the first serve than in the second one and in the return of the serve, the response times are lower after the return of the second serve PMID:28210342

  12. An adaptive time-stepping strategy for solving the phase field crystal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhengru, E-mail: zrzhang@bnu.edu.cn; Ma, Yuan, E-mail: yuner1022@gmail.com; Qiao, Zhonghua, E-mail: zqiao@polyu.edu.hk

    2013-09-15

    In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. Themore » numerical experiments demonstrate that the CPU time is significantly saved for long time simulations.« less

  13. Consistency of internal fluxes in a hydrological model running at multiple time steps

    NASA Astrophysics Data System (ADS)

    Ficchi, Andrea; Perrin, Charles; Andréassian, Vazken

    2016-04-01

    Improving hydrological models remains a difficult task and many ways can be explored, among which one can find the improvement of spatial representation, the search for more robust parametrization, the better formulation of some processes or the modification of model structures by trial-and-error procedure. Several past works indicate that model parameters and structure can be dependent on the modelling time step, and there is thus some rationale in investigating how a model behaves across various modelling time steps, to find solutions for improvements. Here we analyse the impact of data time step on the consistency of the internal fluxes of a rainfall-runoff model run at various time steps, by using a large data set of 240 catchments. To this end, fine time step hydro-climatic information at sub-hourly resolution is used as input of a parsimonious rainfall-runoff model (GR) that is run at eight different model time steps (from 6 minutes to one day). The initial structure of the tested model (i.e. the baseline) corresponds to the daily model GR4J (Perrin et al., 2003), adapted to be run at variable sub-daily time steps. The modelled fluxes considered are interception, actual evapotranspiration and intercatchment groundwater flows. Observations of these fluxes are not available, but the comparison of modelled fluxes at multiple time steps gives additional information for model identification. The joint analysis of flow simulation performance and consistency of internal fluxes at different time steps provides guidance to the identification of the model components that should be improved. Our analysis indicates that the baseline model structure is to be modified at sub-daily time steps to warrant the consistency and realism of the modelled fluxes. For the baseline model improvement, particular attention is devoted to the interception model component, whose output flux showed the strongest sensitivity to modelling time step. The dependency of the optimal model

  14. Comparison of step-by-step kinematics of resisted, assisted and unloaded 20-m sprint runs.

    PubMed

    van den Tillaar, Roland; Gamble, Paul

    2018-03-26

    This investigation examined step-by-step kinematics of sprint running acceleration. Using a randomised counterbalanced approach, 37 female team handball players (age 17.8 ± 1.6 years, body mass 69.6 ± 9.1 kg, height 1.74 ± 0.06 m) performed resisted, assisted and unloaded 20-m sprints within a single session. 20-m sprint times and step velocity, as well as step length, step frequency, contact and flight times of each step were evaluated for each condition with a laser gun and an infrared mat. Almost all measured parameters were altered for each step under the resisted and assisted sprint conditions (η 2  ≥ 0.28). The exception was step frequency, which did not differ between assisted and normal sprints. Contact time, flight time and step frequency at almost each step were different between 'fast' vs. 'slow' sub-groups (η 2  ≥ 0.22). Nevertheless overall both groups responded similarly to the respective sprint conditions. No significant differences in step length were observed between groups for the respective condition. It is possible that continued exposure to assisted sprinting might allow the female team-sports players studied to adapt their coordination to the 'over-speed' condition and increase step frequency. It is notable that step-by-step kinematics in these sprints were easy to obtain using relatively inexpensive equipment with possibilities of direct feedback.

  15. Time-Accurate Local Time Stepping and High-Order Time CESE Methods for Multi-Dimensional Flows Using Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary

    2013-01-01

    With the wide availability of affordable multiple-core parallel supercomputers, next generation numerical simulations of flow physics are being focused on unsteady computations for problems involving multiple time scales and multiple physics. These simulations require higher solution accuracy than most algorithms and computational fluid dynamics codes currently available. This paper focuses on the developmental effort for high-fidelity multi-dimensional, unstructured-mesh flow solvers using the space-time conservation element, solution element (CESE) framework. Two approaches have been investigated in this research in order to provide high-accuracy, cross-cutting numerical simulations for a variety of flow regimes: 1) time-accurate local time stepping and 2) highorder CESE method. The first approach utilizes consistent numerical formulations in the space-time flux integration to preserve temporal conservation across the cells with different marching time steps. Such approach relieves the stringent time step constraint associated with the smallest time step in the computational domain while preserving temporal accuracy for all the cells. For flows involving multiple scales, both numerical accuracy and efficiency can be significantly enhanced. The second approach extends the current CESE solver to higher-order accuracy. Unlike other existing explicit high-order methods for unstructured meshes, the CESE framework maintains a CFL condition of one for arbitrarily high-order formulations while retaining the same compact stencil as its second-order counterpart. For large-scale unsteady computations, this feature substantially enhances numerical efficiency. Numerical formulations and validations using benchmark problems are discussed in this paper along with realistic examples.

  16. Estimating allowable-cut by area-scheduling

    Treesearch

    William B. Leak

    2011-01-01

    Estimation of the regulated allowable-cut is an important step in placing a forest property under management and ensuring a continued supply of timber over time. Regular harvests also provide for the maintenance of needed wildlife habitat. There are two basic approaches: (1) volume, and (2) area/volume regulation, with many variations of each. Some require...

  17. Modelling of Sub-daily Hydrological Processes Using Daily Time-Step Models: A Distribution Function Approach to Temporal Scaling

    NASA Astrophysics Data System (ADS)

    Kandel, D. D.; Western, A. W.; Grayson, R. B.

    2004-12-01

    Mismatches in scale between the fundamental processes, the model and supporting data are a major limitation in hydrologic modelling. Surface runoff generation via infiltration excess and the process of soil erosion are fundamentally short time-scale phenomena and their average behaviour is mostly determined by the short time-scale peak intensities of rainfall. Ideally, these processes should be simulated using time-steps of the order of minutes to appropriately resolve the effect of rainfall intensity variations. However, sub-daily data support is often inadequate and the processes are usually simulated by calibrating daily (or even coarser) time-step models. Generally process descriptions are not modified but rather effective parameter values are used to account for the effect of temporal lumping, assuming that the effect of the scale mismatch can be counterbalanced by tuning the parameter values at the model time-step of interest. Often this results in parameter values that are difficult to interpret physically. A similar approach is often taken spatially. This is problematic as these processes generally operate or interact non-linearly. This indicates a need for better techniques to simulate sub-daily processes using daily time-step models while still using widely available daily information. A new method applicable to many rainfall-runoff-erosion models is presented. The method is based on temporal scaling using statistical distributions of rainfall intensity to represent sub-daily intensity variations in a daily time-step model. This allows the effect of short time-scale nonlinear processes to be captured while modelling at a daily time-step, which is often attractive due to the wide availability of daily forcing data. The approach relies on characterising the rainfall intensity variation within a day using a cumulative distribution function (cdf). This cdf is then modified by various linear and nonlinear processes typically represented in hydrological and

  18. Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; Ravindran, S. S.

    2017-01-01

    Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

  19. [Collaborative application of BEPS at different time steps.

    PubMed

    Lu, Wei; Fan, Wen Yi; Tian, Tian

    2016-09-01

    BEPSHourly is committed to simulate the ecological and physiological process of vegetation at hourly time steps, and is often applied to analyze the diurnal change of gross primary productivity (GPP), net primary productivity (NPP) at site scale because of its more complex model structure and time-consuming solving process. However, daily photosynthetic rate calculation in BEPSDaily model is simpler and less time-consuming, not involving many iterative processes. It is suitable for simulating the regional primary productivity and analyzing the spatial distribution of regional carbon sources and sinks. According to the characteristics and applicability of BEPSDaily and BEPSHourly models, this paper proposed a method of collaborative application of BEPS at daily and hourly time steps. Firstly, BEPSHourly was used to optimize the main photosynthetic parameters: the maximum rate of carboxylation (V c max ) and the maximum rate of photosynthetic electron transport (J max ) at site scale, and then the two optimized parameters were introduced into BEPSDaily model to estimate regional NPP at regional scale. The results showed that optimization of the main photosynthesis parameters based on the flux data could improve the simulate ability of the model. The primary productivity of different forest types in descending order was deciduous broad-leaved forest, mixed forest, coniferous forest in 2011. The collaborative application of carbon cycle models at different steps proposed in this study could effectively optimize the main photosynthesis parameters V c max and J max , simulate the monthly averaged diurnal GPP, NPP, calculate the regional NPP, and analyze the spatial distribution of regional carbon sources and sinks.

  20. A multi-time-step noise reduction method for measuring velocity statistics from particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain

    2017-10-01

    We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.

  1. Formulation of an explicit-multiple-time-step time integration method for use in a global primitive equation grid model

    NASA Technical Reports Server (NTRS)

    Chao, W. C.

    1982-01-01

    With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.

  2. Resuscitator’s perceptions and time for corrective ventilation steps during neonatal resuscitation☆

    PubMed Central

    Sharma, Vinay; Lakshminrusimha, Satyan; Carrion, Vivien; Mathew, Bobby

    2016-01-01

    Background The 2010 neonatal resuscitation program (NRP) guidelines incorporate ventilation corrective steps (using the mnemonic – MRSOPA) into the resuscitation algorithm. The perception of neonatal providers, time taken to perform these maneuvers or the effectiveness of these additional steps has not been evaluated. Methods Using two simulated clinical scenarios of varying degrees of cardiovascular compromise –perinatal asphyxia with (i) bradycardia (heart rate – 40 min−1) and (ii) cardiac arrest, 35 NRP certified providers were evaluated for preference to performing these corrective measures, the time taken for performing these steps and time to onset of chest compressions. Results The average time taken to perform ventilation corrective steps (MRSOPA) was 48.9 ± 21.4 s. Providers were less likely to perform corrective steps and proceed directly to endotracheal intubation in the scenario of cardiac arrest as compared to a state of bradycardia. Cardiac compressions were initiated significantly sooner in the scenario of cardiac arrest 89 ± 24 s as compared to severe bradycardia 122 ± 23 s, p < 0.0001. There were no differences in the time taken to initiation of chest compressions between physicians or mid-level care providers or with the level of experience of the provider. Conclusions Effective ventilation of the lungs with corrective steps using a mask is important in most cases of neonatal resuscitation. Neonatal resuscitators prefer early endotracheal intubation and initiation of chest compressions in the presence of asystolic cardiac arrest. Corrective ventilation steps can potentially postpone initiation of chest compressions and may delay return of spontaneous circulation in the presence of severe cardiovascular compromise. PMID:25796996

  3. Next Steps in Network Time Synchronization For Navy Shipboard Applications

    DTIC Science & Technology

    2008-12-01

    40th Annual Precise Time and Time Interval (PTTI) Meeting NEXT STEPS IN NETWORK TIME SYNCHRONIZATION FOR NAVY SHIPBOARD APPLICATIONS...dynamic manner than in previous designs. This new paradigm creates significant network time synchronization challenges. The Navy has been...deploying the Network Time Protocol (NTP) in shipboard computing infrastructures to meet the current network time synchronization requirements

  4. A spectral radius scaling semi-implicit iterative time stepping method for reactive flow simulations with detailed chemistry

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Xiao, Zhixiang; Ren, Zhuyin

    2018-09-01

    A spectral radius scaling semi-implicit time stepping scheme has been developed for simulating unsteady compressible reactive flows with detailed chemistry, in which the spectral radius in the LUSGS scheme has been augmented to account for viscous/diffusive and reactive terms and a scalar matrix is proposed to approximate the chemical Jacobian using the minimum species destruction timescale. The performance of the semi-implicit scheme, together with a third-order explicit Runge-Kutta scheme and a Strang splitting scheme, have been investigated in auto-ignition and laminar premixed and nonpremixed flames of three representative fuels, e.g., hydrogen, methane, and n-heptane. Results show that the minimum species destruction time scale can well represent the smallest chemical time scale in reactive flows and the proposed scheme can significantly increase the allowable time steps in simulations. The scheme is stable when the time step is as large as 10 μs, which is about three to five orders of magnitude larger than the smallest time scales in various tests considered. For the test flames considered, the semi-implicit scheme achieves second order of accuracy in time. Moreover, the errors in quantities of interest are smaller than those from the Strang splitting scheme indicating the accuracy gain when the reaction and transport terms are solved coupled. Results also show that the relative efficiency of different schemes depends on fuel mechanisms and test flames. When the minimum time scale in reactive flows is governed by transport processes instead of chemical reactions, the proposed semi-implicit scheme is more efficient than the splitting scheme. Otherwise, the relative efficiency depends on the cost in sub-iterations for convergence within each time step and in the integration for chemistry substep. Then, the capability of the compressible reacting flow solver and the proposed semi-implicit scheme is demonstrated for capturing the hydrogen detonation waves

  5. Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin.

    PubMed

    Botelho, Maria Paula Jacobucci; Isolan, Cristina Pereira; Schwantz, Júlia Kaster; Lopes, Murilo Baena; Moraes, Rafael Ratto de

    2017-01-01

    This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5), 20 wt% (AD20), or 35 wt% (AD35) acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE) served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at p<0.05. In enamel, AD35 had higher bond strength when rubbed for at least 10 s, while application for 5 s generated lower bond strength. In dentin, increased acidic monomer improved bonding only for 20 s rubbing time. The etch-and-rinse adhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup.

  6. Patients with Chronic Obstructive Pulmonary Disease Walk with Altered Step Time and Step Width Variability as Compared with Healthy Control Subjects.

    PubMed

    Yentes, Jennifer M; Rennard, Stephen I; Schmid, Kendra K; Blanke, Daniel; Stergiou, Nicholas

    2017-06-01

    Compared with control subjects, patients with chronic obstructive pulmonary disease (COPD) have an increased incidence of falls and demonstrate balance deficits and alterations in mediolateral trunk acceleration while walking. Measures of gait variability have been implicated as indicators of fall risk, fear of falling, and future falls. To investigate whether alterations in gait variability are found in patients with COPD as compared with healthy control subjects. Twenty patients with COPD (16 males; mean age, 63.6 ± 9.7 yr; FEV 1 /FVC, 0.52 ± 0.12) and 20 control subjects (9 males; mean age, 62.5 ± 8.2 yr) walked for 3 minutes on a treadmill while their gait was recorded. The amount (SD and coefficient of variation) and structure of variability (sample entropy, a measure of regularity) were quantified for step length, time, and width at three walking speeds (self-selected and ±20% of self-selected speed). Generalized linear mixed models were used to compare dependent variables. Patients with COPD demonstrated increased mean and SD step time across all speed conditions as compared with control subjects. They also walked with a narrower step width that increased with increasing speed, whereas the healthy control subjects walked with a wider step width that decreased as speed increased. Further, patients with COPD demonstrated less variability in step width, with decreased SD, compared with control subjects at all three speed conditions. No differences in regularity of gait patterns were found between groups. Patients with COPD walk with increased duration of time between steps, and this timing is more variable than that of control subjects. They also walk with a narrower step width in which the variability of the step widths from step to step is decreased. Changes in these parameters have been related to increased risk of falling in aging research. This provides a mechanism that could explain the increased prevalence of falls in patients with COPD.

  7. Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks.

    PubMed

    Shelley, M J; Tao, L

    2001-01-01

    To avoid the numerical errors associated with resetting the potential following a spike in simulations of integrate-and-fire neuronal networks, Hansel et al. and Shelley independently developed a modified time-stepping method. Their particular scheme consists of second-order Runge-Kutta time-stepping, a linear interpolant to find spike times, and a recalibration of postspike potential using the spike times. Here we show analytically that such a scheme is second order, discuss the conditions under which efficient, higher-order algorithms can be constructed to treat resets, and develop a modified fourth-order scheme. To support our analysis, we simulate a system of integrate-and-fire conductance-based point neurons with all-to-all coupling. For six-digit accuracy, our modified Runge-Kutta fourth-order scheme needs a time-step of Delta(t) = 0.5 x 10(-3) seconds, whereas to achieve comparable accuracy using a recalibrated second-order or a first-order algorithm requires time-steps of 10(-5) seconds or 10(-9) seconds, respectively. Furthermore, since the cortico-cortical conductances in standard integrate-and-fire neuronal networks do not depend on the value of the membrane potential, we can attain fourth-order accuracy with computational costs normally associated with second-order schemes.

  8. Development of a Real-Time PCR for a Sensitive One-Step Coprodiagnosis Allowing both the Identification of Carnivore Feces and the Detection of Toxocara spp. and Echinococcus multilocularis

    PubMed Central

    Umhang, Gérald; Poulle, Marie-Lazarine; Millon, Laurence

    2016-01-01

    Studying the environmental occurrence of parasites of concern for humans and animals based on coprosamples is an expanding field of work in epidemiology and the ecology of health. Detecting and quantifying Toxocara spp. and Echinococcus multilocularis, two predominant zoonotic helminths circulating in European carnivores, in feces may help to better target measures for prevention. A rapid, sensitive, and one-step quantitative PCR (qPCR) allowing detection of E. multilocularis and Toxocara spp. was developed in the present study, combined with a host fecal test based on the identification of three carnivores (red fox, dog, and cat) involved in the life cycles of these parasites. A total of 68 coprosamples were collected from identified specimens from Vulpes vulpes, Canis lupus familiaris, Canis lupus, Felis silvestris catus, Meles meles, Martes foina, and Martes martes. With DNA coprosamples, real-time PCR was performed in duplex with a qPCR inhibitor control specifically designed for this study. All the coprosample host identifications were confirmed by qPCR combined with sequencing, and parasites were detected and confirmed (E. multilocularis in red foxes and Toxocara cati in cats; 16% of samples presented inhibition). By combining parasite detection and quantification, the host fecal test, and a new qPCR inhibitor control, we created a technique with a high sensitivity that may considerably improve environmental studies of pathogens. PMID:26969697

  9. Development of a Real-Time PCR for a Sensitive One-Step Coprodiagnosis Allowing both the Identification of Carnivore Feces and the Detection of Toxocara spp. and Echinococcus multilocularis.

    PubMed

    Knapp, Jenny; Umhang, Gérald; Poulle, Marie-Lazarine; Millon, Laurence

    2016-05-15

    Studying the environmental occurrence of parasites of concern for humans and animals based on coprosamples is an expanding field of work in epidemiology and the ecology of health. Detecting and quantifying Toxocara spp. and Echinococcus multilocularis, two predominant zoonotic helminths circulating in European carnivores, in feces may help to better target measures for prevention. A rapid, sensitive, and one-step quantitative PCR (qPCR) allowing detection of E. multilocularis and Toxocara spp. was developed in the present study, combined with a host fecal test based on the identification of three carnivores (red fox, dog, and cat) involved in the life cycles of these parasites. A total of 68 coprosamples were collected from identified specimens from Vulpes vulpes, Canis lupus familiaris, Canis lupus, Felis silvestris catus, Meles meles, Martes foina, and Martes martes With DNA coprosamples, real-time PCR was performed in duplex with a qPCR inhibitor control specifically designed for this study. All the coprosample host identifications were confirmed by qPCR combined with sequencing, and parasites were detected and confirmed (E. multilocularis in red foxes and Toxocara cati in cats; 16% of samples presented inhibition). By combining parasite detection and quantification, the host fecal test, and a new qPCR inhibitor control, we created a technique with a high sensitivity that may considerably improve environmental studies of pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin

    PubMed Central

    Botelho, Maria Paula Jacobucci; Isolan, Cristina Pereira; Schwantz, Júlia Kaster; Lopes, Murilo Baena; de Moraes, Rafael Ratto

    2017-01-01

    Abstract Objectives: This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Material and methods: Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5), 20 wt% (AD20), or 35 wt% (AD35) acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE) served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at p<0.05. Results: In enamel, AD35 had higher bond strength when rubbed for at least 10 s, while application for 5 s generated lower bond strength. In dentin, increased acidic monomer improved bonding only for 20 s rubbing time. The etch-and-rinse adhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Conclusion: Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup. PMID:29069150

  11. Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids

    DOE PAGES

    Chen, Bo; Chen, Chen; Wang, Jianhui; ...

    2017-07-07

    Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determinedmore » to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.« less

  12. Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Chen, Chen; Wang, Jianhui

    Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determinedmore » to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.« less

  13. Advancing parabolic operators in thermodynamic MHD models: Explicit super time-stepping versus implicit schemes with Krylov solvers

    NASA Astrophysics Data System (ADS)

    Caplan, R. M.; Mikić, Z.; Linker, J. A.; Lionello, R.

    2017-05-01

    We explore the performance and advantages/disadvantages of using unconditionally stable explicit super time-stepping (STS) algorithms versus implicit schemes with Krylov solvers for integrating parabolic operators in thermodynamic MHD models of the solar corona. Specifically, we compare the second-order Runge-Kutta Legendre (RKL2) STS method with the implicit backward Euler scheme computed using the preconditioned conjugate gradient (PCG) solver with both a point-Jacobi and a non-overlapping domain decomposition ILU0 preconditioner. The algorithms are used to integrate anisotropic Spitzer thermal conduction and artificial kinematic viscosity at time-steps much larger than classic explicit stability criteria allow. A key component of the comparison is the use of an established MHD model (MAS) to compute a real-world simulation on a large HPC cluster. Special attention is placed on the parallel scaling of the algorithms. It is shown that, for a specific problem and model, the RKL2 method is comparable or surpasses the implicit method with PCG solvers in performance and scaling, but suffers from some accuracy limitations. These limitations, and the applicability of RKL methods are briefly discussed.

  14. Evaluation of atomic pressure in the multiple time-step integration algorithm.

    PubMed

    Andoh, Yoshimichi; Yoshii, Noriyuki; Yamada, Atsushi; Okazaki, Susumu

    2017-04-15

    In molecular dynamics (MD) calculations, reduction in calculation time per MD loop is essential. A multiple time-step (MTS) integration algorithm, the RESPA (Tuckerman and Berne, J. Chem. Phys. 1992, 97, 1990-2001), enables reductions in calculation time by decreasing the frequency of time-consuming long-range interaction calculations. However, the RESPA MTS algorithm involves uncertainties in evaluating the atomic interaction-based pressure (i.e., atomic pressure) of systems with and without holonomic constraints. It is not clear which intermediate forces and constraint forces in the MTS integration procedure should be used to calculate the atomic pressure. In this article, we propose a series of equations to evaluate the atomic pressure in the RESPA MTS integration procedure on the basis of its equivalence to the Velocity-Verlet integration procedure with a single time step (STS). The equations guarantee time-reversibility even for the system with holonomic constrants. Furthermore, we generalize the equations to both (i) arbitrary number of inner time steps and (ii) arbitrary number of force components (RESPA levels). The atomic pressure calculated by our equations with the MTS integration shows excellent agreement with the reference value with the STS, whereas pressures calculated using the conventional ad hoc equations deviated from it. Our equations can be extended straightforwardly to the MTS integration algorithm for the isothermal NVT and isothermal-isobaric NPT ensembles. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. A step in time: Changes in standard-frequency and time-signal broadcasts, 1 January 1972

    NASA Technical Reports Server (NTRS)

    Chi, A. R.; Fosque, H. S.

    1973-01-01

    An improved coordinated universal time (UTC) system has been adopted by the International Radio Consultative Committee. It was implemented internationally by the standard-frequency and time-broadcast stations on 1 Jan. 1972. The new UTC system eliminates the frequency offset of 300 parts in 10 to the 10th power between the old UTC and atomic time, thus making the broadcast time interval (the UTC second) constant and defined by the resonant frequency of cesium atoms. The new time scale is kept in synchronism with the rotation of the Earth within plus or minus 0.7 s by step-time adjustments of exactly 1 s, when needed. A time code has been added to the disseminated time signals to permit universal time to be obtained from the broadcasts to the nearest 0.1 s for users requiring such precision. The texts of the International Radio Consultative Committee recommendation and report to implement the new UTC system are given. The coding formats used by various standard time broadcast services to transmit the difference between the universal time (UT1) and the UTC are also given. For users' convenience, worldwide primary VLF and HF transmissions stations, frequencies, and schedules of time emissions are also included. Actual time-step adjustments made by various stations on 1 Jan. 1972, are provided for future reference.

  16. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadella, M.; Kuru, Ş.; Negro, J., E-mail: jnegro@fta.uva.es

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays formore » the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.« less

  17. Where did the time go? Friction evolves with slip following large velocity steps, normal stress steps, and (?) during long holds

    NASA Astrophysics Data System (ADS)

    Rubin, A. M.; Bhattacharya, P.; Tullis, T. E.; Okazaki, K.; Beeler, N. M.

    2016-12-01

    The popular constitutive formulations of rate-and-state friction offer two end-member views on whether friction evolves only with slip (Slip law state evolution) or with time even without slip (Aging law state evolution). While rate stepping experiments show support for the Slip law, laboratory observed frictional behavior of initially bare rock surfaces near zero slip rate has traditionally been interpreted to show support for time-dependent evolution of frictional strength. Such laboratory derived support for time-dependent evolution has been one of the motivations behind the Aging law being widely used to model earthquake cycles on natural faults.Through a combination of theoretical results and new experimental data on initially bare granite, we show stronger support for the other end member view, i.e. that friction under a wide range of sliding conditions evolves only with slip. Our dataset is unique in that it combines up to 3.5 orders of magnitude rate steps, sequences of holds up to 10000s, and 5% normal stress steps at order of magnitude different sliding rates during the same experimental run. The experiments were done on the Brown rotary shear apparatus using servo feedback, making the machine stiff enough to provide very large departures from steady-state while maintaining stable, quasi-static sliding. Across these diverse sliding conditions, and in particular for both large velocity step decreases and the longest holds, the data are much more consistent with the Slip law version of slip-dependence than the time-dependence formulated in the Aging law. The shear stress response to normal stress steps is also consistently better explained by the Slip law when paired with the Linker-Dieterich type response to normal stress perturbations. However, the remarkable symmetry and slip-dependence of the normal stress step increases and decreases suggest deficiencies in the Linker-Dieterich formulation that we will probe in future experiments.High quality

  18. Errors in Postural Preparation Lead to Increased Choice Reaction Times for Step Initiation in Older Adults

    PubMed Central

    Nutt, John G.; Horak, Fay B.

    2011-01-01

    Background. This study asked whether older adults were more likely than younger adults to err in the initial direction of their anticipatory postural adjustment (APA) prior to a step (indicating a motor program error), whether initial motor program errors accounted for reaction time differences for step initiation, and whether initial motor program errors were linked to inhibitory failure. Methods. In a stepping task with choice reaction time and simple reaction time conditions, we measured forces under the feet to quantify APA onset and step latency and we used body kinematics to quantify forward movement of center of mass and length of first step. Results. Trials with APA errors were almost three times as common for older adults as for younger adults, and they were nine times more likely in choice reaction time trials than in simple reaction time trials. In trials with APA errors, step latency was delayed, correlation between APA onset and step latency was diminished, and forward motion of the center of mass prior to the step was increased. Participants with more APA errors tended to have worse Stroop interference scores, regardless of age. Conclusions. The results support the hypothesis that findings of slow choice reaction time step initiation in older adults are attributable to inclusion of trials with incorrect initial motor preparation and that these errors are caused by deficits in response inhibition. By extension, the results also suggest that mixing of trials with correct and incorrect initial motor preparation might explain apparent choice reaction time slowing with age in upper limb tasks. PMID:21498431

  19. 40 CFR 96.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Timing requirements for CAIR NOX Ozone... PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) By October 31, 2006, the permitting authority...

  20. 40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX Ozone...

  1. 40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX Ozone...

  2. 40 CFR 96.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Timing requirements for CAIR NOX Ozone... PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) By October 31, 2006, the permitting authority...

  3. 40 CFR 96.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Timing requirements for CAIR NOX Ozone... PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) By October 31, 2006, the permitting authority...

  4. 40 CFR 96.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Timing requirements for CAIR NOX Ozone... PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) By October 31, 2006, the permitting authority...

  5. 40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX Ozone...

  6. 40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX Ozone...

  7. 40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX Ozone...

  8. 40 CFR 96.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Timing requirements for CAIR NOX Ozone... PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) By October 31, 2006, the permitting authority...

  9. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics.

    PubMed

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-07-21

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.

  10. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics

    PubMed Central

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-01-01

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format. PMID:23685876

  11. PHISICS/RELAP5-3D Adaptive Time-Step Method Demonstrated for the HTTR LOFC#1 Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Robin Ivey; Balestra, Paolo; Strydom, Gerhard

    A collaborative effort between Japan Atomic Energy Agency (JAEA) and Idaho National Laboratory (INL) as part of the Civil Nuclear Energy Working Group is underway to model the high temperature engineering test reactor (HTTR) loss of forced cooling (LOFC) transient that was performed in December 2010. The coupled version of RELAP5-3D, a thermal fluids code, and PHISICS, a neutronics code, were used to model the transient. The focus of this report is to summarize the changes made to the PHISICS-RELAP5-3D code for implementing an adaptive time step methodology into the code for the first time, and to test it usingmore » the full HTTR PHISICS/RELAP5-3D model developed by JAEA and INL and the LOFC simulation. Various adaptive schemes are available based on flux or power convergence criteria that allow significantly larger time steps to be taken by the neutronics module. The report includes a description of the HTTR and the associated PHISICS/RELAP5-3D model test results as well as the University of Rome sub-contractor report documenting the adaptive time step theory and methodology implemented in PHISICS/RELAP5-3D. Two versions of the HTTR model were tested using 8 and 26 energy groups. It was found that most of the new adaptive methods lead to significant improvements in the LOFC simulation time required without significant accuracy penalties in the prediction of the fission power and the fuel temperature. In the best performing 8 group model scenarios, a LOFC simulation of 20 hours could be completed in real-time, or even less than real-time, compared with the previous version of the code that completed the same transient 3-8 times slower than real-time. A few of the user choice combinations between the methodologies available and the tolerance settings did however result in unacceptably high errors or insignificant gains in simulation time. The study is concluded with recommendations on which methods to use for this HTTR model. An important caveat is that these

  12. 40 CFR 97.511 - Timing requirements for TR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Timing requirements for TR NOX Ozone... TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.511 Timing requirements for TR NOX Ozone Season allowance allocations. (a) Existing units. (1) TR NOX Ozone Season allowances are allocated, for the control...

  13. 40 CFR 97.511 - Timing requirements for TR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Timing requirements for TR NOX Ozone... TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.511 Timing requirements for TR NOX Ozone Season allowance allocations. (a) Existing units. (1) TR NOX Ozone Season allowances are allocated, for the control...

  14. 40 CFR 97.511 - Timing requirements for TR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Timing requirements for TR NOX Ozone... TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.511 Timing requirements for TR NOX Ozone Season allowance allocations. (a) Existing units. (1) TR NOX Ozone Season allowances are allocated, for the control...

  15. Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Kavetski, Dmitri

    2010-10-01

    A major neglected weakness of many current hydrological models is the numerical method used to solve the governing model equations. This paper thoroughly evaluates several classes of time stepping schemes in terms of numerical reliability and computational efficiency in the context of conceptual hydrological modeling. Numerical experiments are carried out using 8 distinct time stepping algorithms and 6 different conceptual rainfall-runoff models, applied in a densely gauged experimental catchment, as well as in 12 basins with diverse physical and hydroclimatic characteristics. Results show that, over vast regions of the parameter space, the numerical errors of fixed-step explicit schemes commonly used in hydrology routinely dwarf the structural errors of the model conceptualization. This substantially degrades model predictions, but also, disturbingly, generates fortuitously adequate performance for parameter sets where numerical errors compensate for model structural errors. Simply running fixed-step explicit schemes with shorter time steps provides a poor balance between accuracy and efficiency: in some cases daily-step adaptive explicit schemes with moderate error tolerances achieved comparable or higher accuracy than 15 min fixed-step explicit approximations but were nearly 10 times more efficient. From the range of simple time stepping schemes investigated in this work, the fixed-step implicit Euler method and the adaptive explicit Heun method emerge as good practical choices for the majority of simulation scenarios. In combination with the companion paper, where impacts on model analysis, interpretation, and prediction are assessed, this two-part study vividly highlights the impact of numerical errors on critical performance aspects of conceptual hydrological models and provides practical guidelines for robust numerical implementation.

  16. The large discretization step method for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Haras, Zigo; Taasan, Shlomo

    1995-01-01

    A new method for the acceleration of linear and nonlinear time dependent calculations is presented. It is based on the Large Discretization Step (LDS) approximation, defined in this work, which employs an extended system of low accuracy schemes to approximate a high accuracy discrete approximation to a time dependent differential operator. Error bounds on such approximations are derived. These approximations are efficiently implemented in the LDS methods for linear and nonlinear hyperbolic equations, presented here. In these algorithms the high and low accuracy schemes are interpreted as the same discretization of a time dependent operator on fine and coarse grids, respectively. Thus, a system of correction terms and corresponding equations are derived and solved on the coarse grid to yield the fine grid accuracy. These terms are initialized by visiting the fine grid once in many coarse grid time steps. The resulting methods are very general, simple to implement and may be used to accelerate many existing time marching schemes.

  17. Comparing an annual and daily time-step model for predicting field-scale phosphorus loss

    USDA-ARS?s Scientific Manuscript database

    Numerous models exist for describing phosphorus (P) losses from agricultural fields. The complexity of these models varies considerably ranging from simple empirically-based annual time-step models to more complex process-based daily time step models. While better accuracy is often assumed with more...

  18. Multi-Step Time Series Forecasting with an Ensemble of Varied Length Mixture Models.

    PubMed

    Ouyang, Yicun; Yin, Hujun

    2018-05-01

    Many real-world problems require modeling and forecasting of time series, such as weather temperature, electricity demand, stock prices and foreign exchange (FX) rates. Often, the tasks involve predicting over a long-term period, e.g. several weeks or months. Most existing time series models are inheritably for one-step prediction, that is, predicting one time point ahead. Multi-step or long-term prediction is difficult and challenging due to the lack of information and uncertainty or error accumulation. The main existing approaches, iterative and independent, either use one-step model recursively or treat the multi-step task as an independent model. They generally perform poorly in practical applications. In this paper, as an extension of the self-organizing mixture autoregressive (AR) model, the varied length mixture (VLM) models are proposed to model and forecast time series over multi-steps. The key idea is to preserve the dependencies between the time points within the prediction horizon. Training data are segmented to various lengths corresponding to various forecasting horizons, and the VLM models are trained in a self-organizing fashion on these segments to capture these dependencies in its component AR models of various predicting horizons. The VLM models form a probabilistic mixture of these varied length models. A combination of short and long VLM models and an ensemble of them are proposed to further enhance the prediction performance. The effectiveness of the proposed methods and their marked improvements over the existing methods are demonstrated through a number of experiments on synthetic data, real-world FX rates and weather temperatures.

  19. 4 Steps for Redesigning Time for Student and Teacher Learning

    ERIC Educational Resources Information Center

    Nazareno, Lori

    2017-01-01

    Everybody complains about a lack of time in school, but few are prepared to do anything about it. Laying the foundation before making such a shift is essential to the success of the change. Once a broad-based team has been chosen to do the work, they can follow a process explained in four steps with the apt acronym of T.I.M.E.: Taking stock,…

  20. Identification of the coupling step in Na(+)-translocating NADH:quinone oxidoreductase from real-time kinetics of electron transfer.

    PubMed

    Belevich, Nikolai P; Bertsova, Yulia V; Verkhovskaya, Marina L; Baykov, Alexander A; Bogachev, Alexander V

    2016-02-01

    Bacterial Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) uses a unique set of prosthetic redox groups-two covalently bound FMN residues, a [2Fe-2S] cluster, FAD, riboflavin and a Cys4[Fe] center-to catalyze electron transfer from NADH to ubiquinone in a reaction coupled with Na(+) translocation across the membrane. Here we used an ultra-fast microfluidic stopped-flow instrument to determine rate constants and the difference spectra for the six consecutive reaction steps of Vibrio harveyi Na(+)-NQR reduction by NADH. The instrument, with a dead time of 0.25 ms and optical path length of 1 cm allowed collection of visible spectra in 50-μs intervals. By comparing the spectra of reaction steps with the spectra of known redox transitions of individual enzyme cofactors, we were able to identify the chemical nature of most intermediates and the sequence of electron transfer events. A previously unknown spectral transition was detected and assigned to the Cys4[Fe] center reduction. Electron transfer from the [2Fe-2S] cluster to the Cys4[Fe] center and all subsequent steps were markedly accelerated when Na(+) concentration was increased from 20 μM to 25 mM, suggesting coupling of the former step with tight Na(+) binding to or occlusion by the enzyme. An alternating access mechanism was proposed to explain electron transfer between subunits NqrF and NqrC. According to the proposed mechanism, the Cys4[Fe] center is alternatively exposed to either side of the membrane, allowing the [2Fe-2S] cluster of NqrF and the FMN residue of NqrC to alternatively approach the Cys4[Fe] center from different sides of the membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Development of a real time activity monitoring Android application utilizing SmartStep.

    PubMed

    Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward

    2016-08-01

    Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.

  2. High-Order Implicit-Explicit Multi-Block Time-stepping Method for Hyperbolic PDEs

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner B.; Carpenter, Mark H.; Fisher, Travis C.; Frankel, Steven H.

    2014-01-01

    This work seeks to explore and improve the current time-stepping schemes used in computational fluid dynamics (CFD) in order to reduce overall computational time. A high-order scheme has been developed using a combination of implicit and explicit (IMEX) time-stepping Runge-Kutta (RK) schemes which increases numerical stability with respect to the time step size, resulting in decreased computational time. The IMEX scheme alone does not yield the desired increase in numerical stability, but when used in conjunction with an overlapping partitioned (multi-block) domain significant increase in stability is observed. To show this, the Overlapping-Partition IMEX (OP IMEX) scheme is applied to both one-dimensional (1D) and two-dimensional (2D) problems, the nonlinear viscous Burger's equation and 2D advection equation, respectively. The method uses two different summation by parts (SBP) derivative approximations, second-order and fourth-order accurate. The Dirichlet boundary conditions are imposed using the Simultaneous Approximation Term (SAT) penalty method. The 6-stage additive Runge-Kutta IMEX time integration schemes are fourth-order accurate in time. An increase in numerical stability 65 times greater than the fully explicit scheme is demonstrated to be achievable with the OP IMEX method applied to 1D Burger's equation. Results from the 2D, purely convective, advection equation show stability increases on the order of 10 times the explicit scheme using the OP IMEX method. Also, the domain partitioning method in this work shows potential for breaking the computational domain into manageable sizes such that implicit solutions for full three-dimensional CFD simulations can be computed using direct solving methods rather than the standard iterative methods currently used.

  3. Dependence of Hurricane intensity and structures on vertical resolution and time-step size

    NASA Astrophysics Data System (ADS)

    Zhang, Da-Lin; Wang, Xiaoxue

    2003-09-01

    In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are studied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model (i.e., MM5) with the finest grid size of 6 km. It is shown that changing vertical resolution and time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, but little impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeper storm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similar effects, but to a less extent, occur when the time-step size is reduced. It is found that increasing the low-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-level vertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layer tends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution, a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable to model more realistically the intensity and inner-core structures and evolution of tropical storms as well as the other convectively driven weather systems.

  4. Measuring border delay and crossing times at the US-Mexico border : part II. Step-by-step guidelines for implementing a radio frequency identification (RFID) system to measure border crossing and wait times.

    DOT National Transportation Integrated Search

    2012-06-01

    The purpose of these step-by-step guidelines is to assist in planning, designing, and deploying a system that uses radio frequency identification (RFID) technology to measure the time needed for commercial vehicles to complete the northbound border c...

  5. The Satellite Test of the Equivalence Principle (STEP)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    STEP will carry concentric test masses to Earth orbit to test a fundamental assumption underlying Einstein's theory of general relativity: that gravitational mass is equivalent to inertial mass. STEP is a 21st-century version of the test that Galileo is said to have performed by dropping a carnon ball and a musket ball simultaneously from the top of the Leaning Tower of Pisa to compare their accelerations. During the STEP experiment, four pairs of test masses will be falling around the Earth, and their accelerations will be measured by superconducting quantum interference devices (SQUIDS). The extended time sensitivity of the instruments will allow the measurements to be a million times more accurate than those made in modern ground-based tests.

  6. Analysis of 3D poroelastodynamics using BEM based on modified time-step scheme

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Petrov, A. N.; Vorobtsov, I. V.

    2017-10-01

    The development of 3d boundary elements modeling of dynamic partially saturated poroelastic media using a stepping scheme is presented in this paper. Boundary Element Method (BEM) in Laplace domain and the time-stepping scheme for numerical inversion of the Laplace transform are used to solve the boundary value problem. The modified stepping scheme with a varied integration step for quadrature coefficients calculation using the symmetry of the integrand function and integral formulas of Strongly Oscillating Functions was applied. The problem with force acting on a poroelastic prismatic console end was solved using the developed method. A comparison of the results obtained by the traditional stepping scheme with the solutions obtained by this modified scheme shows that the computational efficiency is better with usage of combined formulas.

  7. Role of step size and max dwell time in anatomy based inverse optimization for prostate implants

    PubMed Central

    Manikandan, Arjunan; Sarkar, Biplab; Rajendran, Vivek Thirupathur; King, Paul R.; Sresty, N.V. Madhusudhana; Holla, Ragavendra; Kotur, Sachin; Nadendla, Sujatha

    2013-01-01

    In high dose rate (HDR) brachytherapy, the source dwell times and dwell positions are vital parameters in achieving a desirable implant dose distribution. Inverse treatment planning requires an optimal choice of these parameters to achieve the desired target coverage with the lowest achievable dose to the organs at risk (OAR). This study was designed to evaluate the optimum source step size and maximum source dwell time for prostate brachytherapy implants using an Ir-192 source. In total, one hundred inverse treatment plans were generated for the four patients included in this study. Twenty-five treatment plans were created for each patient by varying the step size and maximum source dwell time during anatomy-based, inverse-planned optimization. Other relevant treatment planning parameters were kept constant, including the dose constraints and source dwell positions. Each plan was evaluated for target coverage, urethral and rectal dose sparing, treatment time, relative target dose homogeneity, and nonuniformity ratio. The plans with 0.5 cm step size were seen to have clinically acceptable tumor coverage, minimal normal structure doses, and minimum treatment time as compared with the other step sizes. The target coverage for this step size is 87% of the prescription dose, while the urethral and maximum rectal doses were 107.3 and 68.7%, respectively. No appreciable difference in plan quality was observed with variation in maximum source dwell time. The step size plays a significant role in plan optimization for prostate implants. Our study supports use of a 0.5 cm step size for prostate implants. PMID:24049323

  8. Sensitivity of The High-resolution Wam Model With Respect To Time Step

    NASA Astrophysics Data System (ADS)

    Kasemets, K.; Soomere, T.

    The northern part of the Baltic Proper and its subbasins (Bothnian Sea, the Gulf of Finland, Moonsund) serve as a challenge for wave modellers. In difference from the southern and the eastern parts of the Baltic Sea, their coasts are highly irregular and contain many peculiarities with the characteristic horizontal scale of the order of a few kilometres. For example, the northern coast of the Gulf of Finland is extremely ragged and contains a huge number of small islands. Its southern coast is more or less regular but has up to 50m high cliff that is frequently covered by high forests. The area also contains numerous banks that have water depth a couple of meters and that may essentially modify wave properties near the banks owing to topographical effects. This feature suggests that a high-resolution wave model should be applied for the region in question, with a horizontal resolution of an order of 1 km or even less. According to the Courant-Friedrich-Lewy criterion, the integration time step for such models must be of the order of a few tens of seconds. A high-resolution WAM model turns out to be fairly sensitive with respect to the particular choice of the time step. In our experiments, a medium-resolution model for the whole Baltic Sea was used, with the horizontal resolution 3 miles (3' along latitudes and 6' along longitudes) and the angular resolution 12 directions. The model was run with steady wind blowing 20 m/s from different directions and with two time steps (1 and 3 minutes). For most of the wind directions, the rms. difference of significant wave heights calculated with differ- ent time steps did not exceed 10 cm and typically was of the order of a few per cents. The difference arose within a few tens of minutes and generally did not increase in further computations. However, in the case of the north wind, the difference increased nearly monotonously and reached 25-35 cm (10-15%) within three hours of integra- tion whereas mean of significant wave

  9. Comparison of sum-of-hourly and daily time step standardized ASCE Penman-Monteith reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Djaman, Koffi; Irmak, Suat; Sall, Mamadou; Sow, Abdoulaye; Kabenge, Isa

    2017-10-01

    The objective of this study was to quantify differences associated with using 24-h time step reference evapotranspiration (ETo), as compared with the sum of hourly ETo computations with the standardized ASCE Penman-Monteith (ASCE-PM) model for semi-arid dry conditions at Fanaye and Ndiaye (Senegal) and semiarid humid conditions at Sapu (The Gambia) and Kankan (Guinea). The results showed that there was good agreement between the sum of hourly ETo and daily time step ETo at all four locations. The daily time step overestimated the daily ETo relative to the sum of hourly ETo by 1.3 to 8% for the whole study periods. However, there is location and monthly dependence of the magnitude of ETo values and the ratio of the ETo values estimated by both methods. Sum of hourly ETo tends to give higher ETo during winter time at Fanaye and Sapu, while the daily ETo was higher from March to November at the same weather stations. At Ndiaye and Kankan, daily time step estimates of ETo were high during the year. The simple linear regression slopes between the sum of 24-h ETo and the daily time step ETo at all weather stations varied from 1.02 to 1.08 with high coefficient of determination (R 2 ≥ 0.87). Application of the hourly ETo estimation method might help on accurate ETo estimation to meet irrigation requirement under precision agriculture.

  10. Effects of walking speed on the step-by-step control of step width.

    PubMed

    Stimpson, Katy H; Heitkamp, Lauren N; Horne, Joscelyn S; Dean, Jesse C

    2018-02-08

    Young, healthy adults walking at typical preferred speeds use step-by-step adjustments of step width to appropriately redirect their center of mass motion and ensure mediolateral stability. However, it is presently unclear whether this control strategy is retained when walking at the slower speeds preferred by many clinical populations. We investigated whether the typical stabilization strategy is influenced by walking speed. Twelve young, neurologically intact participants walked on a treadmill at a range of prescribed speeds (0.2-1.2 m/s). The mediolateral stabilization strategy was quantified as the proportion of step width variance predicted by the mechanical state of the pelvis throughout a step (calculated as R 2 magnitude from a multiple linear regression). Our ability to accurately predict the upcoming step width increased over the course of a step. The strength of the relationship between step width and pelvis mechanics at the start of a step was reduced at slower speeds. However, these speed-dependent differences largely disappeared by the end of a step, other than at the slowest walking speed (0.2 m/s). These results suggest that mechanics-dependent adjustments in step width are a consistent component of healthy gait across speeds and contexts. However, slower walking speeds may ease this control by allowing mediolateral repositioning of the swing leg to occur later in a step, thus encouraging slower walking among clinical populations with limited sensorimotor control. Published by Elsevier Ltd.

  11. A three dimensional multigrid multiblock multistage time stepping scheme for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Cannizzaro, Frank; Melson, N. D.

    1991-01-01

    A general multiblock method for the solution of the three-dimensional, unsteady, compressible, thin-layer Navier-Stokes equations has been developed. The convective and pressure terms are spatially discretized using Roe's flux differencing technique while the viscous terms are centrally differenced. An explicit Runge-Kutta method is used to advance the solution in time. Local time stepping, adaptive implicit residual smoothing, and the Full Approximation Storage (FAS) multigrid scheme are added to the explicit time stepping scheme to accelerate convergence to steady state. Results for three-dimensional test cases are presented and discussed.

  12. Suggestions for CAP-TSD mesh and time-step input parameters

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R.

    1991-01-01

    Suggestions for some of the input parameters used in the CAP-TSD (Computational Aeroelasticity Program-Transonic Small Disturbance) computer code are presented. These parameters include those associated with the mesh design and time step. The guidelines are based principally on experience with a one-dimensional model problem used to study wave propagation in the vertical direction.

  13. Time-Delayed Two-Step Selective Laser Photodamage of Dye-Biomolecule Complexes

    NASA Astrophysics Data System (ADS)

    Andreoni, A.; Cubeddu, R.; de Silvestri, S.; Laporta, P.; Svelto, O.

    1980-08-01

    A scheme is proposed for laser-selective photodamage of biological molecules, based on time-delayed two-step photoionization of a dye molecule bound to the biomolecule. The validity of the scheme is experimentally demonstrated in the case of the dye Proflavine, bound to synthetic polynucleotides.

  14. A new and inexpensive non-bit-for-bit solution reproducibility test based on time step convergence (TSC1.0)

    NASA Astrophysics Data System (ADS)

    Wan, Hui; Zhang, Kai; Rasch, Philip J.; Singh, Balwinder; Chen, Xingyuan; Edwards, Jim

    2017-02-01

    A test procedure is proposed for identifying numerically significant solution changes in evolution equations used in atmospheric models. The test issues a fail signal when any code modifications or computing environment changes lead to solution differences that exceed the known time step sensitivity of the reference model. Initial evidence is provided using the Community Atmosphere Model (CAM) version 5.3 that the proposed procedure can be used to distinguish rounding-level solution changes from impacts of compiler optimization or parameter perturbation, which are known to cause substantial differences in the simulated climate. The test is not exhaustive since it does not detect issues associated with diagnostic calculations that do not feedback to the model state variables. Nevertheless, it provides a practical and objective way to assess the significance of solution changes. The short simulation length implies low computational cost. The independence between ensemble members allows for parallel execution of all simulations, thus facilitating fast turnaround. The new method is simple to implement since it does not require any code modifications. We expect that the same methodology can be used for any geophysical model to which the concept of time step convergence is applicable.

  15. A stabilized Runge–Kutta–Legendre method for explicit super-time-stepping of parabolic and mixed equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.

    2014-01-15

    Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s{sup 2} times larger than amore » single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is

  16. A stabilized Runge-Kutta-Legendre method for explicit super-time-stepping of parabolic and mixed equations

    NASA Astrophysics Data System (ADS)

    Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.

    2014-01-01

    Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge-Kutta-like time-steps to advance the parabolic terms by a time-step that is s2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge-Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems - a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in

  17. Positivity-preserving dual time stepping schemes for gas dynamics

    NASA Astrophysics Data System (ADS)

    Parent, Bernard

    2018-05-01

    A new approach at discretizing the temporal derivative of the Euler equations is here presented which can be used with dual time stepping. The temporal discretization stencil is derived along the lines of the Cauchy-Kowalevski procedure resulting in cross differences in spacetime but with some novel modifications which ensure the positivity of the discretization coefficients. It is then shown that the so-obtained spacetime cross differences result in changes to the wave speeds and can thus be incorporated within Roe or Steger-Warming schemes (with and without reconstruction-evolution) simply by altering the eigenvalues. The proposed approach is advantaged over alternatives in that it is positivity-preserving for the Euler equations. Further, it yields monotone solutions near discontinuities while exhibiting a truncation error in smooth regions less than the one of the second- or third-order accurate backward-difference-formula (BDF) for either small or large time steps. The high resolution and positivity preservation of the proposed discretization stencils are independent of the convergence acceleration technique which can be set to multigrid, preconditioning, Jacobian-free Newton-Krylov, block-implicit, etc. Thus, the current paper also offers the first implicit integration of the time-accurate Euler equations that is positivity-preserving in the strict sense (that is, the density and temperature are guaranteed to remain positive). This is in contrast to all previous positivity-preserving implicit methods which only guaranteed the positivity of the density, not of the temperature or pressure. Several stringent reacting and inert test cases confirm the positivity-preserving property of the proposed method as well as its higher resolution and higher computational efficiency over other second-order and third-order implicit temporal discretization strategies.

  18. Quantization of charged fields in the presence of critical potential steps

    NASA Astrophysics Data System (ADS)

    Gavrilov, S. P.; Gitman, D. M.

    2016-02-01

    QED with strong external backgrounds that can create particles from the vacuum is well developed for the so-called t -electric potential steps, which are time-dependent external electric fields that are switched on and off at some time instants. However, there exist many physically interesting situations where external backgrounds do not switch off at the time infinity. E.g., these are time-independent nonuniform electric fields that are concentrated in restricted space areas. The latter backgrounds represent a kind of spatial x -electric potential steps for charged particles. They can also create particles from the vacuum, the Klein paradox being closely related to this process. Approaches elaborated for treating quantum effects in the t -electric potential steps are not directly applicable to the x -electric potential steps and their generalization for x -electric potential steps was not sufficiently developed. We believe that the present work represents a consistent solution of the latter problem. We have considered a canonical quantization of the Dirac and scalar fields with x -electric potential step and have found in- and out-creation and annihilation operators that allow one to have particle interpretation of the physical system under consideration. To identify in- and out-operators we have performed a detailed mathematical and physical analysis of solutions of the relativistic wave equations with an x -electric potential step with subsequent QFT analysis of correctness of such an identification. We elaborated a nonperturbative (in the external field) technique that allows one to calculate all characteristics of zero-order processes, such, for example, scattering, reflection, and electron-positron pair creation, without radiation corrections, and also to calculate Feynman diagrams that describe all characteristics of processes with interaction between the in-, out-particles and photons. These diagrams have formally the usual form, but contain special

  19. Parallel Multi-Step/Multi-Rate Integration of Two-Time Scale Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Chang, Johnny T.; Ploen, Scott R.; Sohl, Garett. A,; Martin, Bryan J.

    2004-01-01

    Increasing demands on the fidelity of simulations for real-time and high-fidelity simulations are stressing the capacity of modern processors. New integration techniques are required that provide maximum efficiency for systems that are parallelizable. However many current techniques make assumptions that are at odds with non-cascadable systems. A new serial multi-step/multi-rate integration algorithm for dual-timescale continuous state systems is presented which applies to these systems, and is extended to a parallel multi-step/multi-rate algorithm. The superior performance of both algorithms is demonstrated through a representative example.

  20. Age-related differences in lower-limb force-time relation during the push-off in rapid voluntary stepping.

    PubMed

    Melzer, I; Krasovsky, T; Oddsson, L I E; Liebermann, D G

    2010-12-01

    This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P ≤ 0.05). Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Time-dependent rheological behavior of natural polysaccharide xanthan gum solutions in interrupted shear and step-incremental/reductional shear flow fields

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Seok; Song, Ki-Won

    2015-11-01

    The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.

  2. Analogue step-by-step DC component eliminator for 24-hour PPG signal monitoring.

    PubMed

    Pilt, Kristjan; Meigas, Kalju; Lass, Jaanus; Rosmann, Mart; Kaik, Jüri

    2007-01-01

    For applications where PPG signal AC component needs to be measured without disturbances in its shape and recorded digitally with high digitalization accuracy, the step-by-step DC component eliminator is developed. This paper describes step-by-step DC component eliminator, which is utilized with analogue comparator and operational amplifier. It allows to record PPG signal without disturbances in its shape in 24-hours PPG signal monitoring system. The experiments with PPG signal have been carried out.

