Science.gov

Sample records for alloxan-induced diabetic mice

  1. Anti-diabetic effects of rice hull smoke extract in alloxan-induced diabetic mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the protective effect of a liquid rice hull smoke extract (RHSE) against diabetes in alloxan-induced diabetic mice. Anti-diabetic effects of RHSE were evaluated in both the rat insulinoma-1 cell line (INS-1) and diabetic ICR mice induced by inraperitoneal (ip) injection of alloxan. ...

  2. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice.

    PubMed

    Xu, Xin; Shan, Bin; Liao, Cai-Hu; Xie, Jian-Hua; Wen, Ping-Wei; Shi, Jia-Yi

    2015-11-01

    A water-soluble polysaccharide (MCP) was isolated from the fruits of Momordica charantia L., and the hypoglycemic effects of MCP were investigated in both normal healthy and alloxan-induced diabetic mice. MCP was orally administered once a day after 3 days of alloxan-induction at 100, 200 and 300mg/kg body weight for 28 day. Results showed that fasting blood glucose level (BGL) was significantly decreased, whereas the glucose tolerance was marked improvement in alloxan-induced diabetic mice, and loss in body weight was also prevented in diabetic mice compared to the diabetic control group. The dosage of 300mg/kg body weight exhibited the best effects. In addition, MCP did not exhibit any toxic symptoms in the limited toxicity evaluation in mice. The results suggest that MCP possess significantly dose-dependent anti-diabetic activity on alloxan-induced diabetic mice. Hence, MCP can be incorporated as a supplement in health-care food, drugs and/or combined with other hypoglycemic drugs. PMID:26318666

  3. Liraglutide Improves Pancreatic Beta Cell Mass and Function in Alloxan-Induced Diabetic Mice

    PubMed Central

    Tamura, Kanako; Minami, Kohtaro; Kudo, Maya; Iemoto, Keisuke; Takahashi, Harumi; Seino, Susumu

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists potentiate glucose-induced insulin secretion. In addition, they have been reported to increase pancreatic beta cell mass in diabetic rodents. However, the precise mode of action of GLP-1 receptor agonists still needs to be elucidated. Here we clarify the effects of the human GLP-1 analog liraglutide on beta cell fate and function by using an inducible Cre/loxP-based pancreatic beta cell tracing system and alloxan-induced diabetic mice. Liraglutide was subcutaneously administered once daily for 30 days. The changes in beta cell mass were examined as well as glucose tolerance and insulin secretion. We found that chronic liraglutide treatment improved glucose tolerance and insulin response to oral glucose load. Thirty-day treatment with liraglutide resulted in a 2-fold higher mass of pancreatic beta cells than that in vehicle group. Liraglutide increased proliferation rate of pancreatic beta cells and prevented beta cells from apoptotic cells death. However, the relative abundance of YFP-labeled beta cells to total beta cells was no different before and after liraglutide treatment, suggesting no or little contribution of neogenesis to the increase in beta cell mass. Liraglutide reduced oxidative stress in pancreatic islet cells of alloxan-induced diabetic mice. Furthermore, the beneficial effects of liraglutide in these mice were maintained two weeks after drug withdrawal. In conclusion, chronic liraglutide treatment improves hyperglycemia by ameliorating beta cell mass and function in alloxan-induced diabetic mice. PMID:25938469

  4. Cordycepin from Cordyceps militaris prevents hyperglycemia in alloxan-induced diabetic mice.

    PubMed

    Ma, Li; Zhang, Song; Du, Mei

    2015-05-01

    Cordyceps militaris has long been used in prescriptions of traditional Chinese medicine as a tonic for the treatment of metabolic syndrome. Cordycepin with proven immunomodulatory, antitumor, and hepatoprotective properties is the main active metabolite of C militaris. Diabetes mellitus is a group of metabolic diseases in which the body is unable to regulate blood sugar levels. Hence, we hypothesized that cordycepin can normalize blood sugar levels and improve the indicators of diabetes. The aim of this study was to investigate the possible effects of cordycepin from C militaris on diabetes in an alloxan-induced diabetic mouse model. Diabetic mice were intraperitoneally administered different doses of cordycepin (8, 24, and 72 mg/kg body weight) daily for 21 days. Acute toxicity test on normal mice was carried out by giving them maximum tolerance dose of cordycepin (3600 mg/kg) daily. A 47% reduction of the blood glucose level, 214% increase of hepatic glycogen content, and significant improvement of oral glucose tolerance were noticed after the effective dose of cordycepin was administered. Polyphagia and polydipsia, the typical symptoms of diabetes, were partly alleviated. Moreover, cordycepin offered protective effects against diabetes-related kidney and spleen injury. Maximum tolerance dose test indicated that cordycepin at the large dose of 3600 mg/kg did not show significant effect on body weight and major organ in normal mice after intraperitoneal administration for 14 days. The results showed that cordycepin from C militaris that elicited hypoglycemic activity contributes to the regulation of glucose metabolism in liver in alloxan-induced diabetic mice. Therefore, a cordycepin treatment during diabetes can improve some of the metabolic syndrome symptoms by regulation of glucose absorption in vivo. Cordycepin may serve as a therapeutic agent in the treatment of diabetes and its related complications. PMID:25940982

  5. Phycocyanin ameliorates alloxan-induced diabetes mellitus in mice: Involved in insulin signaling pathway and GK expression.

    PubMed

    Ou, Yu; Ren, Zhiheng; Wang, Jianhui; Yang, Xuegan

    2016-03-01

    The therapeutic potential and molecular mechanism of phycocyanin from Spirulina on alloxan-induced diabetes mice was investigated. In the experiment, 4-week treatment of phycocyanin at the dose of 100 and 200 mg/kg body weight in alloxan-induced diabetes mice resulted in improved metrics in comparison with alloxan-induced diabetes group. These metrics include blood glucose levels, glycosylated serum protein (GSP), glycosylated hemoglobin (GHb) and fasting serum insulin (FINS) levels. As its molecular mode of action, phycocyanin leads to the increase of IRS-1 tyrosine phosphorylation and the decrease of IRS-1 serine phosphorylation, also accompany with increased level of Akt phosphorylation on Ser473 in the liver and pancreas in diabetic mice. In addition, phycocyanin treatment enhanced the glucokinase (GK) level in the liver and pancreas, and the glucokinase regulatory protein (GKRP) level in the liver in diabetic mice. The results suggest that phycocyanin ameliorates alloxan-induced diabetes mellitus in mice by activating insulin signaling pathway and GK expression in pancreas and liver in diabetic mice. PMID:26827782

  6. Bio-enhancing Effect of Piperine with Metformin on Lowering Blood Glucose Level in Alloxan Induced Diabetic Mice

    PubMed Central

    Atal, Shubham; Atal, Sarjana; Vyas, Savita; Phadnis, Pradeep

    2016-01-01

    Background: Diabetes mellitus is the most rampant metabolic pandemic of the 21st century. Piperine, the chief alkaloid of Piper nigrum (black pepper) is widely used in alternative and complementary therapies has been extensively studied for its bio-enhancing property. Objective: To evaluate the bio-enhancing effect of piperine with metformin in lowering blood glucose levels in alloxan-induced diabetic mice. Materials and Methods: Piperine was isolated from an extract of fruits of P. nigrum. Alloxan-induced (150 mg/kg intraperitoneal) diabetic mice were divided into four groups. Group I (control 2% gum acacia 2 g/100 mL), Group II (metformin 250 mg/kg), Group III (metformin and piperine 250 mg/kg + 10 mg/kg), and Group IV (metformin and piperine 125 mg/kg + 10 mg/kg). All the drugs were administered orally once daily for 28 days. Blood glucose levels were estimated at day 0, day 14, and end of the study (day 28). Results: The combination of piperine with therapeutic dose of metformin (10 mg/kg + 250 mg/kg) showed significantly more lowering of blood glucose level as compared to metformin alone on both 14th and 28th day (P < 0.05). Piperine in combination with sub-therapeutic dose of metformin (10 mg/kg + 125 mg/kg) showed significantly more lowering of blood glucose as compared to control group and also showed greater lowering of blood glucose as compared to metformin (250 mg/kg) alone. Conclusion: Piperine has the potential to be used as a bio-enhancing agent in combination with metformin which can help reduce the dose of metformin and its adverse effects. SUMMARY Piperine is known for its bioenhancing property. This study evaluates the effect of piperine in combination with oral antidiabetic drug metformin. Drugs were administered for 28 days in alloxan induced diabetic mice and blood glucose lowering effect was seen. Results showed significantly better effect of combination of piperine with therapeutic dose of metformin in comparison to metformin alone. Piperine in combination with subtherapeutic dose of metformin also showed better effect than therapeutic dose of metformin. Piperine, thus shows potential to be used as bioenhancer in combination with metformin. PMID:26941537

  7. Lectin from Crataeva tapia Bark Improves Tissue Damages and Plasma Hyperglycemia in Alloxan-Induced Diabetic Mice

    PubMed Central

    da Rocha, Amanda Alves; Arajo, Tiago Ferreira da Silva; da Fonseca, Caque Silveira Martins; da Mota, Digenes Lus; de Medeiros, Paloma Lys; Paiva, Patrcia Maria Guedes; Coelho, Luana Cassandra Breitenbach Barroso; Correia, Maria Tereza dos Santos; Lima, Vera Lcia de Menezes

    2013-01-01

    Crataeva tapia is a plant popularly used for diabetes treatment, in Brazil. Progressive decline in renal and hepatic functions has been described in patients with diabetes mellitus, and mortality rate is increased in patients with chronic liver and renal disease. This study aimed to evaluate whether Crataeva tapia bark lectin (CrataBL) improves hyperglycemia and renal and hepatic damage in diabetic mice. CrataBL was purified by ion exchange chromatography on CM-cellulose, and intraperitoneal administration of CrataBL to alloxan-induced diabetic mice at dose of 10?mg/Kg/day and 20?mg/Kg/day for 10 days significantly reduced serum glucose levels by 14.9% and 55.9%, respectively. Serum urea, creatinine, aspartate aminotransferase, and alanine aminotransferase were also significantly reduced after treatment with both doses of CrataBL. Furthermore, histological analysis of liver, kidney, and pancreas revealed an improvement in the tissue morphology upon treatment with CrataBL. The results suggest that CrataBL has a beneficial hypoglycemic activity and improves the renal and hepatic complications of diabetes. Therefore, this lectin may be a promising agent for the treatment of diabetes, and this might be the basis for its use in the folk medicine as an alternative treatment to manage diabetes-related complications such as hyperglycemia and tissue damage. PMID:24324521

  8. Timosaponin B-II ameliorates diabetic nephropathy via TXNIP, mTOR, and NF-κB signaling pathways in alloxan-induced mice

    PubMed Central

    Yuan, Yong-Liang; Guo, Chang-Run; Cui, Ling-Ling; Ruan, Shi-Xia; Zhang, Chun-Feng; Ji, De; Yang, Zhong-Lin; Li, Fei

    2015-01-01

    Background Many synthesized drugs with clinical severe side effects have been used for diabetic nephropathy (DN) treatment. Therefore, it is urgent and necessary to identify natural and safe agents to remedy DN. Timosaponin B-II (TB-II), a major steroidal saponin constituent in Anemarrhena asphodeloides Bunge, exhibits various activities, including anti-inflammatory and hypoglycemic functions. However, the anti-DN effects and potential mechanism(s) of TB-II have not been previously reported. Purpose To investigate the effect of TB-II on DN in alloxan-induced diabetic mice. Methods TB-II was isolated and purified from A. asphodeloides Bunge using macroporous adsorption resin and preparative high-performance liquid chromatography. The effect of TB-II on DN was evaluated in alloxan-induced diabetic mice using an assay kit and immunohistochemical determination in vivo. The expression of mammalian target of rapamycin (mTOR), thioredoxin-interacting protein (TXNIP), and nuclear transcription factor-κB (NF-κB) signaling pathways was also measured using Western blot analysis. Results TB-II significantly decreased the blood glucose levels and ameliorated renal histopathological injury in alloxan-induced diabetic mice. In addition, TB-II remarkably decreased the levels of renal function biochemical factors, such as kidney index, blood urea nitrogen, serum creatinine, urinary uric acid, urine creatinine, and urine protein, and it reduced lipid metabolism levels of total cholesterol and triglycerides and the levels of inflammatory cytokines interleukin-6 and tumor necrosis factor-α in alloxan-induced mice. Furthermore, TB-II inhibited the expression of mTOR, TXNIP, and NF-κB. Conclusion The results revealed that TB-II plays an important role in DN via TXNIP, mTOR, and NF-κB signaling pathways. Overall, TB-II exhibited a prominently ameliorative effect on alloxan-induced DN. PMID:26664046

  9. Hypoglycemic activity of the Anisopus mannii N. E. Br. methanolic leaf extract in normal and alloxan-induced diabetic mice.

    PubMed

    Zaruwa, Moses Z; Manosroi, Aranya; Akihisa, Toshihiro; Manosroi, Worapaka; Rangdaeng, Samreung; Manosroi, Jiradej

    2013-01-01

    The hypoglycemic activities of nine sub-fractions from the methanolic leaf crude extract of Anisopus mannii were investigated in normoglycemic and alloxan-induced diabetic mice. The methanolic sub-fraction M at 400 mg/kg bw showed significantly (p<0.05) high reduction in fasting blood glucose (FBG) at 27.36 and 65.57% in normoglycemic and diabetic mice, respectively. In acute toxicity test, M at 2,000 and 5,000 mg/kg bw showed reduction in blood urea nitrogen and creatinine level, elevations in aspartate transaminase, alanine transaminase and total bilirubin levels, as well as the body weights. The weight-ratios of kidney and liver to the body weight of the mice fed with these doses of M were reduced with no sign of histopathological alteration. The M at 250 mg/kg bw significantly reduced the FBG levels in a postprandial study. The hypoglycemic effect of M was eliminated when co-administered with isosorbide dinitrate or nifedipine indicating the induction of insulin secretion via K+ ATP-dependent channels. The UV/HPLC analysis of M indicated saponin at 7.7 mg/g. This study confirmed the traditional use of A. mannii for diabetes mellitus and the potential for the further development as a novel hypoglycemic drug. PMID:23828328

  10. The effects of the king oyster mushroom Pleurotus eryngii (higher Basidiomycetes) on glycemic control in alloxan-induced diabetic mice.

    PubMed

    Li, Jian-Ping; Lei, Ya-li; Zhan, Huan

    2014-01-01

    The purpose of this study is to investigate the effects of Pleurotus eryngii on glycemic metabolism. Alloxan-induced hyperglycemic mice were used to study the effects of P. eryngii on blood glucose, glycohemoglobin, insulin secretion, damaged pancreatic ?-cells, total antioxidant status (TAOS), and hepatic glycogen in hyperglycemic mice. Sixty diabetic mice were divided equally into 5 groups: the alloxan (AX)-induced hyperglycemic group, the AX and glibenclamide (GLI)-treated group, the AX and P. eryngii extracts (PEEs) 50-treated group (PEE 50 mg/kg), the AX and PEE100-treated group (PEE 100 mg/kg), and the AX and PEE200-treated group (PEE 200 mg/kg). The other 12 normal mice were injected intravenously with the normal saline and used as the control group. After PEE (100 and 200 mg/kg) was orally administered to the mice over 5 weeks, blood glucose and HbAlc were significantly decreased in AX-induced hyperglycemic mice (P < 0.05 and P < 0.01, respectively), whereas the level of insulin secretion was markedly elevated in (P < 0.05). The pancreatic ?-cells damaged by AX partially and gradually recovered after PPE extract was administered to the hyperglycemic mice for 35 days. In addition, PEE treatment gradually increased the body weight and significantly increased the concentration of hepatic glycogen in hyperglycemic mice (P < 0.05). The results suggest that the action of PPE on glycemic metabolism occurs via increasing glycogen and insulin concentrations as well as recovering injured ?-cells and reducing free radical damage. PPE may become a new potential hypoglycemic food for hyperglycemic people. PMID:24941163

  11. Hypoglycemic Effect of Aqueous and Methanolic Extract of Artemisia afra on Alloxan Induced Diabetic Swiss Albino Mice

    PubMed Central

    Issa, Idris Ahmed; Hussen Bule, Mohammed

    2015-01-01

    Diabetes mellitus is metabolic syndrome that causes disability, early death, and many other complications. Currently insulin and many synthetic drugs are used in diabetes treatment. However, these pharmaceutical drugs are too expensive particularly for sub-Saharan population in addition to their undesirable side effects. The present study was aimed to evaluate antidiabetic effect and toxicity level of Artemisia afra which was collected from its natural habitat in Bale Zone, around Goba town, 455 km southeast of Addis Ababa. Air dried aerial parts of Artemisia afra were separately extracted with both distilled water and 95% methanol. Oral acute toxicity test was conducted on healthy Swiss albino mice. Antidiabetic effect of the aqueous and methanolic extracts of Artemisia afra was separately evaluated on alloxan induced diabetic mice at doses of 500, 750, and 1000 mg/Kg body weight orally. The results indicate that mean lethal dose (LD50) for aqueous extract of Artemisia afra was 9833.4 mg/Kg. Blood glucose level was significantly decreased by 24% (p < 0.005) and 56.9% (p < 0.0004) in groups that received aqueous extract of Artemisia afra at dose of 500 mg/Kg and 750 mg/Kg, respectively. The methanolic extract of Artemisia afra also significantly lowered blood glucose by 49.8% (p < 0.0001) at doses of 1000 mg/kg on the 5th hr. Aqueous extract of Artemisia afra was regarded as nontoxic and safe since its LD50 was found above 5000 mg/Kg. Aqueous extract showed higher effect at relatively lower dose as compared to methanolic extract. The aqueous extract was screened positive for phytochemicals like flavonoids, polyphenols, and tannins that were reported to have antioxidant activity. PMID:26345313

  12. Hypoglycemic Effect of Aqueous and Methanolic Extract of Artemisia afra on Alloxan Induced Diabetic Swiss Albino Mice.

    PubMed

    Issa, Idris Ahmed; Hussen Bule, Mohammed

    2015-01-01

    Diabetes mellitus is metabolic syndrome that causes disability, early death, and many other complications. Currently insulin and many synthetic drugs are used in diabetes treatment. However, these pharmaceutical drugs are too expensive particularly for sub-Saharan population in addition to their undesirable side effects. The present study was aimed to evaluate antidiabetic effect and toxicity level of Artemisia afra which was collected from its natural habitat in Bale Zone, around Goba town, 455?km southeast of Addis Ababa. Air dried aerial parts of Artemisia afra were separately extracted with both distilled water and 95% methanol. Oral acute toxicity test was conducted on healthy Swiss albino mice. Antidiabetic effect of the aqueous and methanolic extracts of Artemisia afra was separately evaluated on alloxan induced diabetic mice at doses of 500, 750, and 1000?mg/Kg body weight orally. The results indicate that mean lethal dose (LD50) for aqueous extract of Artemisia afra was 9833.4?mg/Kg. Blood glucose level was significantly decreased by 24% (p < 0.005) and 56.9% (p < 0.0004) in groups that received aqueous extract of Artemisia afra at dose of 500?mg/Kg and 750?mg/Kg, respectively. The methanolic extract of Artemisia afra also significantly lowered blood glucose by 49.8% (p < 0.0001) at doses of 1000?mg/kg on the 5th?hr. Aqueous extract of Artemisia afra was regarded as nontoxic and safe since its LD50 was found above 5000?mg/Kg. Aqueous extract showed higher effect at relatively lower dose as compared to methanolic extract. The aqueous extract was screened positive for phytochemicals like flavonoids, polyphenols, and tannins that were reported to have antioxidant activity. PMID:26345313

  13. Comparative study of antidiabetic activity of Cajanus cajan and Tamarindus indica in alloxan-induced diabetic mice with a reference to in vitro antioxidant activity

    PubMed Central

    Nahar, Laizuman; Nasrin, Fatema; Zahan, Ronok; Haque, Anamul; Haque, Ekramul; Mosaddik, Ashik

    2014-01-01

    Background: Oxidative stress not only develops complications in diabetic (type 1 and type 2) but also contributes to beta cell destruction in type 2 diabetes in insulin resistance hyperglycemia. Glucose control plays an important role in the pro-oxidant/antioxidant balance. Some antidiabetic agents may by themselves have antioxidant properties independently of their role on glucose control. Objective: The present investigation draws a comparison of the protective antioxidant activity, total phenol content and the antihyperglycemic activity of the methanolic extract of Cajanus cajan root (MCC) and Tamarindus indica seeds (MTI). Materials and Methods: Antidiabetic potentials of the plant extracts were evaluated in alloxan-induced diabetic Swiss albino mice. The plant extracts at the doses of 200 and 400 mg/kg body weight was orally administered for glucose tolerance test during 1-hour study and hypoglycemic effect during 5-day study period in comparison with reference drug Metformin HCl (50 mg/kg). In vitro antioxidant potential of MCC and MTI was investigated by using 1, 1- diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity at 517 nm. Total phenolic content, total antioxidant capacity and reducing power activity was also assayed. Results: There was a significant decrease in fasting serum glucose level (P < 0.001), reduction in blood glucose level (P < 0.001) in 5-days study, observed in the alloxan-induced diabetic mice. The reduction efficacy of blood glucose level of both the extracts is proportional to their dose but MCC is more potent than MTI. Antioxidant study and quantification of phenolic compound of both the extracts revealed that they have high antioxidant capacity. Conclusion: These studies showed that MCC and MTI have both hypoglycemic and antioxidant potential but MCC is more potent than MTI. The present study suggests that both MCC and MTI could be used in managing oxidative stress. PMID:24761124

  14. Suppressive effects of electrolyzed reduced water on alloxan-induced apoptosis and type 1 diabetes mellitus.

    PubMed

    Li, Yupin; Hamasaki, Takeki; Nakamichi, Noboru; Kashiwagi, Taichi; Komatsu, Takaaki; Ye, Jun; Teruya, Kiichiro; Abe, Masumi; Yan, Hanxu; Kinjo, Tomoya; Kabayama, Shigeru; Kawamura, Munenori; Shirahata, Sanetaka

    2011-03-01

    Electrolyzed reduced water, which is capable of scavenging reactive oxygen species, is attracting recent attention because it has shown improved efficacy against several types of diseases including diabetes mellitus. Alloxan produces reactive oxygen species and causes type 1 diabetes mellitus in experimental animals by irreversible oxidative damage to insulin-producing ?-cells. Here, we showed that electrolyzed reduced water prevented alloxan-induced DNA fragmentation and the production of cells in sub-G1 phase in HIT-T15 pancreatic ?-cells. Blood glucose levels in alloxan-induced type 1 diabetes model mice were also significantly suppressed by feeding the mice with electrolyzed reduced water. These results suggest that electrolyzed reduced water can prevent apoptosis of pancreatic ?-cells and the development of symptoms in type 1 diabetes model mice by alleviating the alloxan-derived generation of reactive oxygen species. PMID:21063772

  15. Hypoglycaemic effect of galactooligosaccharides in alloxan-induced diabetic rats.

    PubMed

    Sangwan, Vikas; Tomar, Sudhir K; Ali, Babar; Singh, Ram R B; Singh, Ashish K

    2015-02-01

    This study was conducted to assess the effect of prebiotic galactooligosaccharides (GOS) on alloxan-induced diabetes in male Sprague-Dawley (SD) rats. Diabetes was induced by administration of alloxan (100mg/kg) and rats were divided in 4 groups: normal control group (NCG), prebiotic control group (PCG), diabetic control group (DCG) and diabetic prebiotic group (DPG). While PCG and DPG were fed with GOS supplemented (10% w/w) diet, NCG and DCG were administered with basal diet. Rats were sacrificed after 42d for collection of blood and liver. Faecal samples were collected at the interval of 7d throughout the study for measurement of lactobacilli and coliform count. Feeding of GOS decreased or delayed the severity of diabetes by amelioration of diabetes associated markers including fasting blood glucose, haemoglobin, glycosylated haemoglobin triglycerides, total cholesterol, low density lipoproteins, creatinine and urea. GOS was also found to improve the levels of antioxidative enzymes (superoxide dismutase, catalase and glutathione peroxidase) in liver and blood. Improvement in lactobacilli count along with a concomitant decrease in coliform count was observed in GOS fed groups. PMID:25382051

  16. Antidiabetic activity of Cassia occidentalis (Linn) in normal and alloxan-induced diabetic rats

    PubMed Central

    Verma, Laxmi; Khatri, Anirudh; Kaushik, Basant; Patil, Umesh K.; Pawar, Rajesh S.

    2010-01-01

    Objective: To evaluate the hypoglycemic activity of various extracts, petroleum ether, chloroform and aqueous extract of Cassia occidentalis in normal and alloxan-induced diabetic rats. Materials and Methods: Petroleum ether, chloroform and aqueous extract of whole plant of Cassia occidentalis were orally tested at the dose of 200 mg/kg for hypoglycemic effect in normal and alloxan-induced diabetic rats. In addition, changes in body weight, serum cholesterol, triglyceride and total protein levels, assessed in the ethanol extract-treated diabetic rats, were compared with diabetic control and normal animals. Histopathological observations during 21 days treatment were also evaluated. Results: Aqueous extract of C. occidentalis produced a significant reduction in fasting blood glucose levels in the normal and alloxan-induced diabetic rats. Apart from aqueous extract, petroleum ether extract showed activity from day 14 and chloroform extract showed activity from 7 days. Significant differences were observed in serum lipid profiles (cholesterol and triglyceride), serum protein, and changes in body weight by aqueous extract treated-diabetic animals, when compared with the diabetic control and normal animals. Concurrent histopathological studies of the pancreas of these animals showed comparable regeneration by extract which were earlier necrosed by alloxan. Conclusion: Aqueous extract of C. occidentalis exhibited significant antihyperglycemic activity in normal and alloxan-induced diabetic rats. They also showed improvement in parameters like body weight and serum lipid profiles as well as histopathological studies showed regeneration of ?-cells of pancreas and so might be of value in diabetes treatment. PMID:20927247

  17. Antidiabetic activity of ethanolic extract of Zaleya decandra in alloxan-induced diabetic rats.

    PubMed

    Meenakshi, Periasamy; Bhuvaneshwari, Rajendran; Rathi, Muthaiyan Ahalliya; Thirumoorthi, Lakshmanan; Guravaiah, Dugganaboyana Chinna; Jiji, Muthedath Janardhanan; Gopalakrishnan, Velliyur Kanniappan

    2010-10-01

    Diabetes mellitus is a complex disorder that disturbs the metabolism of carbohydrates, fats, and proteins. Medicinal plants play an important role in the management of diabetes mellitus. The present study was aimed to evaluate the antidiabetic potential of Zaleya decandra roots on alloxan-induced diabetes in rats. Oral administration of ethanolic extract of the root (200 mg/kg body weight/day) for 15 days restored the levels of glucose, cholesterol, triglycerides, total proteins, urea, creatinine, lipid peroxidation level, and antioxidant enzymes significantly in diabetic rats. Histopathological studies showed significant changes like necrosis and degeneration in the liver and pancreas of alloxan-induced diabetic rats. Also these histopathological abnormalities were found to be normalized after treatment with Z. decandra extract. The efficacy of the root extract was found to be equivalent when compared to the standard hypoglycemic drug glibenclamide (1.25 mg/kg body weight/day, orally) in diabetic rats. PMID:19957208

  18. Effects of iscador and vincristine and 5-fluorouracil on brain, liver, and kidney element levels in alloxan-induced diabetic mice.

    PubMed

    Gre?, Agnieszka; Formicki, Grzegorz

    2013-05-01

    Exposure to substance toxicity is especially dangerous for diabetics because it accelerates and intensifies diabetic complication. Homeostasis of trace elements can be disrupted by diabetes mellitus. On the other hand, disturbance in trace element status in diabetes mellitus may contribute to insulin resistance and development of diabetic complications. The aim of the present study was to compare the concentration of elements in the brain, liver, and kidneys of animals with induced diabetes after the administration of plant preparations (iscador and vincristine) and 5-fluorouracil. The experiments were carried out on male mice. The animals were divided into five groups of ten mice each: one control and four experimental groups. The first experimental group was administered alloxan at 75 mg/kg b.w. for 4 days, the second group was administered both alloxan at 75 mg/kg b.w. and vincristine 1 mg/kg b.w. for 4 days, and the third group was administered both alloxan at 75 mg/kg b.w. and 5-fluorouracil 75 mg/kg b.w. for 4 days. The animals of the fourth group were administered both alloxan at 75 mg/kg b.w. and iscador Qu at 5 mg/kg b.w. for 4 days. Calcium, magnesium, iron, copper, zinc, sodium, and potassium levels in the tissues were analyzed by flame atomic absorption spectrophotometer. We observed that zinc, copper, magnesium, sodium, and potassium were lower in the brain as compared to the control animals. The copper levels in the liver were also lower in diabetic groups than in control groups. However, the iscador and vincristine and 5-fluorouracil did not induce significant differences in the five groups. In conclusion, results of the current study indicated that changes of the investigated essential elements may contribute to explaining the role of impaired element metabolism of some elements in the progression of diabetic complications. PMID:23334865

  19. Protective effects of Piper nigrum and Vinca rosea in alloxan induced diabetic rats.

    PubMed

    Kaleem, M; Sheema; Sarmad, H; Bano, B

    2005-01-01

    In the present study aqueous extract of Piper nigrum seeds and Vinca rosea flowers were administered orally to alloxan induced diabetic rats once a day for 4 weeks. These treatments lead to significant lowering of blood sugar level and reduction in serum lipids. The levels of antioxidant enzymes, catalase and glutathione peroxidase decreased in alloxan induced diabetic rats however these levels returned to normal in insulin, P. nigrum and V. rosea treated rats. There was no significant difference in superoxide dismutase activity in all groups compared to controls. Lipid peroxidation levels were significantly higher in diabetic rats and it was slightly increased in insulin, P. nigrum and V. rosea treated rats as compared to control rat. These results suggest that oxidative stress plays a key role in diabetes, and treatment with P. nigrum and V. rosea are useful in controlling not only the glucose and lipid levels but these components may also be helpful in strengthening the antioxidants potential. PMID:15881860

  20. Antidiabetic Activity of Differently Regioselective Chitosan Sulfates in Alloxan-Induced Diabetic Rats

    PubMed Central

    Xing, Ronge; He, Xiaofei; Liu, Song; Yu, Huahua; Qin, Yukun; Chen, Xiaolin; Li, Kecheng; Li, Rongfeng; Li, Pengcheng

    2015-01-01

    The present study investigated and compared the hypoglycemic activity of differently regioselective chitosan sulfates in alloxan-induced diabetic rats. Compared with the normal control rats, significantly higher blood glucose levels were observed in the alloxan-induced diabetic rats. The differently regioselective chitosan sulfates exhibited hypoglycemic activities at different doses and intervals, especially 3-O-sulfochitosan (3-S). The major results are as follows. First, 3,6-di-O-sulfochitosan and 3-O-sulfochitosan exhibited more significant hypoglycemic activities than 2-N-3, 6-di-O-sulfochitosan and 6-O-sulfochitosan. Moreover, 3-S-treated rats showed a more significant reduction of blood glucose levels than those treated by 3,6-di-O-sulfochitosan. These results indicated that –OSO3− at the C3-position of chitosan is a key active site. Second, 3-S significantly reduced the blood glucose levels and regulated the glucose tolerance effect in the experimental rats. Third, treatment with 3-S significantly increased the plasma insulin levels in the experimental diabetic rats. A noticeable hypoglycemic activity of 3-S in the alloxan-induced diabetic rats was shown. Clinical trials are required in the future to confirm the utility of 3-S. PMID:25988523

  1. Antidiabetic activity of differently regioselective chitosan sulfates in alloxan-induced diabetic rats.

    PubMed

    Xing, Ronge; He, Xiaofei; Liu, Song; Yu, Huahua; Qin, Yukun; Chen, Xiaolin; Li, Kecheng; Li, Rongfeng; Li, Pengcheng

    2015-05-01

    The present study investigated and compared the hypoglycemic activity of differently regioselective chitosan sulfates in alloxan-induced diabetic rats. Compared with the normal control rats, significantly higher blood glucose levels were observed in the alloxan-induced diabetic rats. The differently regioselective chitosan sulfates exhibited hypoglycemic activities at different doses and intervals, especially 3-O-sulfochitosan (3-S). The major results are as follows. First, 3,6-di-O-sulfochitosan and 3-O-sulfochitosan exhibited more significant hypoglycemic activities than 2-N-3, 6-di-O-sulfochitosan and 6-O-sulfochitosan. Moreover, 3-S-treated rats showed a more significant reduction of blood glucose levels than those treated by 3,6-di-O-sulfochitosan. These results indicated that -OSO3- at the C3-position of chitosan is a key active site. Second, 3-S significantly reduced the blood glucose levels and regulated the glucose tolerance effect in the experimental rats. Third, treatment with 3-S significantly increased the plasma insulin levels in the experimental diabetic rats. A noticeable hypoglycemic activity of 3-S in the alloxan-induced diabetic rats was shown. Clinical trials are required in the future to confirm the utility of 3-S. PMID:25988523

  2. Antidiabetic and antihyperlipidemic effects of Thespesia populnea fruit pulp extracts on alloxan-induced diabetic rats

    PubMed Central

    Belhekar, S. N.; Chaudhari, P. D.; Saryawanshi, J. S.; Mali, K. K.; Pandhare, R. B.

    2013-01-01

    Present study was carried to find out the antihyperglycemic and antihyperlipidemic activity of ethanol and aqueous extract of Thespesia populnea fruit pulp on alloxan-induced diabetic rats. Diabetes was induced in rats by administration of alloxan (150 mg/kg, i.p.). After the successful induction of experimental diabetes, the rats were divided into five groups each comprising a minimum of six rats. Phytochemical analysis and acute toxicity study of extracts was also done. The effects of extracts and metformin on fasting blood glucose and plasma lipid were examined for 28 days. Statistical analysis was carried out by using analysis of variance followed by Dunnet's multiple comparison test and paired t-test were done as the test of significance using GraphPad Prism. P≤0.05 was considered as the minimal level of statistical significance. Therapeutic dose of extract was found to be 200 mg/kg on the basis of acute toxicity study. Aqueous and alcoholic extract showed a significant reduction in blood glucose levels as well as a lipid profile of diabetic rats at the end of 28th day of treatment. However, in groups treated with plant extract the reduction in the blood glucose and improvement in lipid profile was slightly less than that achieved with the standard group (metformin). From this study, it can be concluded that ethanol and aqueous extract of Thespesia populnea exhibited significant antihyperglycemic and antihyperlipidemic effects on alloxan-induced diabetic rats. PMID:24019572

  3. Antidiabetic and antihyperlipidemic effects of Thespesia populnea fruit pulp extracts on alloxan-induced diabetic rats.

    PubMed

    Belhekar, S N; Chaudhari, P D; Saryawanshi, J S; Mali, K K; Pandhare, R B

    2013-03-01

    Present study was carried to find out the antihyperglycemic and antihyperlipidemic activity of ethanol and aqueous extract of Thespesia populnea fruit pulp on alloxan-induced diabetic rats. Diabetes was induced in rats by administration of alloxan (150 mg/kg, i.p.). After the successful induction of experimental diabetes, the rats were divided into five groups each comprising a minimum of six rats. Phytochemical analysis and acute toxicity study of extracts was also done. The effects of extracts and metformin on fasting blood glucose and plasma lipid were examined for 28 days. Statistical analysis was carried out by using analysis of variance followed by Dunnet's multiple comparison test and paired t-test were done as the test of significance using GraphPad Prism. P≤0.05 was considered as the minimal level of statistical significance. Therapeutic dose of extract was found to be 200 mg/kg on the basis of acute toxicity study. Aqueous and alcoholic extract showed a significant reduction in blood glucose levels as well as a lipid profile of diabetic rats at the end of 28(th) day of treatment. However, in groups treated with plant extract the reduction in the blood glucose and improvement in lipid profile was slightly less than that achieved with the standard group (metformin). From this study, it can be concluded that ethanol and aqueous extract of Thespesia populnea exhibited significant antihyperglycemic and antihyperlipidemic effects on alloxan-induced diabetic rats. PMID:24019572

  4. Antidiabetic Effect of Sida cordata in Alloxan Induced Diabetic Rats

    PubMed Central

    Shah, Naseer Ali; Khan, Muhammad Rashid

    2014-01-01

    Medicinal plants are efficient ameliorator of oxidative stress associated with diabetes mellitus. In this study, ethyl acetate fraction (SCEE) of Sida cordata was investigated for scientific validation of its folk use in diabetes. Antidiabetic effect of SCEE was confirmed by antihyperglycemic activity in normal glucose loaded and diabetic glucose loaded animals as well as normal off feed animals. Confirmation of antidiabetic activity and toxicity ameliorative role of S. cordata was investigated in a chronic multiple dose treatment study of fifteen days. A single dose of alloxan (120?mg/kg) produced a decrease in insulin level, hyperglycemia, elevated total lipids, triglycerides, and cholesterol and decreased the high-density lipoproteins. Concurrent with these changes, there was an increase in the concentration of lipid peroxidation (TBARS), H2O2, and nitrite in pancreas, liver, and testis. This oxidative stress was related to a decrease in glutathione content (GSH) and antioxidant enzymes. Administration of SCEE for 15 days after diabetes induction ameliorated hyperglycemia, restored lipid profile, blunted the increase in TBARS, H2O2, and nitrite content, and stimulated the GSH production in the organs of alloxan-treated rats. We suggested that SCEE could be used as antidiabetic component in case of diabetes mellitus. This may be related to its antioxidative properties. PMID:25114914

  5. Antidiabetic effect of Sida cordata in alloxan induced diabetic rats.

    PubMed

    Shah, Naseer Ali; Khan, Muhammad Rashid

    2014-01-01

    Medicinal plants are efficient ameliorator of oxidative stress associated with diabetes mellitus. In this study, ethyl acetate fraction (SCEE) of Sida cordata was investigated for scientific validation of its folk use in diabetes. Antidiabetic effect of SCEE was confirmed by antihyperglycemic activity in normal glucose loaded and diabetic glucose loaded animals as well as normal off feed animals. Confirmation of antidiabetic activity and toxicity ameliorative role of S. cordata was investigated in a chronic multiple dose treatment study of fifteen days. A single dose of alloxan (120?mg/kg) produced a decrease in insulin level, hyperglycemia, elevated total lipids, triglycerides, and cholesterol and decreased the high-density lipoproteins. Concurrent with these changes, there was an increase in the concentration of lipid peroxidation (TBARS), H2O2, and nitrite in pancreas, liver, and testis. This oxidative stress was related to a decrease in glutathione content (GSH) and antioxidant enzymes. Administration of SCEE for 15 days after diabetes induction ameliorated hyperglycemia, restored lipid profile, blunted the increase in TBARS, H2O2, and nitrite content, and stimulated the GSH production in the organs of alloxan-treated rats. We suggested that SCEE could be used as antidiabetic component in case of diabetes mellitus. This may be related to its antioxidative properties. PMID:25114914

  6. Effect of ethanolic extract of Cassia occidentalis Linn. for the management of alloxan-induced diabetic rats

    PubMed Central

    Verma, Laxmi; Singour, P. K.; Chaurasiya, P. K.; Rajak, H.; Pawar, R. S.; Patil, U. K.

    2010-01-01

    Aim: As per traditional claims, root, bark, leaf and flower of the plant Cassia occidentalis Linn. (Caesalpiniaceae) have been reported to possess antidiabetic activity. Based on this traditional indication, the aim of this study was to evaluate the antidiabetic activity of ethanolic extract of C. occidentalis in normal and alloxan induced diabetic rats. Materials and Methods: Ethanolic extract of the whole plant of C. occidentalis was orally tested at doses of 100 and 200 mg/kg for evaluating the hypoglycemic effect in normal and alloxan-induced diabetic rats. In addition, changes in body weight, serum cholesterol, triglyceride and total protein levels, assessed in the ethanol extract treated diabetic rats were compared with diabetic control and normal animals. Histopathologic observations during 21 days of treatment were also evaluated. Results: Ethanolic extract of C. occidentalis produced a significant reduction in fasting blood glucose levels in the normal and alloxan-induced diabetic rats at doses of 100 and 200 mg/kg body weight. Treatment with ethanolic extract of C. occidentalis in normal and alloxan-induced diabetic rats led to a dose-dependent fall in blood sugar levels. Significant differences were observed in serum lipid profiles (cholesterol and triglyceride), serum protein and changes in body weight in ethanolic extract treated diabetic animals, when compared with the diabetic control and normal animals. Concurrent histopathologic studies of the pancreas of these animals showed comparable regeneration by ethanolic extract, which were earlier necrosed by alloxan. Conclusion: Ethanolic extract of C. occidentalis exhibited significant antidiabetic activity in normal and alloxan-induced diabetic rats. The rats also showed improvement in parameters like body weight and lipid profiles and also, histopathologic studies showed regeneration of ?-cells of pancreas and so it might be of value in the treatment of diabetes. PMID:21808555

  7. Study of antihyperglycaemic activity of medicinal plant extracts in alloxan induced diabetic rats

    PubMed Central

    Attanayake, Anoja P.; Jayatilaka, Kamani A. P. W.; Pathirana, Chitra; Mudduwa, Lakmini K. B.

    2013-01-01

    Background: Diabetes mellitus, for a long time, has been treated with plant derived medicines in Sri Lanka. Aim: The aim of this study is to determine the efficacy and dose response of oral antihyperglycaemic activity of eight Sri Lankan medicinal plant extracts, which are used to treat diabetes in traditional medicine in diabetic rats. Materials and Methods: Medicinal plants selected for the study on the basis of documented effectiveness and wide use among traditional Ayurveda physicians in the Southern region of Sri Lanka for the treatment of diabetes mellitus. The effect of different doses of aqueous stem bark extracts of Spondias pinnata (Anacardiaceae), Kokoona zeylanica (Celastraceae), Syzygium caryophyllatum (Myrtaceae), Gmelina arborea (Verbenaceae), aerial part extracts of Scoparia dulcis (Scrophulariaceae), Sida alnifolia (Malvaceae), leaf extract of Coccinia grandis (Cucurbitaceae) and root extract of Languas galanga (Zingiberaceae) on oral glucose tolerance test was evaluated. A single dose of 0.25, 0.50, 0.75, 1.00, 1.25, 2.00 g/kg of plant extract was administered orally to alloxan induced (150 mg/kg, ip) diabetic Wistar rats (n = 6). Glibenclamide (0.50 mg/kg) was used as the standard drug. The acute effect was evaluated over a 4 h period using area under the oral glucose tolerance curve. Statistical Analysis: The results were evaluated by analysis of variance followed by Dunnett's test. Results: The eight plant extracts showed statistically significant dose dependent improvement on glucose tolerance (P < 0.05). The optimum effective dose on glucose tolerance for six extracts was found to be 1.00 g/kg in diabetic rats with the exception of C. grandis: 0.75 g/kg and L. galanga: 1.25 g/kg. Conclusion: The aqueous extract of G. arborea, S. pinnata, K. zeylanica, S. caryophyllatum, S. dulcis, S. alnifolia, L. galanga and C. grandis possess potent acute antihyperglycaemic activity in alloxan induced diabetic rats. PMID:24991066

  8. Effect of Sardina pilchardus oil on alloxan-induced diabetic rats.

    PubMed

    BelHadj, Sahla; Hentati, Olfa; Baccouch, Noura; Ben Salah, Hichem; Boudaouara, Tahia; Ben Hadj, Ayda; Allouch, Noureddine; El Feki, Abdel Fattah

    2016-02-01

    The purpose of this study was to prevent or to delay the onset of diabetes-related complications, by using a natural marine resource, Sardina pilchardus oil, administrated to alloxan-induced diabetic rats showing hyperglycemia and hyperlipidemia. Gas chromatography-mass spectrometry analysis of the sardine oil detected 18 constituents. The major ones were n-3 highly unsaturated fatty acids among which are docosahexaenoic acid (25.09%) and eicosapentaenoic acid (19.61%). Sardine oil inhibited the ?-amylase activity in rats' sera (26.82%) and thus improved glycemia (54%). The supplement of this oil protected the ?-cells from death and damage, significantly decreased total triglycerides, total cholesterol and LDL-cholesterol concentrations in diabetic rats' sera and increased the HDL-cholesterol level. Gavage administration of this oil to rats protected the liver and kidney functions by reducing the aspartate transaminase, alanine transaminase and phosphatase alkaline activities, and by decreasing creatinine, urea and uric acid levels. PMID:26646823

  9. Effect of Aegle marmelos (L.) Correa on alloxan induced early stage diabetic nephropathy in rats.

    PubMed

    Bhatti, Rajbir; Sharma, Shikha; Singh, Jatinder; Singh, Amarjit; Ishar, M P S

    2013-06-01

    Diabetic nephropathy (DN) has a complex pathogenesis and poor prognosis due to the lack of therapeutic interventions. The present study investigates the effect of A. marmelos leaf extract (AME) on early alloxan induced DN. The treatment with AME was found to significantly decrease the fasting blood sugar, total cholesterol, blood urea, creatinine and renal TBARS and increased the levels of renal reduced glutathione and catalase significantly as compared to the diabetic control group. The maximum dose-dependent protection was observed at a dose of 200 mg kg(-1). Histological examination revealed marked reversal of the morphological derangements with AME treatment as indicated by a decrease in glomerular expansion, tubular dilatation and inflammatory cells. The present results conclude that AME treatment has a significant ameliorative effect on early changes induced in the kidneys by alloxan and improves the outcome of DN. PMID:23926695

  10. Amelioration of oxidative stress by Tabernamontana divaricata on alloxan-induced diabetic rats

    PubMed Central

    Kanthlal, S. K.; Kumar, B. Anil; Joseph, Jipnomon; Aravind, R.; Frank, P. Royal

    2014-01-01

    Objective: The purpose of this study was to evaluate the anti-diabetic activity of ethanol extract of Tabernamontana divaricata (L.) and its ameliorative effect on oxidative stress in alloxan-induced diabetic rats. Materials and Methods: Diabetes was induced by single intraperitoneal injection of alloxan monohydrate (140 mg/kg body weight). Methanol extract of T. divaricata was administered at the doses of 100 and 200 mg/kg body weight in diabetic induced rats including glibenclamide (3 mg/kg) as a reference drug. In the continuous 21 days treatment, fasting blood glucose level was determined on 0, 7, 14 and 21 days. On day 21, serum lipid profiles and glycosylated hemoglobin, liver antioxidant enzymes levels were estimated. Results: Experimental findings showed a significant anti-diabetic potential of the extract in terms of reduction in blood glucose levels and a correct effect on the altered biochemical parameters. Observed data were found statistically significant in correction of antioxidant enzyme level accompanied with diabetes, particularly at the dose of 200 mg/kg body weight. Conclusion: Based on the results, it can be concluded that the T. divaricata is found to be effective in type 2 diabetes in rats and to have an ameliorative effect on the associated oxidative stress. PMID:25593402

  11. Gum Arabic extracts protect against hepatic oxidative stress in alloxan induced diabetes in rats.

    PubMed

    Ahmed, Abdelkareem A; Fedail, Jaafar S; Musa, Hassan H; Kamboh, Asghar Ali; Sifaldin, Amal Z; Musa, Taha H

    2015-12-01

    Gum Arabic (GA) from Acacia seyal and Acacia senegal is a branched-chain polysaccharide which has strong antioxidant properties, and has been used to reduce the experimental toxicity. Yet, the effects of GA on oxidative stress in type I diabetic rats have not been reported. The aim of the study was to investigate the effects of GA on oxidative stress in Alloxan induced diabetes in rats. The rats were divided into 3 groups (n=20 of each): control group, diabetic group injected with allaoxan, and diabetic group given 15% GA in drinking water for 8 weeks. Oxidative damage to liver tissue was evaluated by measurement of key hepatic enzymes, lipid peroxidation, antioxidant enzymes and expression of oxidative stress genes. Activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were significantly (P<0.05) increased in GA group compared to diabetic and control groups. Treatment of GA decreased liver malondialdehyde (MDA), and increased glutathione (GSH). In addition, GA was significantly (P<0.05) reduced the activities of key liver enzymes, including alanine transaminase (ALT) and aspartate transaminase (AST). SOD, GPx and heat shock protein 70 (HSP70) mRNA were significantly increased in GA group compared to control and diabetic groups. Liver of all diabetic rats showed marked degeneration whereas slight degeneration was observed in GA treated rats compared to control. The results suggest that GA may protect liver by modulating the expression of oxidative stress genes, and thus can improve antioxidant status. PMID:26321624

  12. Anti-diabetic potentials of Momordica charantia and Andrographis paniculata and their effects on estrous cyclicity of alloxan-induced diabetic rats.

    PubMed

    Reyes, B A S; Bautista, N D; Tanquilut, N C; Anunciado, R V; Leung, A B; Sanchez, G C; Magtoto, R L; Castronuevo, P; Tsukamura, H; Maeda, K-I

    2006-04-21

    Momordica charantia and Andrographis paniculata are the commonly used herbs by the diabetic patients in Pampanga, Philippines. While the anti-diabetic potential of Momordica charantia is well established in streptozocin- or alloxan-induced diabetic animals, the anti-diabetic potential of Andrographis paniculata in alloxan-induced diabetic rat is not known. Neither the effects of these herbs on estrous cyclicity of alloxan-induced diabetic rats are elucidated. Thus, in these experiments, Momordica charantia fruit juice or Andrographis paniculata decoction was orally administered to alloxan-induced diabetic rats. Rats that were treated with Momordica charantia and Andrographis paniculata had higher body weight (BW) compared with diabetic positive control (P < 0.01) from day 22 to day 27 (D27) but exhibited lower BW than the non-diabetic control (P < 0.05). These rats had lower feed (P < 0.05) and liquid intakes (P < 0.01) compared with diabetic positive control from day 17 to D27, but similar with the non-diabetic control. The blood glucose levels in these groups were significantly reduced from day 12 to D27 compared with diabetic positive control (P < 0.01), however, comparable with non-diabetic control. The diabetic positive control had extended mean estrous cycles (8 days) compared to Momordica charantia and Andrographis paniculata-treated diabetic rats (5 days; P < 0.05). Our results suggest that the anti-diabetic potentials of Momordica charantia and Andrographis paniculata could restore impaired estrous cycle in alloxan-induced diabetic rats. PMID:16298503

  13. Report: Antioxidant and hypoglycemic activity of strawberry fruit extracts against alloxan induced diabetes in rats.

    PubMed

    Abdulazeez, Sheriff Sheik; Ponnusamy, Ponmurugan

    2016-01-01

    The strawberries (Fragaria x ananassa) of Rosaceae family are an accomplished source of bioactive compounds such as ascorbic acid and diverse range of polyphenols including anthocyanins, phenolic acids, flavonols, ellagitannins etc. These phenolic compounds classify strawberry as an important health promoting food. Strawberries are proved to have potent antioxidant capacity in various in vitro assay systems. The in vivo beneficial effects are getting explored against various ailments including cancer, metabolic syndrome, and cardiovascular diseases. The present research study was designed to analyze the effect of strawberry fruit extracts (water and methanol) against alloxan induced hyperglycemia in albino rats of Wister strain. Upon alloxan (150mg/kg body weight) induction, the diabetic animals showed marked increase in the values of plasma glucose, urea, uric acid, creatinine and concomitant decrease in body weight and plasma insulin level. The oral administration of strawberry extracts for 45 days in diabetic animals reversed the biochemical changes significantly (P0.05) to near normal. Furthermore, the restoration of body weight loss was also observed. The results suggest that the strawberry extract has effective hypoglycemic activity against alloxan diabetes. The poly phenolic antioxidant contents of the strawberry fruit extracts are responsible for the observed biological effect. PMID:26826817

  14. Effects of aqueous extract of turnip leaf (Brassica rapa) in alloxan-induced diabetic rats

    PubMed Central

    Hassanpour Fard, Mohammad; Naseh, Ghodratollah; Lotfi, Nassim; Hosseini, Seyed Mahmoud; Hosseini, Mehran

    2015-01-01

    Objectives: Turnip leaf has been used in folk medicine of Iran for the treatment of diabetes. However,so far no scientific study has been done to support its use in traditional medicine. The present study was carried out to evaluate the possible hypoglycemic efficacy of aqueous extract of turnip leaf (AETL) in diabetic rats. Materials and Methods: Alloxan-induced diabetic rats were orally treated with AETL at doses of 200 and 400 mg/kg body weight (bw) per day for 28 days. In order to evaluate the anti-diabetic activity, fasting blood glucose concentrations were determined on the 1st, 14th and 29th days. Moreover,at the end of the study, plasma concentrations of total cholesterol, triglyceride (TG), high density lipoprotein cholesterol (HDL-c), low density lipoprotein cholesterol (LDL-c), aspartate amino transfarase (AST), and alanine amino transferase (ALT) were measured by the use of standard kits and auto-analyzer. Results: Both doses of AETL significantly decreased (p<0.001) blood glucose and ALT levels in diabetic rats after 28 days of administration. AETL at both doses decreased (p<0.05) plasma total cholesterol and LDL-c in diabetic rats, but they significantly decreased (p<0.05) HDL-c and increased triglycerideand AST levels in a-dose dependent manner. Conclusion: The results showed that AETL has a dose- dependent decrease in the blood glucose in diabetic rats. However,we should not be unaware of adverse effects of AETL on lipid profiles and liver enzymes activity, especially decrease of HDL and increase of TG and AST. PMID:25949956

  15. Hypoglycemic activity of curcumin synthetic analogues in alloxan-induced diabetic rats.

    PubMed

    Das, Kusal K; Razzaghi-Asl, Nima; Tikare, Swati N; Di Santo, Roberto; Costi, Roberta; Messore, Antonella; Pescatori, Luca; Crucitti, Giuliana Cuzzucoli; Jargar, Jameel G; Dhundasi, Salim A; Saso, Luciano

    2016-02-01

    The currently available therapies for type 2 diabetes have been unable to achieve normoglycemic status in the majority of patients. The reason may be attributed to the limitations of the drug itself or its side effects. In an effort to develop potent and safe oral antidiabetic agents, we evaluated the in vitro and in vivo hypoglycemic effects of 10 synthetic polyphenolic curcumin analogues on alloxan-induced male diabetic albino rats. In vitro studies showed 7-bis(3,4-dimethoxyphenyl)hepta-1,6-diene-3,5-dione (4) to be the most potential hypoglycemic agent followed by 1,5-bis(4-hydroxy-3-methoxyphenyl)penta-1,4-dien-3-one (10). Structure activity relationship (SAR) of the tested compounds was elucidated and the results were interpreted in terms of in vitro hypoglycemic activities. Furthermore, oral glucose tolerance test (OGTT) with compounds 4, 10 and reference hypoglycemic drug glipizide showed that compound 4 and glipizide had relatively similar effects on the reduction of blood glucose levels within 2?h. Thus, compound 4 might be regarded as a potential hypoglycemic agent being able to reduce glucose concentration both in vitro and in vivo. PMID:25683079

  16. Hypolipidaemic and antioxidant effects of fruits of Musa AAA (Chenkadali) in alloxan induced diabetic rats.

    PubMed

    Kaimal, Smitha; Sujatha, K S; George, Sisilamma

    2010-02-01

    Hypolipidaemic and antioxidant effects of ethanol extract of mature green fruits of Musa AAA (Chenkadali) was evaluated in alloxan induced diabetic rats. The effect of extract at two doses, 500 mg/kg body weight and 1000 mg/kg body weight was analysed and compared with a standard drug, glibenclamide. Rats administered with alloxan showed significantly increased levels of serum triacylglycerol, total cholesterol and alanine amino transferase (ALT) activity. Lipid peroxides increased significantly while reduced glutathione (GSH) decreased considerably in liver and pancreas. Oral administration of the ethanol extract of fruits of Musa AAA (Chenkadali) significantly decreased the levels of serum triacylglycerol, cholesterol and ALT activity. Significant decrease was also observed in the level of lipid peroxides while GSH content increased substantially in liver and pancreas. The effect was dose independent and rats treated with 500 mg/kg body weight showed comparable levels of serum triacylglycerol, cholesterol, ALT activity and liver lipid peroxides to that of normal control and glibenclamide treated groups. Although, there was no significant difference, treatment with 500 mg/kg body weight of the extract showed a higher content of GSH and lower level of lipid peroxides in pancreas compared with glibenclamide. Histopathological examination of pancreas and liver revealed regeneration of islet cells and hepatocytes respectively, which correlate with the biochemical findings. The present study shows that ethanol extract of mature green fruits of Musa AAA (Chenkadali) has antioxidant and hypolipidaemic properties and may be used for treating diabetes mellitus. PMID:20455326

  17. Comparative Study of the Antioxidant Effects of Metformin, Glibenclamide, and Repaglinide in Alloxan-Induced Diabetic Rats

    PubMed Central

    Chukwunonso Obi, Bonaventure; Chinwuba Okoye, Theophine; Okpashi, Victor Eshu; Nonye Igwe, Christiana; Olisah Alumanah, Edwin

    2016-01-01

    Diabetes mellitus is one of the serious global health problems affecting a significant proportion of both developed and developing countries. Overproduction of free radicals and oxidative stress has been associated with the development of diabetic complications. In the present study, the antioxidant effects of metformin (MET), glibenclamide (GLI), and repaglinide (REP) were evaluated in alloxan-induced diabetic rats. The findings from this study may possibly help in understanding the efficacy of these standard drugs in managing the complications arising from diabetes mellitus (DM). Alloxan (130 mg/kg BW) was administered as a single dose to induce diabetes. Four (4) groups of rats (n = 6) were used; group 1 served as diabetic control while groups 2, 3, and 4 were the diabetic test groups that received MET (25 mg/kg), GLI (2.5 mg/kg), and REP (0.5 mg/kg), respectively. The result of the study showed significant (p < 0.05) improvement in the altered antioxidant enzymes (SOD, CAT) and GSH concentration in diabetic treated rats compared with the diabetic control group. MET and REP produced significant effect on the MDA concentration while GLI showed insignificant reduction in the MDA concentration compared with the diabetic control. Findings from this study suggest that the administration of MET, GLI, and REP exerts significant antioxidant effects in alloxan-induced diabetic rats, thus contributing to the protective effect against oxidative stress-induced damage during diabetic complications. PMID:26824037

  18. Blood glucose lowering activity of aloe based composition, UP780, in alloxan induced insulin dependent mouse diabetes model

    PubMed Central

    2014-01-01

    Background There are a few nutritional approaches to address the increased needs of managing diabetic conditions. Previously it has been reported that UP780, a standardized composition of aloe chromone formulated with an aloe polysaccharide, has a significant impact in reducing HbA1C, fasting blood glucose, fructosamine and plasma insulin level in humans and improved impaired glucose and insulin resistance in high-fat diet-induced and db/db non-insulin dependent diabetic mouse models. Here we describe activity of UP780 and its constituents to improve insulin sensitivity in alloxan induced insulin dependent diabetic mouse model. Materials and method Insulin dependent diabetes was induced by administering a single intraperitoneal injection of alloxan monohydrate at a dose of 150mg/kg to CD-1 mice. Aloesin (UP394) was formulated with an Aloe vera inner leaf gel powder polysaccharide (Qmatrix) to yield a composition designated UP780. Efficacy of oral administration of UP780 at 2000mg/kg and its constituents (aloesin at 80mg/kg and Qmatrix at 1920mg/kg) were evaluated in this model. Glyburide, a sulfonylurea drug used in the treatment of type 2 diabetes, was used at 5mg/kg as a positive control. Effect of UP780 on non-diabetic normal mice was also addressed. Results Mice administered intraperitoneal alloxan monohydrate developed progressive type-1 diabetes like symptom. After 4weeks of daily oral administration, reductions of 35.9%, 17.2% and 11.6% in fasting blood glucose levels were observed for UP780, the UP780 Aloe vera inner leaf gel polysaccharide preparation without chromone (Qmatrix), and Aloesin (UP394), treated animals respectively, compared to vehicle treated animals. UP780 has no impact on blood glucose level of non-diabetic healthy mice. UP780 showed statistically significant improvement for blood glucose clearance in oral glucose tolerance tests. Similarly, enhanced improvement in plasma insulin level and statistically significant reduction in triglyceride level was also observed for animals treated with the composition. Conclusion These findings suggest that UP780, a chromone standardized Aloe based composition, could possibly be used as a natural supplement alternative to facilitate maintenance of healthy blood glucose levels. PMID:24891878

  19. Antihyperglycemic and hypolipidemic activities of aqueous extract of Carica papaya Linn. leaves in alloxan-induced diabetic rats

    PubMed Central

    Maniyar, Yasmeen; Bhixavatimath, Prabhu

    2012-01-01

    Background: India is considered as the diabetic capital of the world. The study of plants having antihyperglycemic and hypolipidemic activities may give a new approach in the treatment of diabetes mellitus. Objective: The study was intended to evaluate the antihyperglycemic and hypolipidemic activity of aqueous extract of leaves of Carica papaya Linn. (AECPL) in alloxan-induced diabetic albino rats. Materials and Methods: Diabetes was induced in albino rats by administration of alloxan monohydrate (120 mg/kg, i.p.). Rats were divided into 6 groups of 6 animals each. First group served as non-diabetic control, second group as diabetic control, third group as standard and was treated with 0.1 mg/kg/day of glibenclamide. Group 4, 5, and 6 received 100, 200, and 400 mg/kg body weight of AECPL. Blood samples were analyzed for blood glucose on day 0, 1, 7, 14, 21 and lipid profile on day 21. Results: The AECPL showed significant reduction (P<0.01) in blood glucose level and serum lipid profile levels with 400 mg/kg body weight in alloxan-induced diabetic rats as compared with the control. Conclusion: It is concluded that AECPL is effective in controlling blood glucose levels and in improving lipid profile in diabetic rats. PMID:22707862

  20. Protective Effect of Ethanol Extracts of Hericium erinaceus on Alloxan-Induced Diabetic Neuropathic Pain in Rats

    PubMed Central

    Yi, Zhang; Shao-long, Yang; Ai-hong, Wang; Zhi-chun, Sun; Ya-fen, Zhuo; Ye-ting, Xu; Yu-ling, He

    2015-01-01

    We investigated the effects of Hericium erinaceus (HEE) on alloxan induced diabetic neuropathic pain in laboratory rats. Alloxan induced diabetic rats were administered orally HEE. After 6 weeks of treatments, treatment with HEE 40 mg/kg in diabetic animals showed significant increase in pain threshold and paw withdrawal threshold and significant decrease in serum glucose and urine glucose. We also observed a significant increase in lactate dehydrogenase (LDH), Lipid peroxidation (LPO), glutathione peroxidase (GPx) activity, glutathione reductase (GR) activity, catalase (CAT) activity, Na+K+ATPase activity, and glutathione S transferase (GST) activity along with significant decreased levels of glutathione (GSH) content in diabetic rats. The total antioxidant status (TAOS) in the HEE-treated groups was significantly lower than that in the alloxan-treated group. HEE can offer pain relief in diabetic neuropathic pain. The improvement in diabetic state after HEE treatment along with the antioxidant activity could be the probable way by which it had alleviated diabetic neuropathy. PMID:25960754

  1. Amelioration of altered serum, liver, and kidney antioxidant enzymes activities by sodium selenite in alloxan-induced diabetic rats

    PubMed Central

    Ahmadvand, Hassan; Ghasemi Dehnoo, Maryam; Cheraghi, Roohangiz; Rasoulian, Bahram; Ezatpour, Behrouzb; Azadpour, Mozhgan; Baharvand, Kaveh

    2014-01-01

    Background: The aim of this study was to evaluate the possible protective effect of sodium selenite on serum, liver, and kidney antioxidant enzymes activities in alloxan-induced type 1 diabetic rats. Methods: Forty Sprague-Dawley male rats were randomly divided into four groups; Group one as control, Group two as sham-treated with sodium selenite by 1 mg/kg intraperitoneal (i.p.) injections daily, Group three as diabetic untreated, and Group four as diabetic treated with sodium selenite by 1 mg/kg i.p. injections daily .Diabetes was induced in the third and fourth groups by subcutaneous alloxan injections. After eight weeks the animals were euthanized and livers and kidneys were immediately removed and used fresh or kept frozen until analysis. Before the rats were killed blood samples were also collected to measure glutathione peroxidase (GPX) and catalase (CAT) activities in sera. Results: Glutathione peroxidase and CAT activities serum, liver, and kidney were all significantly less in the diabetic rats than in the controls. Sodium selenite treatment of the diabetic rats resulted in significant increases in GPX activity in the kidneys and livers, and CAT activity in the sera and livers. Conclusions: Our results indicate that sodium selenite might be a potent antioxidant that exerts beneficial effects on both GPX and CAT activities in alloxan-induced type 1 diabetic rats. PMID:26989732

  2. Effects of dietary fiber supplementation on glycemic control in dogs with alloxan-induced diabetes mellitus.

    PubMed

    Nelson, R W; Ihle, S L; Lewis, L D; Salisbury, S K; Miller, T; Bergdall, V; Bottoms, G D

    1991-12-01

    The effect of a high insoluble-fiber (IF) diet containing 15% cellulose in dry matter, high soluble-fiber (SF) diet containing 15% pectin in dry matter, and low-fiber (LF) diet on glycemic control in 6 dogs with alloxan-induced insulin-dependent diabetes mellitus was evaluated. Each diet contained greater than 50% digestible carbohydrate in dry matter. A crossover study was used with each dog randomly assigned to a predetermined diet sequence. Each dog was fed each diet for 56 days. Caloric intake was adjusted weekly as needed to maintain each dog within 1.5 kg of its body weight measured prior to induction of diabetes mellitus. All dogs were given pork lente insulin and half of their daily caloric intake at 12-hour intervals. Mean (+/- SEM) daily caloric intake was significantly (P less than 0.05) less when dogs consumed the IF diet vs the SF and LF diets (66 +/- 3 kcal/kg, 81 +/- 5 kcal/kg, and 79 +/- 4 kcal/kg, respectively). Serum alkaline phosphatase activity was significantly (P less than 0.05) higher when dogs consumed the LF diet vs the IF and SF diets (182 +/- 37 IU/L, 131 +/- 24 IU/L, and 143 +/- 24 IU/L, respectively). Mean postprandial plasma glucose concentration measured every 2 hours for 24 hours, beginning at the time of the morning insulin injection, was significantly (P less than 0.05) lower at most blood sampling times in dogs fed IF and SF diets, compared with dogs fed the LF diet.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1665025

  3. Hypoglycaemic and Hypolipidaemic Effects of Withania somnifera Root and Leaf Extracts on Alloxan-Induced Diabetic Rats

    PubMed Central

    Udayakumar, Rajangam; Kasthurirengan, Sampath; Mariashibu, Thankaraj Salammal; Rajesh, Manoharan; Anbazhagan, Vasudevan Ramesh; Kim, Sei Chang; Ganapathi, Andy; Choi, Chang Won

    2009-01-01

    Withania somnifera is an important medicinal plant, which is used in traditional medicine to cure many diseases. Flavonoids were determined in the extracts of W. somnifera root (WSREt) and leaf (WSLEt). The amounts of total flavonoids found in WSREt and WSLEt were 530 and 520 mg/100 g dry weight (DW), respectively. Hypoglycaemic and hypolipidaemic effects of WSREt and WSLEt were also investigated in alloxan-induced diabetic rats. WSREt and WSLEt and the standard drug glibenclamide were orally administered daily to diabetic rats for eight weeks. After the treatment period, urine sugar, blood glucose, haemoglobin (Hb), glycosylated haemoglobin (HbA1C), liver glycogen, serum and tissues lipids, serum and tissues proteins, liver glucose-6-phosphatase (G6P) and serum enzymes like aspartate transaminase (AST), alanine transaminase (ALT), acid phosphatase (ACP) and alkaline phosphatase (ALP) levels were determined. The levels of urine sugar, blood glucose, HbA1C, G6P, AST, ALT, ACP, ALP, serum lipids except high density lipoprotein-bound cholesterol (HDL-c) and tissues like liver, kidney and heart lipids were significantly (p < 0.05) increased, however Hb, total protein, albumin, albumin:globulin (A:G) ratio, tissues protein and glycogen were significantly (p < 0.05) decreased in alloxan-induced diabetic rats. Treatment of the diabetic rats with WSREt, WSLEt and glibenclamide restored the changes of the above parameters to their normal level after eight weeks of treatment, indicating that WSREt and WSLEt possess hypoglycaemic and hypolipidaemic activities in alloxan-induced diabetes mellitus (DM) rats. PMID:19564954

  4. Beneficial Effects of Pentanema vestitum Linn. Whole Plant on the Glucose and Other Biochemical Parameters of Alloxan Induced Diabetic Rabbits

    PubMed Central

    Ilahi, Ikram; Asghar, Ali; Ali, Shujat; Khan, Murad; Khan, Nasrullah

    2012-01-01

    The residents of Lower Dir and Malakand agency, Khyber Pakhtunkhwa, Pakistan, use the dry powder of whole plant of Pentanema vestitum for the treatment of asthma and diabetes. No documented reports are available about the therapeutic action of Pentanema vestitum. The present study was aimed to explore the antihyperglycemic effect of 70% methanol extract of Pentanema vestitum whole plant in glucose-induced nondiabetic hyperglycemic and alloxan-induced diabetic rabbits. During this study, the effects of plant extract on the serum lipid profile, GPT, ALP, bilirubin and creatinine of diabetic rabbits were also studied. The extract of Pentanema vestitum whole plant exhibited significant (P < 0.05) antihyperglycemic activity in glucose-induced hyperglycemic rabbits. Treatment of alloxan-induced diabetic rabbits with extract significantly (P < 0.05) reduced the elevated levels of serum glucose, GPT, ALP, bilirubin and creatinine. During the study of lipid profile, the extract proved to be antihyperlipidemic and HDL boosting in diabetic rabbit models. From the finding of the present research, it was concluded that the 70% methanol extract of Pentanema vestitum whole plant has beneficial effects on serum levels of glucose, lipid profile, GPT, ALP, bilirubin, and creatinine of diabetic rabbits. PMID:23316385

  5. Serum Glucose and Malondialdehyde Levels in Alloxan Induced Diabetic Rats Supplemented with Methanolic Extract of Tacazzea Apiculata

    PubMed Central

    Gwarzo, M. Y.; Ahmadu, J. H.; Ahmad, M. B.; Dikko, A. U. A.

    2014-01-01

    Tacazzea apiculata is used by traditional medical practitioners for the treatment of wide range of diseases. The current work investigated the hypoglycemic and antioxidant properties of Tacazzea apiculata Oliv. on alloxan induced diabetes mellitus. Five groups (n=10) of rats were fed on commercial diet. The rats were divided into Group 1 (NUT) as non-diabetic and untreated, group 2 (NDT) as non-diabetic and treated, group 3 (DT) diabetic and treated. Group 4 (DUT) as diabetic and untreated. Group five (CP) were diabetic treated with Chlorpropamide, a drug used in the management of diabetic mellitus, with no known antioxidant property. Diabetic induction was done by intra-peritoneal injection of 100 mg/kg b. wt with alloxan. Fasting blood glucose was estimated seven days after induction to determine the severity of glucose elevation among the induced groups. Methanolic extract of T. apiculata leaf was administered to alloxan induced diabetic and non-diabetic control rats at 100mg/kg body weight for four weeks and blood glucose estimated on weekly basis. Malondialdehyde level was also estimated in the sera of the rats. Blood glucose level was monitored for additional 2 weeks post treatment. The results indicated that the extracts possess significant hypoglycemic effect on the diabetic rats (DT) having the mean glucose of (95.2 ± 9.12 mg/dl) compared to the diabetic untreated control group (DUT) with a mean glucose of (238.91 ± 4.42 mg/dl, p<0.05). The effect was sustained even on withdrawal of the extracts for two weeks. This was accompanied by a progressive increase in weight among all treated diabetic rats and non diabetic treated (DT and NDT) compared with diabetic untreated control rat (DUT) (p<0.05). A raised level in malondialdehyde was also observed among the diabetic rat prior to treatment and significantly decreased after the treatment. In conclusion the research demonstrated the hypoglycaemic and antioxidant potential of methanolic leaf extract of T. apiculata in alloxan induced rats. PMID:25598753

  6. Hypoglycemic and hypolipidemic activity of ethanolic extract of Salvadora oleoides in normal and alloxan-induced diabetic rats

    PubMed Central

    Yadav, J.P.; Saini, Sushila; Kalia, A.N.; Dangi, A.S.

    2008-01-01

    Objective: To find out the hypoglycemic and hypolipidemic activity of an ethanolic extract of the aerial part of Salvadora oleoides Decne in euglycemic and alloxan-induced diabetic albino rats. Materials and Methods: Diabetes was induced in albino rats by administration of alloxan monohydrate (120 mg/kg, i.p.). Normal as well as diabetic albino rats were divided into groups (n = 6) receiving different treatments: vehicle (control), ethanolic extract (1 g and 2 g/kg b.w), and standard antidiabetic drug tolbutamide (0.5 g/kg b.w.). Blood samples were collected by cardiac puncture and were analyzed for blood glucose and lipid profile on days 0, 7, 14, and 21. Results: The ethanolic extract of S oleoides produced significant reduction (P < 0.001) in blood glucose and also had beneficial effects (P < 0.001) on the lipid profile in euglycemic as well as alloxan-induced diabetic rats at the end of the treatment period (21st day). However, the reduction in the blood glucose and improvement in lipid profile was less than that achieved with the standard drug tolbutamide. Conclusion: We concluded that an ethanolic extract of S oleoides is effective in controlling blood glucose levels and improves lipid profile in euglycemic as well as diabetic rats. PMID:21264157

  7. Antidiabetic Effects of Aqueous Infusions of Artemisia herba-alba and Ajuga iva in Alloxan-Induced Diabetic Rats.

    PubMed

    Boudjelal, Amel; Siracusa, Laura; Henchiri, Cherifa; Sarri, Madani; Abderrahim, Benkhaled; Baali, Faiza; Ruberto, Giuseppe

    2015-06-01

    The aqueous infusions of the aerial parts of Artemisia herba-alba Asso and Ajuga iva Schreber, prepared in accordance with the traditional procedure used in the local folk medicine, have been analysed for their composition and content of phytochemical constituents and examined for their antidiabetic effectiveness in alloxan-induced diabetic rats. Oral administration of A.herba-alba and A.iva infusions was studied in normal and alloxan-induced diabetic rats, which were randomly divided into nine groups, each group consisting of six animals. The drug preparations (100, 200, and 300?mg/kg b.?w.) of each plant were given orally to the rats of each group twice daily for 15 days. Compositional analysis of the aqueous infusions revealed the presence of several polyphenols as main components. A.herba-alba infusion was characterised by mono- and di-cinnamoylquinic acids, with 5-caffeoylquinic (chlorogenic) acid being the main compound, followed by 3,5-dicaffeoylquinic acid. Vicenin-2 (apigenin 6,8-di-C-glucoside) appeared to be the most abundant among flavonoids. On the other hand, A.iva showed the exclusive presence of flavonoids, with the flavanone naringin present in relatively high levels together with several apigenin (flavone) derivatives. Oral administration of 300?mg/kg b.?w. of the aqueous infusions of A.herba-alba and A.iva exhibited a significant reduction in blood glucose content, showing a much more efficient antidiabetic activity compared to glibenclamide, the oral hypoglycaemic agent used as a positive control in this study. These results suggest that A.herba-alba and A.iva possess significant antidiabetic activity, as they were able to improve the biochemical damage in alloxan-induced diabetes in rats. PMID:26018915

  8. Role of antioxidant enzymes and antioxidant compound probucol in antiradical protection of pancreatic beta-cells during alloxan-induced diabetes.

    PubMed

    Lankin, V Z; Korchin, V I; Konovalova, G G; Lisina, M O; Tikhaze, A K; Akmaev, I G

    2004-01-01

    The severity of disturbances in carbohydrate metabolism in rats with alloxan-induced diabetes depended on activity of antioxidant enzymes in the target organ (pancreas). Damage to the pancreas is related to intensive generation of reactive oxygen species, free radicals, and lipid peroxides. Alloxan-induced diabetes in rats is a free radical disease, which in vivo serves as a useful model for the search for pharmacological preparations with antiradical and antioxidant properties. The antioxidant compound probucol indirectly increased activity of antioxidant enzymes in the pancreas and prevented the development of alloxan-induced diabetes in rats. Our results indicate that different sensitivity of laboratory animals of various species (rats and guinea pigs) to the influence of alloxan is associated with abnormal variations in activity of enzymes utilizing reactive oxygen species and lipid peroxides in mammalian pancreatic cells. PMID:15085236

  9. Hepatoprotective and Hypolipidemic Effects of Satureja Khuzestanica Essential Oil in Alloxan-induced Type 1 Diabetic Rats.

    PubMed

    Ahmadvand, Hassan; Tavafi, Majid; Khalatbary, Ali Reza

    2012-01-01

    In the present study, we examined the antioxidative activities of Satureja khuzestanica essential oil (SKE) and possible protective effect of SKE on lipid profile, atherogenic index and liver enzyme markers in Alloxan-induced Type 1 diabetic rats. Thirty male rats were randomly divided into three groups; group one as control, group two diabetic untreatment, and group three treatments with SKE by 500 ppm in drinking water, respectively. Diabetes was induced in the second and third groups by alloxan injection subcutaneously. After 8 weeks, the levels of fasting blood glucose (FBG), triglyceride (TG), cholesterol (C), low density lipoprotein (LDL), very low density lipoprotein (VLDL), high density lipoprotein (HDL), atherogenic index and the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) of all groups were analyzed. Data were analyzed through non-parametric Man Whitney test (using SPSS 13 software) and p < 0.05 was considered significant. SKE inhibited significantly the activities of ALT and ALP and decrease FBG, TG, C, LDL and VLDL. HDL level was significantly increased when treated with the extract. The activities of AST stayed unaltered. Moreover, total antioxidant capacity of SKE was 3.20 0.40 nmol of ascorbic acid equivalents/g SKE. This study showed that SKE is a source of potent antioxidants. The findings of the present study also suggest that SKE exert beneficial effects on the lipid profile, atherogenic index and liver enzymes activity in Alloxan-induced Type 1 diabetic rats. PMID:24250556

  10. Hepatoprotective and Hypolipidemic Effects of Satureja Khuzestanica Essential Oil in Alloxan-induced Type 1 Diabetic Rats

    PubMed Central

    Ahmadvand, Hassan; Tavafi, Majid; Khalatbary, Ali Reza

    2012-01-01

    In the present study, we examined the antioxidative activities of Satureja khuzestanica essential oil (SKE) and possible protective effect of SKE on lipid profile, atherogenic index and liver enzyme markers in Alloxan-induced Type 1 diabetic rats. Thirty male rats were randomly divided into three groups; group one as control, group two diabetic untreatment, and group three treatments with SKE by 500 ppm in drinking water, respectively. Diabetes was induced in the second and third groups by alloxan injection subcutaneously. After 8 weeks, the levels of fasting blood glucose (FBG), triglyceride (TG), cholesterol (C), low density lipoprotein (LDL), very low density lipoprotein (VLDL), high density lipoprotein (HDL), atherogenic index and the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) of all groups were analyzed. Data were analyzed through non-parametric Man Whitney test (using SPSS 13 software) and p < 0.05 was considered significant. SKE inhibited significantly the activities of ALT and ALP and decrease FBG, TG, C, LDL and VLDL. HDL level was significantly increased when treated with the extract. The activities of AST stayed unaltered. Moreover, total antioxidant capacity of SKE was 3.20 0.40 nmol of ascorbic acid equivalents/g SKE. This study showed that SKE is a source of potent antioxidants. The findings of the present study also suggest that SKE exert beneficial effects on the lipid profile, atherogenic index and liver enzymes activity in Alloxan-induced Type 1 diabetic rats. PMID:24250556

  11. Hepatoprotetive, Cardioprotective and Nephroprotective Actions of Essential Oil Extract of Artemisia sieberi in Alloxan Induced Diabetic Rats

    PubMed Central

    Irshaid, Fawzi; Mansi, Kamal; Bani-Khaled, Ahmad; Aburjia, Talal

    2012-01-01

    The aim of the current study is to evaluate the potential mechanism of antidiabetic action of the essential oil of Artemisia sieberi and its effects on some hematological and biochemical parameters in alloxan induced diabetic rats. Extraction of the essential oil from aerial parts of A. sieberi was preformed by hydrodistillation. Fifty rats were divided into five groups. Groups I and II normal rats given 1 mL/day of dimethyl sulfoxide and 80 mg/kg BW of this oil extract, respectively. Groups III, IV and V diabetic rats given 1 mL/day of dimethyl sulfoxide, oil extract (80 mg/kg BW) and metformin (14.2 mg/kg BW), respectively. Several hematological and biochemical parameters were assessed. Oral administration of the extract resulted in a significant reduction in the mean values of blood glucose, glucagon, cholesterol, triglyceride, LDL-C, ESR, urea, uric acid, creatinine accompanied by an increase in the mean values of the total protein, albumin, insulin, HDL-C, neutrophile count and PCV in diabetic rats. No significant changes in these parameters were found in the control group. The effects produced by this extract were closely similar to a standard antidiabetic drug, metformin. In conclusion, the present study indicates that the essential oil extract of A. sieberi appears to exhibit cardioprotective, nephroprotective and hepatoprotective activities in alloxan induced diabetic rats. PMID:24250557

  12. Anti-diabetic property of Methanol extract of Musa sapientum leaves and its fractions in alloxan-induced diabetic rats.

    PubMed

    Adewoye, E O; Ige, A O

    2013-01-01

    Diabetes mellitus is a metabolic disorder resulting from necrosis of ?-cell and insulin resistance at the cellular level. Musa sapientum has been shown to possess anti-diabetic properties, however, the mechanism of its action is unknown. The effect of Methanolic extract of Musa sapientum leaves (MEMSL) and its fractions were assessed for in vitro inhibitory activity of ?-amylase enzyme, in vivo hypoglycemic properties and liver glycogen content in alloxan-induced diabetic rats. Dried plant powder of Musa sapientum was successively extracted using n-hexane, ethyl acetate, dichloromethane and methanol respectively. The filtrate obtained was evaporated using rotary evaporator and the extract was stored at 4C until use. The methanolic extract obtained was further fractionated using column chromatography. In vitro alpha amylase inhibitory activity of the methanolic extract at different doses (2.5mg/ml, 5mg/ml, 10mg/ml, 25mg/ml and 50mg/ml) and column fractions (100ug/ml) were assessed and compared with that of acarbose (5mg/ml), a standard oral ?-amylase inhibitor. Hypoglycemic activity and liver glycogen content was studied using alloxan -induced diabetic male rats treated with MEMSL (250mg/kg and 500mg/kg), column fractions F2 and F5 (100?g/kg) for 14 days respectively. Results obtained showed a dose -dependent increase in ?-amylase inhibitory activity of the methanolic extract at 5, 10, 25 and 50mg/ml exhibiting 29%, 61%, and 72% and 80% inhibitory activities respectively. Column fractions 2 and 5 showed the highest ?-amylase inhibitory activity of 79% and 74% respectively. The MEMSL at 250mg/kg and 500mg/kg exhibited 66% and 59% hypoglycemic activities respectively compared with diabetic controls. Fractions 2 and 5 showed 48% and 75% reduction in blood glucose level respectively. Liver glycogen in diabetic animals treated with MEMSL (250mg/kg and 500mg/kg), F2 and F5 were significantly increased (5.50.5, 5.90.7, 3.60.5, 8.00.4 mg/100gwt. liver) compared with Diabetic controls (1.20.3 mg/100gwt. liver) respectively suggesting an increase in glucose storage or reduction in glycogen breakdown. It seems possible that the anti-diabetic properties in the leaf extract of Musa sapientum and its fractions maybe due to the inhibition of ?-amylase, increased storage of glucose as glycogen in the liver and/or reduced breakdown of liver glycogen stores. PMID:23955414

  13. Therapeutic potency of saponin rich aqueous extract of Scoparia dulcis L. in alloxan induced diabetes in rats

    PubMed Central

    Perumal, P. Saravana; Anaswara, P. V.; Muthuraman, A.; Krishan, S.

    2014-01-01

    Background: Diabetes mellitus is major metabolic disorders of carbohydrate metabolism. This leads to alter the multiple organ system. Aims: To investigate the antidiabetic and antioxidant effects of the saponin rich aqueous extract of Scoparia dulcis (SRE-SD) using alloxan-induced hyperglycemic rat model. Material and Methods: The single dose of alloxan was injected for the induction of diabetes in rats. The SRE-SD and glibenclamide were administered for 15 consecutive days from the 3rd day of alloxan administration. Quantity of food and water intake was measured at day 0, and 18. Further, body weight was recorded and blood samples were collected at different time intervals that is, day 0, 3, 8, 13, and 18. The oxidative biomarkers (i.e. thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and nitrite (NO2−) levels were also estimated in the serum sample. Results: The SRE-SD showed a remarkable dose and time-dependent changes in alloxan-induced rise in the level of food consumption and water intake, serum glucose level, TBARS, NO2− and fall in the level of GSH. Further, significant attenuation was observed at 20 and 30 mg/kg of SRE-SD treated group. Conclusions: These findings demonstrate that SRE-SD has both antidiabetic and antioxidant effects on the experimental model of diabetes in rat. PMID:25558170

  14. Antiatherogenic, hepatoprotective, and hypolipidemic effects of coenzyme Q10 in alloxan-induced type 1 diabetic rats

    PubMed Central

    Ahmadvand, Hassan; Ghasemi-Dehnoo, Maryam

    2014-01-01

    BACKGROUND Diabetes mellitus, one of the leading metabolic syndromes, accounts for highest morbidity and mortality worldwide. In this study, we examined possible protective effect of coenzyme Q10 on lipid profile, atherogenic index, and liver enzyme markers in alloxan-induced type 1 diabetic rats. METHODS A total of 30 male rats were randomly divided into three groups; group 1 as control, group 2 diabetic untreatment, and group 3 treatments with coenzyme Q10 by 15 mg/kg i.p. daily, respectively .Diabetes was induced in the second and third groups by alloxan injection subcutaneously. After 8 weeks, the levels of fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL), very low-density lipoprotein (VLDL), high density lipoprotein (HDL), atherogenic index, atherogenic coefficient, cardiac risk ratio, and the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) of all groups were analyzed. Data were analyzed using non-parametric Mann-Whitney test (using SPSS) and P < 0.05 was considered as significant. RESULTS Coenzyme Q10 inhibited significantly the activities of ALT (11.17%), AST (19.35%) and ALP (36.67%) and decreased FBG (21.19%), TG (37.24%), TC (17.15%), LDL (30.44%), VLDL (37.24%), atherogenic index (44.24%), atherogenic coefficient (49.69%), and cardiac risk ratio (37.97%), HDL level was significantly (33.38%) increased when treated with coenzyme Q10. CONCLUSION The findings of this study suggest that coenzyme Q10 exert beneficial effects on the lipid profile, atherogenic index, and liver enzymes activity in alloxan-induced type 1 diabetic rats. PMID:25258634

  15. The effects of aqueous extract of alfalfa on blood glucose and lipids in alloxan-induced diabetic rats

    PubMed Central

    Amraie, Esmaiel; Farsani, Masome Khosravi; Sadeghi, Leila; Khan, Tayaba Naim; Adavi, Zohrab

    2015-01-01

    Diabetes is a common metabolic disorder that is specified by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The use of nonpharmacological treatments (herbal agents) is a new approach in the management of diabetes. The aim of this study was to investigate the effect of aqueous extract of alfalfa on blood glucose and serum lipids in alloxan-induced diabetic rats. In this study, 32 female rats (210–250 g) were used which were divided randomly into 4 groups including intact control group, diabetic control group, and 2 diabetic groups which received 250 and 500 mg/kg doses of aqueous extract of alfalfa, respectively. In the diabetic groups, alloxan-monohydrate was injected peritoneally to create diabetic condition. The two last groups orally received aqueous extract of alfalfa for 21 days. At the end of experiment, sugar, cholesterol, triglycerides, high-density and low-density lipoprotein, and aspartate aminotransferase (ALT) and alanine aminotransferase (AST) levels were measured in the samples. Consumption of aqueous alfalfa extract significantly reduced glucose, cholesterol, triglycerides, and low-density lipoprotein (LDL) levels in the diabetic rats but enhanced high-density lipoprotein (HDL) levels. ALT and AST liver enzyme levels were also reduced in blood. Histological examination showed that the aqueous alfalfa extract caused reconstruction of damaged liver and enhanced Langerhans islets’ diameter in pancreas. Therefore, all signs of diabetes were improved by oral administration of alfalfa in defined dose. PMID:26525173

  16. Protective Effect of Lavandula stoechas and Rosmarinus officinalis essential oils against reproductive damage and oxidative stress in alloxan-induced diabetic rats.

    PubMed

    Sebai, Hichem; Selmi, Slimen; Rtibi, Kais; Gharbi, Najoua; Sakly, Mohsen

    2015-02-01

    The authors aimed in the present study to assess the protective effect of Rosmarinus officinalis essential oils (ROEO) and Lavandula stoechas essential oils (LSEO) against reproductive damage and oxidative stress in alloxan-induced diabetic male rats. Essential oil samples were obtained from the aerial parts of the plants by hydrodistillation and analyzed by the gas chromatography-mass spectrometry (GC-MS). Rats were divided into four groups: healthy control (HC); diabetic control (DC); healthy+ROEO (H+ROEO), healthy+LSEO (H+LSEO), diabetic+ROEO (D+ROEO), and diabetic+LSEO (D+LSEO). The use of GC-MS allowed to the identification of 15 and 22 compounds in ROEO and LSEO, respectively. In addition, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test showed that ROEO and LSEO had an important antioxidant capacity. In vivo, we initially found that ROEO and LSEO treatment protected against the decrease in alloxan-induced body weight gain, relative reproductive organ weights, testosterone level, as well as sperm quality decline. On the other hand, we showed that alloxan administration was accompanied by an oxidative stress status assessed by an increase of malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, as well as a depletion of sulfhydril group content (-SH) and antioxidant enzyme activities as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in testis, epididymis, and sperm. More importantly, ROEO and LSEO treatment significantly protected against oxidative damage of the male reproductive organ systems in alloxan-induced diabetic rats. These findings suggested that ROEO and LSEO exerted a potential protective effect against alloxan-induced reproductive function damage and oxidative stress in male rat. The beneficial effect of ROEO and LSEO might be related, in part, to their antioxidant properties. PMID:25105335

  17. Cytoprotection of pancreatic ?-cells and hypoglycemic effect of 2-hydroxypropyl-?-cyclodextrin: sertraline complex in alloxan-induced diabetic rats.

    PubMed

    Buko, Vyacheslav; Zavodnik, Ilya; Lukivskaya, Oxana; Naruta, Elena; Palecz, Bartlomiej; Belica-Pacha, Silwia; Belonovskaya, Elena; Kranc, Robert; Abakumov, Vladimir

    2016-01-25

    Sertraline, a selective inhibitor of serotonin reuptake, is widely used as antidepressant in diabetic patients for improvement of depression and glycemic control. Sertraline is poorly soluble in water, which limits its oral applicability. In this work we tried to improve the pharmaceutical properties of sertraline by complexation with 2-hydroxypropyl-?-cyclodextrin (HP?CD) and evaluated the efficacy of the HP?CD:sertraline complex in prevention of alloxan-induced lesions in rats. The solubility of sertraline increased in the presence of HP?CD and the association constant for sertraline and HP?CD was equal to 40001000M(-1). Two-week treatment of diabetic animals with the HP?CD:sertraline complex improved pancreatic islet morphology and ?-cell survival, which, in turn, reduced the severity of diabetes, as evidenced by lowering of blood glucose and glycated hemoglobin contents as well as normalization of serum insulin level and insulin sensitivity (HOMA-IR). The effect of the HP?CD:sertraline complex was strongly expressed in comparison with the antidiabetic effect of both the monopreparations, HP?CD and sertraline. It is suggested that the cyclodextrin derivative increased the pharmacological effect of sertraline, probably due to enhanced drug bioavailability. PMID:26593071

  18. Anti-diabetic properties of chromium citrate complex in alloxan-induced diabetic rats.

    PubMed

    Li, Fang; Wu, Xiangyang; Zhao, Ting; Zhang, Min; Zhao, Jiangli; Mao, Guanghua; Yang, Liuqing

    2011-12-01

    The chromium citrate complex [CrCIT] was synthesized and its structure was determined by infrared, UV-visible and atomic absorption spectroscopy, elemental and thermodynamic analysis. Anti-diabetic activity, oxidative DNA damage capacity and acute oral toxicity of [CrCIT] were investigated and compared with that of chromium trichloride hexahydrate. [CrCIT] was synthesized in a single step reaction by chelating chromium(III) with citric acid in aqueous solution. The molecular formula of [CrCIT] was inferred as CrC(6)H(5)O(7)·4H(2)O. The anti-diabetic activity of the complex [CrCIT] was assessed in alloxan-diabetic rats by daily oral gavage for 3 weeks. The biological activity results showed that the complex at the dose of 0.25-0.75 mg Cr/kg body weight could decrease the blood glucose level and increase liver glycogen level in alloxan-diabetic rats. [CrCIT] had more beneficial influences on the improvement of controlling blood glucose, serum lipid and liver glycogen levels compared with CrCl(3)·6H(2)O. Furthermore, [CrCIT] did not cause oxidative DNA damage under physiologically relevant conditions, and [CrCIT] did not produce any hazardous symptoms or deaths in acute oral toxicity test, showing the LD(50) value for female and male rats were higher than 15.1 g/kg body weight. The results suggested that [CrCIT] might represent a novel and proper chromium supplement with potential therapeutic value to control blood glucose in diabetes. PMID:21924886

  19. The hypoglycemic effect of the aqueous extract of the fruits of Balanites aegypticea in Alloxan-induced diabetic rats

    PubMed Central

    Baragob, Abdella Emam Abdella; AlMalki, Waleed Hassan; Shahid, Imran; Bakhdhar, Fatimah Abdullah; Bafhaid, Hanouf Saeed; Eldeen, Omar Muhammad Izz

    2014-01-01

    Background: Balanites aegypticea is used medically for many purposes e.g. anti-spasmodic, stomach pain, malaria, and yellow fever. The extract of the fruit is also used to reduce the blood glucose levels. Objectives: The objective of this study was to investigate the hypoglycemic effects of the aqueous extract of the fruits of the Balanites aegypticea in alloxan-induced diabetic rats. Materials and Methods: Twenty-five adult male Vistar rats were used in this study. The rats were randomly collected and divided into 5 groups (5 rats in each group). The untreated rats (negative control group) received basal diet and tap water only for 15 days. The experimental rats became diabetic by intraperitoneal injection of alloxan (150 mg/kg body weight). The fruit of Balanites aegypticea was powdered, extracted, and dried using organic solvents. The diabetic rats received aqueous extract 200 mg/kg, 400 mg/kg, and 800 mg/kg, respectively, for 2 weeks. Plasma glucose levels were measured by using Glucose GOD-PAP method through spectrophotometer. Results: The results showed that 800 mg/kg aqueous extract decrease significantly the plasma glucose level (P ? 0.05) in diabetic rats, and there is a considerable gain in body weight (P ? 0.05) compared to the diabetic control group. Four-hundred mg/kg aqueous extract has a mild effect on body weights and plasma glucose levels, while 200 mg/kg aqueous extract has no significant effect on plasma glucose level and a little effect on body weight. Conclusions: The results of the presented study revealed that the aqueous extract of Balanites aegypticea has hypoglycemic properties. It can decrease the plasma glucose level and can improve weight in diabetic experimental animals. PMID:24497735

  20. Suppressive effects of natural reduced waters on alloxan-induced apoptosis and type 1 diabetes mellitus.

    PubMed

    Li, Yuping; Hamasaki, Takeki; Teruya, Kiichiro; Nakamichi, Noboru; Gadek, Zbigniew; Kashiwagi, Taichi; Yan, Hanxu; Kinjo, Tomoya; Komatsu, Takaaki; Ishii, Yoshitoki; Shirahata, Sanetaka

    2012-05-01

    Insulin-producing cells express limited activities of anti-oxidative enzymes. Therefore, reactive oxygen species (ROS) produced in these cells play a crucial role in cytotoxic effects. Furthermore, diabetes mellitus (DM) development is closely linked to higher ROS levels in insulin-producing cells. Hita Tenryosui Water() (Hita T. W., Hita, Japan) and Nordenau water (Nord. W., Nordenau, Germany), referred to as natural reduced waters (NRWs), scavenge ROS in cultured cells, and therefore, might be a possibility as an alternative to conventional pharmacological agents against DM. Therefore, this study aimed to investigate the role of NRWs in alloxan (ALX)-induced ?-cell apoptosis as well as in ALX-induced diabetic mice. NRWs equally suppressed DNA fragmentation levels. Hita T. W. and Nord. W. ameliorated ALX-induced sub-G(1) phase production from approximately 40% of control levels to 8.5 and 11.8%, respectively. NRWs restored serum insulin levels (p<0.01) and reduced blood glucose levels (p<0.01) in ALX-induced mice. Hita T. W. restored tissue superoxide dismutase (SOD) (p<0.05) activity but not tissue catalase activity. Hita T. W. did not elevate SOD or catalase activity in HIT-T15 cells. Nord. W. restored SOD (p<0.05) and catalase (p<0.05) activity in both cultured cells and pancreatic tissue to normal levels. Even though variable efficacies were observed between Hita T. W. and Nord. W., both waters suppressed ALX-induced DM development in CD-1 male mice by administering NRWs for 8weeks. Our results suggest that Hita T. W. and Nord. W. protect against ALX-induced ?-cell apoptosis, and prevent the development of ALX-induced DM in experimental animals by regulating ALX-derived ROS generation and elevating anti-oxidative enzymes. Therefore, the two NRWs tested here are promising candidates for the prevention of DM development. PMID:22143345

  1. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats

    PubMed Central

    2013-01-01

    Background The present study described the phytochemical profile of Lavandula stoechas essential oils, collected in the area of Ain-Draham (North-West of Tunisia), as well as their protective effects against alloxan-induced diabetes and oxidative stress in rat. Methods Essential oils samples were obtained from the aerial parts of the plant by hydrodistillation and analyzed by GCMS. Rats were divided into four groups: Healthy Control (HC); Diabetic Control (DC); Healthy?+?Essential Oils (H?+?EO) and Diabetic?+?Essential Oils (D?+?EO). Antidiabetic and antioxidant activities were evaluated after subacute intraperitoneally injection of Lavandula stoechas essential oils (50mg/kg b.w., i.p.) to rats during 15 days. Results The principal compounds detected are: D-Fenchone (29.28%), ?-pinene (23.18%), Camphor (15.97%), Camphene (7.83%), Eucapur (3.29%), Limonene, (2.71%) Linalool, (2.01%) Endobornyl Acetate (1.03%). The essential oils also contained smaller percentages of Tricyclene, Cymene, Delta-Cadinene, Selina-3,7(11)-diene. Furthermore, we found that Lavandula stoechas essential oils significantly protected against the increase of blood glucose as well as the decrease of antioxidant enzyme activities induced by aloxan treatment. Subacute essential oils treatment induced a decrease of lipoperoxidation as well as an increase of antioxidant enzyme activities. Conclusions These findings suggested that lavandula stoechas essential oils protected against diabetes and oxidative stress induced by alloxan treatment. These effects are in partly due to its potent antioxidant properties. PMID:24373672

  2. Antihyperlipidemic effects of ginger extracts in alloxan-induced diabetes and propylthiouracil-induced hypothyroidism in (rats)

    PubMed Central

    Al-Noory, Ahmad Sameer; Amreen, Abdul-Nasser; Hymoor, Shatha

    2013-01-01

    Background: Diabetic mellitus and hypothyroidism lead to serum lipoproteins disorders. This study aims to investigate the potential effect of fresh ginger extracts Zingiber officinale roscoe (Family: Zingebiraceae) on serum lipid profile and on blood glucose in alloxan-induced diabetes and propylthiouracil-induced hypothyroidism in rats. Rats were divided into 11 groups: The normal G1, diabetic control rats G2, ginger 500 mg/kg treated diabetic rats G3, 10 mg/day atorvastatine-treated diabetic rats G4, [5 mg/day atorvastatine combined with 500 mg/kg ginger] treated diabetic rats G5, glibenclamid-treated diabetic rats G6, hypothyoidism control rats G7, 300 mg/kg ginger-treated hypothyroidism rats G8, 500 mg/kg ginger-treated hypothyroidism rats G9, 10 mg/day atorvastatine-treated hypothyroidism rats G10, [atorvastatine combined with 500 mg/kg ginger]treated hypothyroidism rats G11. Thirty days after treatment, samples were collected, to compare treated groups with normal and control groups, using Mann-Whitney U test P < 0.01. Results: It revealed a decrease in the levels of total cholesterol (TC), and low density lipoprotein (LDL) in the serum of rats that were treated by ginger extracts, compared with the control groups. Previous extracts were also able to cause reduction in LDL to similar levels compared to normal group and that was the same effect of atorvastatin 10 mg/day. Combined effect was clear between the act of ginger at a dose of 500 mg/kg and atorvastatin; that levels of both TC and LDL in animals which received [atorvastatin 5 mg/day combined with ginger extract] was almost equal to levels in animals that received atorvastatin 10mg/day. Clear reduce in triglyceride, and clear increase in high density liopprotein were also recorded in the ginger-treated groups. Ginger was more active in hypothyroidism rats than in diabetic rats in reducing LDL and TC. Glucose levels were substantially reduced in ginger- treated diabetic groups. PMID:23901210

  3. Biochemical Evaluation of the Hypoglycemic Effects of Extract and Fraction of Cassia fistula Linn. in Alloxan-induced Diabetic Rats

    PubMed Central

    Jarald, E. E.; Joshi, S. B.; Jain, D. C.; Edwin, S.

    2013-01-01

    Various extracts of flowers of Cassia fistula Linn (Leguminosae) such as petroleum ether (60-80), chloroform, acetone, ethanol, aqueous, and crude aqueous extracts and two fractions of ethanol extract were tested for antihyperglycemic activity in glucose-overloaded hyperglycemic rats. The effective antihyperglycemic extracts and fraction were tested for their hypoglycemic activity at two dose levels, 200 and 400 mg/kg, respectively. To confirm their utility in higher models, the effective extracts and fraction of C. fistula were subjected to antidiabetic study in an alloxan-induced diabetic model at two dose levels, 200 and 400 mg/kg, respectively. Biochemical parameters like glucose, urea, creatinine, serum cholesterol, serum triglyceride, high-density lipoprotein, low-density lipoprotein, hemoglobin, and glycosylated hemoglobin were also assessed in experimental animals. The petroleum ether and ethanol extracts of C. fistula and the water-soluble fraction of ethanol extract were found to exhibit significant antihyperglycemic activity. The extracts, at the given doses, did not produce hypoglycemia in fasted normal rats, and the fraction exhibited weak hypoglycemic effect after 2 h of the treatment. Treatment of diabetic rats with ethanol extract and water-soluble fraction of this plant restored the elevated biochemical parameters significantly (P<0.05) to the normal level. No activity was found in the petroleum ether extract of the plant. Comparatively, the water-soluble fraction of ethanol extract was found to be more effective than the ethanol extract, and the activity was comparable with that of the standard, glibenclamide (5 mg/kg). PMID:24302797

  4. Evaluation of the Antidiabetic and Antilipaemic Activities of the Hydroalcoholic Extract of Phoenix Dactylifera Palm Leaves and Its Fractions in Alloxan-Induced Diabetic Rats

    PubMed Central

    Mard, Seyyed Ali; Jalalvand, Kowthar; Jafarinejad, Masoumeh; Balochi, Hoda; Naseri, Mohammad Kazem Gharib

    2010-01-01

    Background: The antidiabetic and antilipaemic effects of Phoenix dactylifera leaf extract (PDE) and its fractions were investigated in various rat models. Methods: Diabetes was induced in male Wistar rats by alloxan monohydrate. Diabetic animals were randomly divided into 8 groups (1 diabetic control and 7 treated groups). Diabetic control animals received saline (5 mL/kg) orally, whereas the treatment groups received different doses of PDE (100, 200, and 400 mg/kg), PDE fractions (50, 100, and 200 mg/kg), or glibenclamide (4 mg/kg) orally once a day for 14 days. Blood was withdrawn for glucose determination on the 1st, 6th, 10th, and 14th days. The rats were fasted overnight and then sacrificed on the 14th day; blood was collected for biochemical evaluation, including the levels of blood glucose, plasma insulin, serum triglyceride, and cholesterol. Results: Subacute administration of PDE or its fractions in alloxan-induced diabetic rats significantly reduced blood glucose (P < 0.01). Water intake, serum triglyceride, and cholesterol also decreased in treated animals compared with the control group (P < 0.01). Plasma insulin level increased in the treated groups relative to the control group (P < 0.01). Conclusion: The results suggested that PDE exhibits antidiabetic and antilipaemic effects in alloxan-induced diabetic rats. PMID:22135555

  5. In vitro alpha-amylase inhibition and in vivo antioxidant potential of Amaranthus spinosus in alloxan-induced oxidative stress in diabetic rats

    PubMed Central

    Ashok Kumar, B.S.; Lakshman, K.; Nandeesh, R.; Arun Kumar, P.A.; Manoj, B.; Kumar, Vinod; Sheshadri Shekar, D.

    2010-01-01

    Amaranthus spinosus Linn. (Amaranthaceae), commonly known as Mulluharivesoppu in Kannada, is used in the Indian traditional system of medicine for the treatment of diabetes. The present study deals with the scientific evaluation of alpha amylase and the antioxidant potential of methanol extract of A. spinosus (MEAS). The aim of this study was to investigate in vitro alpha-amylase enzyme inhibition by CNPG3 (2-chloro-4-nitrophenol ?-d-maltotrioside) and in vivo antioxidant potential of malondialdehyde (MDA), glutathione (GSH), catalase (CAT) and total thiols (TT) in alloxan-induced diabetic rats of a methanolic extract of A. spinosus. Blood sugar was also determined in MEAS-treated alloxan-induced diabetic rats. MEAS showed significant inhibition of alpha-amylase activity and IC50 46.02?g/ml. Oral administration of MEAS (200 and 400mg/kg) for 15days showed significant reduction in the elevated blood glucose, MDA and restores GSH, CAT and TT levels as compared with a diabetic control. The present study provides evidence that the methanolic extract of A. spinosus has potent alpha amylase, anti-diabetic and antioxidant activities. PMID:23961097

  6. Healing of excisional wound in alloxan induced diabetic sheep: A planimetric and histopathologic study

    PubMed Central

    Kazemi-Darabadi, Siamak; Sarrafzadeh-Rezaei, Farshid; Farshid, Amir-Abbas; Baradar-Jalili, Reza

    2013-01-01

    Healing of skin wound is a multi-factorial and complex process. Proper treatment of diabetic wounds is still a major clinical challenge. Although diabetes mellitus can occur in ruminants, healing of wounds in diabetic ruminants has not yet been investigated. The aim of this study was to evaluate healing of ovine excisional diabetic wound model. Eight 4-month-old Iranian Makoui wethers were equally divided to diabetic and nondiabetic groups. Alloxan monohydrate (60 mg kg-1, IV) was used for diabetes induction. In each wether, an excisional wound was created on the dorsum of the animal. Photographs were taken in distinct times for planimetric evaluation. Wound samples were taken on day 21 post-wounding for histopathologic evaluations of epidermal thickness, number of fibroblasts and number of new blood vessels. The planimetric study showed slightly delay in wound closure of diabetic animals, however, it was not significantly different from nondiabetic wounds (p ≥ 0.05). Furthermore, epidermal thickness, number of fibroblasts and number of blood vessels were significantly lower in diabetic group (p < 0.05). We concluded that healing of excisional diabetic wounds in sheep may be compromised, as seen in other species. However, contraction rate of these wounds may not be delayed due to metabolic features of ruminants and these animals might go under surgeries without any serious concern. However, healing quality of these wounds may be lower than normal wounds. PMID:25653789

  7. Coconut kernel-derived proteins enhance hypolipidemic and antioxidant activity in alloxan-induced diabetic rats.

    PubMed

    Salil, Gopalakrishnan; Nevin, Kottayath Govindan; Rajamohan, Thankappan

    2013-05-01

    Impaired lipid levels and oxidative stress are indicative of malfunction of endogenous antioxidant capacity. The aim of this study was to determine the effect of coconut kernel protein (CKP) on the lipid peroxides and antioxidant enzyme activities in diabetic rats. Diabetes was induced prior to feeding by injecting a single dose of alloxan (150mg/kg body weight) intraperitoneally. CKP (8% w/w) was administered to these rats along with a semi-synthetic diet for 45 days. After the experimental period, peroxide products and antioxidant enzyme activities were determined. Results show that CKP maintained the antioxidant enzyme activities and levels of peroxides to the normal levels in treated group compared to diabetic rats. This study clearly show that CKP has potential effect in lowering oxidative stress associated with diabetes. This beneficial effect of CKP may be due to the high amount of biologically potent arginine present in it. PMID:23113582

  8. Histopathological abnormalities of prolonged alloxan-induced diabetes mellitus in rabbits

    PubMed Central

    Mir, Sajad Hussain; Darzi, Mohd Maqbool

    2009-01-01

    The objective of this study was to investigate the prolonged complications of untreated diabetes on histomorphology of rabbits. Diabetes mellitus was experimentally induced in one group of New Zealand white male rabbits by intraperitoneal administration of four doses of alloxan @ 80 mg/kg b.w. at weekly intervals following 12 h fasting. Other group of rabbits served as healthy controls that received isotonic saline in a similar manner. The establishment of diabetes mellitus was confirmed by fasting blood glucose levels. For histomorphological study of different organs, 50% of the animals were killed after 7 weeks and the rest after 26 weeks. Routine haematoxylin and eosin stain and Gomori's modified stain were used. The blood glucose level of diabetic rabbits increased significantly throughout the experimental period. The peak values for blood sugar were on the sixth week of the study. Further, histomorphological alterations were recorded in pancreas, kidneys, lungs, heart and brain in diabetic rabbits. However, mild changes were observed in gastrointestinal tract with proliferation of yeasts in the stomach. With the progress of untreated diabetes, the histoanatomical alterations intensify and extend to almost all organs of the body and appear to increase the susceptibility of gastric mucosa to yeast cell proliferation. PMID:19200253

  9. Alloxan-Induced Diabetes Causes Morphological and Ultrastructural Changes in Rat Liver that Resemble the Natural History of Chronic Fatty Liver Disease in Humans

    PubMed Central

    Cassettari, Lucas Langoni; Spadella, César Tadeu

    2015-01-01

    Purpose. This study evaluated the long-term effects of alloxan-induced diabetes in rat liver. Methods. Thirty nondiabetic control rats (NC) and 30 untreated diabetic (UD) rats were divided into three subgroups sacrificed after 6, 14, or 26 weeks. Clinical and laboratory parameters were assessed. Fresh liver weight and its relationship with body weight were obtained, and liver tissue was analyzed. Results. UD rats showed sustained hyperglycemia, high glycosylated hemoglobin, and low plasma insulin. High serum levels of AST and ALT were observed in UD rats after 2 weeks, but only ALT remained elevated throughout the experiment. Fresh liver weight was equal between NC and UD rats, but the fresh liver weight/body weight ratio was significantly higher in UD rats after 14 and 26 weeks. UD rats showed liver morphological changes characterized by hepatic sinusoidal enlargement and micro- and macrovesicular hepatocyte fatty degeneration with progressive liver structure loss, steatohepatitis, and periportal fibrosis. Ultrastructural changes of hepatocytes, such as a decrease in the number of intracytoplasmic organelles and degeneration of mitochondria, rough endoplasmic reticulum, and nuclei, were also observed. Conclusion. Alloxan-induced diabetes triggered liver morphological and ultrastructural changes that closely resembled human disease, ranging from steatosis to steatohepatitis and liver fibrosis. PMID:25789328

  10. Hypoglycemic and antilipidemic properties of kombucha tea in alloxan-induced diabetic rats

    PubMed Central

    2012-01-01

    Background Diabetes has become a serious health problem and a major risk factor associated with troublesome health complications, such as metabolism disorders and liver-kidney dysfunctions. The inadequacies associated with conventional medicines have led to a determined search for alternative natural therapeutic agents. The present study aimed to investigate and compare the hypoglycemic and antilipidemic effects of kombucha and black tea, two natural drinks commonly consumed around the world, in surviving diabetic rats. Methods Alloxan diabetic rats were orally supplied with kombucha and black tea at a dose of 5 mL/kg body weight per day for 30 days, fasted overnight, and sacrificed on the 31st day of the experiment. Their bloods were collected and submitted to various biochemical measurements, including blood glucose, cholesterol, triglcerides, urea, creatinine, transaminases, transpeptidase, lipase, and amylase activities. Their pancreases were isolated and processed to measure lipase and ?-amylase activities and to perform histological analysis. Results The findings revealed that, compared to black tea, kombucha tea was a better inhibitor of ?-amylase and lipase activities in the plasma and pancreas and a better suppressor of increased blood glucose levels. Interestingly, kombucha was noted to induce a marked delay in the absorption of LDL-cholesterol and triglycerides and a significant increase in HDL-cholesterol. Histological analyses also showed that it exerted an ameliorative action on the pancreases and efficiently protected the liver-kidney functions of diabetic rats, evidenced by significant decreases in aspartate transaminase, alanine transaminase, and gamma-glytamyl transpeptidase activities in the plasma, as well as in the creatinine and urea contents. Conclusions The findings revealed that kombucha tea administration induced attractive curative effects on diabetic rats, particularly in terms of liver-kidney functions. Kombucha tea can, therefore, be considered as a potential strong candidate for future application as a functional supplement for the treatment and prevention of diabetes. PMID:22591682

  11. Hypoglycemic activity of Nymphaea stellata leaves ethanolic extract in alloxan induced diabetic rats.

    PubMed

    Dhanabal, S P; Raja, M K Mohan Maruga; Ramanathan, M; Suresh, B

    2007-06-01

    The ethanolic extract of leaves of Nymphaea stellata given by oral route to diabetic rats at dose of 100 and 200 mg/kg/day for seven days reduced significantly by 31.6 and 42.6 % the plasma glucose level increased by intraperitoneal injection of 120 mg/day of alloxan. Moreover, the treatment significantly affected the plasma level of cholesterol and triglyceride. PMID:17498889

  12. Effect of 50% Hydro-Ethanolic Leaf Extracts of Ruellia Tuberosa L. and Dipteracanthus Patulus (Jacq.) on Lipid Profile in Alloxan Induced Diabetic Rats

    PubMed Central

    Ananthakrishnan, Manikandan; Doss, Victor Arokia

    2013-01-01

    Background: The study was undertaken to investigate the effect of 50% hydro -ethanolic leaf extracts of Ruellia tuberosa L. and Dipteracanthus patulus (Jacq.) on lipid profile in alloxan induced diabetic rats. Method: In lipid profile the parameters studied were serum total cholesterol, phospholipids, triglycerides, HDL-c, LDL-c and VLDL-c level. Extracts were orally administered daily for 30 days at a dosage of 250 and 500 mg/kg bodyweight to alloxan induced diabetic rats. Results: The levels of phospholipids, triglycerides, LDL-c and VLDL-c were significantly (P < 0.05) reduced. The HDL-c level was found to be increased in the treatment groups. Total cholesterol level was found to be significantly (P < 0.05) decreased at 500 mg/kg bodyweight of both the plant extracts treated groups. Conclusion: The results further suggests that the effect of plant extract treated groups was found to be lower in reducing the lipid levels in serum when compared to the drug (Glibenclamide 600 ?g/kg body weight) treated group. PMID:24049591

  13. Antihyperglycemic activity of Tectona grandis Linn. bark extract on alloxan induced diabetes in rats.

    PubMed

    Varma, S B; Jaybhaye, D L

    2010-07-01

    Tectona Grandis Linn.(saag - tick wood), an indigenous medicinal plant, has a folk reputation among the Indian herbs as a hypoglycemic agent. The present study was carried out to evaluate the anti-hyperglycemic effect of T. grandis Linn. bark extract in control and alloxan-diabetic rats. Oral administration of the bark suspension of T. grandis (2.5 and 5 g/kg body wt.) for 30 days resulted in a significant reduction in blood glucose (from 250 ± 6.5 to 50 ± 2.5 mg/dL). Thus, the present study clearly shows that the T. grandis Linn. bark extract exerts anti-hyperglycemic activity. PMID:21170208

  14. Antihyperglycemic activity of Tectona grandis Linn. bark extract on alloxan induced diabetes in rats

    PubMed Central

    Varma, S. B.; Jaybhaye, D. L.