  3. Accurate Monotonicity - Preserving Schemes With Runge-Kutta Time Stepping

    NASA Technical Reports Server (NTRS)

    Suresh, A.; Huynh, H. T.

    1997-01-01

    A new class of high-order monotonicity-preserving schemes for the numerical solution of conservation laws is presented. The interface value in these schemes is obtained by limiting a higher-order polynominal reconstruction. The limiting is designed to preserve accuracy near extrema and to work well with Runge-Kutta time stepping. Computational efficiency is enhanced by a simple test that determines whether the limiting procedure is needed. For linear advection in one dimension, these schemes are shown as well as the Euler equations also confirm their high accuracy, good shock resolution, and computational efficiency.

  4. Fast Determination of Distribution-Connected PV Impacts Using a Variable Time-Step Quasi-Static Time-Series Approach: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry

    The increasing deployment of distribution-connected photovoltaic (DPV) systems requires utilities to complete complex interconnection studies. Relatively simple interconnection study methods worked well for low penetrations of photovoltaic systems, but more complicated quasi-static time-series (QSTS) analysis is required to make better interconnection decisions as DPV penetration levels increase. Tools and methods must be developed to support this. This paper presents a variable-time-step solver for QSTS analysis that significantly shortens the computational time and effort to complete a detailed analysis of the operation of a distribution circuit with many DPV systems. Specifically, it demonstrates that the proposed variable-time-step solver can reduce themore » required computational time by as much as 84% without introducing any important errors to metrics, such as the highest and lowest voltage occurring on the feeder, number of voltage regulator tap operations, and total amount of losses realized in the distribution circuit during a 1-yr period. Further improvement in computational speed is possible with the introduction of only modest errors in these metrics, such as a 91 percent reduction with less than 5 percent error when predicting voltage regulator operations.« less

  5. Elderly Fallers Enhance Dynamic Stability Through Anticipatory Postural Adjustments during a Choice Stepping Reaction Time

    PubMed Central

    Tisserand, Romain; Robert, Thomas; Chabaud, Pascal; Bonnefoy, Marc; Chèze, Laurence

    2016-01-01

    In the case of disequilibrium, the capacity to step quickly is critical to avoid falling in elderly. This capacity can be simply assessed through the choice stepping reaction time test (CSRT), where elderly fallers (F) take longer to step than elderly non-fallers (NF). However, the reasons why elderly F elongate their stepping time remain unclear. The purpose of this study is to assess the characteristics of anticipated postural adjustments (APA) that elderly F develop in a stepping context and their consequences on the dynamic stability. Forty-four community-dwelling elderly subjects (20 F and 24 NF) performed a CSRT where kinematics and ground reaction forces were collected. Variables were analyzed using two-way repeated measures ANOVAs. Results for F compared to NF showed that stepping time is elongated, due to a longer APA phase. During APA, they seem to use two distinct balance strategies, depending on the axis: in the anteroposterior direction, we measured a smaller backward movement and slower peak velocity of the center of pressure (CoP); in the mediolateral direction, the CoP movement was similar in amplitude and peak velocity between groups but lasted longer. The biomechanical consequence of both strategies was an increased margin of stability (MoS) at foot-off, in the respective direction. By elongating their APA, elderly F use a safer balance strategy that prioritizes dynamic stability conditions instead of the objective of the task. Such a choice in balance strategy probably comes from muscular limitations and/or a higher fear of falling and paradoxically indicates an increased risk of fall. PMID:27965561

  6. Modeling Stepped Leaders Using a Time Dependent Multi-dipole Model and High-speed Video Data

    NASA Astrophysics Data System (ADS)

    Karunarathne, S.; Marshall, T.; Stolzenburg, M.; Warner, T. A.; Orville, R. E.

    2012-12-01

    In summer of 2011, we collected lightning data with 10 stations of electric field change meters (bandwidth of 0.16 Hz - 2.6 MHz) on and around NASA/Kennedy Space Center (KSC) covering nearly 70 km × 100 km area. We also had a high-speed video (HSV) camera recording 50,000 images per second collocated with one of the electric field change meters. In this presentation we describe our use of these data to model the electric field change caused by stepped leaders. Stepped leaders of a cloud to ground lightning flash typically create the initial path for the first return stroke (RS). Most of the time, stepped leaders have multiple complex branches, and one of these branches will create the ground connection for the RS to start. HSV data acquired with a short focal length lens at ranges of 5-25 km from the flash are useful for obtaining the 2-D location of these multiple branches developing at the same time. Using HSV data along with data from the KSC Lightning Detection and Ranging (LDAR2) system and the Cloud to Ground Lightning Surveillance System (CGLSS), the 3D path of a leader may be estimated. Once the path of a stepped leader is obtained, the time dependent multi-dipole model [ Lu, Winn,and Sonnenfeld, JGR 2011] can be used to match the electric field change at various sensor locations. Based on this model, we will present the time-dependent charge distribution along a leader channel and the total charge transfer during the stepped leader phase.

  7. Focal cryotherapy: step by step technique description

    PubMed Central

    Redondo, Cristina; Srougi, Victor; da Costa, José Batista; Baghdad, Mohammed; Velilla, Guillermo; Nunes-Silva, Igor; Bergerat, Sebastien; Garcia-Barreras, Silvia; Rozet, François; Ingels, Alexandre; Galiano, Marc; Sanchez-Salas, Rafael; Barret, Eric; Cathelineau, Xavier

    2017-01-01

    ABSTRACT Introduction and objective: Focal cryotherapy emerged as an efficient option to treat favorable and localized prostate cancer (PCa). The purpose of this video is to describe the procedure step by step. Materials and methods: We present the case of a 68 year-old man with localized PCa in the anterior aspect of the prostate. Results: The procedure is performed under general anesthesia, with the patient in lithotomy position. Briefly, the equipment utilized includes the cryotherapy console coupled with an ultrasound system, argon and helium gas bottles, cryoprobes, temperature probes and an urethral warming catheter. The procedure starts with a real-time trans-rectal prostate ultrasound, which is used to outline the prostate, the urethra and the rectal wall. The cryoprobes are pretested and placed in to the prostate through the perineum, following a grid template, along with the temperature sensors under ultrasound guidance. A cystoscopy confirms the right positioning of the needles and the urethral warming catheter is installed. Thereafter, the freeze sequence with argon gas is started, achieving extremely low temperatures (-40°C) to induce tumor cell lysis. Sequentially, the thawing cycle is performed using helium gas. This process is repeated one time. Results among several series showed a biochemical disease-free survival between 71-93% at 9-70 month- follow-up, incontinence rates between 0-3.6% and erectile dysfunction between 0-42% (1–5). Conclusions: Focal cryotherapy is a feasible procedure to treat anterior PCa that may offer minimal morbidity, allowing good cancer control and better functional outcomes when compared to whole-gland treatment. PMID:28727387

  8. Focal cryotherapy: step by step technique description.

    PubMed

    Redondo, Cristina; Srougi, Victor; da Costa, José Batista; Baghdad, Mohammed; Velilla, Guillermo; Nunes-Silva, Igor; Bergerat, Sebastien; Garcia-Barreras, Silvia; Rozet, François; Ingels, Alexandre; Galiano, Marc; Sanchez-Salas, Rafael; Barret, Eric; Cathelineau, Xavier

    2017-01-01

    Focal cryotherapy emerged as an efficient option to treat favorable and localized prostate cancer (PCa). The purpose of this video is to describe the procedure step by step. We present the case of a 68 year-old man with localized PCa in the anterior aspect of the prostate. The procedure is performed under general anesthesia, with the patient in lithotomy position. Briefly, the equipament utilized includes the cryotherapy console coupled with an ultrasound system, argon and helium gas bottles, cryoprobes, temperature probes and an urethral warming catheter. The procedure starts with a real-time trans-rectal prostate ultrasound, which is used to outline the prostate, the urethra and the rectal wall. The cryoprobes are pretested and placed in to the prostate through the perineum, following a grid template, along with the temperature sensors under ultrasound guidance. A cystoscopy confirms the right positioning of the needles and the urethral warming catheter is installed. Thereafter, the freeze sequence with argon gas is started, achieving extremely low temperatures (-40ºC) to induce tumor cell lysis. Sequentially, the thawing cycle is performed using helium gas. This process is repeated one time. Results among several series showed a biochemical disease-free survival between 71-93% at 9-70 month- follow-up, incontinence rates between 0-3.6% and erectile dysfunction between 0-42% (1-5). Focal cryotherapy is a feasible procedure to treat anterior PCa that may offer minimal morbidity, allowing good cancer control and better functional outcomes when compared to whole-gland treatment. Copyright® by the International Brazilian Journal of Urology.

  9. On large time step TVD scheme for hyperbolic conservation laws and its efficiency evaluation

    NASA Astrophysics Data System (ADS)

    Qian, ZhanSen; Lee, Chun-Hian

    2012-08-01

    A large time step (LTS) TVD scheme originally proposed by Harten is modified and further developed in the present paper and applied to Euler equations in multidimensional problems. By firstly revealing the drawbacks of Harten's original LTS TVD scheme, and reasoning the occurrence of the spurious oscillations, a modified formulation of its characteristic transformation is proposed and a high resolution, strongly robust LTS TVD scheme is formulated. The modified scheme is proven to be capable of taking larger number of time steps than the original one. Following the modified strategy, the LTS TVD schemes for Yee's upwind TVD scheme and Yee-Roe-Davis's symmetric TVD scheme are constructed. The family of the LTS schemes is then extended to multidimensional by time splitting procedure, and the associated boundary condition treatment suitable for the LTS scheme is also imposed. The numerical experiments on Sod's shock tube problem, inviscid flows over NACA0012 airfoil and ONERA M6 wing are performed to validate the developed schemes. Computational efficiencies for the respective schemes under different CFL numbers are also evaluated and compared. The results reveal that the improvement is sizable as compared to the respective single time step schemes, especially for the CFL number ranging from 1.0 to 4.0.

  10. Cut-off values for step count and TV viewing time as discriminators of hyperglycaemia in Brazilian children and adolescents.

    PubMed

    Gordia, Alex Pinheiro; Quadros, Teresa Maria Bianchini de; Silva, Luciana Rodrigues; Mota, Jorge

    2016-09-01

    The use of step count and TV viewing time to discriminate youngsters with hyperglycaemia is still a matter of debate. To establish cut-off values for step count and TV viewing time in children and adolescents using glycaemia as the reference criterion. A cross-sectional study was conducted on 1044 schoolchildren aged 6-18 years from Northeastern Brazil. Daily step counts were assessed with a pedometer over 1 week and TV viewing time by self-report. The area under the curve (AUC) ranged from 0.52-0.61 for step count and from 0.49-0.65 for TV viewing time. The daily step count with the highest discriminatory power for hyperglycaemia was 13 884 (sensitivity = 77.8; specificity = 51.8) for male children and 12 371 (sensitivity = 55.6; specificity = 55.5) and 11 292 (sensitivity = 57.7; specificity = 48.6) for female children and adolescents respectively. The cut-off for TV viewing time with the highest discriminatory capacity for hyperglycaemia was 3 hours/day (sensitivity = 57.7-77.8; specificity = 48.6-53.2). This study represents the first step for the development of criteria based on cardiometabolic risk factors for step count and TV viewing time in youngsters. However, the present cut-off values have limited practical application because of their poor accuracy and low sensitivity and specificity.

  11. Multiple Time-Step Dual-Hamiltonian Hybrid Molecular Dynamics — Monte Carlo Canonical Propagation Algorithm

    PubMed Central

    Weare, Jonathan; Dinner, Aaron R.; Roux, Benoît

    2016-01-01

    A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method. PMID:26918826

  12. Optical monitor for real time thickness change measurements via lateral-translation induced phase-stepping interferometry

    DOEpatents

    Rushford, Michael C.

    2002-01-01

    An optical monitoring instrument monitors etch depth and etch rate for controlling a wet-etching process. The instrument provides means for viewing through the back side of a thick optic onto a nearly index-matched interface. Optical baffling and the application of a photoresist mask minimize spurious reflections to allow for monitoring with extremely weak signals. A Wollaston prism enables linear translation for phase stepping.

  13. Decreasing triage time: effects of implementing a step-wise ESI algorithm in an EHR.

    PubMed

    Villa, Stephen; Weber, Ellen J; Polevoi, Steven; Fee, Christopher; Maruoka, Andrew; Quon, Tina

    2018-06-01

    To determine if adapting a widely-used triage scale into a computerized algorithm in an electronic health record (EHR) shortens emergency department (ED) triage time. Before-and-after quasi-experimental study. Urban, tertiary care hospital ED. Consecutive adult patient visits between July 2011 and June 2013. A step-wise algorithm, based on the Emergency Severity Index (ESI-5) was programmed into the triage module of a commercial EHR. Duration of triage (triage interval) for all patients and change in percentage of high acuity patients (ESI 1 and 2) completing triage within 15 min, 12 months before-and-after implementation of the algorithm. Multivariable analysis adjusted for confounders; interrupted time series demonstrated effects over time. Secondary outcomes examined quality metrics and patient flow. About 32 546 patient visits before and 33 032 after the intervention were included. Post-intervention patients were slightly older, census was higher and admission rate slightly increased. Median triage interval was 5.92 min (interquartile ranges, IQR 4.2-8.73) before and 2.8 min (IQR 1.88-4.23) after the intervention (P < 0.001). Adjusted mean triage interval decreased 3.4 min (95% CI: -3.6, -3.2). The proportion of high acuity patients completing triage within 15 min increased from 63.9% (95% CI 62.5, 65.2%) to 75.0% (95% CI 73.8, 76.1). Monthly time series demonstrated immediate and sustained improvement following the intervention. Return visits within 72 h and door-to-balloon time were unchanged. Total length of stay was similar. The computerized triage scale improved speed of triage, allowing more high acuity patients to be seen within recommended timeframes, without notable impact on quality.

  14. A step-by-step solution for embedding user-controlled cines into educational Web pages.

    PubMed

    Cornfeld, Daniel

    2008-03-01

    The objective of this article is to introduce a simple method for embedding user-controlled cines into a Web page using a simple JavaScript. Step-by-step instructions are included and the source code is made available. This technique allows the creation of portable Web pages that allow the user to scroll through cases as if seated at a PACS workstation. A simple JavaScript allows scrollable image stacks to be included on Web pages. With this technique, you can quickly and easily incorporate entire stacks of CT or MR images into online teaching files. This technique has the potential for use in case presentations, online didactics, teaching archives, and resident testing.

  15. Evidence-based practice, step by step: critical appraisal of the evidence: part II: digging deeper--examining the "keeper" studies.

    PubMed

    Fineout-Overholt, Ellen; Melnyk, Bernadette Mazurek; Stillwell, Susan B; Williamson, Kathleen M

    2010-09-01

    This is the sixth article in a series from the Arizona State University College of Nursing and Health Innovation's Center for the Advancement of Evidence-Based Practice. Evidence-based practice (EBP) is a problem-solving approach to the delivery of health care that integrates the best evidence from studies and patient care data with clinician expertise and patient preferences and values. When delivered in a context of caring and in a supportive organizational culture, the highest quality of care and best patient outcomes can be achieved. The purpose of this series is to give nurses the knowledge and skills they need to implement EBP consistently, one step at a time. Articles will appear every two months to allow you time to incorporate information as you work toward implementing EBP at your institution. Also, we've scheduled "Chat with the Authors" calls every few months to provide a direct line to the experts to help you resolve questions. Details about how to participate in the next call will be published with November's Evidence-Based Practice, Step by Step.

  16. A time step criterion for the stable numerical simulation of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Juan-Lien Ramirez, Alina; Löhnert, Stefan; Neuweiler, Insa

    2017-04-01

    The process of propagating or widening cracks in rock formations by means of fluid flow, known as hydraulic fracturing, has been gaining attention in the last couple of decades. There is growing interest in its numerical simulation to make predictions. Due to the complexity of the processes taking place, e.g. solid deformation, fluid flow in an open channel, fluid flow in a porous medium and crack propagation, this is a challenging task. Hydraulic fracturing has been numerically simulated for some years now [1] and new methods to take more of its processes into account (increasing accuracy) while modeling in an efficient way (lower computational effort) have been developed in recent years. An example is the use of the Extended Finite Element Method (XFEM), whose application originated within the framework of solid mechanics, but is now seen as an effective method for the simulation of discontinuities with no need for re-meshing [2]. While more focus has been put to the correct coupling of the processes mentioned above, less attention has been paid to the stability of the model. When using a quasi-static approach for the simulation of hydraulic fracturing, choosing an adequate time step is not trivial. This is in particular true if the equations are solved in a staggered way. The difficulty lies within the inconsistency between the static behavior of the solid and the dynamic behavior of the fluid. It has been shown that too small time steps may lead to instabilities early into the simulation time [3]. While the solid reaches a stationary state instantly, the fluid is not able to achieve equilibrium with its new surrounding immediately. This is why a time step criterion has been developed to quantify the instability of the model concerning the time step. The presented results were created with a 2D poroelastic model, using the XFEM for both the solid and the fluid phases. An embedded crack propagates following the energy release rate criteria when the fluid pressure

  17. Long-term Outcomes After Stepping Down Asthma Controller Medications: A Claims-Based, Time-to-Event Analysis.

    PubMed

    Rank, Matthew A; Johnson, Ryan; Branda, Megan; Herrin, Jeph; van Houten, Holly; Gionfriddo, Michael R; Shah, Nilay D

    2015-09-01

    Long-term outcomes after stepping down asthma medications are not well described. This study was a retrospective time-to-event analysis of individuals diagnosed with asthma who stepped down their asthma controller medications using a US claims database spanning 2000 to 2012. Four-month intervals were established and a step-down event was defined by a ≥ 50% decrease in days-supplied of controller medications from one interval to the next; this definition is inclusive of step-down that occurred without health-care provider guidance or as a consequence of a medication adherence lapse. Asthma stability in the period prior to step-down was defined by not having an asthma exacerbation (inpatient visit, ED visit, or dispensing of a systemic corticosteroid linked to an asthma visit) and having fewer than two rescue inhaler claims in a 4-month period. The primary outcome in the period following step-down was time-to-first asthma exacerbation. Thirty-two percent of the 26,292 included individuals had an asthma exacerbation in the 24-month period following step-down of asthma controller medication, though only 7% had an ED visit or hospitalization for asthma. The length of asthma stability prior to stepping down asthma medication was strongly associated with the risk of an asthma exacerbation in the subsequent 24-month period: < 4 months' stability, 44%; 4 to 7 months, 34%; 8 to 11 months, 30%; and ≥ 12 months, 21% (P < .001). In a large, claims-based, real-world study setting, 32% of individuals have an asthma exacerbation in the 2 years following a step-down event.

  18. One Step Quantum Key Distribution Based on EPR Entanglement.

    PubMed

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-06-30

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper's attack would introduce at least an error rate of 46.875%. Compared with the "Ping-pong" protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step.

  19. Multidimensional FEM-FCT schemes for arbitrary time stepping

    NASA Astrophysics Data System (ADS)

    Kuzmin, D.; Möller, M.; Turek, S.

    2003-05-01

    The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.

  20. Modeling myosin VI stepping dynamics

    NASA Astrophysics Data System (ADS)

    Tehver, Riina

    Myosin VI is a molecular motor that transports intracellular cargo as well as acts as an anchor. The motor has been measured to have unusually large step size variation and it has been reported to make both long forward and short inchworm-like forward steps, as well as step backwards. We have been developing a model that incorporates this diverse stepping behavior in a consistent framework. Our model allows us to predict the dynamics of the motor under different conditions and investigate the evolutionary advantages of the large step size variation.

  1. A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis

    NASA Astrophysics Data System (ADS)

    Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann

    2017-04-01

    The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for

  2. A new and inexpensive non-bit-for-bit solution reproducibility test based on time step convergence (TSC1.0)

    DOE PAGES

    Wan, Hui; Zhang, Kai; Rasch, Philip J.; ...

    2017-02-03

    A test procedure is proposed for identifying numerically significant solution changes in evolution equations used in atmospheric models. The test issues a fail signal when any code modifications or computing environment changes lead to solution differences that exceed the known time step sensitivity of the reference model. Initial evidence is provided using the Community Atmosphere Model (CAM) version 5.3 that the proposed procedure can be used to distinguish rounding-level solution changes from impacts of compiler optimization or parameter perturbation, which are known to cause substantial differences in the simulated climate. The test is not exhaustive since it does not detect issues associatedmore » with diagnostic calculations that do not feedback to the model state variables. Nevertheless, it provides a practical and objective way to assess the significance of solution changes. The short simulation length implies low computational cost. The independence between ensemble members allows for parallel execution of all simulations, thus facilitating fast turnaround. The new method is simple to implement since it does not require any code modifications. We expect that the same methodology can be used for any geophysical model to which the concept of time step  convergence is applicable.« less

  3. Review of Real-Time Simulator and the Steps Involved for Implementation of a Model from MATLAB/SIMULINK to Real-Time

    NASA Astrophysics Data System (ADS)

    Mikkili, Suresh; Panda, Anup Kumar; Prattipati, Jayanthi

    2015-06-01

    Nowadays the researchers want to develop their model in real-time environment. Simulation tools have been widely used for the design and improvement of electrical systems since the mid twentieth century. The evolution of simulation tools has progressed in step with the evolution of computing technologies. In recent years, computing technologies have improved dramatically in performance and become widely available at a steadily decreasing cost. Consequently, simulation tools have also seen dramatic performance gains and steady cost decreases. Researchers and engineers now have the access to affordable, high performance simulation tools that were previously too cost prohibitive, except for the largest manufacturers. This work has introduced a specific class of digital simulator known as a real-time simulator by answering the questions "what is real-time simulation", "why is it needed" and "how it works". The latest trend in real-time simulation consists of exporting simulation models to FPGA. In this article, the Steps involved for implementation of a model from MATLAB to REAL-TIME are provided in detail.

  4. ChromAlign: A two-step algorithmic procedure for time alignment of three-dimensional LC-MS chromatographic surfaces.

    PubMed

    Sadygov, Rovshan G; Maroto, Fernando Martin; Hühmer, Andreas F R

    2006-12-15

    We present an algorithmic approach to align three-dimensional chromatographic surfaces of LC-MS data of complex mixture samples. The approach consists of two steps. In the first step, we prealign chromatographic profiles: two-dimensional projections of chromatographic surfaces. This is accomplished by correlation analysis using fast Fourier transforms. In this step, a temporal offset that maximizes the overlap and dot product between two chromatographic profiles is determined. In the second step, the algorithm generates correlation matrix elements between full mass scans of the reference and sample chromatographic surfaces. The temporal offset from the first step indicates a range of the mass scans that are possibly correlated, then the correlation matrix is calculated only for these mass scans. The correlation matrix carries information on highly correlated scans, but it does not itself determine the scan or time alignment. Alignment is determined as a path in the correlation matrix that maximizes the sum of the correlation matrix elements. The computational complexity of the optimal path generation problem is reduced by the use of dynamic programming. The program produces time-aligned surfaces. The use of the temporal offset from the first step in the second step reduces the computation time for generating the correlation matrix and speeds up the process. The algorithm has been implemented in a program, ChromAlign, developed in C++ language for the .NET2 environment in WINDOWS XP. In this work, we demonstrate the applications of ChromAlign to alignment of LC-MS surfaces of several datasets: a mixture of known proteins, samples from digests of surface proteins of T-cells, and samples prepared from digests of cerebrospinal fluid. ChromAlign accurately aligns the LC-MS surfaces we studied. In these examples, we discuss various aspects of the alignment by ChromAlign, such as constant time axis shifts and warping of chromatographic surfaces.

  5. Comparison of 1-step and 2-step methods of fitting microbiological models.

    PubMed

    Jewell, Keith

    2012-11-15

    Previous conclusions that a 1-step fitting method gives more precise coefficients than the traditional 2-step method are confirmed by application to three different data sets. It is also shown that, in comparison to 2-step fits, the 1-step method gives better fits to the data (often substantially) with directly interpretable regression diagnostics and standard errors. The improvement is greatest at extremes of environmental conditions and it is shown that 1-step fits can indicate inappropriate functional forms when 2-step fits do not. 1-step fits are better at estimating primary parameters (e.g. lag, growth rate) as well as concentrations, and are much more data efficient, allowing the construction of more robust models on smaller data sets. The 1-step method can be straightforwardly applied to any data set for which the 2-step method can be used and additionally to some data sets where the 2-step method fails. A 2-step approach is appropriate for visual assessment in the early stages of model development, and may be a convenient way to generate starting values for a 1-step fit, but the 1-step approach should be used for any quantitative assessment. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Towards a comprehensive framework for cosimulation of dynamic models with an emphasis on time stepping

    NASA Astrophysics Data System (ADS)

    Hoepfer, Matthias

    co-simulation approach to modeling and simulation. It lays out the general approach to dynamic system co-simulation, and gives a comprehensive overview of what co-simulation is and what it is not. It creates a taxonomy of the requirements and limits of co-simulation, and the issues arising with co-simulating sub-models. Possible solutions towards resolving the stated problems are investigated to a certain depth. A particular focus is given to the issue of time stepping. It will be shown that for dynamic models, the selection of the simulation time step is a crucial issue with respect to computational expense, simulation accuracy, and error control. The reasons for this are discussed in depth, and a time stepping algorithm for co-simulation with unknown dynamic sub-models is proposed. Motivations and suggestions for the further treatment of selected issues are presented.

  7. A multistage time-stepping scheme for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, E.

    1985-01-01

    A class of explicit multistage time-stepping schemes is used to construct an algorithm for solving the compressible Navier-Stokes equations. Flexibility in treating arbitrary geometries is obtained with a finite-volume formulation. Numerical efficiency is achieved by employing techniques for accelerating convergence to steady state. Computer processing is enhanced through vectorization of the algorithm. The scheme is evaluated by solving laminar and turbulent flows over a flat plate and an NACA 0012 airfoil. Numerical results are compared with theoretical solutions or other numerical solutions and/or experimental data.

  8. A comparison of artificial compressibility and fractional step methods for incompressible flow computations

    NASA Technical Reports Server (NTRS)

    Chan, Daniel C.; Darian, Armen; Sindir, Munir

    1992-01-01

    We have applied and compared the efficiency and accuracy of two commonly used numerical methods for the solution of Navier-Stokes equations. The artificial compressibility method augments the continuity equation with a transient pressure term and allows one to solve the modified equations as a coupled system. Due to its implicit nature, one can have the luxury of taking a large temporal integration step at the expense of higher memory requirement and larger operation counts per step. Meanwhile, the fractional step method splits the Navier-Stokes equations into a sequence of differential operators and integrates them in multiple steps. The memory requirement and operation count per time step are low, however, the restriction on the size of time marching step is more severe. To explore the strengths and weaknesses of these two methods, we used them for the computation of a two-dimensional driven cavity flow with Reynolds number of 100 and 1000, respectively. Three grid sizes, 41 x 41, 81 x 81, and 161 x 161 were used. The computations were considered after the L2-norm of the change of the dependent variables in two consecutive time steps has fallen below 10(exp -5).

  9. Effects of the lateral amplitude and regularity of upper body fluctuation on step time variability evaluated using return map analysis.

    PubMed

    Chidori, Kazuhiro; Yamamoto, Yuji

    2017-01-01

    The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls.

  10. Effects of the lateral amplitude and regularity of upper body fluctuation on step time variability evaluated using return map analysis

    PubMed Central

    2017-01-01

    The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls. PMID:28700633

  11. One Step Quantum Key Distribution Based on EPR Entanglement

    PubMed Central

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-01-01

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper’s attack would introduce at least an error rate of 46.875%. Compared with the “Ping-pong” protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step. PMID:27357865

  12. Operational flood control of a low-lying delta system using large time step Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Tian, Xin; van Overloop, Peter-Jules; Negenborn, Rudy R.; van de Giesen, Nick

    2015-01-01

    The safety of low-lying deltas is threatened not only by riverine flooding but by storm-induced coastal flooding as well. For the purpose of flood control, these deltas are mostly protected in a man-made environment, where dikes, dams and other adjustable infrastructures, such as gates, barriers and pumps are widely constructed. Instead of always reinforcing and heightening these structures, it is worth considering making the most of the existing infrastructure to reduce the damage and manage the delta in an operational and overall way. In this study, an advanced real-time control approach, Model Predictive Control, is proposed to operate these structures in the Dutch delta system (the Rhine-Meuse delta). The application covers non-linearity in the dynamic behavior of the water system and the structures. To deal with the non-linearity, a linearization scheme is applied which directly uses the gate height instead of the structure flow as the control variable. Given the fact that MPC needs to compute control actions in real-time, we address issues regarding computational time. A new large time step scheme is proposed in order to save computation time, in which different control variables can have different control time steps. Simulation experiments demonstrate that Model Predictive Control with the large time step setting is able to control a delta system better and much more efficiently than the conventional operational schemes.

  13. Compact Two-step Laser Time-of-Flight Mass Spectrometer for in Situ Analyses of Aromatic Organics on Planetary Missions

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie; Brickerhoff, William; Cornish, Timothy; Ecelberger, Scott; Floyd, Melissa

    2012-01-01

    RATIONALE A miniature time-of-flight mass spectrometer has been adapted to demonstrate two-step laser desorption-ionization (LOI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional laser ionization-desorption, in order to produce low-fragmentation conditions for complex organic analytes. Tuning UV ionization laser energy allowed control ofthe degree of fragmentation, which may enable better identification of constituent species. METHODS A reflectron time-of-flight mass spectrometer prototype measuring 20 cm in length was adapted to a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. Instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. RESULTS L2MS analysis of a model PAH standard, pyrene, has been demonstrated, including parent mass identification and the onset o(tunable fragmentation as a function of ionizing laser energy. Mass resolution m/llm = 380 at full width at half-maximum was achieved which is notable for gas-phase ionization of desorbed neutrals in a highly-compact mass analyzer. CONCLUSIONS Achieving two-step laser mass spectrometry (L2MS) in a highly-miniature instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of parent and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. Selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is presented.

  14. Healing the healer: one step at a time.

    PubMed

    Gershon, J Casey

    2014-03-01

    Health care workers have the most challenging of professions. They are expected to work long hours while demonstrating compassion and care for the patients that they serve. Although health care practitioners are among the most disciplined of working professionals, they are often some of the unhealthiest of individuals, facing enormous amounts of stress in their lives. Healing the Healer: One Step at a Time is a 6-week health fitness program. It explores the unique challenges faced in the field of health care and teaches techniques to address those challenges head on. Healing the Healer uses Nordic walking as the exercise portion of the class. The case study examines the structure, purpose, and design of this 6-week course. Special attention is given to four basic sections: balance, pacing, joy, and discipline. The arguments presented in this article are theory based and supported by case study evidence.

  15. Real-Time, Single-Step Bioassay Using Nanoplasmonic Resonator With Ultra-High Sensitivity

    NASA Technical Reports Server (NTRS)

    Zhang, Xiang (Inventor); Chen, Fanqing Frank (Inventor); Su, Kai-Hang (Inventor); Wei, Qi-Huo (Inventor); Ellman, Jonathan A. (Inventor); Sun, Cheng (Inventor)

    2014-01-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  16. Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity

    DOEpatents

    Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

    2014-04-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  17. Multigrid methods with space–time concurrency

    DOE PAGES

    Falgout, R. D.; Friedhoff, S.; Kolev, Tz. V.; ...

    2017-10-06

    Here, we consider the comparison of multigrid methods for parabolic partial differential equations that allow space–time concurrency. With current trends in computer architectures leading towards systems with more, but not faster, processors, space–time concurrency is crucial for speeding up time-integration simulations. In contrast, traditional time-integration techniques impose serious limitations on parallel performance due to the sequential nature of the time-stepping approach, allowing spatial concurrency only. This paper considers the three basic options of multigrid algorithms on space–time grids that allow parallelism in space and time: coarsening in space and time, semicoarsening in the spatial dimensions, and semicoarsening in the temporalmore » dimension. We develop parallel software and performance models to study the three methods at scales of up to 16K cores and introduce an extension of one of them for handling multistep time integration. We then discuss advantages and disadvantages of the different approaches and their benefit compared to traditional space-parallel algorithms with sequential time stepping on modern architectures.« less

  18. Multigrid methods with space–time concurrency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falgout, R. D.; Friedhoff, S.; Kolev, Tz. V.

    Here, we consider the comparison of multigrid methods for parabolic partial differential equations that allow space–time concurrency. With current trends in computer architectures leading towards systems with more, but not faster, processors, space–time concurrency is crucial for speeding up time-integration simulations. In contrast, traditional time-integration techniques impose serious limitations on parallel performance due to the sequential nature of the time-stepping approach, allowing spatial concurrency only. This paper considers the three basic options of multigrid algorithms on space–time grids that allow parallelism in space and time: coarsening in space and time, semicoarsening in the spatial dimensions, and semicoarsening in the temporalmore » dimension. We develop parallel software and performance models to study the three methods at scales of up to 16K cores and introduce an extension of one of them for handling multistep time integration. We then discuss advantages and disadvantages of the different approaches and their benefit compared to traditional space-parallel algorithms with sequential time stepping on modern architectures.« less

  19. Effects of Turbulence Model and Numerical Time Steps on Von Karman Flow Behavior and Drag Accuracy of Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Amalia, E.; Moelyadi, M. A.; Ihsan, M.

    2018-04-01

    The flow of air passing around a circular cylinder on the Reynolds number of 250,000 is to show Von Karman Vortex Street Phenomenon. This phenomenon was captured well by using a right turbulence model. In this study, some turbulence models available in software ANSYS Fluent 16.0 was tested to simulate Von Karman vortex street phenomenon, namely k- epsilon, SST k-omega and Reynolds Stress, Detached Eddy Simulation (DES), and Large Eddy Simulation (LES). In addition, it was examined the effect of time step size on the accuracy of CFD simulation. The simulations are carried out by using two-dimensional and three- dimensional models and then compared with experimental data. For two-dimensional model, Von Karman Vortex Street phenomenon was captured successfully by using the SST k-omega turbulence model. As for the three-dimensional model, Von Karman Vortex Street phenomenon was captured by using Reynolds Stress Turbulence Model. The time step size value affects the smoothness quality of curves of drag coefficient over time, as well as affecting the running time of the simulation. The smaller time step size, the better inherent drag coefficient curves produced. Smaller time step size also gives faster computation time.

  20. Comparison of IMRT planning with two-step and one-step optimization: a strategy for improving therapeutic gain and reducing the integral dose

    NASA Astrophysics Data System (ADS)

    Abate, A.; Pressello, M. C.; Benassi, M.; Strigari, L.

    2009-12-01

    The aim of this study was to evaluate the effectiveness and efficiency in inverse IMRT planning of one-step optimization with the step-and-shoot (SS) technique as compared to traditional two-step optimization using the sliding windows (SW) technique. The Pinnacle IMRT TPS allows both one-step and two-step approaches. The same beam setup for five head-and-neck tumor patients and dose-volume constraints were applied for all optimization methods. Two-step plans were produced converting the ideal fluence with or without a smoothing filter into the SW sequence. One-step plans, based on direct machine parameter optimization (DMPO), had the maximum number of segments per beam set at 8, 10, 12, producing a directly deliverable sequence. Moreover, the plans were generated whether a split-beam was used or not. Total monitor units (MUs), overall treatment time, cost function and dose-volume histograms (DVHs) were estimated for each plan. PTV conformality and homogeneity indexes and normal tissue complication probability (NTCP) that are the basis for improving therapeutic gain, as well as non-tumor integral dose (NTID), were evaluated. A two-sided t-test was used to compare quantitative variables. All plans showed similar target coverage. Compared to two-step SW optimization, the DMPO-SS plans resulted in lower MUs (20%), NTID (4%) as well as NTCP values. Differences of about 15-20% in the treatment delivery time were registered. DMPO generates less complex plans with identical PTV coverage, providing lower NTCP and NTID, which is expected to reduce the risk of secondary cancer. It is an effective and efficient method and, if available, it should be favored over the two-step IMRT planning.

  1. Step-by-Step Simulation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.

  2. Stepping reaction time and gait adaptability are significantly impaired in people with Parkinson's disease: Implications for fall risk.

    PubMed

    Caetano, Maria Joana D; Lord, Stephen R; Allen, Natalie E; Brodie, Matthew A; Song, Jooeun; Paul, Serene S; Canning, Colleen G; Menant, Jasmine C

    2018-02-01

    Decline in the ability to take effective steps and to adapt gait, particularly under challenging conditions, may be important reasons why people with Parkinson's disease (PD) have an increased risk of falling. This study aimed to determine the extent of stepping and gait adaptability impairments in PD individuals as well as their associations with PD symptoms, cognitive function and previous falls. Thirty-three older people with PD and 33 controls were assessed in choice stepping reaction time, Stroop stepping and gait adaptability tests; measurements identified as fall risk factors in older adults. People with PD had similar mean choice stepping reaction times to healthy controls, but had significantly greater intra-individual variability. In the Stroop stepping test, the PD participants were more likely to make an error (48 vs 18%), took 715 ms longer to react (2312 vs 1517 ms) and had significantly greater response variability (536 vs 329 ms) than the healthy controls. People with PD also had more difficulties adapting their gait in response to targets (poorer stepping accuracy) and obstacles (increased number of steps) appearing at short notice on a walkway. Within the PD group, higher disease severity, reduced cognition and previous falls were associated with poorer stepping and gait adaptability performances. People with PD have reduced ability to adapt gait to unexpected targets and obstacles and exhibit poorer stepping responses, particularly in a test condition involving conflict resolution. Such impaired stepping responses in Parkinson's disease are associated with disease severity, cognitive impairment and falls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  4. Stepping up, stepping back, stepping forward: Student nurses' experiences as peer mentors in a pre-nursing scholarship.

    PubMed

    Smith, Annetta; Beattie, Michelle; Kyle, Richard G

    2015-11-01

    Mentorship is an essential part of the registered nurse's role, yet few opportunities exist for student nurses to mentor others during pre-registration programmes. This paper reports student nurses' experiences of mentoring school pupils during a pre-nursing scholarship. Focus groups were conducted with fifteen final year student nurses (14 female, 1 male) in two university campuses in Scotland. Discussions were audio recorded and transcribed verbatim, and data analysed thematically. Three interconnected themes emerged: 1) stepping up; 2) stepping back; 3) stepping forward. 'Stepping up' was a process through which student nurses rapidly assumed responsibility for mentoring pupils, facilitated through the attitudes and actions of students' mentors and students' control over pupils' practice experiences. 'Stepping back' encapsulated attitudes and behaviours that enabled student nurses to mentor pupils that involved considerable judgement around how unfolding events in practice could provide learning and development opportunities, and emotional acuity to support pupils through, sometimes challenging, practice situations. 'Stepping forward' described how students' mentoring experience allowed them to appraise and affirm nursing knowledge and skills, and gain greater appreciation of the reality and complexity of mentorship in clinical practice. Peer mentoring may prepare student nurses for future mentoring roles and aid their transition into clinical practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Two-step solar filament eruptions

    NASA Astrophysics Data System (ADS)

    Filippov, B.

    2018-04-01

    Coronal mass ejections (CMEs) are closely related to eruptive filaments and usually are the continuation of the same eruptive process into the upper corona. There are failed filament eruptions when a filament decelerates and stops at some greater height in the corona. Sometimes the filament after several hours starts to rise again and develops into the successful eruption with a CME formation. We propose a simple model for the interpretation of such two-step eruptions in terms of equilibrium of a flux rope in a two-scale ambient magnetic field. The eruption is caused by a slow decrease of the holding magnetic field. The presence of two critical heights for the initiation of the flux-rope vertical instability allows the flux rope to stay after the first jump some time in a metastable equilibrium near the second critical height. If the decrease of the ambient field continues, the next eruption step follows.

  6. Two-step relaxation mode analysis with multiple evolution times applied to all-atom molecular dynamics protein simulation.

    PubMed

    Karasawa, N; Mitsutake, A; Takano, H

    2017-12-01

    Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n]polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μs molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.

  7. Two-step relaxation mode analysis with multiple evolution times applied to all-atom molecular dynamics protein simulation

    NASA Astrophysics Data System (ADS)

    Karasawa, N.; Mitsutake, A.; Takano, H.

    2017-12-01

    Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n ] polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μ s molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.

  8. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    PubMed

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  9. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs

    PubMed Central

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Žel, Jana; Gruden, Kristina

    2008-01-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1–25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification. PMID:18710880

  10. Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction

    NASA Astrophysics Data System (ADS)

    Kavetski, Dmitri; Clark, Martyn P.

    2010-10-01

    Despite the widespread use of conceptual hydrological models in environmental research and operations, they remain frequently implemented using numerically unreliable methods. This paper considers the impact of the time stepping scheme on model analysis (sensitivity analysis, parameter optimization, and Markov chain Monte Carlo-based uncertainty estimation) and prediction. It builds on the companion paper (Clark and Kavetski, 2010), which focused on numerical accuracy, fidelity, and computational efficiency. Empirical and theoretical analysis of eight distinct time stepping schemes for six different hydrological models in 13 diverse basins demonstrates several critical conclusions. (1) Unreliable time stepping schemes, in particular, fixed-step explicit methods, suffer from troublesome numerical artifacts that severely deform the objective function of the model. These deformations are not rare isolated instances but can arise in any model structure, in any catchment, and under common hydroclimatic conditions. (2) Sensitivity analysis can be severely contaminated by numerical errors, often to the extent that it becomes dominated by the sensitivity of truncation errors rather than the model equations. (3) Robust time stepping schemes generally produce "better behaved" objective functions, free of spurious local optima, and with sufficient numerical continuity to permit parameter optimization using efficient quasi Newton methods. When implemented within a multistart framework, modern Newton-type optimizers are robust even when started far from the optima and provide valuable diagnostic insights not directly available from evolutionary global optimizers. (4) Unreliable time stepping schemes lead to inconsistent and biased inferences of the model parameters and internal states. (5) Even when interactions between hydrological parameters and numerical errors provide "the right result for the wrong reason" and the calibrated model performance appears adequate, unreliable

  11. Leap Frog and Time Step Sub-Cycle Scheme for Coupled Neutronics and Thermal-Hydraulic Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.

    2002-07-01

    As the result of the advancing TCP/IP based inter-process communication technology, more and more legacy thermal-hydraulic codes have been coupled with neutronics codes to provide best-estimate capabilities for reactivity related reactor transient analysis. Most of the coupling schemes are based on closely coupled serial or parallel approaches. Therefore, the execution of the coupled codes usually requires significant CPU time, when a complicated system is analyzed. Leap Frog scheme has been used to reduce the run time. The extent of the decoupling is usually determined based on a trial and error process for a specific analysis. It is the intent ofmore » this paper to develop a set of general criteria, which can be used to invoke the automatic Leap Frog algorithm. The algorithm will not only provide the run time reduction but also preserve the accuracy. The criteria will also serve as the base of an automatic time step sub-cycle scheme when a sudden reactivity change is introduced and the thermal-hydraulic code is marching with a relatively large time step. (authors)« less

  12. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting.

    PubMed

    Rashed-Ul Islam, S M; Jahan, Munira; Tabassum, Shahina

    2015-01-01

    Virological monitoring is the best predictor for the management of chronic hepatitis B virus (HBV) infections. Consequently, it is important to use the most efficient, rapid and cost-effective testing systems for HBV DNA quantification. The present study compared the performance characteristics of a one-step HBV polymerase chain reaction (PCR) vs the two-step HBV PCR method for quantification of HBV DNA from clinical samples. A total of 100 samples consisting of 85 randomly selected samples from patients with chronic hepatitis B (CHB) and 15 samples from apparently healthy individuals were enrolled in this study. Of the 85 CHB clinical samples tested, HBV DNA was detected from 81% samples by one-step PCR method with median HBV DNA viral load (VL) of 7.50 × 10 3 lU/ml. In contrast, 72% samples were detected by the two-step PCR system with median HBV DNA of 3.71 × 10 3 lU/ml. The one-step method showed strong linear correlation with two-step PCR method (r = 0.89; p < 0.0001). Both methods showed good agreement at Bland-Altman plot, with a mean difference of 0.61 log 10 IU/ml and limits of agreement of -1.82 to 3.03 log 10 IU/ml. The intra-assay and interassay coefficients of variation (CV%) of plasma samples (4-7 log 10 IU/ml) for the one-step PCR method ranged between 0.33 to 0.59 and 0.28 to 0.48 respectively, thus demonstrating a high level of concordance between the two methods. Moreover, elimination of the DNA extraction step in the one-step PCR kit allowed time-efficient and significant labor and cost savings for the quantification of HBV DNA in a resource limited setting. Rashed-Ul Islam SM, Jahan M, Tabassum S. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting. Euroasian J Hepato-Gastroenterol 2015;5(1):11-15.

  13. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting

    PubMed Central

    Jahan, Munira; Tabassum, Shahina

    2015-01-01

    Virological monitoring is the best predictor for the management of chronic hepatitis B virus (HBV) infections. Consequently, it is important to use the most efficient, rapid and cost-effective testing systems for HBV DNA quantification. The present study compared the performance characteristics of a one-step HBV polymerase chain reaction (PCR) vs the two-step HBV PCR method for quantification of HBV DNA from clinical samples. A total of 100 samples consisting of 85 randomly selected samples from patients with chronic hepatitis B (CHB) and 15 samples from apparently healthy individuals were enrolled in this study. Of the 85 CHB clinical samples tested, HBV DNA was detected from 81% samples by one-step PCR method with median HBV DNA viral load (VL) of 7.50 × 103 lU/ml. In contrast, 72% samples were detected by the two-step PCR system with median HBV DNA of 3.71 × 103 lU/ml. The one-step method showed strong linear correlation with two-step PCR method (r = 0.89; p < 0.0001). Both methods showed good agreement at Bland-Altman plot, with a mean difference of 0.61 log10 IU/ml and limits of agreement of -1.82 to 3.03 log10 IU/ml. The intra-assay and interassay coefficients of variation (CV%) of plasma samples (4-7 log10 IU/ml) for the one-step PCR method ranged between 0.33 to 0.59 and 0.28 to 0.48 respectively, thus demonstrating a high level of concordance between the two methods. Moreover, elimination of the DNA extraction step in the one-step PCR kit allowed time-efficient and significant labor and cost savings for the quantification of HBV DNA in a resource limited setting. How to cite this article Rashed-Ul Islam SM, Jahan M, Tabassum S. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting. Euroasian J Hepato-Gastroenterol 2015;5(1):11-15. PMID:29201678

  14. Development of a time-dependent incompressible Navier-Stokes solver based on a fractional-step method

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe

    1990-01-01

    The main goals are the development, validation, and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems. A solution method that combines a finite volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.

  15. A two steps solution approach to solving large nonlinear models: application to a problem of conjunctive use.

    PubMed

    Vieira, J; Cunha, M C

    2011-01-01

    This article describes a solution method of solving large nonlinear problems in two steps. The two steps solution approach takes advantage of handling smaller and simpler models and having better starting points to improve solution efficiency. The set of nonlinear constraints (named as complicating constraints) which makes the solution of the model rather complex and time consuming is eliminated from step one. The complicating constraints are added only in the second step so that a solution of the complete model is then found. The solution method is applied to a large-scale problem of conjunctive use of surface water and groundwater resources. The results obtained are compared with solutions determined with the direct solve of the complete model in one single step. In all examples the two steps solution approach allowed a significant reduction of the computation time. This potential gain of efficiency of the two steps solution approach can be extremely important for work in progress and it can be particularly useful for cases where the computation time would be a critical factor for having an optimized solution in due time.

  16. Scalable explicit implementation of anisotropic diffusion with Runge-Kutta-Legendre super-time stepping

    NASA Astrophysics Data System (ADS)

    Vaidya, Bhargav; Prasad, Deovrat; Mignone, Andrea; Sharma, Prateek; Rickler, Luca

    2017-12-01

    An important ingredient in numerical modelling of high temperature magnetized astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures. Magnetohydrodynamics typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (Δx) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time-stepping (STS) methods has been discussed in literature, but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work, we highlight a second-order (in time) Runge-Kutta-Legendre (RKL) scheme (first described by Meyer, Balsara & Aslam 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first-order STS schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than 104 processors.

  17. A LC-MS method allowing the analysis of HMX and RDX present at the picogram level in natural aqueous samples without a concentration step.

    PubMed

    Vigneau, Olivier; Machuron-Mandard, Xavier

    2009-03-15

    The introduction of chloroform into the nebulising gas of a LC/MS electrospray interface (ESI), in a perfectly controlled way, leads to the formation of intense adducts ([M+Cl](-)) when a mobile phase containing HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane or octogen) and RDX (1,3,5-trintro-1,3,5-triazacyclohexane or hexogen) is eluted. This LC/MS method allows the direct analysis of aqueous samples containing HMX and RDX at the pictogram level without a concentration step. The method is used to determine HMX and RDX concentrations in ground water samples from a military site.

  18. Discrete maximal regularity of time-stepping schemes for fractional evolution equations.

    PubMed

    Jin, Bangti; Li, Buyang; Zhou, Zhi

    2018-01-01

    In this work, we establish the maximal [Formula: see text]-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text], [Formula: see text], in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735-758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157-176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems.

  19. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    DOE PAGES

    Finn, John M.

    2015-03-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a 'special divergence-free' property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. Wemore » also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Ref. [11], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Ref. [35], appears to work very well.« less

  20. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, John M., E-mail: finn@lanl.gov

    2015-03-15

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint.more » We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004

  1. Finite-difference modeling with variable grid-size and adaptive time-step in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Wu, Guochen

    2014-04-01

    Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However, the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap, combined with variable grid-size and time-step, this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.

  2. 40 CFR 35.2109 - Step 2+3.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Step 2+3. 35.2109 Section 35.2109... ASSISTANCE Grants for Construction of Treatment Works § 35.2109 Step 2+3. The Regional Administrator may award a Step 2+3 grant which will provide the Federal share of an allowance under appendix B and the...

  3. Interactive real time flow simulations

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, I.; Tiwari, S. N.

    1990-01-01

    An interactive real time flow simulation technique is developed for an unsteady channel flow. A finite-volume algorithm in conjunction with a Runge-Kutta time stepping scheme was developed for two-dimensional Euler equations. A global time step was used to accelerate convergence of steady-state calculations. A raster image generation routine was developed for high speed image transmission which allows the user to have direct interaction with the solution development. In addition to theory and results, the hardware and software requirements are discussed.

  4. Transfer effects of step training on stepping performance in untrained directions in older adults: A randomized controlled trial.

    PubMed

    Okubo, Yoshiro; Menant, Jasmine; Udyavar, Manasa; Brodie, Matthew A; Barry, Benjamin K; Lord, Stephen R; L Sturnieks, Daina

    2017-05-01

    Although step training improves the ability of quick stepping, some home-based step training systems train limited stepping directions and may cause harm by reducing stepping performance in untrained directions. This study examines the possible transfer effects of step training on stepping performance in untrained directions in older people. Fifty four older adults were randomized into: forward step training (FT); lateral plus forward step training (FLT); or no training (NT) groups. FT and FLT participants undertook a 15-min training session involving 200 step repetitions. Prior to and post training, choice stepping reaction time and stepping kinematics in untrained, diagonal and lateral directions were assessed. Significant interactions of group and time (pre/post-assessment) were evident for the first step after training indicating negative (delayed response time) and positive (faster peak stepping speed) transfer effects in the diagonal direction in the FT group. However, when the second to the fifth steps after training were included in the analysis, there were no significant interactions of group and time for measures in the diagonal stepping direction. Step training only in the forward direction improved stepping speed but may acutely slow response times in the untrained diagonal direction. However, this acute effect appears to dissipate after a few repeated step trials. Step training in both forward and lateral directions appears to induce no negative transfer effects in diagonal stepping. These findings suggest home-based step training systems present low risk of harm through negative transfer effects in untrained stepping directions. ANZCTR 369066. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Comparison of step-by-step kinematics in repeated 30m sprints in female soccer players.

    PubMed

    van den Tillaar, Roland

    2018-01-04

    The aim of this study was to compare kinematics in repeated 30m sprints in female soccer players. Seventeen subjects performed seven 30m sprints every 30s in one session. Kinematics were measured with an infrared contact mat and laser gun, and running times with an electronic timing device. The main findings were that sprint times increased in the repeated sprint ability test. The main changes in kinematics during the repeated sprint ability test were increased contact time and decreased step frequency, while no change in step length was observed. The step velocity increased in almost each step until the 14, which occurred around 22m. After this, the velocity was stable until the last step, when it decreased. This increase in step velocity was mainly caused by the increased step length and decreased contact times. It was concluded that the fatigue induced in repeated 30m sprints in female soccer players resulted in decreased step frequency and increased contact time. Employing this approach in combination with a laser gun and infrared mat for 30m makes it very easy to analyse running kinematics in repeated sprints in training. This extra information gives the athlete, coach and sports scientist the opportunity to give more detailed feedback and help to target these changes in kinematics better to enhance repeated sprint performance.

  6. 30 CFR 203.66 - What happens if MMS does not act in the time allowed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What happens if MMS does not act in the time... Relief for Pre-Act Deep Water Leases and for Development and Expansion Projects § 203.66 What happens if MMS does not act in the time allowed? If we do not act within the timeframes established under § 203...

  7. Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems.

    PubMed

    Sivak, David A; Chodera, John D; Crooks, Gavin E

    2014-06-19

    When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.

  8. Redo Laparoscopic Gastric Bypass: One-Step or Two-Step Procedure?

    PubMed

    Theunissen, Caroline M J; Guelinckx, Nele; Maring, John K; Langenhoff, Barbara S

    2016-11-01

    The adjustable gastric band (AGB) is a bariatric procedure that used to be widely performed. However, AGB failure-signifying band-related complications or unsatisfactory weight loss, resulting in revision surgery (redo operations)-frequently occurs. Often this entails a conversion to a laparoscopic Roux-en-Y gastric bypass (LRYGB). This can be performed as a one-step or two-step (separate band removal) procedure. Data were collected from patients operated from 2012 to 2014 in a single bariatric centre. We compared 107 redo LRYGB after AGB failure with 1020 primary LRYGB. An analysis was performed of the one-step vs. two-step redo procedures. All redo procedures were performed by experienced bariatric surgeons. No difference in major complication rate was seen (2.8 vs. 2.3 %, p = 0.73) between redo and primary LRYGB, and overall complication severity for redos was low (mainly Clavien-Dindo 1 or 2). Weight loss results were comparable for primary and redo procedures. The one-step and two-step redos were comparable regarding complication rates and readmissions. The operating time for the one-step redo LRYGB was 136 vs. 107.5 min for the two-step (median, p < 0.001), excluding the operating time of separate AGB removal (mean 61 min, range 36-110). Removal of a failed AGB and LRYGB in a one-step procedure is safe when performed by experienced bariatric surgeons. However, when erosion or perforation of the AGB occurs, we advise caution and would perform the redo LRYGB as a two-step procedure. Equal weights can be achieved at 1 year post redo LRYGB as after primary LRYGB procedures.

  9. Performance of an attention-demanding task during treadmill walking shifts the noise qualities of step-to-step variation in step width.

    PubMed

    Grabiner, Mark D; Marone, Jane R; Wyatt, Marilynn; Sessoms, Pinata; Kaufman, Kenton R

    2018-06-01

    The fractal scaling evident in the step-to-step fluctuations of stepping-related time series reflects, to some degree, neuromotor noise. The primary purpose of this study was to determine the extent to which the fractal scaling of step width, step width and step width variability are affected by performance of an attention-demanding task. We hypothesized that the attention-demanding task would shift the structure of the step width time series toward white, uncorrelated noise. Subjects performed two 10-min treadmill walking trials, a control trial of undisturbed walking and a trial during which they performed a mental arithmetic/texting task. Motion capture data was converted to step width time series, the fractal scaling of which were determined from their power spectra. Fractal scaling decreased by 22% during the texting condition (p < 0.001) supporting the hypothesized shift toward white uncorrelated noise. Step width and step width variability increased 19% and five percent, respectively (p < 0.001). However, a stepwise discriminant analysis to which all three variables were input revealed that the control and dual task conditions were discriminated only by step width fractal scaling. The change of the fractal scaling of step width is consistent with increased cognitive demand and suggests a transition in the characteristics of the signal noise. This may reflect an important advance toward the understanding of the manner in which neuromotor noise contributes to some types of falls. However, further investigation of the repeatability of the results, the sensitivity of the results to progressive increases in cognitive load imposed by attention-demanding tasks, and the extent to which the results can be generalized to the gait of older adults seems warranted. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Development of a time-dependent incompressible Navier-Stokes solver based on a fractional-step method

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe

    1990-01-01

    The development, validation and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems are discussed. A solution method that combines a finite-volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries was previously developed for fixed-grids. In the present research effort, this solution method is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.

  11. Counterrotating prop-fan simulations which feature a relative-motion multiblock grid decomposition enabling arbitrary time-steps

    NASA Technical Reports Server (NTRS)

    Janus, J. Mark; Whitfield, David L.

    1990-01-01

    Improvements are presented of a computer algorithm developed for the time-accurate flow analysis of rotating machines. The flow model is a finite volume method utilizing a high-resolution approximate Riemann solver for interface flux definitions. The numerical scheme is a block LU implicit iterative-refinement method which possesses apparent unconditional stability. Multiblock composite gridding is used to orderly partition the field into a specified arrangement of blocks exhibiting varying degrees of similarity. Block-block relative motion is achieved using local grid distortion to reduce grid skewness and accommodate arbitrary time step selection. A general high-order numerical scheme is applied to satisfy the geometric conservation law. An even-blade-count counterrotating unducted fan configuration is chosen for a computational study comparing solutions resulting from altering parameters such as time step size and iteration count. The solutions are compared with measured data.

  12. In Vitro Stretch Injury Induces Time- and Severity-Dependent Alterations of STEP Phosphorylation and Proteolysis in Neurons

    PubMed Central

    Mesfin, Mahlet N.; von Reyn, Catherine R.; Mott, Rosalind E.; Putt, Mary E.

    2012-01-01

    Abstract Striatal-enriched tyrosine phosphatase (STEP) has been identified as a component of physiological and pathophysiological signaling pathways mediated by N-methyl-d-aspartate (NMDA) receptor/calcineurin/calpain activation. Activation of these pathways produces a subsequent change in STEP isoform expression or activation via dephosphorylation. In this study, we evaluated changes in STEP phosphorylation and proteolysis in dissociated cortical neurons after sublethal and lethal mechanical injury using an in vitro stretch injury device. Sublethal stretch injury produces minimal changes in STEP phosphorylation at early time points, and increased STEP phosphorylation at 24 h that is blocked by the NMDA-receptor antagonist APV, the calcineurin-inhibitor FK506, and the sodium channel blocker tetrodotoxin. Lethal stretch injury produces rapid STEP dephosphorylation via NR2B-containing NMDA receptors, but not calcineurin, and a subsequent biphasic phosphorylation pattern. STEP61 expression progressively increases after sublethal stretch with no change in calpain-mediated STEP33 formation, while lethal stretch injury results in STEP33 formation via a NR2B-containing NMDA receptor pathway within 1 h of injury. Blocking calpain activation in the initial 30 min after stretch injury increases the ratio of active STEP in cells and blocks STEP33 formation, suggesting that STEP is an early substrate of calpain after mechanical injury. There is a strong correlation between the amount of STEP33 formed and the degree of cell death observed after lethal stretch injury. In summary, these data demonstrate that previously characterized pathways of STEP regulation via the NMDA receptor are generally conserved in mechanical injury, and suggest that calpain-mediated cleavage of STEP33 should be further examined as an early marker of neuronal fate after stretch injury. PMID:22435660

  13. Simple and versatile modifications allowing time gated spectral acquisition, imaging and lifetime profiling on conventional wide-field microscopes

    NASA Astrophysics Data System (ADS)

    Pal, Robert; Beeby, Andrew

    2014-09-01

    An inverted microscope has been adapted to allow time-gated imaging and spectroscopy to be carried out on samples containing responsive lanthanide probes. The adaptation employs readily available components, including a pulsed light source, time-gated camera, spectrometer and photon counting detector, allowing imaging, emission spectroscopy and lifetime measurements. Each component is controlled by a suite of software written in LabVIEW and is powered via conventional USB ports.

  14. Ultra-fast consensus of discrete-time multi-agent systems with multi-step predictive output feedback

    NASA Astrophysics Data System (ADS)

    Zhang, Wenle; Liu, Jianchang

    2016-04-01

    This article addresses the ultra-fast consensus problem of high-order discrete-time multi-agent systems based on a unified consensus framework. A novel multi-step predictive output mechanism is proposed under a directed communication topology containing a spanning tree. By predicting the outputs of a network several steps ahead and adding this information into the consensus protocol, it is shown that the asymptotic convergence factor is improved by a power of q + 1 compared to the routine consensus. The difficult problem of selecting the optimal control gain is solved well by introducing a variable called convergence step. In addition, the ultra-fast formation achievement is studied on the basis of this new consensus protocol. Finally, the ultra-fast consensus with respect to a reference model and robust consensus is discussed. Some simulations are performed to illustrate the effectiveness of the theoretical results.

  15. Kinesin Steps Do Not Alternate in Size☆

    PubMed Central

    Fehr, Adrian N.; Asbury, Charles L.; Block, Steven M.

    2008-01-01

    Abstract Kinesin is a two-headed motor protein that transports cargo inside cells by moving stepwise on microtubules. Its exact trajectory along the microtubule is unknown: alternative pathway models predict either uniform 8-nm steps or alternating 7- and 9-nm steps. By analyzing single-molecule stepping traces from “limping” kinesin molecules, we were able to distinguish alternate fast- and slow-phase steps and thereby to calculate the step sizes associated with the motions of each of the two heads. We also compiled step distances from nonlimping kinesin molecules and compared these distributions against models predicting uniform or alternating step sizes. In both cases, we find that kinesin takes uniform 8-nm steps, a result that strongly constrains the allowed models. PMID:18083906

  16. Spatial and Temporal Control Contribute to Step Length Asymmetry during Split-Belt Adaptation and Hemiparetic Gait

    PubMed Central

    Finley, James M.; Long, Andrew; Bastian, Amy J.; Torres-Oviedo, Gelsy

    2014-01-01

    Background Step length asymmetry (SLA) is a common hallmark of gait post-stroke. Though conventionally viewed as a spatial deficit, SLA can result from differences in where the feet are placed relative to the body (spatial strategy), the timing between foot-strikes (step time strategy), or the velocity of the body relative to the feet (step velocity strategy). Objective The goal of this study was to characterize the relative contributions of each of these strategies to SLA. Methods We developed an analytical model that parses SLA into independent step position, step time, and step velocity contributions. This model was validated by reproducing SLA values for twenty-five healthy participants when their natural symmetric gait was perturbed on a split-belt treadmill moving at either a 2:1 or 3:1 belt-speed ratio. We then applied the validated model to quantify step position, step time, and step velocity contributions to SLA in fifteen stroke survivors while walking at their self-selected speed. Results SLA was predicted precisely by summing the derived contributions, regardless of the belt-speed ratio. Although the contributions to SLA varied considerably across our sample of stroke survivors, the step position contribution tended to oppose the other two – possibly as an attempt to minimize the overall SLA. Conclusions Our results suggest that changes in where the feet are placed or changes in interlimb timing could be used as compensatory strategies to reduce overall SLA in stroke survivors. These results may allow clinicians and researchers to identify patient-specific gait abnormalities and personalize their therapeutic approaches accordingly. PMID:25589580

  17. One Step at a Time: Using Task Analyses to Teach Skills

    ERIC Educational Resources Information Center

    Snodgrass, Melinda R.; Meadan, Hedda; Ostrosky, Michaelene M.; Cheung, W. Catherine

    2017-01-01

    Task analyses are useful when teaching children how to complete tasks by breaking the tasks into small steps, particularly when children struggle to learn a skill during typical classroom instruction. We describe how to create a task analysis by identifying the steps a child needs to independently perform the task, how to assess what steps a child…

  18. Postoperative Time Dependent Tibiofemoral Articular Cartilage Contact Kinematics during Step-up after ACL Reconstruction

    PubMed Central

    Lin, Lin; Li, Jing-Sheng; Kernkamp, Willem A.; Hosseini, Ali; Kim, ChangWan; Yin, Peng; Wang, Lianxin; Tsai, Tsung-Yuan; Asnis, Peter; Li, Guoan

    2016-01-01

    This study was to investigate the in vivo tibiofemoral cartilage contact locations before and after anterior cruciate ligament (ACL) reconstruction at 6 and 36 months. Ten patients with unilateral ACL injury were included. A step-up motion was analyzed using a combined magnetic resonance modeling and dual fluoroscopic imaging techniques. The preoperative (i.e. ACL deficient and healthy contralateral) and postoperative cartilage contact locations at 6 and 36 months were analyzed. Similar patterns of the cartilage contact locations during the step-up motion were found for the preoperative and postoperative knee states as compared to the preoperative healthy contralateral side. At the end of step-up motion, the medial contact locations at postoperative 36 months were more anterior when compared to the preoperative healthy contralateral (p=0.02) and 6 months postoperative knee states (p=0.01). The changes of the cartilage contact locations at 36 months after ACL reconstruction compared to the healthy contralateral side were strongly correlated with the changes at 6 months postoperatively. This study showed that the tibiofemoral cartilage contact locations of the knee changes with time after ACL reconstruction, implying an ongoing recovery process within the 36 months after the surgery. There could be an association between the short-term (6 months) and longer-term (36 months) contact kinematics after ACL reconstruction. Future studies need to investigate the intrinsic relationship between knee kinematics at different times after ACL reconstruction. PMID:27720228

  19. Melatonin: a universal time messenger.

    PubMed

    Erren, Thomas C; Reiter, Russel J

    2015-01-01

    Temporal organization plays a key role in humans, and presumably all species on Earth. A core building block of the chronobiological architecture is the master clock, located in the suprachi asmatic nuclei [SCN], which organizes "when" things happen in sub-cellular biochemistry, cells, organs and organisms, including humans. Conceptually, time messenging should follow a 5 step-cascade. While abundant evidence suggests how steps 1 through 4 work, step 5 of "how is central time information transmitted througout the body?" awaits elucidation. Step 1: Light provides information on environmental (external) time; Step 2: Ocular interfaces between light and biological (internal) time are intrinsically photosensitive retinal ganglion cells [ipRGS] and rods and cones; Step 3: Via the retinohypothalamic tract external time information reaches the light-dependent master clock in the brain, viz the SCN; Step 4: The SCN translate environmental time information into biological time and distribute this information to numerous brain structures via a melanopsin-based network. Step 5: Melatonin, we propose, transmits, or is a messenger of, internal time information to all parts of the body to allow temporal organization which is orchestrated by the SCN. Key reasons why we expect melatonin to have such role include: First, melatonin, as the chemical expression of darkness, is centrally involved in time- and timing-related processes such as encoding clock and calendar information in the brain; Second, melatonin travels throughout the body without limits and is thus a ubiquitous molecule. The chemial conservation of melatonin in all tested species could make this molecule a candidate for a universal time messenger, possibly constituting a legacy of an all-embracing evolutionary history.

  20. A new one-step procedure for pulmonary valve implantation of the melody valve: Simultaneous prestenting and valve implantation.

    PubMed

    Boudjemline, Younes

    2018-01-01

    To describe a new modification, the one-step procedure, that allows interventionists to pre-stent and implant a Melody valve simultaneously. Percutaneous pulmonary valve implantation (PPVI) is the standard of care for managing patients with dysfunctional right ventricular outflow tract, and the approach is standardized. Patients undergoing PPVI using the one-step procedure were identified in our database. Procedural data and radiation exposure were compared to those in a matched group of patients who underwent PPVI using the conventional two-step procedure. Between January 2016 and January 2017, PPVI was performed in 27 patients (median age/range, 19.1/10-55 years) using the one-step procedure involving manual crimping of one to three bare metal stents over the Melody valve. The stent and Melody valve were delivered successfully using the Ensemble delivery system. No complications occurred. All patients had excellent hemodynamic results (median/range post-PPVI right ventricular to pulmonary artery gradient, 9/0-20 mmHg). Valve function was excellent. Median procedural and fluoroscopic times were 56 and 10.2 min, respectively, which significantly differed from those of the two-step procedure group. Similarly, the dose area product (DAP), and radiation time were statistically lower in the one-step group than in the two-step group (P < 0.001 for all variables). After a median follow-up of 8 months (range, 3-14.7), no patient underwent reintervention, and no device dysfunction was observed. The one-step procedure is a safe modification that allows interventionists to prestent and implants the Melody valve simultaneously. It significantly reduces procedural and fluoroscopic times, and radiation exposure. © 2017 Wiley Periodicals, Inc.

  1. Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis.

    PubMed

    Okubo, Yoshiro; Schoene, Daniel; Lord, Stephen R

    2017-04-01

    To examine the effects of stepping interventions on fall risk factors and fall incidence in older people. Electronic databases (PubMed, EMBASE, CINAHL, Cochrane, CENTRAL) and reference lists of included articles from inception to March 2015. Randomised (RCT) or clinical controlled trials (CCT) of volitional and reactive stepping interventions that included older (minimum age 60) people providing data on falls or fall risk factors. Meta-analyses of seven RCTs (n=660) showed that the stepping interventions significantly reduced the rate of falls (rate ratio=0.48, 95% CI 0.36 to 0.65, p<0.0001, I 2 =0%) and the proportion of fallers (risk ratio=0.51, 95% CI 0.38 to 0.68, p<0.0001, I 2 =0%). Subgroup analyses stratified by reactive and volitional stepping interventions revealed a similar efficacy for rate of falls and proportion of fallers. A meta-analysis of two RCTs (n=62) showed that stepping interventions significantly reduced laboratory-induced falls, and meta-analysis findings of up to five RCTs and CCTs (n=36-416) revealed that stepping interventions significantly improved simple and choice stepping reaction time, single leg stance, timed up and go performance (p<0.05), but not measures of strength. The findings indicate that both reactive and volitional stepping interventions reduce falls among older adults by approximately 50%. This clinically significant reduction may be due to improvements in reaction time, gait, balance and balance recovery but not in strength. Further high-quality studies aimed at maximising the effectiveness and feasibility of stepping interventions are required. CRD42015017357. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Cingi Steps for preoperative computer-assisted image editing before reduction rhinoplasty.

    PubMed

    Cingi, Can Cemal; Cingi, Cemal; Bayar Muluk, Nuray

    2014-04-01

    The aim of this work is to provide a stepwise systematic guide for a preoperative photo-editing procedure for rhinoplasty cases involving the cooperation of a graphic artist and a surgeon. One hundred female subjects who planned to undergo a reduction rhinoplasty operation were included in this study. The Cingi Steps for Preoperative Computer Imaging (CS-PCI) program, a stepwise systematic guide for image editing using Adobe PhotoShop's "liquify" effect, was applied to the rhinoplasty candidates. The stages of CS-PCI are as follows: (1) lowering the hump; (2) shortening the nose; (3) adjusting the tip projection, (4) perfecting the nasal dorsum, (5) creating a supratip break, and (6) exaggerating the tip projection and/or dorsal slope. Performing the Cingi Steps allows the patient to see what will happen during the operation and observe the final appearance of his or her nose. After the application of described steps, 71 patients (71%) accepted step 4, and 21 (21%) of them accepted step 5. Only 10 patients (10%) wanted to make additional changes to their operation plans. The main benefits of using this method is that it decreases the time needed by the surgeon to perform a graphic analysis, and it reduces the time required for the patient to reach a decision about the procedure. It is an easy and reliable method that will provide improved physician-patient communication, increased patient confidence, and enhanced surgical planning while limiting the time needed for planning. © 2014 ARS-AAOA, LLC.

  3. Modeling the stepping mechanism in negative lightning leaders

    NASA Astrophysics Data System (ADS)

    Iudin, Dmitry; Syssoev, Artem; Davydenko, Stanislav; Rakov, Vladimir

    2017-04-01

    It is well-known that the negative leaders develop in a step manner using a mechanism of the so-called space leaders in contrary to positive ones, which propagate continuously. Despite this fact has been known for about a hundred years till now no one had developed any plausible model explaining this asymmetry. In this study we suggest a model of the stepped development of the negative lightning leader which for the first time allows carrying out the numerical simulation of its evolution. The model is based on the probability approach and description of temporal evolution of the discharge channels. One of the key features of our model is accounting for the presence of so called space streamers/leaders which play a fundamental role in the formation of negative leader's steps. Their appearance becomes possible due to the accounting of potential influence of the space charge injected into the discharge gap by the streamer corona. The model takes into account an asymmetry of properties of negative and positive streamers which is based on well-known from numerous laboratory measurements fact that positive streamers need about twice weaker electric field to appear and propagate as compared to negative ones. An extinction of the conducting channel as a possible way of its evolution is also taken into account. This allows us to describe the leader channel's sheath formation. To verify the morphology and characteristics of the model discharge, we use the results of the high-speed video observations of natural negative stepped leaders. We can conclude that the key properties of the model and natural negative leaders are very similar.

  4. Simplified Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two time step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting rates of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx are obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering

  5. Two-step phase-shifting SPIDER

    NASA Astrophysics Data System (ADS)

    Zheng, Shuiqin; Cai, Yi; Pan, Xinjian; Zeng, Xuanke; Li, Jingzhen; Li, Ying; Zhu, Tianlong; Lin, Qinggang; Xu, Shixiang

    2016-09-01

    Comprehensive characterization of ultrafast optical field is critical for ultrashort pulse generation and its application. This paper combines two-step phase-shifting (TSPS) into the spectral phase interferometry for direct electric-field reconstruction (SPIDER) to improve the reconstruction of ultrafast optical-fields. This novel SPIDER can remove experimentally the dc portion occurring in traditional SPIDER method by recording two spectral interferograms with π phase-shifting. As a result, the reconstructed results are much less disturbed by the time delay between the test pulse replicas and the temporal widths of the filter window, thus more reliable. What is more, this SPIDER can work efficiently even the time delay is so small or the measured bandwidth is so narrow that strong overlap happens between the dc and ac portions, which allows it to be able to characterize the test pulses with complicated temporal/spectral structures or narrow bandwidths.

  6. Outward Bound to the Galaxies--One Step at a Time

    ERIC Educational Resources Information Center

    Ward, R. Bruce; Miller-Friedmann, Jaimie; Sienkiewicz, Frank; Antonucci, Paul

    2012-01-01

    Less than a century ago, astronomers began to unlock the cosmic distances within and beyond the Milky Way. Understanding the size and scale of the universe is a continuing, step-by-step process that began with the remarkably accurate measurement of the distance to the Moon made by early Greeks. In part, the authors have ITEAMS (Innovative…

  7. A step-defined sedentary lifestyle index: <5000 steps/day.

    PubMed

    Tudor-Locke, Catrine; Craig, Cora L; Thyfault, John P; Spence, John C

    2013-02-01

    Step counting (using pedometers or accelerometers) is widely accepted by researchers, practitioners, and the general public. Given the mounting evidence of the link between low steps/day and time spent in sedentary behaviours, how few steps/day some populations actually perform, and the growing interest in the potentially deleterious effects of excessive sedentary behaviours on health, an emerging question is "How many steps/day are too few?" This review examines the utility, appropriateness, and limitations of using a reoccurring candidate for a step-defined sedentary lifestyle index: <5000 steps/day. Adults taking <5000 steps/day are more likely to have a lower household income and be female, older, of African-American vs. European-American heritage, a current vs. never smoker, and (or) living with chronic disease and (or) disability. Little is known about how contextual factors (e.g., built environment) foster such low levels of step-defined physical activity. Unfavorable indicators of body composition and cardiometabolic risk have been consistently associated with taking <5000 steps/day. The acute transition (3-14 days) of healthy active young people from higher (>10 000) to lower (<5000 or as low as 1500) daily step counts induces reduced insulin sensitivity and glycemic control, increased adiposity, and other negative changes in health parameters. Although few alternative values have been considered, the continued use of <5000 steps/day as a step-defined sedentary lifestyle index for adults is appropriate for researchers and practitioners and for communicating with the general public. There is little evidence to advocate any specific value indicative of a step-defined sedentary lifestyle index in children and adolescents.

  8. Computing the sensitivity of drag and lift in flow past a circular cylinder: Time-stepping versus self-consistent analysis

    NASA Astrophysics Data System (ADS)

    Meliga, Philippe

    2017-07-01

    We provide in-depth scrutiny of two methods making use of adjoint-based gradients to compute the sensitivity of drag in the two-dimensional, periodic flow past a circular cylinder (Re≲189 ): first, the time-stepping analysis used in Meliga et al. [Phys. Fluids 26, 104101 (2014), 10.1063/1.4896941] that relies on classical Navier-Stokes modeling and determines the sensitivity to any generic control force from time-dependent adjoint equations marched backwards in time; and, second, a self-consistent approach building on the model of Mantič-Lugo et al. [Phys. Rev. Lett. 113, 084501 (2014), 10.1103/PhysRevLett.113.084501] to compute semilinear approximations of the sensitivity to the mean and fluctuating components of the force. Both approaches are applied to open-loop control by a small secondary cylinder and allow identifying the sensitive regions without knowledge of the controlled states. The theoretical predictions obtained by time-stepping analysis reproduce well the results obtained by direct numerical simulation of the two-cylinder system. So do the predictions obtained by self-consistent analysis, which corroborates the relevance of the approach as a guideline for efficient and systematic control design in the attempt to reduce drag, even though the Reynolds number is not close to the instability threshold and the oscillation amplitude is not small. This is because, unlike simpler approaches relying on linear stability analysis to predict the main features of the flow unsteadiness, the semilinear framework encompasses rigorously the effect of the control on the mean flow, as well as on the finite-amplitude fluctuation that feeds back nonlinearly onto the mean flow via the formation of Reynolds stresses. Such results are especially promising as the self-consistent approach determines the sensitivity from time-independent equations that can be solved iteratively, which makes it generally less computationally demanding. We ultimately discuss the extent to

  9. The Influence of Time Spent in Outdoor Play on Daily and Aerobic Step Count in Costa Rican Children

    ERIC Educational Resources Information Center

    Morera Castro, Maria del Rocio

    2011-01-01

    The purpose of this study is to examine the influence of time spent in outdoor play (i.e., on weekday and weekend days) on daily (i.e., average step count) and aerobic step count (i.e., average moderate to vigorous physical activity [MVPA] during the weekdays and weekend days) in fifth grade Costa Rican children. It was hypothesized that: (a)…

  10. Step-by-step magic state encoding for efficient fault-tolerant quantum computation.

    PubMed

    Goto, Hayato

    2014-12-16

    Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation.

  11. Quantum transport with long-range steps on Watts-Strogatz networks

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Xu, Xin-Jian

    2016-07-01

    We study transport dynamics of quantum systems with long-range steps on the Watts-Strogatz network (WSN) which is generated by rewiring links of the regular ring. First, we probe physical systems modeled by the discrete nonlinear schrödinger (DNLS) equation. Using the localized initial condition, we compute the time-averaged occupation probability of the initial site, which is related to the nonlinearity, the long-range steps and rewiring links. Self-trapping transitions occur at large (small) nonlinear parameters for coupling ɛ=-1 (1), as long-range interactions are intensified. The structure disorder induced by random rewiring, however, has dual effects for ɛ=-1 and inhibits the self-trapping behavior for ɛ=1. Second, we investigate continuous-time quantum walks (CTQW) on the regular ring ruled by the discrete linear schrödinger (DLS) equation. It is found that only the presence of the long-range steps does not affect the efficiency of the coherent exciton transport, while only the allowance of random rewiring enhances the partial localization. If both factors are considered simultaneously, localization is greatly strengthened, and the transport becomes worse.

  12. Wooden hutch space allowance influences male Holstein calf health, performance, daily lying time, and respiratory immunity.

    PubMed

    Calvo-Lorenzo, M S; Hulbert, L E; Fowler, A L; Louie, A; Gershwin, L J; Pinkerton, K E; Ballou, M A; Klasing, K C; Mitloehner, F M

    2016-06-01

    Dairy calves in the western United States are commonly raised individually in wooden hutches with a space allowance of 1.23m(2)/calf. Recent legislative initiatives in California and across the United States were passed regarding concern over space allowance for farm animals. The objective of this study was to determine if rearing male Holstein calves in wooden hutches modified to increase space allowance would influence measures of performance, lying time per day, health, and respiratory immunocompetence. At 4d of age, 60 calves were randomly assigned to 1 of 3housing treatments: (1) conventional housing (CONV; 1.23m(2)/calf), (2) 1.5 × CONV (MOD; 1.85m(2)/calf), or (3) 3 × CONV (MAX; 3.71m(2)/calf). Intakes of milk and solid feed were recorded daily and body weight was measured at 0, 3, 6, 10, and 12 wk of age. For the first 3 wk of the trial, calves were scored daily for fecal consistency, hydration, and hide cleanliness. In addition, calves were scored for respiratory health (i.e., nasal and eye discharge, ear position) until 7 wk of age. The total lying duration per day was recorded using data loggers at 3, 6, and 10 wk of age. Eight clinically healthy calves from each treatment were sensitized with subcutaneous ovalbumin (OVA) and then challenged with aerosolized OVA to assess calf respiratory immunity at 11 wk of age. Bronchoalveolar lavage fluid (BALF) was collected 4d after the OVA challenge and analyzed for leukocyte differentials and OVA-specific IgG, IgG1, IgA, and IgE. Calf average daily gain and body weight were positively associated with space allowance at approximately 3 wk before weaning and throughout postweaning, respectively. A greater space allowance decreased lying time after 46d. Space allowance did not influence fecal consistency, but there was a tendency for MAX calves to take 1d longer to recover from loose feces than MOD calves. The MAX calves had the fewest (%) observations with feces on their body compared with CONV or MOD. At 3 wk of

  13. 40 CFR 35.2025 - Allowance and advance of allowance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... would receive under paragraph (a) of this section. (5) In the event a Step 2+3, Step 3 or Step 7 grant... terms and conditions as it may determine. When the State recovers such advances they shall be added to...

  14. Two-Step Incision for Periarterial Sympathectomy of the Hand.

    PubMed

    Jeon, Seung Bae; Ahn, Hee Chang; Ahn, Yong Su; Choi, Matthew Seung Suk

    2015-11-01

    Surgical scars on the palmar surface of the hand may lead to functional and also aesthetic and psychological consequences. The objective of this study was to introduce a new incision technique for periarterial sympathectomy of the hand and to compare the results of the new two-step incision technique with those of a Koman incision by using an objective questionnaire. A total of 40 patients (17 men and 23 women) with intractable Raynaud's disease or syndrome underwent surgery in our hospital, conducted by a single surgeon, between January 2008 and January 2013. Patients who had undergone extended sympathectomy or vessel graft were excluded. Clinical evaluation of postoperative scars was performed in both groups one year after surgery using the patient and observer scar assessment scale (POSAS) and the Wake Forest University rating scale. The total patient score was 8.59 (range, 6-15) in the two-step incision group and 9.62 (range, 7-18) in the Koman incision group. A significant difference was found between the groups in the total PS score (P-value=0.034) but not in the total observer score. Our analysis found no significant difference in preoperative and postoperative Wake Forest University rating scale scores between the two-step and Koman incision groups. The time required for recovery prior to returning to work after surgery was shorter in the two-step incision group, with a mean of 29.48 days in the two-step incision group and 34.15 days in the Koman incision group (P=0.03). Compared to the Koman incision, the new two-step incision technique provides better aesthetic results, similar symptom improvement, and a reduction in the recovery time required before returning to work. Furthermore, this incision allows the surgeon to access a wide surgical field and a sufficient exposure of anatomical structures.

  15. New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2004-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx were obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3

  16. Biomechanical influences on balance recovery by stepping.

    PubMed

    Hsiao, E T; Robinovitch, S N

    1999-10-01

    Stepping represents a common means for balance recovery after a perturbation to upright posture. Yet little is known regarding the biomechanical factors which determine whether a step succeeds in preventing a fall. In the present study, we developed a simple pendulum-spring model of balance recovery by stepping, and used this to assess how step length and step contact time influence the effort (leg contact force) and feasibility of balance recovery by stepping. We then compared model predictions of step characteristics which minimize leg contact force to experimentally observed values over a range of perturbation strengths. At all perturbation levels, experimentally observed step execution times were higher than optimal, and step lengths were smaller than optimal. However, the predicted increase in leg contact force associated with these deviations was substantial only for large perturbations. Furthermore, increases in the strength of the perturbation caused subjects to take larger, quicker steps, which reduced their predicted leg contact force. We interpret these data to reflect young subjects' desire to minimize recovery effort, subject to neuromuscular constraints on step execution time and step length. Finally, our model predicts that successful balance recovery by stepping is governed by a coupling between step length, step execution time, and leg strength, so that the feasibility of balance recovery decreases unless declines in one capacity are offset by enhancements in the others. This suggests that one's risk for falls may be affected more by small but diffuse neuromuscular impairments than by larger impairment in a single motor capacity.

  17. Real‐time monitoring and control of the load phase of a protein A capture step

    PubMed Central

    Rüdt, Matthias; Brestrich, Nina; Rolinger, Laura

    2016-01-01

    ABSTRACT The load phase in preparative Protein A capture steps is commonly not controlled in real‐time. The load volume is generally based on an offline quantification of the monoclonal antibody (mAb) prior to loading and on a conservative column capacity determined by resin‐life time studies. While this results in a reduced productivity in batch mode, the bottleneck of suitable real‐time analytics has to be overcome in order to enable continuous mAb purification. In this study, Partial Least Squares Regression (PLS) modeling on UV/Vis absorption spectra was applied to quantify mAb in the effluent of a Protein A capture step during the load phase. A PLS model based on several breakthrough curves with variable mAb titers in the HCCF was successfully calibrated. The PLS model predicted the mAb concentrations in the effluent of a validation experiment with a root mean square error (RMSE) of 0.06 mg/mL. The information was applied to automatically terminate the load phase, when a product breakthrough of 1.5 mg/mL was reached. In a second part of the study, the sensitivity of the method was further increased by only considering small mAb concentrations in the calibration and by subtracting an impurity background signal. The resulting PLS model exhibited a RMSE of prediction of 0.01 mg/mL and was successfully applied to terminate the load phase, when a product breakthrough of 0.15 mg/mL was achieved. The proposed method has hence potential for the real‐time monitoring and control of capture steps at large scale production. This might enhance the resin capacity utilization, eliminate time‐consuming offline analytics, and contribute to the realization of continuous processing. Biotechnol. Bioeng. 2017;114: 368–373. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc. PMID:27543789

  18. 38 CFR 21.4145 - Work-study allowance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Work-study allowance. 21...; Educational Assistance Allowance § 21.4145 Work-study allowance. (a) Eligibility. (1) A veteran or reservist... rate of three-quarter time or full time is eligible to receive a work-study allowance. (2) An eligible...

  19. 38 CFR 21.4145 - Work-study allowance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Work-study allowance. 21...; Educational Assistance Allowance § 21.4145 Work-study allowance. (a) Eligibility. (1) A veteran or reservist... rate of three-quarter time or full time is eligible to receive a work-study allowance. (2) An eligible...

  20. Giant Steps in Cefalù

    NASA Astrophysics Data System (ADS)

    Jeffery, David J.; Mazzali, Paolo A.

    2007-08-01

    Giant steps is a technique to accelerate Monte Carlo radiative transfer in optically-thick cells (which are isotropic and homogeneous in matter properties and into which astrophysical atmospheres are divided) by greatly reducing the number of Monte Carlo steps needed to propagate photon packets through such cells. In an optically-thick cell, packets starting from any point (which can be regarded a point source) well away from the cell wall act essentially as packets diffusing from the point source in an infinite, isotropic, homogeneous atmosphere. One can replace many ordinary Monte Carlo steps that a packet diffusing from the point source takes by a randomly directed giant step whose length is slightly less than the distance to the nearest cell wall point from the point source. The giant step is assigned a time duration equal to the time for the RMS radius for a burst of packets diffusing from the point source to have reached the giant step length. We call assigning giant-step time durations this way RMS-radius (RMSR) synchronization. Propagating packets by series of giant steps in giant-steps random walks in the interiors of optically-thick cells constitutes the technique of giant steps. Giant steps effectively replaces the exact diffusion treatment of ordinary Monte Carlo radiative transfer in optically-thick cells by an approximate diffusion treatment. In this paper, we describe the basic idea of giant steps and report demonstration giant-steps flux calculations for the grey atmosphere. Speed-up factors of order 100 are obtained relative to ordinary Monte Carlo radiative transfer. In practical applications, speed-up factors of order ten and perhaps more are possible. The speed-up factor is likely to be significantly application-dependent and there is a trade-off between speed-up and accuracy. This paper and past work suggest that giant-steps error can probably be kept to a few percent by using sufficiently large boundary-layer optical depths while still

  1. From antidunes to step-pools

    NASA Astrophysics Data System (ADS)

    Recking, Alain; Leduc, Pauline

    2014-05-01

    Step-pools are bed morphologies that are typical in high-gradient streams , recognizable by a staircase-like longitudinal profile resulting from accumulation of cobbles and boulders that are transverse to the channel and alternating with pools containing finer sediments. Within the last two decades step-pools have been the subject of increased efforts to characterize their nature; however their origin is still in debate. Researchers have very soon suspected step-pools to be the residual form of antidunes produced during flooding, but this hypothesis was continuously contested. Other theories has been proposed, considering, that step-pool profile develops a maximum flow resistance, or that pools geometry is controlled by the energy of a falling jet, or that steps form by boulders accumulation in a channel-spanning manner. All these theories gave very satisfying results when compared with experimental data, but does it mean that the antidune theory should we abandoned? We performed new flume experiments on steep slopes to investigate the antidune origin for step-pools. Our experiments showed that step-pools can have several origins, depending on the flow conditions and sediment mixture used. In some circumstances antidunes were well observed but did not produce stable step-pools morphology. In many occasions, step-pools obtained in the flume were isolated step-pools, with no real apparent periodicity. Only a few flow and sediment conditions allowed us to reproduce trains of antidunes which stabilized at the flow recession to produce stable periodical step-pools. These conditions are presented and discussed.

  2. Manual for implementing a Shared Time Engineering Program (STEP) September 1980 through September 1983

    NASA Astrophysics Data System (ADS)

    Aronoff, H. I.; Leslie, J. J.; Mittleman, A. N.; Holt, S.

    1983-11-01

    This manual describes a Shared Time Engineering Program (STEP) conducted by the New England Apparel Manufacturers Association (NEAMA) headquartered in Fall River Massachusetts, and funded by the Office of Trade Adjustment Assistance of the U.S. Department of Commerce. It is addressed to industry association executives, industrial engineers and others interested in examining an innovative model of industrial engineering assistance to small plants which might be adapted to their particular needs.

  3. Step-by-step magic state encoding for efficient fault-tolerant quantum computation

    PubMed Central

    Goto, Hayato

    2014-01-01

    Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation. PMID:25511387

  4. Step Permeability on the Pt(111) Surface

    NASA Astrophysics Data System (ADS)

    Altman, Michael

    2005-03-01

    Surface morphology will be affected, or even dictated, by kinetic limitations that may be present during growth. Asymmetric step attachment is recognized to be an important and possibly common cause of morphological growth instabilities. However, the impact of this kinetic limitation on growth morphology may be hindered by other factors such as the rate limiting step and step permeability. This strongly motivates experimental measurements of these quantities in real systems. Using low energy electron microscopy, we have measured step flow velocities in growth on the Pt(111) surface. The dependence of step velocity upon adjacent terrace width clearly shows evidence of asymmetric step attachment and step permeability. Step velocity is modeled by solving the diffusion equation simultaneously on several adjacent terraces subject to boundary conditions at intervening steps that include asymmetric step attachment and step permeability. This analysis allows a quantitative evaluation of step permeability and the kinetic length, which characterizes the rate limiting step continuously between diffusion and attachment-detachment limited regimes. This work provides information that is greatly needed to set physical bounds on the parameters that are used in theoretical treatments of growth. The observation that steps are permeable even on a simple metal surface should also stimulate more experimental measurements and theoretical treatments of this effect.

  5. Co-evolving Physical and Biological Organization in Step-pool Channels: Experiments from a Restoration Reach on Wildcat Creek, California

    NASA Astrophysics Data System (ADS)

    Chin, A.; O'Dowd, A. P.; Mendez, P. K.; Velasco, K. Z.; Leventhal, R. D.; Storesund, R.; Laurencio, L. R.

    2014-12-01

    Step-pools are important features in fluvial systems. Through energy dissipation, step-pools provide stability in high-energy environments that otherwise may erode and degrade. Although research has focused on geomorphological aspects of step-pool channels, the ecological significance of step-pool streams is increasingly recognized. Step-pool streams often contain higher density and diversity of benthic macroinvertebrates and are critical habitats for organisms such as salmonids and tailed frogs. Step-pools are therefore increasingly used to restore eroding channels and improve ecological conditions. This paper addresses a restoration reach of Wildcat Creek in Berkeley, California that featured an installation of step-pools in 2012. The design framework recognized step-pool formation as a self-organizing process that produces a rhythmic morphology. After placing step particles at locations where step-pools are expected to form according to hydraulic theory, the self-organizing approach allowed fluvial processes to refine the rocks into adjusted sequences over time. In addition, a 30-meter "experimental" reach was created to explore the co-evolution of geomorphological and ecological characteristics. After constructing a plane bed channel, boulders and cobbles piled at the upstream end allowed natural flows to mobilize and sort them into step-pool sequences. Ground surveys and LiDAR recorded the development of step-pool sequences over several seasons. Concurrent sampling of benthic macroinvertebrates documented the formation of biological communities in conjunction with habitat. Biological sampling in an upstream reference reach provided a comparison with the restored reach over time. Results to date show an emergent step-pool channel with steps that segment the plane bed into initial step and pool habitats. Biological communities are beginning to form, showing more distinction among habitat types during some seasons, although they do not yet approach reference

  6. Mitigation of narrowband interferences by means of a reconfigurable stepped frequency GPR system

    NASA Astrophysics Data System (ADS)

    Persico, Raffaele; Dei, Devis; Parrini, Filippo; Matera, Loredana

    2016-08-01

    This paper proposes a new technique for the mitigation of narrowband interferences by making use of an innovative stepped frequency Ground Penetrating Radar (GPR) system, based on the modulation of the integration time of the harmonic components of the signal. This can allow a good rejection of the interference signal without filtering out part of the band of the useful signal (which would involve a loss of information) and without increasing the power of the transmitted signal (which might saturate the receiver and make illegal the level of transmitted power). The price paid for this is an extension of the time needed in order to perform the measurements. We will show that this necessary drawback can be contained by making use of a prototypal reconfigurable stepped frequency GPR system.

  7. Simplified Two-Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydorgen/Oxygen

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (> 1 x 10(exp -20) moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/air fuel and for the H2/O2. A similar correlation is also developed using data from NASA s Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T3). High values of the regression coefficient R2 are obtained.

  8. EXPONENTIAL TIME DIFFERENCING FOR HODGKIN–HUXLEY-LIKE ODES

    PubMed Central

    Börgers, Christoph; Nectow, Alexander R.

    2013-01-01

    Several authors have proposed the use of exponential time differencing (ETD) for Hodgkin–Huxley-like partial and ordinary differential equations (PDEs and ODEs). For Hodgkin–Huxley-like PDEs, ETD is attractive because it can deal effectively with the stiffness issues that diffusion gives rise to. However, large neuronal networks are often simulated assuming “space-clamped” neurons, i.e., using the Hodgkin–Huxley ODEs, in which there are no diffusion terms. Our goal is to clarify whether ETD is a good idea even in that case. We present a numerical comparison of first- and second-order ETD with standard explicit time-stepping schemes (Euler’s method, the midpoint method, and the classical fourth-order Runge–Kutta method). We find that in the standard schemes, the stable computation of the very rapid rising phase of the action potential often forces time steps of a small fraction of a millisecond. This can result in an expensive calculation yielding greater overall accuracy than needed. Although it is tempting at first to try to address this issue with adaptive or fully implicit time-stepping, we argue that neither is effective here. The main advantage of ETD for Hodgkin–Huxley-like systems of ODEs is that it allows underresolution of the rising phase of the action potential without causing instability, using time steps on the order of one millisecond. When high quantitative accuracy is not necessary and perhaps, because of modeling inaccuracies, not even useful, ETD allows much faster simulations than standard explicit time-stepping schemes. The second-order ETD scheme is found to be substantially more accurate than the first-order one even for large values of Δt. PMID:24058276

  9. Control Circuit For Two Stepping Motors

    NASA Technical Reports Server (NTRS)

    Ratliff, Roger; Rehmann, Kenneth; Backus, Charles

    1990-01-01

    Control circuit operates two independent stepping motors, one at a time. Provides following operating features: After selected motor stepped to chosen position, power turned off to reduce dissipation; Includes two up/down counters that remember at which one of eight steps each motor set. For selected motor, step indicated by illumination of one of eight light-emitting diodes (LED's) in ring; Selected motor advanced one step at time or repeatedly at rate controlled; Motor current - 30 mA at 90 degree positions, 60 mA at 45 degree positions - indicated by high or low intensity of LED that serves as motor-current monitor; Power-on reset feature provides trouble-free starts; To maintain synchronism between control circuit and motors, stepping of counters inhibited when motor power turned off.

  10. Associations of office workers' objectively assessed occupational sitting, standing and stepping time with musculoskeletal symptoms.

    PubMed

    Coenen, Pieter; Healy, Genevieve N; Winkler, Elisabeth A H; Dunstan, David W; Owen, Neville; Moodie, Marj; LaMontagne, Anthony D; Eakin, Elizabeth A; O'Sullivan, Peter B; Straker, Leon M

    2018-04-22

    We examined the association of musculoskeletal symptoms (MSS) with workplace sitting, standing and stepping time, as well as sitting and standing time accumulation (i.e. usual bout duration of these activities), measured objectively with the activPAL3 monitor. Using baseline data from the Stand Up Victoria trial (216 office workers, 14 workplaces), cross-sectional associations of occupational activities with self-reported MSS (low-back, upper and lower extremity symptoms in the last three months) were examined using probit regression, correcting for clustering and adjusting for confounders. Sitting bout duration was significantly (p < 0.05) associated, non-linearly, with MSS, such that those in the middle tertile displayed the highest prevalence of upper extremity symptoms. Other associations were non-significant but sometimes involved large differences in symptom prevalence (e.g. 38%) by activity. Though causation is unclear, these non-linear associations suggest that sitting and its alternatives (i.e. standing and stepping) interact with MSS and this should be considered when designing safe work systems. Practitioner summary: We studied associations of objectively assessed occupational activities with musculoskeletal symptoms in office workers. Workers who accumulated longer sitting bouts reported fewer upper extremity symptoms. Total activity duration was not significantly associated with musculoskeletal symptoms. We underline the importance of considering total volumes and patterns of activity time in musculoskeletal research.

  11. Effect of time step size and turbulence model on the open water hydrodynamic performance prediction of contra-rotating propellers

    NASA Astrophysics Data System (ADS)

    Wang, Zhan-zhi; Xiong, Ying

    2013-04-01

    A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.

  12. Intraindividual Stepping Reaction Time Variability Predicts Falls in Older Adults With Mild Cognitive Impairment.

    PubMed

    Bunce, David; Haynes, Becky I; Lord, Stephen R; Gschwind, Yves J; Kochan, Nicole A; Reppermund, Simone; Brodaty, Henry; Sachdev, Perminder S; Delbaere, Kim

    2017-06-01

    Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI) are at high risk of falling, the association between IIV and prospective falls is unknown. We conducted a longitudinal cohort study in cognitively intact (n = 271) and MCI (n = 154) community-dwelling adults aged 70-90 years. IIV was assessed through a variety of measures including simple and choice hand reaction time and choice stepping reaction time tasks (CSRT), the latter administered as a single task and also with a secondary working memory task. Logistic regression did not show an association between IIV on the hand-held tasks and falls. Greater IIV in both CSRT tasks, however, did significantly increase the risk of future falls. This effect was specific to the MCI group, with a stronger effect in persons exhibiting gait, posture, or physiological impairment. The findings suggest that increased stepping IIV may indicate compromised neural circuitry involved in executive function, gait, and posture in persons with MCI increasing their risk of falling. IIV measures have potential to assess neurobiological disturbance underlying physical and cognitive dysfunction in old age, and aid fall risk assessment and routine care in community and health care settings. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Matrix-Dominated Time-Dependent Deformation and Damage of Graphite Epoxy Composite -- Experimental Data under Multiple-Step Relaxation.

    DTIC Science & Technology

    1983-05-01

    50 50 51 - 2 1 No input -- -- -- -- -- -- -- 2 No input - - - - - - - 3 No input -- - - - - - - 4 No input - - - - - - - 5 52 53 54 -- 329 329 330 6...398 *SOverall 160 160 161 161 6 1 162 153 164 165 399 400 401 402 2 166 167 168 169 403 404 405 406 3 170 171 172 173 407 408 409 410 4 174 175 176...0 ’<K fle.- 0 * 00 0 0 FILTERED DATA 70,:TIME =T - 183.798 (HRS.) - 52 - o- - A T360/52M8 - STEP/RELAXATIO4 - SPECIMEN No. 2 - STEP No. 5 00 0= mmia a

  14. Length and time for development of laminar flow in tubes following a step increase of volume flux

    NASA Astrophysics Data System (ADS)

    Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.

    2015-01-01

    Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this

  15. Rapid step-gradient purification of mitochondrial DNA.

    PubMed

    Welter, C; Meese, E; Blin, N

    1988-01-01

    A convenient modification of the step gradient (CsCl/ethidium bomide) procedure is described. This rapid method allows isolation of covalently closed circular DNA separated from contaminating proteins, RNA and chromosomal DNA in ca. 5 h. Large scale preparations can be performed for circular DNA from eukaryotic organelles (mitochondria). The protocol uses organelle pelleting/NaCl-sarcosyl incubation steps for mitochondria followed by a CsCl step gradient and exhibits yields equal to the conventional procedures. It results in DNA sufficiently pure to be used for restriction endonuclease analysis, subcloning, 5'-end labeling, gel retention assays, and various types of hybridization.

  16. Detonation Diffraction in a Multi-Step Channel

    DTIC Science & Technology

    2010-12-01

    openings. This allowed the detonation wave diffraction transmission limits to be determined for hydrogen/air mixtures and to better understand...imaging systems to provide shock wave detail and velocity information. The images were observed through a newly designed explosive proof optical section...stepped openings. This allowed the detonation wave diffraction transmission limits to be determined for hydrogen/air mixtures and to better

  17. On the performance of voltage stepping for the simulation of adaptive, nonlinear integrate-and-fire neuronal networks.

    PubMed

    Kaabi, Mohamed Ghaith; Tonnelier, Arnaud; Martinez, Dominique

    2011-05-01

    In traditional event-driven strategies, spike timings are analytically given or calculated with arbitrary precision (up to machine precision). Exact computation is possible only for simplified neuron models, mainly the leaky integrate-and-fire model. In a recent paper, Zheng, Tonnelier, and Martinez (2009) introduced an approximate event-driven strategy, named voltage stepping, that allows the generic simulation of nonlinear spiking neurons. Promising results were achieved in the simulation of single quadratic integrate-and-fire neurons. Here, we assess the performance of voltage stepping in network simulations by considering more complex neurons (quadratic integrate-and-fire neurons with adaptation) coupled with multiple synapses. To handle the discrete nature of synaptic interactions, we recast voltage stepping in a general framework, the discrete event system specification. The efficiency of the method is assessed through simulations and comparisons with a modified time-stepping scheme of the Runge-Kutta type. We demonstrated numerically that the original order of voltage stepping is preserved when simulating connected spiking neurons, independent of the network activity and connectivity.

  18. Electric and hybrid electric vehicle study utilizing a time-stepping simulation

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Shaltens, Richard K.; Beremand, Donald G.

    1992-01-01

    The applicability of NASA's advanced power technologies to electric and hybrid vehicles was assessed using a time-stepping computer simulation to model electric and hybrid vehicles operating over the Federal Urban Driving Schedule (FUDS). Both the energy and power demands of the FUDS were taken into account and vehicle economy, range, and performance were addressed simultaneously. Results indicate that a hybrid electric vehicle (HEV) configured with a flywheel buffer energy storage device and a free-piston Stirling convertor fulfills the emissions, fuel economy, range, and performance requirements that would make it acceptable to the consumer. It is noted that an assessment to determine which of the candidate technologies are suited for the HEV application has yet to be made. A proper assessment should take into account the fuel economy and range, along with the driveability and total emissions produced.

  19. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session.

    PubMed

    Nagahara, Ryu; Mizutani, Mirai; Matsuo, Akifumi; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2018-06-01

    We aimed to investigate the step-to-step spatiotemporal variables and ground reaction forces during the acceleration phase for characterising intra-individual fastest sprinting within a single session. Step-to-step spatiotemporal variables and ground reaction forces produced by 15 male athletes were measured over a 50-m distance during repeated (three to five) 60-m sprints using a long force platform system. Differences in measured variables between the fastest and slowest trials were examined at each step until the 22nd step using a magnitude-based inferences approach. There were possibly-most likely higher running speed and step frequency (2nd to 22nd steps) and shorter support time (all steps) in the fastest trial than in the slowest trial. Moreover, for the fastest trial there were likely-very likely greater mean propulsive force during the initial four steps and possibly-very likely larger mean net anterior-posterior force until the 17th step. The current results demonstrate that better sprinting performance within a single session is probably achieved by 1) a high step frequency (except the initial step) with short support time at all steps, 2) exerting a greater mean propulsive force during initial acceleration, and 3) producing a greater mean net anterior-posterior force during initial and middle acceleration.

  20. Two-step passivation for enhanced InGaN/GaN light emitting diodes with step graded electron injectors

    NASA Astrophysics Data System (ADS)

    Sheremet, V.; Genç, M.; Gheshlaghi, N.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2018-01-01

    Enhancement of InGaN/GaN based light emitting diode performance with step graded electron injectors through a two-step passivation is reported. Perimeter passivation of LED dies with SiO2 immediately following ICP mesa etch in addition to conventional Si3N4 dielectric surface passivation leads to decrease in the reverse bias leakage current by a factor of two as well as a decrease in the shunt current under forward bias by an order of magnitude. Mitigation of the leakage currents owing to the two-step passivation leads to significant increase in the radiant intensity of LEDs by more than a factor of two compared to the conventional single step surface passivation. Further, micro-dome patterned surface of Si3N4 passivation layer allow enhanced light extraction from LEDs.

  1. Multi-Wavelength Laser Transmitter for the Two-Step Laser Time-of-Flight Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Li, Steven X.; Fahey, Molly E.; Grubisic, Andrej; Farcy, Benjamin J.; Uckert, Kyle; Li, Xiang; Getty, Stephanie

    2017-01-01

    Missions to diverse Outer Solar System bodies will require investigations that can detect a wide range of organics in complex mixtures, determine the structure of selected molecules, and provide powerful insights into their origin and evolution. Previous studies from remote spectroscopy of the Outer Solar System showed a diverse population of macromolecular species that are likely to include aromatic and conjugated hydrocarbons with varying degrees of methylation and nitrile incorporation. In situ exploration of Titan's upper atmosphere via mass and plasma spectrometry has revealed a complex mixture of organics. Similar material is expected on the Ice Giants, their moons, and other Outer Solar System bodies, where it may subsequently be deposited onto surface ices. It is evident that the detection of organics on other planetary surfaces provides insight into the chemical and geological evolution of a Solar System body of interest and can inform our understanding of its potential habitability. We have developed a prototype two-step laser desorption/ionization time-of-flight mass spectrometer (L2MS) instrument by exploiting the resonance-enhanced desorption of analyte. We have successfully demonstrated the ability of the L2MS to detect hydrocarbons in organically-doped analog minerals, including cryogenic Ocean World-relevant ices and mixtures. The L2MS instrument operates by generating a neutral plume of desorbed analyte with an IR desorption laser pulse, followed at a delay by a ultraviolet (UV) laser pulse, ionizing the plume. Desorption of the analyte, including trace organic species, may be enhanced by selecting the wavelength of the IR desorption laser to coincide with IR absorption features associated with vibration transitions of minerals or organic functional groups. In this effort, a preliminary laser developed for the instrument uses a breadboard mid-infrared (MIR) desorption laser operating at a discrete 3.475 µm wavelength, and a breadboard UV

  2. Single-crossover recombination in discrete time.

    PubMed

    von Wangenheim, Ute; Baake, Ellen; Baake, Michael

    2010-05-01

    Modelling the process of recombination leads to a large coupled nonlinear dynamical system. Here, we consider a particular case of recombination in discrete time, allowing only for single crossovers. While the analogous dynamics in continuous time admits a closed solution (Baake and Baake in Can J Math 55:3-41, 2003), this no longer works for discrete time. A more general model (i.e. without the restriction to single crossovers) has been studied before (Bennett in Ann Hum Genet 18:311-317, 1954; Dawson in Theor Popul Biol 58:1-20, 2000; Linear Algebra Appl 348:115-137, 2002) and was solved algorithmically by means of Haldane linearisation. Using the special formalism introduced by Baake and Baake (Can J Math 55:3-41, 2003), we obtain further insight into the single-crossover dynamics and the particular difficulties that arise in discrete time. We then transform the equations to a solvable system in a two-step procedure: linearisation followed by diagonalisation. Still, the coefficients of the second step must be determined in a recursive manner, but once this is done for a given system, they allow for an explicit solution valid for all times.