    2010-01-01

    Tectona Grandis Linn.(saag - tick wood), an indigenous medicinal plant, has a folk reputation among the Indian herbs as a hypoglycemic agent. The present study was carried out to evaluate the anti-hyperglycemic effect of T. grandis Linn. bark extract in control and alloxan-diabetic rats. Oral administration of the bark suspension of T. grandis (2.5 and 5 g/kg body wt.) for 30 days resulted in a significant reduction in blood glucose (from 250 ± 6.5 to 50 ± 2.5 mg/dL). Thus, the present study clearly shows that the T. grandis Linn. bark extract exerts anti-hyperglycemic activity. PMID:21170208

  15. Effect of deoxycorticosterone acetate-salt-induced hypertension on diabetic peripheral neuropathy in alloxan-induced diabetic WBN/Kob rats

    PubMed Central

    Ozaki, Kiyokazu; Hamano, Hiroko; Matsuura, Tetsuro; Narama, Isao

    2015-01-01

    The relationship between hypertension and diabetic peripheral neuropathy (DPN) has recently been reported in clinical research, but it remains unclear whether hypertension is a risk factor for DPN. To investigate the effects of hypertension on DPN, we analyzed morphological features of peripheral nerves in diabetic rats with hypertension. Male WBN/Kob rats were divided into 2 groups: alloxan-induced diabetic rats with deoxycorticosterone acetate-salt (DOCA-salt) treatment (ADN group) and nondiabetic rats with DOCA-salt treatment (DN group). Sciatic, tibial (motor) and sural (sensory) nerves were subjected to qualitative and quantitative histomorphological analysis. Systolic blood pressure in the two groups exhibited a higher value (>140 mmHg), but there was no significant difference between the two groups. Endoneurial blood vessels in both groups presented endothelial hypertrophy and narrowing of the vascular lumen. Electron microscopically, duplication of basal lamina surrounding the endothelium and pericyte of the endoneurial vessels was observed, and this lesion appeared to be more frequent and severe in the ADN group than the DN group. Many nerve fibers of the ADN and DN groups showed an almost normal appearance, whereas morphometrical analysis of the tibial nerve showed a significant shift to smaller fiber and myelin sizes in the ADN group compared with DN group. In sural nerve, the fiber and axon-size significantly shifted to a smaller size in ADN group compared with the DN group. These results suggest that combined diabetes and hypertension could induce mild peripheral nerve lesions with vascular changes. PMID:26989296

  16. Hydro-alcoholic extract of the root of Prangos ferulacea (L.) Lindl can improve serum glucose and lipids in alloxan-induced diabetic rats

    PubMed Central

    Kafash Farkhad, Najme; Farokhi, Farah; Tukmacki, Amir; Soltani band, Khosro

    2012-01-01

    Objectives: Diabetes mellitus manifests itself in a wide variety of complications and the symptoms of this disease are multifactorial. Previous studies proved that this disease is directly related to hyperglycemia and hyperlipidemia. The aim of this study was to investigate the hypoglycemic and hypolipidemic effects of hydroalcoholic extract of Prangos frulacea (L.) Lindl in alloxan-induced diabetic rats. Materials and Methods: Forty female Wistar rats with body weight of 200±20 g were randomly divided into five groups with eight rats per group. Diabetes was induced in rats by alloxan monohydrate at dose of 120 mg/kg body weight (BW) injected intraperitoneally. Hydro-alcoholic extract of the root and leaves with stems of P. frulacea at 100 mg/kg BW were given orally to diabetic rats daily for 4 weeks. Result: Diabetic rats (D) exhibited a significant (p<0.05) increase in the levels of the serum glucose, Total Cholesterol (TC), Triglycerides (TG), and LDL in comparison with the control group whereas their BW and serum HDL levels were decreased. In diabetic rats treated by root extract of P. frulacea, these parameters were reversed to the normal levels compared with diabetic group. Conclusion: According to the results obtained, it was concluded that Root´s hydro-alcoholic extract of P. frulacea can be used in diabetics for the purpose of glucose and lipid profile reduction. PMID:25050248

  17. Study of Antiglycation, Hypoglycemic, and Nephroprotective Activities of the Green Dwarf Variety Coconut Water (Cocos nucifera L.) in Alloxan-Induced Diabetic Rats.

    PubMed

    Pinto, Isabella F D; Silva, Railmara P; Chaves Filho, Adriano de B; Dantas, Lucas S; Bispo, Vanderson S; Matos, Isaac A; Otsuka, Felipe A M; Santos, Aline C; Matos, Humberto Reis

    2015-07-01

    Coconut water (CW) is a natural nutritious beverage, which contains several biologically active compounds that are traditionally used in the treatment of diarrhea and rehydration. Several works with CW have been related with antioxidant activity, which is very important in the diabetic state. To evaluate the hypoglycemic and nephroprotective activities of CW, alloxan-induced diabetic rats were pre- and post-treated by gavage with CW (3?mL/kg), caffeic acid (CA) (10 and 15?mg/kg), and acarbose (Acb) (714 ?g/kg) during a period of 16 days. Body weight, blood glucose, glycated hemoglobin (HbA1c), and Amadori products in plasma and kidney homogenates were evaluated in all groups and used as parameters for the monitoring of the diabetic state. The results showed that rats of the CW+diabetic group had maintenance in blood glucose compared with the control group (P<.05) in addition to a decrease of HbA1c levels and increase of body weight when compared with the diabetic group rats (P<.05). The animals of the CA and CA+diabetic groups did not have significant variation of body weight (P<.05) during the experiment; however, they showed decrease in their HbA1c and urea levels in plasma as well as Amadori products in kidney homogenates when compared with the diabetic group (P<.05). Our results indicate that CW has multiple beneficial effects in diabetic rats for preventing hyperglycemia and oxidative stress caused by alloxan. PMID:25651375

  18. Effect of aqueous extracts of alligator pear seed (Persea americana mill) on blood glucose and histopathology of pancreas in alloxan-induced diabetic rats.

    PubMed

    Edem, Do; Ekanem, Is; Ebong, Pe

    2009-07-01

    Effects of aqueous extract of alligator pear seed on normal and alloxan-induced diabetic rats were investigated in 6 groups of rats (5 rats per group). Test groups were made diabetic with intra-peritoneal injection of alloxan and treated with 300 mg and 600 mg/kg body weight of alligator pear seed extract. Two non-diabetic groups were also administered with 300 mg and 600 mg/kg body weight extract. The levels of blood glucose were examined in all 6 experimental groups. In diabetic rats, blood glucose levels were significantly reduced (p<0.05) by 73.26-78.24% on consumption of the extracts, with greater effect exhibited by the 600 mg/kg extract. In normal rats, blood glucose levels were significantly reduced (p<0.05) by 34.68-38.9% on consumption of the seed extract. Histological studies showed a degenerative effect on the pancreatic islet cells of diabetic rats. The result suggested restorative (protective) effect of the extract on pancreatic islet cells. Administration of aqueous extract of alligator pear seed may contribute significantly to the reduction of blood glucose levels and can be useful in the treatment of diabetes. PMID:19553173

  19. Long-term effects of insulin therapy, islet transplantation, and pancreas transplantation in the prevention of glomerular changes in kidneys of alloxan-induced diabetic rats.

    PubMed

    Spadella, C T; Lerco, M M; Machado, J L M; Macedo, C S

    2005-10-01

    Groups of inbred alloxan-induced diabetic rats were treated with insulin (I), islets (IT), or pancreas transplantation (PT). Nondiabetic (N) and untreated diabetic (D) control groups were concurrently included. Each group was divided into five subgroups of 10 rats and killed after follow-up of 1, 3, 6, 9, and 12 months. Clinical and laboratory parameters were recorded, and kidney ultrastructural and morphometric analyses performed in each 12-month subgroup, namely glomerular basement membrane (GM) thickening, podocyte number, and number/extension of slit diaphragms (S). Rats from the I group showed poor metabolic control of diabetes compared with N group control rats. However, successfully transplanted rats (IT and PT) had complete restoration to normal levels for all metabolic parameters. GM thickening was significantly higher in diabetic compared with control rats. In contrast, the numbers of podocytes and slits as well as slit extensions were significantly decreased. Insulin therapy did not prevent any alterations upon comparison of diabetic vs control rats. Despite good metabolic control in IT rats, the degree of kidney lesion control never compared with that achieved in PT rats. In this group all glomerular changes were similar to the age-dependent lesions observed in control rats. We conclude that either IT or PT may be a good option for diabetes treatment, although pancreas transplantation seems to be the most effective treatment to control chronic complications. PMID:16298631

  20. Investigation of the Protective Effects of Taurine against Alloxan-Induced Diabetic Retinal Changes via Electroretinogram and Retinal Histology with New Zealand White Rabbits

    PubMed Central

    Yeh, Shang-Min; Chen, Yi-Chen; Lin, Shiun-Long

    2014-01-01

    The purpose of this study was to investigate the protective role of orally administered taurine against diabetic retinal changes via electroretinogram (ERG) and retinal histology on rabbits. Rabbits were randomly assigned into groups: Group I (vehicle administration only); Group II (diabetes: induced by 100 mg/kg alloxan injection); Group III (diabetes and fed with 200 mg/kg taurine); and Group IV (diabetes and fed with 400 mg/kg taurine). The body weight and blood glucose levels of the rabbits were monitored weekly. The ERG was measured on weeks 5 and 15. Retinal histology was analyzed in the end of the experiment. Results revealed that a taurine supplement significantly ameliorates the alloxan-induced hyperglycemia and protects the retina from electrophysiological changes. Group II showed a significant (P < 0.05) change in the mean scotopic b-wave amplitude when compared to that of Group I, whereas the diabetic rabbits treated with taurine (Group III and IV) were analogous to Group I. Histologically, the amount of Bipolar and Müller cells showed no difference (P > 0.05) between all groups and when compared with those of Group I. Our study provides solid evidences that taurine possesses an antidiabetic activity, reduced loss of body weight, and less electrophysiological changes of the diabetic retina. PMID:25298779

  1. Moringa oleifera leaf extract ameliorates alloxan-induced diabetes in rats by regeneration of ? cells and reduction of pyruvate carboxylase expression.

    PubMed

    Abd El Latif, Amira; El Bialy, Badr El Said; Mahboub, Hamada Dahi; Abd Eldaim, Mabrouk Attia

    2014-10-01

    Moringa oleifera Lam. contains many active ingredients with nutritional and medicinal values. It is commonly used in folk medicine as an antidiabetic agent. The present study was designed to investigate how an aqueous extract from the leaves of M. oleifera reveals hypoglycemia in diabetic rats. M. oleifera leaf extract counteracted the alloxan-induced diabetic effects in rats as it normalized the elevated serum levels of glucose, triglycerides, cholesterol, and malondialdehyde, and normalized mRNA expression of the gluconeogenic enzyme pyruvate carboxylase in hepatic tissues. It also increased live body weight gain and normalized the reduced mRNA expression of fatty acid synthase in the liver of diabetic rats. Moreover, it restored the normal histological structure of the liver and pancreas damaged by alloxan in diabetic rats. This study revealed that the aqueous extract of M. oleifera leaves possesses potent hypoglycemic effects through the normalization of elevated hepatic pyruvate carboxylase enzyme and regeneration of damaged hepatocytes and pancreatic ? cells via its antioxidant properties. PMID:25289966

  2. Antidiabetic activity of medium-polar extract from the leaves of Stevia rebaudiana Bert. (Bertoni) on alloxan-induced diabetic rats

    PubMed Central

    Misra, Himanshu; Soni, Manish; Silawat, Narendra; Mehta, Darshana; Mehta, B. K.; Jain, D. C.

    2011-01-01

    Objective: To investigate the medicative effects of medium-polar (benzene:acetone, 1:1, v/v) extract of leaves from Stevia rebaudiana (family Asteraceae) on alloxan-induced diabetic rats. Materials and Methods: Diabetes was induced in adult albino Wistar rats by intraperitoneal (i.p.) injection of alloxan (180 mg/kg). Medium-polar extract was administered orally at daily dose of 200 and 400 mg/kg body wt. basis for 10 days. The control group received normal saline (0.9%) for the same duration. Glibenclamide was used as positive control reference drug against Stevia extract. Results: Medium-polar leaf extract of S. rebaudiana (200 and 400 mg/kg) produced a delayed but significant (P < 0.01) decrease in the blood glucose level, without producing condition of hypoglycemia after treatment, together with lesser loss in the body weight as compared with standard positive control drug glibenclamide. Conclusions: Treatment of diabetes with sulfonylurea drugs (glibenclamide) causes hypoglycemia followed by greater reduction in body weight, which are the most worrisome effects of these drugs. Stevia extract was found to antagonize the necrotic action of alloxan and thus had a re-vitalizing effect on ?-cells of pancreas. PMID:21687353

  3. Self-nanoemulsifying drug delivery system of trans-cinnamic acid: formulation development and pharmacodynamic evaluation in alloxan-induced type 2 diabetic rat model.

    PubMed

    Wang, Houyong; Li, Qiang; Deng, Wenwen; Omari-Siaw, E; Wang, Qilong; Wang, Shicheng; Wang, Shengli; Cao, Xia; Xu, Ximing; Yu, Jiangnan

    2015-03-01

    The objective of this study was to formulate a self-nanoemulsifying oral drug delivery system (SNEDDS) for the poorly water-soluble trans-Cinnamic acid (t-CA SNEDDS) that could be evaluated for its antihyperglycemic efficacy in comparison to the parent t-CA in an alloxan-induced diabetic rat model. A SNEDDS formulation consisting of 60% surfactant (Kolliphor EL), 10% co-surfactant (PEG 400) and 30% oil (isopropyl myristate) proved to be optimal. t-CA SNEDDS (80?mg/kg, p.o.), t-CA suspension (80?mg/kg, p.o.), and Metformin Hydrochloride Tablets (230?mg/kg, p.o.) were administer qdfor 30 days to diabetic rats. After treatment the body weight of diabetic rats was increased, blood glucose levels, total cholesterol, and triglyceride in the serum tended to be normalized, while the levels of alanine aminotransferase and aspartate aminotransferase were markedly decreased. The effects of t-CA SNEDDS were superior to that of the t-CA suspension. The present study demonstrated that t-CA was effective in attenuating the effects of alloxan treatment and that t-CA SNEDDS with a more favorable absorption and enhanced bioavailability is more effective than t-CA. PMID:25847843

  4. Anion Gap Toxicity in Alloxan Induced Type 2 Diabetic Rats Treated with Antidiabetic Noncytotoxic Bioactive Compounds of Ethanolic Extract of Moringa oleifera

    PubMed Central

    2014-01-01

    Moringa oleifera (MO) is used for a number of therapeutic purposes. This raises the question of safety and possible toxicity. The objective of the study was to ascertain the safety and possible metabolic toxicity in comparison with metformin, a known drug associated with acidosis. Animals confirmed with diabetes were grouped into 2 groups. The control group only received oral dose of PBS while the test group was treated with ethanolic extract of MO orally twice daily for 5-6 days. Data showed that the extract significantly lowered glucose level to normal values and did not cause any significant cytotoxicity compared to the control group (P = 0.0698); there was no gain in weight between the MO treated and the control groups (P > 0.8115). However, data showed that treatment with an ethanolic extract of MO caused a decrease in bicarbonate (P < 0.0001), and more than twofold increase in anion gap (P < 0.0001); metformin treatment also decreased bicarbonate (P < 0.0001) and resulted in a threefold increase in anion gap (P < 0.0001). Conclusively, these data show that while MO appears to have antidiabetic and noncytotoxic properties, it is associated with statistically significant anion gap acidosis in alloxan induced type 2 diabetic rats. PMID:25548560

  5. Anti-diabetic properties of flavonoid compounds isolated from Hyphaene thebaica epicarp on alloxan induced diabetic rats

    PubMed Central

    Salib, Josline Y.; Michael, Helana N.; Eskande, Emad Fawzy

    2013-01-01

    Background: Diabetes mellitus, becoming the third killer of mankind after cancer and cardiovascular diseases, is one of the most challenging diseases facing health care professionals today. That is why; there has been a growing interest in the therapeutic use of natural products for diabetes, especially those derived from plants. Aim: To evaluate the anti-diabetic activity together with the accompanying biological effects of the fractions and the new natural compounds of Hyphaene thebaica (HT) epicarp. Materials and Methods: 500 g of coarsely powdered of (HT) fruits epicarp were extracted by acetone. The acetone crude extract was fractionated with methanol and ethyl acetate leaving a residual water-soluble fraction WF. The anti-diabetic effects of the WF and one of its compounds of the acetone extract of the (HT) epicarp were investigated in this study using 40 adult male rats. Results: Phytochemical investigation of active WF revealed the presence of ten different flavonoids, among which two new natural compounds luteolin 7-O-[6-O-?-Lrhamnopyranosyl]-?-D-galactopyranoside 3 and chrysoeriol 7-O-?-D-galactopyranosyl(1?2)-?-L-arabinofuranoside 5 were isolated. Supplementation of the WF improved glucose and insulin tolerance and significantly lowered blood glycosylated hemoglobin levels. On the other hand, compound 5 significantly reduced AST and ALT levels of liver, respectively. Likewise, the kidney functions were improved for both WF and compound 5, whereby both urea and creatinine levels in serum were highly significant Conclusion: The results justify the use of WF and compound 5 of the (HT) epicarp as anti-diabetic agent, taking into consideration that the contents of WF were mainly flavonoids PMID:23598921

  6. Renoprotective Effects, Protein Thiols and Liver Glycogen Content of Alloxan-induced Diabetic Rats Treated with Different Fractions of Heartwood of Pterocarpus marsupium.

    PubMed

    Bhata, Vinutha; Nayak, B Shivananda

    2015-11-01

    Oxidative stress is believed to be a pathogenic factor in the development of diabetic complications. In the present study, we aimed to evaluate the effects of different fractions of heart wood of Pterocarpus marsupium on antioxidant enzyme like protein thiols and also check the efficacy of the extract for the protection of the renal function in alloxan induced diabetic rats. The present study also investigates the levels of liver glycogen which are considered as the best biomarker for assaying the hypoglycemic activity of any drug. Diabetes was induced by administering alloxan dissolved in saline, while the normal control group was given propylene glycol. Diabetes induced animals were randomly assigned into different groups. Blood samples were collected from all the experimental and control groups. Estimation of urea, uric acid and creatinine along with protein thiols was made on day 30 only. At the end, all the animals were sacrificed to collect liver tissue to analyze glycogen content. The 30 days treatment with various extracts (75 mg/kg body wt) significantly lowered protein thiol levels, which probably represents increased utilization for neutralizing free radicals. There was no significant increase in the levels of renal parameters in the extract treated groups which revealed that the employed dose of the extract is nontoxic to the kidney. There was also a significant decrease in the glycogen content in insulin and alcohol-extract treated groups and should be encouraging for the treatment of diabetes mellitus. The extract showed a promising antioxidant effect, as well as hypoglycemic activity, and should be encouraged for the treatment of diabetes. PMID:26749811

  7. Comparative Effects of Some Medicinal Plants: Anacardium occidentale, Eucalyptus globulus, Psidium guajava, and Xylopia aethiopica Extracts in Alloxan-Induced Diabetic Male Wistar Albino Rats

    PubMed Central

    Okpashi, Victor Eshu; Bayim, Bayim Peter-Robins; Obi-Abang, Margaret

    2014-01-01

    Insulin therapy and oral antidiabetic agents/drugs used in the treatment of diabetes mellitus have not sufficiently proven to control hyperlipidemia, which is commonly associated with the diabetes mellitus. Again the hopes that traditional medicine and natural plants seem to trigger researchers in this area is yet to be discovered. This research was designed to compare the biochemical effects of some medicinal plants in alloxan-induced diabetic male Wistar rats using named plants that are best at lowering blood glucose and hyperlipidemia and ameliorating other complications of diabetes mellitus by methods of combined therapy. The results obtained showed 82% decrease in blood glucose concentration after the 10th hour to the fortieth hour. There was significant increase P < 0.05 in the superoxide dismutase activity of the test group administered 100 mg/kg of A. Occidentale. There was no significant difference P > 0.05 recorded in the glutathione peroxidase activity of E. globulus (100 mg/kg) when compared to the test groups of P. guajava (250 mg/kg) and X. aethiopica (250 mg/kg). Catalase activity showed significant increase P < 0.05 in the catalase activity, compared to test groups. While at P > 0.05, there was no significant difference seen between test group and treated groups. Meanwhile, degree of significance was observed in other parameters analysed. The biochemical analysis conducted in this study showed positive result, attesting to facts from previous works. Though these individual plants extracts exhibited significant increase in amelorating diabetes complication and blood glucose control compared to glibenclamide, a synthetic antidiabetic drug. Greater performance was observed in the synergy groups. Therefore, a poly/combined formulation of these plants extracts yielded significant result as well as resolving some other complications associated with diabetics. PMID:25525518

  8. Comparative Effects of Some Medicinal Plants: Anacardium occidentale, Eucalyptus globulus, Psidium guajava, and Xylopia aethiopica Extracts in Alloxan-Induced Diabetic Male Wistar Albino Rats.

    PubMed

    Okpashi, Victor Eshu; Bayim, Bayim Peter-Robins; Obi-Abang, Margaret

    2014-01-01

    Insulin therapy and oral antidiabetic agents/drugs used in the treatment of diabetes mellitus have not sufficiently proven to control hyperlipidemia, which is commonly associated with the diabetes mellitus. Again the hopes that traditional medicine and natural plants seem to trigger researchers in this area is yet to be discovered. This research was designed to compare the biochemical effects of some medicinal plants in alloxan-induced diabetic male Wistar rats using named plants that are best at lowering blood glucose and hyperlipidemia and ameliorating other complications of diabetes mellitus by methods of combined therapy. The results obtained showed 82% decrease in blood glucose concentration after the 10th hour to the fortieth hour. There was significant increase P < 0.05 in the superoxide dismutase activity of the test group administered 100 mg/kg of A. Occidentale. There was no significant difference P > 0.05 recorded in the glutathione peroxidase activity of E. globulus (100 mg/kg) when compared to the test groups of P. guajava (250 mg/kg) and X. aethiopica (250 mg/kg). Catalase activity showed significant increase P < 0.05 in the catalase activity, compared to test groups. While at P > 0.05, there was no significant difference seen between test group and treated groups. Meanwhile, degree of significance was observed in other parameters analysed. The biochemical analysis conducted in this study showed positive result, attesting to facts from previous works. Though these individual plants extracts exhibited significant increase in amelorating diabetes complication and blood glucose control compared to glibenclamide, a synthetic antidiabetic drug. Greater performance was observed in the synergy groups. Therefore, a poly/combined formulation of these plants extracts yielded significant result as well as resolving some other complications associated with diabetics. PMID:25525518

  9. Palm oil and ground nut oil supplementation effects on blood glucose and antioxidant status in alloxan-induced diabetic rats.

    PubMed

    Adewale, Olabiyi Folorunso; Isaac, OlatunjiOlusola; Tunmise, Makinwa Temitope; Omoniyi, OguntibejuOluwafemi

    2016-01-01

    This study investigated the effects of two common cooking oils (palm oil, PO) and (groundnut oil, GO) supplementation on the antioxidant status and diabetic indices in Alloxan (100mg/kg) induced diabetic Wistar rats. A total of forty-eight Wistar rats of both sexes were used for this study. They were divided into four groups of 12 animals each as: control, diabetic non-supplemented, diabetic supplemented with PO (200mg/kg/day) and diabetic supplemented with GO (200mg/kg/day) rats. Blood glucose, plasma vitamin E, SOD, Total Protein and Albumin levels were measured using standard laboratory procedures. After three weeks of supplementation there was a significant (p<0.05) reduction in blood glucose of supplemented groups compared with the diabetic non-supplemented group. Plasma Vitamins C and E, SOD, and Albumin levels were significantly (p<0.05) increased in the supplemented groups when compared with the diabetic non-supplemented group. However, the plasma levels of these parameters were found to be significantly (p<0.05) higher in the GO supplemented rats compared with the PO supplemented group. The plasma vitamin C levels in the diabetic groups were lower than in other groups while increased levels in the plasma total protein were not significant. There was no significant difference in the measured parameters in reference to the gender of the animals. It was concluded from this study that GO exhibited superior antioxidant activities and that the supplementation of red palm oil and ground nut oil as a source of antioxidant was beneficial in diabetic state as it reduced blood glucose and enhance antioxidant status. PMID:26826842

  10. Antidiabetic and antihyperlipidemic effects of ethanolic extract of leaves of Punica granatum in alloxan-induced non–insulin-dependent diabetes mellitus albino rats

    PubMed Central

    Das, Swarnamoni; Barman, Sarajita

    2012-01-01

    Objectives: Punica granatum L., (Family: Punicaceae) is used in Indian Unani medicine for treatment of diabetes mellitus. Therefore, the present study was done to evaluate the antidiabetic and antihyperlipidemic effects of ethanolic extract of leaves of P. granatum in alloxan-induced diabetic rats. Materials and Methods: Healthy Wistar albino rats (100-150 g) were divided into four groups of six animals each. Groups A and B received normal saline [(10 ml/kg/day/per oral (p.o.)]; group C received ethanolic extract of leaves of P. granatum (500 mg/kg/p.o.); and group D received glibenclamide (0.5 mg/kg/day/p.o.). The extracts were given for 1 week in all groups. To induce diabetes, alloxan 150 mg/kg, intraperitoneal (i.p.) single dose was administered to groups B, C, and D. Blood glucose and serum lipids [Total Cholesterol (TC), Triglycerides (TG), Low Density Lipoproteins (LDL), and High Density Lipoproteins (HDL)] and the atherogenic index were estimated after one week. For mechanism of antidiabetic action glycogen estimation on the liver, cardiac and skeletal muscle, and intestinal glucose absorption was done. Results: Group B showed a significant (P<0.01) increase in blood glucose as compared to group A. Groups C and D showed significant decrease (P<0.01) in blood glucose level in comparison to group B. The test drug showed a significant (P<0.01) increase in glycogen content in the liver, cardiac, and skeletal muscle; it significantly (P<0.01) reduced intestinal glucose absorption. Groups C and D showed significant (P<0.01) decrease in serum TC, TG, LDL, and AI as compared to Group B, which showed a significant (P<0.01) increase. Groups C and D showed significant (P<0.01) increase in serum HDL as compared to Group B, which showed a significant (P<0.01) decrease in all values. Conclusion: P. granatum leaves possess significant antidiabetic and antihyperlipidemic activity. PMID:22529479

  11. Hypoglycaemic effects of methanolic extract of Canscora decussata (Schult) whole-plant in normal and alloxan-induced diabetic rabbits.

    PubMed

    Irshad, Nadeem; Akhtar, Muhammad Shoaib; Bashir, Sajid; Hussain, Azhar; Shafiq, Muhammad; Iqbal, Javeid; Malik, Abdul

    2015-01-01

    In present study hypoglycaemic effects of the crude powdered C. decussata and its methanolic extract (ME) in alloxan diabetic rabbits were evaluated. The hypoglycaemic effect was measured by blood glucose, insulin level, HbA1c and his to pathology of pancreas. Glucose lowering effect of the ME was studied in diabetic rabbits. The effects of extract on blood glucose, body weight, food in take, fluid intake, OGTT were also evaluated. The results showed that 0.5,1 and 2g/kg of the powder significantly decreased blood glucose levels in normal rabbits and diabetic rabbits at the intervals checked. Oral intake of pioglitazone also reduced the levels in these rabbits. Synergistic hypoglycaemic effect of 600mg/kg of ME with different doses of insulin (2 & 3unit/kg, s/c) further reduced blood glucose levels of treated alloxan-diabetic rabbits. The oral glucose tolerance test revealed lowered area under curve values in ME treated rabbits. Treatment with ME (400 and 600 mg/kg) for 30 days showed highly significant decrease in blood glucose level by augmenting insulin secretion, HbA1cand significant increase in body weight, serum insulin levels in treated diabetic rabbits. Histopathology study showed regeneration of ?-cells. These studies have, therefore, supported the traditional use of this herb in diabetic patients. PMID:25553693

  12. Safety and efficacy of hydroalcoholic extract from Lawsonia inermis leaves on lipid profile in alloxan-induced diabetic rats

    PubMed Central

    Singh, Surender; Verma, Nishikant; Karwasra, Ritu; Kalra, Prerna; Kumar, Rohit; Gupta, Yogendra Kumar

    2015-01-01

    Introduction: Dyslipidemia is one of the most common risk factor for cardiac-related disorders in diabetes mellitus. Diabetic dyslipidemia is characterized by hypertriglyceridemia, low high density lipoprotein and elevated low density lipoprotein concentration. Aim: To explore the effect of Lawsonia inermis hydroalcoholic extract (LIHE) for diabetic dyslipidemic activity along with its safety profile. Materials and Methods: LIHE administered at doses of 100, 200 and 400 mg/kg in rats after induction of hyperglycemia by alloxan. Insulin (1 IU/kg), glibenclamide (2.5 mg/kg), and metformin (100 mg/kg) were used as positive control and 1% gum acacia as normal control. Statistical analysis was performed using one-way analysis of variance, followed by Dunnett's t-test. Results: The percentage reduction in blood glucose level of LIHE at dose of 400 mg/kg was 39.08% on day 21 when compared to baseline (day 0), which is comparable to glibenclamide (44.77%) and metformin (46.30%). Decrease in blood glucose level exhibited significant improvement in lipid profile, plasma albumin, total plasma protein and serum creatinine. Conclusion: Results of this study demonstrated that LIHE significantly improved lipid and lipoprotein pattern observed in diabetic rats and this could be due to improvement in insulin secretion or action, thus has potential to be used in treatment of diabetes mellitus associated dyslipidemia. PMID:26730149

  13. Antioxidant effect of aqueous extract of sumac (Rhus coriaria L.) in the alloxan-induced diabetic rats.

    PubMed

    Salimi, Zahra; Eskandary, Azade; Headari, Reza; Nejati, Vahid; Moradi, Mojtaba; Kalhori, Zahra

    2015-01-01

    In this experimental study, 30 adult male Wistar rats divided into 5 groups (n=6). Experimental rats were treated with one intraperitoneal injection of 120 mg/kgbw Alloxan monohydrate alone or in combination with 28 days of oral administration with aqueous extract of Rhus coriaria (50, 100 and 250 mg/kgbw) while the control rats received normal saline. At the end of the study, blood glucose, malondialdehyde concentration and catalase activities of kidney and liver tissues were determined. Treatment with Rhus coriaria extract resulted in a significant reduction in blood glucose, and the liver and kidney tissue contents of malondialdehyde in comparison to diabetic group (P<0.05). Furthermore, diabetic group treated with extract showed a significant increase in catalase activities of the liver and kidney (P<0.05). The present study showed that Rhus coriaria could be effective in decreasing diabetic complication and this effect is attributed to the antioxidant activity of the plant. PMID:26571989

  14. Assessment of the antidiabetic and antilipidemic properties of bacillus subtilis spb1 biosurfactant in alloxan-induced diabetic rats.

    PubMed

    Zouari, Raida; Ben Abdallah-Kolsi, Rihab; Hamden, Khaled; Feki, Abdelfattah El; Chaabouni, Khansa; Makni-Ayadi, Fatma; Sallemi, Fahima; Ellouze-Chaabouni, Semia; Ghribi-Aydi, Dhouha

    2015-11-01

    The present study aimed to scrutinize the potential of Bacillus subtilis SPB1biosurfactant, orally administered, for preventing diabetic complications in rats. The findings revealed that, Bacillus subtilis biosurfactant was an effective reducer of α-amylase activity in the plasma. Moreover, this supplement helped protect the β-cells from death and damage. Both the inhibitory action of SPB1 biosurfactant on α-amylase and the protection of the pancreas' β-cells lead to a decrease of the blood glucose levels, consequently antihyperglycemic effect. Interestingly, this lipopeptide biosurfactant modulated key enzyme related to hyperlipidemia as lipase; which leads to the regulation of the lipid profile in serum by the delay in the absorption of LDL-cholesterol and triglycerides, and a significant increase in HDL-cholesterol. Histological analyses also showed that it exerted a protective action on the pancreases and efficiently preserved the liver-kidney functions of diabetic rats, evidenced by significant decreases in aspartate transaminase, alanine transaminase, gamma-glytamyl transpeptidase and lactate deshydrogenase activities in the plasma, as well as in the creatinine and urea contents. Overall, the present study demonstrated that the hypoglycemic and antilipidemic activities exhibited by Bacillus subtilis biosurfactant were effective enough to alleviate induced diabetes in experimental rats. Therefore, SPB1biosurfactant could be considered as a potential strong candidate for the treatment and prevention of diabetes. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 104: 764-774, 2015. PMID:26228442

  15. Comprehensive Evaluation of Anti-hyperglycemic Activity of Fractionated Momordica charantia Seed Extract in Alloxan-Induced Diabetic Rats.

    PubMed

    Choudhary, Shailesh Kumar; Chhabra, Gagan; Sharma, Dipali; Vashishta, Aruna; Ohri, Sujata; Dixit, Aparna

    2012-01-01

    The present study evaluates anti-hyperglycemic activity of fractionated Momordica charantia (bitter gourd) seed extracts. Fasting blood glucose levels were evaluated before and after administration of different fractions of the seed extract. Among the three fractions tested, fraction Mc-3 (15?mg/kg b.wt.) showed the maximum anti-hyperglycemic activity and reduced blood glucose levels in experimental diabetic rats significantly. The activities of the key regulatory enzymes of glucose metabolism (hexokinase, pyruvate kinase, lactate dehydrogenase, and glucose-6-phosphate dehydrogenase) were determined in Mc-3-treated diabetic animals. Once-daily administration of the fraction Mc-3 for prolonged period of 18 days to the experimental diabetic animals did not result in any nephrotoxicity or hepatotoxicity as evident from insignificant changes in biochemical parameters indicative of liver and kidney functions. Further fractionation of the fraction Mc-3 by size exclusion chromatography resulted in a fraction, designated Mc-3.2, possessing anti-hyperglycemic activity. The fraction Mc-3.2 showed the presence of a predominant protein band of ~11?kDa on SDS-PAGE. Loss in anti-hyperglycemic activity of the Mc-3.2 upon protease treatment indicates the proteinaceous nature of the anti-hyperglycemic principles. Overall, the results suggest that Momordica charantia seeds contain an effective anti-hyperglycemic protein(s) which may find application in treatment of diabetes without evident toxic effects. PMID:23320026

  16. Hypoglycemic and antioxidant effects of leaf essential oil of Pelargonium graveolens LHr. in alloxan induced diabetic rats

    PubMed Central

    2012-01-01

    Background Rose-scented geranium (Pelargonium graveolens LHr.), which is used in traditional Tunisian folk medicine for the treatment of hyperglycaemia, is widely known as one of the medicinal herbs with the highest antioxidant activity. The present paper is conducted to test the hypoglycemic and antioxidative activities of the leaf essential oil of P. graveolens. Methods The essential oil P. graveolens was administered daily and orally to the rats at two doses of 75?mg/kg and 150?mg/kg body weight (b.w.) for 30?days. The chemical composition of P. graveolens essential oil, body weight, serum glucose, hepatic glycogen, thiobarbituric acid-reactive substances (TBARS), the components of hepatic, and renal and serum antioxidant systems were evaluated. The hypoglycemic effect of rose-scented geranium was compared to that of the known anti-diabetic drug glibenclamide (600??g/kg b.w.). Results After the administration of two doses of essential oil of Pelargonium graveolens LHr. together with glibenclamide which is known by its antidiabetic activities and used as reference (600??g/kg b.w.), for four weeks, the serum glucose significantly decreased and antioxidant perturbations were restored. The hypoglycemic effect of P. graveolens at the dose of 150?mg/kg b.w. was significantly (pdiabetic rats that these beneficial effects of geranium oils were confirmed. Conclusions It suggests that administration of essential oil of P. graveolens may be helpful in the prevention of diabetic complications associated with oxidative stress. Our results, therefore, suggest that the rose-scented geranium could be used as a safe alternative antihyperglycemic drug for diabetic patients. PMID:22734822

  17. [Platelet hyperreactivity and antiaggregatory properties of nootropic drugs under conditions of alloxan-induced diabetes in rats].

    PubMed

    Zhiliuk, V I; Levykh, A ; Mamchur, V I

    2012-01-01

    The effects of nootropic drugs (noopept, pentoxifylline, piracetam, pramiracetam, Ginkgo biloba extract, entrop, cerebrocurin and citicoline) on platelet aggregation in rats with experimental diabetes have been studied. It is established that all these drugs exhibit an inhibitory action of various degrees against platelet hyperreactivity under conditions of chronic hyperglycemia. The maximum universality of the antiaggregatory action is characteristic of pramiracetam, entrop and Ginkgo biloba extract. PMID:22702111

  18. Antidiabetic activity and phytochemical screening of crude extract of Stevia rebaudiana in alloxan-induced diabetic rats

    PubMed Central

    Kujur, R. S.; Singh, Vishakha; Ram, Mahendra; Yadava, Harlokesh Narayan; Singh, K. K.; Kumari, Suruchi; Roy, B. K.

    2010-01-01

    Background: Stevia rebaudiana regulates blood sugar, prevents hypertension and tooth decay. Other studies have shown that it has antibacterial as well as antiviral property. Methods: Preliminary phytochemical screening of aqueous, ether and methanolic extracts of S. rebaudiana was done. Acute and sub-acute toxicity were conducted on twenty four Albino rats, divided into one control (Group I) and three treatment groups viz. aqueous extract (Group II), ether extract (Group III) and methanolic extract (Group IV). For the study of antidiabetic effect of S. rebaudiana rats were divided into seven groups (n=6). Diabetes was induced by a single dose of 5% alloxan monohydrate (125 mg/kg, i.p.) after 24 hour fasting.Blood samples were analysed on day 0, 1, 5, 7, 14 and 28. Results: Phytochemical tests showed presence of different kinds of phyto-constituents in aqueous, ether and methanol extract of Stevia rebaudiana leaves. Daily single dose (2.0 g/kg) administration of aqueous extract (A.E.) , ether extract (E.E.) and methanol extract (M.E.) for 28 days of S. rebaudiana could not show any significant change in ALT and AST levels in rats. Blood sugar level was found to be decreased on day 28 in groups of rats treated with A.E., E.E. and M.E. of S. rebaudiana. Conclusion: The extracts of Stevioside rebaudiana could decrease the blood glucose level in diabetic rats in time dependent manner. PMID:21808578

  19. Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats-an in vivo approach.

    PubMed

    Karthick, V; Kumar, V Ganesh; Dhas, T Stalin; Singaravelu, G; Sadiq, A Mohamed; Govindaraju, K

    2014-10-01

    Development of novel antidiabetic agents using various organic compounds and biomolecules has been in practice for a long time. Recently, nanomaterials are also being used in antidiabetic studies for their unique properties such as small size, biocompatibility and ability to penetrate cell membrane for carrying drugs. Herein, in vivo antidiabetic activity of gold nanoparticles (AuNPs) synthesized using the antidiabetic potent plant Gymnema sylvestre R. Br on wistar albino rats has been evaluated. The formation of AuNPs and their morphology were confirmed using spectroscopic and microscopic analyses, respectively. The treatment of AuNPs has shown significant reduction in blood glucose level on diabetic rats. AuNPs were also tested for its anti-inflammatory effect by estimating the serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and high-sensitive C-reactive protein (CRP). PMID:25092583

  20. Dietary comparison of conjugated linolenic acid (9 cis, 11 trans, 13 trans) and alpha-tocopherol effects on blood lipids and lipid peroxidation in alloxan-induced diabetes mellitus in rats.

    PubMed

    Dhar, P; Bhattacharyya, D; Bhattacharyya, D K; Ghosh, S

    2006-01-01

    The present study investigated the dietary effect of conjugated linolenic acid (CLnA) on lipid profiles and lipid peroxidations in alloxan-induced diabetes mellitus in rats. Diabetic rats were fed with 20% sunflower oil (diabetic control), sunflower oil supplemented with 0.5% CLnA, sunflower oil supplemented with 0.15% alpha-tocopherol, and sunflower oil containing 0.25% CLnA + 0.15% alpha-tocopherol. The results demonstrated that 0.5% CLnA, 0.15% alpha-tocopherol, and 0.25% CLnA + 0.15% alpha-tocopherol each on supplementation significantly lowered total cholesterol and non-HDL-cholesterol in comparison with the diabetic control group. The TAG level was significantly lowered in both the 0.15% alpha-tocopherol and 0.25% CLnA + 0.15% alpha-tocopherol groups. LDL-lipid peroxidation and erythrocyte membrane lipid peroxidation were reduced significantly in each of the experimental groups vs. the control group. The CLnA + alpha-tocopherol diet induced a greater reduction in membrane lipid and liver lipid peroxidation than the alpha-tocopherol diet alone. In conclusion, dietary CLnA exerts antioxidant activity as evidenced by reduced lipid peroxidation in chemically induced diabetes mellitus. PMID:16555471

  1. Efficacy of Composite Extract from Leaves and Fruits of Medicinal Plants Used in Traditional Diabetic Therapy against Oxidative Stress in Alloxan-Induced Diabetic Rats

    PubMed Central

    Kumar, Dileep; Abidi, A. B.

    2014-01-01

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on composite extract (CE) and making small dose of naturally occurring antidiabetic plants leaf and fruits. The aim of the present study was to evaluate the beneficial role of CE against alloxan- (ALX-) induced diabetes of Wistar strain rats. A dose-dependent study for CE (25, 50, and 100?mg/kg body weight) was carried out to find the effective dose of the composite compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, plasma advanced oxidation product (AOPP), sialic acid demonstrating disturbed antioxidant status.CE at a dose of 100?mg/kg body weight restored/minimised these alterations towards normal values. In conclusion, small dose of CE possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. PMID:24729889

  2. Effect of methanolic extract of Tetrapleura tetraptera (Schum and Thonn) Taub leaves on hyperglycemia and indices of diabetic complications in alloxan-induced diabetic rats

    PubMed Central

    Atawodi, Sunday Ene-Ojo; Yakubu, Ojochenemi Ejeh; Liman, Mubarak Labaran; Iliemene, Dorothy Uju

    2014-01-01

    Objective To investigate the ameliorative role of Tetrapleura tetraptera (Schum and Thonn) Taub (T. tetraptera) leaf in hyperglycemia with associated conditions like oxidative stress, kidney damage and disorders in lipid metabolism. Methods Five groups of five rats each intraperitoneally received the following treatment schedules for 7 d: untreated normal control, untreated alloxan-diabetic control, diabetic treated with glibenclamide, normal rats treated with extract (50 mg/kg) and diabetic rats treated with the extract. Evaluations were made for fasting blood sugar, body weight changes, malondialdehyde, aspartate aminotransferase, alanine aminotransferase, bilirubin, superoxide dismutase, catalase, lipid profile, packed cell volume, hemoglobin, urea and creatinine in all the rats. Results Whereas the untreated diabetic rats showed a significant decrease (P<0.05) in packed cell volume, superoxide dismutase, catalase and high-density lipoprotein-cholesterol with a concomitant increase in the levels of malondialdehyde, fasting blood sugar, aspartate aminotransferase, alanine aminotransferase, bilirubin, urea and creatinine, administration of methanolic extract of T. tetraptera leaf or glibenclamide alleviated these altered parameters in the treated rats. Conclusions Methanolic extract of T. tetraptera leaves possesses a potent capacity for treatment of diabetes and the accompanying complications, including oxidative stress and hyperlipidemia. PMID:25182550

  3. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    SciTech Connect

    Bhattacharya, Semantee; Manna, Prasenjit; Sil, Parames C.

    2011-12-15

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic {beta}-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic {beta}-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: Black-Right-Pointing-Pointer Oxidative stress is suggested as a key event in the pathogenesis of diabetes. Black-Right-Pointing-Pointer D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. Black-Right-Pointing-Pointer DSL normalizes cellular antioxidant machineries disturbed due to alloxan toxicity. Black-Right-Pointing-Pointer DSL inhibits pancreatic {beta}-cells apoptosis via mitochondria-dependent pathway. Black-Right-Pointing-Pointer DSL could be a promising approach for the treatment of diabetes mellitus.

  4. Diabetic Lactoferrin Deficient Mice Demonstrates Greater Susceptibility to Experimental Periodontal Disease

    PubMed Central

    Alabdulmohsen, Waad; Rozario, Sonia D.; Markowitz, Kenneth; Fine, Daniel H.; Velliyagounder, Kabilan

    2015-01-01

    The objective of this study is to detrmine whether alloxan-induced diabetic Lactoferrin knockout (LFKO?/?) mice are more susceptible to periodontal disease caused by Aggregatibacter actinomycetemcomitans compared to the diabetic wild-type (WT) mice. Diabetes was induced in mice by a single dose of alloxan (60 mg/kg) injected intravenously. Mice were categorized as diabetic when blood glucose levels >250 mg/dL were measured on the 7th day after the injection. Periodontal disease was experimentally induced by A. actinomycetemcomitans infection in alloxan induced diabetic WT and LFKO?/? mice. Fasting blood glucose levels and body weight were monitored throughout the study. At the end of the 12th week of infection, mice were sacrificed and bone loss among the groups was estimated by measuring the distance between cemento-enamel junction (CEJ) to the alveolar bone crest (ABC) at 12 sites on the molars. A. actinomycetemcomitans infected mice groups developed more alveolar bone loss than sham-infected animals. Diabetic LFKO?/? infected mice exhibited significant bone loss (P<0.01) and a higher mean fasting blood glucose level (P<0.05) when compared to diabetic WT infected mice. No statistically significant difference in fasting blood glucose level was found between the infected and sham-infected groups. Peripheral blood analysis at the end of the 12th week revealed a significant reduction in the platelet counts in LFKO?/? mice when compared to WT mice. Furthermore, diabetic LFKO?/? presented with lower counts than non-diabetic LFKO?/? mice (P<0.01). In conclusion, diabetic lactoferrin deficient mice are at a higher risk of developing periodontal infection induced by A. actinomycetemcomitans when compared to diabetic WTI mice.

  5. Effect of Croatian propolis on diabetic nephropathy and liver toxicity in mice

    PubMed Central

    2012-01-01

    Background In the present study, we examined the antioxidant effect of water soluble derivative of propolis (WSDP) and ethanolic (EEP) extract of propolis on renal and liver function in alloxan-induced diabetic mice. In addition, we examined whether different extract of propolis could prevent diabetic nephropathy and liver toxicity by inhibiting lipid peroxidation in vivo. Methods Diabetes was induced in Swiss albino mice with a single intravenous injection of alloxan (75 mg kg-1). Two days after alloxan injection, propolis preparations (50 mg kg-1 per day) were given intraperitoneally for 7 days in diabetic mice. Survival analysis and body weights as well as hematological and biochemical parameters were measured. The renal and liver oxidative stress marker malonaldehyde levels and histopathological changes were monitored in the liver and kidney of treated and control mice. Results Administration of propolis to diabetic mice resulted in a significant increase of body weight, haematological and immunological parameters of blood as well as 100% survival of diabetic mice. Alloxan-injected mice showed a marked increase in oxidative stress in liver and kidney homogenate, as determined by lipid peroxidation. Histopathological observation of the liver sections of alloxan-induced diabetic mice showed several lesions including cellular vacuolization, cytoplasmic eosinophilia and lymphocyte infiltrations, but with individual variability.Treatment of diabetic mice with propolis extracts results in decreased number of vacuolized cells and degree of vacuolization; propolis treatment improve the impairment of fatty acid metabolism in diabetes. Renal histology showed corpuscular, tubular and interstitial changes in alloxan-induced diabetic mice. Test components did not improve renal histopathology in diabetic mice. Conclusions Propolis preparations are able to attenuate diabetic hepatorenal damage, probably through its anti-oxidative action and its detoxification proccess as well as the potential to minimize the deleterious effects of free radicals on tissue. The protective role of propolis against the ROS induced damages in diabetic mice gives a hope that they may have similar protective action in humans. PMID:22866906

  6. Effect of Trigonella foenum graecum L on the Activities of Antioxidant Enzyme and Their Expression in Tissues of Alloxan-Induced Diabetic Rats.

    PubMed

    Sharma, Sapneh; Mishra, Vibhuti; Jayant, Shiv Kumar; Srivastava, Nalini

    2015-07-01

    Diabetes is a life-threatening metabolic disorder. This study was undertaken to evaluate the antihyperglycemic and antioxidative potential of seed powder of Trigonella foenum-graecum L in alloxan (55 mg/kg) induced diabetic rats. The results obtained showed that extensive oxidative stress is generated in tissues of diabetic rats as evidenced by increased production of hydrogen peroxide, increased accumulation of malondialdehyde (MDA) and 4-hydroxynonanal (4HNE) and decreased activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in tissues of diabetic rats. It was observed that the transcription of genes of SOD, GPx, and CAT was also significantly decreased when compared with control. Treatment of Trigonella for 15 days to diabetic rats showed hypoglycemic effect and improved the altered levels of H2O2, MDA, and 4HNE, the activities of SOD, GPx, and CAT as well as transcription of these genes in the liver and the brain of diabetic rats. PMID:25854675

  7. Oral administration of orthovanadate and Trigonella foenum graecum seed power restore the activities of mitochondrial enzymes in tissues of alloxan-induced diabetic rats.

    PubMed

    Thakran, Shalini; Salimuddin; Baquer, Najma Z

    2003-05-01

    The effect of oral administration of sodium orthovanadate (SOV) and Trigonella foenum graecum seed powder (TSP), a medicinal plant used extensively in Asia, on the mitochondrial metabolism in the alloxan diabetic rats has been investigated. Rats were injected with alloxan monohydrate (20 mg/100 g body wt) or vehicle (Na-acetate buffer), the former were treated with either 2 IU insulin i.p., 0.6 mg/ml SOV ad libitum, 5% TSP ad libitum, and a combination of 0.2% SOV and 5% TSP ad libitum for 21 days. Selected rate-limiting enzymes of the tricarboxylic acid cycle, hydrogen shuttle system, ketone body metabolism, amino acid metabolism and urea cycle were measured in the mitochondrial and cytosolic fractions of liver, kidney and brain tissues of the experimental rats. Majority of the mitochondrial enzymes in the tissues of the diabetic rats had significantly higher activities compared to the control rats. Similarly, the activities of mitochondrial and cytosolic aminotransferases and arginase were significantly higher in liver and kidney tissues of the diabetic rats. The separate administrations of SOV and TSP to diabetic rats were able to restore the activities of these enzymes to control values. The lower dose of SOV (0.2%) administered in combination with TSP to diabetic rats lowered the enzyme activities more significantly than when given in a higher dose (0.6%) separately. This is the first report of the effective combined action of oral SOV and TSP in ameliorating the altered mitochondrial enzyme activities during experimental type-1 diabetes. Our novel combined oral administration of SOV and TSP to diabetic rats thus conclusively proves as a possible method to minimize potential vanadate toxicity without compromising its positive effects in the therapy of experimental type-1 diabetes. PMID:12841630

  8. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis

    SciTech Connect

    Das, Joydeep; Vasan, Vandana; Sil, Parames C.

    2012-01-15

    Hyperlipidemia, inflammation and altered antioxidant profiles are the usual complications in diabetes mellitus. In the present study, we investigated the therapeutic potential of taurine in diabetes associated cardiac complications using a rat model. Rats were made diabetic by alloxan (ALX) (single i.p. dose of 120 mg/kg body weight) and left untreated or treated with taurine (1% w/v, orally, in water) for three weeks either from the day of ALX exposure or after the onset of diabetes. Animals were euthanized after three weeks. ALX-induced diabetes decreased body weight, increased glucose level, decreased insulin content, enhanced the levels of cardiac damage markers and altered lipid profile in the plasma. Moreover, it increased oxidative stress (decreased antioxidant enzyme activities and GSH/GSSG ratio, increased xanthine oxidase enzyme activity, lipid peroxidation, protein carbonylation and ROS generation) and enhanced the proinflammatory cytokines levels, activity of myeloperoxidase and nuclear translocation of NFκB in the cardiac tissue of the experimental animals. Taurine treatment could, however, result to a decrease in the elevated blood glucose and proinflammatory cytokine levels, diabetes-evoked oxidative stress, lipid profiles and NFκB translocation. In addition, taurine increased GLUT 4 translocation to the cardiac membrane by enhanced phosphorylation of IR and IRS1 at tyrosine and Akt at serine residue in the heart. Results also suggest that taurine could protect cardiac tissue from ALX induced apoptosis via the regulation of Bcl2 family and caspase 9/3 proteins. Taken together, taurine supplementation in regular diet could play a beneficial role in regulating diabetes and its associated complications in the heart. Highlights: ► Taurine controls blood glucose via protection of pancreatic β cells in diabetic rat. ► Taurine controls blood glucose via increasing the insulin level in diabetic rat. ► Taurine improves cardiac AKT/GLUT4 signaling pathways in diabetic conditions. ► Taurine exerts antioxidant, antihyperlipidemic and antiinflammatory activities. ► It protects cardiac apoptosis by regulating Bcl2 family and caspase 9/3 proteins.

  9. Evaluation of Mallotus oppositifolius Methanol Leaf Extract on the Glycaemia and Lipid Peroxidation in Alloxan-Induced Diabetic Rats: A Preliminary Study

    PubMed Central

    Nwaehujor, C. O.; Ezeigbo, I. I.; Nwinyi, F. C.

    2013-01-01

    Objective. Mallotus oppositifolius (Geiseler) Mll. Arg. (Euphorbiaceae) is folklorically used to treat diabetic conditions in some parts of Nigeria therefore the study, to investigate the extract of the leaves for activities on hyperglycaemia, lipid peroxidation, and increased cholesterol levels in vivo in alloxan diabetic rats as well as its potential antioxidant activity in vitro. Methods. Albino rats (240280?g) were given an injection of 120?mg/kg body weight, i.p. of alloxan monohydrate. After 8 days, diabetic animals with elevated fasting blood glucose levels (>9?mmol/L) were considered and selected for the study. Results. Oral treatment with the extract administered every 12?h by gavage at doses of 100, 200, and 400?mg/kg of the extract to the test rats, for 14 days, resulted in a significant dose-dependent decrease in blood glucose levels from 12.82 1.02?mmol/dL to 4.92 2.01?mmol/dL at the highest dose of 400?mg/kg compared to the control drug and glibenclamide as well as attendant significant decline in diabetic rats employed in the study. Conclusion. The extract also showed in vitro concentration-dependent antioxidant activity following the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric reducing assays. Findings further suggest the presence of active antidiabetic and antioxidant principles in M. oppositifolius leaves. PMID:24224091

  10. Effect of methanolic extract of Musa sapientum leaves on gastrointestinal transit time in normal and alloxan induced diabetic rats: possible mechanism of action.

    PubMed

    Adewoye, E O; Ige, A O; Latona, C T

    2011-06-01

    Disorders of gastrointestinal motility have been associated with diabetes mellitus. Hyperglycaemia particularly has been reported to inhibit gastrointestinal transit time while glibenclamide, a sulphonylurea and insulin, both increased transit time. Musa sapientum has also been reported as an antidiabetic agent but there is dearth of information on the effect of this plant on gastrointestinal motility. This study was therefore carried out to investigate the effect of methanolic extract of Musa sapientum leaves (MEMSL) on gastrointestinal transit time (GITT) in male albino rats with and without hyperglycaemia and to elucidate possible mechanism by which this extract functions. Fifty five albino rats were divided into 11 groups of five animals each. All animals were fasted for 24hrs before the begining of the experiment. Group 1 served as control; while the remaining groups (2 - 11) were treated with 250mg/kg; 500mg/kg MEMSL; diabetic control; diabetic treated with 250mg/kg; 500mg/kg MEMSL; diabetic treated with glibenclamide (5mg/kg); normal rats treated with nifedipine (50mg/kg); normal rats treated with calcium chloride (CaCl2) only (10mg/kg); groups 10 and 11 were both pretreated with CaCl2 and subsequently treated with 250mg/kg and 500mg/kg MEMSL respectively. All plant extracts used for treatments were dissolved in normal saline and administered orally using orogastric tube. Charcoal meal was used as marker in the estimation of GITT. The study showed significant decrease in GITT in the normal rats treated with 250mg/kg and 500mg/kg of extract. However, in the diabetic rats treated with 500mg/kg MEMSL, there was significant increase in GITT and this is comparable with the gut response to glibenclamide (5mg/kg). Musa sapientum extract produced significant decrease in transit time in the calcium chloride pre-treated normal rats and this is comparable to the effect observed in Nifedipine treated group. The significant reduction in GITT produced by MEMSL in the normal rats reflects a strong possibility of MEMSL acting as calcium channel antagonist through the voltage gated calcium channel which may be due to the presence of alkaloids, saponins, cardenolides. There is the possibility of the extract acting as an inhibitor of potassium channel at higher concentration as observed in glibenclamide treated groups. PMID:22314993

  11. Antioxidative and antidiabetic activities of watermelon (Citrullus lanatus) juice on oxidative stress in alloxan-induced diabetic male Wistar albino rats

    PubMed Central

    Oseni, O. A.; Odesanmi, O. E.; Oladele, F. C.

    2015-01-01

    Background: The nutritional and medicinal importance of watermelon has been emphasized and its diseases preventive and curative power must be evaluated. Hence, this study was designed to evaluate the antioxidative and antidiabetic potentials of watermelon. Materials and Methods: The in vivo assay was carried out on 15 male albino rats which were divided into groups of three stages. In stage I, all animals received normal feeds and water for 1-week after, which five animals were selected and sacrificed for biochemical analyses which form the nondiabetic control, group. The remaining animals were fasted for 24 h before injected intra-peritoneally with a freshly prepared solution of alloxan at a dosage of 35 mg/kg body weight. Five out of the 10 rats were sacrificed as diabetic group while last five animals were fed with water melon juice for a week after, which they were sacrificed to form the treated group animals. In all the groups, body weights, fasting blood sugar, total protein level in the blood, and other biochemical parameters such as reduced glutathione (GSH), glutathione peroxidase (GPx), malondialdehyde (MDA) concentration; catalase, and superoxide dismutase (SOD) % inhibition activities were determined. Results: The results of the biochemical analyses showed a significant increase in the concentration of blood glucose level after treatment with alloxan, which indicates that diabetic was induced. Hence, watermelon juice caused increased in weight, hypoglycemia; and increases in GSH, GPx, catalase, and SOD % inhibition activities with reduced MDA concentration after treatments. Conclusion: The watermelon juice resulted in the restoration of impaired conditions of the rats. PMID:26759513

  12. Antihyperlipidemic and antiperoxidative effect of Diasulin, a polyherbal formulation in alloxan induced hyperglycemic rats

    PubMed Central

    Saravanan, Ramalingam; Pari, Leelavinothan

    2005-01-01

    Background This study was undertaken to investigation the effect of Diasulin, a poly herbal drug composed of ethanolic extract of ten medicinal plants on blood glucose, plasma insulin, tissue lipid profile, and lipidperoxidation in alloxan induced diabetes. Methods Ethanolic extract of Diasulin a, poly herbal drug was administered orally (200 mg/kg body weight) for 30 days. The different doses of Diasulin on blood glucose and plasma insulin in diabetic rats were studied and the levels of lipid peroxides [TBARS, and Hydroperoxide] and tissue lipids [cholesterol, triglyceride, phospholipides and free fatty acids] were also estimated in alloxan induced diabetic rats. The effects were compared with glibenclamide. Result Treatment with Diasulin and glibenclamide resulted in a significant reduction of blood glucose and increase in plasma insulin. Diasulin also resulted in a significant decrease in tissue lipids and lipid peroxide formation. The effect produced by Diasulin was comparable with that of glibenclamide. Conclusion The decreased lipid peroxides and tissue lipids clearly showed the antihyperlipidemic and antiperoxidative effect of Diasulin apart from its antidiabetic effect. PMID:15969768

  13. Possible signaling cascades involved in attenuation of alloxan-induced oxidative stress and hyperglycemia in mice by ethanolic extract of Syzygium jambolanum: drug-DNA interaction with calf thymus DNA as target.