  3. Arbitrarily high-order time-stepping schemes based on the operator spectrum theory for high-dimensional nonlinear Klein-Gordon equations

    NASA Astrophysics Data System (ADS)

    Liu, Changying; Wu, Xinyuan

    2017-07-01

    In this paper we explore arbitrarily high-order Lagrange collocation-type time-stepping schemes for effectively solving high-dimensional nonlinear Klein-Gordon equations with different boundary conditions. We begin with one-dimensional periodic boundary problems and first formulate an abstract ordinary differential equation (ODE) on a suitable infinity-dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula which is essential for the derivation of our arbitrarily high-order Lagrange collocation-type time-stepping schemes for the nonlinear abstract ODE. The nonlinear stability and convergence are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix under some suitable smoothness assumptions. With regard to the two dimensional Dirichlet or Neumann boundary problems, our new time-stepping schemes coupled with discrete Fast Sine / Cosine Transformation can be applied to simulate the two-dimensional nonlinear Klein-Gordon equations effectively. All essential features of the methodology are present in one-dimensional and two-dimensional cases, although the schemes to be analysed lend themselves with equal to higher-dimensional case. The numerical simulation is implemented and the numerical results clearly demonstrate the advantage and effectiveness of our new schemes in comparison with the existing numerical methods for solving nonlinear Klein-Gordon equations in the literature.

  4. Allowance market pricing indicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.W.

    1995-12-31

    Regardless of whether buyers and sellers rely on one allowance price indicator or a combination of several, the publication of price indicators has facilitated trading in the SO{sub 2} allowance market. Buyers and sellers feel more comfortable with a price benchmark against which to measure their actions; liquidity has increased; and transactions are easier to conclude. At this market`s present stage of development, five price indicators are worthy of discussion: EPA Allowance Auctions; Compliance Strategies Review`s EATX; Utility Environment Report`s price range; Cantor Fitzgerald`s Allowance Price Indicators; and Emissions Exchange Corporation`s Exchange Values. But experience in other markets indicates thatmore » (1) others will be created as the market develops, and (2) all published price indicators will tend to converge as time passes.« less

  5. Collocation and Galerkin Time-Stepping Methods

    NASA Technical Reports Server (NTRS)

    Huynh, H. T.

    2011-01-01

    We study the numerical solutions of ordinary differential equations by one-step methods where the solution at tn is known and that at t(sub n+1) is to be calculated. The approaches employed are collocation, continuous Galerkin (CG) and discontinuous Galerkin (DG). Relations among these three approaches are established. A quadrature formula using s evaluation points is employed for the Galerkin formulations. We show that with such a quadrature, the CG method is identical to the collocation method using quadrature points as collocation points. Furthermore, if the quadrature formula is the right Radau one (including t(sub n+1)), then the DG and CG methods also become identical, and they reduce to the Radau IIA collocation method. In addition, we present a generalization of DG that yields a method identical to CG and collocation with arbitrary collocation points. Thus, the collocation, CG, and generalized DG methods are equivalent, and the latter two methods can be formulated using the differential instead of integral equation. Finally, all schemes discussed can be cast as s-stage implicit Runge-Kutta methods.

  6. Improving arrival time identification in transient elastography

    NASA Astrophysics Data System (ADS)

    Klein, Jens; McLaughlin, Joyce; Renzi, Daniel

    2012-04-01

    In this paper, we improve the first step in the arrival time algorithm used for shear wave speed recovery in transient elastography. In transient elastography, a shear wave is initiated at the boundary and the interior displacement of the propagating shear wave is imaged with an ultrasound ultra-fast imaging system. The first step in the arrival time algorithm finds the arrival times of the shear wave by cross correlating displacement time traces (the time history of the displacement at a single point) with a reference time trace located near the shear wave source. The second step finds the shear wave speed from the arrival times. In performing the first step, we observe that the wave pulse decorrelates as it travels through the medium, which leads to inaccurate estimates of the arrival times and ultimately to blurring and artifacts in the shear wave speed image. In particular, wave ‘spreading’ accounts for much of this decorrelation. Here we remove most of the decorrelation by allowing the reference wave pulse to spread during the cross correlation. This dramatically improves the images obtained from arrival time identification. We illustrate the improvement of this method on phantom and in vivo data obtained from the laboratory of Mathias Fink at ESPCI, Paris.

  7. Intermediate surface structure between step bunching and step flow in SrRuO3 thin film growth

    NASA Astrophysics Data System (ADS)

    Bertino, Giulia; Gura, Anna; Dawber, Matthew

    We performed a systematic study of SrRuO3 thin films grown on TiO2 terminated SrTiO3 substrates using off-axis magnetron sputtering. We investigated the step bunching formation and the evolution of the SRO film morphology by varying the step size of the substrate, the growth temperature and the film thickness. The thin films were characterized using Atomic Force Microscopy and X-Ray Diffraction. We identified single and multiple step bunching and step flow growth regimes as a function of the growth parameters. Also, we clearly observe a stronger influence of the step size of the substrate on the evolution of the SRO film surface with respect to the other growth parameters. Remarkably, we observe the formation of a smooth, regular and uniform ``fish skin'' structure at the transition between one regime and another. We believe that the fish skin structure results from the merging of 2D flat islands predicted by previous models. The direct observation of this transition structure allows us to better understand how and when step bunching develops in the growth of SrRuO3 thin films.

  8. Kinect-based choice reaching and stepping reaction time tests for clinical and in-home assessment of fall risk in older people: a prospective study.

    PubMed

    Ejupi, Andreas; Gschwind, Yves J; Brodie, Matthew; Zagler, Wolfgang L; Lord, Stephen R; Delbaere, Kim

    2016-01-01

    Quick protective reactions such as reaching or stepping are important to avoid a fall or minimize injuries. We developed Kinect-based choice reaching and stepping reaction time tests (Kinect-based CRTs) and evaluated their ability to differentiate between older fallers and non-fallers and the feasibility of administering them at home. A total of 94 community-dwelling older people were assessed on the Kinect-based CRTs in the laboratory and were followed-up for falls for 6 months. Additionally, a subgroup (n = 20) conducted the Kinect-based CRTs at home. Signal processing algorithms were developed to extract features for reaction, movement and the total time from the Kinect skeleton data. Nineteen participants (20.2 %) reported a fall in the 6 months following the assessment. The reaction time (fallers: 797 ± 136 ms, non-fallers: 714 ± 89 ms), movement time (fallers: 392 ± 50 ms, non-fallers: 358 ± 51 ms) and total time (fallers: 1189 ± 170 ms, non-fallers: 1072 ± 109 ms) of the reaching reaction time test differentiated well between the fallers and non-fallers. The stepping reaction time test did not significantly discriminate between the two groups in the prospective study. The correlations between the laboratory and in-home assessments were 0.689 for the reaching reaction time and 0.860 for stepping reaction time. The study findings indicate that the Kinect-based CRT tests are feasible to administer in clinical and in-home settings, and thus represents an important step towards the development of sensor-based fall risk self-assessments. With further validation, the assessments may prove useful as a fall risk screen and home-based assessment measures for monitoring changes over time and effects of fall prevention interventions.

  9. Stabilization of a three-dimensional limit cycle walking model through step-to-step ankle control.

    PubMed

    Kim, Myunghee; Collins, Steven H

    2013-06-01

    Unilateral, below-knee amputation is associated with an increased risk of falls, which may be partially related to a loss of active ankle control. If ankle control can contribute significantly to maintaining balance, even in the presence of active foot placement, this might provide an opportunity to improve balance using robotic ankle-foot prostheses. We investigated ankle- and hip-based walking stabilization methods in a three-dimensional model of human gait that included ankle plantarflexion, ankle inversion-eversion, hip flexion-extension, and hip ad/abduction. We generated discrete feedback control laws (linear quadratic regulators) that altered nominal actuation parameters once per step. We used ankle push-off, lateral ankle stiffness and damping, fore-aft foot placement, lateral foot placement, or all of these as control inputs. We modeled environmental disturbances as random, bounded, unexpected changes in floor height, and defined balance performance as the maximum allowable disturbance value for which the model walked 500 steps without falling. Nominal walking motions were unstable, but were stabilized by all of the step-to-step control laws we tested. Surprisingly, step-by-step modulation of ankle push-off alone led to better balance performance (3.2% leg length) than lateral foot placement (1.2% leg length) for these control laws. These results suggest that appropriate control of robotic ankle-foot prosthesis push-off could make balancing during walking easier for individuals with amputation.

  10. Induction of an LH surge and ovulation by buserelin (as Receptal) allows breeding of weaned sows with a single fixed-time insemination.

    PubMed

    Driancourt, M A; Cox, P; Rubion, S; Harnois-Milon, G; Kemp, B; Soede, N M

    2013-09-01

    The aim of this study was to demonstrate successful breeding of sows with a single fixed-time insemination following ovulation induction by buserelin, a GnRH analogue. In a first step, the optimal dose of buserelin (6, 10, or 16 μg) injected at 77 hours after weaning was determined in weaned sows (N = 15, 11, and 12, respectively) using its ability to induce an LH surge of similar magnitude as in control sows (N = 15) and induce ovulation. In 29/38 treated sows (76%), ovulation was induced and synchronized between 32 and 44 hours after injection, and the proportion of females ovulating during this time window was similar between groups at 73%, 73%, and 83% (6, 10, or 16 μg, respectively). Interestingly, whereas ovulation of 100% multiparous sows was induced and synchronized in the 32 to 44 hours posttreatment time window, successful induction was achieved in a lower proportion of primiparous sows (50%, 50%, and 67% following 6, 10, or 16 μg, respectively), the dose effect being nonsignificant. The magnitude of the LH surge was similar between control and treated sows, irrespective of the buserelin dose injected. Neither ovulation rate nor the number of good embryos on Day 5 postovulation differed between groups. Interestingly, the frequency of follicular cysts at slaughter was significantly affected by treatment (P < 0.05), being minimal and maximal in sows treated with 10 or 6 μg buserelin, respectively. In a second step, 419 sows from commercial herds in Spain, Germany, and France were randomly allocated to a control or treated group. The control sows were inseminated twice 12 ± 4 hours apart once estrus was detected. Treated sows received 10 μg buserelin at 86 ± 3 hours after weaning and were inseminated once 30 to 33 hours later. Farrowing rate of treated sows (87%, 166/192) was similar to that of control sows (84.5%, 169/200). Litter size was also similar between treated and control sows (13.6 ± 3.8 vs. 13.7 ± 3.2). In multiparous sows, neither

  11. Effect of the processing steps on compositions of table olive since harvesting time to pasteurization.

    PubMed

    Nikzad, Nasim; Sahari, Mohammad A; Vanak, Zahra Piravi; Safafar, Hamed; Boland-nazar, Seyed A

    2013-08-01

    Weight, oil, fatty acids, tocopherol, polyphenol, and sterol properties of 5 olive cultivars (Zard, Fishomi, Ascolana, Amigdalolia, and Conservalia) during crude, lye treatment, washing, fermentation, and pasteurization steps were studied. Results showed: oil percent was higher and lower in Ascolana (crude step) and in Fishomi (pasteurization step), respectively; during processing steps, in all cultivars, oleic, palmitic, linoleic, and stearic acids were higher; the highest changes in saturated and unsaturated fatty acids were in fermentation step; the highest and the lowest ratios of ω3 / ω6 were in Ascolana (washing step) and in Zard (pasteurization step), respectively; the highest and the lowest tocopherol were in Amigdalolia and Fishomi, respectively, and major damage occurred in lye step; the highest and the lowest polyphenols were in Ascolana (crude step) and in Zard and Ascolana (pasteurization step), respectively; the major damage among cultivars occurred during lye step, in which the polyphenol reduced to 1/10 of first content; sterol did not undergo changes during steps. Reviewing of olive patents shows that many compositions of fruits such as oil quality, fatty acids, quantity and its fraction can be changed by alteration in cultivar and process.

  12. SPAR-H Step-by-Step Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. J. Galyean; A. M. Whaley; D. L. Kelly

    This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from themore » psychology literature.« less

  13. A training approach to improve stepping automaticity while dual-tasking in Parkinson's disease

    PubMed Central

    Chomiak, Taylor; Watts, Alexander; Meyer, Nicole; Pereira, Fernando V.; Hu, Bin

    2017-01-01

    Abstract Background: Deficits in motor movement automaticity in Parkinson's disease (PD), especially during multitasking, are early and consistent hallmarks of cognitive function decline, which increases fall risk and reduces quality of life. This study aimed to test the feasibility and potential efficacy of a wearable sensor-enabled technological platform designed for an in-home music-contingent stepping-in-place (SIP) training program to improve step automaticity during dual-tasking (DT). Methods: This was a 4-week prospective intervention pilot study. The intervention uses a sensor system and algorithm that runs off the iPod Touch which calculates step height (SH) in real-time. These measurements were then used to trigger auditory (treatment group, music; control group, radio podcast) playback in real-time through wireless headphones upon maintenance of repeated large amplitude stepping. With small steps or shuffling, auditory playback stops, thus allowing participants to use anticipatory motor control to regain positive feedback. Eleven participants were recruited from an ongoing trial (Trial Number: ISRCTN06023392). Fear of falling (FES-I), general cognitive functioning (MoCA), self-reported freezing of gait (FOG-Q), and DT step automaticity were evaluated. Results: While we found no significant effect of training on FES-I, MoCA, or FOG-Q, we did observe a significant group (music vs podcast) by training interaction in DT step automaticity (P<0.01). Conclusion: Wearable device technology can be used to enable musically-contingent SIP training to increase motor automaticity for people living with PD. The training approach described here can be implemented at home to meet the growing demand for self-management of symptoms by patients. PMID:28151878

  14. A Semi-implicit Method for Time Accurate Simulation of Compressible Flow

    NASA Astrophysics Data System (ADS)

    Wall, Clifton; Pierce, Charles D.; Moin, Parviz

    2001-11-01

    A semi-implicit method for time accurate simulation of compressible flow is presented. The method avoids the acoustic CFL limitation, allowing a time step restricted only by the convective velocity. Centered discretization in both time and space allows the method to achieve zero artificial attenuation of acoustic waves. The method is an extension of the standard low Mach number pressure correction method to the compressible Navier-Stokes equations, and the main feature of the method is the solution of a Helmholtz type pressure correction equation similar to that of Demirdžić et al. (Int. J. Num. Meth. Fluids, Vol. 16, pp. 1029-1050, 1993). The method is attractive for simulation of acoustic combustion instabilities in practical combustors. In these flows, the Mach number is low; therefore the time step allowed by the convective CFL limitation is significantly larger than that allowed by the acoustic CFL limitation, resulting in significant efficiency gains. Also, the method's property of zero artificial attenuation of acoustic waves is important for accurate simulation of the interaction between acoustic waves and the combustion process. The method has been implemented in a large eddy simulation code, and results from several test cases will be presented.

  15. STEPS: Moving from Welfare to Work.

    ERIC Educational Resources Information Center

    Vail, Ann; Cummings, Merrilyn; Kratzer, Connie; Galindo, Vickie

    Cooperative extension service faculty at New Mexico State University started the Steps to Employment and Personal Success (STEPS) program to help Temporary Assistance for Needy Families (TANF) clients qualify for and maintain full-time employment and strengthen their families for long-term success. Clients are referred to STEPS by New Mexico…

  16. On the Existence of Step-To-Step Breakpoint Transitions in Accelerated Sprinting

    PubMed Central

    McGhie, David; Danielsen, Jørgen; Sandbakk, Øyvind; Haugen, Thomas

    2016-01-01

    Accelerated running is characterised by a continuous change of kinematics from one step to the next. It has been argued that breakpoints in the step-to-step transitions may occur, and that these breakpoints are an essential characteristic of dynamics during accelerated running. We examined this notion by comparing a continuous exponential curve fit (indicating continuity, i.e., smooth transitions) with linear piecewise fitting (indicating breakpoint). We recorded the kinematics of 24 well trained sprinters during a 25 m sprint run with start from competition starting blocks. Kinematic data were collected for 24 anatomical landmarks in 3D, and the location of centre of mass (CoM) was calculated from this data set. The step-to-step development of seven variables (four related to CoM position, and ground contact time, aerial time and step length) were analysed by curve fitting. In most individual sprints (in total, 41 sprints were successfully recorded) no breakpoints were identified for the variables investigated. However, for the mean results (i.e., the mean curve for all athletes) breakpoints were identified for the development of vertical CoM position, angle of acceleration and distance between support surface and CoM. It must be noted that for these variables the exponential fit showed high correlations (r2>0.99). No relationship was found between the occurrences of breakpoints for different variables as investigated using odds ratios (Mantel-Haenszel Chi-square statistic). It is concluded that although breakpoints regularly appear during accelerated running, these are not the rule and thereby unlikely a fundamental characteristic, but more likely an expression of imperfection of performance. PMID:27467387

  17. Detection and Correction of Step Discontinuities in Kepler Flux Time Series

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, J. J.; Morris, R. L.

    2011-01-01

    PDC 8.0 includes an implementation of a new algorithm to detect and correct step discontinuities appearing in roughly one of every 20 stellar light curves during a given quarter. The majority of such discontinuities are believed to result from high-energy particles (either cosmic or solar in origin) striking the photometer and causing permanent local changes (typically -0.5%) in quantum efficiency, though a partial exponential recovery is often observed [1]. Since these features, dubbed sudden pixel sensitivity dropouts (SPSDs), are uncorrelated across targets they cannot be properly accounted for by the current detrending algorithm. PDC detrending is based on the assumption that features in flux time series are due either to intrinsic stellar phenomena or to systematic errors and that systematics will exhibit measurable correlations across targets. SPSD events violate these assumptions and their successful removal not only rectifies the flux values of affected targets, but demonstrably improves the overall performance of PDC detrending [1].

  18. Time-gated real-time pump-probe imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferrari, Raffaele; D'Andrea, Cosimo; Bassi, Andrea; Valentini, Gianluca; Cubeddu, Rinaldo

    2007-07-01

    An experimental technique which allows one to perform pump-probe transient absorption spectroscopy in real-time is an important tool to study irreversible processes. This is particularly interesting in the case of biological samples which easily deteriorate upon exposure to light pulses, with the formation of permanent photoproducts and structural changes. In particular pump-probe spectroscopy can provide fundamental information for the design of optical chromophores. In this work a real-time pump-probe imaging spectroscopy system has been realized and we have explored the possibility to further reduce the number of laser pulses by using a time-gated camera. We believe that the use of a time-gated camera can provide an important step towards the final goal of pump-probe single shot spectroscopy.

  19. Effect of increased exposure times on amount of residual monomer released from single-step self-etch adhesives.

    PubMed

    Altunsoy, Mustafa; Botsali, Murat Selim; Tosun, Gonca; Yasar, Ahmet

    2015-10-16

    The aim of this study was to evaluate the effect of increased exposure times on the amount of residual Bis-GMA, TEGDMA, HEMA and UDMA released from single-step self-etch adhesive systems. Two adhesive systems were used. The adhesives were applied to bovine dentin surface according to the manufacturer's instructions and were polymerized using an LED curing unit for 10, 20 and 40 seconds (n = 5). After polymerization, the specimens were stored in 75% ethanol-water solution (6 mL). Residual monomers (Bis-GMA, TEGDMA, UDMA and HEMA) that were eluted from the adhesives (after 10 minutes, 1 hour, 1 day, 7 days and 30 days) were analyzed by high-performance liquid chromatography (HPLC). The data were analyzed using 1-way analysis of variance and Tukey HSD tests. Among the time periods, the highest amount of released residual monomers from adhesives was observed in the 10th minute. There were statistically significant differences regarding released Bis-GMA, UDMA, HEMA and TEGDMA between the adhesive systems (p<0.05). There were no significant differences among the 10, 20 and 40 second polymerization times according to their effect on residual monomer release from adhesives (p>0.05). Increasing the polymerization time did not have an effect on residual monomer release from single-step self-etch adhesives.

  20. Spectrum of Slip Processes on the Subduction Interface in a Continuum Framework Resolved by Rate-and State Dependent Friction and Adaptive Time Stepping

    NASA Astrophysics Data System (ADS)

    Herrendoerfer, R.; van Dinther, Y.; Gerya, T.

    2015-12-01

    To explore the relationships between subduction dynamics and the megathrust earthquake potential, we have recently developed a numerical model that bridges the gap between processes on geodynamic and earthquake cycle time scales. In a self-consistent, continuum-based framework including a visco-elasto-plastic constitutive relationship, cycles of megathrust earthquake-like ruptures were simulated through a purely slip rate-dependent friction, albeit with very low slip rates (van Dinther et al., JGR, 2013). In addition to much faster earthquakes, a range of aseismic slip processes operate at different time scales in nature. These aseismic processes likely accommodate a considerable amount of the plate convergence and are thus relevant in order to estimate the long-term seismic coupling and related hazard in subduction zones. To simulate and resolve this wide spectrum of slip processes, we innovatively implemented rate-and state dependent friction (RSF) and an adaptive time-stepping into our continuum framework. The RSF formulation, in contrast to our previous friction formulation, takes the dependency of frictional strength on a state variable into account. It thereby allows for continuous plastic yielding inside rate-weakening regions, which leads to aseismic slip. In contrast to the conventional RSF formulation, we relate slip velocities to strain rates and use an invariant formulation. Thus we do not require the a priori definition of infinitely thin, planar faults in a homogeneous elastic medium. With this new implementation of RSF, we succeed to produce consistent cycles of frictional instabilities. By changing the frictional parameter a, b, and the characteristic slip distance, we observe a transition from stable sliding to stick-slip behaviour. This transition is in general agreement with predictions from theoretical estimates of the nucleation size, thereby to first order validating our implementation. By incorporating adaptive time-stepping based on a

  1. The Relaxation of Vicinal (001) with ZigZag [110] Steps

    NASA Astrophysics Data System (ADS)

    Hawkins, Micah; Hamouda, Ajmi Bh; González-Cabrera, Diego Luis; Einstein, Theodore L.

    2012-02-01

    This talk presents a kinetic Monte Carlo study of the relaxation dynamics of [110] steps on a vicinal (001) simple cubic surface. This system is interesting because [110] steps have different elementary excitation energetics and favor step diffusion more than close-packed [100] steps. In this talk we show how this leads to relaxation dynamics showing greater fluctuations on a shorter time scale for [110] steps as well as 2-bond breaking processes being rate determining in contrast to 3-bond breaking processes for [100] steps. The existence of a steady state is shown via the convergence of terrace width distributions at times much longer than the relaxation time. In this time regime excellent fits to the modified generalized Wigner distribution (as well as to the Berry-Robnik model when steps can overlap) were obtained. Also, step-position correlation function data show diffusion-limited increase for small distances along the step as well as greater average step displacement for zigzag steps compared to straight steps for somewhat longer distances along the step. Work supported by NSF-MRSEC Grant DMR 05-20471 as well as a DOE-CMCSN Grant.

  2. Electrohydraulic linear actuator with two stepping motors controlled by overshoot-free algorithm

    NASA Astrophysics Data System (ADS)

    Milecki, Andrzej; Ortmann, Jarosław

    2017-11-01

    The paper describes electrohydraulic spool valves with stepping motors used as electromechanical transducers. A new concept of a proportional valve in which two stepping motors are working differentially is introduced. Such valve changes the fluid flow proportionally to the sum or difference of the motors' steps numbers. The valve design and principle of its operation is described. Theoretical equations and simulation models are proposed for all elements of the drive, i.e., the stepping motor units, hydraulic valve and cylinder. The main features of the valve and drive operation are described; some specific problem areas covering the nature of stepping motors and their differential work in the valve are also considered. The whole servo drive non-linear model is proposed and used further for simulation investigations. The initial simulation investigations of the drive with a new valve have shown that there is a significant overshoot in the drive step response, which is not allowed in positioning process. Therefore additional effort is spent to reduce the overshoot and in consequence reduce the settling time. A special predictive algorithm is proposed to this end. Then the proposed control method is tested and further improved in simulations. Further on, the model is implemented in reality and the whole servo drive system is tested. The investigation results presented in this paper, are showing an overshoot-free positioning process which enables high positioning accuracy.

  3. Introducing a checking technician allows pharmacists to spend more time on patient-focused activities.

    PubMed

    Napier, Patti; Norris, Pauline; Braund, Rhiannon

    2018-04-01

    Internationally there is an increasing focus on the clinical and cognitive services that pharmacists can provide. Lack of time has been identified as a barrier to pharmacists increasing their clinical activities. Within the pharmacy workplace there are many tasks that can only be performed by a pharmacist. The final accuracy check of a dispensed prescription is currently the sole responsibility of pharmacists in New Zealand. This takes up a significant amount of time during a pharmacist's work day. The introduction of a checking technician role has been suggested to allow pharmacists more time to do more patient focused work. To investigate the amount of time pharmacy staff spend on specific activities and to establish whether the introduction of a checking technician into twelve pilot sites increased the amount of time that the pharmacists could spend on patient focused activities. This study utilised a self-reported work sampling technique in twelve pilot sites, selected from both the hospital and community settings. Work sampling using an electronic device was conducted at two time-points (before the implementation of a Pharmacy Accuracy Checking Technician (PACT) role and when the PACT was in place). Data was collected at 10 min intervals for the period of five days, a working week. Tasks were grouped into patient focused, dispensing and personal activities. The introduction of the PACT into the pilot sites saw a mean increase of 19% in pharmacists' patient focused activities and a mean 20% decrease in dispensing activities. The introduction of a checking technician role into New Zealand pharmacies demonstrated the potential to provide pharmacists with more time to spend on patient focused activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Principles of antibiotic application in children with lobar pneumonia: Step-up or step-down.

    PubMed

    Li, Yan; Han, Feng; Yang, Yan; Chu, Jianwei

    2017-06-01

    In order to provide a scientific basis for rational use of antibiotics, we studied and compared the therapeutic effects of step-down and step-up antibiotic treatment schemes in children with lobar pneumonia. Eighty cases of children with lobar pneumonia were enrolled in this study and were randomly divided into two groups: The observation group and the control group, with 40 cases in each group. In the observation group, there were 23 cases with mild and 17 cases with severe lobar pneumonia, and in the control group, 25 were mild and 15 were severe cases. Patients in the control group were treated with antibiotics using step-up therapy method, while patients in the observation group were treated using step-down antibiotic therapy. Our results showed no significant differences in white blood cell (WBC) reduction rate, the course of antibiotic treatment, disappearance time of pulmonary rales and total efficiency in children with mild lobar pneumonia in the observation group after 72 h of treatment. The level of high-sensitivity C-reactive protein (hs-CRP) and procalcitonin (PCT) in the observation group were significantly lower. After 72 h of treatment of children with severe lobar pneumonia in the observation group, the rate of WBC reduction accelerated significantly. Compared to the patients in the control group, the course of antibiotic treatment and disappearance time of pulmonary rales were shortened significantly, while the total efficiency of treatment was improved considerably in the observation group. Also in the observation group, hs-CRP and PCT levels were significantly lower than that in the control group. In severe cases, step-down therapy showed a better result in relieving the inflammatory reactions. The disappearance time of pulmonary rales and the effective rate of treatment was significantly higher than those of step-up therapy. It was obvious that for children with severe lobar pneumonia, step-down therapy produced better results in relieving the

  5. Novel One-Tube-One-Step Real-Time Methodology for Rapid Transcriptomic Biomarker Detection: Signal Amplification by Ternary Initiation Complexes.

    PubMed

    Fujita, Hiroto; Kataoka, Yuka; Tobita, Seiji; Kuwahara, Masayasu; Sugimoto, Naoki

    2016-07-19

    We have developed a novel RNA detection method, termed signal amplification by ternary initiation complexes (SATIC), in which an analyte sample is simply mixed with the relevant reagents and allowed to stand for a short time under isothermal conditions (37 °C). The advantage of the technique is that there is no requirement for (i) heat annealing, (ii) thermal cycling during the reaction, (iii) a reverse transcription step, or (iv) enzymatic or mechanical fragmentation of the target RNA. SATIC involves the formation of a ternary initiation complex between the target RNA, a circular DNA template, and a DNA primer, followed by rolling circle amplification (RCA) to generate multiple copies of G-quadruplex (G4) on a long DNA strand like beads on a string. The G4s can be specifically fluorescence-stained with N(3)-hydroxyethyl thioflavin T (ThT-HE), which emits weakly with single- and double-stranded RNA/DNA but strongly with parallel G4s. An improved dual SATIC system, which involves the formation of two different ternary initiation complexes in the RCA process, exhibited a wide quantitative detection range of 1-5000 pM. Furthermore, this enabled visual observation-based RNA detection, which is more rapid and convenient than conventional isothermal methods, such as reverse transcription-loop-mediated isothermal amplification, signal mediated amplification of RNA technology, and RNA-primed rolling circle amplification. Thus, SATIC methodology may serve as an on-site and real-time measurement technique for transcriptomic biomarkers for various diseases.

  6. General methods for analysis of sequential "n-step" kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding.

    PubMed

    Lucius, Aaron L; Maluf, Nasib K; Fischer, Christopher J; Lohman, Timothy M

    2003-10-01

    Helicase-catalyzed DNA unwinding is often studied using "all or none" assays that detect only the final product of fully unwound DNA. Even using these assays, quantitative analysis of DNA unwinding time courses for DNA duplexes of different lengths, L, using "n-step" sequential mechanisms, can reveal information about the number of intermediates in the unwinding reaction and the "kinetic step size", m, defined as the average number of basepairs unwound between two successive rate limiting steps in the unwinding cycle. Simultaneous nonlinear least-squares analysis using "n-step" sequential mechanisms has previously been limited by an inability to float the number of "unwinding steps", n, and m, in the fitting algorithm. Here we discuss the behavior of single turnover DNA unwinding time courses and describe novel methods for nonlinear least-squares analysis that overcome these problems. Analytic expressions for the time courses, f(ss)(t), when obtainable, can be written using gamma and incomplete gamma functions. When analytic expressions are not obtainable, the numerical solution of the inverse Laplace transform can be used to obtain f(ss)(t). Both methods allow n and m to be continuous fitting parameters. These approaches are generally applicable to enzymes that translocate along a lattice or require repetition of a series of steps before product formation.

  7. Terahertz Quantum Cascade Structures Using Step Wells And Longitudinal Optical-Phonon Scattering

    DTIC Science & Technology

    2009-06-01

    emit many photons, which allows for differential quantum efficiencies greater than unity and hence higher power output. QCLs have been successfully...maintained. The step in the well allows for high injection efficiency due to the spatial separation of the wavefunctions. A step quantum well, in which at...III.D.34), the photon density is determined to be ( )thiphotonphoton IILeAn − Γ = ητ (III.D.35) where the internal quantum efficiency

  8. Summary of Simplified Two Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydrogen/Oxygen

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Molnar, Melissa

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (greater than l x 10(exp -20)) moles per cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T(sub 4)). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/Air fuel and for H2/O2. A similar correlation is also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T(sub 4)) as a function of overall fuel/air ratio, pressure and initial temperature (T(sub 3)). High values of the regression coefficient R squared are obtained.

  9. One False Step: "Detroit," "Step" and Movies of Rising and Falling

    ERIC Educational Resources Information Center

    Beck, Bernard

    2018-01-01

    "Detroit" and "Step" are two recent movies in the context of urban riots in protest of police brutality. They refer to time periods separated by half a century, but there are common themes in the two that seem appropriate to both times. The movies are not primarily concerned with the riot events, but the riot is a major…

  10. Assessment Data at Your Fingertips: Advances Allow for Timely Reporting

    ERIC Educational Resources Information Center

    Bolch, Matt

    2009-01-01

    The ever-increasing standards of No Child Left Behind regulations and various state assessments have put more pressure on teachers and administrators to monitor the learning process. Fortunately, the advent of technology is allowing teachers to test more often to prepare students for high-stakes tests and for districts to understand results for…

  11. [Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    McLaren, Ian A.; Wrobel, Jacek D.

    1997-01-01

    The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.

  12. Stepped nozzle

    DOEpatents

    Sutton, George P.

    1998-01-01

    An insert which allows a supersonic nozzle of a rocket propulsion system to operate at two or more different nozzle area ratios. This provides an improved vehicle flight performance or increased payload. The insert has significant advantages over existing devices for increasing nozzle area ratios. The insert is temporarily fastened by a simple retaining mechanism to the aft end of the diverging segment of the nozzle and provides for a multi-step variation of nozzle area ratio. When mounted in place, the insert provides the nozzle with a low nozzle area ratio. During flight, the retaining mechanism is released and the insert ejected thereby providing a high nozzle area ratio in the diverging nozzle segment.

  13. Stepped nozzle

    DOEpatents

    Sutton, G.P.

    1998-07-14

    An insert is described which allows a supersonic nozzle of a rocket propulsion system to operate at two or more different nozzle area ratios. This provides an improved vehicle flight performance or increased payload. The insert has significant advantages over existing devices for increasing nozzle area ratios. The insert is temporarily fastened by a simple retaining mechanism to the aft end of the diverging segment of the nozzle and provides for a multi-step variation of nozzle area ratio. When mounted in place, the insert provides the nozzle with a low nozzle area ratio. During flight, the retaining mechanism is released and the insert ejected thereby providing a high nozzle area ratio in the diverging nozzle segment. 5 figs.

  14. Enhanced sampling simulations of DNA step parameters.

    PubMed

    Karolak, Aleksandra; van der Vaart, Arjan

    2014-12-15

    A novel approach for the selection of step parameters as reaction coordinates in enhanced sampling simulations of DNA is presented. The method uses three atoms per base and does not require coordinate overlays or idealized base pairs. This allowed for a highly efficient implementation of the calculation of all step parameters and their Cartesian derivatives in molecular dynamics simulations. Good correlation between the calculated and actual twist, roll, tilt, shift, and slide parameters is obtained, while the correlation with rise is modest. The method is illustrated by its application to the methylated and unmethylated 5'-CATGTGACGTCACATG-3' double stranded DNA sequence. One-dimensional umbrella simulations indicate that the flexibility of the central CG step is only marginally affected by methylation. © 2014 Wiley Periodicals, Inc.

  15. A step forward in understanding step-overs: the case of the Dead Sea Fault in northern Israel

    NASA Astrophysics Data System (ADS)

    Dembo, Neta; Granot, Roi; Hamiel, Yariv

    2017-04-01

    The rotational deformation field around step-overs between segments of strike-slip faults is poorly resolved. Vertical-axis paleomagnetic rotations can be used to characterize the deformation field, and together with mechanical modeling, can provide constraints on the characteristics of the adjacent fault segments. The northern Dead Sea Fault, a major segmented sinistral transform fault that straddles the boundary between the Arabian Plate and Sinai Subplate, offers an appropriate tectonic setting for our detailed mechanical and paleomagnetic investigation. We examine the paleomagnetic vertical-axis rotations of Neogene-Pleistocene basalt outcrops surrounding a right step-over between two prominent segments of the fault: the Jordan Gorge section and the Hula East Boundary Fault. Results from 20 new paleomagnetic sites reveal significant (>20˚) counterclockwise rotations within the step-over and small clockwise rotations in the vicinity. Sites located further (>2.5 km) away from the step-over generally experience negligible to minor rotations. Finally, we construct a mechanical model guided by the observed rotational field that allows us to characterize the structural, mechanical and kinematic behavior of the Dead Sea Fault in northern Israel.

  16. Evolution of robot-assisted orthotopic ileal neobladder formation: a step-by-step update to the University of Southern California (USC) technique.

    PubMed

    Chopra, Sameer; de Castro Abreu, Andre Luis; Berger, Andre K; Sehgal, Shuchi; Gill, Inderbir; Aron, Monish; Desai, Mihir M

    2017-01-01

    To describe our, step-by-step, technique for robotic intracorporeal neobladder formation. The main surgical steps to forming the intracorporeal orthotopic ileal neobladder are: isolation of 65 cm of small bowel; small bowel anastomosis; bowel detubularisation; suture of the posterior wall of the neobladder; neobladder-urethral anastomosis and cross folding of the pouch; and uretero-enteral anastomosis. Improvements have been made to these steps to enhance time efficiency without compromising neobladder configuration. Our technical improvements have resulted in an improvement in operative time from 450 to 360 min. We describe an updated step-by-step technique of robot-assisted intracorporeal orthotopic ileal neobladder formation. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  17. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    DOE PAGES

    Yu, Sungduk; Pritchard, Michael S.

    2015-12-17

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m 2) and longwave cloud forcing (~5 W/m 2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation ismore » more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less

  18. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sungduk; Pritchard, Michael S.

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m 2) and longwave cloud forcing (~5 W/m 2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation ismore » more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less

  19. Step Detection Robust against the Dynamics of Smartphones

    PubMed Central

    Lee, Hwan-hee; Choi, Suji; Lee, Myeong-jin

    2015-01-01

    A novel algorithm is proposed for robust step detection irrespective of step mode and device pose in smartphone usage environments. The dynamics of smartphones are decoupled into a peak-valley relationship with adaptive magnitude and temporal thresholds. For extracted peaks and valleys in the magnitude of acceleration, a step is defined as consisting of a peak and its adjacent valley. Adaptive magnitude thresholds consisting of step average and step deviation are applied to suppress pseudo peaks or valleys that mostly occur during the transition among step modes or device poses. Adaptive temporal thresholds are applied to time intervals between peaks or valleys to consider the time-varying pace of human walking or running for the correct selection of peaks or valleys. From the experimental results, it can be seen that the proposed step detection algorithm shows more than 98.6% average accuracy for any combination of step mode and device pose and outperforms state-of-the-art algorithms. PMID:26516857

  20. Two-step Raman spectroscopy method for tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Kozlov, S. V.; Moryatov, A. A.; Myakinin, O. O.; Artemyev, D. N.

    2014-05-01

    Two-step Raman spectroscopy phase method was proposed for differential diagnosis of malignant tumor in skin and lung tissue. It includes detection of malignant tumor in healthy tissue on first step with identification of concrete cancer type on the second step. Proposed phase method analyze spectral intensity alteration in 1300-1340 and 1640-1680 cm-1 Raman bands in relation to the intensity of the 1450 cm-1 band on first step, and relative differences between RS intensities for tumor area and healthy skin closely adjacent to the lesion on the second step. It was tested more than 40 ex vivo samples of lung tissue and more than 50 in vivo skin tumors. Linear Discriminant Analysis, Quadratic Discriminant Analysis and Support Vector Machine were used for tumors type classification on phase planes. It is shown that two-step phase method allows to reach 88.9% sensitivity and 87.8% specificity for malignant melanoma diagnosis (skin cancer); 100% sensitivity and 81.5% specificity for adenocarcinoma diagnosis (lung cancer); 90.9% sensitivity and 77.8% specificity for squamous cell carcinoma diagnosis (lung cancer).

  1. Piloted simulator study of allowable time delay in pitch flight control system of a transport airplane with negative static stability

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Smith, Paul M.; Person, Lee H., Jr.; Meyer, Robert T.; Tingas, Stephen A.

    1987-01-01

    A piloted simulation study was conducted to determine the permissible time delay in the flight control system of a 10-percent statically unstable transport airplane during cruise flight conditions. The math model used for the simulation was a derivative Lockheed L-1011 wide-body jet transport. Data were collected and analyzed from a total of 137 cruising flights in both calm- and turbulent-air conditions. Results of this piloted simulation study verify previous findings that show present military specifications for allowable control-system time delay may be too stringent when applied to transport-size airplanes. Also, the degree of handling-qualities degradation due to time delay is shown to be strongly dependent on the source of the time delay in an advanced flight control system. Maximum allowable time delay for each source of time delay in the control system, in addition to a less stringent overall maximum level of time delay, should be considered for large aircraft. Preliminary results also suggest that adverse effects of control-system time delay may be at least partially offset by variations in control gearing. It is recommended that the data base include different airplane baselines, control systems, and piloting tasks with many pilots participating, so that a reasonable set of limits for control-system time delay can be established to replace the military specification limits currently being used.

  2. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    PubMed

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  3. Several steps/day indicators predict changes in anthropometric outcomes: HUB City Steps.

    PubMed

    Thomson, Jessica L; Landry, Alicia S; Zoellner, Jamie M; Tudor-Locke, Catrine; Webster, Michael; Connell, Carol; Yadrick, Kathy

    2012-11-15

    Walking for exercise remains the most frequently reported leisure-time activity, likely because it is simple, inexpensive, and easily incorporated into most people's lifestyle. Pedometers are simple, convenient, and economical tools that can be used to quantify step-determined physical activity. Few studies have attempted to define the direct relationship between dynamic changes in pedometer-determined steps/day and changes in anthropometric and clinical outcomes. Hence, the objective of this secondary analysis was to evaluate the utility of several descriptive indicators of pedometer-determined steps/day for predicting changes in anthropometric and clinical outcomes using data from a community-based walking intervention, HUB City Steps, conducted in a southern, African American population. A secondary aim was to evaluate whether treating steps/day data for implausible values affected the ability of these data to predict intervention-induced changes in clinical and anthropometric outcomes. The data used in this secondary analysis were collected in 2010 from 269 participants in a six-month walking intervention targeting a reduction in blood pressure. Throughout the intervention, participants submitted weekly steps/day diaries based on pedometer self-monitoring. Changes (six-month minus baseline) in anthropometric (body mass index, waist circumference, percent body fat [%BF], fat mass) and clinical (blood pressure, lipids, glucose) outcomes were evaluated. Associations between steps/day indicators and changes in anthropometric and clinical outcomes were assessed using bivariate tests and multivariable linear regression analysis which controlled for demographic and baseline covariates. Significant negative bivariate associations were observed between steps/day indicators and the majority of anthropometric and clinical outcome changes (r = -0.3 to -0.2: P < 0.05). After controlling for covariates in the regression analysis, only the relationships between steps

  4. Iteratively improving Hi-C experiments one step at a time.

    PubMed

    Golloshi, Rosela; Sanders, Jacob T; McCord, Rachel Patton

    2018-06-01

    The 3D organization of eukaryotic chromosomes affects key processes such as gene expression, DNA replication, cell division, and response to DNA damage. The genome-wide chromosome conformation capture (Hi-C) approach can characterize the landscape of 3D genome organization by measuring interaction frequencies between all genomic regions. Hi-C protocol improvements and rapid advances in DNA sequencing power have made Hi-C useful to study diverse biological systems, not only to elucidate the role of 3D genome structure in proper cellular function, but also to characterize genomic rearrangements, assemble new genomes, and consider chromatin interactions as potential biomarkers for diseases. Yet, the Hi-C protocol is still complex and subject to variations at numerous steps that can affect the resulting data. Thus, there is still a need for better understanding and control of factors that contribute to Hi-C experiment success and data quality. Here, we evaluate recently proposed Hi-C protocol modifications as well as often overlooked variables in sample preparation and examine their effects on Hi-C data quality. We examine artifacts that can occur during Hi-C library preparation, including microhomology-based artificial template copying and chimera formation that can add noise to the downstream data. Exploring the mechanisms underlying Hi-C artifacts pinpoints steps that should be further optimized in the future. To improve the utility of Hi-C in characterizing the 3D genome of specialized populations of cells or small samples of primary tissue, we identify steps prone to DNA loss which should be considered to adapt Hi-C to lower cell numbers. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Step-by-step management of refractory gastresophageal reflux disease.

    PubMed

    Hershcovici, T; Fass, R

    2013-01-01

    Up to a third of the patients who receive proton pump inhibitor (PPI) once daily will demonstrate lack or partial response to treatment. There are various mechanisms that contribute to PPI failure and they include residual acid reflux, weakly acidic and weakly alkaline reflux, esophageal hypersensitivity, and psychological comorbidity, among others. Some of these underlying mechanisms may coincide in the same patient. Evaluation for proper compliance and adequate dosing time of PPIs should be the first management step before ordering invasive diagnostic tests. Doubling the PPI dose or switching to another PPI is the second step of management. Upper endoscopy and pH testing appear to have limited diagnostic value in patients who failed PPI treatment. In contrast, esophageal impedance with pH testing (multichannel intraluminal impedance MII-pH) on therapy appears to provide the most insightful information about the subsequent management of these patients (step 3). In step 4, treatment should be tailored to the specific underlying mechanism of patient's PPI failure. For those who demonstrate weakly acidic or weakly alkaline reflux as the underlying cause of their residual symptoms, transient lower esophageal sphincter relaxation reducers, endoscopic treatment, antireflux surgery and pain modulators should be considered. In those with functional heartburn, pain modulators are the cornerstone of therapy. © 2012 Copyright the Authors. Journal compilation © 2012, Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  6. Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal.

    PubMed

    Sánchez-Martín, J; Ghebremichael, K; Beltrán-Heredia, J

    2010-08-01

    The coagulant proteins from Moringa oleifera purified with single-step and two-step ion-exchange processes were used for the coagulation of surface water from Meuse river in The Netherlands. The performances of the two purified coagulants and the crude extract were assessed in terms of turbidity and DOC removal. The results indicated that the optimum dosage of the single-step purified coagulant was more than two times higher compared to the two-step purified coagulant in terms of turbidity removal. And the residual DOC in the two-step purified coagulant was lower than in single-step purified coagulant or crude extract. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Effects of Conjugate Gradient Methods and Step-Length Formulas on the Multiscale Full Waveform Inversion in Time Domain: Numerical Experiments

    NASA Astrophysics Data System (ADS)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José; Liu, Qinya; Zhou, Bing

    2017-05-01

    We carry out full waveform inversion (FWI) in time domain based on an alternative frequency-band selection strategy that allows us to implement the method with success. This strategy aims at decomposing the seismic data within partially overlapped frequency intervals by carrying out a concatenated treatment of the wavelet to largely avoid redundant frequency information to adapt to wavelength or wavenumber coverage. A pertinent numerical test proves the effectiveness of this strategy. Based on this strategy, we comparatively analyze the effects of update parameters for the nonlinear conjugate gradient (CG) method and step-length formulas on the multiscale FWI through several numerical tests. The investigations of up to eight versions of the nonlinear CG method with and without Gaussian white noise make clear that the HS (Hestenes and Stiefel in J Res Natl Bur Stand Sect 5:409-436, 1952), CD (Fletcher in Practical methods of optimization vol. 1: unconstrained optimization, Wiley, New York, 1987), and PRP (Polak and Ribière in Revue Francaise Informat Recherche Opertionelle, 3e Année 16:35-43, 1969; Polyak in USSR Comput Math Math Phys 9:94-112, 1969) versions are more efficient among the eight versions, while the DY (Dai and Yuan in SIAM J Optim 10:177-182, 1999) version always yields inaccurate result, because it overestimates the deeper parts of the model. The application of FWI algorithms using distinct step-length formulas, such as the direct method ( Direct), the parabolic search method ( Search), and the two-point quadratic interpolation method ( Interp), proves that the Interp is more efficient for noise-free data, while the Direct is more efficient for Gaussian white noise data. In contrast, the Search is less efficient because of its slow convergence. In general, the three step-length formulas are robust or partly insensitive to Gaussian white noise and the complexity of the model. When the initial velocity model deviates far from the real model or the

  8. Efficient computation of the Grünwald-Letnikov fractional diffusion derivative using adaptive time step memory

    NASA Astrophysics Data System (ADS)

    MacDonald, Christopher L.; Bhattacharya, Nirupama; Sprouse, Brian P.; Silva, Gabriel A.

    2015-09-01

    Computing numerical solutions to fractional differential equations can be computationally intensive due to the effect of non-local derivatives in which all previous time points contribute to the current iteration. In general, numerical approaches that depend on truncating part of the system history while efficient, can suffer from high degrees of error and inaccuracy. Here we present an adaptive time step memory method for smooth functions applied to the Grünwald-Letnikov fractional diffusion derivative. This method is computationally efficient and results in smaller errors during numerical simulations. Sampled points along the system's history at progressively longer intervals are assumed to reflect the values of neighboring time points. By including progressively fewer points backward in time, a temporally 'weighted' history is computed that includes contributions from the entire past of the system, maintaining accuracy, but with fewer points actually calculated, greatly improving computational efficiency.

  9. Implementation of Time-Resolved Step-Scan Fourier Transform Infrared (FT-IR) Spectroscopy Using a kHz Repetition Rate Pump Laser

    PubMed Central

    MAGANA, DONNY; PARUL, DZMITRY; DYER, R. BRIAN; SHREVE, ANDREW P.

    2011-01-01

    Time-resolved step-scan Fourier transform infrared (FT-IR) spectroscopy has been shown to be invaluable for studying excited-state structures and dynamics in both biological and inorganic systems. Despite the established utility of this method, technical challenges continue to limit the data quality and more wide ranging applications. A critical problem has been the low laser repetition rate and interferometer stepping rate (both are typically 10 Hz) used for data acquisition. Here we demonstrate significant improvement in the quality of time-resolved spectra through the use of a kHz repetition rate laser to achieve kHz excitation and data collection rates while stepping the spectrometer at 200 Hz. We have studied the metal-to-ligand charge transfer excited state of Ru(bipyridine)3Cl2 in deuterated acetonitrile to test and optimize high repetition rate data collection. Comparison of different interferometer stepping rates reveals an optimum rate of 200 Hz due to minimization of long-term baseline drift. With the improved collection efficiency and signal-to-noise ratio, better assignments of the MLCT excited-state bands can be made. Using optimized parameters, carbonmonoxy myoglobin in deuterated buffer is also studied by observing the infrared signatures of carbon monoxide photolysis upon excitation of the heme. We conclude from these studies that a substantial increase in performance of ss-FT-IR instrumentation is achieved by coupling commercial infrared benches with kHz repetition rate lasers. PMID:21513597

  10. Detection of Listeria monocytogenes in ready-to-eat food by Step One real-time polymerase chain reaction.

    PubMed

    Pochop, Jaroslav; Kačániová, Miroslava; Hleba, Lukáš; Lopasovský, L'ubomír; Bobková, Alica; Zeleňáková, Lucia; Stričík, Michal

    2012-01-01

    The aim of this study was to follow contamination of ready-to-eat food with Listeria monocytogenes by using the Step One real time polymerase chain reaction (PCR). We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and MicroSEQ® Listeria monocytogenes Detection Kit for the real-time PCR performance. In 30 samples of ready-to-eat milk and meat products without incubation we detected strains of Listeria monocytogenes in five samples (swabs). Internal positive control (IPC) was positive in all samples. Our results indicated that the real-time PCR assay developed in this study could sensitively detect Listeria monocytogenes in ready-to-eat food without incubation.

  11. Wafer-scale Thermodynamically Stable GaN Nanorods via Two-Step Self-Limiting Epitaxy for Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Kum, Hyun; Seong, Han-Kyu; Lim, Wantae; Chun, Daemyung; Kim, Young-Il; Park, Youngsoo; Yoo, Geonwook

    2017-01-01

    We present a method of epitaxially growing thermodynamically stable gallium nitride (GaN) nanorods via metal-organic chemical vapor deposition (MOCVD) by invoking a two-step self-limited growth (TSSLG) mechanism. This allows for growth of nanorods with excellent geometrical uniformity with no visible extended defects over a 100 mm sapphire (Al2O3) wafer. An ex-situ study of the growth morphology as a function of growth time for the two self-limiting steps elucidate the growth dynamics, which show that formation of an Ehrlich-Schwoebel barrier and preferential growth in the c-plane direction governs the growth process. This process allows monolithic formation of dimensionally uniform nanowires on templates with varying filling matrix patterns for a variety of novel electronic and optoelectronic applications. A color tunable phosphor-free white light LED with a coaxial architecture is fabricated as a demonstration of the applicability of these nanorods grown by TSSLG.

  12. Recovery of forward stepping in spinal cord injured patients does not transfer to untrained backward stepping.

    PubMed

    Grasso, Renato; Ivanenko, Yuri P; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Lacquaniti, Francesco

    2004-08-01

    Six spinal cord injured (SCI) patients were trained to step on a treadmill with body-weight support for 1.5-3 months. At the end of training, foot motion recovered the shape and the step-by-step reproducibility that characterize normal gait. They were then asked to step backward on the treadmill belt that moved in the opposite direction relative to standard forward training. In contrast to healthy subjects, who can immediately reverse the direction of walking by time-reversing the kinematic waveforms, patients were unable to step backward. Similarly patients were unable to perform another untrained locomotor task, namely stepping in place on the idle treadmill. Two patients who were trained to step backward for 2-3 weeks were able to develop control of foot motion appropriate for this task. The results show that locomotor improvement does not transfer to untrained tasks, thus supporting the idea of task-dependent plasticity in human locomotor networks.

  13. A stochastical event-based continuous time step rainfall generator based on Poisson rectangular pulse and microcanonical random cascade models

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph

    2017-04-01

    Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative

  14. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, John L.

    1990-01-01

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  15. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, J.L.

    1990-07-10

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.

  16. 20 CFR 655.1114 - Element IV-What are the timely and significant steps an H-1C employer must take to recruit and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... significant steps an H-1C employer must take to recruit and retain U.S. nurses? 655.1114 Section 655.1114... Workers as Registered Nurses? § 655.1114 Element IV—What are the timely and significant steps an H-1C employer must take to recruit and retain U.S. nurses? (a) The fourth attestation element requires that the...

  17. 24 CFR 982.517 - Utility allowance schedule.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... percent or more in the utility rate since the last time the utility allowance schedule was revised. The... allowance schedule to correct any errors, or as necessary to update the schedule. (d) Use of utility...

  18. 24 CFR 982.517 - Utility allowance schedule.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... percent or more in the utility rate since the last time the utility allowance schedule was revised. The... allowance schedule to correct any errors, or as necessary to update the schedule. (d) Use of utility...

  19. 24 CFR 982.517 - Utility allowance schedule.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... percent or more in the utility rate since the last time the utility allowance schedule was revised. The... allowance schedule to correct any errors, or as necessary to update the schedule. (d) Use of utility...

  20. Training Rapid Stepping Responses in an Individual With Stroke

    PubMed Central

    Inness, Elizabeth L.; Komar, Janice; Biasin, Louis; Brunton, Karen; Lakhani, Bimal; McIlroy, William E.

    2011-01-01

    Background and Purpose Compensatory stepping reactions are important responses to prevent a fall following a postural perturbation. People with hemiparesis following a stroke show delayed initiation and execution of stepping reactions and often are found to be unable to initiate these steps with the more-affected limb. This case report describes a targeted training program involving repeated postural perturbations to improve control of compensatory stepping in an individual with stroke. Case Description Compensatory stepping reactions of a 68-year-old man were examined 52 days after left hemorrhagic stroke. He required assistance to prevent a fall in all trials administered during his initial examination because he showed weight-bearing asymmetry (with more weight borne on the more-affected right side), was unable to initiate stepping with the right leg (despite blocking of the left leg in some trials), and demonstrated delayed response times. The patient completed 6 perturbation training sessions (30–60 minutes per session) that aimed to improve preperturbation weight-bearing symmetry, to encourage stepping with the right limb, and to reduce step initiation and completion times. Outcomes Improved efficacy of compensatory stepping reactions with training and reduced reliance on assistance to prevent falling were observed. Improvements were noted in preperturbation asymmetry and step timing. Blocking the left foot was effective in encouraging stepping with the more-affected right foot. Discussion This case report demonstrates potential short-term adaptations in compensatory stepping reactions following perturbation training in an individual with stroke. Future work should investigate the links between improved compensatory step characteristics and fall risk in this vulnerable population. PMID:21511992

  1. Why Not Wait? Eight Institutions Share Their Experiences Moving United States Medical Licensing Examination Step 1 After Core Clinical Clerkships.

    PubMed

    Daniel, Michelle; Fleming, Amy; Grochowski, Colleen O'Conner; Harnik, Vicky; Klimstra, Sibel; Morrison, Gail; Pock, Arnyce; Schwartz, Michael L; Santen, Sally

    2017-11-01

    The majority of medical students complete the United States Medical Licensing Examination Step 1 after their foundational sciences; however, there are compelling reasons to examine this practice. This article provides the perspectives of eight MD-granting medical schools that have moved Step 1 after the core clerkships, describing their rationale, logistics of the change, outcomes, and lessons learned. The primary reasons these institutions cite for moving Step 1 after clerkships are to foster more enduring and integrated basic science learning connected to clinical care and to better prepare students for the increasingly clinical focus of Step 1. Each school provides key features of the preclerkship and clinical curricula and details concerning taking Steps 1 and 2, to allow other schools contemplating change to understand the landscape. Most schools report an increase in aggregate Step 1 scores after the change. Despite early positive outcomes, there may be unintended consequences to later scheduling of Step 1, including relatively late student reevaluations of their career choice if Step 1 scores are not competitive in the specialty area of their choice. The score increases should be interpreted with caution: These schools may not be representative with regard to mean Step 1 scores and failure rates. Other aspects of curricular transformation and rising national Step 1 scores confound the data. Although the optimal timing of Step 1 has yet to be determined, this article summarizes the perspectives of eight schools that changed Step 1 timing, filling a gap in the literature on this important topic.

  2. Gap Year: Time off, with a Plan

    ERIC Educational Resources Information Center

    Torpey, Elka Maria

    2009-01-01

    A gap year allows people to step off the usual educational or career path and reassess their future. According to people who have taken a gap year, the time away can be well worth it. This article can help a person decide whether to take a gap year and how to make the most of his time off. It describes what a gap year is, including its pros and…

  3. How many steps/day are enough? for adults

    PubMed Central

    2011-01-01

    Physical activity guidelines from around the world are typically expressed in terms of frequency, duration, and intensity parameters. Objective monitoring using pedometers and accelerometers offers a new opportunity to measure and communicate physical activity in terms of steps/day. Various step-based versions or translations of physical activity guidelines are emerging, reflecting public interest in such guidance. However, there appears to be a wide discrepancy in the exact values that are being communicated. It makes sense that step-based recommendations should be harmonious with existing evidence-based public health guidelines that recognize that "some physical activity is better than none" while maintaining a focus on time spent in moderate-to-vigorous physical activity (MVPA). Thus, the purpose of this review was to update our existing knowledge of "How many steps/day are enough?", and to inform step-based recommendations consistent with current physical activity guidelines. Normative data indicate that healthy adults typically take between 4,000 and 18,000 steps/day, and that 10,000 steps/day is reasonable for this population, although there are notable "low active populations." Interventions demonstrate incremental increases on the order of 2,000-2,500 steps/day. The results of seven different controlled studies demonstrate that there is a strong relationship between cadence and intensity. Further, despite some inter-individual variation, 100 steps/minute represents a reasonable floor value indicative of moderate intensity walking. Multiplying this cadence by 30 minutes (i.e., typical of a daily recommendation) produces a minimum of 3,000 steps that is best used as a heuristic (i.e., guiding) value, but these steps must be taken over and above habitual activity levels to be a true expression of free-living steps/day that also includes recommendations for minimal amounts of time in MVPA. Computed steps/day translations of time in MVPA that also include

  4. How many steps/day are enough? For adults.

    PubMed

    Tudor-Locke, Catrine; Craig, Cora L; Brown, Wendy J; Clemes, Stacy A; De Cocker, Katrien; Giles-Corti, Billie; Hatano, Yoshiro; Inoue, Shigeru; Matsudo, Sandra M; Mutrie, Nanette; Oppert, Jean-Michel; Rowe, David A; Schmidt, Michael D; Schofield, Grant M; Spence, John C; Teixeira, Pedro J; Tully, Mark A; Blair, Steven N

    2011-07-28

    Physical activity guidelines from around the world are typically expressed in terms of frequency, duration, and intensity parameters. Objective monitoring using pedometers and accelerometers offers a new opportunity to measure and communicate physical activity in terms of steps/day. Various step-based versions or translations of physical activity guidelines are emerging, reflecting public interest in such guidance. However, there appears to be a wide discrepancy in the exact values that are being communicated. It makes sense that step-based recommendations should be harmonious with existing evidence-based public health guidelines that recognize that "some physical activity is better than none" while maintaining a focus on time spent in moderate-to-vigorous physical activity (MVPA). Thus, the purpose of this review was to update our existing knowledge of "How many steps/day are enough?", and to inform step-based recommendations consistent with current physical activity guidelines. Normative data indicate that healthy adults typically take between 4,000 and 18,000 steps/day, and that 10,000 steps/day is reasonable for this population, although there are notable "low active populations." Interventions demonstrate incremental increases on the order of 2,000-2,500 steps/day. The results of seven different controlled studies demonstrate that there is a strong relationship between cadence and intensity. Further, despite some inter-individual variation, 100 steps/minute represents a reasonable floor value indicative of moderate intensity walking. Multiplying this cadence by 30 minutes (i.e., typical of a daily recommendation) produces a minimum of 3,000 steps that is best used as a heuristic (i.e., guiding) value, but these steps must be taken over and above habitual activity levels to be a true expression of free-living steps/day that also includes recommendations for minimal amounts of time in MVPA. Computed steps/day translations of time in MVPA that also include

  5. Comparing the efficacy of metronome beeps and stepping stones to adjust gait: steps to follow!

    PubMed

    Bank, Paulina J M; Roerdink, Melvyn; Peper, C E

    2011-03-01

    Acoustic metronomes and visual targets have been used in rehabilitation practice to improve pathological gait. In addition, they may be instrumental in evaluating and training instantaneous gait adjustments. The aim of this study was to compare the efficacy of two cue types in inducing gait adjustments, viz. acoustic temporal cues in the form of metronome beeps and visual spatial cues in the form of projected stepping stones. Twenty healthy elderly (aged 63.2 ± 3.6 years) were recruited to walk on an instrumented treadmill at preferred speed and cadence, paced by either metronome beeps or projected stepping stones. Gait adaptations were induced using two manipulations: by perturbing the sequence of cues and by imposing switches from one cueing type to the other. Responses to these manipulations were quantified in terms of step-length and step-time adjustments, the percentage correction achieved over subsequent steps, and the number of steps required to restore the relation between gait and the beeps or stepping stones. The results showed that perturbations in a sequence of stepping stones were overcome faster than those in a sequence of metronome beeps. In switching trials, switching from metronome beeps to stepping stones was achieved faster than vice versa, indicating that gait was influenced more strongly by the stepping stones than the metronome beeps. Together these results revealed that, in healthy elderly, the stepping stones induced gait adjustments more effectively than did the metronome beeps. Potential implications for the use of metronome beeps and stepping stones in gait rehabilitation practice are discussed.

  6. Simulations of precipitation using the Community Earth System Model (CESM): Sensitivity to microphysics time step

    NASA Astrophysics Data System (ADS)

    Murthi, A.; Menon, S.; Sednev, I.

    2011-12-01

    An inherent difficulty in the ability of global climate models to accurately simulate precipitation lies in the use of a large time step, Δt (usually 30 minutes), to solve the governing equations. Since microphysical processes are characterized by small time scales compared to Δt, finite difference approximations used to advance microphysics equations suffer from numerical instability and large time truncation errors. With this in mind, the sensitivity of precipitation simulated by the atmospheric component of CESM, namely the Community Atmosphere Model (CAM 5.1), to the microphysics time step (τ) is investigated. Model integrations are carried out for a period of five years with a spin up time of about six months for a horizontal resolution of 2.5 × 1.9 degrees and 30 levels in the vertical, with Δt = 1800 s. The control simulation with τ = 900 s is compared with one using τ = 300 s for accumulated precipitation and radi- ation budgets at the surface and top of the atmosphere (TOA), while keeping Δt fixed. Our choice of τ = 300 s is motivated by previous work on warm rain processes wherein it was shown that a value of τ around 300 s was necessary, but not sufficient, to ensure positive definiteness and numerical stability of the explicit time integration scheme used to integrate the microphysical equations. However, since the entire suite of microphysical processes are represented in our case, we suspect that this might impose additional restrictions on τ. The τ = 300 s case produces differences in large-scale accumulated rainfall from the τ = 900 s case by as large as 200 mm, over certain regions of the globe. The spatial patterns of total accumulated precipitation using τ = 300 s are in closer agreement with satellite observed precipitation, when compared to the τ = 900 s case. Differences are also seen in the radiation budget with the τ = 300 (900) s cases producing surpluses that range between 1-3 W/m2 at both the TOA and surface in the global

  7. A new theory for multistep discretizations of stiff ordinary differential equations: Stability with large step sizes

    NASA Technical Reports Server (NTRS)

    Majda, G.

    1985-01-01

    A large set of variable coefficient linear systems of ordinary differential equations which possess two different time scales, a slow one and a fast one is considered. A small parameter epsilon characterizes the stiffness of these systems. A system of o.d.e.s. in this set is approximated by a general class of multistep discretizations which includes both one-leg and linear multistep methods. Sufficient conditions are determined under which each solution of a multistep method is uniformly bounded, with a bound which is independent of the stiffness of the system of o.d.e.s., when the step size resolves the slow time scale, but not the fast one. This property is called stability with large step sizes. The theory presented lets one compare properties of one-leg methods and linear multistep methods when they approximate variable coefficient systems of stiff o.d.e.s. In particular, it is shown that one-leg methods have better stability properties with large step sizes than their linear multistep counter parts. The theory also allows one to relate the concept of D-stability to the usual notions of stability and stability domains and to the propagation of errors for multistep methods which use large step sizes.

  8. Overcoming the detection bandwidth limit in precision spectroscopy: The analytical apparatus function for a stepped frequency scan

    NASA Astrophysics Data System (ADS)

    Rohart, François

    2017-01-01

    In a previous paper [Rohart et al., Phys Rev A 2014;90(042506)], the influence of detection-bandwidth properties on observed line-shapes in precision spectroscopy was theoretically modeled for the first time using the basic model of a continuous sweeping of the laser frequency. Specific experiments confirmed general theoretical trends but also revealed several insufficiencies of the model in case of stepped frequency scans. As a consequence in as much as up-to-date experiments use step-by-step frequency-swept lasers, a new model of the influence of the detection-bandwidth is developed, including a realistic timing of signal sampling and frequency changes. Using Fourier transform techniques, the resulting time domain apparatus function gets a simple analytical form that can be easily implemented in line-shape fitting codes without any significant increase of computation durations. This new model is then considered in details for detection systems characterized by 1st and 2nd order bandwidths, underlining the importance of the ratio of detection time constant to frequency step duration, namely for the measurement of line frequencies. It also allows a straightforward analysis of corresponding systematic deviations on retrieved line frequencies and broadenings. Finally, a special attention is paid to consequences of a finite detection-bandwidth in Doppler Broadening Thermometry, namely to experimental adjustments required for a spectroscopic determination of the Boltzmann constant at the 1-ppm level of accuracy. In this respect, the interest of implementing a Butterworth 2nd order filter is emphasized.

  9. A Step-by-Step Picture of Pulsed (Time-Domain) NMR.

    ERIC Educational Resources Information Center

    Schwartz, Leslie J.

    1988-01-01

    Discusses a method for teaching time pulsed NMR principals that are as simple and pictorial as possible. Uses xyz coordinate figures and presents theoretical explanations using a Fourier transformation spectrum. Assumes no previous knowledge of quantum mechanics for students. Usable for undergraduates. (MVL)

  10. Continuous Video Modeling to Assist with Completion of Multi-Step Home Living Tasks by Young Adults with Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Mechling, Linda C.; Ayres, Kevin M.; Bryant, Kathryn J.; Foster, Ashley L.

    2014-01-01

    The current study evaluated a relatively new video-based procedure, continuous video modeling (CVM), to teach multi-step cleaning tasks to high school students with moderate intellectual disability. CVM in contrast to video modeling and video prompting allows repetition of the video model (looping) as many times as needed while the user completes…

  11. Unexpected perturbations training improves balance control and voluntary stepping times in older adults - a double blind randomized control trial.

    PubMed

    Kurz, Ilan; Gimmon, Yoav; Shapiro, Amir; Debi, Ronen; Snir, Yoram; Melzer, Itshak

    2016-03-04

    Falls are common among elderly, most of them occur while slipping or tripping during walking. We aimed to explore whether a training program that incorporates unexpected loss of balance during walking able to improve risk factors for falls. In a double-blind randomized controlled trial 53 community dwelling older adults (age 80.1±5.6 years), were recruited and randomly allocated to an intervention group (n = 27) or a control group (n = 26). The intervention group received 24 training sessions over 3 months that included unexpected perturbation of balance exercises during treadmill walking. The control group performed treadmill walking with no perturbations. The primary outcome measures were the voluntary step execution times, traditional postural sway parameters and Stabilogram-Diffusion Analysis. The secondary outcome measures were the fall efficacy Scale (FES), self-reported late life function (LLFDI), and Performance-Oriented Mobility Assessment (POMA). Compared to control, participation in intervention program that includes unexpected loss of balance during walking led to faster Voluntary Step Execution Times under single (p = 0.002; effect size [ES] =0.75) and dual task (p = 0.003; [ES] = 0.89) conditions; intervention group subjects showed improvement in Short-term Effective diffusion coefficients in the mediolateral direction of the Stabilogram-Diffusion Analysis under eyes closed conditions (p = 0.012, [ES] = 0.92). Compared to control there were no significant changes in FES, LLFDI, and POMA. An intervention program that includes unexpected loss of balance during walking can improve voluntary stepping times and balance control, both previously reported as risk factors for falls. This however, did not transferred to a change self-reported function and FES. ClinicalTrials.gov NCT01439451 .

  12. Systematic review finds major deficiencies in sample size methodology and reporting for stepped-wedge cluster randomised trials

    PubMed Central

    Martin, James; Taljaard, Monica; Girling, Alan; Hemming, Karla

    2016-01-01

    Background Stepped-wedge cluster randomised trials (SW-CRT) are increasingly being used in health policy and services research, but unless they are conducted and reported to the highest methodological standards, they are unlikely to be useful to decision-makers. Sample size calculations for these designs require allowance for clustering, time effects and repeated measures. Methods We carried out a methodological review of SW-CRTs up to October 2014. We assessed adherence to reporting each of the 9 sample size calculation items recommended in the 2012 extension of the CONSORT statement to cluster trials. Results We identified 32 completed trials and 28 independent protocols published between 1987 and 2014. Of these, 45 (75%) reported a sample size calculation, with a median of 5.0 (IQR 2.5–6.0) of the 9 CONSORT items reported. Of those that reported a sample size calculation, the majority, 33 (73%), allowed for clustering, but just 15 (33%) allowed for time effects. There was a small increase in the proportions reporting a sample size calculation (from 64% before to 84% after publication of the CONSORT extension, p=0.07). The type of design (cohort or cross-sectional) was not reported clearly in the majority of studies, but cohort designs seemed to be most prevalent. Sample size calculations in cohort designs were particularly poor with only 3 out of 24 (13%) of these studies allowing for repeated measures. Discussion The quality of reporting of sample size items in stepped-wedge trials is suboptimal. There is an urgent need for dissemination of the appropriate guidelines for reporting and methodological development to match the proliferation of the use of this design in practice. Time effects and repeated measures should be considered in all SW-CRT power calculations, and there should be clarity in reporting trials as cohort or cross-sectional designs. PMID:26846897

  13. A simple test of choice stepping reaction time for assessing fall risk in people with multiple sclerosis.

    PubMed

    Tijsma, Mylou; Vister, Eva; Hoang, Phu; Lord, Stephen R

    2017-03-01

    Purpose To determine (a) the discriminant validity for established fall risk factors and (b) the predictive validity for falls of a simple test of choice stepping reaction time (CSRT) in people with multiple sclerosis (MS). Method People with MS (n = 210, 21-74y) performed the CSRT, sensorimotor, balance and neuropsychological tests in a single session. They were then followed up for falls using monthly fall diaries for 6 months. Results The CSRT test had excellent discriminant validity with respect to established fall risk factors. Frequent fallers (≥3 falls) performed significantly worse in the CSRT test than non-frequent fallers (0-2 falls). With the odds of suffering frequent falls increasing 69% with each SD increase in CSRT (OR = 1.69, 95% CI: 1.27-2.26, p = <0.001). In regression analysis, CSRT was best explained by sway, time to complete the 9-Hole Peg test, knee extension strength of the weaker leg, proprioception and the time to complete the Trails B test (multiple R 2   =   0.449, p < 0.001). Conclusions A simple low tech CSRT test has excellent discriminative and predictive validity in relation to falls in people with MS. This test may prove useful in documenting longitudinal changes in fall risk in relation to MS disease progression and effects of interventions. Implications for rehabilitation Good choice stepping reaction time (CSRT) is required for maintaining balance. A simple low-tech CSRT test has excellent discriminative and predictive validity in relation to falls in people with MS. This test may prove useful documenting longitudinal changes in fall risk in relation to MS disease progression and effects of interventions.

  14. Influence of ageing on self-etch adhesives: one-step vs. two-step systems.

    PubMed

    Marchesi, Giulio; Frassetto, Andrea; Visintini, Erika; Diolosà, Marina; Turco, Gianluca; Salgarello, Stefano; Di Lenarda, Roberto; Cadenaro, Milena; Breschi, Lorenzo

    2013-02-01

    The aim of this study was to evaluate microtensile bond strength (μTBS) to dentine, interfacial nanoleakage expression, and stability after ageing, of two-step vs. one-step self-etch adhesives. Human molars were cut to expose middle/deep dentine, assigned to groups (n = 15), and treated with the following bonding systems: (i) Optibond XTR (a two-step self-etch adhesive; Kerr), (ii) Clearfil SE Bond (a two-step self-etch adhesive; Kuraray), (iii) Adper Easy Bond (a one-step self-etch adhesive; 3M ESPE), and (iv) Bond Force (a one-step self-etch adhesive; Tokuyama). Specimens were processed for μTBS testing after 24 h, 6 months, or 1 yr of storage in artificial saliva at 37°C. Nanoleakage expression was examined in similarly processed additional specimens. At baseline the μTBS results ranked in the following order: Adper Easy Bond = Optibond XTR ≥Clearfil SE = Bond Force, and interfacial nanoleakage analysis showed Clearfil SE Bond = Adper Easy Bond = Optibond XTR> Bond Force. After 1 yr of storage, Optibond XTR, Clearfil SE Bond, and Adper Easy Bond showed higher μTBS and lower interfacial nanoleakage expression compared with Bond Force. In conclusion, immediate bond strength, nanoleakage expression, and stability over time were not related to the number of steps of the bonding systems, but to their chemical formulations. © 2012 Eur J Oral Sci.

  15. A training approach to improve stepping automaticity while dual-tasking in Parkinson's disease: A prospective pilot study.

    PubMed

    Chomiak, Taylor; Watts, Alexander; Meyer, Nicole; Pereira, Fernando V; Hu, Bin

    2017-02-01

    Deficits in motor movement automaticity in Parkinson's disease (PD), especially during multitasking, are early and consistent hallmarks of cognitive function decline, which increases fall risk and reduces quality of life. This study aimed to test the feasibility and potential efficacy of a wearable sensor-enabled technological platform designed for an in-home music-contingent stepping-in-place (SIP) training program to improve step automaticity during dual-tasking (DT). This was a 4-week prospective intervention pilot study. The intervention uses a sensor system and algorithm that runs off the iPod Touch which calculates step height (SH) in real-time. These measurements were then used to trigger auditory (treatment group, music; control group, radio podcast) playback in real-time through wireless headphones upon maintenance of repeated large amplitude stepping. With small steps or shuffling, auditory playback stops, thus allowing participants to use anticipatory motor control to regain positive feedback. Eleven participants were recruited from an ongoing trial (Trial Number: ISRCTN06023392). Fear of falling (FES-I), general cognitive functioning (MoCA), self-reported freezing of gait (FOG-Q), and DT step automaticity were evaluated. While we found no significant effect of training on FES-I, MoCA, or FOG-Q, we did observe a significant group (music vs podcast) by training interaction in DT step automaticity (P<0.01). Wearable device technology can be used to enable musically-contingent SIP training to increase motor automaticity for people living with PD. The training approach described here can be implemented at home to meet the growing demand for self-management of symptoms by patients.

  16. Unsteady Crystal Growth Due to Step-Bunch Cascading

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Lin, Hong; Rosenberger, Franz

    1997-01-01

    Based on our experimental findings of growth rate fluctuations during the crystallization of the protein lysozym, we have developed a numerical model that combines diffusion in the bulk of a solution with diffusive transport to microscopic growth steps that propagate on a finite crystal facet. Nonlinearities in layer growth kinetics arising from step interaction by bulk and surface diffusion, and from step generation by surface nucleation, are taken into account. On evaluation of the model with properties characteristic for the solute transport, and the generation and propagation of steps in the lysozyme system, growth rate fluctuations of the same magnitude and characteristic time, as in the experiments, are obtained. The fluctuation time scale is large compared to that of step generation. Variations of the governing parameters of the model reveal that both the nonlinearity in step kinetics and mixed transport-kinetics control of the crystallization process are necessary conditions for the fluctuations. On a microscopic scale, the fluctuations are associated with a morphological instability of the vicinal face, in which a step bunch triggers a cascade of new step bunches through the microscopic interfacial supersaturation distribution.

  17. Control Software for Piezo Stepping Actuators

    NASA Technical Reports Server (NTRS)

    Shields, Joel F.

    2013-01-01

    A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or power-off state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state. The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for smalland medium-sized reference positions (less than 200 microns) to within 10 nanometers can be achieved in under 10 seconds. Convergence times for large moves (greater than 1 millimeter) are limited by the step rate.

  18. Step Bunching: Influence of Impurities and Solution Flow

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.; Vekilov, P. G.; Coriell, S. R.; Murray, B. T.; McFadden, G. B.

    1999-01-01

    Step bunching results in striations even at relatively early stages of its development and in inclusions of mother liquor at the later stages. Therefore, eliminating step bunching is crucial for high crystal perfection. At least 5 major effects causing and influencing step bunching are known: (1) Basic morphological instability of stepped interfaces. It is caused by concentration gradient in the solution normal to the face and by the redistribution of solute tangentially to the interface which redistribution enhances occasional perturbations in step density due to various types of noise; (2) Aggravation of the above basic instability by solution flowing tangentially to the face in the same directions as the steps or stabilization of equidistant step train if these flows are antiparallel; (3) Enhanced bunching at supersaturation where step velocity v increases with relative supersaturation s much faster than linear. This v(s) dependence is believed to be associated with impurities. The impurities of which adsorption time is comparable with the time needed to deposit one lattice layer may also be responsible for bunching; (4) Very intensive solution flow stabilizes growing interface even at parallel solution and step flows; (5) Macrosteps were observed to nucleate at crystal corners and edges. Numerical simulation, assuming step-step interactions via surface diffusion also show that step bunching may be induced by random step nucleation at the facet edge and by discontinuity in the step density (a ridge) somewhere in the middle of a face. The corresponding bunching patterns produce the ones observed in experiment. The nature of step bunching generated at the corners and edges and by dislocation step sources, as well as the also relative importance and interrelations between mechanisms 1-5 is not clear, both from experimental and theoretical standpoints. Furthermore, several laws controlling the evolution of existing step bunches have been suggested, though

  19. Step-Climbing Power Wheelchairs: A Literature Review

    PubMed Central

    Sundaram, S. Andrea; Wang, Hongwu; Ding, Dan

    2017-01-01

    Background: Power wheelchairs capable of overcoming environmental barriers, such as uneven terrain, curbs, or stairs, have been under development for more than a decade. Method: We conducted a systematic review of the scientific and engineering literature to identify these devices, and we provide brief descriptions of the mechanism and method of operation for each. We also present data comparing their capabilities in terms of step climbing and standard wheelchair functions. Results: We found that all the devices presented allow for traversal of obstacles that cannot be accomplished with traditional power wheelchairs, but the slow speeds and small wheel diameters of some designs make them only moderately effective in the basic area of efficient transport over level ground and the size and configuration of some others limit maneuverability in tight spaces. Conclusion: We propose that safety and performance test methods more comprehensive than the International Organization for Standards (ISO) testing protocols be developed for measuring the capabilities of advanced wheelchairs with step-climbing and other environment-negotiating features to allow comparison of their clinical effectiveness. PMID:29339886

  20. Several steps/day indicators predict changes in anthropometric outcomes: HUB city steps

    USDA-ARS?s Scientific Manuscript database

    Walking for exercise remains the most frequently reported leisure-time activity, likely because it is simple, inexpensive, and easily incorporated into most people’s lifestyle. Pedometers are simple, convenient, and economical tools that can be used to quantify step-determined physical activity. F...

  1. Subsystem real-time time dependent density functional theory.

    PubMed

    Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele

    2015-04-21

    We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.

  2. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors.

    PubMed

    O'Connell, Sandra; ÓLaighin, Gearóid; Quinlan, Leo R

    2017-01-01

    Physical activity is an essential aspect of a healthy lifestyle for both physical and mental health states. As step count is one of the most utilized measures for quantifying physical activity it is important that activity-monitoring devices be both sensitive and specific in recording actual steps taken and disregard non-stepping body movements. The objective of this study was to assess the specificity of five activity monitors during a variety of prescribed non-stepping activities. Participants wore five activity monitors simultaneously for a variety of prescribed activities including deskwork, taking an elevator, taking a bus journey, automobile driving, washing and drying dishes; functional reaching task; indoor cycling; outdoor cycling; and indoor rowing. Each task was carried out for either a specific duration of time or over a specific distance. Activity monitors tested were the ActivPAL micro™, NL-2000™ pedometer, Withings Smart Activity Monitor Tracker (Pulse O2)™, Fitbit One™ and Jawbone UP™. Participants were video-recorded while carrying out the prescribed activities and the false positive step count registered on each activity monitor was obtained and compared to the video. All activity monitors registered a significant number of false positive steps per minute during one or more of the prescribed activities. The Withings™ activity performed best, registering a significant number of false positive steps per minute during the outdoor cycling activity only (P = 0.025). The Jawbone™ registered a significant number of false positive steps during the functional reaching task and while washing and drying dishes, which involved arm and hand movement (P < 0.01 for both). The ActivPAL™ registered a significant number of false positive steps during the cycling exercises (P < 0.001 for both). As a number of false positive steps were registered on the activity monitors during the non-stepping activities, the authors conclude that non-stepping

  3. Age-related changes in compensatory stepping in response to unpredictable perturbations.

    PubMed

    McIlroy, W E; Maki, B E

    1996-11-01

    Recent studies highlight the importance of compensatory stepping to preserve stability, and the spatial and temporal demands placed on the control of this reaction. Age-related changes in the control of stepping could greatly influence the risk of falling. The present study compares, in healthy elderly and young adults, the characteristics of compensatory stepping responses to unpredictable postural perturbations. A moving platform was used to unpredictably perturb the upright stance of 14 naive, active and mobile subjects (5 aged 22 to 28 and 9 aged 65 to 81). The first 10 randomized trials (5 forward and 5 backward) were evaluated to allow a focus on reactions to relatively novel perturbations. The behavior of the subjects was not constrained. Forceplate and kinematic measures were used to evaluate the responses evoked by the brief (600 msec) platform translation. Subjects stepped in 98% of the trials. Although the elderly were less likely to execute a lateral anticipatory postural adjustment prior to foot-lift, the onset of swing-leg unloading tended to begin at the same time in the two age groups. There was remarkable similarity between the young and elderly in many other characteristics of the first step of the response. In spite of this similarity, the elderly subjects were twice as likely to take additional steps to regain stability (63% of trials for elderly). Moreover, in elderly subjects, the additional steps were often directed so as to preserve lateral stability, whereas the young rarely showed this tendency. Given the functional significance of base-of-support changes as a strategy for preserving stability and the age-related differences presently revealed, assessment of the capacity to preserve stability against unpredictable perturbation, and specific measures such as the occurrence or placement of multiple steps, may prove to be a significant predictor of falling risk and an important outcome in evaluating or developing intervention strategies to

  4. Surfactant-controlled polymerization of semiconductor clusters to quantum dots through competing step-growth and living chain-growth mechanisms.

    PubMed

    Evans, Christopher M; Love, Alyssa M; Weiss, Emily A

    2012-10-17

    This article reports control of the competition between step-growth and living chain-growth polymerization mechanisms in the formation of cadmium chalcogenide colloidal quantum dots (QDs) from CdSe(S) clusters by varying the concentration of anionic surfactant in the synthetic reaction mixture. The growth of the particles proceeds by step-addition from initially nucleated clusters in the absence of excess phosphinic or carboxylic acids, which adsorb as their anionic conjugate bases, and proceeds indirectly by dissolution of clusters, and subsequent chain-addition of monomers to stable clusters (Ostwald ripening) in the presence of excess phosphinic or carboxylic acid. Fusion of clusters by step-growth polymerization is an explanation for the consistent observation of so-called "magic-sized" clusters in QD growth reactions. Living chain-addition (chain addition with no explicit termination step) produces QDs over a larger range of sizes with better size dispersity than step-addition. Tuning the molar ratio of surfactant to Se(2-)(S(2-)), the limiting ionic reagent, within the living chain-addition polymerization allows for stoichiometric control of QD radius without relying on reaction time.

  5. 41 CFR 302-2.110 - Are there time factors that we must consider for allowing an employee to complete all aspects of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false Are there time factors... 302-2.110 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES INTRODUCTION 2-EMPLOYEES ELIGIBILITY REQUIREMENTS Agency Responsibilities Time Limits § 302-2.110...

  6. 41 CFR 302-2.110 - Are there time factors that we must consider for allowing an employee to complete all aspects of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false Are there time factors... 302-2.110 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES INTRODUCTION 2-EMPLOYEES ELIGIBILITY REQUIREMENTS Agency Responsibilities Time Limits § 302-2.110...

  7. 41 CFR 302-2.110 - Are there time factors that we must consider for allowing an employee to complete all aspects of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true Are there time factors... 302-2.110 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES INTRODUCTION 2-EMPLOYEES ELIGIBILITY REQUIREMENTS Agency Responsibilities Time Limits § 302-2.110...

  8. 41 CFR 302-2.110 - Are there time factors that we must consider for allowing an employee to complete all aspects of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false Are there time factors... 302-2.110 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES INTRODUCTION 2-EMPLOYEES ELIGIBILITY REQUIREMENTS Agency Responsibilities Time Limits § 302-2.110...

  9. 41 CFR 302-2.110 - Are there time factors that we must consider for allowing an employee to complete all aspects of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false Are there time factors... 302-2.110 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES INTRODUCTION 2-EMPLOYEES ELIGIBILITY REQUIREMENTS Agency Responsibilities Time Limits § 302-2.110...

  10. A three step supercritical process to improve the dissolution rate of eflucimibe.

    PubMed

    Rodier, Elisabeth; Lochard, Hubert; Sauceau, Martial; Letourneau, Jean-Jacques; Freiss, Bernard; Fages, Jacques

    2005-10-01

    The aim of this study is to improve the dissolution properties of a poorly-soluble active substance, Eflucimibe by associating it with gamma-cyclodextrin. To achieve this objective, a new three-step process based on supercritical fluid technology has been proposed. First, Eflucimibe and cyclodextrin are co-crystallized using an anti-solvent process, dimethylsulfoxide being the solvent and supercritical carbon dioxide being the anti-solvent. Second, the co-crystallized powder is held in a static mode under supercritical conditions for several hours. This is the maturing step. Third, in a final stripping step, supercritical CO(2) is flowed through the matured powder to extract the residual solvent. The coupling of the first two steps brings about a significant synergistic effect to improve the dissolution rate of the drug. The nature of the entity obtained at the end of each step is discussed and some suggestions are made as to what happens in these operations. It is shown the co-crystallization ensures a good dispersion of both compounds and is rather insensitive to the operating parameters tested. The maturing step allows some dissolution-recrystallization to occur thus intensifying the intimate contact between the two compounds. Addition of water is necessary to make maturing effective as this is governed by the transfer properties of the medium. The stripping step allows extraction of the residual solvent but also removes some of the Eflucimibe which is the main drawback of this final stage.

  11. The Chimera II Real-Time Operating System for advanced sensor-based control applications

    NASA Technical Reports Server (NTRS)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1992-01-01

    Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.

  12. Increasing Running Step Rate Reduces Patellofemoral Joint Forces

    PubMed Central

    Lenhart, Rachel L.; Thelen, Darryl G.; Wille, Christa M.; Chumanov, Elizabeth S.; Heiderscheit, Bryan C.

    2013-01-01

    Purpose Increasing step rate has been shown to elicit changes in joint kinematics and kinetics during running, and has been suggested as a possible rehabilitation strategy for runners with patellofemoral pain. The purpose of this study was to determine how altering step rate affects internal muscle forces and patellofemoral joint loads, and then to determine what kinematic and kinetic factors best predict changes in joint loading. Methods We recorded whole body kinematics of 30 healthy adults running on an instrumented treadmill at three step rate conditions (90%, 100%, and 110% of preferred step rate). We then used a 3D lower extremity musculoskeletal model to estimate muscle, patellar tendon, and patellofemoral joint forces throughout the running gait cycles. Additionally, linear regression analysis allowed us to ascertain the relative influence of limb posture and external loads on patellofemoral joint force. Results Increasing step rate to 110% of preferred reduced peak patellofemoral joint force by 14%. Peak muscle forces were also altered as a result of the increased step rate with hip, knee and ankle extensor forces, and hip abductor forces all reduced in mid-stance. Compared to the 90% step rate condition, there was a concomitant increase in peak rectus femoris and hamstring loads during early and late swing, respectively, at higher step rates. Peak stance phase knee flexion decreased with increasing step rate, and was found to be the most important predictor of the reduction in patellofemoral joint loading. Conclusion Increasing step rate is an effective strategy to reduce patellofemoral joint forces and could be effective in modulating biomechanical factors that can contribute to patellofemoral pain. PMID:23917470

  13. Timing paradox of stepping and falls in ageing: not so quick and quick(er) on the trigger.

    PubMed

    Rogers, Mark W; Mille, Marie-Laure

    2016-08-15

    Physiological and degenerative changes affecting human standing balance are major contributors to falls with ageing. During imbalance, stepping is a powerful protective action for preserving balance that may be voluntarily initiated in recognition of a balance threat, or be induced by an externally imposed mechanical or sensory perturbation. Paradoxically, with ageing and falls, initiation slowing of voluntary stepping is observed together with perturbation-induced steps that are triggered as fast as or faster than for younger adults. While age-associated changes in sensorimotor conduction, central neuronal processing and cognitive functions are linked to delayed voluntary stepping, alterations in the coupling of posture and locomotion may also prolong step triggering. It is less clear, however, how these factors may explain the accelerated triggering of induced stepping. We present a conceptual model that addresses this issue. For voluntary stepping, a disruption in the normal coupling between posture and locomotion may underlie step-triggering delays through suppression of the locomotion network based on an estimation of the evolving mechanical state conditions for stability. During induced stepping, accelerated step initiation may represent an event-triggering process whereby stepping is released according to the occurrence of a perturbation rather than to the specific sensorimotor information reflecting the evolving instability. In this case, errors in the parametric control of induced stepping and its effectiveness in stabilizing balance would be likely to occur. We further suggest that there is a residual adaptive capacity with ageing that could be exploited to improve paradoxical triggering and other changes in protective stepping to impact fall risk. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  14. 40 CFR 60.4160 - Submission of Hg allowance transfers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4160 Submission of Hg allowance transfers. An Hg authorized account representative seeking recordation of a Hg allowance transfer... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Submission of Hg allowance transfers...

  15. 40 CFR 60.4160 - Submission of Hg allowance transfers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4160 Submission of Hg allowance transfers. An Hg authorized account representative seeking recordation of a Hg allowance transfer... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Submission of Hg allowance transfers...

  16. Development of STEP-NC Adaptor for Advanced Web Manufacturing System

    NASA Astrophysics Data System (ADS)

    Ajay Konapala, Mr.; Koona, Ramji, Dr.

    2017-08-01

    Information systems play a key role in the modern era of Information Technology. Rapid developments in IT & global competition calls for many changes in basic CAD/CAM/CAPP/CNC manufacturing chain of operations. ‘STEP-NC’ an enhancement to STEP for operating CNC machines, creating new opportunities for collaborative, concurrent, adaptive works across the manufacturing chain of operations. Schemas and data models defined by ISO14649 in liaison with ISO10303 standards made STEP-NC file rich with feature based, rather than mere point to point information of G/M Code format. But one needs to have a suitable information system to understand and modify these files. Various STEP-NC information systems are reviewed to understand the suitability of STEP-NC for web manufacturing. Present work also deals with the development of an adaptor which imports STEP-NC file, organizes its information, allowing modifications to entity values and finally generates a new STEP-NC file to export. The system is designed and developed to work on web to avail additional benefits through the web and also to be part of a proposed ‘Web based STEP-NC manufacturing platform’ which is under development and explained as future scope.

  17. The Fractional Step Method Applied to Simulations of Natural Convective Flows

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Heinrich, Juan C.; Saxon, Jeff (Technical Monitor)

    2002-01-01

    This paper describes research done to apply the Fractional Step Method to finite-element simulations of natural convective flows in pure liquids, permeable media, and in a directionally solidified metal alloy casting. The Fractional Step Method has been applied commonly to high Reynold's number flow simulations, but is less common for low Reynold's number flows, such as natural convection in liquids and in permeable media. The Fractional Step Method offers increased speed and reduced memory requirements by allowing non-coupled solution of the pressure and the velocity components. The Fractional Step Method has particular benefits for predicting flows in a directionally solidified alloy, since other methods presently employed are not very efficient. Previously, the most suitable method for predicting flows in a directionally solidified binary alloy was the penalty method. The penalty method requires direct matrix solvers, due to the penalty term. The Fractional Step Method allows iterative solution of the finite element stiffness matrices, thereby allowing more efficient solution of the matrices. The Fractional Step Method also lends itself to parallel processing, since the velocity component stiffness matrices can be built and solved independently of each other. The finite-element simulations of a directionally solidified casting are used to predict macrosegregation in directionally solidified castings. In particular, the finite-element simulations predict the existence of 'channels' within the processing mushy zone and subsequently 'freckles' within the fully processed solid, which are known to result from macrosegregation, or what is often referred to as thermo-solutal convection. These freckles cause material property non-uniformities in directionally solidified castings; therefore many of these castings are scrapped. The phenomenon of natural convection in an alloy under-going directional solidification, or thermo-solutal convection, will be explained. The

  18. A colorimetric probe based on desensitized ionene-stabilized gold nanoparticles for single-step test for sulfate ions.

    PubMed

    Arkhipova, Viktoriya V; Apyari, Vladimir V; Dmitrienko, Stanislava G

    2015-03-15

    Desensitized ionene-stabilized gold nanoparticles have been prepared and applied as a colorimetric probe for the single-step test for sulfate ions at the relatively high concentration level. The approach is based on aggregation of the nanoparticles leading to the change in absorption spectra and color of the solution. These nanoparticles are characterized by the decreased sensitivity due to both electrostatic and steric stabilization, which allows for simple, and rapid direct single-step determination of sulfate at the relatively high concentration level in real water samples without sample pretreatment or dilution. Influence of different factors (the time of interaction, pH, the concentrations of sulfate ions and the nanoparticles) on the aggregation and analytical performance of the procedure was investigated. The method allows for the determination of sulfate ions in the mass range of 0.2-0.4 mg with RSD of 5% from the sample volume of less than 2 mL. It has a sharp dependence of the colorimetric response on the concentration of sulfate, which makes it prospective for indicating deviations of the sulfate concentration regarding some declared value chosen within the above range. The time of the analysis is 2 min. The method was applied to the analysis of mineral water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Navier-Stokes calculations for DFVLR F5-wing in wind tunnel using Runge-Kutta time-stepping scheme

    NASA Technical Reports Server (NTRS)

    Vatsa, V. N.; Wedan, B. W.

    1988-01-01

    A three-dimensional Navier-Stokes code using an explicit multistage Runge-Kutta type of time-stepping scheme is used for solving the transonic flow past a finite wing mounted inside a wind tunnel. Flow past the same wing in free air was also computed to assess the effect of wind-tunnel walls on such flows. Numerical efficiency is enhanced through vectorization of the computer code. A Cyber 205 computer with 32 million words of internal memory was used for these computations.

  20. Timing paradox of stepping and falls in ageing: not so quick and quick(er) on the trigger

    PubMed Central

    Mille, Marie‐Laure

    2016-01-01

    Abstract Physiological and degenerative changes affecting human standing balance are major contributors to falls with ageing. During imbalance, stepping is a powerful protective action for preserving balance that may be voluntarily initiated in recognition of a balance threat, or be induced by an externally imposed mechanical or sensory perturbation. Paradoxically, with ageing and falls, initiation slowing of voluntary stepping is observed together with perturbation‐induced steps that are triggered as fast as or faster than for younger adults. While age‐associated changes in sensorimotor conduction, central neuronal processing and cognitive functions are linked to delayed voluntary stepping, alterations in the coupling of posture and locomotion may also prolong step triggering. It is less clear, however, how these factors may explain the accelerated triggering of induced stepping. We present a conceptual model that addresses this issue. For voluntary stepping, a disruption in the normal coupling between posture and locomotion may underlie step‐triggering delays through suppression of the locomotion network based on an estimation of the evolving mechanical state conditions for stability. During induced stepping, accelerated step initiation may represent an event‐triggering process whereby stepping is released according to the occurrence of a perturbation rather than to the specific sensorimotor information reflecting the evolving instability. In this case, errors in the parametric control of induced stepping and its effectiveness in stabilizing balance would be likely to occur. We further suggest that there is a residual adaptive capacity with ageing that could be exploited to improve paradoxical triggering and other changes in protective stepping to impact fall risk. PMID:26915664

  1. BIOMAP A Daily Time Step, Mechanistic Model for the Study of Ecosystem Dynamics

    NASA Astrophysics Data System (ADS)

    Wells, J. R.; Neilson, R. P.; Drapek, R. J.; Pitts, B. S.

    2010-12-01

    BIOMAP simulates competition between two Plant Functional Types (PFT) at any given point in the conterminous U.S. using a time series of daily temperature (mean, minimum, maximum), precipitation, humidity, light and nutrients, with PFT-specific rooting within a multi-layer soil. The model employs a 2-layer canopy biophysics, Farquhar photosynthesis, the Beer-Lambert Law for light attenuation and a mechanistic soil hydrology. In essence, BIOMAP is a re-built version of the biogeochemistry model, BIOME-BGC, into the form of the MAPSS biogeography model. Specific enhancements are: 1) the 2-layer canopy biophysics of Dolman (1993); 2) the unique MAPSS-based hydrology, which incorporates canopy evaporation, snow dynamics, infiltration and saturated and unsaturated percolation with ‘fast’ flow and base flow and a ‘tunable aquifer’ capacity, a metaphor of D’Arcy’s Law; and, 3) a unique MAPSS-based stomatal conductance algorithm, which simultaneously incorporates vapor pressure and soil water potential constraints, based on physiological information and many other improvements. Over small domains the PFTs can be parameterized as individual species to investigate fundamental vs. potential niche theory; while, at more coarse scales the PFTs can be rendered as more general functional groups. Since all of the model processes are intrinsically leaf to plot scale (physiology to PFT competition), it essentially has no ‘intrinsic’ scale and can be implemented on a grid of any size, taking on the characteristics defined by the homogeneous climate of each grid cell. Currently, the model is implemented on the VEMAP 1/2 degree, daily grid over the conterminous U.S. Although both the thermal and water-limited ecotones are dynamic, following climate variability, the PFT distributions remain fixed. Thus, the model is currently being fitted with a ‘reproduction niche’ to allow full dynamic operation as a Dynamic General Vegetation Model (DGVM). While global simulations

  2. Two-step sensitivity testing of parametrized and regionalized life cycle assessments: methodology and case study.

    PubMed

    Mutel, Christopher L; de Baan, Laura; Hellweg, Stefanie

    2013-06-04

    Comprehensive sensitivity analysis is a significant tool to interpret and improve life cycle assessment (LCA) models, but is rarely performed. Sensitivity analysis will increase in importance as inventory databases become regionalized, increasing the number of system parameters, and parametrized, adding complexity through variables and nonlinear formulas. We propose and implement a new two-step approach to sensitivity analysis. First, we identify parameters with high global sensitivities for further examination and analysis with a screening step, the method of elementary effects. Second, the more computationally intensive contribution to variance test is used to quantify the relative importance of these parameters. The two-step sensitivity test is illustrated on a regionalized, nonlinear case study of the biodiversity impacts from land use of cocoa production, including a worldwide cocoa products trade model. Our simplified trade model can be used for transformable commodities where one is assessing market shares that vary over time. In the case study, the highly uncertain characterization factors for the Ivory Coast and Ghana contributed more than 50% of variance for almost all countries and years examined. The two-step sensitivity test allows for the interpretation, understanding, and improvement of large, complex, and nonlinear LCA systems.

  3. A Compact Tandem Two-Step Laser Time-of-Flight Mass Spectrometer for In Situ Analysis of Non-Volatile Organics on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie A.; Brinckerhoff, William B.; Li, Xiang; Elsila, Jamie; Cornish, Timothy; Ecelberger, Scott; Wu, Qinghao; Zare, Richard

    2014-01-01

    Two-step laser desorption mass spectrometry is a well suited technique to the analysis of high priority classes of organics, such as polycyclic aromatic hydrocarbons, present in complex samples. The use of decoupled desorption and ionization laser pulses allows for sensitive and selective detection of structurally intact organic species. We have recently demonstrated the implementation of this advancement in laser mass spectrometry in a compact, flight-compatible instrument that could feasibly be the centerpiece of an analytical science payload as part of a future spaceflight mission to a small body or icy moon.

  4. Predictors of 12-Step Attendance and Participation for Individuals With Stimulant Use Disorders.

    PubMed

    Hatch-Maillette, Mary; Wells, Elizabeth A; Doyle, Suzanne R; Brigham, Gregory S; Daley, Dennis; DiCenzo, Jessica; Donovan, Dennis; Garrett, Sharon; Horigian, Viviana E; Jenkins, Lindsay; Killeen, Therese; Owens, Mandy; Perl, Harold I

    2016-09-01

    Few studies have examined the effectiveness of 12-step peer recovery support programs with drug use disorders, especially stimulant use, and it is difficult to know how outcomes related to 12-step attendance and participation generalize to individuals with non-alcohol substance use disorders (SUDs). A clinical trial of 12-step facilitation (N=471) focusing on individuals with cocaine or methamphetamine use disorders allowed examination of four questions: Q1) To what extent do treatment-seeking stimulant users use 12-step programs and, which ones? Q2) Do factors previously found to predict 12-step participation among those with alcohol use disorders also predict participation among stimulant users? Q3) What specific baseline "12-step readiness" factors predict subsequent 12-step participation and attendance? And Q4) Does stimulant drug of choice differentially predict 12-step participation and attendance? The four outcomes variables, attendance, speaking, duties at 12-step meetings, and other peer recovery support activities, were not related to baseline demographic or substance problem history or severity. Drug of choice was associated with differential days of Alcoholics Anonymous (AA) and Narcotics Anonymous (NA) attendance among those who reported attending, and cocaine users reported more days of attending AA or NA at 1-, 3- and 6-month follow-ups than did methamphetamine users. Pre-randomization measures of perceived benefit of 12-step groups predicted 12-step attendance at 3- and 6-month follow-ups. Pre-randomization 12-step attendance significantly predicted number of other self-help activities at end-of-treatment, 3- and 6-month follow-ups. Pre-randomization perceived benefit and problem severity both predicted number of self-help activities at end-of-treatment and 3-month follow-up. Pre-randomization perceived barriers to 12-step groups were negatively associated with self-help activities at end-of-treatment and 3-month follow-up. Whether or not one

  5. Predictors of 12-Step Attendance and Participation for Individuals with Stimulant Use Disorders

    PubMed Central

    Hatch-Maillette, Mary; Wells, Elizabeth A.; Doyle, Suzanne R.; Brigham, Gregory S.; Daley, Dennis; DiCenzo, Jessica; Donovan, Dennis; Garrett, Sharon; Horigian, Viviana E.; Jenkins, Lindsay; Killeen, Therese; Owens, Mandy; Perl, Harold I.

    2017-01-01

    Objective Few studies have examined the effectiveness of 12-step peer recovery support programs with drug use disorders, especially stimulant use, and it is difficult to know how outcomes related to 12-step attendance and participation generalize to individuals with non-alcohol substance use disorders (SUDs). Method A clinical trial of 12-step facilitation (N=471) focusing on individuals with cocaine or methamphetamine use disorders allowed examination of four questions: Q1) To what extent do treatment-seeking stimulant users use 12-step programs and, which ones? Q2) Do factors previously found to predict 12-step participation among those with alcohol use disorders also predict participation among stimulant users? Q3) What specific baseline “12-step readiness” factors predict subsequent 12-step participation and attendance? And Q4) Does stimulant drug of choice differentially predict 12-step participation and attendance? Results The four outcomes variables, Attendance, Speaking, Duties at 12-step meetings, and other peer recovery support Activities, were not related to baseline demographic or substance problem history or severity. Drug of choice was associated with differential days of Alcoholics Anonymous (AA) and Narcotics Anonymous (NA) attendance among those who reported attending, and cocaine users reported more days of attending AA or NA at 1-, 3- and 6-month follow-ups than did methamphetamine users. Pre-randomization measures of Perceived Benefit of 12-step groups predicted 12-step Attendance at 3- and 6-month follow-ups. Pre-randomization 12-step Attendance significantly predicted number of other Self-Help Activities at end-of-treatment, 3- and 6-month follow-ups. Pre-randomization Perceived Benefit and problem severity both predicted number of Self-Help Activities at end-of-treatment and 3-month follow-up. Pre-randomization Perceived Barriers to 12-step groups were negatively associated with Self-Help Activities at end-of-treatment and 3-month follow

  6. 42 CFR 61.9 - Payments: Stipends; dependency allowances; travel allowances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Payments: Stipends; dependency allowances; travel... FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.9 Payments: Stipends; dependency allowances; travel allowances. Payments for stipends, dependency allowances, and the travel allowances...

  7. 42 CFR 61.9 - Payments: Stipends; dependency allowances; travel allowances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Payments: Stipends; dependency allowances; travel... FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.9 Payments: Stipends; dependency allowances; travel allowances. Payments for stipends, dependency allowances, and the travel allowances...

  8. 42 CFR 61.9 - Payments: Stipends; dependency allowances; travel allowances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Payments: Stipends; dependency allowances; travel... FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.9 Payments: Stipends; dependency allowances; travel allowances. Payments for stipends, dependency allowances, and the travel allowances...

  9. 42 CFR 61.9 - Payments: Stipends; dependency allowances; travel allowances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Payments: Stipends; dependency allowances; travel... FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.9 Payments: Stipends; dependency allowances; travel allowances. Payments for stipends, dependency allowances, and the travel allowances...

  10. 42 CFR 61.9 - Payments: Stipends; dependency allowances; travel allowances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Payments: Stipends; dependency allowances; travel... FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.9 Payments: Stipends; dependency allowances; travel allowances. Payments for stipends, dependency allowances, and the travel allowances...

  11. The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI

    PubMed Central

    Gargouri, Fatma; Kallel, Fathi; Delphine, Sebastien; Ben Hamida, Ahmed; Lehéricy, Stéphane; Valabregue, Romain

    2018-01-01

    Resting state functional MRI (rs-fMRI) is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step) and the scr (where we applied realignment, tCompCor and smoothing as a final step) strategies had the highest mean values of global efficiency (eg). Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step), had the highest mean local efficiency (el) values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency. PMID:29497372

  12. The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI.

    PubMed

    Gargouri, Fatma; Kallel, Fathi; Delphine, Sebastien; Ben Hamida, Ahmed; Lehéricy, Stéphane; Valabregue, Romain

    2018-01-01

    Resting state functional MRI (rs-fMRI) is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step) and the scr (where we applied realignment, tCompCor and smoothing as a final step) strategies had the highest mean values of global efficiency (eg) . Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step), had the highest mean local efficiency (el) values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency.

  13. Two-Step Self-Assembly of Liposome-Multidomain Peptide Nanofiber Hydrogel for Time-Controlled Release

    PubMed Central

    2015-01-01

    Progress in self-assembly and supramolecular chemistry has been directed toward obtaining macromolecular assemblies with higher degrees of complexity, simulating the highly structured environment in natural systems. One approach to this type of complexity are multistep, multicomponent, self-assembling systems that allow approaches comparable to traditional multistep synthetic organic chemistry; however, only a few examples of this approach have appeared in the literature. Our previous work demonstrated nanofibrous mimics of the extracellular matrix. Here we demonstrate the ability to create a unique hydrogel, developed by stepwise self-assembly of multidomain peptide fibers and liposomes. The two-component system allows for controlled release of bioactive factors at multiple time points. The individual components of the self-assembled gel and the composite hydrogel were characterized by TEM, SEM, and rheometry, demonstrating that peptide nanofibers and lipid vesicles both retain their structural integrity in the composite gel. The rheological robustness of the hydrogel is shown to be largely unaffected by the presence of liposomes. Release studies from the composite gels loaded with different growth factors EGF, MCP-1, and PlGF-1 showed delay and prolongation of release by liposomes entrapped in the hydrogel compared to more rapid release from the hydrogel alone. This bimodal release system may have utility in systems where timed cascades of biological signals may be valuable, such as in tissue regeneration. PMID:25308335

  14. The Crank Nicolson Time Integrator for EMPHASIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGregor, Duncan Alisdair Odum; Love, Edward; Kramer, Richard Michael Jack

    2018-03-01

    We investigate the use of implicit time integrators for finite element time domain approxi- mations of Maxwell's equations in vacuum. We discretize Maxwell's equations in time using Crank-Nicolson and in 3D space using compatible finite elements. We solve the system by taking a single step of Newton's method and inverting the Eddy-Current Schur complement allowing for the use of standard preconditioning techniques. This approach also generalizes to more complex material models that can include the Unsplit PML. We present verification results and demonstrate performance at CFL numbers up to 1000.

  15. Step edge sputtering yield at grazing incidence ion bombardment.

    PubMed

    Hansen, Henri; Polop, Celia; Michely, Thomas; Friedrich, Andreas; Urbassek, Herbert M

    2004-06-18

    The surface morphology of Pt(111) was investigated by scanning tunneling microscopy after 5 keV Ar+ ion bombardment at grazing incidence in dependence of the ion fluence and in the temperature range between 625 and 720 K. The average erosion rate was found to be strongly dependent on the ion fluence and the substrate temperature during bombardment. This dependence is traced back to the variation of step concentration with temperature and fluence. We develop a simple model allowing us to determine separately the constant sputtering yields for terraces and for impact area stripes in front of ascending steps. The experimentally determined yield of these stripes--the step-edge sputtering yield--is in excellent agreement with our molecular dynamics simulations performed for the experimental situation.