    PubMed

    Samadder, Asmita; Chakraborty, Debrup; De, Arnab; Bhattacharyya, Soumya Sundar; Bhadra, Kakali; Khuda-Bukhsh, Anisur Rahman

    2011-10-01

    We injected alloxan (100 mg/kg b.w.) in mice (Mus musculus) intra-peritoneally to induce hyperglycemia and divided the hyperglycemic mice into two sub-groups: one was fed ethanolic extract of Syzygium jambolanum (EESJ) (20 mg/kg b.w. for 8 weeks) and the other 85% ethyl alcohol ("vehicle"-control). Chromatographic and mass spectroscopic studies of EESJ revealed two principal components, one corresponding to an iridoid glycoside. We estimated blood glucose, glycosylated hemoglobin, glucokinase, and fructosamine and analyzed the expression of marker proteins like insulin, GLUT2, and GLUT4. We also studied anti-oxidant biomarkers like lipid peroxidase, superoxide dismutase, total thiole and catalase. We assayed generation of reactive oxygen species (ROS) and several inflammatory and apoptotic signal proteins like NFkB, IFN?, iNOS, Bcl(2,) Bax, STAT1 and Caspase3. We further evaluated the effects of hyperglycemia on DNA through comet assay and DNA fragmentation study and assessed drug-DNA interaction by comparative analysis of circular dichroism (CD) spectral data and melting temperature profiles (T(m)) of calf thymus DNA treated with or without EESJ. We observed an elevation of all biomarkers for oxidative stress, generation of ROS and activation of NFkB and down regulation in expression of insulin, GLUT2 and glucokinase in hyperglycemic mice. Administration of EESJ reversed these changes. Histo-pathological observations of pancreas, liver and kidney also revealed relevant changes. Data of CD and (T(m)) indicated an interaction of EESJ with calf thymus DNA, indicating change in structure and conformation. Thus, EESJ has anti-oxidant as well as anti-hyperglycemic activities in diabetic mice, and potentially useful in management of hyperglycemia. PMID:21839831

  14. Hypoglycaemic and Tissue-Protective Effects of the Aqueous Extract of Persea Americana Seeds on Alloxan-Induced Albino Rats

    PubMed Central

    EZEJIOFOR, Anthonet Ndidi; OKORIE, Abednego; ORISAKWE, Orish Ebere

    2013-01-01

    Background: The tissue-protective potential of Persea americana necessitated a look into the histopathological effects of the plant extract on the pancreas, liver, and kidneys. This study was conceived and designed based on the gaps in the research that has been performed and what is known about the plant. The hypoglycaemic and tissue-protective effects of hot aqueous Persea americana (avocado pear) seed extracts on alloxan-induced albino rats were investigated. Methods: Persea americana seeds were extracted using hot water, and different concentrations of the extract were prepared. The effects of different concentrations (20, 30, 40 g/L) of the hot aqueous P. americana seed extract on alloxan-induced Wistar albino rats were compared with those of a reference drug, glibenclamide. The glucose level of the rats was measured daily, and the weight of the animal was monitored on a weekly basis for 21 days. The oral glucose tolerance test (OGTT) was performed at 0, 30, 60, 90 and 120 minutes, and the histopathologies of the liver, kidneys, and pancreas were investigated. Phytochemical analysis of P. americana seed extracts indicated the presence of glycosides, tannins, saponins, carbohydrates, flavonoids, and alkaloids. Results: The results showed that the extract possessed a significant hypoglycaemic (P < 0.05) effect and reversed the histopathological damage that occurred in alloxan-induced diabetic rats, comparable to the effects glibenclamide. The seeds of P. americana also had anti-diabetic and protective effects on some rat tissues such as the pancreas, kidneys, and liver. Conclusion: In conclusion, the present study provides a pharmacological basis for the folkloric use of the hot-water extract of P. americana seeds in the management of diabetes mellitus. PMID:24643349

  15. Polysaccharides from Laminaria japonica show hypoglycemic and hypolipidemic activities in mice with experimentally induced diabetes.

    PubMed

    Jia, Xibei; Yang, Juan; Wang, Zhi; Liu, Ruichan; Xie, Rujuan

    2014-12-01

    Diabetes mellitus (DM) is a chronic metabolic disorder of the endocrine system. The rapid increase in the incidence of DM is a serious public health concern worldwide. The treatment of DM and its complications mainly involves the use of chemically or biochemically synthesized drugs, but these drugs also have adverse side effects. Therefore, there is an urgent need to search for drugs from natural sources that would cause fewer side effects. This study aimed to determine whether polysaccharides from Laminaria japonica (LJP) exert hypoglycemic and hypolipidemic effects in mice with alloxan-induced diabetes. To this end, diabetes was induced by alloxan injection (200?mg/kg body weight [bw], intraperitoneal [ip]). After induction of diabetes, diabetic mice were randomly divided into five groups: diabetic control (DC) group, glibenclamide-treated (DG) group, low-dose LJP-treated (DLL) group, moderate-dose LJP-treated (DML) group, and high-dose LJP-treated (DHL) group, with normal mice used as the control group (NC group). After treatment for 28 days, body weight, fasting blood glucose (FBG), serum insulin, total cholesterol (TC), triglyceride (TG), high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) levels were measured. The results revealed that LJP administration prevented body-weight loss, decreased FBG levels, and increased serum insulin levels in diabetic mice. Furthermore, it decreased TC, TG, and LDL-C levels, and increased HDL-C levels in these mice. Thus, the results indicate that LJP possesses hypoglycemic and hypolipidemic activities and polysaccharides from LJP may hold promise for the development of a drug of natural origin for the treatment of DM. PMID:24928865

  16. Comparison of cerebral microcirculation of alloxan diabetes and healthy mice using laser speckle contrast imaging

    NASA Astrophysics Data System (ADS)

    Timoshina, Polina A.; Shi, Rui; Zhang, Yang; Zhu, Dan; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.; Luo, Qingming

    2015-03-01

    The study of blood microcirculation is one of the most important problems of the medicine. This paper presents results of experimental study of cerebral blood flow microcirculation in mice with alloxan-induced diabetes using Temporal Laser Speckle Imaging (TLSI). Additionally, a direct effect of glucose water solution (concentration 20% and 45%) on blood flow microcirculation was studied. In the research, 20 white laboratory mice weighing 20-30 g were used. The TLSI method allows one to investigate time dependent scattering from the objects with complex dynamics, since it possesses greater temporal resolution. Results show that in brain of animal diabetic group diameter of sagittal vein is increased and the speed of blood flow reduced relative to the control group. Topical application of 20%- or 45%-glucose solutions also causes increase of diameter of blood vessels and slows down blood circulation. The results obtained show that diabetes development causes changes in the cerebral microcirculatory system and TLSI techniques can be effectively used to quantify these alterations.

  17. The hypoglycemic effect of a polysaccharide (GLP) from Gracilaria lemaneiformis and its degradation products in diabetic mice.

    PubMed

    Liao, Xubiao; Yang, Lawei; Chen, Meizhen; Yu, Jie; Zhang, Shumeng; Ju, Yaoyao

    2015-08-01

    Gracilaria lemaneiformis is cultivated on a large scale in China for industrial production of agarose, a natural polysaccharide, which has been shown to have many beneficial bioactivities such as antitumor, antiviral antioxidant activities, etc. In the present study, the hypoglycemic and antioxidant effects of a polysaccharide extracted from Gracilaria lemaneiformis (GLP; Mw, 121.89 kDa) and its chemically degraded products (GLP1 and GLP2: Mw, 57.02 and 14.29 kDa, respectively) were investigated in alloxan-induced diabetic mice. The intragastric administration of GLP, GLP1 and GLP2 for 21 days induced an obvious decrease (P < 0.05) in blood glucose levels in comparison with untreated diabetic mice. Furthermore, GLP, GLP1 and GLP2 caused evident increases (P < 0.05) in both ant i-oxidase (SOD and GSH-Px) activities and the total antioxidant capacity (T-AOC) and a significant decrease (P < 0.05) in the level of malondialdehyde (MDA) in the liver, pancreas and kidney of diabetic mice. Even though GLP, GLP1 and GLP2 did not show any significant difference in the structure and sulfation levels, GLP1 demonstrated more potent effects than GLP and GLP2 at the same dose. Histopathological examination of the pancreas and kidney revealed that the damaged tissues induced by alloxan were repaired to a certain degree after the treatments of GLP, GLP1 and GLP2. PMID:26114192

  18. Diabetic state-induced modifications of succinyl-choline binding mode in the microsomal fractions of mouse skeletal muscles

    SciTech Connect

    Kimura, M.; Kimura, I.; Fujihara, M.; Hoshino, N.

    1988-01-01

    The skeletal muscles of alloxan-induced diabetic mice and genetically diabetic KK-CA/sup Y/ mice are hypersensitive to a depolarizing blocker, succinylcholine (SuCh) but not to the competitive antagonist, d-tubocurarine (d-TC). The mechanism by which the action of the depolarizing blocker is modified in the diabetic state was investigated on the binding of /sup 14/C-SuCh to the microsomal fraction isolated from mouse skeletal muscles. The Scatchard plot of microsomal preparations from normal ddY mice showed positive cooperativity in SuCh binding, whereas that of the preparations from alloxan-induced diabetic mice as well as genetically diabetic KK-CA/sup Y/ mice lost the positive cooperative interactions. The dissociation constant (K/sub d/) of high affinity site in diabetic muscles was significantly lower than that in non-diabetic ddY muscle. The microsomal fractions from denervated muscles of normal ddY mice maintained weakly positive cooperativity in SuCh binding, and the affinity of SuCh binding in denervated muscles was lower than that of non-denervated muscles. 17 references, 2 figures, 1 table.

  19. Retinylamine Benefits Early Diabetic Retinopathy in Mice.

    PubMed

    Liu, Haitao; Tang, Jie; Du, Yunpeng; Lee, Chieh Allen; Golczak, Marcin; Muthusamy, Arivalagan; Antonetti, David A; Veenstra, Alexander A; Amengual, Jaume; von Lintig, Johannes; Palczewski, Krzysztof; Kern, Timothy S

    2015-08-28

    Recent evidence suggests an important role for outer retinal cells in the pathogenesis of diabetic retinopathy (DR). Here we investigated the effect of the visual cycle inhibitor retinylamine (Ret-NH2) on the development of early DR lesions. Wild-type (WT) C57BL/6J mice (male, 2 months old when diabetes was induced) were made diabetic with streptozotocin, and some were given Ret-NH2 once per week. Lecithin-retinol acyltransferase (LRAT)-deficient mice and P23H mutant mice were similarly studied. Mice were euthanized after 2 (WT and Lrat(-/-)) and 8 months (WT) of study to assess vascular histopathology, accumulation of albumin, visual function, and biochemical and physiological abnormalities in the retina. Non-retinal effects of Ret-NH2 were examined in leukocytes treated in vivo. Superoxide generation and expression of inflammatory proteins were significantly increased in retinas of mice diabetic for 2 or 8 months, and the number of degenerate retinal capillaries and accumulation of albumin in neural retina were significantly increased in mice diabetic for 8 months compared with nondiabetic controls. Administration of Ret-NH2 once per week inhibited capillary degeneration and accumulation of albumin in the neural retina, significantly reducing diabetes-induced retinal superoxide and expression of inflammatory proteins. Superoxide generation also was suppressed in Lrat(-/-) diabetic mice. Leukocytes isolated from diabetic mice treated with Ret-NH2 caused significantly less cytotoxicity to retinal endothelial cells ex vivo than did leukocytes from control diabetics. Administration of Ret-NH2 once per week significantly inhibited the pathogenesis of lesions characteristic of early DR in diabetic mice. The visual cycle constitutes a novel target for inhibition of DR. PMID:26139608

  20. Beta Cell Mass Restoration in Alloxan-Diabetic Mice Treated with EGF and Gastrin

    PubMed Central

    Song, Imane; Patel, Oelfah; Himpe, Eddy; Muller, Christo J. F.; Bouwens, Luc

    2015-01-01

    One week of treatment with EGF and gastrin (EGF/G) was shown to restore normoglycemia and to induce islet regeneration in mice treated with the diabetogenic agent alloxan. The mechanisms underlying this regeneration are not fully understood. We performed genetic lineage tracing experiments to evaluate the contribution of beta cell neogenesis in this model. One day after alloxan administration, mice received EGF/G treatment for one week. The treatment could not prevent the initial alloxan-induced beta cell mass destruction, however it did reverse glycemia to control levels within one day, suggesting improved peripheral glucose uptake. In vitro experiments with C2C12 cell line showed that EGF could stimulate glucose uptake with an efficacy comparable to that of insulin. Subsequently, EGF/G treatment stimulated a 3-fold increase in beta cell mass, which was partially driven by neogenesis and beta cell proliferation as assessed by beta cell lineage tracing and BrdU-labeling experiments, respectively. Acinar cell lineage tracing failed to show an important contribution of acinar cells to the newly formed beta cells. No appearance of transitional cells co-expressing insulin and glucagon, a hallmark for alpha-to-beta cell conversion, was found, suggesting that alpha cells did not significantly contribute to the regeneration. An important fraction of the beta cells significantly lost insulin positivity after alloxan administration, which was restored to normal after one week of EGF/G treatment. Alloxan-only mice showed more pronounced beta cell neogenesis and proliferation, even though beta cell mass remained significantly depleted, suggesting ongoing beta cell death in that group. After one week, macrophage infiltration was significantly reduced in EGF/G-treated group compared to the alloxan-only group. Our results suggest that EGF/G-induced beta cell regeneration in alloxan-diabetic mice is driven by beta cell neogenesis, proliferation and recovery of insulin. The glucose-lowering effect of the treatment might play an important role in the regeneration process. PMID:26452142

  1. Hypoglycemic Effect of Combination of Azadirachta indica A. Juss. and Gynura procumbens (Lour.) Merr. Ethanolic Extracts Standardized by Rutin and Quercetin in Alloxan-induced Hyperglycemic Rats

    PubMed Central

    Sunarwidhi, Anggit Listyacahyani; Sudarsono, Sudarsono; Nugroho, Agung Endro

    2014-01-01

    Purpose: Exploration of plant combinations could be an alternative approach for diabetes treatment. The aim of this study is to evaluate the hypoglycemic effect of combination of A. indica and G. procumbens ethanolic extracts in alloxan-induced diabetic rats. Methods: Powder of A. indica and G. procumbens leaves were macerated with ethanol 70%. Determination of rutin in A. indica and quercetin in G. procumbens were performed by TLC-densitometry. Hyperglycemia in rats was induced by an intraperitoneal injection of alloxan monohydrate at a single dose of 150 mg/kgBW. The rats were treated with 3 dosage variation of combinations for 15 days. Hypoglycemic effect was evaluated by estimating the blood glucose levels and the rats pancreas histological study. Results: A. indica contained 2.900.15% of rutin and G. procumbens contained 18.860.86% of quercetin. Combination at the ratio of 50mg/kgBW A. indica:112.5mg/kgBW G. procumbens showed the highest hypoglycemic effect: 68.744.83% (preprandial) and 73.913.18% (postprandial). Histological studies indicated that this combination improved the morphology of the islets of Langerhans and ? cells. It also increased insulin expression and decreased the elevated-glucose concentrations. Conclusion: This study showed that combination of both extracts has better hypoglycemic effect than the single treatment of A. indica or G. procumbens. Combination of both extracts was potential to develop as a blood glucose-lowering agent for diabetic patients. PMID:25671197

  2. Ghrelin reverses experimental diabetic neuropathy in mice

    SciTech Connect

    Kyoraku, Itaru; Shiomi, Kazutaka; Kangawa, Kenji; Nakazato, Masamitsu

    2009-11-20

    Ghrelin, an acylated peptide produced in the stomach, increases food intake and growth hormone secretion, suppresses inflammation and oxidative stress, and promotes cell survival and proliferation. We investigated the pharmacological potential of ghrelin in the treatment of polyneuropathy in uncontrolled streptozotocin (STZ)-induced diabetes in mice. Ghrelin or desacyl-ghrelin was administered daily for 4 weeks after STZ-induced diabetic polyneuropathy had developed. Ghrelin administration did not alter food intake, body weight gain, blood glucose levels, or plasma insulin levels when compared with mice given saline or desacyl-ghrelin administration. Ghrelin administration ameliorated reductions in motor and sensory nerve conduction velocities in diabetic mice and normalized their temperature sensation and plasma concentrations of 8-isoprostaglandin {alpha}, an oxidative stress marker. Desacyl-ghrelin failed to have any effect. Ghrelin administration in a mouse model of diabetes ameliorated polyneuropathy. Thus, ghrelin's effects represent a novel therapeutic paradigm for the treatment of this otherwise intractable disorder.

  3. Protective effects of Quercus salicina on alloxan-induced oxidative stress in HIT-T15 pancreatic ? cells

    PubMed Central

    SONG, JIA-LE; ZHAO, XIN; WANG, QIANG

    2013-01-01

    The present study was designed to investigate the protective effect of hot water extracts from Quercus salicina leaves (QSWE) on alloxan-induced oxidative stress in HIT-T15 Syrian hamster pancreatic insulinoma cells. The HIT-T15 cells were treated with alloxan (1 mM) for 1 h and then co-incubated with the QSWE for 24 h. Alloxan significantly decreased the viability of the HIT-T15 cells (P<0.05). QSWE did not exhibit significantly cytotoxic effects and increased the viability of the HIT-T15 cells in a concentration-dependent manner. To further investigate the protective effects of QSWE on alloxan-induced oxidative stress in HIT-T15 cells, the cellular levels of reactive oxygen species (ROS), lipid peroxidation and endogenous antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-px), were analyzed. QSWE decreased the intracellular levels of ROS and lipid peroxidation and increased the activity of antioxidant enzymes. These results suggest that QSWE exerted cytoprotective activity against alloxan-induced oxidative stress in HIT-T15 cells through the inhibition of lipid peroxidation, reduction of ROS levels and stimulation of antioxidant enzyme activity. In addition, QSWE also increased the insulin secretion activity of the alloxan-treated HIT-T15 cells. PMID:23408741

  4. Animal models of diabetes mellitus.

    PubMed

    Rees, D A; Alcolado, J C

    2005-04-01

    Animal models have been used extensively in diabetes research. Early studies used pancreatectomised dogs to confirm the central role of the pancreas in glucose homeostasis, culminating in the discovery and purification of insulin. Today, animal experimentation is contentious and subject to legal and ethical restrictions that vary throughout the world. Most experiments are carried out on rodents, although some studies are still performed on larger animals. Several toxins, including streptozotocin and alloxan, induce hyperglycaemia in rats and mice. Selective inbreeding has produced several strains of animal that are considered reasonable models of Type 1 diabetes, Type 2 diabetes and related phenotypes such as obesity and insulin resistance. Apart from their use in studying the pathogenesis of the disease and its complications, all new treatments for diabetes, including islet cell transplantation and preventative strategies, are initially investigated in animals. In recent years, molecular biological techniques have produced a large number of new animal models for the study of diabetes, including knock-in, generalized knock-out and tissue-specific knockout mice. PMID:15787657

  5. Antioxidant activity of melatonin in mice.

    PubMed

    Pierrefiche, G; Topall, G; Courboin, G; Henriet, I; Laborit, H

    1993-05-01

    Melatonin (in gum tragacanth as solvent) was administered to mice in the dose range of 100 to 450 mg/kg intraperitoneally. It prevented the increase in plasma glucose resulting from pancreatic toxicity caused by the intravenous administration of alloxan at 40 mg/kg. This action of melatonin was significant and dose-dependent. In parallel work using mouse brain homogenates, melatonin and more so its principal hepatic metabolite, 6-hydroxymelatonin, inhibited the formation of colored products reacting with thiobarbituric acid. Again, this inhibition was significant and dose-dependent. Alloxan-induced diabetes and lipoperoxidation induced by thiobarbituric acid are imputed to the production of oxygen free radicals. The consistent results obtained using these two experimental models show the antioxidant activity of melatonin, both in vivo and in vitro. This effect may be reasonably attributed to the indole structure of the molecule. PMID:8321921

  6. Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice.

    PubMed

    de Boer, Jan Freark; Annema, Wijtske; Schreurs, Marijke; van der Veen, Jelske N; van der Giet, Markus; Nijstad, Niels; Kuipers, Folkert; Tietge, Uwe J F

    2012-03-01

    Type I diabetes mellitus (T1DM) increases atherosclerotic cardiovascular disease; however, the underlying pathophysiology is still incompletely understood. We investigated whether experimental T1DM impacts HDL-mediated reverse cholesterol transport (RCT). C57BL/6J mice with alloxan-induced T1DM had higher plasma cholesterol levels (P < 0.05), particularly within HDL, and increased hepatic cholesterol content (P < 0.001). T1DM resulted in increased bile flow (2.1-fold; P < 0.05) and biliary secretion of bile acids (BA, 10.5-fold; P < 0.001), phospholipids (4.5-fold; P < 0.001), and cholesterol (5.5-fold; P < 0.05). Hepatic cholesterol synthesis was unaltered, whereas BA synthesis was increased in T1DM (P < 0.001). Mass fecal BA output was significantly higher in T1DM mice (1.5-fold; P < 0.05), fecal neutral sterol excretion did not change due to increased intestinal cholesterol absorption (2.1-fold; P < 0.05). Overall in vivo macrophage-to-feces RCT, using [(3)H]cholesterol-loaded primary mouse macrophage foam cells, was 20% lower in T1DM (P < 0.05), mainly due to reduced tracer excretion within BA (P < 0.05). In vitro experiments revealed unchanged cholesterol efflux toward T1DM HDL, whereas scavenger receptor class BI-mediated selective uptake from T1DM HDL was lower in vitro and in vivo (HDL kinetic experiments) (P < 0.05), conceivably due to increased glycation of HDL-associated proteins (+65%, P < 0.01). In summary, despite higher mass biliary sterol secretion T1DM impairs macrophage-to-feces RCT, mainly by decreasing hepatic selective uptake, a mechanism conceivably contributing to increased cardiovascular disease in T1DM. PMID:22180634

  7. Hypoglycemic Effects of Glycosaminoglycan from Urechis unicinctus in Diabetic Mice

    PubMed Central

    Liu, Ping; Han, Xu; Cui, Qingman

    2015-01-01

    Abstract To further utilize glycosaminoglycan from Urechis unicinctus, the hypoglycemic effect and possible mechanism of glycosaminoglycan on diabetic mice were evaluated. Diabetes was induced in mice by intraperitoneal injections of streptozotocin for 3 consecutive days and fed with high-sugar and high-lipid fodder. After diabetes was confirmed, the hypoglycemic effect of glycosaminoglycan from U. unicinctus was investigated in the diabetic mice. Results demonstrated that glycosaminoglycan could significantly decrease blood glucose concentrations, HOMA-IR, AUG, and liver MDA content in diabetic mice. In addition, it significantly enhanced liver SOD and GSH-Px activity, as well as liver GCK activity and hepatic glycogen levels. Glycosaminoglycan from U. unicinctus exhibited efficacy against diabetes, suggesting its potential use as a natural intervention against diabetes. PMID:25289478

  8. Effect of 'antidiabetis' herbal preparation on serum glucose and fructosamine in NOD mice.

    PubMed

    Petlevski, R; Hadzija, M; Slijepcevic, M; Juretic, D

    2001-05-01

    The antihyperglycemic effect of the Antidiabetis herbal preparation ((Myrtilli folium (Vaccinium myrtillus L.), Taraxaci radix (Taraxacum officinale Web.), Cichorii radix (Cichorium intybus L.), Juniperi fructus (Juniperus communis L.), Centaurii herba (Centaurium umbellatum Gilib.), Phaseoli pericarpium (Phaseolus vulgaris), Millefollii herba (Achillea millefolium L.), Morii folium (Morus nigra L.), Valeriane radix (Valleriana officinalis L.), Urticae herba et radix (Urtica dioica L.)), patent No. P-9801091 Zagreb, Croatia was investigated. Two extracts were prepared: ethanol extract (extract 1), and ethanol extract from which ethanol was evaporated on a rotatory evaporator at a temperature of 45 degrees C (extract 2). Extract 1 and extract 2 were administered (in experiment 1) to alloxan-induced non-obese diabetic (NOD) mice in the same dose of 20 mg/kg. Blood glucose was determined before, and 10, 30, 60 and 120 min after the preparation administration. Extract 1 and extract 2 decreased the level of blood glucose by 10 and 20%, respectively, of the initial value (at 0 min, mean = 22.6 +/- 8.3 mmol/l). Serum levels of glucose and fructosamine were determined in NOD mice, NOD mice administered extract 2 in a dose of 20 mg/kg of extract 2, and NOD mice administered acarbose in a dose of 25 mg/100 g chow, in order to verify the hypoglycemic action of extract 2 (in experiment 2). Extract 2 and acarbose were admixed to the chow. The duration of treatment was 7 days. Significantly lower glucose (P < 0.05) and fructosamine (P < 0.001) levels were recorded in extract 2 treated NOD mice as compared with NOD mice. Study results showed extract 2 to significantly decrease the level of glucose and fructosamine in alloxan induced NOD mice. Our future studies will be focused on the search of active principles of the extracts. PMID:11297848

  9. Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice

    PubMed Central

    Vikramadithyan, Reeba K.; Hu, Yunying; Noh, Hye-Lim; Liang, Chien-Ping; Hallam, Kellie; Tall, Alan R.; Ramasamy, Ravichandran; Goldberg, Ira J.

    2005-01-01

    Direct evidence that hyperglycemia, rather than concomitant increases in known risk factors, induces atherosclerosis is lacking. Most diabetic mice do not exhibit a higher degree of atherosclerosis unless the development of diabetes is associated with more severe hyperlipidemia. We hypothesized that normal mice were deficient in a gene that accelerated atherosclerosis with diabetes. The gene encoding aldose reductase (AR), an enzyme that mediates the generation of toxic products from glucose, is expressed at low levels in murine compared with human tissues. Mice in which diabetes was induced through streptozotocin (STZ) treatment, but not nondiabetic mice, expressing human AR (hAR) crossed with LDL receptor–deficient (Ldlr–/–) C57BL/6 male mice had increased aortic atherosclerosis. Diabetic hAR-expressing heterozygous LDL receptor–knockout mice (Ldlr+/–) fed a cholesterol/cholic acid–containing diet also had increased aortic lesion size. Lesion area at the aortic root was increased by STZ treatment alone but was further increased by hAR expression. Macrophages from hAR-transgenic mice expressed more scavenger receptors and had greater accumulation of modified lipoproteins than macrophages from nontransgenic mice. Expression of genes that regulate regeneration of glutathione was reduced in the hAR-expressing aortas. Thus, hAR increases atherosclerosis in diabetic mice. Inhibitors of AR or other enzymes that mediate glucose toxicity could be useful in the treatment of diabetic atherosclerosis. PMID:16127462

  10. Angiotensin II inhibitor facilitates epidermal wound regeneration in diabetic mice

    PubMed Central

    Kamber, Maria; Papalazarou, Vasileios; Rouni, Georgia; Papageorgopoulou, Evagelia; Papalois, Apostolos; Kostourou, Vassiliki

    2015-01-01

    Tissue regeneration and wound healing are severely impaired in diabetes and are associated with poor circulation and dysfunctional blood vessels. Angiotensin II inhibitors are anti-hypertensive drugs used in clinical practice to regulate blood pressure and could affect tissue remodeling. We hypothesize that blocking angiotensin II, using Losartan, could facilitate tissue regeneration in diabetic mice. To this end, we established an experimental model of wound healing in streptozotocin-induced diabetic mice. Our data demonstrated that Losartan accelerates wound repair and normalizes wound stromal responses, having a beneficial role in wounds of diabetic individuals. Our findings highlight a potential therapeutic use of Losartan in improving wound repair in diabetic conditions. PMID:26106332

  11. Therapeutic Effects of Bupleurum Polysaccharides in Streptozotocin Induced Diabetic Mice

    PubMed Central

    Li, Hong; Liu, Zhenzhen; Xu, Yanyan; Zhou, Chunjiao; Lu, Xiaoxiao; Su, Xiaoyu; Zhang, Yunyi; Chen, Daofeng

    2015-01-01

    Diabetes mellitus is related to low-grade chronic inflammation and oxidative stress. Bupleurum Polysaccharides (BPs), isolated from Bupleurum smithii var. parvifolium has anti-inflammatory and anti-oxidative properties. However, little is known about its therapeutic effects on diabetes. In this experiment, the effects of BPs on alleviation of diabetes and the underlying mechanisms were investigated. Diabetic mice model was established via successive intraperitoneal injections of streptozotocin (100 mg/kg body weight) for two days. Mice with blood glucose levels higher than 16.8mmol/L were selected for experiments. The diabetic mice were orally administered with BPs (30 and 60 mg/kg) once a day for 35 days. BPs not only significantly decreased levels of blood glucose, but also increased those of serum insulin and liver glycogen in diabetic mice compared to model mice. Additionally, BPs adminstration improved the insulin expression and suppressed the apoptosis in pancreas of the diabetic mice. Histopathological observations further demonstrated that BPs protected the pancreas and liver from oxidative and inflammatory damages. These results suggest that BPs protect pancreatic β cells and liver hepatocytes and ameliorate diabetes, which is associated with its anti-oxidative and anti-inflammatory properties. PMID:26176625

  12. Hypoglycemic activity and acute oral toxicity of chromium methionine complexes in mice.

    PubMed

    Tang, Hai-yan; Xiao, Qing-gui; Xu, Hong-bin; Zhang, Yi

    2015-01-01

    The hypoglycemic activity of chromium methionine (CrMet) in alloxan-induced diabetic (AID) mice was investigated and compared with those of chromium trichloride hexahydrate (CrCl3·6H2O) and chromium nicotinate (CrNic) through a 15-day feeding experiment. The acute oral toxicity of CrMet was also investigated in ICR (Institute for Cancer Research) mice by a single oral gavage. The anti-diabetic activity of CrMet was explored in detail from the aspects of body weight (BW), blood glucose, triglyceride, total cholesterol, liver glycogen levels, aspartate transaminase (AST) and alanine transaminase (ALT) levels. The obtained results showed that CrMet had beneficial effects on glucose and lipid metabolism, and might possess hepatoprotective efficacy for diabetes. Daily treatment with 500 and 1000μg Cr/kg BW of CrMet in AID mice for 15 days indicated that this low-molecular-weight organic chromium complex had better bioavailability and more beneficial effects on diabetics than CrCl3·6H2O. CrMet also had advantage over CrNic in the control of AST and ALT activities. Acute toxicity studies revealed that CrMet had low toxicity potential and relatively high safety margins in mice with the LD50 value higher than 10.0g/kg BW. These findings suggest that CrMet might be of potential value in the therapy and protection of diabetes. PMID:25081494

  13. Mycophenolate Mofetil Ameliorates Diabetic Nephropathy in db/db Mice

    PubMed Central

    Seo, Jung-Woo; Kim, Yang Gyun; Lee, Sang Ho; Lee, Arah; Kim, Dong-Jin; Jeong, Kyung-Hwan; Lee, Kyung Hye; Hwang, Seung Joon; Woo, Jong Shin; Lim, Sung Jig; Kim, Weon; Moon, Ju-Young

    2015-01-01

    Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Mycophenolate mofetil (MMF) has an anti-inflammatory effect, inhibiting lymphocyte proliferation. Previous studies showed attenuation of diabetic nephropathy with MMF, but the underlying mechanisms were unclear. This study aimed to identify the effect of MMF on diabetic nephropathy and investigate its action mechanisms in type 2 diabetic mice model. Eight-week-old db/db and control mice (db/m mice) received vehicle or MMF at a dose of 30?mg/kg/day for 12 weeks. MMF-treated diabetic mice showed decreased albuminuria, attenuated mesangial expansion, and profibrotic mRNA expressions despite the high glucose level. The number of infiltrated CD4+ and CD8+ T cells in the kidney was significantly decreased in MMF-treated db/db mice and it resulted in attenuating elevated intrarenal TNF-? and IL-17. The renal chemokines expression and macrophages infiltration were also attenuated by MMF treatment. The decreased expression of glomerular nephrin and WT1 was recovered with MMF treatment. MMF prevented the progression of diabetic nephropathy in db/db mice independent of glycemic control. These results suggest that the effects of MMF in diabetic nephropathy are mediated by CD4+ T cell regulation and related cytokines. PMID:26345532

  14. Algogenic mediator-induced nociceptive response in diabetic mice.

    PubMed

    Kamei, J; Kashiwazaki, T; Taki, K; Hitosugi, H; Nagase, H

    1999-03-26

    The duration of the somatostatin-, bradykinin- or prostaglandin F2alpha-induced nociceptive response was significantly less in diabetic mice than in non-diabetic mice. Subcutaneous injection of 7-benzylidenenaltrexone (0.1, 0.3 and 1 mg/kg), an antagonist of delta1-opioid receptors, had no significant effect on either somatostatin-, bradykinin- or prostaglandin F2alpha-induced nociceptive responses in non-diabetic mice. 7-Benzylidenenaltrexone (0.1 and 0.3 mg/kg, s.c.) also had no significant effect on somatostatin- or prostaglandin F2alpha-induced nociceptive responses in diabetic mice. However, the bradykinin-induced nociceptive response in diabetic mice was dose-dependently and significantly increased when 7-benzylidenenaltrexone (0.1, 0.3 and 1 mg/kg, s.c.) was injected 10 min before the injection of bradykinin. These results suggest that a spinal delta1-opioid receptor-mediated endogenous antinociceptive system may inhibit the bradykinin-mediated nociceptive responses in the second phase of the formalin-induced nociceptive response in diabetic mice. PMID:10225369

  15. Biotin amelioration of nephrotoxicity in streptozotocin-induced diabetic mice

    PubMed Central

    Aldahmash, Badr A.; El-Nagar, Doaa M.; Ibrahim, Khalid E.; Metwaly, Mahmoud S.

    2015-01-01

    The current study was carried out to investigate the protective role of biotin in kidney injury and oxidative stress in diabetic mice type 1. Male Swiss albino mice were randomly divided into 3 groups. Control group received saline. Diabetes type 1 was induced in second and third groups by intraperitoneal injection of streptozotocin as a single dose (150mg/kg). Second group remained as the untreated diabetic group and the third group received 15mg/kg daily oral dose of biotin for 12 successive days. Biochemical results showed significant elevation in blood glucose and urea levels in both diabetic groups. Also, there is an increase in glomerular areas and decrease in glomerular cellularity in both diabetic groups. Histopathological results showed severe alterations in the untreated diabetic group represented by distorted glomeruli, inflammatory cells, and giant macrophages. In addition, there was an intense immune-reaction response toward acrolein indicator of oxidative damage. Upon biotin administration of diabetic mice, the above mentioned histopathological changes were reduced and also acroline reaction of oxidative damage was diminished. Our findings prove that biotin has a protective role against streptozotocin-induced oxidative damage in kidneys of laboratory mice. PMID:26288559

  16. IFN-{gamma} gene expression in pancreatic islet-infiltrating mononuclear cells correlates with autoimmune diabetes in nonobese diabetic mice

    SciTech Connect

    Rabinovitch, A.; Suarez-Pinzon, W.L.; Sorensen, O.

    1995-05-01

    Insulin-dependent diabetes mellitus in nonobese diabetic (NOD) mice results from selective destruction of pancreatic islet {beta}-cells following islet filtration by mononuclear leukocytes. Cytokines produced by islet-infiltrating mononuclear cells may be involved in {beta}-cell destruction. Therefore, we analyzed cytokine mRNA expression, by reverse-transcriptase PCR (RT-PCR) assay, in mononuclear leukocytes isolated from pancreatic islets of four groups of mice: diabetes-prone female NOD mice; female NOD mice protected from diabetes by injection of CFA at an early age; male NOD mice with a low diabetes incidence; and female BALB/c mice that do not develop diabetes. We found that mRNA levels of IL-1{beta}, IL-2, IL-4, IL-10, and IFN-{gamma} in mononuclear cells from islets of diabetes-prone female NOD mice increased progressively as these cells infiltrated the islets from age 5 wk to diabetes onset (>13 wk). However, only IFN-{gamma} mRNA levels were significantly higher in islet mononuclear cells from 12-wk-old diabetes-prone female NOD mice than from less diabetes-prone NOD mice (CFA-treated females, and males) and normal mice (BALB/c). In contrast, IL-4 mRNA levels were lower in islet mononuclear cells from diabetes-prone female NOD mice than from NOD mice with low diabetes incidence (CFA-treated females and males). Splenic cell mRNA levels of IFN-{gamma} and IL-4 were not different in the four groups of mice. These results suggest that islet {beta}-cell destruction and diabetes in female NOD mice are dependent upon intra-islet IFN-{gamma} production by mononuclear cells, and that CFA-treated female NOD mice and male NOD mice may be protected from diabetes development by down-regulation of IFN-{gamma} production in the islets. 56 refs., 4 figs., 3 tabs.

  17. A Critical Role for Lymphotoxin-? Receptor in the Development of Diabetes in Nonobese Diabetic Mice

    PubMed Central

    Ettinger, Rachel; Munson, Sibyl H.; Chao, Cheng-Chi; Vadeboncoeur, Mary; Toma, Jon; McDevitt, Hugh O.

    2001-01-01

    To assess the role of lymphotoxin-? receptor (LT?R) in diabetes pathogenesis, we expressed an LT?RFc fusion protein in nonobese diabetic (NOD) mice. The fusion protein was expressed in the embryo, reached high levels for the first 2 wk after birth, and then declined progressively with age. High expression of LT?RFc blocked diabetes development but not insulitis. After the decline in chimeric protein concentration, mice became diabetic with kinetics similar to the controls. Early expression of fusion protein resulted in disrupted splenic architecture. However, primary follicles and follicular dendritic cells, but not marginal zones, developed in aged mice. Hence, LT?R signaling is required for diabetes development and regulates follicular and marginal zone structures via qualitatively or quantitatively distinct mechanisms. PMID:11390441

  18. Reduced Incidence and Delayed Onset of Diabetes in Perforin-deficient Nonobese Diabetic Mice

    PubMed Central

    Kgi, David; Odermatt, Bernhard; Seiler, Peter; Zinkernagel, Rolf M.; Mak, Tak W.; Hengartner, Hans

    1997-01-01

    To investigate the role of T cellmediated, perforin-dependent cytotoxicity in autoimmune diabetes, perforin-deficient mice were backcrossed with the nonobese diabetes mouse strain. It was found that the incidence of spontaneous diabetes over a 1 yr period was reduced from 77% in perforin +/+ control to 16% in perforin-deficient mice. Also, the disease onset was markedly delayed (median onset of 39.5 versus 19 wk) in the latter. Insulitis with infiltration of CD4+ and CD8+ T cells occurred similarly in both groups of animals. Lower incidence and delayed disease onset were also evident in perforin-deficient mice when diabetes was induced by cyclophosphamide injection. Thus, perforin-dependent cytotoxicity is a crucial effector mechanism for ? cell elimination by cytotoxic T cells in autoimmune diabetes. However, in the absence of perforin chronic inflammation of the islets can lead to diabetogenic ? cell loss by less efficient secondary effector mechanisms. PMID:9314549

  19. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy.

    PubMed

    Schmidt, Robert E; Dorsey, Denise A; Beaudet, Lucie N; Frederick, Kathy E; Parvin, Curtis A; Plurad, Santiago B; Levisetti, Matteo G

    2003-11-01

    To address the pathogenesis of diabetic autonomic neuropathy, we have examined the sympathetic nervous system in non-obese diabetic (NOD) and streptozotocin (STZ)-induced diabetic mice, two models of type 1 diabetes, and the db/db mouse, a model of type 2 diabetes. After only 3 to 5 weeks of diabetes, NOD mice developed markedly swollen axons and dendrites ("neuritic dystrophy") in the prevertebral superior mesenteric and celiac ganglia (SMG-CG), similar to the pathology described in diabetic STZ- and BBW-rat and man. Comparable changes failed to develop in the superior cervical ganglia of the NOD mouse or in the SMG-CG of non-diabetic NOD siblings. STZ-induced diabetic mice develop identical changes, although at a much slower pace and to a lesser degree than NOD mice. NOD-SCID mice, which are genetically identical to NOD mice except for the absence of T and B cells, do not develop diabetes or neuropathology comparable to diabetic NOD mice. However, STZ-treated NOD-SCID mice develop severe neuritic dystrophy, evidence against an exclusively autoimmune pathogenesis for autonomic neuropathy in this model. Chronically diabetic type 2 db/db mice fail to develop neuritic dystrophy, suggesting that hyperglycemia alone may not be the critical and sufficient element. The NOD mouse appears to be a valuable model of diabetic sympathetic autonomic neuropathy with unambiguous, rapidly developing neuropathology which corresponds closely to the characteristic pathology of other rodent models and man. PMID:14578206

  20. Mig6 haploinsufficiency protects mice against streptozotocin-induced diabetes

    PubMed Central

    Chen, Yi-Chun; Colvin, E. Scott; Griffin, Katherine E.; Maier, Bernhard F.; Fueger, Patrick T.

    2014-01-01

    Aims/hypothesis EGF and gastrin co-administration reverses type 1 diabetes in rodent models. However, the failure of this to translate into a clinical treatment suggests that EGF-mediated tissue repair is a complicated process and warrants further investigation. Thus, we aimed to determine whether EGF receptor (EGFR) feedback inhibition by mitogen-inducible gene 6 protein (MIG6) limits the effectiveness of EGF therapy and promotes type 1 diabetes development. Methods We treated Mig6 (also known as Errfi1) haploinsufficient mice (Mig6+/−) and their wild-type littermates (Mig6+/+) with multiple low doses of streptozotocin (STZ), and monitored diabetes development via glucose homeostasis tests and histological analyses. We also investigated MIG6-mediated cytokine-induced desensitisation of EGFR signalling and the DNA damage repair response in 832/13 INS-1 beta cells. Results Whereas STZ-treated Mig6+/+ mice became diabetic, STZ-treated Mig6+/− mice remained glucose tolerant. In addition, STZ-treated Mig6+/− mice exhibited preserved circulating insulin levels following a glucose challenge. As insulin sensitivity was similar between Mig6+/− and Mig6+/+ mice, the preserved glucose tolerance in STZ-treated Mig6+/− mice probably results from preserved beta cell function. This is supported by elevated Pdx1 and Irs2 mRNA levels in islets isolated from STZ-treated Mig6+/− mice. Conversely, MIG6 overexpression in isolated islets compromises glucose-stimulated insulin secretion. Studies in 832/13 cells suggested that cytokine-induced MIG6 hinders EGFR activation and inhibits EGF-mediated DNA damage repair. STZ-treated Mig6+/− mice also have increased beta cell mass recovery. Conclusions/interpretation Reducing Mig6 expression promotes beta cell repair and abates the development of experimental diabetes, suggesting that MIG6 may be a novel therapeutic target for preserving beta cells. PMID:24989997

  1. Role of ITGAE in the development of autoimmune diabetes in non-obese diabetic mice.

    PubMed

    Barrie, Elizabeth S; Lodder, Mels; Weinreb, Paul H; Buss, Jill; Rajab, Amer; Adin, Christopher; Mi, Qing-Sheng; Hadley, Gregg A

    2015-03-01

    There is compelling evidence that autoreactive CD8(+)T cells play a central role in precipitating the development of autoimmune diabetes in non-obese diabetic (NOD) mice, but the underlying mechanisms remain unclear. Given that ITGAE (CD103) recognizes an islet-restricted ligand (E-cadherin), we postulated that its expression is required for initiation of disease. We herein use a mouse model of autoimmune diabetes (NOD/ShiLt mice) to test this hypothesis. We demonstrate that ITGAE is expressed by a discrete subset of CD8(+)T cells that infiltrate pancreatic islets before the development of diabetes. Moreover, we demonstrate that development of diabetes in Itgae-deficient NOD mice is significantly delayed at early but not late time points, indicating that ITGAE is preferentially involved in early diabetes development. To rule out a potential contribution by closely linked loci to this delay, we treated WT NOD mice beginning at 2 weeks of age through 5 weeks of age with a depleting anti-ITGAE mAb and found a decreased incidence of diabetes following anti-ITGAE mAb treatment compared with mice that received isotype control mAbs or non-depleting mAbs to ITGAE. Moreover, a histological examination of the pancreas of treated mice revealed that NOD mice treated with a depleting mAb were resistant to immune destruction. These results indicate that ITGAE(+) cells play a key role in the development of autoimmune diabetes and are consistent with the hypothesis that ITGAE(+)CD8(+)T effectors initiate the disease process. PMID:25525188

  2. Antidiabetic effect of nitobegiku in KK-Ay diabetic mice.

    PubMed

    Miura, Toshihiro; Furuta, Ko; Yasuda, Akiyo; Iwamoto, Naoki; Kato, Motoshi; Ishihara, Eriko; Ishida, Torao; Tanigawa, Keiichiro

    2002-01-01

    In the past, nitobegiku (the herb of Tithonia diversifolia (Hemsl) A. Gray) has been used as a medicinal plant for diabetes. Antidiabetic effect of the water extract of Nitobegiku (NG) was investigated in KK-Ay-mice--one of the animal models of type 2 diabetes. NG (1,500 mg/kg body weight) reduced the blood glucose of KK-Ay mice from 509 +/- 22 mg/dl to 340 +/- 14 mg/dl (p < 0.001) and also lowered the plasma insulin (p < 0.05) 7 hours after single oral administration. No change in blood glucose of NG-treated normal mice (ddY) was seen. These results support that NG improve glucose metabolism by reducing insulin resistance. Therefore, NG may be useful for treatment of type 2 diabetes. PMID:12067100

  3. Cardiovascular manifestations of renovascular hypertension in diabetic mice

    PubMed Central

    Kashyap, Sonu; Engel, Sean; Osman, Mazen; Al-Saiegh, Yousif; Wongjarupong, Asarn

    2016-01-01

    Purpose. Type 2 diabetes is the leading cause of end stage renal disease in the United States. Atherosclerotic renal artery stenosis is commonly observed in diabetic patients and impacts the rate of renal and cardiovascular disease progression. We sought to test the hypothesis that renovascular hypertension, induced by unilateral renal artery stenosis, exacerbates cardiac remodeling in leptin-deficient (db/db) mice, which serves as a model of human type II diabetes. Methods. We employed a murine model of renovascular hypertension through placement of a polytetrafluoroethylene cuff on the right renal artery in db/db mice. We studied 109 wild-type (non-diabetic, WT) and 95 db/db mice subjected to renal artery stenosis (RAS) or sham surgery studied at 1, 2, 4, and 6+ weeks following surgery. Cardiac remodeling was assessed by quantitative analysis of the percent of myocardial surface area occupied by interstitial fibrosis tissue, as delineated by trichrome stained slides. Aortic pathology was assessed by histologic sampling of grossly apparent structural abnormalities or by section of ascending aorta of vessels without apparent abnormalities. Results. We noted an increased mortality in db/db mice subjected to RAS. The mortality rate of db/db RAS mice was about 23.5%, whereas the mortality rate of WT RAS mice was only 1.5%. Over 60% of mortality in the db/db mice occurred in the first two weeks following RAS surgery. Necropsy showed massive intrathoracic hemorrhage associated with aortic dissection, predominantly in the ascending aorta and proximal descending aorta. Aortas from db/db RAS mice showed more smooth muscle dropout, loss of alpha smooth muscle actin expression, medial disruption, and hemorrhage than aortas from WT mice with RAS. Cardiac tissue from db/db RAS mice had more fibrosis than did cardiac tissue from WT RAS mice. Conclusions. db/db mice subjected to RAS are prone to develop fatal aortic dissection, which is not observed in WT mice with RAS. The db/db RAS model provides the basis for future studies directed towards defining basic mechanisms underlying the interaction of hypertension and diabetes on the development of aortic lesions. PMID:26925344

  4. Anti-Diabetic Effects of CTB-APSL Fusion Protein in Type 2 Diabetic Mice

    PubMed Central

    Liu, Yunlong; Gao, Zhangzhao; Guo, Qingtuo; Wang, Tao; Lu, Conger; Chen, Ying; Sheng, Qing; Chen, Jian; Nie, Zuoming; Zhang, Yaozhou; Wu, Wutong; Lv, Zhengbing; Shu, Jianhong

    2014-01-01

    To determine whether cholera toxin B subunit and active peptide from shark liver (CTB-APSL) fusion protein plays a role in treatment of type 2 diabetic mice, the CTB-APSL gene was cloned and expressed in silkworm (Bombyx mori) baculovirus expression vector system (BEVS), then the fusion protein was orally administrated at a dose of 100 mg/kg for five weeks in diabetic mice. The results demonstrated that the oral administration of CTB-APSL fusion protein can effectively reduce the levels of both fasting blood glucose (FBG) and glycosylated hemoglobin (GHb), promote insulin secretion and improve insulin resistance, significantly improve lipid metabolism, reduce triglycerides (TG), total cholesterol (TC) and low density lipoprotein (LDL) levels and increase high density lipoprotein (HDL) levels, as well as effectively improve the inflammatory response of type 2 diabetic mice through the reduction of the levels of inflammatory cytokines tumor necrosis factor-? (TNF-?) and interleukin-6 (IL-6). Histopathology shows that the fusion protein can significantly repair damaged pancreatic tissue in type 2 diabetic mice, significantly improve hepatic steatosis and hepatic cell cloudy swelling, reduce the content of lipid droplets in type 2 diabetic mice, effectively inhibit renal interstitial inflammatory cells invasion and improve renal tubular epithelial cell nucleus pyknosis, thus providing an experimental basis for the development of a new type of oral therapy for type 2 diabetes. PMID:24633252

  5. Anti-diabetic activity of recombinant irisin in STZ-induced insulin-deficient diabetic mice.

    PubMed

    Duan, Huikun; Ma, Baicheng; Ma, Xiaofeng; Wang, Haisong; Ni, Zaizhong; Wang, Bin; Li, Xiaodan; Jiang, Pingzhe; Umar, Muhammad; Li, Minggang

    2016-03-01

    In order to investigate the hypoglycemic effects and potential mechanism of recombinant irisin on diabetes, STZ-induced diabetic mice were established and treated with irisin. The results showed that daily water and food intake, and blood glucose significantly decreased after various concentrations of recombinant irisin treatment by intraperitoneal injection, of which 1.0mg/kg was the optimal dose for lowering blood glucose. However, the body weight exhibited no significant difference during the treatment within groups, although the 0.9% NaCl treated group showed a trend of decreased body weight and the irisin treated groups showed a tendency of increasing weight. The oral glucose tolerance was improved, and serum insulin and circulating irisin content were significantly elevated in diabetic mice after 1.0mg/kg irisin-injection treatment, compared to diabetic mice treated with 0.9% NaCl. 1.0mg/kg irisin-injection also significantly increased the expression of energy and metabolism-related genes. In addition, oral administration of irisin lowered the blood glucose in diabetic mice. Our data suggested that irisin could lower blood glucose in insulin-deficient diabetic mice, to some extent, through irisin-mediated induction of energy and metabolic genes expression. These observations laid a foundation for the development of irisin-based therapy. PMID:26712701

  6. Black Ginseng Extract Counteracts Streptozotocin-Induced Diabetes in Mice

    PubMed Central

    Kim, Jun Ho; Pan, Jeong Hoon; Cho, Hyung Taek; Kim, Young Jun

    2016-01-01

    Black ginseng, a new type of processed ginseng that has a unique ginsenoside profile, has been shown to display potent pharmacological activities in in vitro and in vivo models. Although red ginseng is considered beneficial for the prevention of diabetes, the relationship between black ginseng and diabetes is unknown. Therefore, this study was designed to evaluate the anti-diabetic potential of black ginseng extract (BGE) in streptozotocin (STZ)-induced insulin-deficient diabetic mice, in comparison with red ginseng extract (RGE). HPLC analyses showed that BGE has a different ginsenoside composition to RGE; BGE contains Rg5 and compound k as the major ginsenosides. BGE at 200 mg/kg reduced hyperglycemia, increased the insulin/glucose ratio and improved islet architecture and β-cell function in STZ-treated mice. The inhibition of β-cell apoptosis by BGE was associated with suppression of the cytokine—induced nuclear factor–κB—mediated signaling pathway in the pancreas. Moreover, these anti-diabetic effects of BGE were more potent than those of RGE. Collectively, our data indicate that BGE, in part by suppressing cytokine—induced apoptotic signaling, protects β-cells from oxidative injury and counteracts diabetes in mice. PMID:26751692

  7. Black Ginseng Extract Counteracts Streptozotocin-Induced Diabetes in Mice.

    PubMed

    Kim, Jun Ho; Pan, Jeong Hoon; Cho, Hyung Taek; Kim, Young Jun

    2016-01-01

    Black ginseng, a new type of processed ginseng that has a unique ginsenoside profile, has been shown to display potent pharmacological activities in in vitro and in vivo models. Although red ginseng is considered beneficial for the prevention of diabetes, the relationship between black ginseng and diabetes is unknown. Therefore, this study was designed to evaluate the anti-diabetic potential of black ginseng extract (BGE) in streptozotocin (STZ)-induced insulin-deficient diabetic mice, in comparison with red ginseng extract (RGE). HPLC analyses showed that BGE has a different ginsenoside composition to RGE; BGE contains Rg5 and compound k as the major ginsenosides. BGE at 200 mg/kg reduced hyperglycemia, increased the insulin/glucose ratio and improved islet architecture and β-cell function in STZ-treated mice. The inhibition of β-cell apoptosis by BGE was associated with suppression of the cytokine-induced nuclear factor-κB-mediated signaling pathway in the pancreas. Moreover, these anti-diabetic effects of BGE were more potent than those of RGE. Collectively, our data indicate that BGE, in part by suppressing cytokine-induced apoptotic signaling, protects β-cells from oxidative injury and counteracts diabetes in mice. PMID:26751692

  8. Skin wound healing in diabetic ß6 integrin deficient mice

    PubMed Central

    Jacobsen, Jasper N.; Steffensen, Bjørn; Hâkkinen, Lari; Krogfelt, Karen A.; Larjava, Hannu S.

    2010-01-01

    Integrin αvβ6 is a heterodimeric cell surface receptor which is absent from normal epithelium, but expressed in wound-edge keratinocytes during re-epithelialization. However, the function of the αvβ6 integrin in wound repair remains unclear. Impaired wound healing in patients with diabetes constitutes a major clinical problem worldwide and has been associated with accumulation of advanced glycated endproducts (AGEs) in the tissues. AGEs may account for aberrant interactions between integrin receptors and their extracellular matrix ligands such as fibronectin (FN). In this study, we compared healing of experimental excisional skin wounds in wild-type (WT) and β6-knockout (β6-/-) mice with streptozotocin (STZ)-induced diabetes. Results showed that diabetic β6-/- mice had significant delay in early wound closure rate as compared to diabetic WT mice, suggesting that the αvβ6 integrin may serve as a protective role in re-epithelialization of diabetic wounds. To mimic glycosylated wound matrix, we generated a methylglyoxal (MG)-glycated variant of FN. Keratinocytes utilized αvβ6 and ß1 integrins for spreading on both nonglycated and MG-FN, but their spreading was reduced on MG-FN. These findings indicated that glycation of FN and possibly other integrin ligands could hamper keratinocyte interactions with the provisional matrix proteins during re-epithelialization of diabetic wounds. PMID:20854469

  9. Can garlic oil ameliorate diabetes-induced oxidative stress in a rat liver model? A correlated histological and biochemical study.