  16. Webinar Presentation: Environmental Exposures and Health Risks in California Child Care Facilities: First Steps to Improve Environmental Health where Children Spend Time

    EPA Pesticide Factsheets

    This presentation, Environmental Exposures and Health Risks in California Child Care Facilities: First Steps to Improve Environmental Health where Children Spend Time, was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Exposome.

  17. Nucleosomes influence multiple steps during replication initiation

    PubMed Central

    Azmi, Ishara F; Watanabe, Shinya; Maloney, Michael F; Kang, Sukhyun; Belsky, Jason A; MacAlpine, David M; Peterson, Craig L; Bell, Stephen P

    2017-01-01

    Eukaryotic replication origin licensing, activation and timing are influenced by chromatin but a mechanistic understanding is lacking. Using reconstituted nucleosomal DNA replication assays, we assessed the impact of nucleosomes on replication initiation. To generate distinct nucleosomal landscapes, different chromatin-remodeling enzymes (CREs) were used to remodel nucleosomes on origin-DNA templates. Nucleosomal organization influenced two steps of replication initiation: origin licensing and helicase activation. Origin licensing assays showed that local nucleosome positioning enhanced origin specificity and modulated helicase loading by influencing ORC DNA binding. Interestingly, SWI/SNF- and RSC-remodeled nucleosomes were permissive for origin licensing but showed reduced helicase activation. Specific CREs rescued replication of these templates if added prior to helicase activation, indicating a permissive chromatin state must be established during origin licensing to allow efficient origin activation. Our studies show nucleosomes directly modulate origin licensing and activation through distinct mechanisms and provide insights into the regulation of replication initiation by chromatin. DOI: http://dx.doi.org/10.7554/eLife.22512.001 PMID:28322723

  18. Helicase Stepping Investigated with One-Nucleotide Resolution Fluorescence Resonance Energy Transfer

    NASA Astrophysics Data System (ADS)

    Lin, Wenxia; Ma, Jianbing; Nong, Daguan; Xu, Chunhua; Zhang, Bo; Li, Jinghua; Jia, Qi; Dou, Shuoxing; Ye, Fangfu; Xi, Xuguang; Lu, Ying; Li, Ming

    2017-09-01

    Single-molecule Förster resonance energy transfer is widely applied to study helicases by detecting distance changes between a pair of dyes anchored to overhangs of a forked DNA. However, it has been lacking single-base pair (1-bp) resolution required for revealing stepping kinetics of helicases. We designed a nanotensioner in which a short DNA is bent to exert force on the overhangs, just as in optical or magnetic tweezers. The strategy improved the resolution of Förster resonance energy transfer to 0.5 bp, high enough to uncover differences in DNA unwinding by yeast Pif1 and E. coli RecQ whose unwinding behaviors cannot be differentiated by currently practiced methods. We found that Pif1 exhibits 1-bp-stepping kinetics, while RecQ breaks 1 bp at a time but sequesters the nascent nucleotides and releases them randomly. The high-resolution data allowed us to propose a three-parameter model to quantitatively interpret the apparently different unwinding behaviors of the two helicases which belong to two superfamilies.

  19. Step-doubling at Vicinal Ni(111) Surfaces Investigated with a Curved Crystal

    DOE PAGES

    Ilyn, Max; Magana, Ana; Walter, Andrew Leigh; ...

    2017-01-25

    Here, vicinal surfaces may undergo structural transformations as a function of temperature or in the presence of adsorbates. Step-doubling, in which monatomic steps pair up forming double-atom high staircases, is the simplest example. Here we investigate the case of Ni(111) using a curved crystal surface, which allows us to explore the occurrence of step-doubling as a function of temperature and vicinal plane (miscut α and step type). We find a striking A-type ({100}-like microfacets) versus B-type ({111}-like) asymmetry towards step-doubling. The terrace-width distribution analysis performed from Scanning Tunneling Microscopy data points to elastic step interactions overcoming entropic effects at verymore » small miscut α in A-type vicinals, as compared to B-type steps. For A-type vicinals, we elaborate the temperature/miscut phase diagram, on which we establish a critical miscut α c = 9.3° for step-doubling to take place.« less

  20. Step-doubling at Vicinal Ni(111) Surfaces Investigated with a Curved Crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilyn, Max; Magana, Ana; Walter, Andrew Leigh

    Here, vicinal surfaces may undergo structural transformations as a function of temperature or in the presence of adsorbates. Step-doubling, in which monatomic steps pair up forming double-atom high staircases, is the simplest example. Here we investigate the case of Ni(111) using a curved crystal surface, which allows us to explore the occurrence of step-doubling as a function of temperature and vicinal plane (miscut α and step type). We find a striking A-type ({100}-like microfacets) versus B-type ({111}-like) asymmetry towards step-doubling. The terrace-width distribution analysis performed from Scanning Tunneling Microscopy data points to elastic step interactions overcoming entropic effects at verymore » small miscut α in A-type vicinals, as compared to B-type steps. For A-type vicinals, we elaborate the temperature/miscut phase diagram, on which we establish a critical miscut α c = 9.3° for step-doubling to take place.« less

  1. The discriminant capabilities of stability measures, trunk kinematics, and step kinematics in classifying successful and failed compensatory stepping responses by young adults.

    PubMed

    Crenshaw, Jeremy R; Rosenblatt, Noah J; Hurt, Christopher P; Grabiner, Mark D

    2012-01-03

    This study evaluated the discriminant capability of stability measures, trunk kinematics, and step kinematics to classify successful and failed compensatory stepping responses. In addition, the shared variance between stability measures, step kinematics, and trunk kinematics is reported. The stability measures included the anteroposterior distance (d) between the body center of mass and the stepping limb toe, the margin of stability (MOS), as well as time-to-boundary considering velocity (TTB(v)), velocity and acceleration (TTB(a)), and MOS (TTB(MOS)). Kinematic measures included trunk flexion angle and angular velocity, step length, and the time after disturbance onset of recovery step completion. Fourteen young adults stood on a treadmill that delivered surface accelerations necessitating multiple forward compensatory steps. Thirteen subjects fell from an initial disturbance, but recovered from a second, identical disturbance. Trunk flexion velocity at completion of the first recovery step and trunk flexion angle at completion of the second step had the greatest overall classification of all measures (92.3%). TTB(v) and TTB(a) at completion of both steps had the greatest classification accuracy of all stability measures (80.8%). The length of the first recovery step (r ≤ 0.70) and trunk flexion angle at completion of the second recovery step (r ≤ -0.54) had the largest correlations with stability measures. Although TTB(v) and TTB(a) demonstrated somewhat smaller discriminant capabilities than trunk kinematics, the small correlations between these stability measures and trunk kinematics (|r| ≤ 0.52) suggest that they reflect two important, yet different, aspects of a compensatory stepping response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based onmore » the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided.« less

  3. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying.

    PubMed

    Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel; La Madrid, Raúl

    2017-12-01

    In the northern coastal and jungle areas of Peru, cocoa beans are dried using artisan methods, such as direct exposure to sunlight. This traditional process is time intensive, leading to a reduction in productivity and, therefore, delays in delivery times. The present study was intended to numerically characterise the thermal behaviour of three configurations of solar air heating collectors in order to determine which demonstrated the best thermal performance under several controlled operating conditions. For this purpose, a computational fluid dynamics model was developed to describe the simultaneous convective and radiative heat transfer phenomena under several operation conditions. The constructed computational fluid dynamics model was firstly validated through comparison with the data measurements of a one-step solar air heating collector. We then simulated two further three-step solar air heating collectors in order to identify which demonstrated the best thermal performance in terms of outlet air temperature and thermal efficiency. The numerical results show that under the same solar irradiation area of exposition and operating conditions, the three-step solar air heating collector with the collector plate mounted between the second and third channels was 67% more thermally efficient compared to the one-step solar air heating collector. This is because the air exposition with the surface of the collector plate for the three-step solar air heating collector former device was twice than the one-step solar air heating collector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Time to Translate: Deciphering the Codon in the Classroom

    ERIC Educational Resources Information Center

    Firooznia, Fardad

    2015-01-01

    I describe and evaluate a fun and simple role-playing exercise that allows students to actively work through the process of translation. This exercise can easily be completed during a 50-minute class period, with time to review the steps and contemplate complications such as the effects of various types of mutations.

  5. Accessory stimulus modulates executive function during stepping task

    PubMed Central

    Watanabe, Tatsunori; Koyama, Soichiro; Tanabe, Shigeo

    2015-01-01

    When multiple sensory modalities are simultaneously presented, reaction time can be reduced while interference enlarges. The purpose of this research was to examine the effects of task-irrelevant acoustic accessory stimuli simultaneously presented with visual imperative stimuli on executive function during stepping. Executive functions were assessed by analyzing temporal events and errors in the initial weight transfer of the postural responses prior to a step (anticipatory postural adjustment errors). Eleven healthy young adults stepped forward in response to a visual stimulus. We applied a choice reaction time task and the Simon task, which consisted of congruent and incongruent conditions. Accessory stimuli were randomly presented with the visual stimuli. Compared with trials without accessory stimuli, the anticipatory postural adjustment error rates were higher in trials with accessory stimuli in the incongruent condition and the reaction times were shorter in trials with accessory stimuli in all the task conditions. Analyses after division of trials according to whether anticipatory postural adjustment error occurred or not revealed that the reaction times of trials with anticipatory postural adjustment errors were reduced more than those of trials without anticipatory postural adjustment errors in the incongruent condition. These results suggest that accessory stimuli modulate the initial motor programming of stepping by lowering decision threshold and exclusively under spatial incompatibility facilitate automatic response activation. The present findings advance the knowledge of intersensory judgment processes during stepping and may aid in the development of intervention and evaluation tools for individuals at risk of falls. PMID:25925321

  6. HIA, the next step: Defining models and roles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putters, Kim

    If HIA is to be an effective instrument for optimising health interests in the policy making process it has to recognise the different contests in which policy is made and the relevance of both technical rationality and political rationality. Policy making may adopt a rational perspective in which there is a systematic and orderly progression from problem formulation to solution or a network perspective in which there are multiple interdependencies, extensive negotiation and compromise, and the steps from problem to formulation are not followed sequentially or in any particular order. Policy problems may be simple with clear causal pathways andmore » responsibilities or complex with unclear causal pathways and disputed responsibilities. Network analysis is required to show which stakeholders are involved, their support for health issues and the degree of consensus. From this analysis three models of HIA emerge. The first is the phases model which is fitted to simple problems and a rational perspective of policymaking. This model involves following structured steps. The second model is the rounds (Echternach) model that is fitted to complex problems and a network perspective of policymaking. This model is dynamic and concentrates on network solutions taking these steps in no particular order. The final model is the 'garbage can' model fitted to contexts which combine simple and complex problems. In this model HIA functions as a problem solver and signpost keeping all possible solutions and stakeholders in play and allowing solutions to emerge over time. HIA models should be the beginning rather than the conclusion of discussion the worlds of HIA and policymaking.« less

  7. Two-step rapid sulfur capture. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the rangemore » of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.« less

  8. Full-waveform data for building roof step edge localization

    NASA Astrophysics Data System (ADS)

    Słota, Małgorzata

    2015-08-01

    Airborne laser scanning data perfectly represent flat or gently sloped areas; to date, however, accurate breakline detection is the main drawback of this technique. This issue becomes particularly important in the case of modeling buildings, where accuracy higher than the footprint size is often required. This article covers several issues related to full-waveform data registered on building step edges. First, the full-waveform data simulator was developed and presented in this paper. Second, this article provides a full description of the changes in echo amplitude, echo width and returned power caused by the presence of edges within the laser footprint. Additionally, two important properties of step edge echoes, peak shift and echo asymmetry, were noted and described. It was shown that these properties lead to incorrect echo positioning along the laser center line and can significantly reduce the edge points' accuracy. For these reasons and because all points are aligned with the center of the beam, regardless of the actual target position within the beam footprint, we can state that step edge points require geometric corrections. This article presents a novel algorithm for the refinement of step edge points. The main distinguishing advantage of the developed algorithm is the fact that none of the additional data, such as emitted signal parameters, beam divergence, approximate edge geometry or scanning settings, are required. The proposed algorithm works only on georeferenced profiles of reflected laser energy. Another major advantage is the simplicity of the calculation, allowing for very efficient data processing. Additionally, the developed method of point correction allows for the accurate determination of points lying on edges and edge point densification. For this reason, fully automatic localization of building roof step edges based on LiDAR full-waveform data with higher accuracy than the size of the lidar footprint is feasible.

  9. A two-step lyssavirus real-time polymerase chain reaction using degenerate primers with superior sensitivity to the fluorescent antigen test.

    PubMed

    Suin, Vanessa; Nazé, Florence; Francart, Aurélie; Lamoral, Sophie; De Craeye, Stéphane; Kalai, Michael; Van Gucht, Steven

    2014-01-01

    A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR), based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤ 1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible.

  10. The association of USMLE Step 1 and Step 2 CK scores with residency match specialty and location.

    PubMed

    Gauer, Jacqueline L; Jackson, J Brooks

    2017-01-01

    For future physicians, residency programs offer necessary extended training in specific medical specialties. Medical schools benefit from an understanding of factors that lead their students to match into certain residency specialties. One such factor, often used during the residency application process, is scores on the USA Medical Licensing Exam (USMLE). To determine the relationship between USMLE Step 1 and Step 2 Clinical Knowledge (CK) scores and students' residency specialty match, and the association between both USMLE scores and state of legal residency (Minnesota) at the time of admission with students staying in-state or leaving the state for residency program. USMLE scores and residency match data were analyzed from five graduating classes of students at the University of Minnesota Medical School (N = 1054). A MANOVA found significant differences (p < 0.001) between residency specialties and both USMLE Step 1 and Step 2 CK scores, as well as the combination of the two. Students who matched in Dermatology had the highest mean USMLE scores overall, while students who matched in Family Medicine had the lowest mean scores. Students who went out of state for residency had significantly higher Step 1 scores (p = 0.027) than students who stayed in-state for residency, while there was no significant difference between the groups for Step 2 scores. A significant positive association was found between a student who applied as a legal resident of Minnesota and whether the student stayed in Minnesota for their residency program. Residency specialty match was significantly associated with USMLE Step 1 and USMLE Step 2 CK scores, as was staying in-state or leaving the state for residency. Students who were legal residents of the state at the time of application were more likely to stay in-state for residency, regardless of USMLE score. CK: Clinical knowledge; COMLEX: Comprehensive Osteopathic Medical Licensing Examination; GME: Graduate medical education; NRMP

  11. The association of USMLE Step 1 and Step 2 CK scores with residency match specialty and location

    PubMed Central

    Gauer, Jacqueline L.; Jackson, J. Brooks

    2017-01-01

    ABSTRACT Background: For future physicians, residency programs offer necessary extended training in specific medical specialties. Medical schools benefit from an understanding of factors that lead their students to match into certain residency specialties. One such factor, often used during the residency application process, is scores on the USA Medical Licensing Exam (USMLE). Objectives: To determine the relationship between USMLE Step 1 and Step 2 Clinical Knowledge (CK) scores and students’ residency specialty match, and the association between both USMLE scores and state of legal residency (Minnesota) at the time of admission with students staying in-state or leaving the state for residency program. Design: USMLE scores and residency match data were analyzed from five graduating classes of students at the University of Minnesota Medical School (N = 1054). Results: A MANOVA found significant differences (p < 0.001) between residency specialties and both USMLE Step 1 and Step 2 CK scores, as well as the combination of the two. Students who matched in Dermatology had the highest mean USMLE scores overall, while students who matched in Family Medicine had the lowest mean scores. Students who went out of state for residency had significantly higher Step 1 scores (p = 0.027) than students who stayed in-state for residency, while there was no significant difference between the groups for Step 2 scores. A significant positive association was found between a student who applied as a legal resident of Minnesota and whether the student stayed in Minnesota for their residency program. Conclusions: Residency specialty match was significantly associated with USMLE Step 1 and USMLE Step 2 CK scores, as was staying in-state or leaving the state for residency. Students who were legal residents of the state at the time of application were more likely to stay in-state for residency, regardless of USMLE score. Abbreviations: CK: Clinical knowledge; COMLEX: Comprehensive

  12. Two-step impression/ injection, an alternative putty/ wash impression technique: case report.

    PubMed

    Caputi, S; Murmura, G; Sinjari, B; Varvara, G

    2012-01-01

    We here describe a new technique for making a definitive impression that we refer to as the two-step impression/injection technique. This technique initially follows the classical one-step putty/ light-body impression technique with the polymerization of the putty and the light-body compound. This is then followed by the second step: injection of extra-light-body compound into the preparation through a hole in the metal stock tray. The aim of this additional step is to control the wash bulk and minimize the changes that can produce unfavorable impression results. This new two-step impression/injection technique allows displacement of soft tissues, such as the tongue, during the first seating of the putty and wash materials, while in the second step, the extra-light-body compound records all of the finer details without being compressed.

  13. Achieving the daily step goal of 10,000 steps: the experience of a Canadian family attached to pedometers.

    PubMed

    Choi, Bernard C K; Pak, Anita W P; Choi, Jerome C L; Choi, Elaine C L

    2007-01-01

    Health experts recommend daily step goals of 10,000 steps for adults and 12,000 steps for youths to achieve a healthy active living. This article reports the findings of a Canadian family project to investigate whether the recommended daily step goals are achievable in a real life setting, and suggests ways to increase the daily steps to meet the goal. The family project also provides an example to encourage more Canadians to conduct family projects on healthy living. This is a pilot feasibility study. A Canadian family was recruited for the study, with 4 volunteers (father, mother, son and daughter). Each volunteer was asked to wear a pedometer and to record daily steps for three time periods of each day during a 2-month period. Both minimal routine steps, and additional steps from special non-routine activities, were recorded at work, school and home. The mean number of daily steps from routine minimal daily activities for the family was 6685 steps in a day (16 hr, approx 400 steps/hr). There was thus a mean deficit of 4315 steps per day, or approximately 30,000 steps per week, from the goal (10,000 steps for adults; 12,000 steps for youths). Special activities that were found to effectively increase the steps above the routine level include: walking at brisk pace, grocery shopping, window shopping in a mall, going to an entertainment centre, and attending parties (such as to celebrate the holiday season and birthdays). To increase our daily steps to meet the daily step goal, a new culture is recommended: "get off the chair". By definition, sitting on a chair precludes the opportunity to walk. We encourage people to get off the chair, to go shopping, and to go partying, as a practical and fun way to increase the daily steps. This paper is a call for increased physical activity to meet the daily step goal.

  14. Height of a faceted macrostep for sticky steps in a step-faceting zone

    NASA Astrophysics Data System (ADS)

    Akutsu, Noriko

    2018-02-01

    The driving force dependence of the surface velocity and the average height of faceted merged steps, the terrace-surface slope, and the elementary step velocity are studied using the Monte Carlo method in the nonequilibrium steady state. The Monte Carlo study is based on a lattice model, the restricted solid-on-solid model with point-contact-type step-step attraction (p-RSOS model). The main focus of this paper is a change of the "kink density" on the vicinal surface. The temperature is selected to be in the step-faceting zone [N. Akutsu, AIP Adv. 6, 035301 (2016), 10.1063/1.4943400] where the vicinal surface is surrounded by the (001) terrace and the (111) faceted step at equilibrium. Long time simulations are performed at this temperature to obtain steady states for the different driving forces that influence the growth/recession of the surface. A Wulff figure of the p-RSOS model is produced through the anomalous surface tension calculated using the density-matrix renormalization group method. The characteristics of the faceted macrostep profile at equilibrium are classified with respect to the connectivity of the surface tension. This surface tension connectivity also leads to a faceting diagram, where the separated areas are, respectively, classified as a Gruber-Mullins-Pokrovsky-Talapov zone, step droplet zone, and step-faceting zone. Although the p-RSOS model is a simplified model, the model shows a wide variety of dynamics in the step-faceting zone. There are four characteristic driving forces: Δ μy,Δ μf,Δ μc o , and Δ μR . For the absolute value of the driving force, |Δ μ | is smaller than Max[ Δ μy,Δ μf] , the step attachment-detachments are inhibited, and the vicinal surface consists of (001) terraces and the (111) side surfaces of the faceted macrosteps. For Max[ Δ μy,Δ μf]<|Δ μ |<Δ μc o , the surface grows/recedes intermittently through the two-dimensional (2D) heterogeneous nucleation at the facet edge of the macrostep. For Δ

  15. Two-Step Formal Advertisement: An Examination.

    DTIC Science & Technology

    1976-10-01

    The purpose of this report is to examine the potential application of the Two-Step Formal Advertisement method of procurement. Emphasis is placed on...Step formal advertising is a method of procurement designed to take advantage of negotiation flexibility and at the same time obtain the benefits of...formal advertising . It is used where the specifications are not sufficiently definite or may be too restrictive to permit full and free competition

  16. [Spectral-Doppler-Sonography - Step by Step].

    PubMed

    Bönhof, Leoni; Steffgen, Ludwig; Bönhof, Jörg

    2018-06-07

    Step by step explanation and detailed overview of the correct approach to spectral-Doppler-sonography, including several practical examples. The article provides comprehensive explanations of the appropriate settings in different situations. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Dynamic balance and stepping versus tai chi training to improve balance and stepping in at-risk older adults.

    PubMed

    Nnodim, Joseph O; Strasburg, Debra; Nabozny, Martina; Nyquist, Linda; Galecki, Andrzej; Chen, Shu; Alexander, Neil B

    2006-12-01

    To compare the effect of two 10-week balance training programs, Combined Balance and Step Training (CBST) versus tai chi (TC), on balance and stepping measures. Prospective intervention trial. Local senior centers and congregate housing facilities. Aged 65 and older with at least mild impairment in the ability to perform unipedal stance and tandem walk. Participants were allocated to TC (n = 107, mean age 78) or CBST, an intervention focused on improving dynamic balance and stepping (n = 106, mean age 78). At baseline and 10 weeks, participants were tested in their static balance (Unipedal Stance and Tandem Stance (TS)), stepping (Maximum Step Length, Rapid Step Test), and Timed Up and Go (TUG). Performance improved more with CBST than TC, ranging from 5% to 10% for the stepping tests (Maximum Step Length and Rapid Step Test) and 9% for TUG. The improvement in TUG represented an improvement of more than 1 second. Greater improvements were also seen in static balance ability (in TS) with CBST than TC. Of the two training programs, in which variants of each program have been proven to reduce falls, CBST results in modest improvements in balance, stepping, and functional mobility versus TC over a 10-week period. Future research should include a prospective comparison of fall rates in response to these two balance training programs.

  18. Unconditionally energy stable time stepping scheme for Cahn–Morral equation: Application to multi-component spinodal decomposition and optimal space tiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Rouhollah, E-mail: rtavakoli@sharif.ir

    An unconditionally energy stable time stepping scheme is introduced to solve Cahn–Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate themore » success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent of the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results. -- Highlights: •Extension of Eyre's convex–concave splitting scheme to multiphase systems. •Efficient solution of spinodal decomposition in multi-component systems. •Efficient solution of least perimeter periodic space partitioning problem. •Developing a penalization strategy to avoid trivial solutions. •Presentation of MATLAB implementation of the introduced algorithm.« less

  19. FY*X real-time polymerase chain reaction with melting curve analysis associated with a complete one-step real-time FY genotyping.

    PubMed

    Ansart-Pirenne, H; Martin-Blanc, S; Le Pennec, P-Y; Rouger, P; Cartron, J-P; Tournamille, C

    2007-02-01

    The Duffy (FY) blood group system is controlled by four major alleles: FY*A and FY*B, the Caucasian common alleles, encoding Fy(a) and Fy(b) antigens; FY*X allele responsible for a poorly expressed Fy(b) antigen, and FY*Fy a silent predominant allele among Black population. Despite the recent development of a real-time fluorescent polymerase chain reaction (PCR) method for FY genotyping FY*X genotyping has not been described by this method. This study focused on the real-time FY*X genotyping development associated with a complete, one-step real-time FY genotyping, based on fluorescence resonance energy transfer (FRET) technology. Seventy-two blood samples from Fy(a+b-) Caucasian blood donors were studied by real-time PCR only. Forty-seven Caucasian and Black individual blood samples, referred to our laboratory, were studied by PCR-RFLP and real-time PCR. For each individual, the result of the genotype was compared to the known phenotype. The FY*X allele frequency calculated in an Fy(a+b-) Caucasian blood donors population was 0.014. With the Caucasian and Black patient samples we found a complete correlation between PCR-RFLP and the real-time PCR method whatever the alleles combination tested. When the known phenotype was not correlated to FY*X genotype, the presence of the Fy(b) antigen was always confirmed by adsorption-elution. The real-time technology method is rapid and accurate for FY genotyping. From now, we are able to detect the FY*X allele in all the alleles combinations studied. Regarding its significant frequency, the detection of the FY*X allele is useful for the correct typing of blood donors and recipients considering the therapeutic use of blood units and the preparation of test red blood cells for antibody screening.

  20. Phase Shift Interferometer and Growth Set Up to Step Pattern Formation During Growth From Solutions. Influence of the Oscillatory solution Flow on Stability

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.; Booth, N. A.; Vekilov, P. G.; Murray, B. T.; McFadden, G. B.

    2000-01-01

    We have assembled an experimental setup based on Michelson interferometry with the growing crystal surface as one of the reflective surfaces. The crystallization part of the device allows optical monitoring of a face of a crystal growing at temperature stable within 0.05 C in a flow of solution of controlled direction and speed. The reference arm of the interferometer contains a liquid crystal element that allows controlled shifts of the phase of the interferograms. We employ an image-processing algorithm, which combines five images with a pi/2 phase difference between each pair of images. The images are transferred to a computer by a camera capable of capturing 60 frames per second. The device allows data collection on surface morphology and kinetics during the face layers growth over a relatively large area (approximately 4 sq. mm) in situ and in real time during growth. The estimated depth resolution of the phase shifting interferometry is approximately 50 Angstroms. The data will be analyzed in order to reveal and monitor step bunching during the growth process. The crystal chosen as a model for study in this work is KH2PO4 (KDP). This optically non-linear material is widely used in frequency doubling applications. There have been a number of studies of the kinetics of KDP crystallization that can serve as a benchmark for our investigations. However, so far, systematic quantitative characteristics of step interaction and bunching are missing. We intend to present our first quantitative results on the onset, initial stages and development of instabilities in moving step trains on vicinal crystal surfaces at varying supersaturation, flow rate, and flow direction. Behavior of a vicinal face growing from solution flowing normal to the steps and periodically changing its direction in time was considered theoretically. It was found that this oscillating flow reduces both stabilization and destabilization effects resulted from the unidirectional solution flow directed

  1. Two-step chlorination: A new approach to disinfection of a primary sewage effluent.

    PubMed

    Li, Yu; Yang, Mengting; Zhang, Xiangru; Jiang, Jingyi; Liu, Jiaqi; Yau, Cie Fu; Graham, Nigel J D; Li, Xiaoyan

    2017-01-01

    Sewage disinfection aims at inactivating pathogenic microorganisms and preventing the transmission of waterborne diseases. Chlorination is extensively applied for disinfecting sewage effluents. The objective of achieving a disinfection goal and reducing disinfectant consumption and operational costs remains a challenge in sewage treatment. In this study, we have demonstrated that, for the same chlorine dosage, a two-step addition of chlorine (two-step chlorination) was significantly more efficient in disinfecting a primary sewage effluent than a one-step addition of chlorine (one-step chlorination), and shown how the two-step chlorination was optimized with respect to time interval and dosage ratio. Two-step chlorination of the sewage effluent attained its highest disinfection efficiency at a time interval of 19 s and a dosage ratio of 5:1. Compared to one-step chlorination, two-step chlorination enhanced the disinfection efficiency by up to 0.81- or even 1.02-log for two different chlorine doses and contact times. An empirical relationship involving disinfection efficiency, time interval and dosage ratio was obtained by best fitting. Mechanisms (including a higher overall Ct value, an intensive synergistic effect, and a shorter recovery time) were proposed for the higher disinfection efficiency of two-step chlorination in the sewage effluent disinfection. Annual chlorine consumption costs in one-step and two-step chlorination of the primary sewage effluent were estimated. Compared to one-step chlorination, two-step chlorination reduced the cost by up to 16.7%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less

  3. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    DOE PAGES

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    2016-04-25

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less

  4. Planning paths through a spatial hierarchy - Eliminating stair-stepping effects

    NASA Technical Reports Server (NTRS)

    Slack, Marc G.

    1989-01-01

    Stair-stepping effects are a result of the loss of spatial continuity resulting from the decomposition of space into a grid. This paper presents a path planning algorithm which eliminates stair-stepping effects induced by the grid-based spatial representation. The algorithm exploits a hierarchical spatial model to efficiently plan paths for a mobile robot operating in dynamic domains. The spatial model and path planning algorithm map to a parallel machine, allowing the system to operate incrementally, thereby accounting for unexpected events in the operating space.

  5. Coherent diffractive imaging of time-evolving samples with improved temporal resolution

    DOE PAGES

    Ulvestad, A.; Tripathi, A.; Hruszkewycz, S. O.; ...

    2016-05-19

    Bragg coherent x-ray diffractive imaging is a powerful technique for investigating dynamic nanoscale processes in nanoparticles immersed in reactive, realistic environments. Its temporal resolution is limited, however, by the oversampling requirements of three-dimensional phase retrieval. Here, we show that incorporating the entire measurement time series, which is typically a continuous physical process, into phase retrieval allows the oversampling requirement at each time step to be reduced, leading to a subsequent improvement in the temporal resolution by a factor of 2-20 times. The increased time resolution will allow imaging of faster dynamics and of radiation-dose-sensitive samples. Furthermore, this approach, which wemore » call "chrono CDI," may find use in improving the time resolution in other imaging techniques.« less

  6. Preliminary Investigation of Time Remaining Display on the Computer-based Emergency Operating Procedure

    NASA Astrophysics Data System (ADS)

    Suryono, T. J.; Gofuku, A.

    2018-02-01

    One of the important thing in the mitigation of accidents in nuclear power plant accidents is time management. The accidents should be resolved as soon as possible in order to prevent the core melting and the release of radioactive material to the environment. In this case, operators should follow the emergency operating procedure related with the accident, in step by step order and in allowable time. Nowadays, the advanced main control rooms are equipped with computer-based procedures (CBPs) which is make it easier for operators to do their tasks of monitoring and controlling the reactor. However, most of the CBPs do not include the time remaining display feature which informs operators of time available for them to execute procedure steps and warns them if the they reach the time limit. Furthermore, the feature will increase the awareness of operators about their current situation in the procedure. This paper investigates this issue. The simplified of emergency operating procedure (EOP) of steam generator tube rupture (SGTR) accident of PWR plant is applied. In addition, the sequence of actions on each step of the procedure is modelled using multilevel flow modelling (MFM) and influenced propagation rule. The prediction of action time on each step is acquired based on similar case accidents and the Support Vector Regression. The derived time will be processed and then displayed on a CBP user interface.

  7. The Throw-and-Catch Model of Human Gait: Evidence from Coupling of Pre-Step Postural Activity and Step Location

    PubMed Central

    Bancroft, Matthew J.; Day, Brian L.

    2016-01-01

    Postural activity normally precedes the lift of a foot from the ground when taking a step, but its function is unclear. The throw-and-catch hypothesis of human gait proposes that the pre-step activity is organized to generate momentum for the body to fall ballistically along a specific trajectory during the step. The trajectory is appropriate for the stepping foot to land at its intended location while at the same time being optimally placed to catch the body and regain balance. The hypothesis therefore predicts a strong coupling between the pre-step activity and step location. Here we examine this coupling when stepping to visually-presented targets at different locations. Ten healthy, young subjects were instructed to step as accurately as possible onto targets placed in five locations that required either different step directions or different step lengths. In 75% of trials, the target location remained constant throughout the step. In the remaining 25% of trials, the intended step location was changed by making the target jump to a new location 96 ms ± 43 ms after initiation of the pre-step activity, long before foot lift. As predicted by the throw-and-catch hypothesis, when the target location remained constant, the pre-step activity led to body momentum at foot lift that was coupled to the intended step location. When the target location jumped, the pre-step activity was adjusted (median latency 223 ms) and prolonged (on average by 69 ms), which altered the body’s momentum at foot lift according to where the target had moved. We conclude that whenever possible the coupling between the pre-step activity and the step location is maintained. This provides further support for the throw-and-catch hypothesis of human gait. PMID:28066208

  8. The Throw-and-Catch Model of Human Gait: Evidence from Coupling of Pre-Step Postural Activity and Step Location.

    PubMed

    Bancroft, Matthew J; Day, Brian L

    2016-01-01

    Postural activity normally precedes the lift of a foot from the ground when taking a step, but its function is unclear. The throw-and-catch hypothesis of human gait proposes that the pre-step activity is organized to generate momentum for the body to fall ballistically along a specific trajectory during the step. The trajectory is appropriate for the stepping foot to land at its intended location while at the same time being optimally placed to catch the body and regain balance. The hypothesis therefore predicts a strong coupling between the pre-step activity and step location. Here we examine this coupling when stepping to visually-presented targets at different locations. Ten healthy, young subjects were instructed to step as accurately as possible onto targets placed in five locations that required either different step directions or different step lengths. In 75% of trials, the target location remained constant throughout the step. In the remaining 25% of trials, the intended step location was changed by making the target jump to a new location 96 ms ± 43 ms after initiation of the pre-step activity, long before foot lift. As predicted by the throw-and-catch hypothesis, when the target location remained constant, the pre-step activity led to body momentum at foot lift that was coupled to the intended step location. When the target location jumped, the pre-step activity was adjusted (median latency 223 ms) and prolonged (on average by 69 ms), which altered the body's momentum at foot lift according to where the target had moved. We conclude that whenever possible the coupling between the pre-step activity and the step location is maintained. This provides further support for the throw-and-catch hypothesis of human gait.

  9. Calculating Time-Integral Quantities in Depletion Calculations

    DOE PAGES

    Isotalo, Aarno

    2016-06-02

    A method referred to as tally nuclides is presented for accurately and efficiently calculating the time-step averages and integrals of any quantities that are weighted sums of atomic densities with constant weights during the step. The method allows all such quantities to be calculated simultaneously as a part of a single depletion solution with existing depletion algorithms. Some examples of the results that can be extracted include step-average atomic densities and macroscopic reaction rates, the total number of fissions during the step, and the amount of energy released during the step. Furthermore, the method should be applicable with several depletionmore » algorithms, and the integrals or averages should be calculated with an accuracy comparable to that reached by the selected algorithm for end-of-step atomic densities. The accuracy of the method is demonstrated in depletion calculations using the Chebyshev rational approximation method. Here, we demonstrate how the ability to calculate energy release in depletion calculations can be used to determine the accuracy of the normalization in a constant-power burnup calculation during the calculation without a need for a reference solution.« less

  10. Calculation tool for transported geothermal energy using two-step absorption process

    DOE Data Explorer

    Kyle Gluesenkamp

    2016-02-01

    This spreadsheet allows the user to calculate parameters relevant to techno-economic performance of a two-step absorption process to transport low temperature geothermal heat some distance (1-20 miles) for use in building air conditioning. The parameters included are (1) energy density of aqueous LiBr and LiCl solutions, (2) transportation cost of trucking solution, and (3) equipment cost for the required chillers and cooling towers in the two-step absorption approach. More information is available in the included public report: "A Technical and Economic Analysis of an Innovative Two-Step Absorption System for Utilizing Low-Temperature Geothermal Resources to Condition Commercial Buildings"

  11. Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy.

    PubMed

    Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard

    2014-02-10

    We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.

  12. Elite sprinting: are athletes individually step-frequency or step-length reliant?

    PubMed

    Salo, Aki I T; Bezodis, Ian N; Batterham, Alan M; Kerwin, David G

    2011-06-01

    The aim of this study was to investigate the step characteristics among the very best 100-m sprinters in the world to understand whether the elite athletes are individually more reliant on step frequency (SF) or step length (SL). A total of 52 male elite-level 100-m races were recorded from publicly available television broadcasts, with 11 analyzed athletes performing in 10 or more races. For each run of each athlete, the average SF and SL over the whole 100-m distance was analyzed. To determine any SF or SL reliance for an individual athlete, the 90% confidence interval (CI) for the difference between the SF-time versus SL-time relationships was derived using a criterion nonparametric bootstrapping technique. Athletes performed these races with various combinations of SF and SL reliance. Athlete A10 yielded the highest positive CI difference (SL reliance), with a value of 1.05 (CI = 0.50-1.53). The largest negative difference (SF reliance) occurred for athlete A11 as -0.60, with the CI range of -1.20 to 0.03. Previous studies have generally identified only one of these variables to be the main reason for faster running velocities. However, this study showed that there is a large variation of performance patterns among the elite athletes and, overall, SF or SL reliance is a highly individual occurrence. It is proposed that athletes should take this reliance into account in their training, with SF-reliant athletes needing to keep their neural system ready for fast leg turnover and SL-reliant athletes requiring more concentration on maintaining strength levels.

  13. Depicting Changes in Multiple Symptoms Over Time.

    PubMed

    Muehrer, Rebecca J; Brown, Roger L; Lanuza, Dorothy M

    2015-09-01

    Ridit analysis, an acronym for Relative to an Identified Distribution, is a method for assessing change in ordinal data and can be used to show how individual symptoms change or remain the same over time. The purposes of this article are to (a) describe how to use ridit analysis to assess change in a symptom measure using data from a longitudinal study, (b) give a step-by-step example of ridit analysis, (c) show the clinical relevance of applying ridit analysis, and (d) display results in an innovative graphic. Mean ridit effect sizes were calculated for the frequency and distress of 64 symptoms in lung transplant patients before and after transplant. Results were displayed in a bubble graph. Ridit analysis allowed us to maintain the specificity of individual symptoms and to show how each symptom changed or remained the same over time. The bubble graph provides an efficient way for clinicians to identify changes in symptom frequency and distress over time. © The Author(s) 2014.

  14. Transoral endoscopic anatomy of the parapharyngeal space: a step-by-step logical approach with surgical considerations.

    PubMed

    Dallan, Iacopo; Seccia, Veronica; Muscatello, Luca; Lenzi, Riccardo; Castelnuovo, Paolo; Bignami, Maurizio; Montevecchi, Filippo; Tschabitscher, Manfred; Vicini, Claudio

    2011-04-01

    Surgical approaches to the parapharyngeal spaces are challenging. Little is known about the transoral perspective of the anatomy of the parapharyngeal space. Thus, transoral approaches are seldom performed, and only for small-sized tumors. Six freshly injected cadaver heads were dissected to illustrate the transoral surgical anatomy of the parapharyngeal space. The transoral window dominates the parapharyngeal space from the medial pterygoid muscle laterally to the superior constrictor muscle medially. The stylopharyngeus and styloglossus muscles seem to be critical landmarks in this approach. Posterior to these muscles and laterally to the superior constrictor muscle, the internal carotid artery, internal jugular vein, and lower cranial nerves are identifiable. This anatomic study emphasizes the critical role of the superior constrictor, styloglossus, and stylopharyngeus muscles and highlights the concept of a logical step by step technique that allows the identification of important structures and the creation of safe surgical corridors. Copyright © 2010 Wiley Periodicals, Inc.

  15. 42 CFR 61.8 - Benefits: Stipends; dependency allowances; travel allowances; vacation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Benefits: Stipends; dependency allowances; travel...; dependency allowances; travel allowances; vacation. Individuals awarded regular fellowships shall be entitled...) Stipend. (b) Dependency allowances. (c) When authorized in advance, separate allowances for travel. Such...

  16. 42 CFR 61.8 - Benefits: Stipends; dependency allowances; travel allowances; vacation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Benefits: Stipends; dependency allowances; travel...; dependency allowances; travel allowances; vacation. Individuals awarded regular fellowships shall be entitled...) Stipend. (b) Dependency allowances. (c) When authorized in advance, separate allowances for travel. Such...

  17. 42 CFR 61.8 - Benefits: Stipends; dependency allowances; travel allowances; vacation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Benefits: Stipends; dependency allowances; travel...; dependency allowances; travel allowances; vacation. Individuals awarded regular fellowships shall be entitled...) Stipend. (b) Dependency allowances. (c) When authorized in advance, separate allowances for travel. Such...

  18. 42 CFR 61.8 - Benefits: Stipends; dependency allowances; travel allowances; vacation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Benefits: Stipends; dependency allowances; travel...; dependency allowances; travel allowances; vacation. Individuals awarded regular fellowships shall be entitled...) Stipend. (b) Dependency allowances. (c) When authorized in advance, separate allowances for travel. Such...

  19. 42 CFR 61.8 - Benefits: Stipends; dependency allowances; travel allowances; vacation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Benefits: Stipends; dependency allowances; travel...; dependency allowances; travel allowances; vacation. Individuals awarded regular fellowships shall be entitled...) Stipend. (b) Dependency allowances. (c) When authorized in advance, separate allowances for travel. Such...

  20. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice

    PubMed Central

    Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M.; Yamamori, Tetsuo

    2011-01-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice. PMID:21525375

  1. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice.

    PubMed

    Kitsukawa, Takashi; Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo

    2011-07-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.

  2. An Experimental Investigation On The Antidune Origin of Step-pools

    NASA Astrophysics Data System (ADS)

    Recking, A.; Leduc, P.

    2013-12-01

    Step-pools are bed morphologies that are typical in high-gradient streams , recognizable by a staircase-like longitudinal profile resulting from accumulation of cobbles and boulders that are transverse to the channel and alternating with pools containing finer sediments. Within the last two decades step-pools have been the subject of increased efforts to characterize their nature; however their origin is still in debate. Researchers have very soon suspected step-pools to be the residual form of antidunes produced during flooding, but this hypothesis was continuously contested. Other theories has been proposed, considering, that step-pool profile develops a maximum flow resistance, or that pools geometry is controlled by the energy of a falling jet, or that steps form by boulders accumulation in a channel-spanning manner. All these theories gave very satisfying results when compared with experimental data, but does it mean that the antidune theory should we abandoned? We performed new flume experiments on steep slopes to investigate the antidune origin for step-pools. Our experiments showed that step-pools can have several origins, depending on the flow conditions and sediment mixture used. In some circumstances antidunes were well observed but did not produce stable step-pools morphology. In many occasions, step-pools obtained in the flume were isolated step-pools, with no real apparent periodicity. Only a few flow and sediment conditions allowed us to reproduce trains of antidunes which stabilized at the flow recession to produce stable periodical step-pools. These conditions are presented and discussed.

  3. Application of Time-Frequency Representations To Non-Stationary Radar Cross Section

    DTIC Science & Technology

    2009-03-01

    The three- dimensional plot produced by a TFR allows one to determine which spectral components of a signal vary with time [25... a range bin ( of width cT 2 ) from the stepped frequency waveform. 2. Cancel the clutter (stationary components) by zeroing out points associated with ...generating an infinite number of bilinear Time Frequency distributions based on a generalized equation and a change- able

  4. Nanostructuring of sapphire using time-modulated nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Zagoranskiy, I.; Ehrhardt, M.; Bayer, L.; Zimmer, K.

    2017-02-01

    The nanostructuring of dielectric surfaces using laser radiation is still a challenge. The IPSM-LIFE (laser-induced front side etching using in-situ pre-structured metal layer) method allows the easy, large area and fast laser nanostructuring of dielectrics. At IPSM-LIFE a metal covered dielectric is irradiated where the structuring is assisted by a self-organized molten metal layer deformation process. The IPSM-LIFE can be divided into two steps: STEP 1: The irradiation of thin metal layers on dielectric surfaces results in a melting and nanostructuring process of the metal layer and partially of the dielectric surface. STEP 2: A subsequent high laser fluence treatment of the metal nanostructures result in a structuring of the dielectric surface. At this study a sapphire substrate Al2O3(1-102) was covered with a 10 nm thin molybdenum layer and irradiated by an infrared laser with an adjustable time-dependent pulse form with a time resolution of 1 ns (wavelength λ = 1064 nm, pulse duration Δtp = 1 - 600 ns, Gaussian beam profile). The laser treatment allows the fabrication of different surface structures into the sapphire surface due to a pattern transfer process. The resultant structures were investigated by scanning electron microscopy (SEM). The process was simulated and the simulation results were compared with experimental results.

  5. Long-Time Plasma Membrane Imaging Based on a Two-Step Synergistic Cell Surface Modification Strategy.

    PubMed

    Jia, Hao-Ran; Wang, Hong-Yin; Yu, Zhi-Wu; Chen, Zhan; Wu, Fu-Gen

    2016-03-16

    Long-time stable plasma membrane imaging is difficult due to the fast cellular internalization of fluorescent dyes and the quick detachment of the dyes from the membrane. In this study, we developed a two-step synergistic cell surface modification and labeling strategy to realize long-time plasma membrane imaging. Initially, a multisite plasma membrane anchoring reagent, glycol chitosan-10% PEG2000 cholesterol-10% biotin (abbreviated as "GC-Chol-Biotin"), was incubated with cells to modify the plasma membranes with biotin groups with the assistance of the membrane anchoring ability of cholesterol moieties. Fluorescein isothiocyanate (FITC)-conjugated avidin was then introduced to achieve the fluorescence-labeled plasma membranes based on the supramolecular recognition between biotin and avidin. This strategy achieved stable plasma membrane imaging for up to 8 h without substantial internalization of the dyes, and avoided the quick fluorescence loss caused by the detachment of dyes from plasma membranes. We have also demonstrated that the imaging performance of our staining strategy far surpassed that of current commercial plasma membrane imaging reagents such as DiD and CellMask. Furthermore, the photodynamic damage of plasma membranes caused by a photosensitizer, Chlorin e6 (Ce6), was tracked in real time for 5 h during continuous laser irradiation. Plasma membrane behaviors including cell shrinkage, membrane blebbing, and plasma membrane vesiculation could be dynamically recorded. Therefore, the imaging strategy developed in this work may provide a novel platform to investigate plasma membrane behaviors over a relatively long time period.

  6. Mind wandering at the fingertips: automatic parsing of subjective states based on response time variability

    PubMed Central

    Bastian, Mikaël; Sackur, Jérôme

    2013-01-01

    Research from the last decade has successfully used two kinds of thought reports in order to assess whether the mind is wandering: random thought-probes and spontaneous reports. However, none of these two methods allows any assessment of the subjective state of the participant between two reports. In this paper, we present a step by step elaboration and testing of a continuous index, based on response time variability within Sustained Attention to Response Tasks (N = 106, for a total of 10 conditions). We first show that increased response time variability predicts mind wandering. We then compute a continuous index of response time variability throughout full experiments and show that the temporal position of a probe relative to the nearest local peak of the continuous index is predictive of mind wandering. This suggests that our index carries information about the subjective state of the subject even when he or she is not probed, and opens the way for on-line tracking of mind wandering. Finally we proceed a step further and infer the internal attentional states on the basis of the variability of response times. To this end we use the Hidden Markov Model framework, which allows us to estimate the durations of on-task and off-task episodes. PMID:24046753

  7. Changing Safety Culture, One Step at a Time: The Value of the DOE-VPP Program at PNNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Patrick A.; Isern, Nancy G.

    2005-02-01

    The primary value of the Pacific Northwest National Laboratory (PNNL) Voluntary Protection Program (VPP) is the ongoing partnership between management and staff committed to change Laboratory safety culture one step at a time. VPP enables PNNL's safety and health program to transcend a top-down, by-the-book approach to safety, and it also raises grassroots safety consciousness by promoting a commitment to safety and health 24 hours a day, 7 days a week. PNNL VPP is a dynamic, evolving program that fosters innovative approaches to continuous improvement in safety and health performance at the Laboratory.

  8. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data

    NASA Astrophysics Data System (ADS)

    Jothiprakash, V.; Magar, R. B.

    2012-07-01

    SummaryIn this study, artificial intelligent (AI) techniques such as artificial neural network (ANN), Adaptive neuro-fuzzy inference system (ANFIS) and Linear genetic programming (LGP) are used to predict daily and hourly multi-time-step ahead intermittent reservoir inflow. To illustrate the applicability of AI techniques, intermittent Koyna river watershed in Maharashtra, India is chosen as a case study. Based on the observed daily and hourly rainfall and reservoir inflow various types of time-series, cause-effect and combined models are developed with lumped and distributed input data. Further, the model performance was evaluated using various performance criteria. From the results, it is found that the performances of LGP models are found to be superior to ANN and ANFIS models especially in predicting the peak inflows for both daily and hourly time-step. A detailed comparison of the overall performance indicated that the combined input model (combination of rainfall and inflow) performed better in both lumped and distributed input data modelling. It was observed that the lumped input data models performed slightly better because; apart from reducing the noise in the data, the better techniques and their training approach, appropriate selection of network architecture, required inputs, and also training-testing ratios of the data set. The slight poor performance of distributed data is due to large variations and lesser number of observed values.

  9. A Two-Step Lyssavirus Real-Time Polymerase Chain Reaction Using Degenerate Primers with Superior Sensitivity to the Fluorescent Antigen Test

    PubMed Central

    Nazé, Florence; Francart, Aurélie; Lamoral, Sophie; De Craeye, Stéphane; Kalai, Michael

    2014-01-01

    A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR), based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible. PMID:24822188

  10. Robotic-assisted laparoscopic radical nephrectomy using the Da Vinci Si system: how to improve surgeon autonomy. Our step-by-step technique.

    PubMed

    Davila, Hugo H; Storey, Raul E; Rose, Marc C

    2016-09-01

    Herein, we describe several steps to improve surgeon autonomy during a Left Robotic-Assisted Laparoscopic Radical Nephrectomy (RALRN), using the Da Vinci Si system. Our kidney cancer program is based on 2 community hospitals. We use the Da Vinci Si system. Access is obtained with the following trocars: Two 8 mm robotic, one 8 mm robotic, bariatric length (arm 3), 15 mm for the assistant and 12 mm for the camera. We use curved monopolar scissors in robotic arm 1, Bipolar Maryland in arm 2, Prograsp Forceps in arm 3, and we alternate throughout the surgery with EndoWrist clip appliers and the vessel sealer. Here, we described three steps and the use of 3 robotic instruments to improve surgeon autonomy. Step 1: the lower pole of the kidney was dissected and this was retracted upwards and laterally. This maneuver was performed using the 3rd robotic arm with the Prograsp Forceps. Step 2: the monopolar scissors was replaced (robotic arm 1) with the robotic EndoWrist clip applier, 10 mm Hem-o-Lok. The renal artery and vein were controlled and transected by the main surgeon. Step 3: the superior, posterolateral dissection and all bleeders were carefully coagulated by the surgeon with the EndoWrist one vessel sealer. We have now performed 15 RALRN following these steps. Our results were: blood loss 300 cc, console time 140 min, operating room time 200 min, anesthesia time 180 min, hospital stay 2.5 days, 1 incisional hernia, pathology: (13) RCC clear cell, (1) chromophobe and (1) papillary type 1. Tumor Stage: (5) T1b, (8) T2a, (2) T2b. We provide a concise, step-by-step technique for radical nephrectomy (RN) using the Da Vinci Si robotic system that may provide more autonomy to the surgeon, while maintaining surgical outcome equivalent to standard laparoscopic RN.

  11. Quantification of Pea enation mosaic virus 1 and 2 during infection of Pisum sativum by one step real-time RT-PCR.

    PubMed

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen

    2017-02-01

    Pea enation mosaic virus 1 (PEMV1) and Pea enation mosaic virus 2 (PEMV2) are two viruses in an obligate symbiosis that cause pea enation mosaic disease mainly in plants in the Fabaceae family. This virus system is a valuable model to investigate plant virus replication, movement and vector transmission. Thus, here we describe growth conditions, virus detection methods, and virus accumulation behavior. To measure the accumulation and movement of PEMV1 and PEMV2 in plants during the course of infection, we developed a quantitative real-time one-step reverse transcription PCR procedure using the SYBR-green ® technology. Viral primers were designed that anneal to conserved but distinct regions in the RNA-dependent RNA polymerase gene of each virus. Moreover, the normalization of viral accumulation was performed to correct for sample-to-sample variation by designing primers to two different Pisum sativum housekeeping genes: actin and β-tubulin. Transcript levels for these housekeeping genes did not change significantly in response to PEMV infection. Conditions were established for maximum PCR efficiency for each gene, and quantification using QuBit ® technology. Both viruses reached maximum accumulation around 21days post-inoculation of pea plants. These results provide valuable tools and knowledge to allow reproducible studies of this emerging model virus system virus complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ex situ investigation of the step bunching on crystal surfaces by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Krasinski, Mariusz J.

    1997-07-01

    We are describing ex situ observation of step bunching on the surfaces of solution grown potassium dihydrogen phosphate (KDP) and sodium chlorate monocrystals. The measurements have been done with the use of atomic force microscope. The use of this equipment allowed us to see directly the structure of macrosteps. Observation confirmed the existence of step pinning which is one of the proposed mechanisms of step bunching. Despite the very high resolution of AFM it was not possible to determine the nature of pinning point. The monatomic steps on KDP and sodium chlorate crystal surfaces are mainly one unit cell high what seems to be the result of the steps pairing. The origin of observed step pattern is discussed in frames of existing theories.

  13. One-step formation and sterilization of gellan and hyaluronan nanohydrogels using autoclave.

    PubMed

    Montanari, Elita; De Rugeriis, Maria Cristina; Di Meo, Chiara; Censi, Roberta; Coviello, Tommasina; Alhaique, Franco; Matricardi, Pietro

    2015-01-01

    The sterilization of nanoparticles for biomedical applications is one of the challenges that must be faced in the development of nanoparticulate systems. Usually, autoclave sterilization cannot be applied because of stability concerns when polymeric nanoparticles are involved. This paper describes an innovative method which allows to obtain, using a single step autoclave procedure, the preparation and, at the same time, the sterilization of self-assembling nanohydrogels (NHs) obtained with cholesterol-derivatized gellan and hyaluronic acid. Moreover, by using this approach, NHs, while formed in the autoclave, can be easily loaded with drugs. The obtained NHs dispersion can be lyophilized in the presence of a cryoprotectant, leading to the original NHs after re-dispersion in water.

  14. Effect of a Cooling Step Treatment on a High-Voltage GaN LED During ICP Dry Etching

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Sheng; Hsiao, Sheng-Yu; Tseng, Chun-Lung; Shen, Ching-Hsing; Chiang, Jung-Sheng

    2017-02-01

    In this study, a lower dislocation density for a GaN surface and a reduced current path are observed at the interface of a SiO2 isolation sidewall, using high-resolution transmission electron microscopy. This is grown using a 3-min cooling step treatment during inductivity coupled plasma dry etching. The lower forward voltage is measured, the leakage current decreases from 53nA to 32nA, and the maximum output power increases from 354.8 W to 357.2 W for an input current of 30 mA. The microstructure and the optoelectronic properties of high-voltage light-emitting-diodes is proven to be affected by the cooling step treatment, which allows enough time to release the thermal energy of the SiO2 isolation well.

  15. Retzus-sparing robotic-assisted laparoscopic radical prostatectomy: a step-by-step technique description of this first brazilian experience.

    PubMed

    Tobias-Machado, Marcos; Nunes-Silva, Igor; Hidaka, Alexandre Kiyoshi; Sato, Leticia Lumy Kanawa; Almeida, Roberto; Colombo, Jose Roberto; Zampolli, Hamilton de Campos; Pompeo, Antonio Carlos Lima

    2016-01-01

    Retzus-sparing robotic-assisted radical prostatectomy(RARP) is a newly approach that preserve the Retzus structures and provide better recovery of continence and erectile function. In Brazil, this approach has not yet been pre¬viously reported. Our goal is to describe Step-by-Step the Retzus-sparing RARP surgical technique and report our first Brazilian experience. We present a case of a 60-year-old white man with low risk prostate cancer. Surgical materials were four arms Da Vinci robotic platform system, six transperitoneal portals, two prolene wires and Polymer Clips. This surgical tech¬nique was step-by-step described according to Galfano et al. One additional step was added as a modification of Galfano et al. Primary technique description: The closure of the Denovellier fascia. We have operated one patient with this technique. The operative time was 180minutes, console time was135 min, the blood loss was 150ml, none perioperative or postoperative complications was found, hospital stay of 01 day. The anatomopathological classification revealed a pT2aN0M0 specimen with free surgical margins. The patient achieved continence immediately after bladder stent retrieval. Full erection reported after 30 days of surgery. Retzus-sparing RARP approach is feasible and reproducible. However, further comparative studies are neces¬sary to demonstrate potential benefits in continence and sexual outcomes over the standard approaches. Copyright® by the International Brazilian Journal of Urology.

  16. Two Independent Contributions to Step Variability during Over-Ground Human Walking

    PubMed Central

    Collins, Steven H.; Kuo, Arthur D.

    2013-01-01

    Human walking exhibits small variations in both step length and step width, some of which may be related to active balance control. Lateral balance is thought to require integrative sensorimotor control through adjustment of step width rather than length, contributing to greater variability in step width. Here we propose that step length variations are largely explained by the typical human preference for step length to increase with walking speed, which itself normally exhibits some slow and spontaneous fluctuation. In contrast, step width variations should have little relation to speed if they are produced more for lateral balance. As a test, we examined hundreds of overground walking steps by healthy young adults (N = 14, age < 40 yrs.). We found that slow fluctuations in self-selected walking speed (2.3% coefficient of variation) could explain most of the variance in step length (59%, P < 0.01). The residual variability not explained by speed was small (1.5% coefficient of variation), suggesting that step length is actually quite precise if not for the slow speed fluctuations. Step width varied over faster time scales and was independent of speed fluctuations, with variance 4.3 times greater than that for step length (P < 0.01) after accounting for the speed effect. That difference was further magnified by walking with eyes closed, which appears detrimental to control of lateral balance. Humans appear to modulate fore-aft foot placement in precise accordance with slow fluctuations in walking speed, whereas the variability of lateral foot placement appears more closely related to balance. Step variability is separable in both direction and time scale into balance- and speed-related components. The separation of factors not related to balance may reveal which aspects of walking are most critical for the nervous system to control. PMID:24015308

  17. Detection of SYT-SSX mutant transcripts in formalin-fixed paraffin-embedded sarcoma tissues using one-step reverse transcriptase real-time PCR.

    PubMed

    Norlelawati, A T; Mohd Danial, G; Nora, H; Nadia, O; Zatur Rawihah, K; Nor Zamzila, A; Naznin, M

    2016-04-01

    Synovial sarcoma (SS) is a rare cancer and accounts for 5-10% of adult soft tissue sarcomas. Making an accurate diagnosis is difficult due to the overlapping histological features of SS with other types of sarcomas and the non-specific immunohistochemistry profile findings. Molecular testing is thus considered necessary to confirm the diagnosis since more than 90% of SS cases carry the transcript of t(X;18)(p11.2;q11.2). The purpose of this study is to diagnose SS at molecular level by testing for t(X;18) fusion-transcript expression through One-step reverse transcriptase real-time Polymerase Chain Reaction (PCR). Formalin-fixed paraffin-embedded tissue blocks of 23 cases of soft tissue sarcomas, which included 5 and 8 cases reported as SS as the primary diagnosis and differential diagnosis respectively, were retrieved from the Department of Pathology, Tengku Ampuan Afzan Hospital, Kuantan, Pahang. RNA was purified from the tissue block sections and then subjected to One-step reverse transcriptase real-time PCR using sequence specific hydrolysis probes for simultaneous detection of either SYT-SSX1 or SYT-SSX2 fusion transcript. Of the 23 cases, 4 cases were found to be positive for SYT-SSX fusion transcript in which 2 were diagnosed as SS whereas in the 2 other cases, SS was the differential diagnosis. Three cases were excluded due to failure of both amplification assays SYT-SSX and control β-2-microglobulin. The remaining 16 cases were negative for the fusion transcript. This study has shown that the application of One-Step reverse transcriptase real time PCR for the detection SYT-SSX transcript is feasible as an aid in confirming the diagnosis of synovial sarcoma.

  18. The Effect of Phosphoric Acid Pre-etching Times on Bonding Performance and Surface Free Energy with Single-step Self-etch Adhesives.

    PubMed

    Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to evaluate the effect of phosphoric acid pre-etching times on shear bond strength (SBS) and surface free energy (SFE) with single-step self-etch adhesives. The three single-step self-etch adhesives used were: 1) Scotchbond Universal Adhesive (3M ESPE), 2) Clearfil tri-S Bond (Kuraray Noritake Dental), and 3) G-Bond Plus (GC). Two no pre-etching groups, 1) untreated enamel and 2) enamel surfaces after ultrasonic cleaning with distilled water for 30 seconds to remove the smear layer, were prepared. There were four pre-etching groups: 1) enamel surfaces were pre-etched with phosphoric acid (Etchant, 3M ESPE) for 3 seconds, 2) enamel surfaces were pre-etched for 5 seconds, 3) enamel surfaces were pre-etched for 10 seconds, and 4) enamel surfaces were pre-etched for 15 seconds. Resin composite was bonded to the treated enamel surface to determine SBS. The SFEs of treated enamel surfaces were determined by measuring the contact angles of three test liquids. Scanning electron microscopy was used to examine the enamel surfaces and enamel-adhesive interface. The specimens with phosphoric acid pre-etching showed significantly higher SBS and SFEs than the specimens without phosphoric acid pre-etching regardless of the adhesive system used. SBS and SFEs did not increase for phosphoric acid pre-etching times over 3 seconds. There were no significant differences in SBS and SFEs between the specimens with and without a smear layer. The data suggest that phosphoric acid pre-etching of ground enamel improves the bonding performance of single-step self-etch adhesives, but these bonding properties do not increase for phosphoric acid pre-etching times over 3 seconds.

  19. Effectiveness of a step-by-step oral recount before a practical simulation of fracture fixation.

    PubMed

    Abagge, Marcelo; Uliana, Christiano Saliba; Fischer, Sergei Taggesell; Kojima, Kodi Edson

    2017-10-01

    To evaluate the effectiveness of a step-by-step oral recount by residents before the final execution of a practical exercise simulating a surgical fixation of a radial diaphyseal fracture. The study included 10 residents of orthopaedics and traumatology (four second- year and six first-year residents) divided into two groups with five residents each. All participants initially gathered in a room in which a video was presented demonstrating the practical exercise to be performed. One group (Group A) was referred directly to the practical exercise room. The other group (Group B) attended an extra session before the practical exercise, in which they were invited by instructors to recount all the steps that they would perform during the practical exercise. During this session, the instructors corrected the residents if any errors in the step-by-step recount were identified, and clarified questions from them. After this session, both Groups A and B gathered in a room in which they proceeded to the practical exercise, while being video recorded and evaluated using a 20-point checklist. Group A achieved a 57% accuracy, with results in this group ranging from 7 to 15 points out of a total of a possible 20 points. Group B achieved an 89% accuracy, with results in this group ranging from 15 to 20 points out of 20. An oral step-by-step recount by the residents before the final execution of a practical simulation exercise of surgical fixation of a diaphyseal radial fracture improved the technique and reduced the execution time of the exercise. © 2017 Elsevier Ltd. All rights reserved.

  20. A transition from using multi-step procedures to a fully integrated system for performing extracorporeal photopheresis: A comparison of costs and efficiencies.

    PubMed

    Azar, Nabih; Leblond, Veronique; Ouzegdouh, Maya; Button, Paul

    2017-12-01

    The Pitié Salpêtrière Hospital Hemobiotherapy Department, Paris, France, has been providing extracorporeal photopheresis (ECP) since November 2011, and started using the Therakos ® CELLEX ® fully integrated system in 2012. This report summarizes our single-center experience of transitioning from the use of multi-step ECP procedures to the fully integrated ECP system, considering the capacity and cost implications. The total number of ECP procedures performed 2011-2015 was derived from department records. The time taken to complete a single ECP treatment using a multi-step technique and the fully integrated system at our department was assessed. Resource costs (2014€) were obtained for materials and calculated for personnel time required. Time-driven activity-based costing methods were applied to provide a cost comparison. The number of ECP treatments per year increased from 225 (2012) to 727 (2015). The single multi-step procedure took 270 min compared to 120 min for the fully integrated system. The total calculated per-session cost of performing ECP using the multi-step procedure was greater than with the CELLEX ® system (€1,429.37 and €1,264.70 per treatment, respectively). For hospitals considering a transition from multi-step procedures to fully integrated methods for ECP where cost may be a barrier, time-driven activity-based costing should be utilized to gain a more comprehensive understanding the full benefit that such a transition offers. The example from our department confirmed that there were not just cost and time savings, but that the time efficiencies gained with CELLEX ® allow for more patient treatments per year. © 2017 The Authors Journal of Clinical Apheresis Published by Wiley Periodicals, Inc.

  1. Enhanced conformational sampling via novel variable transformations and very large time-step molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tuckerman, Mark

    2006-03-01

    One of the computational grand challenge problems is to develop methodology capable of sampling conformational equilibria in systems with rough energy landscapes. If met, many important problems, most notably protein folding, could be significantly impacted. In this talk, two new approaches for addressing this problem will be presented. First, it will be shown how molecular dynamics can be combined with a novel variable transformation designed to warp configuration space in such a way that barriers are reduced and attractive basins stretched. This method rigorously preserves equilibrium properties while leading to very large enhancements in sampling efficiency. Extensions of this approach to the calculation/exploration of free energy surfaces will be discussed. Next, a new very large time-step molecular dynamics method will be introduced that overcomes the resonances which plague many molecular dynamics algorithms. The performance of the methods is demonstrated on a variety of systems including liquid water, long polymer chains simple protein models, and oligopeptides.

  2. Enantioselective Total Synthesis of (−)-Minovincine in Nine Chemical Steps: An Approach to Ketone Activation in Cascade Catalysis

    PubMed Central

    Laforteza, Brian N.; Pickworth, Mark

    2014-01-01

    More cycling–fewer steps The first enantioselective total synthesis of (−)-minovincine has been accomplished in nine chemical steps and 13% overall yield. A novel, one-step Diels–Alder/β-elimination/conjugate addition organocascade sequence allowed rapid access to the central tetracyclic core in an asymmetric manner. PMID:24000234

  3. Habituation of self-motion perception following unidirectional angular velocity steps.

    PubMed

    Clément, Gilles; Terlevic, Robert

    2016-09-07

    We investigated whether the perceived angular velocity following velocity steps of 80°/s in the dark decreased with the repetition of the stimulation in the same direction. The perceptual response to velocity steps in the opposite direction was also compared before and after this unidirectional habituation training. Participants indicated their perceived angular velocity by clicking on a wireless mouse every time they felt that they had rotated by 90°. The prehabituation perceptual response decayed exponentially with a time constant of 23.9 s. After 100 velocity steps in the same direction, this time constant was 12.9 s. The time constant after velocity steps in the opposite direction was 13.4 s, indicating that the habituation of the sensation of rotation is not direction specific. The peak velocity of the perceptual response was not affected by the habituation training. The differences between the habituation characteristics of self-motion perception and eye movements confirm that different velocity storage mechanisms mediate ocular and perceptual responses.

  4. Effect of nucleation on instability of step meandering during step-flow growth on vicinal 3C-SiC (0001) surfaces

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Chen, Xuejiang; Su, Juan

    2017-06-01

    A three-dimensional kinetic Monte Carlo (KMC) model has been developed to study the step instability caused by nucleation during the step-flow growth of 3C-SiC. In the model, a lattice mesh was established to fix the position of atoms and bond partners based on the crystal lattice of 3C-SiC. The events considered in the model were adsorption and diffusion of adatoms on the terraces, attachment, detachment and interlayer transport of adatoms at the step edges, and nucleation of adatoms. Then the effects of nucleation on the instability of step meandering and the coalescence of both islands and steps were simulated by the model. The results showed that the instability of step meandering caused by nucleation was affected by the growth temperature. And the effects of nucleation on the instability was also analyzed. Moreover, the surface roughness as a function of time for different temperatures was discussed. Finally, a phase diagram was presented to predict in which conditions the effects of nucleation on step meandering become significant and the three different regimes, the step-flow (SF), 2D nucleation (2DN), and 3D layer by layer (3DLBL) were determined.

  5. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process.

    PubMed

    Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui

    2017-11-15

    The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.

  6. Transition regime from step-flow to step-bunching in the growth of epitaxial SrRuO3 on (001) SrTiO3

    NASA Astrophysics Data System (ADS)

    Gura, Anna; Bertino, Giulia; Bein, Benjamin; Dawber, Matthew

    2018-04-01

    We present a study of the surface morphology of SrRuO3 thin films grown on TiO2 terminated (001) SrTiO3 substrates using an off-axis RF magnetron sputtering deposition technique. We investigated the step bunching formation and the evolution of the films by varying deposition parameters. The thin films were characterized using atomic force microscopy methods, allowing us to study the various growth regimes of SrRuO3 as a function of the growth parameters. We observe a strong influence of both the miscut angle and growth temperature on the evolution of the SrRuO3 surface morphology. In addition, a thickness dependence is present. Remarkably, the formation of a smooth, regular, and uniform "fish-skin" structure at the step-bunch transition is observed. The fish-skin morphology results from the merging of 2D flat islands predicted by previous models. The direct observation of surface evolution allows us to better understand the different growth regimes of SrRuO3 thin films.

  7. NCAR's Experimental Real-time Convection-allowing Ensemble Prediction System

    NASA Astrophysics Data System (ADS)

    Schwartz, C. S.; Romine, G. S.; Sobash, R.; Fossell, K.

    2016-12-01

    Since April 2015, the National Center for Atmospheric Research's (NCAR's) Mesoscale and Microscale Meteorology (MMM) Laboratory, in collaboration with NCAR's Computational Information Systems Laboratory (CISL), has been producing daily, real-time, 10-member, 48-hr ensemble forecasts with 3-km horizontal grid spacing over the conterminous United States (http://ensemble.ucar.edu). These computationally-intensive, next-generation forecasts are produced on the Yellowstone supercomputer, have been embraced by both amateur and professional weather forecasters, are widely used by NCAR and university researchers, and receive considerable attention on social media. Initial conditions are supplied by NCAR's Data Assimilation Research Testbed (DART) software and the forecast model is NCAR's Weather Research and Forecasting (WRF) model; both WRF and DART are community tools. This presentation will focus on cutting-edge research results leveraging the ensemble dataset, including winter weather predictability, severe weather forecasting, and power outage modeling. Additionally, the unique design of the real-time analysis and forecast system and computational challenges and solutions will be described.

  8. Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands

    PubMed Central

    Vasconcelos, Helena

    2018-01-01

    It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO2) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency. PMID:29677108

  9. Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands.

    PubMed

    de Almeida, José M M M; Vasconcelos, Helena; Jorge, Pedro A S; Coelho, Luis

    2018-04-20

    It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO₂) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency.

  10. The general alcoholics anonymous tools of recovery: the adoption of 12-step practices and beliefs.

    PubMed

    Greenfield, Brenna L; Tonigan, J Scott

    2013-09-01

    Working the 12 steps is widely prescribed for Alcoholics Anonymous (AA) members although the relative merits of different methods for measuring step work have received minimal attention and even less is known about how step work predicts later substance use. The current study (1) compared endorsements of step work on an face-valid or direct measure, the Alcoholics Anonymous Inventory (AAI), with an indirect measure of step work, the General Alcoholics Anonymous Tools of Recovery (GAATOR); (2) evaluated the underlying factor structure of the GAATOR and changes in step work over time; (3) examined changes in the endorsement of step work over time; and (4) investigated how, if at all, 12-step work predicted later substance use. New AA affiliates (N = 130) completed assessments at intake, 3, 6, and 9 months. Significantly more participants endorsed step work on the GAATOR than on the AAI for nine of the 12 steps. An exploratory factor analysis revealed a two-factor structure for the GAATOR comprising behavioral step work and spiritual step work. Behavioral step work did not change over time, but was predicted by having a sponsor, while Spiritual step work decreased over time and increases were predicted by attending 12-step meetings or treatment. Behavioral step work did not prospectively predict substance use. In contrast, spiritual step work predicted percent days abstinent. Behavioral step work and spiritual step work appear to be conceptually distinct components of step work that have distinct predictors and unique impacts on outcomes. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. Synergetic effect of double-step blocking layer for the perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Kim, Jinhyun; Hwang, Taehyun; Lee, Sangheon; Lee, Byungho; Kim, Jaewon; Kim, Jaewook; Gil, Bumjin; Park, Byungwoo

    2017-10-01

    In an organometallic CH3NH3PbI3 (MAPbI3) perovskite solar cell, we have demonstrated a vastly compact TiO2 layer synthesized by double-step deposition, through a combination of sputter and solution deposition to minimize the electron-hole recombination and boost the power conversion efficiency. As a result, the double-step strategy allowed outstanding transmittance of blocking layer. Additionally, crystallinity and morphology of the perovskite film were significantly modified, provoking enhanced photon absorption and solar cell performance with the reduced recombination rate. Thereby, this straightforward double-step strategy for the blocking layer exhibited 12.31% conversion efficiency through morphological improvements of each layer.

  12. Steps to achieve quantitative measurements of microRNA using two step droplet digital PCR.

    PubMed

    Stein, Erica V; Duewer, David L; Farkas, Natalia; Romsos, Erica L; Wang, Lili; Cole, Kenneth D

    2017-01-01

    Droplet digital PCR (ddPCR) is being advocated as a reference method to measure rare genomic targets. It has consistently been proven to be more sensitive and direct at discerning copy numbers of DNA than other quantitative methods. However, one of the largest obstacles to measuring microRNA (miRNA) using ddPCR is that reverse transcription efficiency depends upon the target, meaning small RNA nucleotide composition directly effects primer specificity in a manner that prevents traditional quantitation optimization strategies. Additionally, the use of reagents that are optimized for miRNA measurements using quantitative real-time PCR (qRT-PCR) appear to either cause false positive or false negative detection of certain targets when used with traditional ddPCR quantification methods. False readings are often related to using inadequate enzymes, primers and probes. Given that two-step miRNA quantification using ddPCR relies solely on reverse transcription and uses proprietary reagents previously optimized only for qRT-PCR, these barriers are substantial. Therefore, here we outline essential controls, optimization techniques, and an efficacy model to improve the quality of ddPCR miRNA measurements. We have applied two-step principles used for miRNA qRT-PCR measurements and leveraged the use of synthetic miRNA targets to evaluate ddPCR following cDNA synthesis with four different commercial kits. We have identified inefficiencies and limitations as well as proposed ways to circumvent identified obstacles. Lastly, we show that we can apply these criteria to a model system to confidently quantify miRNA copy number. Our measurement technique is a novel way to quantify specific miRNA copy number in a single sample, without using standard curves for individual experiments. Our methodology can be used for validation and control measurements, as well as a diagnostic technique that allows scientists, technicians, clinicians, and regulators to base miRNA measures on a single

  13. Steps to achieve quantitative measurements of microRNA using two step droplet digital PCR

    PubMed Central

    Duewer, David L.; Farkas, Natalia; Romsos, Erica L.; Wang, Lili; Cole, Kenneth D.

    2017-01-01

    Droplet digital PCR (ddPCR) is being advocated as a reference method to measure rare genomic targets. It has consistently been proven to be more sensitive and direct at discerning copy numbers of DNA than other quantitative methods. However, one of the largest obstacles to measuring microRNA (miRNA) using ddPCR is that reverse transcription efficiency depends upon the target, meaning small RNA nucleotide composition directly effects primer specificity in a manner that prevents traditional quantitation optimization strategies. Additionally, the use of reagents that are optimized for miRNA measurements using quantitative real-time PCR (qRT-PCR) appear to either cause false positive or false negative detection of certain targets when used with traditional ddPCR quantification methods. False readings are often related to using inadequate enzymes, primers and probes. Given that two-step miRNA quantification using ddPCR relies solely on reverse transcription and uses proprietary reagents previously optimized only for qRT-PCR, these barriers are substantial. Therefore, here we outline essential controls, optimization techniques, and an efficacy model to improve the quality of ddPCR miRNA measurements. We have applied two-step principles used for miRNA qRT-PCR measurements and leveraged the use of synthetic miRNA targets to evaluate ddPCR following cDNA synthesis with four different commercial kits. We have identified inefficiencies and limitations as well as proposed ways to circumvent identified obstacles. Lastly, we show that we can apply these criteria to a model system to confidently quantify miRNA copy number. Our measurement technique is a novel way to quantify specific miRNA copy number in a single sample, without using standard curves for individual experiments. Our methodology can be used for validation and control measurements, as well as a diagnostic technique that allows scientists, technicians, clinicians, and regulators to base miRNA measures on a single

  14. Distribution of Steps with Finite-Range Interactions: Analytic Approximations and Numerical Results

    NASA Astrophysics Data System (ADS)

    GonzáLez, Diego Luis; Jaramillo, Diego Felipe; TéLlez, Gabriel; Einstein, T. L.

    2013-03-01

    While most Monte Carlo simulations assume only nearest-neighbor steps interact elastically, most analytic frameworks (especially the generalized Wigner distribution) posit that each step elastically repels all others. In addition to the elastic repulsions, we allow for possible surface-state-mediated interactions. We investigate analytically and numerically how next-nearest neighbor (NNN) interactions and, more generally, interactions out to q'th nearest neighbor alter the form of the terrace-width distribution and of pair correlation functions (i.e. the sum over n'th neighbor distribution functions, which we investigated recently.[2] For physically plausible interactions, we find modest changes when NNN interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  15. A quick response four decade logarithmic high-voltage stepping supply

    NASA Technical Reports Server (NTRS)

    Doong, H.

    1978-01-01

    An improved high-voltage stepping supply, for space instrumentation is described where low power consumption and fast settling time between steps are required. The high-voltage stepping supply, utilizing an average power of 750 milliwatts, delivers a pair of mirror images with 64 level logarithmic outputs. It covers a four decade range of + or - 2500 to + or - 0.29 volts having an output stability of + or - 0.5 percent or + or - 20 millivolts for all line load and temperature variations. The supply provides a typical step setting time of 1 millisecond with 100 microseconds for the lower two decades. The versatile design features of the high-voltage stepping supply provides a quick response staircase generator as described or a fixed voltage with the option to change levels as required over large dynamic ranges without circuit modifications. The concept can be implemented up to + or - 5000 volts. With these design features, the high-voltage stepping supply should find numerous applications where charged particle detection, electro-optical systems, and high voltage scientific instruments are used.

  16. A transition from using multi‐step procedures to a fully integrated system for performing extracorporeal photopheresis: A comparison of costs and efficiencies

    PubMed Central

    Leblond, Veronique; Ouzegdouh, Maya; Button, Paul

    2017-01-01

    Abstract Introduction The Pitié Salpêtrière Hospital Hemobiotherapy Department, Paris, France, has been providing extracorporeal photopheresis (ECP) since November 2011, and started using the Therakos® CELLEX® fully integrated system in 2012. This report summarizes our single‐center experience of transitioning from the use of multi‐step ECP procedures to the fully integrated ECP system, considering the capacity and cost implications. Materials and Methods The total number of ECP procedures performed 2011–2015 was derived from department records. The time taken to complete a single ECP treatment using a multi‐step technique and the fully integrated system at our department was assessed. Resource costs (2014€) were obtained for materials and calculated for personnel time required. Time‐driven activity‐based costing methods were applied to provide a cost comparison. Results The number of ECP treatments per year increased from 225 (2012) to 727 (2015). The single multi‐step procedure took 270 min compared to 120 min for the fully integrated system. The total calculated per‐session cost of performing ECP using the multi‐step procedure was greater than with the CELLEX® system (€1,429.37 and €1,264.70 per treatment, respectively). Conclusions For hospitals considering a transition from multi‐step procedures to fully integrated methods for ECP where cost may be a barrier, time‐driven activity‐based costing should be utilized to gain a more comprehensive understanding the full benefit that such a transition offers. The example from our department confirmed that there were not just cost and time savings, but that the time efficiencies gained with CELLEX® allow for more patient treatments per year. PMID:28419561

  17. Step scaling and the Yang-Mills gradient flow

    NASA Astrophysics Data System (ADS)

    Lüscher, Martin

    2014-06-01

    The use of the Yang-Mills gradient flow in step-scaling studies of lattice QCD is expected to lead to results of unprecedented precision. Step scaling is usually based on the Schrödinger functional, where time ranges over an interval [0 , T] and all fields satisfy Dirichlet boundary conditions at time 0 and T. In these calculations, potentially important sources of systematic errors are boundary lattice effects and the infamous topology-freezing problem. The latter is here shown to be absent if Neumann instead of Dirichlet boundary conditions are imposed on the gauge field at time 0. Moreover, the expectation values of gauge-invariant local fields at positive flow time (and of other well localized observables) that reside in the center of the space-time volume are found to be largely insensitive to the boundary lattice effects.

  18. Green Schools Energy Project: A Step-by-Step Manual.

    ERIC Educational Resources Information Center

    Quigley, Gwen

    This publication contains a step-by-step guide for implementing an energy-saving project in local school districts: the installation of newer, more energy-efficient "T-8" fluorescent tube lights in place of "T-12" lights. Eleven steps are explained in detail: (1) find out what kind of lights the school district currently uses;…

  19. Using a two-step matrix solution to reduce the run time in KULL's magnetic diffusion package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, T A; Kolev, T V

    2010-12-17

    Recently a Resistive Magnetohydrodynamics (MHD) package has been added to the KULL code. In order to be compatible with the underlying hydrodynamics algorithm, a new sub-zonal magnetics discretization was developed that supports arbitrary polygonal and polyhedral zones. This flexibility comes at the cost of many more unknowns per zone - approximately ten times more for a hexahedral mesh. We can eliminate some (or all, depending on the dimensionality) of the extra unknowns from the global matrix during assembly by using a Schur complement approach. This trades expensive global work for cache-friendly local work, while still allowing solution for the fullmore » system. Significant improvements in the solution time are observed for several test problems.« less

  20. Step-Growth Polymerization.

    ERIC Educational Resources Information Center

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  1. The stepping behavior analysis of pedestrians from different age groups via a single-file experiment

    NASA Astrophysics Data System (ADS)

    Cao, Shuchao; Zhang, Jun; Song, Weiguo; Shi, Chang'an; Zhang, Ruifang

    2018-03-01

    The stepping behavior of pedestrians with different age compositions in single-file experiment is investigated in this paper. The relation between step length, step width and stepping time are analyzed by using the step measurement method based on the calculation of curvature of the trajectory. The relations of velocity-step width, velocity-step length and velocity-stepping time for different age groups are discussed and compared with previous studies. Finally effects of pedestrian gender and height on stepping laws and fundamental diagrams are analyzed. The study is helpful for understanding pedestrian dynamics of movement. Meanwhile, it offers experimental data to develop a microscopic model of pedestrian movement by considering stepping behavior.

  2. Step by Step to Smoke-Free Schools.

    ERIC Educational Resources Information Center

    VanSciver, James H.; Roberts, H. Earl

    1989-01-01

    This ERIC digest discusses ways of effectively banning smoking in schools so that controversies do not continue after implementation of the policy. By advocating a process approach, the document cites steps taken by the Lake Forest School Board to prohibit smoking in and around school grounds. Step one involved committee planning involving…

  3. Topographic ERP analyses: a step-by-step tutorial review.

    PubMed

    Murray, Micah M; Brunet, Denis; Michel, Christoph M

    2008-06-01

    In this tutorial review, we detail both the rationale for as well as the implementation of a set of analyses of surface-recorded event-related potentials (ERPs) that uses the reference-free spatial (i.e. topographic) information available from high-density electrode montages to render statistical information concerning modulations in response strength, latency, and topography both between and within experimental conditions. In these and other ways these topographic analysis methods allow the experimenter to glean additional information and neurophysiologic interpretability beyond what is available from canonical waveform analyses. In this tutorial we present the example of somatosensory evoked potentials (SEPs) in response to stimulation of each hand to illustrate these points. For each step of these analyses, we provide the reader with both a conceptual and mathematical description of how the analysis is carried out, what it yields, and how to interpret its statistical outcome. We show that these topographic analysis methods are intuitive and easy-to-use approaches that can remove much of the guesswork often confronting ERP researchers and also assist in identifying the information contained within high-density ERP datasets.

  4. Time-asymptotic solutions of the Navier-Stokes equation for free shear flows using an alternating-direction implicit method

    NASA Technical Reports Server (NTRS)

    Rudy, D. H.; Morris, D. J.

    1976-01-01

    An uncoupled time asymptotic alternating direction implicit method for solving the Navier-Stokes equations was tested on two laminar parallel mixing flows. A constant total temperature was assumed in order to eliminate the need to solve the full energy equation; consequently, static temperature was evaluated by using algebraic relationship. For the mixing of two supersonic streams at a Reynolds number of 1,000, convergent solutions were obtained for a time step 5 times the maximum allowable size for an explicit method. The solution diverged for a time step 10 times the explicit limit. Improved convergence was obtained when upwind differencing was used for convective terms. Larger time steps were not possible with either upwind differencing or the diagonally dominant scheme. Artificial viscosity was added to the continuity equation in order to eliminate divergence for the mixing of a subsonic stream with a supersonic stream at a Reynolds number of 1,000.

  5. Time-elapsed screw insertion with microCT imaging.

    PubMed

    Ryan, M K; Mohtar, A A; Cleek, T M; Reynolds, K J

    2016-01-25

    Time-elapsed analysis of bone is an innovative technique that uses sequential image data to analyze bone mechanics under a given loading regime. This paper presents the development of a novel device capable of performing step-wise screw insertion into excised bone specimens, within the microCT environment, whilst simultaneously recording insertion torque, compression under the screw head and rotation angle. The system is computer controlled and screw insertion is performed in incremental steps of insertion torque. A series of screw insertion tests to failure were performed (n=21) to establish a relationship between the torque at head contact and stripping torque (R(2)=0.89). The test-device was then used to perform step-wise screw insertion, stopping at intervals of 20%, 40%, 60% and 80% between screw head contact and screw stripping. Image data-sets were acquired at each of these time-points as well as at head contact and post-failure. Examination of the image data revealed the trabecular deformation as a result of increased insertion torque was restricted to within 1mm of the outer diameter of the screw thread. Minimal deformation occurred prior to the step between the 80% time-point and post-failure. The device presented has allowed, for the first time, visualization of the micro-mechanical response in the peri-implant bone with increased tightening torque. Further testing on more samples is expected to increase our understanding of the effects of increased tightening torque at the micro-structural level, and the failure mechanisms of trabeculae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges.

    PubMed

    Güell, Aleix G; Cuharuc, Anatolii S; Kim, Yang-Rae; Zhang, Guohui; Tan, Sze-yin; Ebejer, Neil; Unwin, Patrick R

    2015-04-28

    The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.

  7. The General Alcoholics Anonymous Tools of Recovery: The Adoption of 12-Step Practices and Beliefs

    PubMed Central

    Greenfield, Brenna L.; Tonigan, J. Scott

    2013-01-01

    Working the 12 steps is widely prescribed for Alcoholics Anonymous (AA) members although the relative merits of different methods for measuring step-work have received minimal attention and even less is known about how step-work predicts later substance use. The current study (1) compared endorsements of step-work on an face-valid or direct measure, the Alcoholics Anonymous Inventory (AAI), with an indirect measure of step-work, the General Alcoholics Anonymous Tools of Recovery (GAATOR), (2) evaluated the underlying factor structure of the GAATOR and changes in step-work over time, (3) examined changes in the endorsement of step-work over time, and (4) investigated how, if at all, 12-step-work predicted later substance use. New AA affiliates (N = 130) completed assessments at intake, 3, 6, and 9 months. Significantly more participants endorsed step-work on the GAATOR than on the AAI for nine of the 12 steps. An exploratory factor analysis revealed a two-factor structure for the GAATOR comprising Behavioral Step-Work and Spiritual Step-Work. Behavioral Step-Work did not change over time, but was predicted by having a sponsor, while Spiritual Step-Work decreased over time and increases were predicted by attending 12-step meetings or treatment. Behavioral Step-Work did not prospectively predict substance use. In contrast, Spiritual Step-Work predicted percent days abstinent, an effect that is consistent with recent work on the mediating effects of spiritual growth, AA, and increased abstinence. Behavioral and Spiritual Step-Work appear to be conceptually distinct components of step-work that have distinct predictors and unique impacts on outcomes. PMID:22867293

  8. The ATP hydrolysis and phosphate release steps control the time course of force development in rabbit skeletal muscle.

    PubMed

    Sleep, John; Irving, Malcolm; Burton, Kevin

    2005-03-15

    The time course of isometric force development following photolytic release of ATP in the presence of Ca(2+) was characterized in single skinned fibres from rabbit psoas muscle. Pre-photolysis force was minimized using apyrase to remove contaminating ATP and ADP. After the initial force rise induced by ATP release, a rapid shortening ramp terminated by a step stretch to the original length was imposed, and the time course of the subsequent force redevelopment was again characterized. Force development after ATP release was accurately described by a lag phase followed by one or two exponential components. At 20 degrees C, the lag was 5.6 +/- 0.4 ms (s.e.m., n = 11), and the force rise was well fitted by a single exponential with rate constant 71 +/- 4 s(-1). Force redevelopment after shortening-restretch began from about half the plateau force level, and its single-exponential rate constant was 68 +/- 3 s(-1), very similar to that following ATP release. When fibres were activated by the addition of Ca(2+) in ATP-containing solution, force developed more slowly, and the rate constant for force redevelopment following shortening-restretch reached a maximum value of 38 +/- 4 s(-1) (n = 6) after about 6 s of activation. This lower value may be associated with progressive sarcomere disorder at elevated temperature. Force development following ATP release was much slower at 5 degrees C than at 20 degrees C. The rate constant of a single-exponential fit to the force rise was 4.3 +/- 0.4 s(-1) (n = 22), and this was again similar to that after shortening-restretch in the same activation at this temperature, 3.8 +/- 0.2 s(-1). We conclude that force development after ATP release and shortening-restretch are controlled by the same steps in the actin-myosin ATPase cycle. The present results and much previous work on mechanical-chemical coupling in muscle can be explained by a kinetic scheme in which force is generated by a rapid conformational change bracketed by two

  9. 48 CFR 52.214-25 - Step Two of Two-Step Sealed Bidding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Step Two of Two-Step... Clauses 52.214-25 Step Two of Two-Step Sealed Bidding. As prescribed in 14.201-6(t), insert the following provision: Step Two of Two-Step Sealed Bidding (APR 1985) (a) This invitation for bids is issued to initiate...

  10. An arbitrary-order staggered time integrator for the linear acoustic wave equation

    NASA Astrophysics Data System (ADS)

    Lee, Jaejoon; Park, Hyunseo; Park, Yoonseo; Shin, Changsoo

    2018-02-01

    We suggest a staggered time integrator whose order of accuracy can arbitrarily be extended to solve the linear acoustic wave equation. A strategy to select the appropriate order of accuracy is also proposed based on the error analysis that quantitatively predicts the truncation error of the numerical solution. This strategy not only reduces the computational cost several times, but also allows us to flexibly set the modelling parameters such as the time step length, grid interval and P-wave speed. It is demonstrated that the proposed method can almost eliminate temporal dispersive errors during long term simulations regardless of the heterogeneity of the media and time step lengths. The method can also be successfully applied to the source problem with an absorbing boundary condition, which is frequently encountered in the practical usage for the imaging algorithms or the inverse problems.

  11. Banning Corporal Punishment: A Crucial Step toward Preventing Child Abuse.

    ERIC Educational Resources Information Center

    Moelis, Cindy S.

    1988-01-01

    Banning school corporal punishment is supported as a step towards gradually eliminating all violent actions toward children. The 39 states that allow corporal punishment are encouraged to outlaw it, to teach children that it is not socially acceptable behavior and to set an example for families' child-rearing attitudes and practices. (JDD)

  12. Exploding Nitromethane in Silico, in Real Time.

    PubMed

    Fileti, Eudes Eterno; Chaban, Vitaly V; Prezhdo, Oleg V

    2014-10-02

    Nitromethane (NM) is widely applied in chemical technology as a solvent for extraction, cleaning, and chemical synthesis. NM was considered safe for a long time, until a railroad tanker car exploded in 1958. We investigate the detonation kinetics and explosion reaction mechanisms in a variety of systems consisting of NM, molecular oxygen, and water vapor. Reactive molecular dynamics allows us to simulate reactions in time-domain, as they occur in real life. High polarity of the NM molecule is shown to play a key role, driving the first exothermic step of the reaction. Rapid temperature and pressure growth stimulate the subsequent reaction steps. Oxygen is important for faster oxidation, whereas its optimal concentration is in agreement with the proposed reaction mechanism. Addition of water (50 mol %) inhibits detonation; however, water does not prevent detonation entirely. The reported results provide important insights for improving applications of NM and preserving the safety of industrial processes.

  13. Efficient Multi-Stage Time Marching for Viscous Flows via Local Preconditioning

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Wood, William A.; vanLeer, Bram

    1999-01-01

    A new method has been developed to accelerate the convergence of explicit time-marching, laminar, Navier-Stokes codes through the combination of local preconditioning and multi-stage time marching optimization. Local preconditioning is a technique to modify the time-dependent equations so that all information moves or decays at nearly the same rate, thus relieving the stiffness for a system of equations. Multi-stage time marching can be optimized by modifying its coefficients to account for the presence of viscous terms, allowing larger time steps. We show it is possible to optimize the time marching scheme for a wide range of cell Reynolds numbers for the scalar advection-diffusion equation, and local preconditioning allows this optimization to be applied to the Navier-Stokes equations. Convergence acceleration of the new method is demonstrated through numerical experiments with circular advection and laminar boundary-layer flow over a flat plate.

  14. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    DOE PAGES

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    2016-04-08

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less

  15. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less

  16. Nine time steps: ultra-fast statistical consistency testing of the Community Earth System Model (pyCECT v3.0)

    NASA Astrophysics Data System (ADS)

    Milroy, Daniel J.; Baker, Allison H.; Hammerling, Dorit M.; Jessup, Elizabeth R.

    2018-02-01

    The Community Earth System Model Ensemble Consistency Test (CESM-ECT) suite was developed as an alternative to requiring bitwise identical output for quality assurance. This objective test provides a statistical measurement of consistency between an accepted ensemble created by small initial temperature perturbations and a test set of CESM simulations. In this work, we extend the CESM-ECT suite with an inexpensive and robust test for ensemble consistency that is applied to Community Atmospheric Model (CAM) output after only nine model time steps. We demonstrate that adequate ensemble variability is achieved with instantaneous variable values at the ninth step, despite rapid perturbation growth and heterogeneous variable spread. We refer to this new test as the Ultra-Fast CAM Ensemble Consistency Test (UF-CAM-ECT) and demonstrate its effectiveness in practice, including its ability to detect small-scale events and its applicability to the Community Land Model (CLM). The new ultra-fast test facilitates CESM development, porting, and optimization efforts, particularly when used to complement information from the original CESM-ECT suite of tools.

  17. A New Quaternion-Based Kalman Filter for Real-Time Attitude Estimation Using the Two-Step Geometrically-Intuitive Correction Algorithm.

    PubMed

    Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun

    2017-09-19

    In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions.

  18. A New Quaternion-Based Kalman Filter for Real-Time Attitude Estimation Using the Two-Step Geometrically-Intuitive Correction Algorithm

    PubMed Central

    Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun

    2017-01-01

    In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions. PMID:28925979

  19. Stepped-to-dart Leaders in Cloud-to-ground Lightning

    NASA Astrophysics Data System (ADS)

    Stolzenburg, M.; Marshall, T. C.; Karunarathne, S.; Karunarathna, N.; Warner, T.; Orville, R. E.

    2013-12-01

    Using time-correlated high-speed video (50,000 frames per second) and fast electric field change (5 MegaSamples per second) data for lightning flashes in East-central Florida, we describe an apparently rare type of subsequent leader: a stepped leader that finds and follows a previously used channel. The observed 'stepped-to-dart leaders' occur in three natural negative ground flashes. Stepped-to-dart leader connection altitudes are 3.3, 1.6 and 0.7 km above ground in the three cases. Prior to the stepped-to-dart connection, the advancing leaders have properties typical of stepped leaders. After the connection, the behavior changes almost immediately (within 40-60 us) to dart or dart-stepped leader, with larger amplitude E-change pulses and faster average propagation speeds. In this presentation, we will also describe the upward luminosity after the connection in the prior return stroke channel and in the stepped leader path, along with properties of the return strokes and other leaders in the three flashes.

  20. [Temporary Pacemakers - Step by Step].

    PubMed

    Graf, Matthias; Stiller, Patrick; Karch, Martin

    2018-06-01

    Symptomatic bradycardia is usually caused by abnormalities of atrioventricular conduction or sinus node dysfunction. Reversible and irreversible causes must be considered.Temporary pacemakers are used in the emergency treatment in case of severe bradyarrhythmia.They help to bridge the acute phase until spontaneous restoration of atrioventricular or sinus node function or -if spontaneous restoration fails- until a permanent pacemaker system was implanted.In the following article we discuss the commonly used temporary pacemaker systems. We demonstrate their use and correct programming by an illustrated step by step explanation. For troubleshooting a flow chart was added. © Georg Thieme Verlag KG Stuttgart · New York.

  1. The STEP model: Characterizing simultaneous time effects on practice for flight simulator performance among middle-aged and older pilots.

    PubMed

    Kennedy, Quinn; Taylor, Joy; Noda, Art; Yesavage, Jerome; Lazzeroni, Laura C

    2015-09-01

    Understanding the possible effects of the number of practice sessions (practice) and time between practice sessions (interval) among middle-aged and older adults in real-world tasks has important implications for skill maintenance. Prior training and cognitive ability may impact practice and interval effects on real-world tasks. In this study, we took advantage of existing practice data from 5 simulated flights among 263 middle-aged and older pilots with varying levels of flight expertise (defined by U.S. Federal Aviation Administration proficiency ratings). We developed a new Simultaneous Time Effects on Practice (STEP) model: (a) to model the simultaneous effects of practice and interval on performance of the 5 flights, and (b) to examine the effects of selected covariates (i.e., age, flight expertise, and 3 composite measures of cognitive ability). The STEP model demonstrated consistent positive practice effects, negative interval effects, and predicted covariate effects. Age negatively moderated the beneficial effects of practice. Additionally, cognitive processing speed and intraindividual variability (IIV) in processing speed moderated the benefits of practice and/or the negative influence of interval for particular flight performance measures. Expertise did not interact with practice or interval. Results indicated that practice and interval effects occur in simulated flight tasks. However, processing speed and IIV may influence these effects, even among high-functioning adults. Results have implications for the design and assessment of training interventions targeted at middle-aged and older adults for complex real-world tasks. (c) 2015 APA, all rights reserved).

  2. The STEP model: Characterizing simultaneous time effects on practice for flight simulator performance among middle-aged and older pilots

    PubMed Central

    Kennedy, Quinn; Taylor, Joy; Noda, Art; Yesavage, Jerome; Lazzeroni, Laura C.

    2015-01-01

    Understanding the possible effects of the number of practice sessions (practice) and time between practice sessions (interval) among middle-aged and older adults in real world tasks has important implications for skill maintenance. Prior training and cognitive ability may impact practice and interval effects on real world tasks. In this study, we took advantage of existing practice data from five simulated flights among 263 middle-aged and older pilots with varying levels of flight expertise (defined by FAA proficiency ratings). We developed a new STEP (Simultaneous Time Effects on Practice) model to: (1) model the simultaneous effects of practice and interval on performance of the five flights, and (2) examine the effects of selected covariates (age, flight expertise, and three composite measures of cognitive ability). The STEP model demonstrated consistent positive practice effects, negative interval effects, and predicted covariate effects. Age negatively moderated the beneficial effects of practice. Additionally, cognitive processing speed and intra-individual variability (IIV) in processing speed moderated the benefits of practice and/or the negative influence of interval for particular flight performance measures. Expertise did not interact with either practice or interval. Results indicate that practice and interval effects occur in simulated flight tasks. However, processing speed and IIV may influence these effects, even among high functioning adults. Results have implications for the design and assessment of training interventions targeted at middle-aged and older adults for complex real world tasks. PMID:26280383

  3. An Alternative Explanation for "Step-Like" Early VLF Event

    NASA Astrophysics Data System (ADS)

    Moore, R. C.

    2016-12-01

    A newly-deployed array of VLF receivers along the East Coast of the United States is ideally suited for detecting VLF scattering from lightning-induced disturbances to the lower ionosphere. The array was deployed in May 2016, and one VLF receiver was deployed only 20 km from the NAA transmitter (24.0 kHz) in Cutler, Maine. The phase of the NAA signal at this closest site varies significantly with time, due simply to the impedance match of the transmitter varying with time. Additionally, both the amplitude and phase exhibit periods of rapid shifts that could possibly explain at least some "step-like" VLF scattering events. Here, we distinguish between "step-like" VLF scattering events and other events in that "step-like" events are typically not closely associated with a detected causative lightning flash and also tend to exhibit little or no recovery to ambient conditions after the event onset. We present an analysis of VLF observations from the East Coast array that demonstrates interesting examples of step-like VLF events far from the transmitter that are associated with step-like events very close to the transmitter. We conclude that step-like VLF events should be treated with caution, unless definitively associated with a causative lightning flash and/or detected using observations of multiple transmitter signals.

  4. 38 CFR 21.260 - Subsistence allowance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....05 39.95 On-job 327.81 396.44 456.88 29.71 Improvement of rehabilitation potential: Full-time only.... 2 For on-job training, subsistence allowance may not exceed the difference between the monthly....93 465.08 548.05 39.95 On-job 327.81 396.44 456.88 29.71 Improvement of rehabilitation potential...

  5. 38 CFR 21.260 - Subsistence allowance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....05 39.95 On-job 327.81 396.44 456.88 29.71 Improvement of rehabilitation potential: Full-time only.... 2 For on-job training, subsistence allowance may not exceed the difference between the monthly....93 465.08 548.05 39.95 On-job 327.81 396.44 456.88 29.71 Improvement of rehabilitation potential...

  6. 38 CFR 21.260 - Subsistence allowance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....05 39.95 On-job 327.81 396.44 456.88 29.71 Improvement of rehabilitation potential: Full-time only.... 2 For on-job training, subsistence allowance may not exceed the difference between the monthly....93 465.08 548.05 39.95 On-job 327.81 396.44 456.88 29.71 Improvement of rehabilitation potential...

  7. Stepping in Place While Voluntarily Turning Around Produces a Long-Lasting Posteffect Consisting in Inadvertent Turning While Stepping Eyes Closed

    PubMed Central

    2016-01-01

    Training subjects to step in place on a rotating platform while maintaining a fixed body orientation in space produces a posteffect consisting in inadvertent turning around while stepping in place eyes closed (podokinetic after-rotation, PKAR). We tested the hypothesis that voluntary turning around while stepping in place also produces a posteffect similar to PKAR. Sixteen subjects performed 12 min of voluntary turning while stepping around their vertical axis eyes closed and 12 min of stepping in place eyes open on the center of a platform rotating at 60°/s (pretests). Then, subjects continued stepping in place eyes closed for at least 10 min (posteffect). We recorded the positions of markers fixed to head, shoulder, and feet. The posteffect of voluntary turning shared all features of PKAR. Time decay of angular velocity, stepping cadence, head acceleration, and ratio of angular velocity after to angular velocity before were similar between both protocols. Both postrotations took place inadvertently. The posteffects are possibly dependent on the repeated voluntary contraction of leg and foot intrarotating pelvic muscles that rotate the trunk over the stance foot, a synergy common to both protocols. We propose that stepping in place and voluntary turning can be a scheme ancillary to the rotating platform for training body segment coordination in patients with impairment of turning synergies of various origin. PMID:27635264

  8. Solution-limited time stepping method and numerical simulation of single-element rocket engine combustor

    NASA Astrophysics Data System (ADS)

    Lian, Chenzhou

    The focus of the research is to gain a better understanding of the mixing and combustion of propellants in a confined single element rocket engine combustor. The approach taken is to use the unsteady computational simulations of both liquid and gaseous oxygen reacting with gaseous hydrogen to study the effects of transient processes, recirculation regions and density variations under supercritical conditions. The physics of combustion involve intimate coupling between fluid dynamics, chemical kinetics and intense energy release and take place over an exceptionally wide range of scales. In the face of these monumental challenges, it remains the engineer's task to find acceptable simulation approach and reliable CFD algorithm for combustion simulations. To provide the computational robustness to allow detailed analyses of such complex problems, we start by investigating a method for enhancing the reliability of implicit computational algorithms and decreasing their sensitivity to initial conditions without adversely impacting their efficiency. Efficient convergence is maintained by specifying a large global CFL number while reliability is improved by limiting the local CFL number such that the solution change in any cell is less than a specified tolerance. The magnitude of the solution change is estimated from the calculated residual in a manner that requires negligible computational time. The method precludes unphysical excursions in Newton-like iterations in highly non-linear regions where Jacobians are changing rapidly as well as non-physical results during the computation. The method is tested against a series of problems to identify its characteristics and to verify the approach. The results reveal a substantial improvement in convergence reliability of implicit CFD applications that enables computations starting from simple initial conditions. The method is applied in the unsteady combustion simulations and allows long time running of the code without user

  9. Controlling dental enamel-cavity ablation depth with optimized stepping parameters along the focal plane normal using a three axis, numerically controlled picosecond laser.

    PubMed

    Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Sun, Yuchun; Wang, Yong

    2015-02-01

    The purpose of this study was to establish a depth-control method in enamel-cavity ablation by optimizing the timing of the focal-plane-normal stepping and the single-step size of a three axis, numerically controlled picosecond laser. Although it has been proposed that picosecond lasers may be used to ablate dental hard tissue, the viability of such a depth-control method in enamel-cavity ablation remains uncertain. Forty-two enamel slices with approximately level surfaces were prepared and subjected to two-dimensional ablation by a picosecond laser. The additive-pulse layer, n, was set to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70. A three-dimensional microscope was then used to measure the ablation depth, d, to obtain a quantitative function relating n and d. Six enamel slices were then subjected to three dimensional ablation to produce 10 cavities, respectively, with additive-pulse layer and single-step size set to corresponding values. The difference between the theoretical and measured values was calculated for both the cavity depth and the ablation depth of a single step. These were used to determine minimum-difference values for both the additive-pulse layer (n) and single-step size (d). When the additive-pulse layer and the single-step size were set 5 and 45, respectively, the depth error had a minimum of 2.25 μm, and 450 μm deep enamel cavities were produced. When performing three-dimensional ablating of enamel with a picosecond laser, adjusting the timing of the focal-plane-normal stepping and the single-step size allows for the control of ablation-depth error to the order of micrometers.