    PubMed

    Abdultawab, Hanem Saad; Ayuob, Nasra N

    2013-09-01

    This study aimed to characterise the structural changes in liver of an alloxan-induced diabetic rat and to explain such changes in terms of the biochemical changes in free radicals and antioxidants. In addition, it aimed to determine the potential ability of garlic oil to alter these changes. The study groups were: control (n=12), alloxan-induced diabetic rats (n=10) and alloxan-induced diabetic rats treated with garlic oil (10 mg/kg body weight (n=10)). Markers of oxidative stress were assessed. Small pieces of the liver were processed for transmission electron microscopic study. Garlic oil caused a significant decrease in levels of LPO in plasma (0.26 vs 0.53), erythrocyte lysate (14.4 vs 24.8) and liver tissue homogenate (1.04 vs 2.08), whereas those of thiols were significantly elevated (1.2 vs 0.46), (24 vs 15) in plasma and erythrocyte lysate respectively. SOD activity and G-S-T activity were significantly elevated in erythrocyte lysate (5.7 vs 3.3) (377 vs 179) and liver homogenate (1.4 vs 0.5) (752 vs 623) respectively after garlic oil administration. Ultrastructural study of the liver confirmed the ability of garlic to retard lipid peroxidation of cellular membranes induced by oxidative stress associated with diabetes. Therefore, garlic could normalise oxidative stress in alloxan-induced diabetic rats. PMID:23856496

  10. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    PubMed Central

    Alkan, Manal; Machavoine, François; Rignault, Rachel; Dam, Julie; Dy, Michel; Thieblemont, Nathalie

    2015-01-01

    Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD) mouse model. To this end, we used mice (inactivated) knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC−/− mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γ in HDC−/− mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC−/− mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response. PMID:26090474

  11. Streptozotocin-induced diabetic models in mice and rats.

    PubMed

    Wu, Kenneth K; Huan, Youming

    2008-03-01

    Streptozotocin (STZ) is an antibiotic that can cause pancreatic ?-cell destruction, so it is widely used experimentally as an agent capable of inducing insulin-dependent diabetes mellitus (IDDM), also known as type 1 diabetes mellitus (T1DM). This unit describes protocols for the production of insulin deficiency and hyperglycemia in mice and rats, using STZ. These models for diabetes can be employed for assessing the mechanisms of T1DM, screening potential therapies for the treatment of this condition, and evaluation of therapeutic options. PMID:22294227

  12. Expression profiling pre-diabetic mice to uncover drugs with clinical application to type 1 diabetes

    PubMed Central

    Pang, Dimeng; Irvine, Katharine M; Mehdi, Ahmed M; Thomas, Helen E; Harris, Mark; Hamilton-Williams, Emma E; Thomas, Ranjeny

    2015-01-01

    In the NOD mouse model of type 1 diabetes (T1D), genetically identical mice in the same environment develop diabetes at different rates. Similar heterogeneity in the rate of progression to T1D exists in humans, but the underlying mechanisms are unclear. Here, we aimed to discover peripheral blood (PB) genes in NOD mice predicting insulitis severity and rate of progression to diabetes. We then wished to use these genes to mine existing databases to identify drugs effective in diabetes. In a longitudinal study, we analyzed gene expression in PB samples from NOD.CD45.2 mice at 10 weeks of age, then scored pancreatic insulitis at 14 weeks or determined age of diabetes onset. In a multilinear regression model, Tnf and Tgfb mRNA expression in PB predicted insulitis score (R2=0.56, P=0.01). Expression of these genes did not predict age of diabetes onset. However, by expression-profiling PB genes in 10-week-old NOD.CD45.2 mice, we found a signature of upregulated genes that predicted delayed or no diabetes. Major associated pathways included chromatin organization, cellular protein location and regulation of nitrogen compounds and RNA. In a clinical cohort, three of these genes were differentially expressed between first-degree relatives, T1D patients and controls. Bioinformatic analysis of differentially expressed genes in NOD.CD45.2 PB identified drugs that are predicted to delay or prevent diabetes. Of these drugs, 11 overlapped with drugs predicted to induce a human non-progressor' expression profile. These data demonstrate that disease heterogeneity in diabetes-prone mice can be exploited to mine novel clinical T1D biomarkers and drug targets. PMID:26366287

  13. Knockdown of Glyoxalase 1 Mimics Diabetic Nephropathy in Nondiabetic Mice

    PubMed Central

    Giacco, Ferdinando; Du, Xueliang; D’Agati, Vivette D.; Milne, Ross; Sui, Guangzhi; Geoffrion, Michele; Brownlee, Michael

    2014-01-01

    Differences in susceptibility to diabetic nephropathy (DN) between mouse strains with identical levels of hyperglycemia correlate with renal levels of oxidative stress, shown previously to play a central role in the pathogenesis of DN. Susceptibility to DN appears to be genetically determined, but the critical genes have not yet been identified. Overexpression of the enzyme glyoxalase 1 (Glo1), which prevents posttranslational modification of proteins by the glycolysis-derived α-oxoaldehyde, methylglyoxal (MG), prevents hyperglycemia-induced oxidative stress in cultured cells and model organisms. In this study, we show that in nondiabetic mice, knockdown of Glo1 increases to diabetic levels both MG modification of glomerular proteins and oxidative stress, causing alterations in kidney morphology indistinguishable from those caused by diabetes. We also show that in diabetic mice, Glo1 overexpression completely prevents diabetes-induced increases in MG modification of glomerular proteins, increased oxidative stress, and the development of diabetic kidney pathology, despite unchanged levels of diabetic hyperglycemia. Together, these data indicate that Glo1 activity regulates the sensitivity of the kidney to hyperglycemic-induced renal pathology and that alterations in the rate of MG detoxification are sufficient to determine the glycemic set point at which DN occurs. PMID:24062246

  14. Knockdown of glyoxalase 1 mimics diabetic nephropathy in nondiabetic mice.

    PubMed

    Giacco, Ferdinando; Du, Xueliang; D'Agati, Vivette D; Milne, Ross; Sui, Guangzhi; Geoffrion, Michele; Brownlee, Michael

    2014-01-01

    Differences in susceptibility to diabetic nephropathy (DN) between mouse strains with identical levels of hyperglycemia correlate with renal levels of oxidative stress, shown previously to play a central role in the pathogenesis of DN. Susceptibility to DN appears to be genetically determined, but the critical genes have not yet been identified. Overexpression of the enzyme glyoxalase 1 (Glo1), which prevents posttranslational modification of proteins by the glycolysis-derived ?-oxoaldehyde, methylglyoxal (MG), prevents hyperglycemia-induced oxidative stress in cultured cells and model organisms. In this study, we show that in nondiabetic mice, knockdown of Glo1 increases to diabetic levels both MG modification of glomerular proteins and oxidative stress, causing alterations in kidney morphology indistinguishable from those caused by diabetes. We also show that in diabetic mice, Glo1 overexpression completely prevents diabetes-induced increases in MG modification of glomerular proteins, increased oxidative stress, and the development of diabetic kidney pathology, despite unchanged levels of diabetic hyperglycemia. Together, these data indicate that Glo1 activity regulates the sensitivity of the kidney to hyperglycemic-induced renal pathology and that alterations in the rate of MG detoxification are sufficient to determine the glycemic set point at which DN occurs. PMID:24062246

  15. DBA/2J Mice Are Susceptible to Diabetic Nephropathy and Diabetic Exacerbation of IOP Elevation

    PubMed Central

    Soto, Ileana; Howell, Gareth R.; John, Cai W.; Kief, Joseph L.; Libby, Richard T.; John, Simon W. M.

    2014-01-01

    Some pathological manifestations of diabetes in the eye include retinopathy, cataracts and elevated intraocular pressure (IOP). Loss of retinal ganglion cells (RGCs) in non-proliferative stages of diabetic retinopathy and small increases in IOP in diabetic patients has raised the possibility that diabetes affects the development and progression of ocular hypertension and glaucoma. The Ins2Akita mutation is known to cause diabetes and retinopathy on a C57BL/6J (B6) background by as early as 3 months of age. Here, the impact of the Akita mutation on glaucoma was assessed using DBA/2J (D2) mice, a widely used mouse model of ocular hypertension induced glaucoma. In D2.Ins2Akita/+ mice, the contribution of diabetes to vascular permeability, IOP elevation, RGC loss, and glaucoma development was assessed. D2.Ins2Akita/+ mice developed a severe diabetic nephropathy and early mortality between 68 months of age. This agrees with previous reports showing that the D2 background is more susceptible to diabetes than the B6 background. In addition, D2.Ins2Akita/+ mice had vascular leakage, astrocyte reactivity and a significant increase in IOP. However no RGC loss and no anterograde axonal transport dysfunction were found at 8.5 months of age. Therefore, our data show that despite severe diabetes and an increased IOP compared to controls, RGCs do not lose axon transport or degenerate. This may be due to a DBA/2J-specific genetic modifier(s) that could provide novel and important avenues for developing new therapies for diabetic retinopathy and possibly glaucoma. PMID:25207540

  16. Immunization of AGE-modified albumin inhibits diabetic nephropathy progression in diabetic mice

    PubMed Central

    Mashitah, Musthika Wida; Azizah, Nurona; Samsu, Nur; Indra, Muhammad Rasjad; Bilal, Muhammad; Yunisa, Meti Verdian; Arisanti, Amildya Dwi

    2015-01-01

    Background Diabetic nephropathy (DN) is a serious vascular complication of diabetes and an important cause of end-stage renal disease. One mechanism by which hyperglycemia causes nephropathy is through the formation of advanced glycation end products (AGE). Development of vaccination would be a promising therapy for the future, while to date, anti-AGE therapy is based on medicines that are needed to be consumed lifelong. This study aimed to find out the effect of immunization of AGE-modified albumin against DN pathogenesis in streptozotocin-induced diabetic in mice. Methods We used 24 BALB/c male mice as experimental animals, which were divided into six groups, two nondiabetic groups (negative control and AGE-modified bovine serum albumin [BSA] preimmunized groups) and four streptozotocin-induced diabetic groups (diabetic control group and diabetic preimmunized groups for AGE-BSA, Keyhole limpet hemocyanin (KLH), and AGE-BSA-KLH, respectively). Results Diabetic preimmunized groups for AGE-BSA, KLH, and AGE-BSA-KLH showed amelioration in renal function and histopathology compared with the diabetic control group. Preimmunization also maintained nephrin intensity and decreased serum AGE level, kidney AGE deposition, and kidney cells apoptosis. Conclusion AGE-BSA and AGE-BSA-KLH immunizations inhibit the progression of DN. Our results strengthen the evidence that the anti-AGE antibodies have a protective role against diabetic vascular complication, especially DN. This study provides a basis for the development of DN-based immunotherapy with AGE immunization as a potential candidate. PMID:26346342

  17. Ergosterol Alleviates Kidney Injury in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Ang, Li; Yuguang, Liu; Liying, Wang; Shuying, Zhang; Liting, Xu; Shumin, Wang

    2015-01-01

    Ergosterol (ERG) has been widely used in the development of novel drugs due to its unique physiological function. However, little is known about the protective effects of ERG on diabetes. Hence, the current study was designed to evaluate the positive role of ergosterol on streptozotocin- (STZ-) induced diabetes in mice. Oral glucose tolerance test (OGTT) was carried out to assess blood glucose level. Biochemical parameters such as uric acid, creatinine, serum insulin, triglycerides (TG), and total cholesterol (TC) were also measured. Pathological condition of kidney was examined by hematoxylin-eosin (H&E) staining. The expressions of PI3K, p-PI3K, Akt, p-Akt, NF-?Bp65, p-NF-?Bp65, I?B?, and p-I?B? were analyzed by western blot. ERG significantly reduced the concentrations of blood glucose, uric acid, creatinine, TG, and TC. Serum insulin was elevated with ERG treatment. In addition, renal pathologic changes of diabetes mice were also alleviated by ERG. Obtained data revealed that ERG restored the levels of PI3K/Akt/NF-?B signaling-related proteins in comparison with diabetes mice. Above all, it could be assumed that ERG might play a positive role in regulating STZ-induced diabetes through suppressing PI3K/Akt/NF-?B pathway. PMID:26664454

  18. Experimental diabetes in mice infected with Coxsackie viruses

    SciTech Connect

    Bocharov, E.F.; Shorin, Yu.P.; Solodovnikova, I.A.; Kazaryan, L.S.; Selyatitskaya, V.G.; Pal'chikova, N.A.

    1987-07-01

    The authors compare the effect of Coxsackie B4 and A13 viruses on the pancreas of strains of mice sensitive and resistant to diabetes, using subdiabetogenic doses of alloxan in the second case. The biochemical investigation included determination of immunoreactive insulin in the blood serum by radioimmunoassay. Biochemical changes were seen such as lowered glucose tolerance and disturbance of immunoreactive insulin synthesis.

  19. Cutting Edge: Nonobese Diabetic Mice Deficient in Chromogranin A Are Protected from Autoimmune Diabetes.

    PubMed

    Baker, Rocky L; Bradley, Brenda; Wiles, Timothy A; Lindsay, Robin S; Barbour, Gene; Delong, Thomas; Friedman, Rachel S; Haskins, Kathryn

    2016-01-01

    T cells reactive to ? cell Ags are critical players in the development of autoimmune type 1 diabetes. Using a panel of diabetogenic CD4 T cell clones derived from the NOD mouse, we recently identified the ? cell secretory granule protein, chromogranin A (ChgA), as a new autoantigen in type 1 diabetes. CD4 T cells reactive to ChgA are pathogenic and rapidly transfer diabetes into young NOD recipients. We report in this article that NOD.ChgA(-/-) mice do not develop diabetes and show little evidence of autoimmunity in the pancreatic islets. Using tetramer analysis, we demonstrate that ChgA-reactive T cells are present in these mice but remain naive. In contrast, in NOD.ChgA(+/+) mice, a majority of the ChgA-reactive T cells are Ag experienced. Our results suggest that the presence of ChgA and subsequent activation of ChgA-reactive T cells are essential for the initiation and development of autoimmune diabetes in NOD mice. PMID:26608914

  20. Amelioration of Diabetes and Painful Diabetic Neuropathy by Punica granatum L. Extract and Its Spray Dried Biopolymeric Dispersions

    PubMed Central

    Raafat, K.; Samy, W.

    2014-01-01

    Aims. To evaluate the effect of Punica granatum (Pg) rind extract and its spray dried biopolymeric dispersions with casein (F1) or chitosan (F2) against Diabetes mellitus (DM) and diabetic neuropathy (DN). Methods. We measured the acute (6?h) and subacute (8 days) effect of various doses of Pg, F1, and F2 and the active compounds on alloxan-induced DM mouse model. We evaluated DN utilizing latency tests for longer period of time (8 weeks). In addition, the in vivo antioxidant activity was assessed utilizing serum catalase level. Results. The results proved that the highest dose levels of Pg extract, F1, F2 exerted remarkable hypoglycemic activity with 48, 52, and 40% drop in the mice glucose levels after 6 hours, respectively. The tested compounds also improved peripheral nerve function as observed from the latency tests. Bioguided fractionation suggested that gallic acid (GA) was Pg main active ingredient responsible for its actions. Conclusion. Pg extract, F1, F2, and GA could be considered as a new therapeutic potential for the amelioration of diabetic neuropathic pain and the observed in vivo antioxidant potential may be involved in its antinociceptive effect. It is highly significant to pay attention to Pg and GA for amelioration and control of DM and its complications. PMID:24982685

  1. Assessment of diabetic cardiac autonomic neuropathy in type I diabetic mice.

    PubMed

    Yang, Bufan; Chon, Ki H

    2011-01-01

    Diabetic cardiac autonomic neuropathy (DCAN) is one of the most common complications of diabetes. One reason why the pathogenesis of DCAN is unclear is that non-invasive assessment of DCAN in humans and animals has been problematic. To overcome this limitation, we utilized a sensitive and non-invasive method to assess cardiac autonomic dysregulation from ECG records. The method, which could be easily applied to humans, is based on principal dynamic mode (PDM) analysis of heart rate variability (HRV). The method is unique, in that is able to separately identify the activities of the parasympathetic and sympathetic systems without pharmacological intervention. In our study, ECG was measured via telemetry in ten sex- and age-matched (4 month old male) C57 (n=5) and Akita (n=5) mice, a model of insulin-dependent type 1 diabetes. The results indicate significant reduced cardiac autonomic function in the diabetic mice in comparison to the controls. Further, both immunohistochemical and Western blot analyses show a reduction in nerve density in Akita mice as compared to the control mice, thus, corroborating our PDM data analysis of HRV records. PMID:22255842

  2. The effect of B vitamin supplementation on wound healing in type 2 diabetic mice

    PubMed Central

    Mochizuki, Saeka; Takano, Mayuko; Sugano, Naoyuki; Ohtsu, Mariko; Tsunoda, Kou; Koshi, Ryosuke; Yoshinuma, Naoto

    2016-01-01

    The aim of this study was to test the effects of B-group vitamin supplements on wound healing in diabetic mice. The mice in the experimental group were treated daily with 1 g/L B6, 1.25 mg/L B12, and 62.5 mg/L folic acid in their drinking water. Full-thickness excision wounds were created with 6-mm skin biopsy punches. Each wound closure was digitally photographed. Beginning on day 3 after wounding, the wound area in the diabetic mice was statistically larger than that of normal mice (p<0.05 vs diabetic mice). The diabetic mice treated with B vitamins displayed accelerated wound closure on day 3 (wound area 42.8 ± 11.3%, p<0.05). On day 9 after wounding, the wound area in the diabetic mice was also statistically larger than that of normal mice (p<0.05 vs diabetic mice). The diabetic mice treated with B vitamins displayed accelerated wound closure on day 3 (wound area 13.2 ± 16.8%, p<0.05). In addition, the high glucose level in the diabetic animals decreased significantly in response to B vitamin treatment. In conclusion, the results of this study indicate that B vitamin supplementation may improve wound healing in diabetic mice. PMID:26798199

  3. Use of NOD Mice to Understand Human Type 1 Diabetes

    PubMed Central

    Thayer, Terri C.; Wilson, Brian S.; Mathews, Clayton E.

    2010-01-01

    Synopsis In 1922, Leonard Thompson received the first injections of insulin prepared from the pancreas of canine test subjects. From pancreatectomized dogs to the more recent development of animal models that spontaneously develop autoimmune syndromes, animal models have played a meaningful role in furthering diabetes research. Of these animals the non-obese diabetic (NOD) mouse is the most widely used for research in Type 1 Diabetes (T1D) as the NOD shares a number of genetic and immunologic traits with the human form of the disease. In this chapter, we review both similarities and differences in NOD and human T1D and discuss the potential role of NOD mice in future pre-clinical studies aiming to provide a better understanding of the genetic and immune defects that lead to T1D. PMID:20723819

  4. A Novel Quantitative Method for Diabetic Cardiac Autonomic Neuropathy Assessment in Type 1 Diabetic Mice

    PubMed Central

    Yang, Bufan; Posada-Quintero, Hugo F.; Siu, Kin L.; Rolle, Marsha; Brink, Peter; Birzgalis, Aija; Moore, Leon C.

    2014-01-01

    In this work, we used a sensitive and noninvasive computational method to assess diabetic cardiovascular autonomic neuropathy (DCAN) from pulse oximeter (photoplethysmographic; PPG) recordings from mice. The method, which could be easily applied to humans, is based on principal dynamic mode (PDM) analysis of heart rate variability (HRV). Unlike the power spectral density, PDM has been shown to be able to separately identify the activities of the parasympathetic and sympathetic nervous systems without pharmacological intervention. HRV parameters were measured by processing PPG signals from conscious 1.5- to 5-month-old C57/BL6 control mice and in Akita mice, a model of insulin-dependent type 1 diabetes, and compared with the gold-standard Western blot and immunohistochemical analyses. The PDM results indicate significant cardiac autonomic impairment in the diabetic mice in comparison to the controls. When tail-cuff PPG recordings were collected and analyzed starting from 1.5 months of age in both C57/Bl6 controls and Akita mice, onset of DCAN was seen at 3 months in the Akita mice, which persisted up to the termination of the recording at 5 months. Western blot and immunohistochemical analyses also showed a reduction in nerve density in Akita mice at 3 and 4 months as compared to the control mice, thus, corroborating our PDM data analysis of HRV records. Western blot analysis of autonomic nerve proteins corroborated the PPG-based HRV analysis via the PDM approach. In contrast, traditional HRV analysis (based on either the power spectral density or time-domain measures) failed to detect the nerve rarefaction. PMID:25097056

  5. A novel quantitative method for diabetic cardiac autonomic neuropathy assessment in type 1 diabetic mice.

    PubMed

    Chon, Ki H; Yang, Bufan; Posada-Quintero, Hugo F; Siu, Kin L; Rolle, Marsha; Brink, Peter; Birzgalis, Aija; Moore, Leon C

    2014-11-01

    In this work, we used a sensitive and noninvasive computational method to assess diabetic cardiovascular autonomic neuropathy (DCAN) from pulse oximeter (photoplethysmographic; PPG) recordings from mice. The method, which could be easily applied to humans, is based on principal dynamic mode (PDM) analysis of heart rate variability (HRV). Unlike the power spectral density, PDM has been shown to be able to separately identify the activities of the parasympathetic and sympathetic nervous systems without pharmacological intervention. HRV parameters were measured by processing PPG signals from conscious 1.5- to 5-month-old C57/BL6 control mice and in Akita mice, a model of insulin-dependent type 1 diabetes, and compared with the gold-standard Western blot and immunohistochemical analyses. The PDM results indicate significant cardiac autonomic impairment in the diabetic mice in comparison to the controls. When tail-cuff PPG recordings were collected and analyzed starting from 1.5 months of age in both C57/Bl6 controls and Akita mice, onset of DCAN was seen at 3 months in the Akita mice, which persisted up to the termination of the recording at 5 months. Western blot and immunohistochemical analyses also showed a reduction in nerve density in Akita mice at 3 and 4 months as compared to the control mice, thus, corroborating our PDM data analysis of HRV records. Western blot analysis of autonomic nerve proteins corroborated the PPG-based HRV analysis via the PDM approach. In contrast, traditional HRV analysis (based on either the power spectral density or time-domain measures) failed to detect the nerve rarefaction. PMID:25097056

  6. Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice.

    PubMed

    Fu, Zhuo; Zhen, Wei; Yuskavage, Julia; Liu, Dongmin

    2011-04-01

    Type 1 diabetes (T1D) results from the autoimmune-mediated destruction of pancreatic ?-cells, leading to deficiency of insulin production. Successful islet transplantation can normalise hyperglycaemia in T1D patients; however, the limited availability of the islets, loss of islet cell mass through apoptosis after islet isolation and potential autoimmune destruction of the transplanted islets prevent the widespread use of this procedure. Therefore, the search for novel and cost-effective agents that can prevent or treat T1D is extremely important to decrease the burden of morbidity from this disease. In the present study, we discovered that (-)-epigallocatechin gallate (EGCG, 005% in drinking-water), the primary polyphenolic component in green tea, effectively delayed the onset of T1D in non-obese diabetic (NOD) mice. At 32 weeks of age, eight (667%) out of twelve mice in the control group developed diabetes, whereas only three (25%) out of twelve mice in the EGCG-treated group became diabetic (P<005). Consistently, mice supplemented with EGCG had significantly higher plasma insulin levels and survival rate but lower glycosylated Hb concentrations compared with the control animals. EGCG had no significant effects on food or water intake and body weight in mice, suggesting that the glucose-lowering effect was not due to an alteration in these parameters. While EGCG did not modulate insulitis, it elevated the circulating anti-inflammatory cytokine IL-10 level in NOD mice. These findings demonstrate that EGCG may be a novel, plant-derived compound capable of reducing the risk of T1D. PMID:21144096

  7. Piceatannol lowers the blood glucose level in diabetic mice.

    PubMed

    Uchida-Maruki, Hiroko; Inagaki, Hiroyuki; Ito, Ryouichi; Kurita, Ikuko; Sai, Masahiko; Ito, Tatsuhiko

    2015-01-01

    We previously found that passion fruit (Passiflora edulis) seeds contained a high amount of piceatannol (3,5,3',4'-trans-tetrahydroxystilbene), a natural analog of resveratrol (3,5,4'-trans-trihydroxystilbene). Resveratrol has been proposed as a potential anti-metabolic disorder compound, by its activation of sirtuin and AMP-activated protein kinase. Many reports show that resveratrol ameliorates diet-induced obesity and insulin resistance. However, it is not known whether piceatannol also affects diet-induced obesity. We explored the effect of piceatannol on high fat diet-fed mice. The results showed that piceatannol did not affect high fat diet-induced body weight gain or visceral fat gain in mice. However, piceatannol did reduce fasting blood glucose levels. Furthermore, to explore the potential of passion fruit seed extract containing piceatannol as a functional food, passion fruit seed extract was administered in a genetic diabetic mouse model (db/db mice). Single administration of passion fruit seed extract, as well as piceatannol reduced the blood glucose levels of these db/db mice. These results suggest that piceatannol and passion fruit seed extract may have potential application in the prevention of diabetes. PMID:25832644

  8. Role of intracellular calcium in thermal allodynia and hyperalgesia in diabetic mice.

    PubMed

    Ohsawa, M; Kamei, J

    1999-07-01

    We examined the involvement of cytosolic calcium on thermal hyperalgesia and allodynia seen in diabetic mice. Tail-flick latencies at source voltages of a 50-W projection bulb to 35 and 50 V in diabetic mice were significantly shorter than those in non-diabetic mice. Tail-flick latencies at 35 and 50 V in diabetic mice were increased by pretreatment with ryanodine, which blocks Ca2+ release from Ca2+/caffeine-sensitive microsomal pools. On the other hand, intrathecal (i.t.) pretreatment with thapsigargin, which inhibits Ca2+ uptake into the inositol-1,4,5-trisphosphate-sensitive microsomal Ca2+ pool, decreased tail-flick latencies at 35 and 50 V in non-diabetic mice. Thus, it seems likely that thermal allodynia and hyperalgesia in diabetic mice may be due, in part, to the enhancement of intracellular calcium level in the spinal cord. PMID:10375704

  9. Galantamine Attenuates Type 1 Diabetes and Inhibits Anti-Insulin Antibodies in Nonobese Diabetic Mice

    PubMed Central

    Hanes, William M; Olofsson, Peder S; Kwan, Kevin; Hudson, LaQueta K; Chavan, Sangeeta S; Pavlov, Valentin A; Tracey, Kevin J

    2015-01-01

    Type 1 diabetes in mice is characterized by autoimmune destruction of insulin-producing pancreatic ?-cells. Disease pathogenesis involves invasion of pancreatic islets by immune cells, including macrophages and T cells, and production of antibodies to self-antigens, including insulin. Activation of the inflammatory reflex, the neural circuit that inhibits inflammation, culminates on cholinergic receptor signals on immune cells to attenuate cytokine release and inhibit B-cell antibody production. Here, we show that galantamine, a centrally acting acetylcholinesterase inhibitor and an activator of the inflammatory reflex, attenuates murine experimental type 1 diabetes. Administration of galantamine to animals immunized with keyhole limpet hemocyanin (KLH) significantly suppressed splenocyte release of immunoglobulin G (IgG) and interleukin (IL)-4 and IL-6 during KLH challenge ex vivo. Administration of galantamine beginning at 1 month of age in nonobese diabetic (NOD) mice significantly delayed the onset of hyperglycemia, attenuated immune cell infiltration in pancreatic islets and decreased anti-insulin antibodies in serum. These observations indicate that galantamine attenuates experimental type 1 diabetes in mice and suggest that activation of the inflammatory reflex should be further studied as a potential therapeutic approach. PMID:26322849

  10. Antinociceptive effects of the ORL1 receptor agonist nociceptin/orphanin FQ in diabetic mice.

    PubMed

    Kamei, J; Ohsawa, M; Kashiwazaki, T; Nagase, H

    1999-04-01

    The antinociceptive potency of nociceptin/orphanin FQ, an opioid-like orphan receptor agonist, was examined using the tail-flick test and the formalin-induced nociception test in diabetic mice. Nociceptin/orphanin FQ, at doses of 0.1 to 10 nmol, intrathecal (i.t.), produced a marked and dose-dependent inhibition of the tail-flick response in both non-diabetic and diabetic mice. The antinociceptive effect of nociceptin/orphanin FQ in the tail-flick test in diabetic mice was greater than that in non-diabetic mice. The antinociceptive effect of nociceptin/orphanin FQ was not antagonized by pretreatment with either beta-funaltrexamine, a selective mu-opioid receptor antagonist, naltrindole, a selective delta-opioid receptor antagonist, or nor-binaltorphimine, a selective kappa-opioid receptor antagonist. The antinociceptive effects of nociceptin/orphanin FQ in diabetic, but not in non-diabetic mice, were abolished when mice were pretreated with capsaicin i.t. 24 h before testing. In the formalin test, nociceptin/orphanin FQ also produced a marked and dose-dependent antinociceptive effect on the first-phase response, but not the second phase-response, in both diabetic and non-diabetic mice. Furthermore, nociceptin/orphanin FQ significantly and dose-dependently reduced the flinching responses to i.t.-administered substance P in diabetic mice, but not in non-diabetic mice. The results of the present experiments clearly indicate that the antinociceptive potency of nociceptin/orphanin FQ is significantly greater in diabetic mice than in non-diabetic mice. Furthermore, the results of this study suggest that the reduction of substance P-mediated nociceptive transmission in the spinal cord may be responsible for the antinociceptive effect of nociceptin/orphanin FQ. PMID:10323258

  11. IL-17 silencing does not protect nonobese diabetic mice from autoimmune diabetes.

    PubMed

    Joseph, Julie; Bittner, Stefan; Kaiser, Fabian M P; Wiendl, Heinz; Kissler, Stephan

    2012-01-01

    The long-held view that many autoimmune disorders are primarily driven by a Th1 response has been challenged by the discovery of Th17 cells. Since the identification of this distinct T cell subset, Th17 cells have been implicated in the pathogenesis of several autoimmune diseases, including multiple sclerosis and rheumatoid arthritis. Type 1 diabetes has also long been considered a Th1-dependent disease. In light of the emerging role for Th17 cells in autoimmunity, several recent studies investigated the potential of this subset to initiate autoimmune diabetes. However, direct evidence supporting the involvement of Th17 cells in actual pathogenesis, particularly during spontaneous onset, is lacking. In this study, we sought to directly address the role of IL-17, the cytokine by which Th17 cells are primarily characterized, in the pathogenesis of autoimmune diabetes. We used lentiviral transgenesis to generate NOD mice in which IL-17 is silenced by RNA interference. The loss of IL-17 had no effect on the frequency of spontaneous or cyclophosphamide-induced diabetes. In contrast, IL-17 silencing in transgenic NOD mice was sufficient to reduce the severity of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis, consistent with reports that IL-17 deficiency is protective in this experimental model of multiple sclerosis. We concluded that IL-17 is dispensable, at least in large part, in the pathogenesis of autoimmune diabetes. PMID:22116823

  12. Impaired response of mature adipocytes of diabetic mice to hypoxia

    SciTech Connect

    Hong, Seok Jong Jin, Da P.; Buck, Donald W.; Galiano, Robert D.; Mustoe, Thomas A.

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role in injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.

  13. HoxD3 accelerates wound healing in diabetic mice

    SciTech Connect

    Hansen, Scott L.; Myers, Connie A.; Charboneau, Aubri; Young, David M.; and Boudreau, Nancy

    2003-12-01

    Poorly healing diabetic wounds are characterized by diminished collagen production and impaired angiogenesis. HoxD3, a homeobox transcription factor that promotes angiogenesis and collagen synthesis, is up-regulated during normal wound repair whereas its expression is diminished in poorly healing wounds of the genetically diabetic (db/db) mouse. To determine whether restoring expression of HoxD3 would accelerate diabetic wound healing, we devised a novel method of gene transfer, which incorporates HoxD3 plasmid DNA into a methylcellulose film that is placed on wounds created on db/db mice. The HoxD3 transgene was expressed in endothelial cells, fibroblasts, and keratinocytes of the wounds for up to 10 days. More importantly, a single application of HoxD3 to db/db mice resulted in a statistically significant acceleration of wound closure compared to control-treated wounds. Furthermore, we also observed that the HoxD3-mediated improvement in diabetic wound repair was accompanied by increases in mRNA expression of the HoxD3 target genes, Col1A1 and beta 3-integrin leading to enhanced angiogenesis and collagen deposition in the wounds. Although HoxD3-treated wounds also show improved re-epithelialization as compared to control db/db wounds, this effect was not due to direct stimulation of keratinocyte migration by HoxD3. Finally, we show that despite the dramatic increase in collagen synthesis and deposition in HoxD3-treated wounds, these wounds showed normal remodeling and we found no evidence of abnormal wound healing. These results indicate that HoxD3 may provide a means to directly improve collagen deposition, angiogenesis and closure in poorly healing diabetic wounds.

  14. Beneficial actions of neurotrophin treatment on diabetes-induced hypoalgesia in mice.

    PubMed

    Christianson, Julie A; Ryals, Janelle M; McCarson, Kenneth E; Wright, Douglas E

    2003-11-01

    Studies were carried out in streptozotocin-treated diabetic mice to evaluate their behavioral responses to different noxious stimuli. In opposition to rats, streptozotocin-injected diabetic mice display a persistent hypoalgesia to non-noxious mechanical stimulation (von Frey monofilament). Similarly, nocifensive responses of diabetic mice to formalin injection were significantly reduced in both acute and inflammatory phases. However, no overt differences were detected between nondiabetic and diabetic mice in their sensitivity to noxious heat (radiant heat), cold (acetone), or noxious mechanical (pinprick) stimuli applied to the hind paw. To evaluate whether neurotrophin treatment could normalize the sensory deficits, nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was administered intrathecally to diabetic mice for 3 weeks. Neurotrophin-treated mice were also compared to mice that received insulin for 3 weeks. Both NGF and insulin treatment significantly restored mechanical and chemogenic behavioral responses of diabetic mice. In contrast, GDNF treatment only reversed behavioral responses to chemogenic stimuli during the acute phase of the formalin test. These results demonstrate that diabetic mice develop reduced sensitivity to mechanical and chemical stimuli. Furthermore, these studies show that dorsal root ganglion neurons in diabetic mice are responsive to treatment with either NGF or GDNF; however, these 2 neurotrophins differ in their ability to affect distinct somatosensations. PMID:14636817

  15. Diabetes Insipidus in Mice with a Mutation in Aquaporin-2

    PubMed Central

    Lloyd, David J; Hall, Frank Wesley; Tarantino, Lisa M; Gekakis, Nicholas

    2005-01-01

    Congenital nephrogenic diabetes insipidus (NDI) is a disease characterized by failure of the kidney to concentrate urine in response to vasopressin. Human kindreds with nephrogenic diabetes insipidus have been found to harbor mutations in the vasopressin receptor 2 (Avpr2) gene or the vasopressin-sensitive water channel aquaporin-2 (Aqp2) gene. Development of a treatment is rendered difficult due to the lack of a viable animal model. Through forward genetic screening of ethylnitrosourea-mutagenized mice, we report the identification and characterization of a mouse model of NDI, with an F204V mutation in the Aqp2 gene. Unlike previously attempted murine models of NDI, our mice survive to adulthood and more exactly recapitulate the human disorder. Previous in vitro experiments using renal cell lines suggest recessive Aqp2 mutations result in improper trafficking of the mutant water pore. Using these animals, we have directly proven this hypothesis of improper AQP2 translocation as the molecular defect in nephrogenic diabetes insipidus in the intact organism. Additionally, using a renal cell line we show that the mutated protein, AQP2-F204V, is retained in the endoplasmic reticulum and that this abnormal localization can be rescued by wild-type protein. This novel mouse model allows for further mechanistic studies as well as testing of pharmacological and gene therapies for NDI. PMID:16121255

  16. Petalonia improves glucose homeostasis in streptozotocin-induced diabetic mice

    SciTech Connect

    Kang, Seong-Il; Jin, Young-Jun; Ko, Hee-Chul; Choi, Soo-Youn; Hwang, Joon-Ho; Whang, Ilson; Kim, Moo-Han; Shin, Hye-Sun; Jeong, Hyung-Bok; Kim, Se-Jae

    2008-08-22

    The anti-diabetic potential of Petalonia binghamiae extract (PBE) was evaluated in vivo. Dietary administration of PBE to streptozotocin (STZ)-induced diabetic mice significantly lowered blood glucose levels and improved glucose tolerance. The mode of action by which PBE attenuated diabetes was investigated in vitro using 3T3-L1 cells. PBE treatment stimulated 3T3-L1 adipocyte differentiation as evidenced by increased triglyceride accumulation. At the molecular level, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and terminal marker protein aP2, as well as the mRNA of GLUT4 were up-regulated by PBE. In mature adipocytes, PBE significantly stimulated the uptake of glucose and the expression of insulin receptor substrate-1 (IRS-1). Furthermore, PBE increased PPAR{gamma} luciferase reporter gene activity in COS-1 cells. Taken together, these results suggest that the in vivo anti-diabetic effect of PBE is mediated by both insulin-like and insulin-sensitizing actions in adipocytes.

  17. Longitudinal Frequencies of Blood Leukocyte Subpopulations Differ between NOD and NOR Mice but Do Not Predict Diabetes in NOD Mice

    PubMed Central

    Telieps, Tanja; Köhler, Meike; Treise, Irina; Foertsch, Katharina; Adler, Thure; Busch, Dirk H.; Hrabě de Angelis, Martin; Verschoor, Admar; Adler, Kerstin; Bonifacio, Ezio; Ziegler, Anette-Gabriele

    2016-01-01

    Immune phenotyping provides insight into disease pathogenesis and prognostic markers. Trajectories from age of 4 to 36 weeks were modeled for insulin autoantibodies and for leukocyte subpopulations in peripheral blood from female NOD (n = 58) and NOR (n = 22) mice. NOD mice had higher trajectories of insulin autoantibodies, CD4+ and CD8+ T lymphocytes, B lymphocytes, IgD+IgM− B lymphocytes, and NK cells and lower trajectories of CD4+CD25+ T lymphocytes, IgM+ B lymphocytes, granulocytes, and monocytes than NOR mice (all p < 0.001). Of these, only the increased IAA trajectory was observed in NOD mice that developed diabetes as compared to NOD mice that remained diabetes-free. Therefore, the profound differences in peripheral blood leukocyte proportions observed between the diabetes-prone NOD mice and the diabetes-resistant mice do not explain the variation in diabetes development within NOD mice and do not provide markers for diabetes prediction in this model. PMID:26966692

  18. Evaluation of venlafaxine on glucose homeostasis and oxidative stress in diabetic mice.

    PubMed

    Khanam, R; Najfi, H; Akhtar, M; Vohora, D

    2012-12-01

    Depression occurs frequently with diabetes affecting the quality of life. All major classes of antidepressants have been shown to have a direct pharmacologic effect on metabolic function, which further worsens glycemic control. There were no reports on the effects of venlafaxine on glucose levels and oxidative stress in diabetic animals. The present study evaluated the effects of venlafaxine (8 and 16 mg/kg per d) on glucose homeostasis along with oxidative stress in brain in diabetic mice (streptozotocin (STZ), 40 mg/kg per d for 5 days). We observed that 21 days of administration of venlafaxine (8 and 16 mg/kg per d) in diabetic mice significantly enhanced swimming in normal and STZ-treated mice with a corresponding reduction in immobility. No significant difference in blood glucose levels was observed in diabetic and normal mice following venlafaxine treatment. Venlafaxine (16 mg/kg) reversed STZ-induced elevated thiobarbituric acid reactive substance (TBARS) levels and also restored the glutathione (GSH) levels in diabetic mice. Venlafaxine (8 and 16 mg/kg) per se does not produce any significant effect in normal animals. The results indicate a dose-dependent antidepressant action of venlafaxine in diabetes-induced depressive mice. Furthermore, the blood glucose levels were not significantly altered in normal and diabetic mice. In addition, venlafaxine exhibited a decrease in TBARS and elevation in GSH levels in mice brain. Venlafaxine drug treatment appears to be safer for depression associated with diabetes. PMID:22751285

  19. Hepatic insulin gene therapy prevents diabetic enteropathy in STZ-treated CD-1 mice

    PubMed Central

    You, Shuo; Anitha, Mallappa; deSouza, Sean MD; Jia, Dingwu; Lu, Xianghua; Kozlowski, Miroslaw; Olson, Darin E; Srinivasan, Shanthi; Thulé, Peter M

    2015-01-01

    Depending on the population examined, from 6 to 83% of people with diabetes mellitus exhibit symptoms of altered gut motility, manifesting as dysphagia, reflux, early satiety, nausea, abdominal pain, diarrhea, or constipation. Hyperglycemia-induced cell loss within the enteric nervous system has been demonstrated in both diabetic rodents and patients with diabetes. Glycemic control is recommended to prevent diabetic gastroenteropathy but is often difficult to achieve with current treatment modalities. We asked if hepatic insulin gene therapy (HIGT) could inhibit the development of diabetic gastroenteropathy in mice. Bowel length, bowel transit, colonic muscle relaxation, and the numbers of both stimulatory and inhibitory neurons in the colonic myenteric plexus were compared in groups of diabetic mice (DM), control nondiabetic mice (Con), and diabetic mice treated with HIGT (HIGT). Delivery of a metabolically responsive insulin transgene to the liver of STZ-diabetic mice with an adeno-associated virus, sero-type 8 (AAV8) produced near-normal blood sugars for over 1 month and prevented anatomic, functional, and neurohistologic changes observed in diabetic mice. We conclude that in addition to normalizing oxidative metabolism in diabetic rodents, HIGT is sufficient to prevent the development of diabetic gastroenteropathy. PMID:26366426

  20. Effect of intraperitoneal needling on pancreatic beta-cell cytotoxicity mediated via alloxan in mice with an FVB/N genetic background.

    PubMed

    Amao, Hiromi; Iwamoto, Rena; Komukai, Yumi; Dobashi, Yuu; Takahashi, Kimimasa; Tohei, Atsushi; Nakama, Kazumasa; Toyama-Honda, Kiyoko

    2009-04-01

    The present study investigated whether pre-stimulation with intraperitoneal (i.p.) needling protects against development of diabetes in alloxan-treated transgenic (Tg) mice overexpressing the human Cu/Zn superoxide dismutase gene or non-Tg littermates of the FVB/N strain. Twenty minutes before the alloxan treatment (60 mg/kg) the mice were injected intraperitoneally with 0.05 ml saline while control mice received only the alloxan treatment. Hyperglycemic responses of the saline-injected mice to alloxan were significantly suppressed in the Tg mice (P<0.05). A similar reduction of response was also observed in non-Tg littermates, but the effect was less than that in the Tg mice. This protective effect on the diabetogenic action of alloxan was also demonstrated by an analysis of the number of days positive for urinary glucose, and by immunohistochemical analysis of pancreatic insulin-positive cells. A similar suppressive effect on the hyperglycemic response of alloxan was observed in the mice stimulated by i.p. needling alone. However, suppression of the hyperglycemic response was not observed in ICR mice receiving an i.p. injection. These results suggest that the diabetogenic action of alloxan can be suppressed by i.p. needling-mediated stimulation in mice that have a genetic background of the FVB/N strain. Since a slight protective effects of alloxan-induced diabetes was also observed in the Tg mice compared to FVB/N mice treated with only alloxan, this phenomenon could be more clearly seen in the Tg mice than in non-Tg littermates with an FVB/N background. PMID:19448338

  1. Increased Inner Ear Susceptibility to Noise Injury in Mice With Streptozotocin-Induced Diabetes

    PubMed Central

    Fujita, Takeshi; Yamashita, Daisuke; Katsunuma, Sayaka; Hasegawa, Shingo; Tanimoto, Hitoshi; Nibu, Ken-ichi

    2012-01-01

    We aimed to investigate the pathophysiology of diabetes-associated hearing impairment in type 1 diabetes using mice with streptozotocin-induced diabetes (C57BL/6J; male). Hearing function was evaluated 1, 3, and 5 months after induction of diabetes (five diabetic and five control animals per time point) using auditory-evoked brain stem responses (ABRs). Mice (four diabetic and four control) were exposed to loud noise (105 dB) 5 months after induction of diabetes. ABRs were measured before and after noise exposure. Cochlear blood flows were measured by laser-Doppler flowmeter. Spiral ganglion cells (SGCs) were counted. Vessel endothelial cells were observed by CD31 immunostaining. Chronologic changes in the ABR threshold shift were not significantly different between the diabetic and control groups. However, vessel walls in the modiolus of the cochleae were significantly thicker in the diabetic group than the control group. Additionally, recovery from noise-induced injury was significantly impaired in diabetic mice. Reduced cochlea blood flows and SGC loss were observed in diabetic mice cochleae after noise exposure. Our data suggest that diabetic cochleae are more susceptible than controls to loud noise exposure, and decreased cochlear blood flow due to sclerosis of the vessels and consequent loss of SGCs are possible mechanisms of hearing impairment in diabetic patients. PMID:22851574

  2. Comparative study of peripheral neuropathy and nerve regeneration in NOD and ICR diabetic mice.

    PubMed

    Homs, Judit; Ariza, Lorena; Pagès, Gemma; Verdú, Enrique; Casals, Laura; Udina, Esther; Chillón, Miguel; Bosch, Assumpció; Navarro, Xavier

    2011-09-01

    The non-obese diabetic (NOD) mouse was suggested as an adequate model for diabetic autonomic neuropathy. We evaluated sensory-motor neuropathy and nerve regeneration following sciatic nerve crush in NOD males rendered diabetic by multiple low doses of streptozotocin, in comparison with similarly treated Institute for Cancer Research (ICR) mice, a widely used model for type I diabetes. Neurophysiological values for both strains showed a decline in motor and sensory nerve conduction velocity at 7 and 8 weeks after induction of diabetes in the intact hindlimb. However, amplitudes of compound muscle and sensory action potentials (CMAPs and CNAPs) were significantly reduced in NOD but not in ICR diabetic mice. Morphometrical analysis showed myelinated fiber loss in highly hyperglycemic NOD mice, but no significant changes in fiber size. There was a reduction of intraepidermal nerve fibers, more pronounced in NOD than in ICR diabetic mice. Interestingly, aldose reductase and poly(ADP-ribose) polymerase (PARP) activities were increased already at 1 week of hyperglycemia, persisting until the end of the experiment in both strains. Muscle and nerve reinnervation was delayed in diabetic mice following sciatic nerve crush, being more marked in NOD mice. Thus, diabetes of mid-duration induces more severe peripheral neuropathy and slower nerve regeneration in NOD than in ICR mice. PMID:22003936

  3. Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice.

    PubMed

    Botolin, Sergiu; McCabe, Laura R

    2007-01-01

    Insulin-dependent diabetes mellitus (IDDM) is associated with increased risk of osteopenia/osteoporosis in humans. The mechanisms accounting for diabetic bone loss remain unclear. Pharmacologic inducers of IDDM, such as streptozotocin, mimic key aspects of diabetes in rodents, allow analysis at the onset of diabetes, and induce diabetes in genetically modified mice. However, side effects of streptozotocin, unrelated to diabetes, can complicate data interpretation. The nonobese diabetic (NOD) mouse model develops diabetes spontaneously without external influences, negating side effects of inducing agents. Unfortunately, in this model the onset of diabetes is unpredictable, occurs in a minority of male mice, and can only be studied in a single mouse strain. To validate the relevance of the more flexible streptozotocin-induced diabetes model for studying diabetes-associated bone loss, we compared its phenotype to the spontaneously diabetic NOD model. Both models exhibited hyperglycemia and loss of body, fat pad, and muscle weight. Furthermore, these genetically different and distinct models of diabetes induction demonstrated similar bone phenotypes marked by significant trabecular bone loss and increased bone marrow adiposity. Correspondingly, both diabetic models exhibited decreased osteocalcin mRNA and increased adipocyte fatty acid-binding protein 2 mRNA levels in isolated tibias and calvaria. Taken together, multiple streptozotocin injection-induced diabetes is a valid model for understanding the acute and chronic pathophysiologic responses to diabetes and their mechanisms in bone. PMID:17053023

  4. Cardiac H2S Generation Is Reduced in Ageing Diabetic Mice

    PubMed Central

    Jin, Sheng; Pu, Shi-Xin; Hou, Cui-Lan; Ma, Fen-Fen; Li, Na; Li, Xing-Hui; Tan, Bo; Tao, Bei-Bei; Wang, Ming-Jie; Zhu, Yi-Chun

    2015-01-01

    Aims. To examine whether hydrogen sulfide (H2S) generation changed in ageing diabetic mouse hearts. Results. Compared to mice that were fed tap water only, mice that were fed 30% fructose solution for 15 months exhibited typical characteristics of a severe diabetic phenotype with cardiac hypertrophy, fibrosis, and dysfunction. H2S levels in plasma, heart tissues, and urine were significantly reduced in these mice as compared to those in controls. The expression of the H2S-generating enzymes, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase, was significantly decreased in the hearts of fructose-fed mice, whereas cystathionine-β-synthase levels were significantly increased. Conclusion. Our results suggest that this ageing diabetic mouse model developed diabetic cardiomyopathy and that H2S levels were reduced in the diabetic heart due to alterations in three H2S-producing enzymes, which may be involved in the pathogenesis of diabetic cardiomyopathy. PMID:26078817

  5. Glucose concentration in the blood of intact and alloxan-treated mice after pretreatment with commercial preparations of Stevia rebaudiana (Bertoni).

    PubMed

    Raskovic, Aleksandar; Gavrilovic, Maja; Jakovljevic, Vida; Sabo, Jan

    2004-01-01

    The study was concerned with the effect of mice pretreatment with two commercial products of Stevia rebaudiana Bertoni on the blood glucose concentration. One group of mice was pretreated four days with 200 mg/kg of Stevita (Stevita Co, INC, Arlington Texas) (stevia) and the other with 20 mg/kg of Clear Steviosides liquid (Stevita Co, INC, Herbal supplement, Brazil) (stevioside), whereas the animals of control group received at the same time physiological solution. Blood glucose concentration was measured before pretreatment and four days after that. The changes in glucose level were provoked by glucose-tolerance test (500 mg/kg, p.o.) and subcutaneous injection of adrenaline (0.2 mg/kg). The same procedure of measuring blood glucose was applied on the mice with alloxan-induced diabetes mellitus (two doses of 100 mg/kg with a 24-hour interval). Blood glucose levels in mice pretreated with stevia and stevioside were lower compared with control (7.82:6.82:8.01). Also, a smaller increase in this parameter compared to control was registered with pretreated mice in the glucose-tolerance test, pretreatment with stevioside being again more effective (8.68:6.36:5.82). Pretreatment with stevioside caused no significant increase in blood glucose concentration after administering adrenaline, which was not the case with the animals pretreated with stevia and control. Pretreatment with stevia, and to a greater extent with stevioside, protected test animals from the toxic action of alloxan compared with controls. PMID:15230335

  6. AT1-receptor-deficiency induced atheroprotection in diabetic mice is partially mediated via PPAR?

    PubMed Central

    2013-01-01

    Objective Peroxisome-proliferatoractivated-receptor-? (PPAR?) acts as a transcriptional regulator of multiple genes involved in glucose and lipid metabolism. In vitro studies showed that activated PPAR? suppresses AT1R-gene expression and vice versa. However, it has not yet been determined in vivo, whether AT1R-PPAR?-interactions play a relevant role in the pathogenesis of diabetic complications and specifically in accelerated atherosclerosis. Methods and results ApoE?/? and ApoE?/?/AT1R?/?-mice were rendered diabetic by intraperitoneal injections of streptozotocin. Diabetic and non-diabetic ApoE?/?-mice were further randomized to receive the AT1R antagonist telmisartan, the selective PPAR? antagonist GW9662, telmisartan and GW9662 or vehicle for 18 weeks. Diabetic and non-diabetic ApoE?/?/AT1R?/?-mice were randomized to receive either GW9662 or vehicle. GW9662 treatment in diabetic ApoE?/? and diabetic ApoE?/?/AT1?/?-mice resulted in the highest elevation of fasting blood glucose levels, whereas telmisartan treatment and AT1 deficiency in ApoE?/?-mice showed the lowest fasting blood glucose levels. Diabetic ApoE?/?-mice displayed severe impairment of endothelial function, enhanced oxidative stress and increased atherosclerotic lesion formation. ApoE?/?/AT1R?/? and telmisartan-treated ApoE?/?-mice showed a significantly better endothelial function, decreased oxidative stress and reduced atherosclerotic lesion formation. Treatment of diabetic ApoE?/? and ApoE?/?/AT1R?/?-mice with the selective PPAR? antagonist GW9662 omitted the atheroprotective effects of AT1R deficiency or AT1 antagonism. Conclusion Genetic disruption or pharmacological inhibition of the AT1R attenuates atherosclerosis and improves endothelial function in diabetic ApoE?/?-mice via the PPAR? pathway. PMID:23374104

  7. Phenotypic Changes in Diabetic Neuropathy Induced by a High-Fat Diet in Diabetic C57Bl/6 Mice

    PubMed Central

    Guilford, B. L.; Ryals, J. M.; Wright, D. E.

    2011-01-01

    Emerging evidence suggests that dyslipidemia is an independent risk factor for diabetic neuropathy (DN) (reviewed by Vincent et al. 2009). To experimentally determine how dyslipidemia alters DN, we quantified neuropathic symptoms in diabetic mice fed a high-fat diet. Streptozotocin-induced diabetic C57BL/6 mice fed a high-fat diet developed dyslipidemia and a painful neuropathy (mechanical allodynia) instead of the insensate neuropathy (mechanical insensitivity) that normally develops in this strain. Nondiabetic mice fed a high-fat diet also developed dyslipidemia and mechanical allodynia. Thermal sensitivity was significantly reduced in diabetic compared to nondiabetic mice, but was not worsened by the high-fat diet. Moreover, diabetic mice fed a high-fat diet had significantly slower sensory and motor nerve conduction velocities compared to nondiabetic mice. Overall, dyslipidemia resulting from a high-fat diet may modify DN phenotypes and/or increase risk for developing DN. These results provide new insight as to how dyslipidemia may alter the development and phenotype of diabetic neuropathy. PMID:22144990

  8. Generating double knockout mice to model genetic intervention for diabetic cardiomyopathy in humans.

    PubMed

    Chavali, Vishalakshi; Nandi, Shyam Sundar; Singh, Shree Ram; Mishra, Paras Kumar

    2014-01-01

    Diabetes is a rapidly increasing disease that enhances the chances of heart failure twofold to fourfold (as compared to age and sex matched nondiabetics) and becomes a leading cause of morbidity and mortality. There are two broad classifications of diabetes: type1 diabetes (T1D) and type2 diabetes (T2D). Several mice models mimic both T1D and T2D in humans. However, the genetic intervention to ameliorate diabetic cardiomyopathy in these mice often requires creating double knockout (DKO). In order to assess the therapeutic potential of a gene, that specific gene is either overexpressed (transgenic expression) or abrogated (knockout) in the diabetic mice. If the genetic mice model for diabetes is used, it is necessary to create DKO with transgenic/knockout of the target gene to investigate the specific role of that gene in pathological cardiac remodeling in diabetics. One of the important genes involved in extracellular matrix (ECM) remodeling in diabetes is matrix metalloproteinase-9 (Mmp9). Mmp9 is a collagenase that remains latent in healthy hearts but induced in diabetic hearts. Activated Mmp9 degrades extracellular matrix (ECM) and increases matrix turnover causing cardiac fibrosis that leads to heart failure. Insulin2 mutant (Ins2+/-) Akita is a genetic model for T1D that becomes diabetic spontaneously at the age of 3-4 weeks and show robust hyperglycemia at the age of 10-12 weeks. It is a chronic model of T1D. In Ins2+/- Akita, Mmp9 is induced. To investigate the specific role of Mmp9 in diabetic hearts, it is necessary to create diabetic mice where Mmp9 gene is deleted. Here, we describe the method to generate Ins2+/-/Mmp9-/- (DKO) mice to determine whether the abrogation of Mmp9 ameliorates diabetic cardiomyopathy. PMID:25064116

  9. Influences of Diabetes on Hearing Recovery in Noise-Exposed Mice

    PubMed Central

    Yang, Chan Joo; Lee, Ji-Won

    2015-01-01

    Background and Objectives Many studies have reported an association between diabetes and hearing loss. However, these reports were mainly abstractive correlations between common hearing loss and the incidence of diabetes. Therefore, we evaluated the impact of diabetes on the occurrence of and recovery from noise-induced hearing loss. Materials and Methods We used 5-week-old C57BLKS/J-m wild type (+/+) and C57BLKS/J-db/db male mice as the control and diabetic groups, respectively. In one set of experiments, the hearing levels of control and diabetic mice were measured weekly for 7 weeks. In a second set of experiments, control and diabetic mice were exposed to broadband white noise of 110 dB SPL for 3 hours; hearing levels were analyzed before and immediately after exposure, 1, 3, and 5 days, and 1, 2, 3, and 4 weeks after the noise exposure. Results The hearing levels of the control group were better than those of the diabetic group at each weekly revision for 7 weeks at all auditory brainstem response frequencies (4, 8, 16, and 32 kHz). After noise exposure, both groups of mice showed an immediate increase in the hearing level threshold at all frequencies. Subsequent threshold recovery was seen in both groups with no difference in the hearing level recovery rates between the two groups. Conclusions Hearing level with aging becomes significantly impaired earlier in diabetic mice but hearing recovery after noise exposure is similar between diabetic and control mice. PMID:26771012

  10. Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice.

    PubMed

    Li, Zhigui; Hao, Shuang; Yin, Hongqiang; Gao, Jing; Yang, Zhuo

    2016-05-15

    The underlying mechanisms of cognitive impairment in diabetes remain incompletely characterized. Here we show that the autophagic inhibition by 3-methyladenine (3-MA) aggravates cognitive impairment in streptozotocin-induced diabetic mice, including exacerbation of anxiety-like behaviors and aggravation in spatial learning and memory, especially the spatial reversal memory. Further neuronal function identification confirmed that both long term potentiation (LTP) and depotentiation (DPT) were exacerbated by autophagic inhibition in diabetic mice, which indicating impairment of synaptic plasticity. However, no significant change of pair-pulse facilitation (PPF) was recorded in diabetic mice with autophagic suppression compared with the diabetic mice, which indicated that presynaptic function was not affected by autophagic inhibition in diabetes. Subsequent hippocampal neuronal cell death analysis showed that the apoptotic cell death, but not the regulated necrosis, significantly increased in autophagic suppression of diabetic mice. Finally, molecular mechanism that may lead to cell death was identified. The long non-coding RNA PVT1 (plasmacytoma variant translocation 1) expression was analyzed, and data revealed that PVT1 was decreased significantly by 3-MA in diabetes. These findings show that PVT1-mediated autophagy may protect hippocampal neurons from impairment of synaptic plasticity and apoptosis, and then ameliorates cognitive impairment in diabetes. These intriguing findings will help pave the way for exciting functional studies of autophagy in cognitive impairment and diabetes that may alter the existing paradigms. PMID:26971628

  11. Protective effect of esculin on streptozotocin-induced diabetic renal damage in mice.

    PubMed

    Kang, Ki Sung; Lee, Woojung; Jung, Yujung; Lee, Ji Hwan; Lee, Seungyong; Eom, Dae-Woon; Jeon, Youngsic; Yoo, Hye Hyun; Jin, Ming Ji; Song, Kyung Il; Kim, Won Jun; Ham, Jungyeob; Kim, Hyoung Ja; Kim, Su-Nam

    2014-03-01

    The present study investigated the presence and mechanism of esculin-mediated renoprotection to assess its therapeutic potential. Esculin was orally administered at 20 mg/kg/day for 2 weeks to streptozotocin-induced diabetic mice, and its effects were compared with those of the vehicle in normal and diabetic mice. After oral administration of esculin to mice, the concentrations of esculin and esculetin in blood were 159.5 29.8 and 9.7 4.9 ng/mL at 30 min, respectively. Food and water intake were significantly increased in the diabetic mice compared to normal mice but attenuated in mice receiving esculin. The elevated blood glucose level and hepatic glucose-6-phosphatase expression were significantly reduced in esculin-treated diabetic mice, supporting the antidiabetic effect of esculin. Esculin also increased the uptake of glucose and induced the insulin-evoked phosphorylation of insulin receptor, Akt, and glycogen synthase kinase 3? in C2C12 myotubes, indicating a potential for improvement of insulin sensitivity. In addition, esculin lessened the elevated blood creatinine levels in diabetic mice and ameliorated diabetes-induced renal dysfunction by reducing caspase-3 activation in the kidney. Data support the beneficial effect of esculin against diabetes and oxidative stress-related inflammatory processes in the kidney. PMID:24484395

  12. Defective STAT signaling by the leptin receptor in diabetic mice.

    PubMed Central

    Ghilardi, N; Ziegler, S; Wiestner, A; Stoffel, R; Heim, M H; Skoda, R C

    1996-01-01

    Leptin and its receptor, obese receptor (OB-R), comprise an important signaling system for the regulation of body weight. Splice variants of OB-R mRNA encode proteins that differ in the length of their cytoplasmic domains. We cloned a long isoform of the wild-type leptin receptor that is preferentially expressed in the hypothalamus and show that it can activate signal transducers and activators of transcription (STAT)-3, STAT-5, and STAT-6. A point mutation within the OB-R gene of diabetic (db) mice generates a new splice donor site that dramatically reduces expression of this long isoform in homozygous db/db mice. In contrast, an OB-R protein with a shorter cytoplasmic domain is present in both db/db and wild-type mice. We show that this short isoform is unable to activate the STAT pathway. These data provide further evidence that the mutation in OB-R causes the db/db phenotype and identify three STAT proteins as potential mediators of the anti-obesity effects of leptin. Images Fig. 2 Fig. 3 PMID:8692797

  13. RhoA/Rho kinase pathway contributes to the pathogenesis of thermal hyperalgesia in diabetic mice.

    PubMed

    Ohsawa, Masahiro; Aasato, Megumi; Hayashi, Shun-Suke; Kamei, Junzo

    2011-01-01

    Diabetic neuropathy is one of the most common complications of diabetes and causes various problems in daily life. Several investigations have noted that many factors in the spinal cord are involved in the symptoms of painful diabetic neuropathy, and there are very few effective therapeutic regimens. In the present study, we sought to elucidate the role of the RhoA/Rho kinase (ROCK) pathway in thermal hyperalgesia in diabetic mice. The intracellular localization of RhoA and the expression of eNOS were measured by western blotting. Thermal hyperalgesia was assessed by the tail-flick test and mechanical allodynia was assessed by automated von Frey filament test in streptozotocin(STZ)-induced diabetic mice. The spinal cord of STZ-treated diabetic mice showed increased membrane-bound RhoA compared to non-diabetic control. Treatment with the RhoA inhibitor exoenzyme C3, Clostridium botulinum, and the ROCK inhibitor Y27632 attenuated thermal hyperalgesia and mechanical allodynia in diabetic mice. Moreover, daily treatment with simvastatin attenuated all of those changes in diabetic mice. The expression of eNOS and NO metabolite contents in the spinal cord was decreased in diabetic mice, and these changes were normalized by treatment with simvastatin. The present results show that HMG-CoA reductase inhibitors have an inhibitory effect on thermal hyperalgesia in diabetic mice, which is mediated by an increase in NO production through the inhibition of RhoA/ROCK pathways. These results suggest that ROCK inhibitors and HMG-CoA inhibitors may be attractive compounds to relieve the symptoms of painful diabetic neuropathies. PMID:20980102

  14. Early-Onset Diabetic E1-DN Mice Develop Albuminuria and Glomerular Injury Typical of Diabetic Nephropathy

    PubMed Central

    Hyvnen, Mervi E.; Tienari, Jukka; Lehtonen, Eero; Ustinov, Jarkko; Jalanko, Hannu; Otonkoski, Timo; Miettinen, Pivi J.

    2015-01-01

    The transgenic E1-DN mice express a kinase-negative epidermal growth factor receptor in their pancreatic islets and are diabetic from two weeks of age due to impaired postnatal growth of ?-cell mass. Here, we characterize the development of hyperglycaemia-induced renal injury in the E1-DN mice. Homozygous mice showed increased albumin excretion rate (AER) at the age of 10 weeks; the albuminuria increased over time and correlated with blood glucose. Morphometric analysis of PAS-stained histological sections and electron microscopy images revealed mesangial expansion in homozygous E1-DN mice, and glomerular sclerosis was observed in the most hyperglycaemic mice. The albuminuric homozygous mice developed also other structural changes in the glomeruli, including thickening of the glomerular basement membrane and widening of podocyte foot processes that are typical for diabetic nephropathy. Increased apoptosis of podocytes was identified as one mechanism contributing to glomerular injury. In addition, nephrin expression was reduced in the podocytes of albuminuric homozygous E1-DN mice. Tubular changes included altered epithelial cell morphology and increased proliferation. In conclusion, hyperglycaemic E1-DN mice develop albuminuria and glomerular and tubular injury typical of human diabetic nephropathy and can serve as a new model to study the mechanisms leading to the development of diabetic nephropathy. PMID:26000279

  15. Anti-Diabetic and Hepato-Renal Protective Effects of Ziyuglycoside II Methyl Ester in Type 2 Diabetic Mice

    PubMed Central

    Son, Dong Ju; Hwang, Seock Yeon; Kim, Myung-Hyun; Park, Un Kyu; Kim, Byoung Soo

    2015-01-01

    Type 2 diabetes is a metabolic disorder caused by abnormal carbohydrate metabolism, and closely associated with abnormal lipid metabolism and hepato-renal dysfunction. This study investigated the anti-diabetic and hepato-renal protective properties of ziyuglycoside I (ZG01) derivative on type 2 diabetes. ZG01 was isolated from roots of Sanguisorba officinalis and chemically modified by deglycosylation and esterification to obtained ziyuglycoside II methyl ester (ZG02-ME). Here, we showed that ZG02-ME has stronger anti-diabetic activity than the original compound (ZG01) through decreasing blood glucose, glycated hemoglobin (HbA1c), and insulin levels in a mouse model of type 2 diabetes (db/db mice). We further found that ZG02-ME treatment effectively ameliorated serum insulin, leptin and C-peptide levels, which are key metabolic hormones, in db/db mice. In addition, we showed that elevated basal blood lipid levels were decreased by ZG02-ME treatment in db/db mice. Furthermore, treatment of ZG02-ME significantly decreased serum AST, ALT, BUN, creatinine, and liver lipid peroxidation in db/db mice. These results demonstrated that compared to ZG01, chemically modified ZG02-ME possess improved anti-diabetic properties, and has hepato-renal protective activities in type 2 diabetes. PMID:26198246

  16. Telmisartan treatment ameliorates memory deficits in streptozotocin-induced diabetic mice via attenuating cerebral amyloidosis.

    PubMed

    Du, Guan Tao; Hu, Meng; Mei, Zhen Lin; Wang, Chao; Liu, Guang Jun; Hu, Mei; Long, Yan; Miao, Ming Xing; Chang Li, Jia; Hong, Hao

    2014-01-01

    Telmisartan, an angiotensin II type 1-receptor blocker (ARBs), has been reported to exert beneficial effects on the central nervous system (CNS). However, the effect of telmisartan on cognitive impairment associated with type 1 diabetes is not well known. Here, we examined the possibility that telmisartan could improve memory function in a type 1 diabetic mouse model, streptozotocin (STZ)-induced diabetic mice. STZ-induced diabetic mice subjected to the Morris Water Maze (MWM) task exhibited a significant decline of spatial learning and memory. Oral administration of telmisartan at two nonhypotensive doses (0.7 or 0.35 mg/kg) significantly improved memory deficits in STZ-induced diabetic mice. Telmisartan treatment markedly reduced Aβ₄₂, APP, BACE1, RAGE, and NF-κB p65 of the hippocampus and cortex, but did not beneficially affect hyperglycemia and hypoinsulinemia in the STZ-induced diabetic mice compared with untreated diabetic mice. Taken together, our findings suggest that telmisartan ameliorates memory deficits in type 1 diabetic mice, at least partly because of attenuation of amyloidosis in the brain. PMID:24671053

  17. The IL-1β Receptor Antagonist SER140 Postpones the Onset of Diabetes in Female Nonobese Diabetic Mice

    PubMed Central

    Cucak, Helena; Hansen, Gitte; Vrang, Niels; Skarsfeldt, Torben; Steiness, Eva; Jelsing, Jacob

    2016-01-01

    The cytokine interleukin-1β (IL-1β) is known to stimulate proinflammatory immune responses and impair β-cell function and viability, all critical events in the pathogenesis of type 1 diabetes (T1D). Here we evaluate the effect of SER140, a small peptide IL-1β receptor antagonist, on diabetes progression and cellular pancreatic changes in female nonobese diabetic (NOD) mice. Eight weeks of treatment with SER140 reduced the incidence of diabetes by more than 50% compared with vehicle, decreased blood glucose, and increased plasma insulin. Additionally, SER140 changed the endocrine and immune cells dynamics in the NOD mouse pancreas. Together, the data suggest that SER140 treatment postpones the onset of diabetes in female NOD mice by interfering with IL-1β activated pathways. PMID:26953152

  18. [Effects of cactus, alove veral, momorcica charantia on reducing the blood glucose of diabetic mice].

    PubMed

    Lin, X; Shen, X; Long, Z; Yang, Q

    2001-07-01

    The effects of cactus, alove veral and momorcica charantia on reducing the blood glucose level of mice were observed. The diabetic model with no symptom in mice was established by injection of streptozotocin(STZ) 80 mg/kg BW into abdominal cavity for 11 days. The diabetic mice were randomly divided into 8 groups: STZ diabetic model, diet A, diet B, cactus, alove veral, momordica charantia and glyburide groups. Cactus (60 g/kg BW), alove veral (60 g/kg BW), and momordica charantia (30 g/kg BW) were administrated orally each day to the diabetic mice for another 21 days. Serum glucose of mice fasting for 12 hours and 2 hours after meal was determined with the method of glucose-oxidase at the 21th day of the experiment. The results showed that serum glucose levels of diabetic mice were significantly higher than the normal control group (P < 0.01). After giving diet A, cactus, alove veral and momorcica charantia juice for 21 days, the serum glucose concentration of these diabetic mice were significantly lower than STZ diabetic model group (P < 0.01) but still higher than the normal control group. PMID:12561513

  19. Islet remodeling in female mice with spontaneous autoimmune and streptozotocin-induced diabetes.

    PubMed

    Plesner, Annette; Ten Holder, Joris T; Verchere, C Bruce

    2014-01-01

    Islet alpha- and delta-cells are spared autoimmune destruction directed at beta-cells in type 1 diabetes resulting in an apparent increase of non-beta endocrine cells in the islet core. We determined how islet remodeling in autoimmune diabetes compares to streptozotocin (STZ)-induced diabetes. Islet cell mass, proliferation, and immune cell infiltration in pancreas sections from diabetic NOD mice and mice with STZ-induced diabetes was assessed using quantitative image analysis. Serial sections were stained for various beta-cell markers and Ngn3, typically restricted to embryonic tissue, was only upregulated in diabetic NOD mouse islets. Serum levels of insulin, glucagon and GLP-1 were measured to compare hormone levels with respect to disease state. Total pancreatic alpha-cell mass did not change as autoimmune diabetes developed in NOD mice despite the proportion of islet area comprised of alpha- and delta-cells increased. By contrast, alpha- and delta-cell mass was increased in mice with STZ-induced diabetes. Serum levels of glucagon reflected these changes in alpha-cell mass: glucagon levels remained constant in NOD mice over time but increased significantly in STZ-induced diabetes. Increased serum GLP-1 levels were found in both models of diabetes, likely due to alpha-cell expression of prohormone convertase 1/3. Alpha- or delta-cell mass in STZ-diabetic mice did not normalize by replacement of insulin via osmotic mini-pumps or islet transplantation. Hence, the inflammatory milieu in NOD mouse islets may restrict alpha-cell expansion highlighting important differences between these two diabetes models and raising the possibility that increased alpha-cell mass might contribute to the hyperglycemia observed in the STZ model. PMID:25101835

  20. Hypoglycemic Activity of Polysaccharide from Fruiting Bodies of the Shaggy Ink Cap Medicinal Mushroom, Coprinus comatus (Higher Basidiomycetes), on Mice Induced by Alloxan and Its Potential Mechanism.

    PubMed

    Zhou, Shuai; Liu, Yanfang; Yang, Yan; Tang, Qingjiu; Zhang, Jingsong

    2015-01-01

    Three polysaccharide fractions from fruiting bodies of Coprinus comatus-CC30, CC60, and CC80-are obtained by water extraction and ethanol precipitation with ethanol percentages of 30%, 60%, and 80%, respectively. The hypoglycemic activity of the three fractions was tested based on mice with alloxan-induced diabetes. Results indicate that fraction CC60 is the most effective fraction in water extract from C. comatus; it can remarkably reduce the blood glucose concentration in 120 min at a dosage of 1000 mg/kg administered orally. It also presents a long-term hypoglycemic effect during 21 days of injection at the same dosage. This polysaccharide fraction provide a novel path to improve the treatment currently used for patients with diabetes. The data on mice spleen lymphocyte proliferation and protein tyrosine phosphatase 1B (PTP1B)-inhibiting activity of fractions indicate that the hypoglycemic activity of CC60 is possibly activated through immune stimulation, not PTP1B inhibition. PMID:26756187

  1. Anti-diabetic activity of Vaccinium bracteatum Thunb. leaves' polysaccharide in STZ-induced diabetic mice.

    PubMed

    Wang, Li; Zhang, Ying; Xu, Maochao; Wang, Yingyao; Cheng, Sujiao; Liebrecht, Alex; Qian, Haifeng; Zhang, Hui; Qi, Xiguang

    2013-10-01

    Vaccinium bracteatum Thunb. (VBT) is a traditional Chinese herbal medicine. The anti-diabetic activity of VBT leaves' polysaccharide (VBTLP) is studied in this paper. The results indicated VBTLP had a dose-dependent decrease on the blood glucose (BG) level, and the time effect of VBTLP on BG level was also significant. The insulin level of high dose group (HDG) was significantly higher (p<0.05) than that of model control (MC) group. Compared to MC, HDG and lose dose group (LDG) had significantly lower (p<0.05) TC and LDL-C levels, however, TG and HDL-C levels are similar. Compared to non-diabetic control (NC), HDG and LDG had similar plasma lipid levels except for higher LDL-C level. Although body weights of LDG and HDG were significant lower (p<0.05) than that of NC from week 2 to week 6, they were similar to that of PC. The results indicate VBTLP possesses a potential hypoglycemic effect in streptozotocin-induced diabetic mice. PMID:23916645

  2. The Gut Microbiota Modulates Glycaemic Control and Serum Metabolite Profiles in Non-Obese Diabetic Mice

    PubMed Central

    Greiner, Thomas U.; Hytylinen, Tuulia; Knip, Mikael; Bckhed, Fredrik; Orei?, Matej

    2014-01-01

    Islet autoimmunity in children who later progress to type 1 diabetes is preceded by dysregulated serum metabolite profiles, but the origin of these metabolic changes is unknown. The gut microbiota affects host metabolism and changes in its composition contribute to several immune-mediated diseases; however, it is not known whether the gut microbiota is involved in the early metabolic disturbances in progression to type 1 diabetes. We rederived non-obese diabetic (NOD) mice as germ free to explore the potential role of the gut microbiota in the development of diabetic autoimmunity and to directly investigate whether the metabolic profiles associated with the development of type 1 diabetes can be modulated by the gut microbiota. The absence of a gut microbiota in NOD mice did not affect the overall diabetes incidence but resulted in increased insulitis and levels of interferon gamma and interleukin 12; these changes were counterbalanced by improved peripheral glucose metabolism. Furthermore, we observed a markedly increased variation in blood glucose levels in the absence of a microbiota in NOD mice that did not progress to diabetes. Additionally, germ-free NOD mice had a metabolite profile similar to that of pre-diabetic children. Our data suggest that germ-free NOD mice have reduced glycaemic control and dysregulated immunologic and metabolic responses. PMID:25390735

  3. Kinin B1 Receptor Deletion Affects Bone Healing in Type 1 Diabetic Mice.

    PubMed

    Cignachi, Natlia P; Pesquero, Joo B; Oliveira, Rogrio B; Etges, Adriana; Campos, Maria M

    2015-12-01

    The effects of kinin B1 receptor (B1 R) deletion were examined on femur bone regeneration in streptozotocin (STZ)-type 1 diabetes. Diabetes induction in wild-type C57/BL6 (WTC57BL6) mice led to decrease in body weight and hyperglycemia, compared to the non-diabetic group of the same strain. The lack of B1 R did not affect STZ-elicited body weight loss, but partially prevented hyperglycemia. Diabetic mice had a clear delay in bone regeneration, and displayed large areas of loose connective tissue within the defects, with a reduced expression of the mineralization-related protein osteonectin, when compared to the non-diabetic WTC57/BL6. The non-diabetic and diabetic B1 R knockout (B1 RKO) mice had bone regeneration levels and osteonectin expression comparable to that seen in control WTC57/BL6 mice. WTC57/BL6 STZ-diabetic mice also showed a marked reduction of collagen contents, with increased immunolabeling for the apoptosis marker caspase-3, whereas diabetic B1 RKO had collagen levels and caspase-3 activity comparable to those observed in non-diabetic WTC57/BL6 or B1 RKO mice. No significant difference was detected in the number of tartrate-resistant acid phosphatase (TRAP)-stained cells, or in RANK/RANKL/OPG system immunolabeling throughout the experimental groups. Data bring novel evidence on the relevance of kinin B1 R under type 1 diabetes with regards to its role in bone regeneration. PMID:25969420

  4. O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice.

    PubMed

    Makino, Ayako; Dai, Anzhi; Han, Ying; Youssef, Katia D; Wang, Weihua; Donthamsetty, Reshma; Scott, Brian T; Wang, Hong; Dillmann, Wolfgang H

    2015-11-01

    Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes. PMID:26269457

  5. Impaired sensory nerve function and axon morphology in mice with diabetic neuropathy

    PubMed Central

    Lennertz, Richard C.; Medler, Karen A.; Bain, James L.; Wright, Douglas E.

    2011-01-01

    Diabetes is the most prevalent metabolic disorder in the United States, and between 50% and 70% of diabetic patients suffer from diabetes-induced neuropathy. Yet our current knowledge of the functional changes in sensory nerves and their distal terminals caused by diabetes is limited. Here, we set out to investigate the functional and morphological consequences of diabetes on specific subtypes of cutaneous sensory nerves in mice. Diabetes was induced in C57Bl/6 mice by a single intraperitoneal injection of streptozotocin. After 68 wk, mice were characterized for behavioral sensitivity to mechanical and heat stimuli followed by analysis of sensory function using teased nerve fiber recordings and histological assessment of nerve fiber morphology. Diabetes produced severe functional impairment of C-fibers and rapidly adapting A?-fibers, leading to behavioral hyposensitivity to both mechanical and heat stimuli. Electron microscopy images showed that diabetic nerves have axoplasm with more concentrated organelles and frequent axon-myelin separations compared with control nerves. These changes were restricted to the distal nerve segments nearing their innervation territory. Furthermore, the relative proportion of A?-fibers was reduced in diabetic skin-nerve preparations compared with nondiabetic control mice. These data identify significant deficits in sensory nerve terminal function that are associated with distal fiber loss, morphological damage, and behavioral hyposensitivity in diabetic C57Bl/6 mice. These findings suggest that diabetes damages sensory nerves, leading to functional deficits in sensory signaling that underlie the loss of tactile acuity and pain sensation associated with insensate diabetic neuropathy. PMID:21653724

  6. Optical cryo-imaging of kidney mitochondrial redox state in diabetic mice models

    NASA Astrophysics Data System (ADS)

    Maleki, S.; Sepehr, R.; Staniszewski, K.; Sheibani, N.; Sorenson, C. M.; Ranji, M.

    2012-03-01

    Oxidative stress (OS), which increases during diabetes, exacerbates the development and progression of diabetes complications including renal vascular and proximal tubule cell dysfunction. The objective of this study was to investigate the changes in the metabolic state of the tissue in diabetic mice kidneys using fluorescence imaging. Mitochondrial metabolic coenzymes NADH (Nicotinamide Adenine Dinucleotide), and FADH-2 (Flavin Adenine Dinucleotide) are autofluorescent and can be monitored without exogenous labels by optical techniques. The ratio of the fluorescence intensity of these fluorophores, (NADH/FAD), called the NADH redox ratio (RR), is a marker of metabolic state of a tissue. We examined mitochondrial redox states of kidneys from diabetic mice, Akita/+ and its control wild type (WT) for a group of 8- and 12-week-old mice. Average intensity and histogram of maximum projected images of FAD, NADH, and NADH RR were calculated for each kidney. Our results indicated a 17% decrease in the mean NADH RR of the kidney from 8-week-old mice compared with WT mice and, a 30% decrease in the mean NADH RR of kidney from12-week-old mice compared with WT mice. These results indicated an increase in OS in diabetic animals and its progression over time. Thus, NADH RR can be used as a hallmark of OS in diabetic kidney allowing temporal identification of oxidative state.

  7. Dietary protection against diabetes in NOD mice: lack of a major change in the immune system.

    PubMed

    Hermitte, L; Atlan-Gepner, C; Payan, M J; Mehelleb, M; Vialettes, B

    1995-10-01

    Pregestimil, a hypoallergenic infant formula in which casein hydrolysate replaces protein, protects NOD mice against diabetes, a T-cell-mediated autoimmune disease. Female and cyclosphosphamide (Cy)-treated male NOD mice were used to assess whether a modification of cellular immune mechanisms occurred when animals were fed Pregestimil from weaning to 110 days of life. Insulitis, sialitis and thyroiditis were observed, and the splenic T-cell proliferative response was measured. The ability of splenic T-cells of NOD mice in the Pregestimil group to transfer diabetes adoptively to young irradiated male NOD mice was also assessed. Pregestimil protected female NOD mice against spontaneous diabetes and male NOD mice against acute Cy-induced diabetes. Addition of bovine serum albumin (10%) to the diet did not alter the preventive effect. The Pregestimil diet also lessened insulitis severity in Cy-treated males, though not in females. Sialitis and thyroiditis, observed mainly in females, were not modified by the diets. The TCR-mediated proliferative response of splenocytes tended to increase specifically in Pregestimil-fed and Cy-treated males. Sensitivity to IL-2 was improved. In females, the TCR-mediated proliferative response and the ability of T cells to transfer diabetes adoptively were unchanged. It is concluded that the protective effect of Pregestimil against diabetes in NOD mice cannot be explained by major changes in peripheral immune response. PMID:8529761

  8. Fentanyl produces an anti-hyperalgesic effect through the suppression of sodium channels in mice with painful diabetic neuropathy.

    PubMed

    Tanaka, Ken-ichiro; Nakanishi, Yuki; Sekino, Shyota; Ikegami, Megumi; Ikeda, Hiroko; Kamei, Junzo

    2014-06-15

    Diabetic neuropathy is one of the most frequent complications of diabetes mellitus. Therefore, the present study was designed to investigate the anti-hyperalgesic mechanism of fentanyl in a mouse model of streptozotocin-induced diabetic neuropathy. The antinociceptive response was assessed by recording the latency in a tail-flick test. The tail-flick latency in diabetic mice was significantly shorter than that in non-diabetic mice. Fentanyl, at doses of 3 and 10 ?g/kg, s.c., produced a dose-dependent increase in the tail-flick latencies in diabetic mice. While fentanyl (3 ?g/kg, s.c.) did not produce a significant inhibition of the tail-flick response in non-diabetic mice, it significantly prolonged the tail-flick latency in diabetic mice to the same level as the baseline latency in non-diabetic mice. Although pretreatment with naloxone (3mg/kg, s.c.) completely antagonized fentanyl-induced antinociception in non-diabetic mice, it had no effect on the antinociceptive effect of fentanyl in diabetic mice. Pretreatment with either of the voltage-gated sodium channel openers fenvarelarte and veratridine practically abolished the antinociceptive effects of fentanyl in diabetic mice. However, neither fenvarelate nor veratridine affected the antinociceptive effect of fentanyl in non-diabetic mice. These results suggest that the anti-hyperalgesic effect of fentanyl is mediated through the blockade of sodium channels in diabetic mice, whereas opioid receptors mediate the antinociceptive effect of fentanyl in non-diabetic mice. PMID:24704555

  9. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice

    NASA Astrophysics Data System (ADS)

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-01

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  10. Humanized mice for the study of type 1 diabetes and beta cell function.

    PubMed

    King, Marie; Pearson, Todd; Rossini, Aldo A; Shultz, Leonard D; Greiner, Dale L

    2008-12-01

    Our understanding of the basic biology of diabetes has been guided by observations made using animal models, particularly rodents. However, humans are not mice, and outcomes predicted by murine studies are not always representative of actual outcomes in the clinic. In particular, investigators studying diabetes have relied heavily on mouse and rat models of autoimmune type 1-like diabetes, and experimental results using these models have not been representative of many of the clinical trials in type 1 diabetes. In this article, we describe the availability of new models of humanized mice for the study of three areas of diabetes. These include the use of humanized mice for the study of (1) human islet stem and progenitor cells, (2) human islet allograft rejection, and (3) human immunity and autoimmunity. These humanized mouse models provide an important preclinical bridge between in vitro studies and rodent models and the translation of discoveries in these model systems to the clinic. PMID:19120266

  11. Insulin expression in livers of diabetic mice mediated by hydrodynamics-based administration

    PubMed Central

    He, Chen-Xia; Shi, Ding; Wu, Wen-Jun; Ding, You-Fa; Feng, Deng-Min; Lu, Bin; Chen, Hao-Ming; Yao, Ji-Hua; Shen, Qi; Lu, Da-Ru; Xue, Jing-Lun

    2004-01-01

    AIM: Transfer and expression of insulin gene in vivo are an alternative strategy to improve glycemic control in type 1 diabetes. Hydrodynamics-based procedure has been proved to be very efficient to transfer naked DNA to mouse livers. The basal hepatic insulin production mediated by this rapid tail vein injection was studied to determine its effect on the resumption of glycemic control in type 1 diabetic mice. METHODS: Engineered insulin cDNA was inserted into plasmid vectors under a CMV promoter, and transferred into STZ induced diabetic mice by hydrodynamic procedure. Glucose levels, body weight of treated mice, insulin levels, immunohistology of the liver, and quantity of insulin mRNA in the liver were assayed to identify the improvement of hyperglycemic complication after plasmid administration. Sleeping Beauty, a transposon system, was also used to prolong the insulin expression in the liver. RESULTS: After plasmid administration, Plasma insulin was significantly increased in the diabetic mice and the livers were insulin-positive by immunostaining. At the same time the hyperglycemic complication was improved. The blood glucose levels of mice were reduced to normal. Glucose tolerance of the treated diabetic mice was improved. Body weight loss was also ameliorated. The rapid tail vein injection did not cause any fatal result. CONCLUSION: Our results suggested that insulin gene could be efficiently transferred into the livers of diabetic mice via rapid tail vein injection and it resulted in high level of insulin expression. The basal hepatic insulin production mediated by hydrodynamics-based administration improved the glycemic control in type 1 diabetes dramatically and ameliorated diabetic syndromes. Hydrodynamics-based administration offers a simple and efficient way in the study of gene therapy for type 1 diabetes. PMID:14966918

  12. Kinin receptor agonism restores hindlimb postischemic neovascularization capacity in diabetic mice.

    PubMed

    Desposito, Dorinne; Potier, Louis; Chollet, Catherine; Gobeil, Fernand; Roussel, Ronan; Alhenc-Gelas, Francois; Bouby, Nadine; Waeckel, Ludovic

    2015-02-01

    Limb ischemia is a major complication of thromboembolic diseases. Diabetes worsens prognosis by impairing neovascularization. Genetic or pharmacological inactivation of the kallikrein-kinin system aggravates limb ischemia in nondiabetic animals, whereas angiotensin I-converting enzyme/kininase II inhibition improves outcome. The role of kinins in limb ischemia in the setting of diabetes is not documented. We assessed whether selective activation of kinin receptors by pharmacological agonists can influence neovascularization in diabetic mice with limb ischemia and have a therapeutic effect. Selective pseudopeptide kinin B1 or B2 receptor agonists resistant to peptidase action were administered by osmotic minipumps at a nonhypotensive dosage for 14 days after unilateral femoral artery ligation in mice previously rendered diabetic by streptozotocin. Comparison was made with ligatured, nonagonist-treated nondiabetic and diabetic mice. Diabetes reduced neovascularization, assessed by microangiography and histologic capillary density analysis, by roughly 40%. B1 receptor agonist or B2 receptor agonist similarly restored neovascularization in diabetic mice. Neovascularization in agonist-treated diabetic mice was indistinguishable from nondiabetic mice. Both treatments restored blood flow in the ischemic hindfoot, measured by laser-Doppler perfusion imaging. Macrophage infiltration increased 3-fold in the ischemic gastrocnemius muscle during B1 receptor agonist or B2 receptor agonist treatment, and vascular endothelial growth factor (VEGF) level increased 2-fold. Both treatments increased, by 50-100%, circulating CD45/CD11b-positive monocytes and CD34(+)/VEGFR2(+) progenitor cells. Thus, selective pharmacological activation of B1 or B2 kinin receptor overcomes the effect of diabetes on postischemic neovascularization and restores tissue perfusion through monocyte/macrophage mobilization. Kinin receptors are potential therapeutic targets in limb ischemia in diabetes. PMID:25398240

  13. Anti-diabetic activity of peony seed oil, a new resource food in STZ-induced diabetic mice.

    PubMed

    Su, Jianhui; Wang, Hongxin; Ma, Caoyang; Lou, Zaixiang; Liu, Chengxiang; Tanver Rahman, MdRamim; Gao, Chuanzhong; Nie, Rongjing

    2015-09-01

    This study was conducted to investigate the components of a new resource food in China, peony seed oil (PSO) by GC-MS (gas chromatography-mass spectrometry), its inhibitory effects on carbohydrate hydrolyzing enzymes in vitro and its anti-diabetic effects on mice induced by streptozotocin (STZ). The results showed that peony seed oil showed weak anti-α-amylase activity; however, strong anti-α-glucosidase activity was noted. The GC-MS analysis of the oil showed 9 constituents of which α-linolenic acid was found to be the major component (38.66%), followed by linoleic acid (26.34%) and oleic acid (23.65%). The anti-diabetic potential of peony seed oil was tested in STZ induced diabetic mice. Administration of peony seed oil and glibenclamide reduced the blood glucose level and the area under curve (AUC) in STZ induced diabetic mice. There were significant increases in body weight, liver glycogen content, serum insulin level, high-density lipoprotein cholesterol (HDL-C) and decreases in glycosylated hemoglobin (HbA1C), total serum cholesterol (TC), and triglyceride (TG) in test groups as compared to the untreated diabetic groups. In vivo antioxidant studies on STZ induced diabetic mice revealed the reduction of malondialdehyde (MDA) and increase of glutathione peroxides (GSH-px), superoxide dismutase (SOD), and glutathione (GSH). The results provided a sound rationale for future clinical trials of oral administration of peony seed oil to alleviate postprandial hyperglycemia in streptozotocin-induced diabetic mice. PMID:26245697

  14. Bisphosphonate treatment of type I diabetic mice prevents early bone loss but accentuates suppression of bone formation.

    PubMed

    Coe, Lindsay M; Tekalur, Srinivasan Arjun; Shu, Yutian; Baumann, Melissa J; McCabe, Laura R

    2015-08-01

    Type I (T1) diabetes is an autoimmune and metabolic disease associated with bone loss. Previous studies demonstrate that T1-diabetes decreases osteoblast activity and viability. Bisphosphonate therapy, commonly used to treat osteoporosis, is demonstrated to inhibit osteoclast activity as well as osteoblast apoptosis. Therefore, we examined the effect of weekly alendronate treatments on T1-diabetes induced osteoblast apoptosis and bone loss. Bone TUNEL assays identified that alendronate therapy prevents the diabetes-induced osteoblast death observed during early stages of diabetes development. Consistent with this, alendronate treatment for 40 days was able to prevent diabetes-induced trabecular bone loss. Alendronate was also able to reduce marrow adiposity in both control diabetic mice compared to untreated mice. Mechanical testing indicated that 40 days of alendronate treatment increased bone stiffness but decreased the work required for fracture in T1-diabetic and alendronate treated mice. Of concern at this later time point, bone formation rate and osteoblast markers, which were already decreased in diabetic mice, were further suppressed in alendronate-treated diabetic mice. Taken together, our results suggest that short-term alendronate treatment can prevent T1-diabetes-induced bone loss in mice, possibly in part by inhibiting diabetes onset associated osteoblast death, while longer treatment enhanced bone density but at the cost of further suppressing bone formation in diabetic mice. PMID:25641511

  15. Heat-killed yeast protects diabetic ketoacidotic-steroid treated mice from pulmonary mucormycosis.

    PubMed

    Luo, Guanpingsheng; Gebremariam, Teclegiorgis; Clemons, Karl V; Stevens, David A; Ibrahim, Ashraf S

    2014-06-17

    Previous studies have shown that vaccination with heat-killed yeast, Saccharomyces cerevisiae (HKY), protects mice against systemic candidiasis, aspergillosis, cryptococcosis or coccidioidomycosis. Here we sought to define the potential use of HKY as a vaccine to protect mice from mucormycosis. Mice were vaccinated with different regimens of HKY prior to induction of diabetes. Diabetic ketoacidotic (DKA) mice were then treated with steroids prior to intratracheal challenge with Rhizopus oryzae. All regimens of HKY vaccine improved survival of DKA mice and reduced fungal burden in the primary target organ, lungs, as determined by qPCR. Furthermore, compared to mice vaccinated with diluent, vaccination with HKY substantially increased the mouse immune response as determined by detection of increased anti-Rhizopus antibody titers. Our results show that HKY protects steroid-treated DKA mice from pulmonary R. oryzae infection. Considering its demonstrated efficacy against other fungal infections, HKY is a promising candidate for development as a panfungal vaccine. PMID:24814556

  16. MK2 Deletion in Mice Prevents Diabetes-Induced Perturbations in Lipid Metabolism and Cardiac Dysfunction.

    PubMed

    Ruiz, Matthieu; Coderre, Lise; Lachance, Dominic; Houde, Valérie; Martel, Cécile; Thompson Legault, Julie; Gillis, Marc-Antoine; Bouchard, Bertrand; Daneault, Caroline; Carpentier, André C; Gaestel, Matthias; Allen, Bruce G; Des Rosiers, Christine

    2016-02-01

    Heart disease remains a major complication of diabetes, and the identification of new therapeutic targets is essential. This study investigates the role of the protein kinase MK2, a p38 mitogen-activated protein kinase downstream target, in the development of diabetes-induced cardiomyopathy. Diabetes was induced in control (MK2(+/+)) and MK2-null (MK2(-/-)) mice using repeated injections of a low dose of streptozotocin (STZ). This protocol generated in MK2(+/+) mice a model of diabetes characterized by a 50% decrease in plasma insulin, hyperglycemia, and insulin resistance (IR), as well as major contractile dysfunction, which was associated with alterations in proteins involved in calcium handling. While MK2(-/-)-STZ mice remained hyperglycemic, they showed improved IR and none of the cardiac functional or molecular alterations. Further analyses highlighted marked lipid perturbations in MK2(+/+)-STZ mice, which encompass increased 1) circulating levels of free fatty acid, ketone bodies, and long-chain acylcarnitines and 2) cardiac triglyceride accumulation and ex vivo palmitate β-oxidation. MK2(-/-)-STZ mice were also protected against all these diabetes-induced lipid alterations. Our results demonstrate the benefits of MK2 deletion on diabetes-induced cardiac molecular and lipid metabolic changes, as well as contractile dysfunction. As a result, MK2 represents a new potential therapeutic target to prevent diabetes-induced cardiac dysfunction. PMID:26558681

  17. Daintain/AIF-1 (Allograft Inflammatory Factor-1) accelerates type 1 diabetes in NOD mice

    SciTech Connect

    Zhao, Yan-Ying; Huang, Xin-Yuan; Chen, Zheng-Wang

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Daintain/AIF-1 is over-expressed in the blood of NOD mice suffering from insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 stimulates white blood cell proliferation in NOD mice. Black-Right-Pointing-Pointer Daintain/AIF-1 increases blood glucose levels and triggers type 1 diabetes. Black-Right-Pointing-Pointer Daintain/AIF-1 accelerates insulitis, while its antibody prevents insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 enhances the levels of nitric oxide in the pancreases of NOD mice. -- Abstract: A large body of experimental evidence suggests that cytokines trigger pancreatic {beta}-cell death in type 1 diabetes mellitus. Daintain/AIF-1 (Allograft Inflammatory Factor-1), a specific marker for activated macrophages, is accumulated in the pancreatic islets of pre-diabetic BB rats. In the present study, we demonstrate that daintain/AIF-1 is released into blood and the levels of daintain/AIF-1 in the blood of type 1 diabetes-prone non-obese diabetic (NOD) mice suffering from insulitis are significantly higher than that in healthy NOD mice. When injected intravenously into NOD mice, daintain/AIF-1 stimulates white blood cell proliferation, increases the concentrations of blood glucose, impairs insulin expression, up-regulates nitric oxide (NO) production in pancreases and accelerates diabetes in NOD mice, while the antibody against daintain/AIF-1 delays or prevents insulitis in NOD mice. These results imply daintain/AIF-1 triggers type 1 diabetes probably via arousing immune cells activation and induction of NO production in pancreas of NOD mice.

  18. Antidiabetic effect of Nitobegiku, the herb Tithonia diversifolia, in KK-Ay diabetic mice.

    PubMed

    Miura, Toshihiro; Nosaka, Kosuke; Ishii, Hiroyasu; Ishida, Torao

    2005-11-01

    Nitobegiku (the herb of Tithonia diversifolia (HEMSL) A. GRAY) has been used as a medicinal plant for diabetes. The antidiabetic effect of an 80% ethanol extract of Nitobegiku (Td) was investigated in KK-Ay-mice, an animal model of type 2 diabetes. Td (500 mg/kg body weight) reduced the blood glucose of KK-Ay mice 7 h after a single oral dose. No change in blood glucose in Td-treated normal mice (ddY) was seen. Td (500 mg/kg) reduced blood glucose in KK-Ay mice 3 weeks after a single oral dose and also significantly lowered plasma insulin in KK-Ay mice under similar conditions. Td-treated KK-Ay mouse blood glucose was significantly decreased in an insulin tolerance test. These results support the hypothesis that Td improves glucose metabolism by reducing insulin resistance. Therefore, Nitobegiku may be useful for the treatment of type 2 diabetes. PMID:16272709

  19. Protective Effects of MDG-1, a Polysaccharide from Ophiopogon japonicus on Diabetic Nephropathy in Diabetic KKAy Mice

    PubMed Central

    Wang, Yuan; Shi, Lin-Lin; Wang, Ling-Yi; Xu, Jin-Wen; Feng, Yi

    2015-01-01

    Ophiopogon japonicus is a traditional Chinese medicine that might be effective for treating type 2 diabetes. Recent research confirmed that MDG-1, a polysaccharide from O. japonicas, activates the PI3K/Akt signaling pathway and improves insulin sensitivity in a diabetic KKAy mouse model, but little is known about its effects on diabetic nephropathy. In this study, KKAy mice were orally administered distilled water (control group), MDG-1, or rosiglitazone for 12 weeks. Blood glucose levels were tested every two weeks for the fed mice. At 6 and 12 weeks, blood samples were collected for biochemical examination. At the end of the experiment, all kidney tissues were collected for histological examination and western blot analysis. Results show that MDG-1 (300 mg/kg) significantly decreased the levels of blood glucose, triglycerides, blood urine nitrogen and albumin, and significantly inhibited the expression of transforming growth factor-beta 1 and connective tissue growth factor. Moreover, MDG-1 could alleviate glomerular mesangial expansion and tubulointerstitial fibrosis in the diabetic mice, as confirmed by histopathological examination. These data indicated that MDG-1 ameliorates renal disease in diabetic mice by reducing hyperglycemia, hyperinsulinemia, and hyperlipidemia, and by inhibiting intracellular signaling pathways. PMID:26393572

  20. Urtica dioica leaves modulates muscarinic cholinergic system in the hippocampus of streptozotocin-induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Parashar, Arun; Udayabanu, Malairaman

    2015-06-01

    Diabetes mellitus is a chronic metabolic disorder and has been associated with cognitive dysfunction. In our earlier study, chronic Urtica dioica (UD) treatment significantly ameliorated diabetes induced associative and spatial memory deficit in mice. The present study was designed to explore the effect of UD leaves extract on muscarinic cholinergic system, which has long been known to be involved in cognition. Streptozotocin (STZ) (50 mg/kg, i.p., consecutively for 5 days) was used to induce diabetes followed by treatment with UD extract (50 mg/kg, oral) or rosiglitazone (5 mg/kg, oral) for 8 weeks. STZ-induced diabetic mice showed significant reduction in hippocampal muscarinic acetylcholine receptor-1 and choline acetyltransferase expressions. Chronic diabetes significantly up-regulated the protein expression of acetylcholinesterase associated with oxidative stress in hippocampus. Besides, STZ-induced diabetic mice showed hypolocomotion with up-regulation of muscarinic acetylcholine receptor-4 expression in striatum. Chronic UD treatment significantly attenuated the cholinergic dysfunction and oxidative stress in the hippocampus of diabetic mice. UD had no effect on locomotor activity and muscarinic acetylcholine receptor-4 expression in striatum. In conclusion, UD leaves extract has potential to reverse diabetes mediated alteration in muscarinic cholinergic system in hippocampus and thereby improve memory functions. PMID:25514862

  1. Advanced glycation end products facilitate bacterial adherence in urinary tract infection in diabetic mice.

    PubMed

    Ozer, Ahmet; Altuntas, Cengiz Z; Izgi, Kenan; Bicer, Fuat; Hultgren, Scott J; Liu, Guiming; Daneshgari, Firouz

    2015-07-01

    Diabetic individuals have increased susceptibility to urinary tract infection (UTI), a common, painful condition. During diabetes mellitus, non-enzymatic reactions between reducing sugars and protein amine groups result in excessive production of advanced glycation end products (AGEs) that accumulate in tissues. Since bacteria adhere to cell surfaces by binding to carbohydrates, we hypothesized that adherence of bacteria to the bladder in diabetics may be enhanced by accumulation of AGEs on urothelial surface proteins. Using a murine model of UTI, we observed increased adherence of type 1 fimbriated uropathogenic Escherichia coli (UPEC) to the bladder in streptozotocin-induced diabetic female mice compared with age-matched controls, along with increased concentrations of two common AGEs in superficial urothelial cells from diabetic bladders. Several lectins with different specificities exhibited increased binding to urothelial homogenates from diabetic mice compared with controls, and two of those lectins also bound to AGEs. Furthermore, mannose-binding type 1 fimbriae isolated from UPEC bound to different AGEs, and UPEC adherence to the bladder in diabetic mice, were inhibited by pretreatment of mice with the AGE inhibitor pyridoxamine. These results strongly suggest a role for urothelial AGE accumulation in increased bacterial adherence during UTI in diabetes. PMID:25986378

  2. Flos Puerariae Extract Ameliorates Cognitive Impairment in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Liu, Zhong-he; Chen, Hong-guang; Wu, Pan-feng; Yao, Qing; Cheng, Hong-ke; Yu, Wei; Liu, Chao

    2015-01-01

    Objective. The effects of Flos Puerariae extract (FPE) on cognitive impairment associated with diabetes were assessed in C57BL/6J mice. Methods. Experimental diabetic mice model was induced by one injection of 50?mg/kg streptozotocin (STZ) for 5 days consecutively. FPE was orally administrated at the dosages of 50, 100, or 200?mg/kg/day, respectively. The learning and memory ability was assessed by Morris water maze test. Body weight, blood glucose, free fatty acid (FFA) and total cholesterol (TCH) in serum, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and acetylcholinesterase (AChE) activities in cerebral cortex and hippocampus were also measured. Results. Oral administration of FPE significantly improved cognitive deficits in STZ-induced diabetic mice. FPE treatment also maintained body weight and ameliorated hyperglycemia and dyslipidemia in diabetic mice. Additionally, decreased MDA level, enhanced CAT, and GSH-Px activities in cerebral cortex or hippocampus, as well as alleviated AChE activity in cerebral cortex, were found in diabetic mice supplemented with FPE. Conclusion. This study suggests that FPE ameliorates memory deficits in experimental diabetic mice, at least partly through the normalization of metabolic abnormalities, ameliorated oxidative stress, and AChE activity in brain. PMID:26060502

  3. Protective Effects of Red Guava on Inflammation and Oxidative Stress in Streptozotocin-Induced Diabetic Mice.

    PubMed

    Li, Pei-Ying; Hsu, Cheng-Chin; Yin, Mei-Chin; Kuo, Yueh-Hsiung; Tang, Feng-Yao; Chao, Che-Yi

    2015-01-01

    Diabetes is an important chronic disease and the 4th leading cause of death in Taiwan. Hyperglycemia-induced oxidative and inflammatory damage are the main causes of chronic complications in diabetic patients. The red guava (red-fleshed guava cultivar of Psidium guajava L.) is a tropical fruit belonging to the Myrtaceae family and an important commercial crop in Taiwan. In this study, the protective effects of a diet containing red guava on inflammation and oxidative stress in streptozotocin (STZ)-induced diabetic mice were examined. The experimental group was divided into seven subgroups: normal (N), diabetes mellitus (DM), diabetes + red guava 1% (L), 2% (M), and 5% (H), diabetes + 5% red guava + anti-diabetic rosiglitazone (HR), and diabetes + anti-diabetic rosiglitazone (R). The mice were fed for 8 weeks and sacrificed by decapitation. Compared with the DM group, the experimental groups with diets containing red guava as well as rosiglitazone all showed significant improvements in blood glucose control, insulin resistance, creatinine, blood urea nitrogen, triglycerides, non-esterified fatty acids, cholesterol, c-reactive protein, TNF-α, and IL-10. Furthermore, the expression of inflammatory proteins, such as iNOS and NF-κB, was suppressed via activated PPARγ, and the expression levels of GPx3 and ACO increased. In summary, red guava can significantly suppress inflammatory and oxidative damage caused by diabetes and alleviate diabetic symptoms; thus, it exerts protective effects and has potential applications for the development of a dietary supplement. PMID:26703532

  4. Effect of Tongxinluo on nerve regeneration in mice with diabetic peripheral neuropathy.

    PubMed

    Li, X; Zhang, J; Zhao, W; Yang, H; Ma, J; Qi, Y; Wu, S

    2015-01-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes. This study aims to investigate the effects of Tongxinluo on the nerve regeneration in diabetic peripheral neuropathy mice. Forty Specefic Pathogen Free (SPF) male KK/UpjAy mice were divided into diabetes group, diabetes with high dose Tongxinluo (4g/kg) (D+H), diabetes with mid dose Tongxinluo (2g/kg) (D+M), and diabetes with low dose Tongxinluo (1g/kg) (D+L) groups. Fasting blood glucose (FPG), heat pain threshold, motor nerve conduction velocity (MNCV), insulinlike growth factor1 (IGF1), activator protein 1 (cfos), nerve growth factor (NGF), and basic fibroblast growth factor (BFGF) were measured. Results indicated that FPG of diabetes group was significantly higher than that of control group. Heat pain threshold and MNCV were significantly lowered in diabetes group. Expression levels of IGF1, NGF and BFGF were significantly lower than that of control, whereas cfos expression was significantly higher than that of control group. Tongxinluo treatment (D+M and D+H) significantly upregulated heat pain threshold, MNCV, and IGF1, NGF and BFGF expression, but decreased cfos expresson when compared to that of diabetes group. In conclusion, Tongxinluo can ameliorate diabetic peripheral neuropathy, improve MNCV, and promote nerve regeneration. The underlying mechanism needs to be further elucidated. PMID:26522065

  5. Acute Versus Progressive Onset of Diabetes in NOD Mice: Potential Implications for Therapeutic Interventions in Type 1 Diabetes.

    PubMed

    Mathews, Clayton E; Xue, Song; Posgai, Amanda; Lightfoot, Yaima L; Li, Xia; Lin, Andrea; Wasserfall, Clive; Haller, Michael J; Schatz, Desmond; Atkinson, Mark A

    2015-11-01

    Most natural history models for type 1 diabetes (T1D) propose that overt hyperglycemia results after a progressive loss of insulin-secreting ?-cell mass and/or function. To experimentally address this concept, we prospectively determined morning blood glucose measurements every other day in multiple cohorts (total n = 660) of female NOD/ShiLtJ mice starting at 8 weeks of age until diabetes onset or 26 weeks of age. Consistent with this notion, a majority of mice that developed diabetes (354 of 489 [72%]) displayed a progressive increase in blood glucose with transient excursions >200 mg/dL, followed by acute and persistent hyperglycemia at diabetes onset. However, 135 of the 489 (28%) diabetic animals demonstrated normal glucose values followed by acute (i.e., sudden) hyperglycemia. Interestingly, diabetes onset occurred earlier in mice with acute versus progressive disease onset (15.37 0.3207 vs. 17.44 0.2073 weeks of age, P < 0.0001). Moreover, the pattern of onset (i.e., progressive vs. acute) dramatically influenced the ability to achieve reversal of T1D by immunotherapeutic intervention, with increased effectiveness observed in situations of a progressive deterioration in euglycemia. These studies highlight a novel natural history aspect in this animal model, one that may provide important guidance for the selection of subjects participating in human trials seeking disease reversal. PMID:26216853

  6. Adipose-Derived Stem Cells From Diabetic Mice Show Impaired Vascular Stabilization in a Murine Model of Diabetic Retinopathy

    PubMed Central

    Cronk, Stephen M.; Kelly-Goss, Molly R.; Ray, H. Clifton; Mendel, Thomas A.; Hoehn, Kyle L.; Bruce, Anthony C.; Dey, Bijan K.; Guendel, Alexander M.; Tavakol, Daniel N.; Herman, Ira M.; Yates, Paul A.

    2015-01-01

    Diabetic retinopathy is characterized by progressive vascular dropout with subsequent vision loss. We have recently shown that an intravitreal injection of adipose-derived stem cells (ASCs) can stabilize the retinal microvasculature, enabling repair and regeneration of damaged capillary beds in vivo. Because an understanding of ASC status from healthy versus diseased donors will be important as autologous cellular therapies are developed for unmet clinical needs, we took advantage of the hyperglycemic Akimba mouse as a preclinical in vivo model of diabetic retinopathy in an effort aimed at evaluating therapeutic efficacy of adipose-derived stem cells (mASCs) derived either from healthy, nondiabetic or from diabetic mice. To these ends, Akimba mice received intravitreal injections of media conditioned by mASCs or mASCs themselves, subsequent to development of substantial retinal capillary dropout. mASCs from healthy mice were more effective than diabetic mASCs in protecting the diabetic retina from further vascular dropout. Engrafted ASCs were found to preferentially associate with the retinal vasculature. Conditioned medium was unable to recapitulate the vasoprotection seen with injected ASCs. In vitro diabetic ASCs showed decreased proliferation and increased apoptosis compared with healthy mASCs. Diabetic ASCs also secreted less vasoprotective factors than healthy mASCs, as determined by high-throughput enzyme-linked immunosorbent assay. Our findings suggest that diabetic ASCs are functionally impaired compared with healthy ASCs and support the utility of an allogeneic injection of ASCs versus autologous or conditioned media approaches in the treatment of diabetic retinopathy. PMID:25769654

  7. Myostatin Induces DNA Damage in Skeletal Muscle of Streptozotocin-induced Type 1 Diabetic Mice*

    PubMed Central

    Sriram, Sandhya; Subramanian, Subha; Juvvuna, Prasanna Kumar; McFarlane, Craig; Salerno, Monica Senna; Kambadur, Ravi; Sharma, Mridula

    2014-01-01

    One of the features of uncontrolled type 1 diabetes is oxidative stress that induces DNA damage and cell death. Skeletal muscle atrophy is also considerable in type 1 diabetes, however, the signaling mechanisms that induce oxidative stress culminating in muscle atrophy are not fully known. Here, we show that in Streptozotocin-induced diabetic wild type mice, hypo-phosphorylation of Akt, resulted in activation of Foxa2 transcription factor in the muscle. Foxa2 transcriptionally up-regulated Myostatin, contributing to exaggerated oxidative stress leading to DNA damage via p63/REDD1 pathway in skeletal muscle of Streptozotocin-treated wild type mice. In Myostatin?/? mice however, Streptozotocin treatment did not reduce Akt phosphorylation despite reduced IRS-1 signaling. Moreover, Foxa2 levels remained unaltered in Myostatin?/? mice, while levels of p63/REDD1 were higher compared with wild type mice. Consistent with these results, relatively less DNA damage and muscle atrophy was observed in Myostatin?/? muscle in response to Streptozotocin treatment. Taken together, our results for the first time show the role of Foxa2 in Myostatin regulation in skeletal muscle in diabetic mice. Altogether, these results demonstrate the mechanism by which Myostatin contributes to DNA damage in skeletal muscle of the diabetic mice that would lead to myofiber degeneration. PMID:24425880

  8. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade.

    PubMed

    Desposito, Dorinne; Chollet, Catherine; Taveau, Christopher; Descamps, Vincent; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine; Waeckel, Ludovic

    2016-01-01

    Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1-2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers. PMID:26443866

  9. Evidence for a Role of Immunoproteasomes in Regulating Cardiac Muscle Mass in Diabetic Mice

    PubMed Central

    Zu, Lingyun; Bedja, Djahida; Fox-Talbot, Karen; Gabrielson, Kathleen L.; Van Kaer, Luc; Becker, Lewis C.; Cai, Zheqing P.

    2010-01-01

    The ubiquitin-proteasome system plays an important role in regulating muscle mass. Inducible immunoproteasome subunits LMP-2 and LMP-7 are constitutively expressed in the heart; however, their regulation and functions are poorly understood. We here investigated the hypothesis that immunoproteasomes regulate cardiac muscle mass in diabetic mice. Type 1 diabetes was induced in wildtype mice by streptozotocin. After hyperglycemia developed, insulin and the proteasome inhibitor epoxomicin were used to treat diabetic mice for 6 weeks. Isolated mouse hearts were perfused with control or high glucose solution. Catalytic proteasome ?-subunits and proteolytic activities were analyzed in the heart by immunoblotting and fluorogenic peptide degradation assays, respectively. Insulin and epoxomicin blocked loss of heart weight and improved cardiac function in diabetic mice. LMP-7 and its corresponding chymotryptic-like proteasome activity were increased in diabetic hearts and high glucose-treated hearts. Myosin heavy chain protein was decreased in diabetic hearts, which was largely reversed by epoxomicin. High glucose decreased LMP-2 protein levels in perfused hearts. In diabetic hearts, LMP-2 expression was downregulated whereas expression of the phosphastase and tensin homologue deleted on chromosome ten (PTEN) and the muscle atrophy F-box were upregulated. Moreover, mice with muscle-specific knockout of PTEN gene demonstrated increased cardiac muscle mass, while mice with LMP-2 deficiency demonstrated PTEN accumulation, muscle mass loss, and contractile impairment in the heart. Therefore, we concluded that high glucose regulates immunoproteasome subunits and modifies proteasome activities in the heart, and that dysregulated immunoproteasome subunits may mediate loss of cardiac muscle mass in experimental diabetic mice. PMID:20153750

  10. mir33 Inhibition Overcomes Deleterious Effects of Diabetes on Atherosclerosis Plaque Regression in Mice

    PubMed Central

    Distel, Emilie; Barrett, Tessa J.; Chung, Kellie; Girgis, Natasha M.; Parathath, Saj; Essau, Christine C.; Murphy, Andrew J.; Moore, Kathryn J.; Fisher, Edward A.

    2014-01-01

    Rationale Diabetes increases cardiovascular disease risk in humans and remains elevated despite cholesterol-lowering therapy with statins. Consistent with this, in mouse models diabetes impairs atherosclerosis plaque regression after aggressive cholesterol-lowering. miR33 is a key negative regulator of the reverse cholesterol transport factors, ABCA1 and HDL, which suggested that its inhibition may overcome this impairment. Objective To assess the effects of miR33 inhibition on atherosclerosis regression in diabetic mice. Methods and Results Reversa mice, which are deficient in the LDL receptor and in which hypercholesterolemia is reversed by conditional inactivation of the microsomal triglyceride transfer protein (Mttp) gene, were placed on an atherogenic diet for 16 weeks, then either made diabetic by STZ injection or kept normoglycemic. Lipid-lowering was induced by Mttp inactivation and mice were treated with anti-miR33 or control oligonucleotides. Whereas regression was impaired in diabetic mice treated with control oligonucleotides, anti-miR33 treatment decreased plaque macrophage content and inflammatory gene expression in these mice. The decreased macrophage content in anti-miR33-treated diabetic mice was associated with a blunting of hyperglycemia-induced monocytosis and reduced monocyte recruitment to the plaque, which was traced to an inhibition of the proliferation of bone marrow monocyte precursors associated with the upregulation of their Abca1. Conclusions miR33 inhibition overcomes deleterious effects of diabetes in atherosclerosis regression in mice, which suggests a therapeutic strategy in diabetic patients, who remain at elevated cardiovascular disease risk despite plasma cholesterol lowering. PMID:25201910

  11. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice.

    PubMed

    Brown, Kirsty; Godovannyi, Artem; Ma, Caixia; Zhang, YiQun; Ahmadi-Vand, Zahra; Dai, Chaunbin; Gorzelak, Monika A; Chan, YeeKwan; Chan, Justin M; Lochner, Arion; Dutz, Jan P; Vallance, Bruce A; Gibson, Deanna L

    2016-02-01

    Accumulating evidence supports that the intestinal microbiome is involved in Type 1 diabetes (T1D) pathogenesis through the gut-pancreas nexus. Our aim was to determine whether the intestinal microbiota in the non-obese diabetic (NOD) mouse model played a role in T1D through the gut. To examine the effect of the intestinal microbiota on T1D onset, we manipulated gut microbes by: (1) the fecal transplantation between non-obese diabetic (NOD) and resistant (NOR) mice and (2) the oral antibiotic and probiotic treatment of NOD mice. We monitored diabetes onset, quantified CD4+T cells in the Peyer's patches, profiled the microbiome and measured fecal short-chain fatty acids (SCFA). The gut microbiota from NOD mice harbored more pathobionts and fewer beneficial microbes in comparison with NOR mice. Fecal transplantation of NOD microbes induced insulitis in NOR hosts suggesting that the NOD microbiome is diabetogenic. Moreover, antibiotic exposure accelerated diabetes onset in NOD mice accompanied by increased T-helper type 1 (Th1) and reduced Th17 cells in the intestinal lymphoid tissues. The diabetogenic microbiome was characterized by a metagenome altered in several metabolic gene clusters. Furthermore, diabetes susceptibility correlated with reduced fecal SCFAs. In an attempt to correct the diabetogenic microbiome, we administered VLS#3 probiotics to NOD mice but found that VSL#3 colonized the intestine poorly and did not delay diabetes. We conclude that NOD mice harbor gut microbes that induce diabetes and that their diabetogenic microbiome can be amplified early in life through antibiotic exposure. Protective microbes like VSL#3 are insufficient to overcome the effects of a diabetogenic microbiome. PMID:26274050

  12. Preventive effect of L-carnosine on changes in the thermal nociceptive threshold in streptozotocin-induced diabetic mice.