  10. Five Steps to Successfully Implement and Evaluate Propensity Score Matching in Clinical Research Studies.

    PubMed

    Staffa, Steven J; Zurakowski, David

    2018-01-09

    In clinical research, the gold standard level of evidence is the randomized controlled trial (RCT). The availability of nonrandomized retrospective data is growing; however, a primary concern of analyzing such data is comparability of the treatment groups with respect to confounding variables. Propensity score matching (PSM) aims to equate treatment groups with respect to measured baseline covariates to achieve a comparison with reduced selection bias. It is a valuable statistical methodology that mimics the RCT, and it may create an "apples to apples" comparison while reducing bias due to confounding. PSM can improve the quality of anesthesia research and broaden the range of research opportunities. PSM is not necessarily a magic bullet for poor-quality data, but rather may allow the researcher to achieve balanced treatment groups similar to a RCT when high-quality observational data are available. PSM may be more appealing than the common approach of including confounders in a regression model because it allows for a more intuitive analysis of a treatment effect between 2 comparable groups.We present 5 steps that anesthesiologists can use to successfully implement PSM in their research with an example from the 2015 Pediatric National Surgical Quality Improvement Program: a validated, annually updated surgery and anesthesia pediatric database. The first step of PSM is to identify its feasibility with regard to the data at hand and ensure availability of data on any potential confounders. The second step is to obtain the set of propensity scores from a logistic regression model with treatment group as the outcome and the balancing factors as predictors. The third step is to match patients in the 2 treatment groups with similar propensity scores, balancing all factors. The fourth step is to assess the success of the matching with balance diagnostics, graphically or analytically. The fifth step is to apply appropriate statistical methodology using the propensity

  11. Impaired Response Selection During Stepping Predicts Falls in Older People-A Cohort Study.

    PubMed

    Schoene, Daniel; Delbaere, Kim; Lord, Stephen R

    2017-08-01

    Response inhibition, an important executive function, has been identified as a risk factor for falls in older people. This study investigated whether step tests that include different levels of response inhibition differ in their ability to predict falls and whether such associations are mediated by measures of attention, speed, and/or balance. A cohort study with a 12-month follow-up was conducted in community-dwelling older people without major cognitive and mobility impairments. Participants underwent 3 step tests: (1) choice stepping reaction time (CSRT) requiring rapid decision making and step initiation; (2) inhibitory choice stepping reaction time (iCSRT) requiring additional response inhibition and response-selection (go/no-go); and (3) a Stroop Stepping Test (SST) under congruent and incongruent conditions requiring conflict resolution. Participants also completed tests of processing speed, balance, and attention as potential mediators. Ninety-three of the 212 participants (44%) fell in the follow-up period. Of the step tests, only components of the iCSRT task predicted falls in this time with the relative risk per standard deviation for the reaction time (iCSRT-RT) = 1.23 (95%CI = 1.10-1.37). Multiple mediation analysis indicated that the iCSRT-RT was independently associated with falls and not mediated through slow processing speed, poor balance, or inattention. Combined stepping and response inhibition as measured in a go/no-go test stepping paradigm predicted falls in older people. This suggests that integrity of the response-selection component of a voluntary stepping response is crucial for minimizing fall risk. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  12. Stepped frequency ground penetrating radar

    DOEpatents

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  13. One Small Step for a Man: Estimation of Gender, Age and Height from Recordings of One Step by a Single Inertial Sensor

    PubMed Central

    Riaz, Qaiser; Vögele, Anna; Krüger, Björn; Weber, Andreas

    2015-01-01

    A number of previous works have shown that information about a subject is encoded in sparse kinematic information, such as the one revealed by so-called point light walkers. With the work at hand, we extend these results to classifications of soft biometrics from inertial sensor recordings at a single body location from a single step. We recorded accelerations and angular velocities of 26 subjects using integrated measurement units (IMUs) attached at four locations (chest, lower back, right wrist and left ankle) when performing standardized gait tasks. The collected data were segmented into individual walking steps. We trained random forest classifiers in order to estimate soft biometrics (gender, age and height). We applied two different validation methods to the process, 10-fold cross-validation and subject-wise cross-validation. For all three classification tasks, we achieve high accuracy values for all four sensor locations. From these results, we can conclude that the data of a single walking step (6D: accelerations and angular velocities) allow for a robust estimation of the gender, height and age of a person. PMID:26703601

  14. Sustainability of the whole-community project '10,000 Steps': a longitudinal study.

    PubMed

    Van Acker, Ragnar; De Bourdeaudhuij, Ilse; De Cocker, Katrien; Klesges, Lisa M; Willem, Annick; Cardon, Greet

    2012-03-05

    In the dissemination and implementation literature, there is a dearth of information on the sustainability of community-wide physical activity (PA) programs in general and of the '10,000 Steps' project in particular. This paper reports a longitudinal evaluation of organizational and individual sustainability indicators of '10,000 Steps'. Among project adopters, department heads of 24 public services were surveyed 1.5 years after initially reported project implementation to assess continuation, institutionalization, sustained implementation of intervention components, and adaptations. Barriers and facilitators of project sustainability were explored. Citizens (n = 483) living near the adopting organizations were interviewed to measure maintenance of PA differences between citizens aware and unaware of '10,000 Steps'. Independent-samples t, Mann-Whitney U, and chi-square tests were used to compare organizations for representativeness and individual PA differences. Of all organizations, 50% continued '10,000 Steps' (mostly in cycles) and continuation was independent of organizational characteristics. Level of intervention institutionalization was low to moderate on evaluations of routinization and moderate for project saturation. The global implementation score (58%) remained stable and three of nine project components were continued by less than half of organizations (posters, street signs and variants, personalized contact). Considerable independent adaptations of the project were reported (e.g. campaign image). Citizens aware of '10,000 Steps' remained more active during leisure time than those unaware (227 ± 235 and 176 ± 198 min/week, respectively; t = -2.6; p < .05), and reported more household-related (464 ± 397 and 389 ± 346 min/week, respectively; t = -2.2; p < .05) and moderate-intensity-PA (664 ± 424 and 586 ± 408 min/week, respectively; t = -2.0; p < .05). Facilitators of project sustainability included an organizational leader supporting the project

  15. Sustainability of the whole-community project '10,000 Steps': a longitudinal study

    PubMed Central

    2012-01-01

    Background In the dissemination and implementation literature, there is a dearth of information on the sustainability of community-wide physical activity (PA) programs in general and of the '10,000 Steps' project in particular. This paper reports a longitudinal evaluation of organizational and individual sustainability indicators of '10,000 Steps'. Methods Among project adopters, department heads of 24 public services were surveyed 1.5 years after initially reported project implementation to assess continuation, institutionalization, sustained implementation of intervention components, and adaptations. Barriers and facilitators of project sustainability were explored. Citizens (n = 483) living near the adopting organizations were interviewed to measure maintenance of PA differences between citizens aware and unaware of '10,000 Steps'. Independent-samples t, Mann-Whitney U, and chi-square tests were used to compare organizations for representativeness and individual PA differences. Results Of all organizations, 50% continued '10,000 Steps' (mostly in cycles) and continuation was independent of organizational characteristics. Level of intervention institutionalization was low to moderate on evaluations of routinization and moderate for project saturation. The global implementation score (58%) remained stable and three of nine project components were continued by less than half of organizations (posters, street signs and variants, personalized contact). Considerable independent adaptations of the project were reported (e.g. campaign image). Citizens aware of '10,000 Steps' remained more active during leisure time than those unaware (227 ± 235 and 176 ± 198 min/week, respectively; t = -2.6; p < .05), and reported more household-related (464 ± 397 and 389 ± 346 min/week, respectively; t = -2.2; p < .05) and moderate-intensity-PA (664 ± 424 and 586 ± 408 min/week, respectively; t = -2.0; p < .05). Facilitators of project sustainability included an organizational

  16. A novel enterovirus and parechovirus multiplex one-step real-time PCR-validation and clinical experience.

    PubMed

    Nielsen, Alex Christian Yde; Böttiger, Blenda; Midgley, Sofie Elisabeth; Nielsen, Lars Peter

    2013-11-01

    As the number of new enteroviruses and human parechoviruses seems ever growing, the necessity for updated diagnostics is relevant. We have updated an enterovirus assay and combined it with a previously published assay for human parechovirus resulting in a multiplex one-step RT-PCR assay. The multiplex assay was validated by analysing the sensitivity and specificity of the assay compared to the respective monoplex assays, and a good concordance was found. Furthermore, the enterovirus assay was able to detect 42 reference strains from all 4 species, and an additional 9 genotypes during panel testing and routine usage. During 15 months of routine use, from October 2008 to December 2009, we received and analysed 2187 samples (stool samples, cerebrospinal fluids, blood samples, respiratory samples and autopsy samples) were tested, from 1546 patients and detected enteroviruses and parechoviruses in 171 (8%) and 66 (3%) of the samples, respectively. 180 of the positive samples could be genotyped by PCR and sequencing and the most common genotypes found were human parechovirus type 3, echovirus 9, enterovirus 71, Coxsackievirus A16, and echovirus 25. During 2009 in Denmark, both enterovirus and human parechovirus type 3 had a similar seasonal pattern with a peak during the summer and autumn. Human parechovirus type 3 was almost invariably found in children less than 4 months of age. In conclusion, a multiplex assay was developed allowing simultaneous detection of 2 viruses, which can cause similar clinical symptoms. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Clomiphene Stair-Step Protocol for Women With Polycystic Ovary Syndrome.

    PubMed

    Jones, Tiffanny; Ho, Jacqueline R; Gualtieri, Marc; Bruno-Gaston, Janet; Chung, Karine; Paulson, Richard J; Bendikson, Kristin A

    2018-01-01

    To compare time to ovulation, ovulation rates, and side effect profile of traditional and the stair-step protocol for ovulation induction using clomiphene citrate in women with polycystic ovary syndrome (PCOS). We performed a retrospective study of women seeking care for infertility with a diagnosis of PCOS at a university-based infertility clinic from July 2012 to July 2014. We included patients who were resistant to the initial starting dose of 50 mg clomiphene. The primary outcome was time to ovulation. Secondary outcomes included ovulation rates, clinical pregnancy rates, and mild and moderate-to-severe side effects based on dose. For the traditional protocol, higher doses of clomiphene were used each subsequent month if no ovulation occurred. For the stair-step protocol, higher doses of clomiphene were given 7 days after the last dose if no dominant follicles were seen on ultrasonography. Our study had 80% power to detect a 20% difference in ovulation. One hundred nine patients were included in the analysis with 66 (60.6%) in the traditional and 43 (39.4%) in the stair-step protocol. Age and body mass index were similar between groups. The time to ovulation was decreased in the stair-step protocol group compared with the traditional protocol group (23.1±0.9 days vs 47.5±6.3 days). Ovulation rates were increased in the stair-step group compared with the traditional group at 150 mg (16 [37%] vs 8 [12%], P=.004) and at 200 mg (9 [21%] vs 3 [5%], P=.01). Pregnancy rates were similar between groups once ovulation was achieved (12 [18.1%] vs 7 [16.3%], P=.08). The stair-step protocol had an increased incidence of mild side effects (vasomotor flushes, headaches, gastrointestinal disturbance, mastalgia, changes in mood; 18 [41%] vs 8 [12%]), but there was no difference in the incidence of severe side effects (headaches, visual disturbances). For women with PCOS, the stair-step clomiphene protocol is associated with decreased time to ovulation and increased ovulation

  18. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE PAGES

    Steyer, Andrew J.; Van Vleck, Erik S.

    2018-04-13

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  19. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steyer, Andrew J.; Van Vleck, Erik S.

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  20. Step climbing capacity in patients with pulmonary hypertension.

    PubMed

    Fox, Benjamin Daniel; Langleben, David; Hirsch, Andrew; Boutet, Kim; Shimony, Avi

    2013-01-01

    Patients with pulmonary hypertension (PH) typically have exercise intolerance and limitation in climbing steps. To explore the exercise physiology of step climbing in PH patients, on a laboratory-based step test. We built a step oximetry system from an 'aerobics' step equipped with pressure sensors and pulse oximeter linked to a computer. Subjects mounted and dismounted from the step until their maximal exercise capacity or 200 steps was achieved. Step-count, SpO(2) and heart rate were monitored throughout exercise and recovery. We derived indices of exercise performance, desaturation and heart rate. A 6-min walk test and serum NT-proBrain Natriuretic Peptide (BNP) level were measured. Lung function tests and hemodynamic parameters were extracted from the medical record. Eighty-six subjects [52 pulmonary arterial hypertension (PAH), 14 chronic thromboembolic PH (CTEPH), 20 controls] were recruited. Exercise performance (climbing time, height gained, velocity, energy expenditure, work-rate and climbing index) on the step test was significantly worse with PH and/or worsening WHO functional class (ANOVA, p < 0.001). There was a good correlation between exercise performance on the step and 6-min walking distance-climb index (r = -0.77, p < 0.0001). The saturation deviation (mean of SpO(2) values <95 %) on the step test correlated with diffusion capacity of the lung (ρ = -0.49, p = 0.001). No correlations were found between the step test indices and other lung function tests, hemodynamic parameters or NT-proBNP levels. Patients with PAH/CTEPH have significant limitation in step climbing ability that correlates with functional class and 6-min walking distance. This is a significant impediment to their daily activities.

  1. Step-by-step integration for fractional operators

    NASA Astrophysics Data System (ADS)

    Colinas-Armijo, Natalia; Di Paola, Mario

    2018-06-01

    In this paper, an approach based on the definition of the Riemann-Liouville fractional operators is proposed in order to provide a different discretisation technique as alternative to the Grünwald-Letnikov operators. The proposed Riemann-Liouville discretisation consists of performing step-by-step integration based upon the discretisation of the function f(t). It has been shown that, as f(t) is discretised as stepwise or piecewise function, the Riemann-Liouville fractional integral and derivative are governing by operators very similar to the Grünwald-Letnikov operators. In order to show the accuracy and capabilities of the proposed Riemann-Liouville discretisation technique and the Grünwald-Letnikov discrete operators, both techniques have been applied to: unit step functions, exponential functions and sample functions of white noise.

  2. A three operator split-step method covering a larger set of non-linear partial differential equations

    NASA Astrophysics Data System (ADS)

    Zia, Haider

    2017-06-01

    This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.

  3. Step-rate cut-points for physical activity intensity in patients with multiple sclerosis: The effect of disability status.

    PubMed

    Agiovlasitis, Stamatis; Sandroff, Brian M; Motl, Robert W

    2016-02-15

    Evaluating the relationship between step-rate and rate of oxygen uptake (VO2) may allow for practical physical activity assessment in patients with multiple sclerosis (MS) of differing disability levels. To examine whether the VO2 to step-rate relationship during over-ground walking differs across varying disability levels among patients with MS and to develop step-rate thresholds for moderate- and vigorous-intensity physical activity. Adults with MS (N=58; age: 51 ± 9 years; 48 women) completed one over-ground walking trial at comfortable speed, one at 0.22 m · s(-1) slower, and one at 0.22 m · s(-1) faster. Each trial lasted 6 min. VO2 was measured with portable spirometry and steps with hand-tally. Disability status was classified as mild, moderate, or severe based on Expanded Disability Status Scale scores. Multi-level regression indicated that step-rate, disability status, and height significantly predicted VO2 (p<0.05). Based on this model, we developed step-rate thresholds for activity intensity that vary by disability status and height. A separate regression without height allowed for development of step-rate thresholds that vary only by disability status. The VO2 during over-ground walking differs among ambulatory patients with MS based on disability level and height, yielding different step-rate thresholds for physical activity intensity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Economic Efficiency and Investment Timing for Dual Water Systems

    NASA Astrophysics Data System (ADS)

    Leconte, Robert; Hughes, Trevor C.; Narayanan, Rangesan

    1987-10-01

    A general methodology to evaluate the economic feasibility of dual water systems is presented. In a first step, a static analysis (evaluation at a single point in time) is developed. The analysis requires the evaluation of consumers' and producer's surpluses from water use and the capital cost of the dual (outdoor) system. The analysis is then extended to a dynamic approach where the water demand increases with time (as a result of a population increase) and where the dual system is allowed to expand. The model determines whether construction of a dual system represents a net benefit, and if so, what is the best time to initiate the system (corresponding to maximization of social welfare). Conditions under which an analytic solution is possible are discussed and results of an application are summarized (including sensitivity to different parameters). The analysis allows identification of key parameters influencing attractiveness of dual water systems.

  5. Creative wire bending--the force system from step and V bends.

    PubMed

    Burstone, C J; Koenig, H A

    1988-01-01

    The force system produced by wires with steps and V bends was studied analytically by means of a small deflection mathematic analysis. Characteristic force relationships were found in both the step and the V bend. Step bands centrally placed between adjacent brackets produce unidirectional couples that are equal in magnitude. Along with these couples, vertical or horizontal forces are produced depending upon the plane of activation. Mesiodistal placement of step bends is not critical because very little alteration in force system occurs if a step is centered or positioned off center. V bends, on the other hand, are very sensitive to the positioning mesiodistally of the apex of the V. If the apex of the V bend is placed on center, equal and opposite couples are produced. As the V-bend apex is moved off center, predictable combinations of moments and forces are created. A method for determination of the relative force system is described that allows for simple interpretation and prediction of the force system from a V bend. The clinical applications of these data and a rational basis for wire bending are presented based on the producing of a desired force system.

  6. Objective assessment of physical activity and sedentary behaviour in knee osteoarthritis patients - beyond daily steps and total sedentary time.

    PubMed

    Sliepen, Maik; Mauricio, Elsa; Lipperts, Matthijs; Grimm, Bernd; Rosenbaum, Dieter

    2018-02-23

    Knee osteoarthritis patients may become physically inactive due to pain and functional limitations. Whether physical activity exerts a protective or harmful effect depends on the frequency, intensity, time and type (F.I.T.T.). The F.I.T.T. dimensions should therefore be assessed during daily life, which so far has hardly been feasible. Furthermore, physical activity should be assessed within subgroups of patients, as they might experience different activity limitations. Therefore, this study aimed to objectively describe physical activity, by assessing the F.I.T.T. dimensions, and sedentary behaviour of knee osteoarthritis patients during daily life. An additional goal was to determine whether activity events, based on different types and durations of physical activity, were able to discriminate between subgroups of KOA patients based on risk factors. Clinically diagnosed knee osteoarthritis patients (according to American College of Rheumatology criteria) were monitored for 1 week with a tri-axial accelerometer. Furthermore, they performed three functional tests and completed the Knee Osteoarthritis Outcome Score. Physical activity levels were described for knee osteoarthritis patients and compared between subgroups. Sixty-one patients performed 7303 mean level steps, 319 ascending and 312 descending steps and 601 bicycle crank revolutions per day. Most waking hours were spent sedentary (61%), with 4.6 bouts of long duration (> 30 min). Specific events, particularly ascending and descending stairs/slopes, brief walking and sedentary bouts and prolonged walking bouts, varied between subgroups. From this sample of KOA patients, the most common form of activity was level walking, although cycling and stair climbing activities occurred frequently, highlighting the relevance of distinguishing between these types of PA. The total active time encompassed a small portion of their waking hours, as they spent most of their time sedentary, which was exacerbated by

  7. Effects of age and step length on joint kinetics during stepping task.

    PubMed

    Bieryla, Kathleen A; Buffinton, Christine

    2015-07-16

    Following a balance perturbation, a stepping response is commonly used to regain support, and the distance of the recovery step can vary. To date, no other studies have examined joint kinetics in young and old adults during increasing step distances, when participants are required to bring their rear foot forward. Therefore, the purpose of this study was to examine age-related differences in joint kinetics with increasing step distance. Twenty young and 20 old adults completed the study. Participants completed a step starting from double support, at an initial distance equal to the individual's average step length. The distance was increased by 10% body height until an unsuccessful attempt. A one-way, repeated measures ANOVA was used to determine the effects of age on joint kinetics during the maximum step distance. A two-way, repeated measures, mixed model ANOVA was used to determine the effects of age, step distance, and their interaction on joint kinetics during the first three step distances for all participants. Young adults completed a significantly longer step than old adults. During the maximum step, in general, kinetic measures were greater in the young than in the old. As step distance increased, all but one kinetic measure increased for both young and old adults. This study has shown the ability to discriminate between young and old adults, and could potentially be used in the future to distinguish between fallers and non-fallers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The design of a real-time formative evaluation of the implementation process of lifestyle interventions at two worksites using a 7-step strategy (BRAVO@Work).

    PubMed

    Wierenga, Debbie; Engbers, Luuk H; van Empelen, Pepijn; Hildebrandt, Vincent H; van Mechelen, Willem

    2012-08-07

    Worksite health promotion programs (WHPPs) offer an attractive opportunity to improve the lifestyle of employees. Nevertheless, broad scale and successful implementation of WHPPs in daily practice often fails. In the present study, called BRAVO@Work, a 7-step implementation strategy was used to develop, implement and embed a WHPP in two different worksites with a focus on multiple lifestyle interventions.This article describes the design and framework for the formative evaluation of this 7-step strategy under real-time conditions by an embedded scientist with the purpose to gain insight into whether this this 7-step strategy is a useful and effective implementation strategy. Furthermore, we aim to gain insight into factors that either facilitate or hamper the implementation process, the quality of the implemented lifestyle interventions and the degree of adoption, implementation and continuation of these interventions. This study is a formative evaluation within two different worksites with an embedded scientist on site to continuously monitor the implementation process. Each worksite (i.e. a University of Applied Sciences and an Academic Hospital) will assign a participating faculty or a department, to implement a WHPP focusing on lifestyle interventions using the 7-step strategy. The primary focus will be to describe the natural course of development, implementation and maintenance of a WHPP by studying [a] the use and adherence to the 7-step strategy, [b] barriers and facilitators that influence the natural course of adoption, implementation and maintenance, and [c] the implementation process of the lifestyle interventions. All data will be collected using qualitative (i.e. real-time monitoring and semi-structured interviews) and quantitative methods (i.e. process evaluation questionnaires) applying data triangulation. Except for the real-time monitoring, the data collection will take place at baseline and after 6, 12 and 18 months. This is one of the few

  9. Effect of space allowance and flooring on the behavior of pregnant ewes.

    PubMed

    Vik, S G; Øyrehagen, O; Bøe, K E

    2017-05-01

    Space allowance recommendations for pregnant ewes vary considerably. The aim of this experiment was to investigate the effect of space allowance and floor type on activity, lying position, displacements, and aggressive interactions in pregnant ewes. A 3 × 2 factorial experiment was conducted with space allowance (0.75, 1.50, and 2.25 m/ewe) and type of flooring (straw bedding and expanded metal flooring) as the main factors. A total of 48 pregnant ewes were randomly assigned to 6 groups with 8 ewes in each group. All groups were exposed to each treatment for 7 d. The ewes were video recorded for 24 h at the end of each treatment period and general activity, lying position in the pen, and social lying position were scored every 15 min. Displacements and aggressive interactions were scored continuously from 1030 to 1430 h. Mean lying time ( < 0.0001) and time spent lying simultaneously ( < 0.0001) increased whereas time spent eating ( < 0.001) and standing ( < 0.001) decreased when space allowance increased from 0.75 to 1.50 m/ewe. Further increasing the space allowance to 2.25 m/ewe, however, had no effect on these parameters. Sitting was observed only in the 0.75 m/ewe treatment. Type of flooring had no significant effect on general activity. Ewes in the straw bedding treatment spent more time lying in the middle of the pen than ewes on expanded metal ( < 0.0001), but space allowance had no significant effect on this parameter. The proportion of time spent lying against side walls increased ( < 0.0001) whereas the proportion of time spent lying against the back wall decreased ( < 0.0001) when the space allowance was increased. In general, the distance between the ewes when lying significantly increased when space allowance increased from 0.75 to 1.50 m/ewe. Total number of displacements when lying ( < 0.0001) and aggressive interactions when active ( < 0.001) decreased when space allowance increased from 0.75 to 1.50 m/ewe and further slightly decreased, although

  10. Real-time implementation of logo detection on open source BeagleBoard

    NASA Astrophysics Data System (ADS)

    George, M.; Kehtarnavaz, N.; Estevez, L.

    2011-03-01

    This paper presents the real-time implementation of our previously developed logo detection and tracking algorithm on the open source BeagleBoard mobile platform. This platform has an OMAP processor that incorporates an ARM Cortex processor. The algorithm combines Scale Invariant Feature Transform (SIFT) with k-means clustering, online color calibration and moment invariants to robustly detect and track logos in video. Various optimization steps that are carried out to allow the real-time execution of the algorithm on BeagleBoard are discussed. The results obtained are compared to the PC real-time implementation results.

  11. Structure-based prediction of modifications in glutarylamidase to allow single-step enzymatic production of 7-aminocephalosporanic acid from cephalosporin C.

    PubMed

    Fritz-Wolf, Karin; Koller, Klaus-Peter; Lange, Gudrun; Liesum, Alexander; Sauber, Klaus; Schreuder, Herman; Aretz, Werner; Kabsch, Wolfgang

    2002-01-01

    Glutarylamidase is an important enzyme employed in the commercial production of 7-aminocephalosporanic acid, a starting compound in the synthesis of cephalosporin antibiotics. 7-aminocephalosporanic acid is obtained from cephalosporin C, a natural antibiotic, either chemically or by a two-step enzymatic process utilizing the enzymes D-amino acid oxidase and glutarylamidase. We have investigated possibilities for redesigning glutarylamidase for the production of 7-aminocephalosporanic acid from cephalosporin C in a single enzymatic step. These studies are based on the structures of glutarylamidase, which we have solved with bound phosphate and ethylene glycol to 2.5 A resolution and with bound glycerol to 2.4 A. The phosphate binds near the catalytic serine in a way that mimics the hemiacetal that develops during catalysis, while the glycerol occupies the side-chain binding pocket. Our structures show that the enzyme is not only structurally similar to penicillin G acylase but also employs essentially the same mechanism in which the alpha-amino group of the catalytic serine acts as a base. A subtle difference is the presence of two catalytic dyads, His B23/Glu B455 and His B23/Ser B1, that are not seen in penicillin G acylase. In contrast to classical serine proteases, the central histidine of these dyads interacts indirectly with the O(gamma) through a hydrogen bond relay network involving the alpha-amino group of the serine and a bound water molecule. A plausible model of the enzyme-substrate complex is proposed that leads to the prediction of mutants of glutarylamidase that should enable the enzyme to deacylate cephalosporin C into 7-aminocephalosporanic acid.

  12. Structure-based prediction of modifications in glutarylamidase to allow single-step enzymatic production of 7-aminocephalosporanic acid from cephalosporin C

    PubMed Central

    Fritz-Wolf, Karin; Koller, Klaus-Peter; Lange, Gudrun; Liesum, Alexander; Sauber, Klaus; Schreuder, Herman; Aretz, Werner; Kabsch, Wolfgang

    2002-01-01

    Glutarylamidase is an important enzyme employed in the commercial production of 7-aminocephalosporanic acid, a starting compound in the synthesis of cephalosporin antibiotics. 7-aminocephalosporanic acid is obtained from cephalosporin C, a natural antibiotic, either chemically or by a two-step enzymatic process utilizing the enzymes D-amino acid oxidase and glutarylamidase. We have investigated possibilities for redesigning glutarylamidase for the production of 7-aminocephalosporanic acid from cephalosporin C in a single enzymatic step. These studies are based on the structures of glutarylamidase, which we have solved with bound phosphate and ethylene glycol to 2.5 Å resolution and with bound glycerol to 2.4 Å. The phosphate binds near the catalytic serine in a way that mimics the hemiacetal that develops during catalysis, while the glycerol occupies the side-chain binding pocket. Our structures show that the enzyme is not only structurally similar to penicillin G acylase but also employs essentially the same mechanism in which the α-amino group of the catalytic serine acts as a base. A subtle difference is the presence of two catalytic dyads, His B23/Glu B455 and His B23/Ser B1, that are not seen in penicillin G acylase. In contrast to classical serine proteases, the central histidine of these dyads interacts indirectly with the Oγ through a hydrogen bond relay network involving the α-amino group of the serine and a bound water molecule. A plausible model of the enzyme–substrate complex is proposed that leads to the prediction of mutants of glutarylamidase that should enable the enzyme to deacylate cephalosporin C into 7-aminocephalosporanic acid. PMID:11742126

  13. Dimensional accuracy of resultant casts made by a monophase, one-step and two-step, and a novel two-step putty/light-body impression technique: an in vitro study.

    PubMed

    Caputi, Sergio; Varvara, Giuseppe

    2008-04-01

    Dimensional accuracy when making impressions is crucial to the quality of fixed prosthodontic treatment, and the impression technique is a critical factor affecting this accuracy. The purpose of this in vitro study was to compare the dimensional accuracy of a monophase, 1- and 2-step putty/light-body, and a novel 2-step injection impression technique. A stainless steel model with 2 abutment preparations was fabricated, and impressions were made 15 times with each technique. All impressions were made with an addition-reaction silicone impression material (Aquasil) and a stock perforated metal tray. The monophase impressions were made with regular body material. The 1-step putty/light-body impressions were made with simultaneous use of putty and light-body materials. The 2-step putty/light-body impressions were made with 2-mm-thick resin-prefabricated copings. The 2-step injection impressions were made with simultaneous use of putty and light-body materials. In this injection technique, after removing the preliminary impression, a hole was made through the polymerized material at each abutment edge, to coincide with holes present in the stock trays. Extra-light-body material was then added to the preliminary impression and further injected through the hole after reinsertion of the preliminary impression on the stainless steel model. The accuracy of the 4 different impression techniques was assessed by measuring 3 dimensions (intra- and interabutment) (5-mum accuracy) on stone casts poured from the impressions of the stainless steel model. The data were analyzed by 1-way ANOVA and Student-Newman-Keuls test (alpha=.05). The stone dies obtained with all the techniques had significantly larger dimensions as compared to those of the stainless steel model (P<.01). The order for highest to lowest deviation from the stainless steel model was: monophase, 1-step putty/light body, 2-step putty/light body, and 2-step injection. Significant differences among all of the groups for

  14. Steps wandering on the lysozyme and KDP crystals during growth in solution

    NASA Astrophysics Data System (ADS)

    Rashkovich, L. N.; Chernevich, T. G.; Gvozdev, N. V.; Shustin, O. A.; Yaminsky, I. V.

    2001-10-01

    We have applied atomic force microscopy for the study in solution of time evolution of step roughness on the crystal faces with high (pottasium dihydrophosphate: KDP) and low (lysozyme) density of kinks. It was found that the roughness increases with time revealing the time dependence as t1/4. Step velocity does not depend upon distance between steps, that is why the experimental data were interpreted on the basis of Voronkov theory, which assume, that the attachment and detachment of building units in the kinks is major limitation for crystal growth. In the frame of this theoretical model the calculation of material parameters is performed.

  15. Optimization of an incubation step to maximize sulforaphane content in pre-processed broccoli.

    PubMed

    Mahn, Andrea; Pérez, Carmen

    2016-11-01

    Sulforaphane is a powerful anticancer compound, found naturally in food, which comes from the hydrolysis of glucoraphanin, the main glucosinolate of broccoli. The aim of this work was to maximize sulforaphane content in broccoli by designing an incubation step after subjecting broccoli pieces to an optimized blanching step. Incubation was optimized through a Box-Behnken design using ascorbic acid concentration, incubation temperature and incubation time as factors. The optimal incubation conditions were 38 °C for 3 h and 0.22 mg ascorbic acid per g fresh broccoli. The maximum sulforaphane concentration predicted by the model was 8.0 µmol g -1 , which was confirmed experimentally yielding a value of 8.1 ± 0.3 µmol g -1 . This represents a 585% increase with respect to fresh broccoli and a 119% increase in relation to blanched broccoli, equivalent to a conversion of 94% of glucoraphanin. The process proposed here allows maximizing sulforaphane content, thus avoiding artificial chemical synthesis. The compound could probably be isolated from broccoli, and may find application as nutraceutical or functional ingredient.

  16. A two-step recognition of signal sequences determines the translocation efficiency of proteins.

    PubMed Central

    Belin, D; Bost, S; Vassalli, J D; Strub, K

    1996-01-01

    The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery. Images PMID:8599930

  17. A two-step recognition of signal sequences determines the translocation efficiency of proteins.

    PubMed

    Belin, D; Bost, S; Vassalli, J D; Strub, K

    1996-02-01

    The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery.

  18. Changes in step-width during dual-task walking predicts falls.

    PubMed

    Nordin, E; Moe-Nilssen, R; Ramnemark, A; Lundin-Olsson, L

    2010-05-01

    The aim was to evaluate whether gait pattern changes between single- and dual-task conditions were associated with risk of falling in older people. Dual-task cost (DTC) of 230 community living, physically independent people, 75 years or older, was determined with an electronic walkway. Participants were followed up each month for 1 year to record falls. Mean and variability measures of gait characteristics for 5 dual-task conditions were compared to single-task walking for each participant. Almost half (48%) of the participants fell at least once during follow-up. Risk of falling increased in individuals where DTC for performing a subtraction task demonstrated change in mean step-width compared to single-task walking. Risk of falling decreased in individuals where DTC for carrying a cup and saucer demonstrated change compared to single-task walking in mean step-width, mean step-time, and step-length variability. Degree of change in gait characteristics related to a change in risk of falling differed between measures. Prognostic guidance for fall risk was found for the above DTCs in mean step-width with a negative likelihood ratio of 0.5 and a positive likelihood ratio of 2.3, respectively. Findings suggest that changes in step-width, step-time, and step-length with dual tasking may be related to future risk of falling. Depending on the nature of the second task, DTC may indicate either an increased risk of falling, or a protective strategy to avoid falling. Copyright 2010. Published by Elsevier B.V.

  19. Comparison between the two-step and the three-step algorithms for the detection of toxigenic Clostridium difficile.

    PubMed

    Qutub, M O; AlBaz, N; Hawken, P; Anoos, A

    2011-01-01

    To evaluate usefulness of applying either the two-step algorithm (Ag-EIAs and CCNA) or the three-step algorithm (all three assays) for better confirmation of toxigenic Clostridium difficile. The antigen enzyme immunoassays (Ag-EIAs) can accurately identify the glutamate dehydrogenase antigen of toxigenic and nontoxigenic Clostridium difficile. Therefore, it is used in combination with a toxin-detecting assay [cell line culture neutralization assay (CCNA), or the enzyme immunoassays for toxins A and B (TOX-A/BII EIA)] to provide specific evidence of Clostridium difficile-associated diarrhoea. A total of 151 nonformed stool specimens were tested by Ag-EIAs, TOX-A/BII EIA, and CCNA. All tests were performed according to the manufacturer's instructions and the results of Ag-EIAs and TOX-A/BII EIA were read using a spectrophotometer at a wavelength of 450 nm. A total of 61 (40.7%), 38 (25.3%), and 52 (34.7%) specimens tested positive with Ag-EIA, TOX-A/BII EIA, and CCNA, respectively. Overall, the sensitivity, specificity, negative predictive value, and positive predictive value for Ag-EIA were 94%, 87%, 96.6%, and 80.3%, respectively. Whereas for TOX-A/BII EIA, the sensitivity, specificity, negative predictive value, and positive predictive value were 73.1%, 100%, 87.5%, and 100%, respectively. With the two-step algorithm, all 61 Ag-EIAs-positive cases required 2 days for confirmation. With the three-step algorithm, 37 (60.7%) cases were reported immediately, and the remaining 24 (39.3%) required further testing by CCNA. By applying the two-step algorithm, the workload and cost could be reduced by 28.2% compared with the three-step algorithm. The two-step algorithm is the most practical for accurately detecting toxigenic Clostridium difficile, but it is time-consuming.

  20. CT-Guided Percutaneous Step-by-Step Radiofrequency Ablation for the Treatment of Carcinoma in the Caudate Lobe

    PubMed Central

    Dong, Jun; Li, Wang; Zeng, Qi; Li, Sheng; Gong, Xiao; Shen, Lujun; Mao, Siyue; Dong, Annan; Wu, Peihong

    2015-01-01

    Abstract The location of the caudate lobe and its complex anatomy make caudate lobectomy and radiofrequency ablation (RFA) under ultrasound guidance technically challenging. The objective of the exploratory study was to introduce a novel modality of treatment of lesions in caudate lobe and discuss all details with our experiences to make this novel treatment modality repeatable and educational. The study enrolled 39 patients with liver caudate lobe tumor first diagnosed by computerized tomography (CT) or magnetic resonance imaging (MRI). After consultation of multi-disciplinary team, 7 patients with hepatic caudate lobe lesions were enrolled and accepted CT-guided percutaneous step-by-step RFA treatment. A total of 8 caudate lobe lesions of the 7 patients were treated by RFA in 6 cases and RFA combined with percutaneous ethanol injection (PEI) in 1 case. Median tumor diameter was 29 mm (range, 18–69 mm). A right approach was selected for 6 patients and a dorsal approach for 1 patient. Median operative time was 64 min (range, 59–102 min). Median blood loss was 10 mL (range, 8-16 mL) and mainly due to puncture injury. Median hospitalization time was 4 days (range, 2–5 days). All lesions were completely ablated (8/8; 100%) and no recurrence at the site of previous RFA was observed during median 8 months follow-up (range 3–11 months). No major or life-threatening complications or deaths occurred. In conclusion, percutaneous step-by-step RFA under CT guidance is a novel and effective minimally invasive therapy for hepatic caudate lobe lesions with well repeatability. PMID:26426638

  1. Model of step propagation and step bunching at the sidewalls of nanowires

    NASA Astrophysics Data System (ADS)

    Filimonov, Sergey N.; Hervieu, Yuri Yu.

    2015-10-01

    Radial growth of vertically aligned nanowires involves formation and propagation of monoatomic steps at atomically smooth nanowire sidewalls. Here we study the step dynamics with a step flow model taking into account the presence of a strong sink for adatoms at top of the nanowire and adatom exchange between the nanowire sidewall and surrounding substrate surface. Analytical expressions for velocities of steps propagating from the nanowire base to the nanowire top are obtained. It is shown that the step approaching the nanowire top will slow down if the top nanowire facet is a stronger sink for adatoms than the sidewall step. This might trigger bunching of the steps at the sidewall resulting in development of the pencil-like shape of nanowires such as observed in, e.g., the Au-assisted MBE growth of InAs.

  2. Timing Calibration in PET Using a Time Alignment Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, William W.; Thompson, Christopher J.

    2006-05-05

    We evaluate the Scanwell Time Alignment Probe for performing the timing calibration for the LBNL Prostate-Specific PET Camera. We calibrate the time delay correction factors for each detector module in the camera using two methods--using the Time Alignment Probe (which measures the time difference between the probe and each detector module) and using the conventional method (which measures the timing difference between all module-module combinations in the camera). These correction factors, which are quantized in 2 ns steps, are compared on a module-by-module basis. The values are in excellent agreement--of the 80 correction factors, 62 agree exactly, 17 differ bymore » 1 step, and 1 differs by 2 steps. We also measure on-time and off-time counting rates when the two sets of calibration factors are loaded into the camera and find that they agree within statistical error. We conclude that the performance using the Time Alignment Probe and conventional methods are equivalent.« less

  3. Step-by-Step Visual Manuals: Design and Development

    ERIC Educational Resources Information Center

    Urata, Toshiyuki

    2004-01-01

    The types of handouts and manuals that are used in technology training vary. Some describe procedures in a narrative way without graphics; some employ step-by-step instructions with screen captures. According to Thirlway (1994), a training manual should be like a tutor that permits a student to learn at his own pace and gives him confidence for…

  4. A clinical measure of maximal and rapid stepping in older women.

    PubMed

    Medell, J L; Alexander, N B

    2000-08-01

    In older adults, clinical measures have been used to assess fall risk based on the ability to maintain stance or to complete a functional task. However, in an impending fall situation, a stepping response is often used when strategies to maintain stance are inadequate. We examined how maximal and rapid stepping performance might differ among healthy young, healthy older, and balance-impaired older adults, and how this stepping performance related to other measures of balance and fall risk. Young (Y; n = 12; mean age, 21 years), unimpaired older (UO; n = 12; mean age, 69 years), and balance-impaired older women IO; n = 10; mean age, 77 years) were tested in their ability to take a maximal step (Maximum Step Length or MSL) and in their ability to take rapid steps in three directions (front, side, and back), termed the Rapid Step Test (RST). Time to complete the RST and stepping errors occurring during the RST were noted. The IO group, compared with the Y and UO groups, demonstrated significantly poorer balance and higher fall risk, based on performance on tasks such as unipedal stance. Mean MSL was significantly higher (by 16%) in the Y than in the UO group and in the UO (by 30%) than in the IO group. Mean RST time was significantly faster in the Y group versus the UO group (by 24%) and in the UO group versus the IO group (by 15%). Mean RST errors tended to be higher in the UO than in the Y group, but were significantly higher only in the UO versus the IO group. Both MSL and RST time correlated strongly (0.5 to 0.8) with other measures of balance and fall risk including unipedal stance, tandem walk, leg strength, and the Activities-Specific Balance Confidence (ABC) scale. We found substantial declines in the ability of both unimpaired and balance-impaired older adults to step maximally and to step rapidly. Stepping performance is closely related to other measures of balance and fall risk and might be considered in future studies as a predictor of falls and fall

  5. In situ analysis of Titan's tholins by Laser 2 steps Desorption Ionisation

    NASA Astrophysics Data System (ADS)

    Benilan, Y.; Carrasco, N.; Cernogora, G.; Gazeau, M.; Mahjoub, A.; Szopa, C.; Schwell, M.

    2013-12-01

    The main objective of the whole project developed in collaboration (LISA/LATMOS) is to provide a better understanding of the chemical composition of Titan aerosols laboratory analogs, called tholins, and thereby of their formation pathways. The tholins are produced in the PAMPRE reactor (French acronyme for Aerosols Microgravity Production by Reactives Plasmas) developed at LATMOS. These tholins are generated in levitation (wall effects are thus limited) in a low pressure radiofrequency plasma. Up to now, the determination of the physical and chemical properties of these tholins was achieved after their collection and ex-situ analysis by several methods. Their bulk composition was then determined but their insoluble part is still unknown. Other studies were performed after the transfer of the soluble part of the aerosols to different analytical instruments. Therefore, possible artifacts could have influenced the results. We present the SMARD (a French acronym for Mass Spectrometry of Aerosols by InfraRed Laser Desorption) program. A challenging issue of our work is to perform the soluble and unsoluble parts of PAMPRE tholins' analysis in real time and in situ. The coupling of the PAMPRE reactor to a unique instrument (Single Particle Laser Ablation Mass Spectrometry) developed at LISA should allow determining in real time and in situ the characteristics (chemical composition together with granulometry) of the nanometric aerosols. The later are introduced in the analytical instrument using an aerodynamic lens device. Their detection and aerodynamic diameter are determined using two continuous diode lasers operating at λ = 403 nm. Then, the L2DI (Laser 2 steps Desorption Ionisation) technique is used in order to access to the chemical composition of individual particles: they are vaporized using a 10 μm CO2 pulsed laser and the gas produced is then ionized by a 248 nm KrF Excimer laser. Finally, the molecular ions are analyzed by a 1 m linear time-of-flight mass

  6. Ordering of the nanoscale step morphology as a mechanism for droplet self-propulsion.

    PubMed

    Hilner, Emelie; Zakharov, Alexei A; Schulte, Karina; Kratzer, Peter; Andersen, Jesper N; Lundgren, Edvin; Mikkelsen, Anders

    2009-07-01

    We establish a new mechanism for self-propelled motion of droplets, in which ordering of the nanoscale step morphology by sublimation beneath the droplets themselves acts to drive them perpendicular and up the surface steps. The mechanism is demonstrated and explored for Ga droplets on GaP(111)B, using several experimental techniques allowing studies of the structure and dynamics from micrometers to the atomic scale. We argue that the simple assumptions underlying the propulsion mechanism make it relevant for a wide variety of materials systems.

  7. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays.

    PubMed

    Choudhary, Nandlal; Wei, G; Govindarajulu, A; Roy, Avijit; Li, Wenbin; Picton, Deric D; Nakhla, M K; Levy, L; Brlansky, R H

    2015-11-01

    Citrus leprosis virus C (CiLV-C), a causal agent of the leprosis disease in citrus, is mostly present in the South and Central America and spreading toward the North America. To enable better diagnosis and inhibit the further spread of this re-emerging virus a quantitative (q) real-time reverse transcription polymerase chain reaction (qRT-PCR) assay is needed for early detection of CiLV-C when the virus is present in low titer in citrus leprosis samples. Using the genomic sequence of CiLV-C, specific primers and probe were designed and synthesized to amplify a 73 nt amplicon from the movement protein (MP) gene. A standard curve of the 73 nt amplicon MP gene was developed using known 10(10)-10(1) copies of in vitro synthesized RNA transcript to estimate the copy number of RNA transcript in the citrus leprosis samples. The one-step qRT-PCR detection assays for CiLV-C were determined to be 1000 times more sensitive when compared to the one-step conventional reverse transcription polymerase chain reaction (RT-PCR) CiLV-C detection method. To evaluate the quality of the total RNA extracts, NADH dehydrogenase gene specific primers (nad5) and probe were included in reactions as an internal control. The one-step qRT-PCR specificity was successfully validated by testing for the presence of CiLV-C in the total RNA extracts of the citrus leprosis samples collected from Belize, Costa Rica, Mexico and Panama. Implementation of the one-step qRT-PCR assays for CiLV-C diagnosis should assist regulatory agencies in surveillance activities to monitor the distribution pattern of CiLV-C in countries where it is present and to prevent further dissemination into citrus growing countries where there is no report of CiLV-C presence. Published by Elsevier B.V.

  8. How humans use visual optic flow to regulate stepping during walking.

    PubMed

    Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B

    2017-09-01

    Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Kinetics of protein–ligand unbinding: Predicting pathways, rates, and rate-limiting steps

    PubMed Central

    Tiwary, Pratyush; Limongelli, Vittorio; Salvalaglio, Matteo; Parrinello, Michele

    2015-01-01

    The ability to predict the mechanisms and the associated rate constants of protein–ligand unbinding is of great practical importance in drug design. In this work we demonstrate how a recently introduced metadynamics-based approach allows exploration of the unbinding pathways, estimation of the rates, and determination of the rate-limiting steps in the paradigmatic case of the trypsin–benzamidine system. Protein, ligand, and solvent are described with full atomic resolution. Using metadynamics, multiple unbinding trajectories that start with the ligand in the crystallographic binding pose and end with the ligand in the fully solvated state are generated. The unbinding rate koff is computed from the mean residence time of the ligand. Using our previously computed binding affinity we also obtain the binding rate kon. Both rates are in agreement with reported experimental values. We uncover the complex pathways of unbinding trajectories and describe the critical rate-limiting steps with unprecedented detail. Our findings illuminate the role played by the coupling between subtle protein backbone fluctuations and the solvation by water molecules that enter the binding pocket and assist in the breaking of the shielded hydrogen bonds. We expect our approach to be useful in calculating rates for general protein–ligand systems and a valid support for drug design. PMID:25605901

  10. Step-2 Thai Medical Licensing Examination result: a follow-up study.

    PubMed

    Wanvarie, Samkaew; Prakunhungsit, Supavadee

    2008-12-01

    The Thai medical students sat for the Medical Licensing Examination of Thailand (MLET) Step 2 for the first time in 2008. This paper analysed the first batch of Ramathibodi students taking the MLET Steps 1 and 2 in 2006 and 2008 respectively. The scores from the MLET Steps1 and 2, and fifth-year cumulative grade point averages (GPAX) of 108 students were analysed. Only 6 (5.6%) students failed the MLET Step 2 examination. Students who failed the MLET Step1 were more likely to fail their MLET Step 2 (relative risk, 5.8; 95% confidence interval, 1.3-26.0). Students with low GPAX or scoring in the lowest quintile or tertile on the MLET Step1 were also at increased risk of failing the LET Step 2. The data suggest that performance on the MLET Step 1 and GPAX are important predictors of a student's chances of passing the MLET Step 2. Students with poor academic achievement or failing the MLET Step1 should be given intensive tutorials to pass the medical licensing examination.

  11. Performance measures for multi-vehicle allowance shuttle transit (MAST) system.

    DOT National Transportation Integrated Search

    2014-09-01

    This study investigates the performance measures for multi-vehicle mobility allowance shuttle : transit (MAST) system. Particularly, researchers were primarily concerned with two measures, : waiting time and ride time, to evaluate the performance and...

  12. Benchmarking reference services: step by step.

    PubMed

    Buchanan, H S; Marshall, J G

    1996-01-01

    This article is a companion to an introductory article on benchmarking published in an earlier issue of Medical Reference Services Quarterly. Librarians interested in benchmarking often ask the following questions: How do I determine what to benchmark; how do I form a benchmarking team; how do I identify benchmarking partners; what's the best way to collect and analyze benchmarking information; and what will I do with the data? Careful planning is a critical success factor of any benchmarking project, and these questions must be answered before embarking on a benchmarking study. This article summarizes the steps necessary to conduct benchmarking research. Relevant examples of each benchmarking step are provided.

  13. 30 CFR 206.178 - How do I determine a transportation allowance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the end of the 12-month period to which the allowance applies. However, MMS may approve a longer time... Poor's Bond Guide for the first month of the reporting period for which the allowance is applicable and... months of the date MMS receives your report which claims the allowance on the Form MMS-2014. (ii) When...

  14. A markerless system based on smartphones and webcam for the measure of step length, width and duration on treadmill.

    PubMed

    Barone, V; Verdini, F; Burattini, L; Di Nardo, F; Fioretti, S

    2016-03-01

    A markerless low cost prototype has been developed for the determination of some spatio-temporal parameters of human gait: step-length, step-width and cadence have been considered. Only a smartphone and a high-definition webcam have been used. The signals obtained by the accelerometer embedded in the smartphone are used to recognize the heel strike events, while the feet positions are calculated through image processing of the webcam stream. Step length and width are computed during gait trials on a treadmill at various speeds (3, 4 and 5 km/h). Six subjects have been tested for a total of 504 steps. Results were compared with those obtained by a stereo-photogrammetric system (Elite, BTS Engineering). The maximum average errors were 3.7 cm (5.36%) for the right step length and 1.63 cm (15.16%) for the right step width at 5 km/h. The maximum average error for step duration was 0.02 s (1.69%) at 5 km/h for the right steps. The system is characterized by a very high level of automation that allows its use by non-expert users in non-structured environments. A low cost system able to automatically provide a reliable and repeatable evaluation of some gait events and parameters during treadmill walking, is relevant also from a clinical point of view because it allows the analysis of hundreds of steps and consequently an analysis of their variability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. A Step-by-Step Framework on Discrete Events Simulation in Emergency Department; A Systematic Review.

    PubMed

    Dehghani, Mahsa; Moftian, Nazila; Rezaei-Hachesu, Peyman; Samad-Soltani, Taha

    2017-04-01

    To systematically review the current literature of simulation in healthcare including the structured steps in the emergency healthcare sector by proposing a framework for simulation in the emergency department. For the purpose of collecting the data, PubMed and ACM databases were used between the years 2003 and 2013. The inclusion criteria were to select English-written articles available in full text with the closest objectives from among a total of 54 articles retrieved from the databases. Subsequently, 11 articles were selected for further analysis. The studies focused on the reduction of waiting time and patient stay, optimization of resources allocation, creation of crisis and maximum demand scenarios, identification of overcrowding bottlenecks, investigation of the impact of other systems on the existing system, and improvement of the system operations and functions. Subsequently, 10 simulation steps were derived from the relevant studies after an expert's evaluation. The 10-steps approach proposed on the basis of the selected studies provides simulation and planning specialists with a structured method for both analyzing problems and choosing best-case scenarios. Moreover, following this framework systematically enables the development of design processes as well as software implementation of simulation problems.

  16. A two-step FEM-SEM approach for wave propagation analysis in cable structures

    NASA Astrophysics Data System (ADS)

    Zhang, Songhan; Shen, Ruili; Wang, Tao; De Roeck, Guido; Lombaert, Geert

    2018-02-01

    Vibration-based methods are among the most widely studied in structural health monitoring (SHM). It is well known, however, that the low-order modes, characterizing the global dynamic behaviour of structures, are relatively insensitive to local damage. Such local damage may be easier to detect by methods based on wave propagation which involve local high frequency behaviour. The present work considers the numerical analysis of wave propagation in cables. A two-step approach is proposed which allows taking into account the cable sag and the distribution of the axial forces in the wave propagation analysis. In the first step, the static deformation and internal forces are obtained by the finite element method (FEM), taking into account geometric nonlinear effects. In the second step, the results from the static analysis are used to define the initial state of the dynamic analysis which is performed by means of the spectral element method (SEM). The use of the SEM in the second step of the analysis allows for a significant reduction in computational costs as compared to a FE analysis. This methodology is first verified by means of a full FE analysis for a single stretched cable. Next, simulations are made to study the effects of damage in a single stretched cable and a cable-supported truss. The results of the simulations show how damage significantly affects the high frequency response, confirming the potential of wave propagation based methods for SHM.

  17. Comprehensive Multiplex One-Step Real-Time TaqMan qRT-PCR Assays for Detection and Quantification of Hemorrhagic Fever Viruses

    PubMed Central

    Li, Jiandong; Qu, Jing; He, Chengcheng; Zhang, Shuo; Li, Chuan; Zhang, Quanfu; Liang, Mifang; Li, Dexin

    2014-01-01

    Background Viral hemorrhagic fevers (VHFs) are a group of animal and human illnesses that are mostly caused by several distinct families of viruses including bunyaviruses, flaviviruses, filoviruses and arenaviruses. Although specific signs and symptoms vary by the type of VHF, initial signs and symptoms are very similar. Therefore rapid immunologic and molecular tools for differential diagnosis of hemorrhagic fever viruses (HFVs) are important for effective case management and control of the spread of VHFs. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assay is one of the reliable and desirable methods for specific detection and quantification of virus load. Multiplex PCR assay has the potential to produce considerable savings in time and resources in the laboratory detection. Results Primers/probe sets were designed based on appropriate specific genes for each of 28 HFVs which nearly covered all the HFVs, and identified with good specificity and sensitivity using monoplex assays. Seven groups of multiplex one-step real-time qRT-PCR assays in a universal experimental system were then developed by combining all primers/probe sets into 4-plex reactions and evaluated with serial dilutions of synthesized viral RNAs. For all the multiplex assays, no cross-reactivity with other HFVs was observed, and the limits of detection were mainly between 45 and 150 copies/PCR. The reproducibility was satisfactory, since the coefficient of variation of Ct values were all less than 5% in each dilution of synthesized viral RNAs for both intra-assays and inter-assays. Evaluation of the method with available clinical serum samples collected from HFRS patients, SFTS patients and Dengue fever patients showed high sensitivity and specificity of the related multiplex assays on the clinical specimens. Conclusions Overall, the comprehensive multiplex one-step real-time qRT-PCR assays were established in this study, and proved to be specific, sensitive

  18. Patterns of change in daily step counts, where does the change happen?

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to examine the change in the average daily steps taken at different cadence (steps/min) levels when a change in total steps/day occurs. A total of 43 people participated in a one-week intervention with the goal to increase time spent in moderate-to-vigorous physical act...

  19. How many steps/day are enough? for children and adolescents

    PubMed Central

    2011-01-01

    Worldwide, public health physical activity guidelines include special emphasis on populations of children (typically 6-11 years) and adolescents (typically 12-19 years). Existing guidelines are commonly expressed in terms of frequency, time, and intensity of behaviour. However, the simple step output from both accelerometers and pedometers is gaining increased credibility in research and practice as a reasonable approximation of daily ambulatory physical activity volume. Therefore, the purpose of this article is to review existing child and adolescent objectively monitored step-defined physical activity literature to provide researchers, practitioners, and lay people who use accelerometers and pedometers with evidence-based translations of these public health guidelines in terms of steps/day. In terms of normative data (i.e., expected values), the updated international literature indicates that we can expect 1) among children, boys to average 12,000 to 16,000 steps/day and girls to average 10,000 to 13,000 steps/day; and, 2) adolescents to steadily decrease steps/day until approximately 8,000-9,000 steps/day are observed in 18-year olds. Controlled studies of cadence show that continuous MVPA walking produces 3,300-3,500 steps in 30 minutes or 6,600-7,000 steps in 60 minutes in 10-15 year olds. Limited evidence suggests that a total daily physical activity volume of 10,000-14,000 steps/day is associated with 60-100 minutes of MVPA in preschool children (approximately 4-6 years of age). Across studies, 60 minutes of MVPA in primary/elementary school children appears to be achieved, on average, within a total volume of 13,000 to 15,000 steps/day in boys and 11,000 to 12,000 steps/day in girls. For adolescents (both boys and girls), 10,000 to 11,700 may be associated with 60 minutes of MVPA. Translations of time- and intensity-based guidelines may be higher than existing normative data (e.g., in adolescents) and therefore will be more difficult to achieve (but not

  20. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester.

    PubMed

    Tian, Zhe; Zhang, Yu; Li, Yuyou; Chi, Yongzhi; Yang, Min

    2015-02-01

    The purpose of this study was to explore how fast the thermophilic anaerobic microbial community could be established during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Stable thermophilic anaerobic digestion was achieved within 20 days from a mesophilic digester treating sewage sludge by adopting the one-step startup strategy. The succession of archaeal and bacterial populations over a period of 60 days after the temperature increment was followed by using 454-pyrosequencing and quantitative PCR. After the increase of temperature, thermophilic methanogenic community was established within 11 days, which was characterized by the fast colonization of Methanosarcina thermophila and two hydrogenotrophic methanogens (Methanothermobacter spp. and Methanoculleus spp.). At the same time, the bacterial community was dominated by Fervidobacterium, whose relative abundance rapidly increased from 0 to 28.52 % in 18 days, followed by other potential thermophilic genera, such as Clostridium, Coprothermobacter, Anaerobaculum and EM3. The above result demonstrated that the one-step startup strategy could allow the rapid establishment of the thermophilic anaerobic microbial community. Copyright © 2014 Elsevier Ltd. All rights reserved.