    PubMed

    Kamei, Junzo; Ohsawa, Masahiro; Miyata, Shigeo; Tanaka, Shun-ichi

    2008-12-14

    Sensory abnormality is one of the serious complications in diabetes. Since the effective therapeutic regimen to ameliorate the diabetic sensory abnormality is very few, the present study was then designed to investigate the effect of zinc L-carnosine on the changes of nociceptive threshold in diabetic mice. Zinc L-carnosine (75-300 mg/kg, p.o.) was administered once daily from 1 day after streptozotocin treatment. Diabetic mice showed shorter tail-flick latency at 1-4 weeks after streptozotocin treatment and longer tail-flick latency at 6-9 weeks after its treatment. The shortened tail-flick latency in early stage of diabetic mice was ameliorated by treatment with zinc L-carnosine. Moreover, zinc L-carnosine also slowed the onset of hypoalgesia in diabetic mice. Tail-flick latency in non-diabetic mice was not affected by the zinc L-carnosine treatment, indicating that zinc L-carnosine did not affect normal nociceptive transmission. Moreover, L-carnosine, but not zinc sulfate, ameliorated the abnormal sensory perception in diabetic mice. Interestingly, the ameliorative effect of zinc l-carnosine on the abnormal sensory perception in diabetic mice is much stronger than that of L-carnosine. These results provide the evidence of the ameliorative potential of zinc L-carnosine on the progressive diabetic neuropathy. Moreover, L-carnosine combined with zinc shows more potent amelioration of abnormal sensory perception in diabetic mice than by itself. PMID:18930724

  13. Activation of endothelial NAD(P)H oxidase accelerates early glomerular injury in diabetic mice.

    PubMed

    Nagasu, Hajime; Satoh, Minoru; Kiyokage, Emi; Kidokoro, Kengo; Toida, Kazunori; Channon, Keith M; Kanwar, Yashpal S; Sasaki, Tamaki; Kashihara, Naoki

    2016-01-01

    Increased generation of reactive oxygen species (ROS) is a common denominative pathogenic mechanism underlying vascular and renal complications in diabetes mellitus. Endothelial NAD(P)H oxidase is a major source of vascular ROS, and it has an important role in endothelial dysfunction. We hypothesized that activation of endothelial NAD(P)H oxidase initiates and worsens the progression of diabetic nephropathy, particularly in the development of albuminuria. We used transgenic mice with endothelial-targeted overexpression of the catalytic subunit of NAD(P)H oxidase, Nox2 (NOX2TG). NOX2TG mice were crossed with Akita insulin-dependent diabetic (Akita) mice that develop progressive hyperglycemia. We compared the progression of diabetic nephropathy in Akita versus NOX2TG-Akita mice. NOX2TG-Akita mice and Akita mice developed significant albuminuria above the baseline at 6 and 10 weeks of age, respectively. Compared with Akita mice, NOX2TG-Akita mice exhibited higher levels of NAD(P)H oxidase activity in glomeruli, developed glomerular endothelial perturbations, and attenuated expression of glomerular glycocalyx. Moreover, in contrast to Akita mice, the NOX2TG-Akita mice had numerous endothelial microparticles (blebs), as detected by scanning electron microscopy, and increased glomerular permeability. Furthermore, NOX2TG-Akita mice exhibited distinct phenotypic changes in glomerular mesangial cells expressing ?-smooth muscle actin, and in podocytes expressing increased levels of desmin, whereas the glomeruli generated increased levels of ROS. In conclusion, activation of endothelial NAD(P)H oxidase in the presence of hyperglycemia initiated and exacerbated diabetic nephropathy characterized by the development of albuminuria. Moreover, ROS generated in the endothelium compounded glomerular dysfunctions by altering the phenotypes of mesangial cells and compromising the integrity of the podocytes. PMID:26552047

  14. Systems genetics of susceptibility to obesity-induced diabetes in mice

    PubMed Central

    van Nas, Atila; Castellani, Lawrence W.; Zhao, Yi; Zhou, Zhiqiang; Wen, Pingzi; Yu, Suzanne; Qi, Hongxiu; Rosales, Melenie; Schadt, Eric E.; Broman, Karl W.; Péterfy, Miklós; Lusis, Aldons J.

    2012-01-01

    Inbred strains of mice are strikingly different in susceptibility to obesity-driven diabetes. For instance, deficiency in leptin receptor (db/db) leads to hyperphagia and obesity in both C57BL/6 and DBA/2 mice, but only on the DBA/2 background do the mice develop beta-cell loss leading to severe diabetes, while C57BL/6 mice are relatively resistant. To further investigate the genetic factors predisposing to diabetes, we have studied leptin receptor-deficient offspring of an F2 cross between C57BL/6J (db/+) males and DBA/2J females. The results show that the genetics of diabetes susceptibility are enormously complex and a number of quantitative trait loci (QTL) contributing to diabetes-related traits were identified, notably on chromosomes 4, 6, 7, 9, 10, 11, 12, and 19. The Chr. 4 locus is likely due to a disruption of the Zfp69 gene in C57BL/6J mice. To identify candidate genes and to model coexpression networks, we performed global expression array analysis in livers of the F2 mice. Expression QTL (eQTL) were identified and used to prioritize candidate genes at clinical trait QTL. In several cases, clusters of eQTLs colocalized with clinical trait QTLs, suggesting a common genetic basis. We constructed coexpression networks for both 5 and 12 wk old mice and identified several modules significantly associated with clinical traits. One module in 12 wk old mice was associated with several measures of hepatic fat content as well as with other lipid- and diabetes-related traits. These results add to the understanding of the complex genetic interactions contributing to obesity-induced diabetes. PMID:22010005

  15. Systems genetics of susceptibility to obesity-induced diabetes in mice.

    PubMed

    Davis, Richard C; van Nas, Atila; Castellani, Lawrence W; Zhao, Yi; Zhou, Zhiqiang; Wen, Pingzi; Yu, Suzanne; Qi, Hongxiu; Rosales, Melenie; Schadt, Eric E; Broman, Karl W; Pterfy, Mikls; Lusis, Aldons J

    2012-01-18

    Inbred strains of mice are strikingly different in susceptibility to obesity-driven diabetes. For instance, deficiency in leptin receptor (db/db) leads to hyperphagia and obesity in both C57BL/6 and DBA/2 mice, but only on the DBA/2 background do the mice develop beta-cell loss leading to severe diabetes, while C57BL/6 mice are relatively resistant. To further investigate the genetic factors predisposing to diabetes, we have studied leptin receptor-deficient offspring of an F2 cross between C57BL/6J (db/+) males and DBA/2J females. The results show that the genetics of diabetes susceptibility are enormously complex and a number of quantitative trait loci (QTL) contributing to diabetes-related traits were identified, notably on chromosomes 4, 6, 7, 9, 10, 11, 12, and 19. The Chr. 4 locus is likely due to a disruption of the Zfp69 gene in C57BL/6J mice. To identify candidate genes and to model coexpression networks, we performed global expression array analysis in livers of the F2 mice. Expression QTL (eQTL) were identified and used to prioritize candidate genes at clinical trait QTL. In several cases, clusters of eQTLs colocalized with clinical trait QTLs, suggesting a common genetic basis. We constructed coexpression networks for both 5 and 12 wk old mice and identified several modules significantly associated with clinical traits. One module in 12 wk old mice was associated with several measures of hepatic fat content as well as with other lipid- and diabetes-related traits. These results add to the understanding of the complex genetic interactions contributing to obesity-induced diabetes. PMID:22010005

  16. Evidence that Cd101 is an autoimmune diabetes gene in nonobese diabetic mice.

    PubMed

    Rainbow, Daniel B; Moule, Carolyn; Fraser, Heather I; Clark, Jan; Howlett, Sarah K; Burren, Oliver; Christensen, Mikkel; Moody, Val; Steward, Charles A; Mohammed, Javid P; Fusakio, Michael E; Masteller, Emma L; Finger, Erik B; Houchins, J P; Naf, Dieter; Koentgen, Frank; Ridgway, William M; Todd, John A; Bluestone, Jeffrey A; Peterson, Laurence B; Mattner, Jochen; Wicker, Linda S

    2011-07-01

    We have previously proposed that sequence variation of the CD101 gene between NOD and C57BL/6 mice accounts for the protection from type 1 diabetes (T1D) provided by the insulin-dependent diabetes susceptibility region 10 (Idd10), a <1 Mb region on mouse chromosome 3. In this study, we provide further support for the hypothesis that Cd101 is Idd10 using haplotype and expression analyses of novel Idd10 congenic strains coupled to the development of a CD101 knockout mouse. Susceptibility to T1D was correlated with genotype-dependent CD101 expression on multiple cell subsets, including Foxp3(+) regulatory CD4(+) T cells, CD11c(+) dendritic cells, and Gr1(+) myeloid cells. The correlation of CD101 expression on immune cells from four independent Idd10 haplotypes with the development of T1D supports the identity of Cd101 as Idd10. Because CD101 has been associated with regulatory T and Ag presentation cell functions, our results provide a further link between immune regulation and susceptibility to T1D. PMID:21613616

  17. Influence of Two Different Fluences on Laser Photobiomodulation of Wound Healing in Diabetic and Nondiabetic Mice

    NASA Astrophysics Data System (ADS)

    Peplow, Philip V.; Chung, Tzu-Yun; Baxter, G. David

    2011-08-01

    Background: Laser irradiation of wounds in mice and rats was shown in previous studies to stimulate healing but in almost all the studies the wounds were not covered. Purpose: To compare the healing of covered wounds in diabetic and nondiabetic mice and the effect of laser irradiation 660 nm at two different fluences (energy densities). Method: A single wound 5-mm diameter was made on the left flank of forty-seven diabetic and twenty nondiabetic mice and covered with Tegaderm HP dressing (day 1). Wounds were irradiated 660 nm 20 s using a low power (18 mW) or high power (80 mW) laser starting immediately post-wounding for 7 consecutive days, with non-irradiated wounds as controls. Mice were euthanized on day 8, 10 or 14. Wound specimens were cut and stained with haematoxylin and eosin, and examined by light microscopy. Results: Wound healing was impaired in diabetic mice. Tegaderm HP dressing had retarded contraction in a large proportion of diabetic mice (splinted the wounds) and to a lesser extent in nondiabetic mice. Healing of splinted wounds was delayed compared to unsplinted wounds, but laser irradiation at high power stimulated healing by re-epithelization and granulation tissue formation. The fluence of low power laser was estimated to be about 1 J/cm2, while that of the high power laser was 3.7 to 5.0 J/cm2. Conclusion: Laser irradiation of wounds 660 nm with 1 J/cm2 had little effect on healing of wounds in diabetic and nondiabetic mice, whereas irradiation with 3.7 to 5.0 J/cm2 stimulated healing of wounds in diabetic mice most of which were splinted by the dressing.

  18. Hypoglycemic effect of DL-aminocarnitine in streptozotocin diabetic mice: inhibition of gluconeogenesis

    SciTech Connect

    Jenkins, D.L.; Griffith, O.W.

    1986-05-01

    DL-Aminocarnitine and palmitoyl-DL-aminocarnitine are potent, non-covalent inhibitors of carnitine palmitoyl transferase. In both diabetic and non-diabetic fasted mice, DL-aminocarnitine (0.3 mmol/kg) and palmitoyl-DL-aminocarnitine (0.1 mmol/kg) decrease the blood concentration of ketone bodies to levels observed in fed control mice. Both carnitine palmitoyltransferase inhibitors also normalize plasma glucose levels in diabetic mice. The hypoglycemic effect is maximal at 8 hours, the continues for at least 12 hours. In the present studies the authors have used (/sup 14/C)alanine, a pyruvate precursor, to prove the effect of aminocarnitine on gluconeogenesis. Diabetic mice given L-(U-/sup 14/C)alanine (1 mmol/kg) by intraperitoneal injection convert 10-15% of the administered dose to (/sup 14/C)glucose after 10 min; less than 0.1% of the radioactivity is recovered in glycogen. If 0.3 mmol/kg aminocarnitine is given subcutaneously 1 hr prior to giving (/sup 14/C)analine, the radioactivity recovered in plasma glucose is reduced by approximately 40%. The authors conclude that the hypoglycemic effect of DL-aminocarnitine in diabetic mice is due, at least in part, to inhibition of gluconeogenesis. The possibility that aminocarnitine also stimulates glucose utilization in diabetic animals is not excluded.

  19. Antihyperglycemic Effect of Ganoderma Lucidum Polysaccharides on Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Li, Fenglin; Zhang, Yiming; Zhong, Zhijian

    2011-01-01

    The current study evaluated the glucose-lowering effect of ganoderma lucidum polysaccharides (Gl-PS) in streptozotocin (STZ)-induced diabetic mice. The diabetic mice were randomly divided into four groups (8 mice per group): diabetic control group, low-dose Gl-PS treated group (50 mg/kg, Gl-PS), high-dose Gl-PS treated group (150 mg/kg, Gl-PS) and positive drug control treated group (glibenclamide, 4 mg/kg), with normal mice used as the control group. Body weights, fasting blood glucose (FBG), serum insulin and blood lipid levels of mice were measured. After 28 days of treatment with Gl-PS, body weights and serum insulin levels of the Gl-PS treated groups was significantly higher than that of the diabetic control group, whereas FBG levels was significantly lower. Moreover, total cholesterol (TC), triglyceride (TG) and low density lipoprotein cholesterol (LDL-C) levels of the Gl-PS treated groups had dropped, whereas the high density lipoprotein cholesterol (HDL-C) levels had increased. In addition, according to acute toxicity studies, Gl-PS did not cause behavioral changes and any death of mice. These data suggest that Gl-PS has an antihyperglycemic effect. Furthermore, considering the Gl-PS effects on lipid profile, it may be a potential hypolipidaemic agent, which will be a great advantage in treating diabetic conditions associated with atherosclerosis or hyperlipidemia. PMID:22016649

  20. Gut microbial markers are associated with diabetes onset, regulatory imbalance, and IFN-? level in NOD Mice

    PubMed Central

    Krych, ?; Nielsen, DS; Hansen, AK; Hansen, CHF

    2015-01-01

    Gut microbiota regulated imbalances in the host's immune profile seem to be an important factor in the etiology of type 1 diabetes (T1D), and identifying bacterial markers for T1D may therefore be useful in diagnosis and prevention of T1D. The aim of the present study was to investigate the link between the early gut microbiota and immune parameters of non-obese diabetic (NOD) mice in order to select alleged bacterial markers of T1D. Gut microbial composition in feces was analyzed with 454/FLX Titanium (Roche) pyro-sequencing and correlated with diabetes onset age and immune cell populations measured in diabetic and non-diabetic mice at 30 weeks of age. The early gut microbiota composition was found to be different between NOD mice that later in life were classified as diabetic or non-diabetic. Those differences were further associated with changes in FoxP3+ regulatory T cells, CD11b+ dendritic cells, and IFN-? production. The model proposed in this work suggests that operational taxonomic units classified to S247, Prevotella, and an unknown Bacteriodales (all Bacteroidetes) act in favor of diabetes protection whereas members of Lachnospiraceae, Ruminococcus, and Oscillospira (all Firmicutes) promote pathogenesis. PMID:25648687

  1. Anti-diabetic effects of rice hull smoke extract on glucose-regulating mechanism in type 2 diabetic mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study is to determine the protective effect of a liquid rice hull smoke extract (RHSE) against type 2 diabetes induced by a high fat diet administered to mice. Dietary administration of 0.5% or 1% RHSE for 7 weeks results in significantly reduced blood glucose and triglyceride and to...

  2. Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy.

    PubMed

    Marchant, Vanessa; Droguett, Alejandra; Valderrama, Graciela; Burgos, M Eugenia; Carpio, Daniel; Kerr, Bredford; Ruiz-Ortega, Marta; Egido, Jess; Mezzano, Sergio

    2015-09-15

    Diabetic nephropathy (DN) is currently a leading cause of end-stage renal failure worldwide. Gremlin was identified as a gene differentially expressed in mesangial cells exposed to high glucose and in experimental diabetic kidneys. We have described that Gremlin is highly expressed in biopsies from patients with diabetic nephropathy, predominantly in areas of tubulointerstitial fibrosis. In streptozotocin (STZ)-induced experimental diabetes, Gremlin deletion using Grem1 heterozygous knockout mice or by gene silencing, ameliorates renal damage. To study the in vivo role of Gremlin in renal damage, we developed a diabetic model induced by STZ in transgenic (TG) mice expressing human Gremlin in proximal tubular epithelial cells. The albuminuria/creatinuria ratio, determined at week 20 after treatment, was significantly increased in diabetic mice but with no significant differences between transgenic (TG/STZ) and wild-type mice (WT/STZ). To assess the level of renal damage, kidney tissue was analyzed by light microscopy (periodic acid-Schiff and Masson staining), electron microscopy, and quantitative PCR. TG/STZ mice had significantly greater thickening of the glomerular basement membrane, increased mesangial matrix, and podocytopenia vs. WT/STZ. At the tubulointerstitial level, TG/STZ showed increased cell infiltration and mild interstitial fibrosis. In addition, we observed a decreased expression of podocin and overexpression of monocyte chemoattractant protein-1 and fibrotic-related markers, including transforming growth factor-?1, Col1a1, and ?-smooth muscle actin. Together, these results show that TG mice overexpressing Gremlin in renal tubules develop greater glomerular and tubulointerstitial injury in response to diabetic-mediated damage and support the involvement of Gremlin in diabetic nephropathy. PMID:26155842

  3. Fractalkine and its receptor mediate extracellular matrix accumulation in diabetic nephropathy in mice

    PubMed Central

    Song, K. H.; Park, J.; Park, J. H.; Natarajan, R.

    2016-01-01

    Aims/hypothesis Fractalkine (FKN) is a unique chemokine that works as a chemoattractant and an adhesion molecule. Previous studies have demonstrated that FKN plays a role in ischaemic and protein-overload renal injury via its cognate receptor chemokine (C-X3-C motif) receptor 1 (CX3CR1). However, involvement of the FKN/CX3CR1 system in diabetic nephropathy remains unclear. We examined the role of FKN/CX3CR1 in diabetic mice and mouse mesangial cells (MMCs). Methods Streptozotocin (50 mg kg?1 day?1) was intraperitoneally administered for 5 days to male Cx3cr1-knockout (KO) mice and wild-type (WT) mice. MMCs transfected with Fkn (also known as Cx3cl1) or Cx3cr1 siRNA, respectively, were used to elucidate the role of FKN/CX3CR1 in extracellular matrix (ECM) synthesis. Results At 12 weeks, diabetic Cx3cr1 KO mice showed no significant changes in plasma glucose, but markers of renal inflammation, fibrosis and ECM, such as the fractional mesangial area, fibronectin and collagen, were significantly lower in diabetic Cx3cr1 KO mice compared with diabetic WT mice. High glucose, oleic acid and TGF-?1 stimulated FKN and CX3CR1 expression, together with the expression of ECM proteins in MMCs, but the effects were significantly attenuated by Fkn or Cx3cr1 siRNA. More importantly, FKN itself increased mesangial ECM through CX3CR1 and subsequent activation of reactive oxygen species and mitogen-activated protein kinases. A neutralising TGF-? antibody inhibited FKN/CX3CR1 in MMCs treated with diabetic stimuli and decreased FKN-induced ECM accumulation. Conclusions/interpretation These results demonstrate that FKN/CX3CR1 may play an important role in diabetic renal injury through upregulation of ECM synthesis and could therefore be a therapeutic target for preventing diabetic nephropathy. PMID:23604552

  4. ?-Lipoic Acid Protects Diabetic Apolipoprotien E-deficient Mice from Nephropathy

    PubMed Central

    Yi, Xianwen; Nickeleit, Volker; James, Leighton R; Maeda, Nobuyo

    2010-01-01

    Aim Both hyperglycemia and hyperlipidemia increase oxidative stress, and contribute to the development of diabetic nephropathy (DN). We investigated effects of ?-lipoic acid, a natural antioxidant and a cofactor in the multienzyme complexes, on the development of DN in diabetic apolipoprotein E-deficient mice. Methods Twelve-weeks-old male apoE?/? mice on C57BL/6J genetic background were made diabetic with injections of streptozotocin (STZ). STZ-treated diabetic apoE?/? mice and non-diabetic control were fed with a synthetic high fat (HF) diet with or without LA supplementation. Multiple parameters including plasma glucose, cholesterol, oxidative stress markers, cytokines, and kidney cortex gene expression, and glomerular morphology were evaluated. Results LA supplementation markedly protected the beta cells and reduced cholesterol levels, attenuated albuminuria and glomerular mesangial expansion in the diabetic mice. Reno-protection by LA was equally effective regardless of whether the dietary supplementation was started 4 weeks before, simultaneously with, or 4 weeks after the induction of diabetes by STZ. LA supplementation significantly improved DN and oxidative stress in the diabetic mice. Severity of albuminuria was positively correlated with level of thiobarbituric acid reactive substances (TBARs) in the kidney (r2=0.62, P<0.05). Diabetes significantly changed the kidney expression of Rage, Sod2, Tgfb1 and Ctgf, Pdp2, nephrin and Lias. LA supplementation corrected these changes except that it further suppressed the expression of the Lias gene coding for lipoic acid synthase. Conclusions Our data indicate that LA supplementation effectively attenuates the development and progression of DN through its antioxidant effect as well as enhancing glucose oxidation. PMID:20801062

  5. Dosing time-dependent changes in the analgesic effect of pregabalin on diabetic neuropathy in mice.

    PubMed

    Akamine, Takahiro; Koyanagi, Satoru; Kusunose, Naoki; Hashimoto, Hana; Taniguchi, Marie; Matsunaga, Naoya; Ohdo, Shigehiro

    2015-07-01

    Patients with diabetes often develop peripheral nerve complications, including numbness and pain in the extremities. Diabetes-induced peripheral neuropathic pain is characterized by hypersensitivity to innocuous stimuli, known as tactile allodynia. Pregabalin (PGN) is currently used to treat diabetes-induced peripheral neuropathy and alleviates allodynia. In the present study, we demonstrated that the antiallodynic effect of PGN on diabetic mice was modulated by circadian changes in its intestinal absorption. A single intraperitoneal administration of 200 mg/kg streptozotocin (STZ) to mice induced type I diabetic pathologic changes that were accompanied by tactile allodynia. The intensity of tactile allodynia in STZ-induced diabetic mice was alleviated by the oral administration of PGN; however, the antiallodynic effect varied according to its dosing time. The analgesic effect of PGN was enhanced by its administration at the times of day when its intestinal absorption was accelerated. Organic cation transporter novel type 1 (Octn1) mediated the uptake of PGN into intestinal epithelial cells. The expression of Octn1 in the small intestine of STZ-induced diabetic mice oscillated in a circadian time-dependent manner. This oscillation in Octn1 appeared to cause the time of day-dependent changes in the intestinal absorption of PGN. Similar dosing time dependencies of the antiallodynic effect of PGN and oscillation in Octn1 expression were also detected in type II diabetic db/db mice. These results suggested that the dosing time-dependent differences in the analgesic effect of PGN were attributable to circadian oscillations in the intestinal expression of Octn1 and also that optimizing its dosing schedule may assist in achieving rational pharmacotherapy for diabetes-induced peripheral neuropathic pain. PMID:25962390

  6. Inhibition of Nuclear Factor of Activated T-Cells (NFAT) Suppresses Accelerated Atherosclerosis in Diabetic Mice

    PubMed Central

    Zetterqvist, Anna V.; Berglund, Lisa M.; Blanco, Fabiana; Garcia-Vaz, Eliana; Wigren, Maria; Dunr, Pontus; Andersson, Anna-Maria Dutius; To, Fong; Spegel, Peter; Nilsson, Jan; Bengtsson, Eva; Gomez, Maria F.

    2013-01-01

    Objective of the Study Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis. Methodology and Principal Findings Streptozotocin (STZ)-induced diabetes in apolipoprotein E?/? mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice. Conclusions Targeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications. PMID:23755169

  7. Ablation of a small subpopulation of diabetes-specific bone marrow-derived cells in mice protects against diabetic neuropathy.

    PubMed

    Urabe, Hiroshi; Terashima, Tomoya; Kojima, Hideto; Chan, Lawrence

    2016-02-15

    Diabetic peripheral neuropathy (DPN) is a major diabetic complication. Previously, we showed that hyperglycemia induces the appearance of proinsulin (PI)-producing bone marrow-derived cells (PI-BMDCs), which fuse with dorsal root ganglion neurons, causing apoptosis, nerve dysfunction, and DPN. In this study, we have devised a strategy to ablate PI-BMDCs in mice in vivo. The use of this strategy to selectively ablate TNF?-producing PI-BMDCs in diabetic mice protected these animals from developing DPN. The findings provide powerful validation for a pathogenic role of PI-BMDCs and identify PI-BMDCs as an accessible therapeutic target for the treatment and prevention of DPN. PMID:26695138

  8. Type 2 Diabetic Rats on Diet Supplemented With Chromium Malate Show Improved Glycometabolism, Glycometabolism-Related Enzyme Levels and Lipid Metabolism

    PubMed Central

    Feng, Weiwei; Zhao, Ting; Mao, Guanghua; Wang, Wei; Feng, Yun; Li, Fang; Zheng, Daheng; Wu, Huiyu; Jin, Dun; Yang, Liuqing; Wu, Xiangyang

    2015-01-01

    Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the effect of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism in type 2 diabetic rats. Our results showed that fasting blood glucose, serum insulin level, insulin resistance index and C-peptide level in the high dose group had a significant downward trend when compared with the model group, chromium picolinate group and chromium trichloride group. The hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, Glut4, phosphor-AMPK?1 and Akt levels in the high dose group were significantly higher than those of the model, chromium picolinate and chromium trichloride groups. Chromium malate in a high dose group can significantly increase high density lipoprotein cholesterol level while decreasing the total cholesterol, low density lipoprotein cholesterol and triglyceride levels when compared with chromium picolinate and chromium trichloride. The serum chromium content in chromium malate and chromium picolinate group is significantly higher than that of the chromium trichloride group. The results indicated that the curative effects of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism changes are better than those of chromium picolinate and chromium trichloride. Chromium malate contributes to glucose uptake and transport in order to improved glycometabolism and glycometabolism-related enzymes. PMID:25942313

  9. A Humoral Immune Defect Distinguishes the Response to Staphylococcus aureus Infections in Mice with Obesity and Type 2 Diabetes from That in Mice with Type 1 Diabetes

    PubMed Central

    Farnsworth, Christopher W.; Shehatou, Cindy T.; Maynard, Robert; Nishitani, Kohei; Zuscik, Michael J.; Schwarz, Edward M.; Daiss, John L.

    2015-01-01

    Obesity and diabetes are among the greatest risk factors for infection following total joint arthroplasty. However, the underlying mechanism of susceptibility is unclear. We compared orthopedic implant-associated Staphylococcus aureus infections in type 1 (T1D) versus type 2 (T2D) diabetic mouse models and in patients with S. aureus infections, focusing on the adaptive immune response. Mice were fed a high-fat diet to initiate obesity and T2D. T1D was initiated with streptozotocin. Mice were then given a trans-tibial implant that was precoated with bioluminescent Xen36 S. aureus. Although both mouse models of diabetes demonstrated worse infection severity than controls, infection in T2D mice was more severe, as indicated by increases in bioluminescence, S. aureus CFU in tissue, and death within the first 7 days. Furthermore, T2D mice had an impaired humoral immune response at day 14 with reduced total IgG, decreased S. aureus-specific IgG, and increased IgM. These changes were not present in T1D mice. Similarly, T2D patients and obese nondiabetics with active S. aureus infections had a blunted IgG response to S. aureus. In conclusion, we report the first evidence of a humoral immune deficit, possibly due to an immunoglobulin class switch defect, in obesity and T2D during exacerbated S. aureus infection which may contribute to the increased infection risk following arthroplasty in patients with T2D and obesity. PMID:25802056

  10. CD8+ CD122+ PD-1- effector cells promote the development of diabetes in NOD mice.

    PubMed

    Arndt, Börge; Witkowski, Lukas; Ellwart, Joachim; Seissler, Jochen

    2015-01-01

    It is well established that CD4 and CD8 T cells are required for the initiation of autoimmune diabetes in NOD mice. However, different subsets of CD4 or CD8 cells may play different roles in the initiation of insulitis. In this study, we evaluated the role of the previously described CD8(+) CD122(+) in this process. We found that prediabetic NOD mice have an almost 50% reduction of CD8(+) CD122(+) T cells in their secondary lymphoid organs compared with BL/6 or Balb/c mouse strains. This reduction is explained by the lack of the regulatory CD8(+) CD122(+) PD-1(+) cell population in the NOD mice, as we found that all CD8(+) CD122(+) T cells from prediabetic NOD mice lack PD-1 expression and regulatory function. Depletion of CD8(+) CD122(+) PD-1(-) cells through injection of anti-CD122 mAb in prediabetic female NOD mice reduced the infiltration of mononuclear cells into the Langerhans islets and delayed the onset and decreased the incidence of overt diabetes. In addition, we found that transfer of highly purified and activated CD8(+) CD122(+) PD-1(-) cells, together with diabetogenic splenocytes from NOD donors to NOD SCID recipients, accelerates the diabetes development in these mice. Together, these results demonstrate that CD8(+) CD122(+) PD-1(-) T cells from NOD mice are effector cells that are involved in the pathogenesis of autoimmune diabetes. PMID:25387835

  11. Effect of Diallyl Disulphide on Diabetes Induced Dyslipidemia in Male Albino Rats

    PubMed Central

    Kashinath, R.T.; Ambekar, J.G.

    2015-01-01

    Background Diabetes Mellitus is a chronic metabolic disorder which may lead to various complications, the important being dyslipidemia leading to Coronary Heart Disorders (CHD), the major cause for morbidity and mortality in diabetic patients. Diabetes Mellitus could be treated by nutritional therapy/drug therapy and others. But the drug therapy would have its own limitations and side effects. To overcome from this an herbal extract is recommended, such as Diallyl Disulphide (DADS) a principle compound of Garlic oil. Aim To assess the hypolipidemic effect of Diallyl Disulphide (DADS) in alloxan induced diabetic rats. Materials and Methods Healthy adult wistar strain male albino rats weighing around 100-150 grams were randomly selected from the animal house at BLDE Universitys Shri B.M.Patil Medical College, Hospital and Research Centre, Bijapur, India. Diabetes was induced using alloxan and was treated with DADS. After a stipulated time the rats were anesthetised and sacrificed to collect the blood and liver tissue. Various Lipid parameters, HMG CoA Reductase, Fecal bile acids were estimated in the blood, feces and homogenised liver tissue using standard procedures. Statiscal Analysis One-way ANOVA followed by post-hoc t-test is done. Result There was significant decrease in the blood and liver tissue lipid parameters of DADS treated alloxan induced diabetic rats when compared to the alloxan induced diabetic rats. Conclusion From this study it can be concluded that the DADS a principle compound of garlic, definitely has the hypolipidemic effect in diabetic rats, which is reducing the morbidity in diabetic cases due to dyslipidemia without the adverse effects. PMID:26023549

  12. Endothelial-Myofibroblast Transition Contributes to the Early Development of Diabetic Renal Interstitial Fibrosis in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Li, Jinhua; Qu, Xinli; Bertram, John F.

    2009-01-01

    Diabetic nephropathy is the leading cause of chronic renal failure. Myofibroblasts play a major role in the synthesis and secretion of extracellular matrix in diabetic renal fibrosis. Increasing evidence suggests that endothelial cells may undergo endothelial-myofibroblast transition under physiological and pathophysiological circumstances. Therefore, this study investigates whether endothelial-myofibroblast transition occurs and contributes to the development of diabetic renal interstitial fibrosis. Diabetes was induced by administration of streptozotocin to Tie2-Cre;LoxP-EGFP mice, an endothelial lineage-traceable mouse line generated by crossbreeding B6.Cg-Tg(Tek-cre)12F1v/J mice with B6.Cg-Tg(ACTB-Bgeo/GFP)21Lbe/J mice. The endothelial-myofibroblast transition was also studied in MMECs (a mouse pancreatic microvascular endothelial cell line) and primary cultures of CD31+/EYFP? (enhanced yellow fluorescent protein) endothelial cells isolated from adult normal ?-smooth muscle actin promoter-driven-EYFP (?-SMA/EYFP) mouse kidneys. Confocal microscopy demonstrated that 10.4 4.2 and 23.5 7.4% of renal interstitial myofibroblasts (?-SMA+) in 1- and 6-month streptozotocin-induced diabetic kidneys were of endothelial origin (EGFP+/?-SMA+ cells), compared with just 0.2 0.1% of myofibroblasts in vehicle-treated Tie2-Cre;LoxP-EGFP mice (P < 0.01). Confocal microscopy and real-time PCR showed that transforming growth factor (TGF)-?1 induced de novo expression of ?-SMA and loss of expression of VE-cadherin and CD31 in MMECs and primary cultures of renal endothelial cells in a time- and dose-dependent fashion. These findings demonstrate that the endothelial-myofibroblast transition occurs and contributes to the early development and progression of diabetic renal interstitial fibrosis and suggest that the endothelial-myofibroblast transition may be a therapeutic target. PMID:19729486

  13. Unacylated ghrelin restores insulin and autophagic signaling in skeletal muscle of diabetic mice.

    PubMed

    Tam, Bjorn T; Pei, Xiao M; Yung, Benjamin Y; Yip, Shea P; Chan, Lawrence W; Wong, Cesar S; Siu, Parco M

    2015-12-01

    Impairment of insulin signaling in skeletal muscle detrimentally affects insulin-stimulated disposal of glucose. Restoration of insulin signaling in skeletal muscle is important as muscle is one of the major sites for disposal of blood glucose. Recently, unacylated ghrelin (UnAG) has received attention in diabetic research due to its favorable actions on improving glucose tolerance, glycemic control, and insulin sensitivity. The investigation of UnAG has entered phase Ib clinical trial in type 2 diabetes and phase II clinical trial in hyperphagia in Prader-Willi syndrome. Nonetheless, the precise mechanisms responsible for the anti-diabetic actions of UnAG remain incompletely understood. In this study, we examined the effects of UnAG on restoring the impaired insulin signaling in skeletal muscle of db/db diabetic mice. Our results demonstrated that UnAG effectively restored the impaired insulin signaling in diabetic muscle. UnAG decreased insulin receptor substrate (IRS) phosphorylation, increased protein kinase B (Akt) phosphorylation, and, hence, suppressed mTOR signaling. Consequently, UnAG enhanced Glut4 localization and increased PDH activity in the diabetic skeletal muscle. Intriguingly, our data indicated that UnAG normalized the suppressed autophagic signaling in diabetic muscle. In conclusion, our findings illustrated that UnAG restored the impaired insulin and autophagic signaling in skeletal muscle of diabetic mice, which are valuable to understand the underlying mechanisms of the anti-diabetic action of UnAG at peripheral skeletal muscle level. PMID:26228926

  14. RegII is a beta-cell protein and autoantigen in diabetes of NOD mice.

    PubMed

    Gurr, Werner; Shaw, Margaret; Li, Yanxia; Sherwin, Robert

    2007-01-01

    The Reg family of proteins has been studied in the context of growth and regeneration in several organs including pancreatic islets. We previously suggested that Reg proteins act as autoantigens in type 1 diabetes, based on evidence that a member of the Reg family (hepatocellular carcinoma intestine pancreas [HIP]/pancreatitis-associated protein [PAP]) was overexpressed in the islets of a patient who died after sudden onset of type 1 diabetes, and that, in NOD mice, Reg-specific T-cells adoptively transferred diabetes. In the current study, we developed antisera to detect individual Reg members in mouse islets and found that RegIIIalpha was present in the non-beta-cell portion of the islets, while RegII was predominantly expressed in beta-cells. Vaccination of NOD mice with the separately expressed N-terminal (NtfrII) or C-terminal (CtfrII) portion of RegII revealed a dichotomy: NtfrII vaccination accelerated and CtfrII vaccination delayed type 1 diabetes. Vaccination with CtfrII was more effective when given at later stages in the pathogenesis of type 1 diabetes, a time dependency different from that seen with other antigen-dependent vaccine strategies in NOD mice, which might have therapeutic implications. In conclusion, RegII is a novel beta-cell-derived autoantigen in NOD mice. The autoimmune response against this protein may convert a regenerative into an islet-destructive process accelerating development of type 1 diabetes. PMID:17192462

  15. Ecklonia cava Inhibits Glucose Absorption and Stimulates Insulin Secretion in Streptozotocin-Induced Diabetic Mice.

    PubMed

    Kim, Hye Kyung

    2012-01-01

    Aims of study. Present study investigated the effect of Ecklonia cava (EC) on intestinal glucose uptake and insulin secretion. Materials and methods. Intestinal Na(+)-dependent glucose uptake (SGU) and Na(+)-dependent glucose transporter 1 (SGLT1) protein expression was determined using brush border membrane vesicles (BBMVs). Glucose-induced insulin secretion was examined in pancreatic ?-islet cells. The antihyperglycemic effects of EC, SGU, and SGLT1 expression were determined in streptozotocin (STZ)-induced diabetic mice. Results. Methanol extract of EC markedly inhibited intestinal SGU of BBMV with the IC(50) value of 345??g/mL. SGLT1 protein expression was dose dependently down regulated with EC treatment. Furthermore, insulinotrophic effect of EC extract was observed at high glucose media in isolated pancreatic ?-islet cells in vitro. We next conducted the antihyperglycemic effect of EC in STZ-diabetic mice. EC supplementation markedly suppressed SGU and SGLT1 abundance in BBMV from STZ mice. Furthermore, plasma insulin level was increased by EC treatment in diabetic mice. As a result, EC supplementation improved postprandial glucose regulation, assessed by oral glucose tolerance test, in diabetic mice. Conclusion. These results suggest that EC play a role in controlling dietary glucose absorption at the intestine and insulinotrophic action at the pancreas contributing blood glucose homeostasis in diabetic condition. PMID:22645628

  16. Ecklonia cava Inhibits Glucose Absorption and Stimulates Insulin Secretion in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Kim, Hye Kyung

    2012-01-01

    Aims of study. Present study investigated the effect of Ecklonia cava (EC) on intestinal glucose uptake and insulin secretion. Materials and methods. Intestinal Na+-dependent glucose uptake (SGU) and Na+-dependent glucose transporter 1 (SGLT1) protein expression was determined using brush border membrane vesicles (BBMVs). Glucose-induced insulin secretion was examined in pancreatic ?-islet cells. The antihyperglycemic effects of EC, SGU, and SGLT1 expression were determined in streptozotocin (STZ)-induced diabetic mice. Results. Methanol extract of EC markedly inhibited intestinal SGU of BBMV with the IC50 value of 345??g/mL. SGLT1 protein expression was dose dependently down regulated with EC treatment. Furthermore, insulinotrophic effect of EC extract was observed at high glucose media in isolated pancreatic ?-islet cells in vitro. We next conducted the antihyperglycemic effect of EC in STZ-diabetic mice. EC supplementation markedly suppressed SGU and SGLT1 abundance in BBMV from STZ mice. Furthermore, plasma insulin level was increased by EC treatment in diabetic mice. As a result, EC supplementation improved postprandial glucose regulation, assessed by oral glucose tolerance test, in diabetic mice. Conclusion. These results suggest that EC play a role in controlling dietary glucose absorption at the intestine and insulinotrophic action at the pancreas contributing blood glucose homeostasis in diabetic condition. PMID:22645628

  17. Hypoglycemic and anti-inflammatory effects of seabuckthorn seed protein in diabetic ICR mice.

    PubMed

    Yuan, Huaibo; Zhu, Xiping; Wang, Wenjuan; Meng, Lina; Chen, Deyi; Zhang, Cuan

    2016-03-16

    In this paper, we have investigated the hypoglycemic and anti-inflammatory effects of seabuckthorn seed protein (SSP) on streptozocin (STZ)-induced diabetic IRC mice. The effects of SSP on the body weight (BW), fasting blood glucose (FBG) levels, serum lipids, inflammatory factors and insulin (SIN) levels of normal and diabetic mice have been investigated. SSP has been shown to reduce insulin resistance (IR) and control the effects of C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and nuclear factor-κ-gene binding (NF-κB). In addition, this paper further validates the hypoglycemic and anti-inflammatory effects of seabuckthorn procyanidins (SPR) and seabuckthorn polysaccharides (SPO) in diabetic mice and the experimental results were consistent with previous studies. Moreover, results from animal experiments showed that SSP has a significant hypoglycemic and anti-inflammatory effect as evidenced by the lower BW, FBG levels, SIN and lipid contents of diabetic mice treated with SSP compared to the diabetic control mice. PMID:26918250

  18. TAK1 inhibition prevents the development of autoimmune diabetes in NOD mice

    PubMed Central

    Cao, Hui; Lu, Jingli; Du, Jiao; Xia, Fei; Wei, Shouguo; Liu, Xiulan; Liu, Tingting; Liu, Yang; Xiang, Ming

    2015-01-01

    Transforming growth factor-β activated kinase-1 (TAK1, Map3k7), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, is essential in innate and adaptive immune responses. We postulated that blockade of TAK1 would affect autoimmune diabetes in non-obese diabetic (NOD) mice. Administration of 5Z-7-oxozeaenol (OZ), a TAK1 inhibitor, decreased the incidence and delayed the onset of autoimmune diabetes in both spontaneous and accelerated (cyclophosphamide-induced) experimental NOD mice. OZ also reduced insulitis, preserved islet function, increased the expression of α1- antitrypsin (AAT), and severely inhibited NF-κB and JNK/AP-1 signaling pathways in immune organs and pancreatic tissues. Importantly, TAK1 inhibition by OZ elicited a Th1 to Th2 cytokine shift, and increased TGF-β1 production in cultured T lymphocytes supernatants. Systemic TAK1 inhibition induced immature DCs with lower expressions of MHC-II and CD86, attenuated DC-mediated T cell proliferation in allogeneic MLR, and production of cytokine IL-12p70 in DCs suspensions. The results indicate that TAK1 inhibition with OZ was associated with a lower frequency of autoimmune diabetes in NOD mice. The net effect of TAK1 inhibition in NOD mice therefore appears to be protective rather than disease-enhancing. Strategies targeting TAK1 specifically in NOD mice might prove useful for the treatment of autoimmune diabetes in general. PMID:26459028

  19. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice

    PubMed Central

    Kriegel, Martin A.; Sefik, Esen; Hill, Jonathan A.; Wu, Hsin-Jung; Benoist, Christophe; Mathis, Diane

    2011-01-01

    Vertebrates typically harbor a rich gastrointestinal microbiota, which has coevolved with the host over millennia and is essential for several host physiological functions, in particular maturation of the immune system. Recent studies have highlighted the importance of a single bacterial species, segmented filamentous bacteria (SFB), in inducing a robust T-helper cell type 17 (Th17) population in the small-intestinal lamina propria (SI-LP) of the mouse gut. Consequently, SFB can promote IL-17–dependent immune and autoimmune responses, gut-associated as well as systemic, including inflammatory arthritis and experimental autoimmune encephalomyelitis. Here, we exploit the incomplete penetrance of SFB colonization of NOD mice in our animal facility to explore its impact on the incidence and course of type 1 diabetes in this prototypical, spontaneous model. There was a strong cosegregation of SFB positivity and diabetes protection in females, but not in males, which remained relatively disease-free regardless of the SFB status. In contrast, insulitis did not depend on SFB colonization. SFB-positive, but not SFB-negative, females had a substantial population of Th17 cells in the SI-LP, which was the only significant, repeatable difference in the examined T-cell compartments of the gut, pancreas, or systemic lymphoid tissues. Th17-signature transcripts dominated the very limited SFB-induced molecular changes detected in SI-LP CD4+ T cells. Thus, a single bacterium, and the gut immune system alterations associated with it, can either promote or protect from autoimmunity in predisposed mouse models, probably reflecting their variable dependence on different Th subsets. PMID:21709219

  20. Sargassum coreanum extract alleviates hyperglycemia and improves insulin resistance in db/db diabetic mice

    PubMed Central

    Park, Mi Hwa; Nam, Young Hwa

    2015-01-01

    BACKGROUND/OBJECTIVES The goal of this study was to examine the effect of Sargassum coreanum extract (SCE) on blood glucose concentration and insulin resistance in C57BL-KsJ-db/db mice. MATERIALS/METHODS For 6 weeks, male C57BL/KsJ-db/db mice were administrated SCE (0.5%, w/w), and rosiglitazone (0.005%, w/w). RESULTS A supplement of the SCE for 6 weeks induced a significant reduction in blood glucose and glycosylated hemoglobin concentrations, and it improved hyperinsulinemia compared to the diabetic control db/db mice. The glucokinase activity in the hepatic glucose metabolism increased in the SCE-supplemented db/db mice, while phosphoenolpyruvate carboxykinase and glucose-6-phosphatase activities in the SCE-supplemented db/db mice were significantly lower than those in the diabetic control db/db mice. The homeostatic index of insulin resistance was lower in the SCE-supplemented db/db mice than in the diabetic control db/db mice. CONCLUSIONS These results suggest that a supplement of the SCE lowers the blood glucose concentration by altering the hepatic glucose metabolic enzyme activities and improves insulin resistance. PMID:26425276

  1. Maintenance of islet morphology is beneficial for transplantation outcome in diabetic mice.

    PubMed

    Rackham, Chloe L; Jones, Peter M; King, Aileen J F

    2013-01-01

    We have previously shown that co-transplantation of islets and Mesenchymal Stem Cells (MSCs) improves islet graft function and revascularisation, which was associated with the maintenance of normal islet morphology. The aim of the current study was to determine whether maintaining islet morphology in the absence of additional islet-helper cells would improve transplantation outcome in diabetic mice. Islets were isolated from C57BL/6 mice. Recipient streptozotocin-diabetic C57BL/6 mice were transplanted with a minimal mass of 150 islets as a single pellet or islets that were either manually dispersed or dispersed within a matrigel plug beneath the kidney capsule. Blood glucose concentrations were monitored for one month. Islet graft morphology and vascularisation were analysed by histology. Islets dispersed either alone or within matrigel plugs maintained near normal morphology, in contrast to pelleted islets, where individual islets fused to form large endocrine aggregates. The vascularisation of manually dispersed islets and islets dispersed within matrigel plugs was increased relative to respective control pelleted islet grafts. After one month 1/6 mice transplanted with pelleted islets cured compared to 5/6 mice transplanted with manually dispersed islets. The curative capacity of islets dispersed in matrigel was also better than that of pelleted islets (5/8 islet-matrigel implanted mice vs. 1/7 mice transplanted with pelleted islets cured by one month). Therefore, this study demonstrates that the maintenance of islet morphology is associated with improved graft function and revascularisation in diabetic mice. PMID:23451276

  2. Gene therapy with neurogenin3, betacellulin and SOCS1 reverses diabetes in NOD mice.

    PubMed

    Li, R; Buras, E; Lee, J; Liu, R; Liu, V; Espiritu, C; Ozer, K; Thompson, B; Nally, L; Yuan, G; Oka, K; Chang, B; Samson, S; Yechoor, V; Chan, L

    2015-11-01

    Islet transplantation for type 1 diabetes is limited by a shortage of donor islets and requirement for immunosuppression. We approached this problem by inducing in vivo islet neogenesis in non-obese diabetic (NOD) diabetic mice, a model of autoimmune diabetes. We demonstrate that gene therapy with helper-dependent adenovirus carrying neurogenin3 (Ngn3), an islet lineage-defining transcription factor, and betacellulin (Btc), an islet growth factor, leads to the induction of periportal insulin-positive cell clusters in the liver, which are rapidly destroyed. To specifically accord protection to these 'neo-islets' from cytokine-mediated destruction, we overexpressed suppressor of cytokine signaling 1 (SOCS1) gene, using a rat insulin promoter in combination with Ngn3 and Btc. With this approach, about half of diabetic mice attained euglycemia sustained for over 4 months, regain glucose tolerance and appropriate glucose-stimulated insulin secretion. Histological analysis revealed periportal islet hormone-expressing 'neo-islets' in treated mouse livers. Despite evidence of persistent 'insulitis' with activated T cells, these 'neo-islets' persist to maintain euglycemia. This therapy does not affect diabetogenicity of splenocytes, as they retain the ability to transfer diabetes. This study thus provides a proof-of-concept for engineering in vivo islet neogenesis with targeted resistance to cytokine-mediated destruction to provide a long-term reversal of diabetes in NOD mice. PMID:26172077

  3. Silencing of miR-195 reduces diabetic cardiomyopathy in C57BL/6 mice

    PubMed Central

    Zheng, Dong; Ma, Jian; Yu, Yong; Li, Minghui; Ni, Rui; Wang, Grace; Chen, Ruizhen; Li, Jianmin; Fan, Guo-Chang; Lacefield, James C.

    2015-01-01

    Aims/hypothesis MicroRNAs (miRs) have been suggested as potential therapeutic targets for heart diseases. Inhibition of miR-195 prevents apoptosis in cardiomyocytes stimulated with palmitate and transgenic overexpression of miR-195 induces cardiac hypertrophy and heart failure. We investigated whether silencing of miR-195 reduces diabetic cardiomyopathy in a mouse model of streptozotocin (STZ)-induced type 1 diabetes. Methods Type 1 diabetes was induced in C57BL/6 mice (male, 2 months old) by injections of STZ. Results MiR-195 expression was increased and levels of its target proteins (B cell leukaemia/lymphoma 2 and sirtuin 1) were decreased in STZ-induced type 1 and db/db type 2 diabetic mouse hearts. Systemically delivering an anti-miR-195 construct knocked down miR-195 expression in the heart, reduced caspase-3 activity, decreased oxidative stress, attenuated myocardial hypertrophy and improved myocardial function in STZ-induced mice with a concurrent upregulation of B cell leukaemia/lymphoma 2 and sirtuin 1. Diabetes reduced myocardial capillary density and decreased maximal coronary blood flow in mice. Knockdown of miR-195 increased myocardial capillary density and improved maximal coronary blood flow in diabetic mice. Upregulation of miR-195 sufficiently induced apoptosis in cardiomyocytes and attenuated the angiogenesis of cardiac endothelial cells in vitro. Furthermore, inhibition of miR-195 prevented apoptosis in cardiac endothelial cells in response to NEFA, an important feature of diabetes. Conclusions/interpretation Therapeutic silencing of miR-195 reduces myocardial hypertrophy and improves coronary blood flow and myocardial function in diabetes, at least in part by reducing oxidative damage, inhibiting apoptosis and promoting angiogenesis. Thus, miR-195 may represent an alternative therapeutic target for diabetic heart diseases. PMID:25994075

  4. A targeted mutation in the IL-4R? gene protects mice against autoimmune diabetes

    PubMed Central

    Radu, Dorel L.; Noben-Trauth, Nancy; Hu-Li, Jane; Paul, William E.; Bona, Constantin A.

    2000-01-01

    Autoimmune insulin-dependent diabetes mellitus (IDDM) occurs spontaneously in mice-bearing transgenes encoding the influenza hemagglutinin under the control of the rat insulin promoter and a T cell receptor specific for an hemagglutinin peptide associated with I-Ed. Such double transgenic mice expressing wild-type or targeted IL-4R? genes were examined for the onset of IDDM. Eight of 11 mice homozygous for wild-type IL-4R? were hyperglycemic by 8 weeks of age, whereas only 1 of 16 mice homozygous for the targeted allele were hyperglycemic at this time. Most 1L-4R??/? mice remained normoglycemic to 36 weeks of age. Although only 10% of double transgenic mice homozygous for the wild-type IL-4R? allele survived to 30 weeks, 80% of mice homozygous for the targeted allele did so. Heterozygous mice displayed an intermediate frequency of diabetes. Even as late as 270 days of age, mice homozygous for the targeted allele had no insulitis or only peri-insulitis. Thus, the inability to respond to IL-4 and/or IL-13 protects mice against IDDM in this model of autoimmunity. PMID:11050183

  5. Hematopoietic mixed chimerism derived from allogeneic embryonic stem cells prevents autoimmune diabetes mellitus in NOD mice.

    PubMed

    Verda, Larissa; Kim, Duck An; Ikehara, Susumu; Statkute, Laisvyde; Bronesky, Delphine; Petrenko, Yevgeniya; Oyama, Yu; He, Xiang; Link, Charles; Vahanian, Nicholas N; Burt, Richard K

    2008-02-01

    Embryonic stem cell (ESC)-derived hematopoietic stem cells (HSC), unlike HSC harvested from the blood or marrow, are not contaminated by lymphocytes. We therefore evaluated whether ESC-derived HSC could produce islet cell tolerance, a phenomenon termed graft versus autoimmunity (GVA), without causing the usual allogeneic hematopoietic stem cell transplant complication, graft-versus-host disease (GVHD). Herein, we demonstrate that ESC-derived HSC may be used to prevent autoimmune diabetes mellitus in NOD mice without GVHD or other adverse side effects. ESC were cultured in vitro to induce differentiation toward HSC, selected for c-kit expression, and injected either i.v. or intra-bone marrow (IBM) into sublethally irradiated NOD/LtJ mice. Nine of 10 mice from the IBM group and 5 of 8 from the i.v. group did not become hyperglycemic, in contrast to the control group, in which 8 of 9 mice developed end-stage diabetes. All mice with >5% donor chimerism remained free of diabetes and insulitis, which was confirmed by histology. Splenocytes from transplanted mice were unresponsive to glutamic acid decarboxylase isoform 65, a diabetic-specific autoantigen, but responded normally to third-party antigens. ESC-derived HSC can induce an islet cell tolerizing GVA effect without GVHD. This study represents the first instance, to our knowledge, of ESC-derived HSC cells treating disease in an animal model. PMID:17975228

  6. Endometrial Receptivity Defects and Impaired Implantation in Diabetic NOD Mice1

    PubMed Central

    Albaghdadi, Ahmad J.H.; Kan, Frederick W.K.

    2013-01-01

    Implantation failure is a major hurdle to a successful pregnancy. The high rate of postimplantation fetal loss in nonobese diabetic (NOD) mice is believed to be related to an abnormal decidual production of interferon (IFN)gamma. To address whether diabetes alters the natural events associated with successful implantation, certain morphological and molecular features of uterine receptivity in diabetic NOD (dNOD) mice were examined in normally mated pregnancy and in concanavalin A (ConA)-induced pseudopregnancy. As opposed to normoglycemic NOD (cNOD) mice, dNOD mice expressed retarded maturation of their uterine pinopodes and overexpressed MUC1 mucin at implantation sites (P < 0.001). Uterine production of leukemia inhibitory factor (LIF) and phosphorylation of uterine NFkappaBp65 and STAT3-Ty705 were found to be low (P < 0.01) during Day 4.5 postcoitum, whereas IFNgamma was aberrantly overexpressed. Loss of temporal regulation of progesterone receptor A (PR A) and PR B, together with aberrantly increased expression of the protein inhibitor of activated STAT-y (PIASy) (P < 0.01) and reduced recruitment (P < 0.01) of the latter to nuclear progesterone receptor sites were prominent features of decidualization failure occurring at peri-implantation in dNOD mice. In conclusion, the aberrant expression of endometrial IFNgamma in dNOD mice is associated with a nonreceptive endometrial milieu contributing to peri-implantation embryo loss in type 1 diabetes. PMID:22539679

  7. Maternal Antibiotic Treatment Protects Offspring from Diabetes Development in Nonobese Diabetic Mice by Generation of Tolerogenic APCs.

    PubMed

    Hu, Youjia; Peng, Jian; Tai, Ningwen; Hu, Changyun; Zhang, Xiaojun; Wong, F Susan; Wen, Li

    2015-11-01

    Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that involves the slow, progressive destruction of islet β cells and loss of insulin production, as a result of interaction with environmental factors, in genetically susceptible individuals. The gut microbiome is established very early in life. Commensal microbiota establish mutualism with the host and form an important part of the environment to which individuals are exposed in the gut, providing nutrients and shaping immune responses. In this study, we studied the impact of targeting most Gram-negative bacteria in the gut of NOD mice at different time points in their life, using a combination of three antibiotics--neomycin, polymyxin B, and streptomycin--on diabetes development. We found that the prenatal period is a critical time for shaping the immune tolerance in the progeny, influencing development of autoimmune diabetes. Prenatal neomycin, polymyxin B, and streptomycin treatment protected NOD mice from diabetes development through alterations in the gut microbiota, as well as induction of tolerogenic APCs, which led to reduced activation of diabetogenic CD8 T cells. Most importantly, we found that the protective effect was age dependent, and the most profound protection was found when the mice were treated before birth. This indicates the importance of the prenatal environment and early exposure to commensal bacteria in shaping the host immune system and health. PMID:26401004

  8. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice

    PubMed Central

    Jolivalt, C.G.; Fineman, M.; Deacon, C.F.; Carr, R.D.; Calcutt, N.A.

    2011-01-01

    Aims Glucagon-like peptide-1 (GLP-1) is an incretin hormone that induces glucose-dependent insulin secretion and may have neurotrophic properties. Our aim was to identify the presence and activity of GLP-1 receptors (GLP-1R) in peripheral nerve and to assess the impact of GLP-1R agonists on diabetes-induced nerve disorders. Materials and methods Tissues were collected from streptozotocin-diabetic rats. GLP-1R function was assessed by incubating tissues from normal and diabetic rats with GLP-1R agonists and antagonists and measuring induction of ERK1/2 phosphorylation by western blot. Streptozotocin-diabetic mice were also treated with the GLP-1R agonist exenatide for 8 weeks to assess the impact of GLP-1R signaling on peripheral nerve function and structure. Results GLP-1R protein was detected in rat dorsal root ganglia and the neurons and Schwann cells of the sciatic nerve. Protein levels were not affect by streptozotocin-induced diabetes. GLP-1R agonists did not signal via ERK1/2 in sciatic nerve of normal rats. However, GLP-1R agonists significantly increased pERK1/2 levels in sciatic nerves from diabetic rats, indicating that GLP-1Rs are functional in this tissue. Exenatide treatment did not affect blood sugar, insulin levels or paw thermal response latencies in either control or diabetic mice. However, the reductions of motor nerve conduction velocity and paw intraepidermal fibre density seen in diabetic mice were attenuated by exenatide treatment. Conclusions These data demonstrate that the peripheral nerve of diabetic rodents exhibits functional GLP-1R and suggest that GLP-1R-mediated ERK-signaling in sciatic nerve of diabetic rodents may protect large motor fibre function and small C fibre structure by a mechanism independent of glycaemic control. PMID:21635674

  9. Administration of Danhong Injection to diabetic db/db mice inhibits the development of diabetic retinopathy and nephropathy

    PubMed Central

    Liu, Mengyang; Pan, Quan; Chen, Yuanli; Yang, Xiaoxiao; Zhao, Buchang; Jia, Lifu; Zhu, Yan; Zhang, Boli; Gao, Xiumei; Li, Xiaoju; Han, Jihong; Duan, Yajun

    2015-01-01

    Danhong Injection (DHI), a Chinese medicine for treatment of patients with coronary heart disease, inhibits primary abdominal aortic aneurysms in apoE deficient (apoE?/?) mice. Formation of microaneurysms plays an important role in the development of diabetic retinopathy and nephropathy. It remains unknown if DHI can reduce these diabetic complications. In this study, diabetic db/db mice in two groups were injected with saline and DHI, respectively, for 14 weeks. Blood and tissue samples were collected to determine serum glucose, lipids and tissue structure. DHI reduced diabetes-induced body weight gain, serum cholesterol and glucose levels. In retinas, DHI blocked the shrink of whole retina and retinal sub-layers by inhibiting expression of caspase 3, matrix metalloproteinase 2 (MMP-2) and MMP-9, accumulation of carbohydrate macromolecules and formation of acellular capillaries. DHI improved renal functions by inhibiting mesangial matrix expansion, expression of vascular endothelial growth factor A, fibronectin and advanced glycation end products in kidneys. Mechanistically, DHI induced expression of glucokinase, AMPK?/phosphorylated AMPK?, insulin receptor substrate 1, fibroblast growth factor 21 and peroxisome proliferator-activated ?. Expression of genes responsible for energy expenditure was also activated by DHI. Therefore, DHI inhibits diabetic retinopathy and nephropathy by ameliorating glucose metabolism and demonstrates a potential application in clinics. PMID:26061387

  10. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice

    PubMed Central

    Stranahan, Alexis M.; Lee, Kim; Martin, Bronwen; Maudsley, Stuart; Golden, Erin; Cutler, Roy G.; Mattson, Mark P.

    2009-01-01

    Diabetes may adversely affect cognitive function, but the underlying mechanisms are unknown. To investigate whether manipulations that enhance neurotrophin levels will also restore neuronal structure and function in diabetes, we examined the effects of wheel running and dietary energy restriction on hippocampal neuron morphology and BDNF levels in db/db mice, a model of insulin resistant diabetes. Running wheel activity, caloric restriction, or the combination of the two treatments increased levels of BDNF in the hippocampus of db/db mice. Enhancement of hippocampal BDNF was accompanied by increases in dendritic spine density on the secondary and tertiary dendrites of dentate granule neurons. These studies suggest that diabetes exerts detrimental effects on hippocampal structure, and that this state can be attenuated by increasing energy expenditure and decreasing energy intake. PMID:19280661

  11. Phlorofucofuroeckol A isolated from Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice.

    PubMed

    You, Han-Nui; Lee, Hyun-Ah; Park, Mi-Hwa; Lee, Ji-Hyeok; Han, Ji-Sook

    2015-04-01

    This study was designed to investigate whether phlorofucofuroeckol A inhibited ?-glucosidase and ?-amylase activities and alleviated postprandial hyperglycemia in diabetic mice. Phlorofucofuroeckol A that was isolated from Ecklonia cava (brown algae) demonstrated prominent inhibitory effects against ?-glucosidase and ?-amylase activities. The IC50 values of phlorofucofuroeckol A against ?-glucosidase and ?-amylase were 19.52 and 6.34?M, respectively. These inhibitory activities of phlorofucofuroeckol A were higher than those of acarbose, which was used as a positive control. Increases in postprandial blood glucose levels were significantly more suppressed in the group administered phlorofucofuroeckol A compared to the control group in both diabetic and normal mice. Moreover, the area under the curve was significantly lower after phlorofucofuroeckol A administration (2296 versus 2690mmolmin/l) in the diabetic mice. These results suggested that phlorofucofuroeckol A is a potent ?-glucosidase inhibitor and can alleviate the postprandial hyperglycemia that is caused by starch. PMID:25680946

  12. Polyopes lancifolia Extract, a Potent ?-Glucosidase Inhibitor, Alleviates Postprandial Hyperglycemia in Diabetic Mice

    PubMed Central

    Min, Seong Won; Han, Ji Sook

    2014-01-01

    This study was designed to investigate the inhibitory effects of Polyopes lancifolia extract (PLE) on ?-glucosidase activity, ?-amylase activitiy, and postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. The results of this study revealed a marked inhibitory effect of PLE on ?-glucosidase and ?-amylase activities. The IC50s of PLE against ?-glucosidase and ?-amylase were 0.20 mg/mL and 0.35 mg/mL, respectively. PLE was a more effective inhibitor of ?-glucosidase and ?-amylase activities than acarbose, the positive control. The postprandial blood glucose levels of STZ-induced diabetic mice were significantly lower in the PLE treated group than in the control group. Moreover, PLE administration was associated with a decreased area under the curve for the glucose response in diabetic mice. These results indicate that PLE may be a potent inhibitor of ?-glucosidase and ?-amylase activities and may suppress postprandial hyperglycemia. PMID:24772403

  13. Attenuation of hepatotoxicity and oxidative stress in diabetes STZ-induced type 1 by biotin in Swiss albino mice

    PubMed Central

    Aldahmash, Badr Abdullah; El-Nagar, Doaa Mohamed; Ibrahim, Khalid Elfakki

    2015-01-01

    Diabetes mellitus is one of the major health problems. This study was designed to investigate the effect of biotin to regulate blood glucose level, reduced toxicity and oxidative stress in liver of diabetic mice STZ-induced type 1. Male mice were divided into three groups, the first one served as the control group, the second and the third groups received single ip dose of 150 mg/kg of STZ, the second group served as the untreated diabetic group, the third group received daily oral dose of 15 mg/kg of biotin, livers and liver index showed insignificant difference among groups. Blood glucose level showed a significant decrease in treated diabetic mice compared to untreated diabetic mice. Biochemical analysis showed a significant decrease in liver enzymes AST and ALT compared to the control group. Histopathological examination showed severe changes in untreated diabetic liver tissue manifested by dilated portal vein, leukocytic infiltration, fatty degeneration and moderate to severe histopathological score, whereas, treated diabetic mice with biotin showed reduction in hepatotoxicity represented by appearance of relative healthy hepatocytes and normal histopathological score. Immunohistochemistry of acrolein showed intense immunoreactions in liver section of untreated diabetic mice and faint immunoreactions in treated diabetic mice with biotin as evidence to oxidative stress reduction. PMID:26981014

  14. Low TGF?1 expression prevents and high expression exacerbates diabetic nephropathy in mice.

    PubMed

    Hathaway, Catherine K; Gasim, Adil M H; Grant, Ruriko; Chang, Albert S; Kim, Hyung-Suk; Madden, Victoria J; Bagnell, C Robert; Jennette, J Charles; Smithies, Oliver; Kakoki, Masao

    2015-05-01

    Nephropathy develops in many but not all patients with long-standing type 1 diabetes. Substantial efforts to identify genotypic differences explaining this differential susceptibility have been made, with limited success. Here, we show that the expression of the transforming growth factor ?1 gene (Tgfb1) affects the development of diabetic nephropathy in mice. To do this we genetically varied Tgfb1 expression in five steps, 10%, 60%, 100%, 150%, and 300% of normal, in mice with type 1 diabetes caused by the Akita mutation in the insulin gene (Ins2(Akita)). Although plasma glucose levels were not affected by Tgfb1 genotype, many features of diabetic nephropathy (mesangial expansion, elevated plasma creatinine and urea, decreased creatinine clearance and albuminuria) were progressively ameliorated as Tgfb1 expression decreased and were progressively exacerbated when expression was increased. The diabetic 10% hypomorphs had comparable creatinine clearance and albumin excretion to wild-type mice and no harmful changes in renal morphology. The diabetic 300% hypermorphs had ?1/3 the creatinine clearance of wild-type mice, >20 their albumin excretion, ?3 thicker glomerular basement membranes and severe podocyte effacement, matching human diabetic nephropathy. Switching Tgfb1 expression from low to high in the tubules of the hypomorphs increased their albumin excretion more than 10-fold but creatinine clearance remained high. Switching Tgfb1 expression from low to high in the podocytes markedly decreased creatinine clearance, but minimally increased albumin excretion. Decreasing expression of Tgfb1 could be a promising option for preventing loss of renal function in diabetes. PMID:25902541

  15. Low TGF?1 expression prevents and high expression exacerbates diabetic nephropathy in mice

    PubMed Central

    Hathaway, Catherine K.; Gasim, Adil M. H.; Grant, Ruriko; Chang, Albert S.; Kim, Hyung-Suk; Madden, Victoria J.; Bagnell, C. Robert; Jennette, J. Charles; Smithies, Oliver; Kakoki, Masao

    2015-01-01

    Nephropathy develops in many but not all patients with long-standing type 1 diabetes. Substantial efforts to identify genotypic differences explaining this differential susceptibility have been made, with limited success. Here, we show that the expression of the transforming growth factor ?1 gene (Tgfb1) affects the development of diabetic nephropathy in mice. To do this we genetically varied Tgfb1 expression in five steps, 10%, 60%, 100%, 150%, and 300% of normal, in mice with type 1 diabetes caused by the Akita mutation in the insulin gene (Ins2Akita). Although plasma glucose levels were not affected by Tgfb1 genotype, many features of diabetic nephropathy (mesangial expansion, elevated plasma creatinine and urea, decreased creatinine clearance and albuminuria) were progressively ameliorated as Tgfb1 expression decreased and were progressively exacerbated when expression was increased. The diabetic 10% hypomorphs had comparable creatinine clearance and albumin excretion to wild-type mice and no harmful changes in renal morphology. The diabetic 300% hypermorphs had ?1/3 the creatinine clearance of wild-type mice, >20 their albumin excretion, ?3 thicker glomerular basement membranes and severe podocyte effacement, matching human diabetic nephropathy. Switching Tgfb1 expression from low to high in the tubules of the hypomorphs increased their albumin excretion more than 10-fold but creatinine clearance remained high. Switching Tgfb1 expression from low to high in the podocytes markedly decreased creatinine clearance, but minimally increased albumin excretion. Decreasing expression of Tgfb1 could be a promising option for preventing loss of renal function in diabetes. PMID:25902541

  16. Systemic Retinaldehyde Treatment Corrects Retinal Oxidative Stress, Rod Dysfunction, and Impaired Visual Performance in Diabetic Mice

    PubMed Central

    Berkowitz, Bruce A.; Kern, Timothy S.; Bissig, David; Patel, Priya; Bhatia, Ankit; Kefalov, Vladimir J.; Roberts, Robin

    2015-01-01

    Purpose Diabetes appears to induce a visual cycle defect because rod dysfunction is correctable with systemic treatment of the visual cycle chromophore 11-cis-retinaldehyde. However, later studies have found no evidence for visual cycle impairment. Here, we further examined whether photoreceptor dysfunction is corrected with 11-cis-retinaldehyde. Because antioxidants correct photoreceptor dysfunction in diabetes, the hypothesis that exogenous visual chromophores have antioxidant activity in the retina of diabetic mice in vivo was tested. Methods Rod function in 2-month-old diabetic mice was evaluated using transretinal electrophysiology in excised retinas and apparent diffusion coefficient (ADC) MRI to measure light-evoked expansion of subretinal space (SRS) in vivo. Optokinetic tracking was used to evaluate cone-based visual performance. Retinal production of superoxide free radicals, generated mostly in rod cells, was biochemically measured with lucigenin. Diabetic mice were systemically treated with a single injection of either 11-cis-retinaldehyde, 9-cis-retinaldehyde (a chromophore surrogate), or all-trans-retinaldehyde (the photoisomerization product of 11-cis-retinaldehyde). Results Consistent with previous reports, diabetes significantly reduced (1) dark-adapted rod photo responses (transretinal recording) by ∼18%, (2) rod-dominated light-stimulated SRS expansion (ADC MRI) by ∼21%, and (3) cone-dominated contrast sensitivity (using optokinetic tracking [OKT]) by ∼30%. Both 11-cis-retinaldehyde and 9-cis-retinaldehyde largely corrected these metrics of photoreceptor dysfunction. Higher-than-normal retinal superoxide production in diabetes by ∼55% was also significantly corrected following treatment with 11-cis-retinaldehyde, 9-cis-retinaldehyde, or all-trans-retinaldehyde. Conclusions Collectively, data suggest that retinaldehydes improve photoreceptor dysfunction in diabetic mice, independent of the visual cycle, via an antioxidant mechanism. PMID:26431483

  17. Sustained expression of GLP-1 receptor differentially modulates ?-cell functions in diabetic and nondiabetic mice.

    PubMed

    Kubo, Fumiyo; Miyatsuka, Takeshi; Sasaki, Shugo; Takahara, Mitsuyoshi; Yamamoto, Yuichi; Shimo, Naoki; Watada, Hirotaka; Kaneto, Hideaki; Gannon, Maureen; Matsuoka, Taka-Aki; Shimomura, Iichiro

    2016-02-26

    Glucagon-like peptide 1 (GLP-1) has been shown to play important roles in maintaining ?-cell functions, such as insulin secretion and proliferation. While expression levels of GLP-1 receptor (Glp1r) are compromised in the islets of diabetic rodents, it remains unclear when and to what degree Glp1r mRNA levels are decreased during the progression of diabetes. In this study, we performed real-time PCR with the islets of db/db diabetic mice at different ages, and found that the expression levels of Glp1r were comparable to those of the islets of nondiabetic db/misty controls at the age of four weeks, and were significantly decreased at the age of eight and 12 weeks. To investigate whether restored expression of Glp1r affects the diabetic phenotypes, we generated the transgenic mouse model Pdx1(PB)-CreER(TM); CAG-CAT-Glp1r (?Glp1r) that allows for induction of Glp1r expression specifically in ? cells. Whereas the expression of exogenous Glp1r had no measurable effect on glucose tolerance in nondiabetic ?Glp1r;db/misty mice, ?Glp1r;db/db mice exhibited higher glucose and lower insulin levels in blood on glucose challenge test than control db/db littermates. In contrast, four weeks of treatment with exendin-4 improved the glucose profiles and increased serum insulin levels in ?Glp1r;db/db mice, to significantly higher levels than those in control db/db mice. These differential effects of exogenous Glp1r in nondiabetic and diabetic mice suggest that downregulation of Glp1r might be required to slow the progression of ?-cell failure under diabetic conditions. PMID:26854076

  18. The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice

    PubMed Central

    Gomes, Isabele B. S.; Porto, Marcella L.; Santos, Maria C. L. F. S.; Campagnaro, Bianca P.; Gava, Agata L.; Meyrelles, Silvana S.; Pereira, Thiago M. C.; Vasquez, Elisardo C.

    2015-01-01

    Aims: Diabetic nephropathy (DN) is one of the most important causes of chronic renal disease, and the incidence of DN is increasing worldwide. Considering our previous report (Gomes et al., 2014) indicating that chronic treatment with oral low-dose quercetin (10 mg/Kg) demonstrated anti-oxidative, anti-apoptotic and renoprotective effects in the C57BL/6J model of DN, we investigated whether this flavonoid could also have beneficial effects in concurrent DN and spontaneous atherosclerosis using the apolipoprotein E-deficient mouse (apoE−/−). Methods: Streptozotocin was used to induce diabetes (100 mg/kg/day, 3 days) in male apoE−/− mice (8 week-old). After 6 weeks, the mice were randomly separated into DQ: diabetic apoE−/− mice treated with quercetin (10 mg/kg/day, 4 weeks, n = 8), DV: diabetic ApoE−/− mice treated with vehicle (n = 8) and ND: non-treated non-diabetic mice (n = 8). Results: Quercetin treatment diminished polyuria (~30%; p < 0.05), glycemia (~25%, p < 0.05), normalized the hypertriglyceridemia. Moreover, this bioflavonoid diminished creatininemia (~30%, p < 0.01) and reduced proteinuria but not to normal levels. We also observed protective effects on the renal structural changes, including normalization of the index of glomerulosclerosis and kidney weight/body weight. Conclusions: Our data revealed that quercetin treatment significantly reduced DN in hypercholesterolemic mice by inducing biochemical changes (decrease in glucose and triglycerides serum levels) and reduction of glomerulosclerosis. Thus, this study highlights the relevance of quercetin as an alternative therapeutic option for DN, including in diabetes associated with dyslipidemia. PMID:26388784

  19. Global Renal Gene Expression Profiling Analysis in B2-Kinin Receptor Null Mice: Impact of Diabetes

    PubMed Central

    Jaffa, Miran A.; Kobeissy, Firas; Al Hariri, Moustafa; Chalhoub, Hussein; Eid, Assaad; Ziyadeh, Fuad N.; Jaffa, Ayad A.

    2012-01-01

    Diabetic nephropathy (DN), the leading cause of end-stage renal failure, is clinically manifested by albuminuria and a progressive decline in glomerular filtration rate. The risk factors and mechanisms that contribute to the development and progression of DN are still incompletely defined. To address the involvement of bradykinin B2-receptors (B2R) in DN, we used a genome wide approach to study the effects of diabetes on differential renal gene expression profile in wild type and B2R knockout (B2R?/?) mice. Diabetes was induced with streptozotocin and plasma glucose levels and albumin excretion rate (AER) were measured at predetermined times throughout the 23 week study period. Longitudinal analysis of AER indicated that diabetic B2R?/?D null mice had a significantly decreased AER levels compared to wild type B2R+/+D mice (P?=?0.0005). Results from the global microarray study comparing gene expression profiles among four groups of mice respectively: (B2R+/+C, B2R+/+D, B2R?/?C and B2R?/?D) highlighted the role of several altered pathological pathways in response to disruption of B2R and to the diabetic state that included: endothelial injury, oxidative stress, insulin and lipid metabolism and inflammatory process with a marked alteration in the pro-apoptotic genes. The findings of the present study provide a global genomics view of biomarkers that highlight the mechanisms and putative pathways involved in DN. PMID:23028588

  20. Inhibition of 12/15-Lipoxygenase Reduces Renal Inflammation and Injury in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Faulkner, Jessica; Pye, Chelsey; Al-Shabrawey, Mohamed; Elmarakby, Ahmed A

    2015-01-01

    Previous studies suggest that 12/15 lipoxygenase (12/15-LO) is implicated in diabetic vascular complications. We hypothesize that 12/15-LO inhibition attenuates renal inflammation and injury in streptozotocin-induced diabetes. Diabetes was induced in wild-type C57BL/6J (WT) and 12/15-LO deficient mice using streptozotocin. Additionally, four groups of WT mice were also used; control non diabetic, diabetic, diabetic treated with the 12/15-LO inhibitor baicalein for 10 weeks and diabetic treated with baicalein only for the last 4 weeks of the experiment. After 10 weeks of induction of diabetes with streptozotocin, WT diabetic mice exhibited marked elevation in proteinuria together with elevation in the excretion levels of thiobarbituric acid reactive substance (TBARs), a marker of oxidative stress, and monocyte chemoattractant protein-1 (MCP-1), a marker of inflammation and these changes were significantly reduced in 12/15-LO deficient diabetic mice (P<0.05). Similarly, pharmacological inhibition of 12/15-LO with baicalein prevented the elevation in renal 12-HETE production, the major murine metabolic product of 12/15-LO, in diabetic mice, and this effect was associated with decreased proteinuria, TBARs excretion and renal collagen deposition compared to untreated diabetic mice. Interestingly, the protective effects of baicalein were not noticed when only administered in the last 4 weeks of diabetes compared to untreated diabetic mice. WT diabetic mice displayed elevation in renal interleukin-6 (IL-6) levels and these changes were only reduced in diabetic mice treated with baicalein for 10 weeks (P<0.05). The anti-inflammatory effects of baicalein or 12/15-LO deficiency were further confirmed in lipopolysaccharide (LPS)-induced acute renal inflammation as inhibition of 12/15-LO reduced the elevation in renal soluble epoxide hydrolase expression in LPS-injected mice. These results suggest that increased 12/15-LO activity and 12-HETE production contribute to the elevation of renal oxidative stress, inflammation and injury in streptozotocin-induced diabetic mice. PMID:26823989

  1. Glucagon Receptor Blockade With a Human Antibody Normalizes Blood Glucose in Diabetic Mice and Monkeys.

    PubMed

    Okamoto, Haruka; Kim, Jinrang; Aglione, JohnPaul; Lee, Joseph; Cavino, Katie; Na, Erqian; Rafique, Ashique; Kim, Jee Hae; Harp, Joyce; Valenzuela, David M; Yancopoulos, George D; Murphy, Andrew J; Gromada, Jesper

    2015-08-01

    Antagonizing glucagon action represents an attractive therapeutic option for reducing hepatic glucose production in settings of hyperglycemia where glucagon excess plays a key pathophysiological role. We therefore generated REGN1193, a fully human monoclonal antibody that binds and inhibits glucagon receptor (GCGR) signaling in vitro. REGN1193 administration to diabetic ob/ob and diet-induced obese mice lowered blood glucose to levels observed in GCGR-deficient mice. In diet-induced obese mice, REGN1193 reduced food intake, adipose tissue mass, and body weight. REGN1193 increased circulating levels of glucagon and glucagon-like peptide 1 and was associated with reversible expansion of pancreatic ?-cell area. Hyperglucagonemia and ?-cell hyperplasia was observed in fibroblast growth factor 21-deficient mice treated with REGN1193. Single administration of REGN1193 to diabetic cynomolgus monkeys normalized fasting blood glucose and glucose tolerance and increased circulating levels of glucagon and amino acids. Finally, administration of REGN1193 for 8 weeks to normoglycemic cynomolgus monkeys did not cause hypoglycemia or increase pancreatic ?-cell area. In summary, the GCGR-blocking antibody REGN1193 normalizes blood glucose in diabetic mice and monkeys but does not produce hypoglycemia in normoglycemic monkeys. Thus, REGN1193 provides a potential therapeutic modality for diabetes mellitus and acute hyperglycemic conditions. PMID:26020795

  2. Cannabinoid functions in the amygdala contribute to conditioned fear memory in streptozotocin-induced diabetic mice: Interaction with glutamatergic functions.

    PubMed

    Ikeda, Hiroko; Ikegami, Megumi; Kai, Misa; Kamei, Junzo

    2015-07-01

    The role of cannabinoid systems in conditioned fear memory was investigated in streptozotocin (STZ)-induced diabetic mice. The cannabinoid receptor agonist WIN-55,212-2 (1mg/kg, i.p.), when injected into normal mice after conditioning, significantly prolonged the duration of freezing behavior. This effect was significantly inhibited by the cannabinoid CB1 receptor antagonist AM 251 (3mg/kg, s.c.), but not by the cannabinoid CB2 receptor antagonist AM 630 (1mg/kg, s.c.). The duration of freezing in STZ-induced diabetic mice was significantly longer than that in non-diabetic mice. The injection of WIN-55,212-2 (1mg/kg, i.p.) after conditioning significantly prolonged the duration of freezing in non-diabetic mice, but not in STZ-induced diabetic mice. In contrast, the injection of AM 251 (3mg/kg, s.c.) after conditioning significantly shortened the duration of freezing in STZ-induced diabetic mice, but not in non-diabetic mice. The injection of AM 251 (3mg/kg, s.c.) before conditioning or before testing did not significantly affect the duration of freezing in STZ-induced diabetic mice. The protein levels of cannabinoid CB1 receptors in the amygdala were increased in STZ-induced diabetic mice. In contrast, the protein levels of cannabinoid CB2 receptors and diacylglycerol lipase ?, the enzyme that synthesizes endocannabinoid 2-arachidonoylglycerol, in the amygdala did not differ between non-diabetic and STZ-induced diabetic mice. None of these proteins in the hippocampus was different between non-diabetic and STZ-induced diabetic mice. The injection of AM 251 (50 ng/side) into the basolateral amygdala significantly inhibited the duration of freezing in STZ-induced diabetic mice. Since endocannabinoid is controlled by glutamatergic function, we further examined the role of glutamatergic function in the increased fear memory in STZ-induced diabetic mice. The amounts of glutamine and glutamic acid in the amygdala of STZ-induced diabetic mice were significantly increased compared to those in non-diabetic mice. The AMPA receptor antagonist NBQX (4 0ng/side), when injected into the basolateral amygdala, significantly inhibited the duration of freezing in STZ-induced diabetic mice. Finally, AMPA (40 ng, i.c.v.) significantly prolonged the duration of freezing in normal mice, and this effect was inhibited by AM 251 (3mg/kg, s.c.). These results suggest that cannabinoid functions in the amygdala are increased in diabetic mice and that enhanced glutamatergic function in the amygdala of diabetic mice activates the endocannabinoid system, which enhances fear memory via cannabinoid CB1 receptors. PMID:25929688

  3. Hypoglycemic and antioxidant potential of coconut water in experimental diabetes.

    PubMed

    Preetha, P P; Devi, V Girija; Rajamohan, T

    2012-07-01

    Coconut water is a natural nutritious beverage that contains several biologically active compounds. The present study aims to evaluate the hypoglycemic and antioxidant effects of mature coconut water (MCW) on alloxan-induced diabetes in experimental rats. The experimental animals were divided into four groups - normal control, normal rats treated with MCW, diabetic control and diabetic rats treated with MCW. The blood glucose, plasma insulin, hemoglobin, glycated hemoglobin, activities of the various antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase) and lipid peroxidation markers (malondialdehyde, hydroperoxides and conjugated dienes) were evaluated in all the groups. The results indicate that the diabetic animals treated with MCW had decreased blood glucose levels and reduced oxidative stress induced by alloxan, which was evident from the increased activities of the antioxidant enzymes and the decreased levels of the lipid peroxidation products. The overall results indicate that MCW significantly attenuated hyperglycemia and oxidative stress in alloxan-induced diabetic rats, indicating the therapeutic potential of MCW. PMID:22576019

  4. Mallotus roxburghianus modulates antioxidant responses in pancreas of diabetic rats.

    PubMed

    Roy, V K; Chenkual, L; Gurusubramanian, G

    2016-03-01

    Mallotus roxburghianus has long been used by Mizo tribal people for the treatment of diabetes. Scientific validation at known doses may provide information about its safety and efficacy. Methanolic leaf extract of M. roxburghianus (MRME 100 and 400mg/kg) was tested in comparison with normal and alloxan diabetic rats for 28 days p.o. in terms of body and pancreatic weight, blood glucose level, antioxidant enzymes, expression of visfatin and PCNA, histopathology and histomorphometric measurements of pancreas. The results were evaluated statistically using ANOVA, correlation and regression and Principal component analysis (PCO). MRME (100 and 400mg/kg) treatment significantly (p<0.0001) decreased the body weight, blood glucose level, improved the mass and size of pancreas, elevated the levels of antioxidant enzymes and up regulate the expression of visfatin and PCNA. PCO analysis was good to fitness and prediction distinguishes the therapeutic effects of M. roxburghianus from the alloxan induced diabetic rats. MRME has significant role in protecting animals from alloxan-induced diabetic oxidative stress in pancreas and exhibited promising antihyperglycaemic and antioxidant activities along with significant reversal of disturbed antioxidant status and lipid peroxidative damage. Pancreatic architecture and physiology under diabetic oxidative stress have been significantly modulated by MRME and validated as a drug candidate for antidiabetic treatment. M. roxburghianus treatment restores the antioxidant enzyme system and rejuvenates the islets mass in alloxanized rat by accelerating visfatin and PCNA expression in pancreatic tissue. PMID:26764087

  5. Human embryonic stem cell-derived pancreatic endoderm alleviates diabetic pathology and improves reproductive outcome in C57BL/KsJ-Lep(db/+) gestational diabetes mellitus mice.

    PubMed

    Xing, Baoheng; Wang, Lili; Li, Qin; Cao, Yalei; Dong, Xiujuan; Liang, Jun; Wu, Xiaohua

    2015-07-01

    Gestational diabetes mellitus is a condition commonly encountered during mid to late pregnancy with pathologic manifestations including hyperglycemia, hyperinsulinemia, insulin resistance, and fetal maldevelopment. The cause of gestational diabetes mellitus can be attributed to both genetic and environmental factors, hence complicating its diagnosis and treatment. Pancreatic progenitors derived from human embryonic stem cells were shown to be able to effectively treat diabetes in mice. In this study, we have developed a system of treating diabetes using human embryonic stem cell-derived pancreatic endoderm in a mouse model of gestational diabetes mellitus. Human embryonic stem cells were differentiated in vitro into pancreatic endoderm, which were then transplanted into db/+ mice suffering from gestational diabetes mellitus. The transplant greatly improved glucose metabolism and reproductive outcome of the females compared with the control groups. Our findings support the feasibility of using differentiated human embryonic stem cells for treating gestational diabetes mellitus patients. PMID:26066567

  6. Genistein protects female nonobese diabetic mice from developing type 1 diabetes when fed a soy- and alfalfa-free diet.

    PubMed

    Guo, Tai L; Germolec, Dori R; Zheng, Jian Feng; Kooistra, Linda; Auttachoat, Wimolnut; Smith, Matthew J; White, Kimber L; Elmore, Susan A

    2015-04-01

    The objective of this study was to determine the effects of the phytoestrogen genistein (GEN) on the time of onset and/or the incidence of type 1 diabetes (T1D) in female nonobese diabetic (NOD) mice, when administered GEN by gavage once every day for up to 180 days. Five groups of mice (approximately 24 animals/group; 6-7 weeks of age) were included: naive control, vehicle control (25 mM Na2CO3 in water), and 3 GEN treatment groups (2 mg/kg, 6 mg/kg, and 20 mg/kg). Mice were maintained on a soy- and alfalfa-free diet (5K96) during the study and were monitored for blood glucose changes every week. When compared to the vehicle control, exposure to 2-mg/kg GEN produced significant decreases ranging from 55 to 79% in the total incidences of diabetes (blood glucose ? 250 mg/dl) and severe diabetes (blood glucose ? 400 mg/dl) starting at week 14 of the study. However, during the later stages of the study (i.e., after week 23), the 2-mg/kg dose had no effect on disease incidence. In animals treated with 6-mg/kg and 20-mg/kg GEN, significant decreases in the total incidence of diabetes were observed starting at week 16, while the incidence of severe diabetes was significantly decreased with the changes being observed initially at weeks 18 and 17 for the 6-mg/kg and 20-mg/kg GEN treatment groups, respectively. Several lines of evidence, including histopathological analysis, suggested that GEN protected the pancreas from autoimmune destruction. However, this protective effect of GEN was absent when female NOD mice were maintained on NTP-2000 rodent diet, which contained 5% soybean meal and 7.5% alfalfa meal (the total concentrations of phytoestrogens ranged between 95 and 134 mg/kg). In summary, oral dosing of GEN reduced the incidence and increased the time to onset of T1D in female NOD mice but only when fed a soy- and alfalfa-free diet. PMID:24713318

  7. NaoXinTong Inhibits the Development of Diabetic Retinopathy in db/db Mice

    PubMed Central

    Liu, Mengyang; Pan, Quan; Chen, Yuanli; Yang, Xiaoxiao; Zhao, Buchang; Jia, Lifu; Zhu, Yan; Han, Jihong; Li, Xiaoju; Duan, Yajun

    2015-01-01

    Buchang NaoXinTong capsule (NXT) is a Chinese Materia Medica standardized product extracted from 16 Chinese traditional medical herbs and widely used for treatment of patients with cerebrovascular and cardiovascular diseases in China. Formation of microaneurysms plays an important role in the development of diabetic retinopathy. In this study, we investigated if??NXT can protect diabetic mice against the development of diabetic retinopathy. The db/db mice (~6 weeks old), a diabetic animal model, were divided into two groups and fed normal chow or plus NXT for 14 weeks. During the treatment, fasting blood glucose levels were monthly determined. After treatment, retinas were collected to determine retinal thickness, accumulation of carbohydrate macromolecules, and caspase-3 (CAS-3) expression. Our results demonstrate that administration of NXT decreased fasting blood glucose levels. Associated with the decreased glucose levels, NXT blocked the diabetes-induced shrink of multiple layers, such as photoreceptor layer and outer nuclear/plexiform layers, in the retina. NXT also inhibited the diabetes-induced expression of CAS-3 protein and mRNA, MMP-2/9 and TNF? mRNA, accumulation of carbohydrate macromolecules, and formation of acellular capillaries in the retina. Taken together, our study shows that NXT can inhibit the development of diabetic retinopathy and suggests a new potential application of NXT in clinic. PMID:25821481

  8. Renal Protection by Genetic Deletion of the Atypical Chemokine Receptor ACKR2 in Diabetic OVE Mice

    PubMed Central

    Zheng, Shirong; Coventry, Susan; Cai, Lu; Powell, David W.; Jala, Venkatakrishna R.; Haribabu, Bodduluri; Epstein, Paul N.

    2016-01-01

    In diabetic nephropathy (DN) proinflammatory chemokines and leukocyte infiltration correlate with tubulointerstitial injury and declining renal function. The atypical chemokine receptor ACKR2 is a chemokine scavenger receptor which binds and sequesters many inflammatory CC chemokines but does not transduce typical G-protein mediated signaling events. ACKR2 is known to regulate diverse inflammatory diseases but its role in DN has not been tested. In this study, we utilized ACKR2?/? mice to test whether ACKR2 elimination alters progression of diabetic kidney disease. Elimination of ACKR2 greatly reduced DN in OVE26 mice, an established DN model. Albuminuria was significantly lower at 2, 4, and 6 months of age. ACKR2 deletion did not affect diabetic blood glucose levels but significantly decreased parameters of renal inflammation including leukocyte infiltration and fibrosis. Activation of pathways that increase inflammatory gene expression was attenuated. Human biopsies stained with ACKR2 antibody revealed increased staining in diabetic kidney, especially in some tubule and interstitial cells. The results demonstrate a significant interaction between diabetes and ACKR2 protein in the kidney. Unexpectedly, ACKR2 deletion reduced renal inflammation in diabetes and the ultimate response was a high degree of protection from diabetic nephropathy. PMID:26798651

  9. Diabetes accelerates retinal ganglion cell dysfunction in mice lacking sigma receptor 1

    PubMed Central

    Ha, Yonju; Saul, Alan; Tawfik, Amany; Zorrilla, Eric P.; Ganapathy, Vadivel

    2012-01-01

    Purpose Sigma receptor 1 (σR1) is a non-opioid transmembrane protein that may act as a molecular chaperone at the endoplasmic reticulum–mitochondrial membrane. Ligands for σR1, such as (+)-pentazocine [(+)-PTZ], confer marked retinal neuroprotection in vivo and in vitro. Recently we analyzed the retinal phenotype of mice lacking σR1 (σR1 KO) and observed normal retinal morphology and function in young mice (5–30 weeks) but diminished negative scotopic threshold responses (nSTRs), retinal ganglion cell (RGC) loss, and disruption of optic nerve axons consistent with inner retinal dysfunction by 1 year. These data led us to test the hypothesis that σR1 may be critical in forestalling chronic retinal stress; diabetes was used as the model of chronic stress. Methods To determine whether σR1 is required for (+)-PTZ neuroprotective effects, primary RGCs isolated from wild-type (WT) and σR1 KO mice were exposed to xanthine–xanthine oxidase (10 µM:2 mU/ml) to induce oxidative stress in the presence or absence of (+)-PTZ. Cell death was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis. To assess effects of chronic stress on RGC function, diabetes was induced in 3-week C57BL/6 (WT) and σR1 KO mice, using streptozotocin to yield four groups: WT nondiabetic (WT non-DB), WT diabetic (WT-DB), σR1 KO non-DB, and σR1 KO-DB. After 12 weeks of diabetes, when mice were 15-weeks old, intraocular pressure (IOP) was recorded, electrophysiologic testing was performed (including detection of nSTRs), and the number of RGCs was counted in retinal histological sections. Results In vitro studies showed that (+)-PTZ could not prevent oxidative stress-induced death of RGCs harvested from σR1 KO mice but afforded robust protection against death of RGCs harvested from WT mice. In the studies of chronic stress induced by diabetes, the IOP measured in the four mouse groups was within the normal range; however, there was a significant increase in the IOP of σR1 KO-DB mice (16±0.5 mmHg) compared to the other groups tested (σR1 KO non-DB, WT non-DB, WT-DB: ~12±0.6 mmHg). Regarding electrophysiologic testing, the nSTRs of σR1 KO non-DB mice were similar to WT non-DB mice at 15 weeks; however, they were significantly lower in σR1 KO-DB mice (5±1 µV) compared to the other groups, including, notably, σR1 KO-nonDB (12±2 µV). As expected, the number of RGCs in σR1 KO non-DB mice was similar to WT non-DB mice at 15 weeks, but under chronic stress of diabetes there were fewer RGCs in retinas of σR1 KO-DB mice. Conclusions This is the first report showing unequivocally that the neuroprotective effects of (+)-PTZ require σR1. σR1 KO mice show normal retinal structure and function at young ages; however, when subjected to the chronic stress of diabetes, there is an acceleration of retinal functional deficits in σR1 KO mice such that ganglion cell dysfunction is observed at a much earlier age than nondiabetic σR1 KO mice. The data support the hypothesis that σR1 plays a key role in modulating retinal stress and may be an important target for retinal disease. PMID:23233788

  10. Alteration of the Thymic T Cell Repertoire by Rotavirus Infection Is Associated with Delayed Type 1 Diabetes Development in Non-Obese Diabetic Mice

    PubMed Central

    Webster, Nicole L.; Zufferey, Christel; Pane, Jessica A.; Coulson, Barbara S.

    2013-01-01

    Rotaviruses are implicated as a viral trigger for the acceleration of type 1 diabetes in children. Infection of adult non-obese diabetic (NOD) mice with rotavirus strain RRV accelerates diabetes development, whereas RRV infection in infant NOD mice delays diabetes onset. In this study of infant mice, RRV titers and lymphocyte populations in the intestine, mesenteric lymph nodes (MLN) and thymus of NOD mice were compared with those in diabetes-resistant BALB/c and C57BL/6 mice. Enhanced intestinal RRV infection occurred in NOD mice compared with the other mouse strains. This was associated with increases in the frequency of CD8?? TCR?? intraepithelial lymphocytes, and their PD-L1 expression. Virus spread to the MLN and T cell numbers there also were greatest in NOD mice. Thymic RRV infection is shown here in all mouse strains, often in combination with alterations in T cell ontogeny. Infection lowered thymocyte numbers in infant NOD and C57BL/6 mice, whereas thymocyte production was unaltered overall in infant BALB/c mice. In the NOD mouse thymus, effector CD4+ T cell numbers were reduced by infection, whereas regulatory T cell numbers were maintained. It is proposed that maintenance of thymic regulatory T cell numbers may contribute to the increased suppression of inflammatory T cells in response to a strong stimulus observed in pancreatic lymph nodes of adult mice infected as infants. These findings show that rotavirus replication is enhanced in diabetes-prone mice, and provide evidence that thymic T cell alterations may contribute to the delayed diabetes onset following RRV infection. PMID:23554993

  11. Mesenchymal stem cells facilitate mixed hematopoietic chimerism induction and prevent onset of diabetes in NOD mice

    PubMed Central

    Asari, Sadaki; Itakura, Shin; Rawson, Jeffrey; Ito, Taihei; Todorov, Ivan; Nair, Indu; Shintaku, Jonathan; Liu, Chih-Pin; Kandeel, Fouad; Mullen, Yoko

    2011-01-01

    Objectives Allogeneic mesenchymal stem cells (MSCs) and bone marrow cells (BMCs) were co-transplanted in NOD mice following none myeloablative preconditioning and the development of chimerism, insulitis, diabetes, and graft versus host disease (GVHD) were monitored. Methods Eight-weeks-old female NOD mice were injected intravenously with 2×107 BMCs and 5×105 MSCs from C57BL/6 mice following treatment with 2 intraperitoneal injections of anti-CD3 antibody (days −7 and −4), and 3Gy total body irradiation (day −1). Thereafter, blood glucose and chimerism were monitored on peripheral blood samples. Results Stable mixed chimerism (3->90% of donor phenotype) was induced in 63.2% of BMCs-MSCs-(n=19) and 45.0% of BMCs alone recipients (n=20, p=0.256). Insulitis was prevented and euglycemia persisted for >18 weeks in 89.5% of BMCs-MSCs recipients including those with <3% chimerism and 55% of BM alone recipients (p<0.05). In controls, 9.1% of mice receiving preconditioning treatment alone (n=11) and 16.7% of preconditioned mice receiving only MSCs (n=12) were non-diabetic. GVHD was not detected in all mice. Conclusion Co-injection of MSCs and BMCs increased the success rate in inducing chimerism and preventing insulitis and overt diabetes with no incidence of GVHD. Results also indicated that even micro-chimerism with <3% donor cells is sufficient for blocking autoimmunity. PMID:21562444

  12. Retinal Neurodegeneration in db/db Mice at the Early Period of Diabetes

    PubMed Central

    Yang, Qin; Xu, Yidan; Xie, Ping; Cheng, Haixia; Song, Qinglu; Su, Tu; Yuan, Songtao; Liu, Qinghuai

    2015-01-01

    Purpose. To describe both the functional and pathological alternations in neurosensory retina in a murine model of spontaneous type 2 diabetes (db/db mouse). Methods. db/db (BKS/DB?/?) mice and heterozygous littermates (as control group) at various ages (12, 16, 20, 24, and 28 weeks) were inspected with pattern electroretinogram (PERG), fundus fluorescein angiography (FFA), and optical coherence tomography (OCT). Histological markers of neuroinflammation (IBA-1 and F4/80) were evaluated by immunohistochemistry. In addition, levels of retinal ganglion cell death were measured by terminal dUTP nick-end labeling (TUNEL). Results. Significant alternations of PERG responses and increased retinal ganglion cells (RGCs) apoptosis were observed in diabetic db/db mice for 20-week period when compared with control group. IBA-1 and F4/80 expression in microglia/macrophages became evidently for 24-week period, thus supporting the PERG findings. Furthermore, obvious thinning of nasal and dorsal retina in 28-week-old db/db mice was also revealed by OCT. No visible retinal microvascular changes were detected by FFA throughout the experiments on db/db mice. Conclusions. Diabetic retina underwent neurodegenerative changes in db/db mice, which happened at retinal ganglion cell layer and inner nuclear layer. But there was no obvious abnormality in retinal vasculature on db/db mice. PMID:25821591

  13. Adverse Effects of Diabetes Mellitus on the Skeleton of Aging Mice.

    PubMed

    Portal-Núñez, Sergio; Ardura, Juan Antonio; Lozano, Daniel; Bolívar, Oskarina Hernández; López-Herradón, Ana; Gutiérrez-Rojas, Irene; Proctor, Alexander; van der Eerden, Bram; Schreuders-Koedam, Marijke; van Leeuwen, Johannes; Alcaraz, María José; Mulero, Francisca; de la Fuente, Mónica; Esbrit, Pedro

    2016-03-01

    In the present study, the possibility that a diabetic (DM) status might worsen age-related bone deterioration was explored in mice. Male CD-1 mice aged 2 (young control group) or 16 months, nondiabetic or made diabetic by streptozotocin injections, were used. DM induced a decrease in bone volume, trabecular number, and eroded surface, and in mineral apposition and bone formation rates, but an increased trabecular separation, in L1-L3 vertebrae of aged mice. Three-point bending and reference point indentation tests showed slight changes pointing to increased frailty and brittleness in the mouse tibia of diabetic old mice. DM was related to a decreased expression of both vascular endothelial growth factor and its receptor 2, which paralleled that of femoral vasculature, and increased expression of the pro-adipogenic gene peroxisome proliferator-activated receptor γ and adipocyte number, without affecting β-catenin pathway in old mouse bone. Concomitant DM in old mice failed to affect total glutathione levels or activity of main anti-oxidative stress enzymes, although xanthine oxidase was slightly increased, in the bone marrow, but increased the senescence marker caveolin-1 gene. In conclusion, DM worsens bone alterations of aged mice, related to decreased bone turnover and bone vasculature and increased senescence, independently of the anti-oxidative stress machinery. PMID:26386012

  14. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant.

    PubMed

    Gunawardana, Subhadra C; Piston, David W

    2015-06-15

    Traditional therapies for type 1 diabetes (T1D) involve insulin replacement or islet/pancreas transplantation and have numerous limitations. Our previous work demonstrated the ability of embryonic brown adipose tissue (BAT) transplants to establish normoglycemia without insulin in chemically induced models of insulin-deficient diabetes. The current study sought to extend the technique to an autoimmune-mediated T1D model and document the underlying mechanisms. In nonobese diabetic (NOD) mice, BAT transplants result in complete reversal of T1D associated with rapid and long-lasting euglycemia. In addition, BAT transplants placed prior to the onset of diabetes on NOD mice can prevent or significantly delay the onset of diabetes. As with streptozotocin (STZ)-diabetic models, euglycemia is independent of insulin and strongly correlates with decrease of inflammation and increase of adipokines. Plasma insulin-like growth factor-I (IGF-I) is the first hormone to increase following BAT transplants. Adipose tissue of transplant recipients consistently express IGF-I compared with little or no expression in controls, and plasma IGF-I levels show a direct negative correlation with glucose, glucagon, and inflammatory cytokines. Adipogenic and anti-inflammatory properties of IGF-I may stimulate regeneration of new healthy white adipose tissue, which in turn secretes hypoglycemic adipokines that substitute for insulin. IGF-I can also directly decrease blood glucose through activating insulin receptor. These data demonstrate the potential for insulin-independent reversal of autoimmune-induced T1D with BAT transplants and implicate IGF-I as a likely mediator in the resulting equilibrium. PMID:25898954

  15. The Altered Renal and Hepatic Expression of Solute Carrier Transporters (SLCs) in Type 1 Diabetic Mice

    PubMed Central

    Xu, Chenghao; Zhu, Ling; Chan, Ting; Lu, Xiaoxi; Shen, Weiyong; Gillies, Mark C.; Zhou, Fanfan

    2015-01-01

    Diabetes mellitus is a chronic metabolic disorder that significantly affects human health and well-being. The Solute carrier transporters (SLCs), particularly the Organic anion/cation transporters (Oats/Octs/Octns), Organic anion transporting polypeptides (Oatps) and Oligopeptide transporters (Pepts) are essential membrane proteins responsible for cellular uptake of many endogenous and exogenous substances such as clinically important drugs. They are widely expressed in mammalian key organs especially the kidney and liver, in which they facilitate the influx of various drug molecules, thereby determining their distribution and elimination in body. The altered expression of SLCs in diabetes mellitus could have a profound and clinically significant influence on drug therapies. In this study, we extensively investigated the renal and hepatic expression of twenty essential SLCs in the type 1 diabetic Ins2Akita murine model that develops both hyperglycemia and diabetes-related complications using real-time PCR and immunoblotting analysis. We found that the renal expression of mOatp1a1, mOatp1a6, mOat1, mOat3, mOat5, mOct2 and mPept2 was decreased; while that of mPept1 was increased at the mRNA level in the diabetic mice compared with non-diabetic controls. We found up-regulated mRNA expression of mOatp1a4, mOatp1c1, mOctn2, mOct3 and mPept1 as well as down-regulation of mOatp1a1 in the livers of diabetic mice. We confirmed the altered protein expression of several SLCs in diabetic mice, especially the decreased renal and hepatic expression of mOatp1a1. We also found down-regulated protein expression of mOat3 and mOctn1 in the kidneys as well as increased protein expression of mOatp1a4 and mOct3 in the livers of diabetic mice. Our findings contribute to better understanding the modulation of SLC transporters in type 1 diabetes mellitus, which is likely to affect the pharmacokinetic performance of drugs that are transported by these transporters and therefore, forms the basis of future therapeutic optimization of regimens in patients with type 1 diabetes mellitus. PMID:25789863

  16. Proanthocyanidin Attenuation of Oxidative Stress and NF-?B Protects Apolipoprotein E-Deficient Mice against Diabetic Nephropathy

    PubMed Central

    Al-Malki, Abdulrahman L.; Sayed, Ahmed Amir Radwan; El Rabey, Haddad A.

    2013-01-01

    Hyperlipidemia and hyperglycemia result in oxidative stress and play a major role in the development of diabetic nephropathy (DN). We explored the effects of proanthocyanidin (PA) on the induction and progression of DN in apolipoprotein E-deficient mice. Diabetes Mellitus was induced in ten-week-old male apoE?/?mice using streptozotocin (STZ). Mice were fed with a high-fat diet in presence or absence of PA. PA treatment significantly reduced the high cholesterol levels, restored renal functions, and reduced albuminuria in the PA-treated diabetic mice compared with the diabetic untreated mice. In addition, the glomerular mesangial expansion in the diabetic mice was attenuated as a result of PA supplementation. Moreover, PA treatment restored the elevated levels of MDA and CML and the reduced activity of SOD and GSH in the diabetic mice. Furthermore, PA feeding reduced the activation and translocation of NF-?B to the nucleus compared with the diabetic untreated animals. Reduction of NF-?B activation resulted in the attenuation of the expression of IL-6, TGF?, and RAGE which protected PA-treated mice against DN. The renoprotective effects of PA were found to be time independent regardless of whether the dietary feeding with PA was started pre-, co-, or post-STZ injection. In conclusion, part of the beneficial effects of PA includes the disruption of the detrimental AGE-RAGE-NF?B pathways. PMID:24023581

  17. Enhanced wind-up of the C-fiber-mediated nociceptive flexor reflex movement following painful diabetic neuropathy in mice.

    PubMed

    Kimura, Satoko; Tanabe, Mitsuo; Honda, Motoko; Ono, Hideki

    2005-02-01

    We examined wind-up of the nociceptive flexor withdrawal responses in diabetic mice that had developed tactile allodynia after treatment with streptozotocin (STZ). In control and STZ-treated mice, simultaneous activation of Adelta- and C-fibers by electrical stimuli at C-fiber intensity delivered to the ventral aspect of the toe elicited a biphasic withdrawal reflex composed of short- and long-latency movements of the ipsilateral hind paw that were respectively mediated by activation of Adelta- and C-fibers. There were no significant differences between control and diabetic mice in the activation threshold of each reflex movement or the amplitude of reflexes elicited by various stimulus intensities. However, a repetitive conditioning stimulus (CS) elicited significantly greater wind-up of the C-fiber-mediated movement and early saturation of wind-up in diabetic mice. In both control and diabetic mice, the CS elicited no or occasionally slight wind-up of the A delta-fiber-mediated movement. Moreover, post-CS facilitation, which reflects the prolonged excitability increase, was observed in both Adelta-fiber- and C-fiber-mediated movements of control mice, whereas significant post-CS facilitation was only obtained in the C-fiber-mediated movement of diabetic mice, which may reflect supraspinal descending influences. Such changes in the excitability of spinal neurons in diabetic mice may represent some aspect of painful diabetic neuropathy. PMID:15684569

  18. Effect of Tauroursodeoxycholic Acid and 4-Phenylbutyric Acid on Metabolism of Copper and Zinc in Type 1 Diabetic Mice Model.

    PubMed

    Zhou, Qi; Wang, Di; Xu, Jiancheng; Chi, Baorong

    2016-04-01

    Alternations of copper (Cu) and zinc (Zn) status in diabetes have received a great attention. Tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (PBA) could alleviate the increased endoplasmic reticulum (ER) stress and prevent insulin resistance. This study aimed to investigate the effect of TUDCA and PBA on metabolism of Cu and Zn in diabetic mice model. Diabetes was induced by streptozotocin in FVB mice treated with and without TUDCA and PBA. Determination of Cu and Zn in tissues and serum by acid digestion was followed by ICP-MS. The renal and serum Cu levels were significantly higher, while the hepatic Cu and Zn levels were significantly decreased in the diabetic mice at 2 weeks and 2 months after diabetes onset. The increase of cardiac Cu together with the decrease of muscular Zn was found in the diabetic mice only at 2 months. Cu levels were positively correlated with Zn in the heart, liver, kidney, muscle, spleen, and serum of diabetic and control mice at both 2 weeks and 2 months. Both PBA and TUDCA reduced serum Zn, and PBA reduced hepatic Cu to normal levels in the diabetic mice at two time points, while PBA normalized serum Cu in the diabetic mice only at 2 months. PBA increased hepatic Zn to normal levels in the diabetic mice at 2 weeks, while it partially increased hepatic Zn in the same group at 2 months. Therefore, maintaining homeostasis of Cu and Zn by TUDCA and PBA in diabetes needs to be received with special attention. PMID:26282527

  19. Gene expression microarray analysis of the sciatic nerve of mice with diabetic neuropathy.

    PubMed

    Zhang, Lei; Qu, Shen; Liang, Aibin; Jiang, Hong; Wang, Hao

    2015-02-01

    The present study aimed to explore novel target genes that regulate the development of diabetic neuropathy (DN) by analyzing gene expression profiles in the sciatic nerve of infected mice. The GSE11343 microarray dataset, which was downloaded from Gene Expression Omnibus, included data on 4 control samples and 5 samples from mice with diabetes induced by streptozotocin (STZ), 5 samples from normal mice treated with rosiglitazone (Rosi) and 5 samples from mice with diabetes induced by STZ and treated with Rosi. Differentially expressed genes (DEGs) between the different groups were identified using the substitution augmentation modification redefinition (SAMR) model. The Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Regulatory and protein?protein interaction networks were searched using BioCarta and STRING, respectively. The protein structures of potential regulatory genes were predicted using the SYBYL program. Compared with the controls, 1,384 DEGs were identified in the mice with STZ-induced diabetes and 7 DEGs were identified in the mice treated with Rosi. There were 518 DEGs identified between the mice in the STZ + Rosi and STZ groups. We identified 45 GO items, and the calmodulin nerve phosphatase and chemokine signaling pathways were identified as the main pathways. Three genes [myristoylated alanine-rich protein kinase C substrate (Marcks), GLI pathogenesis-related 2 (Glipr2) and centrosomal protein 170 kDa (Cep170)] were found to be co-regulated by both STZ and Rosi, the protein structure of which was predicted and certain binding activity to Rosi was docked. Our study demonstrates that the Marcks, Glipr2 and Cep170 genes may be underlying drug targets in the treatment of DN. PMID:25435094

  20. Impaired Coronary and Renal Vascular Function in Spontaneously Type 2 Diabetic Leptin-Deficient Mice

    PubMed Central

    Westergren, Helena U.; Grnros, Julia; Heinonen, Suvi E.; Miliotis, Tasso; Jennbacken, Karin; Sabirsh, Alan; Ericsson, Anette; Jnsson-Rylander, Ann-Cathrine; Svedlund, Sara; Gan, Li-Ming

    2015-01-01

    Background Type 2 diabetes is associated with macro- and microvascular complications in man. Microvascular dysfunction affects both cardiac and renal function and is now recognized as a main driver of cardiovascular mortality and morbidity. However, progression of microvascular dysfunction in experimental models is often obscured by macrovascular pathology and consequently demanding to study. The obese type 2 diabetic leptin-deficient (ob/ob) mouse lacks macrovascular complications, i.e. occlusive atherosclerotic disease, and may therefore be a potential model for microvascular dysfunction. The present study aimed to test the hypothesis that these mice with an insulin resistant phenotype might display microvascular dysfunction in both coronary and renal vascular beds. Methods and Results In this study we used non-invasive Doppler ultrasound imaging to characterize microvascular dysfunction during the progression of diabetes in ob/ob mice. Impaired coronary flow velocity reserve was observed in the ob/ob mice at 16 and 21 weeks of age compared to lean controls. In addition, renal resistivity index as well as pulsatility index was higher in the ob/ob mice at 21 weeks compared to lean controls. Moreover, plasma L-arginine was lower in ob/ob mice, while asymmetric dimethylarginine was unaltered. Furthermore, a decrease in renal vascular density was observed in the ob/ob mice. Conclusion In parallel to previously described metabolic disturbances, the leptin-deficient ob/ob mice also display cardiac and renal microvascular dysfunction. This model may therefore be suitable for translational, mechanistic and interventional studies to improve the understanding of microvascular complications in type 2 diabetes. PMID:26098416

  1. Insulin-dependent diabetes mellitus in mice does not alter liver heparan sulfate.

    PubMed

    Bishop, Joseph R; Foley, Erin; Lawrence, Roger; Esko, Jeffrey D

    2010-05-01

    Diabetes -associated hyperlipidemia is generally attributed to reduced clearance of plasma lipoproteins, especially remnant lipoproteins enriched in cholesterol and triglycerides. Hepatic clearance of remnants occurs via low density lipoprotein receptors and the heparan sulfate proteoglycan, syndecan-1. Previous studies have suggested alterations in heparan sulfate proteoglycan metabolism in rat and mouse diabetic models, consistent with the idea that diabetic dyslipidemia might be caused by alterations in proteoglycan expression in the liver. In this study we analyzed the content and composition of liver heparan sulfate in streptozotocin-induced insulin-deficient diabetic mice that displayed fasting hypertriglyceridemia and delayed clearance of dietary triglyceride-rich lipoproteins. No differences between normal and diabetic littermates in liver heparan sulfate content, sulfation, syndecan-1 protein levels, or affinity for heparin-binding ligands, such as apolipoprotein E or fibroblast growth factor-2, were noted. Decreased incorporation of [(35)S]sulfate in insulin-deficient mice in vivo was observed, but the decrease was due to increased plasma inorganic sulfate, which reduced the efficiency of labeling of liver heparan sulfate. These results show that hyperlipidemia in insulin-deficient mice is not due to changes in hepatic heparan sulfate composition. PMID:20236939

  2. Pepino polyphenolic extract improved oxidative, inflammatory and glycative stress in the sciatic nerves of diabetic mice.

    PubMed

    Ma, Chin-Tsu; Chyau, Charng-Cherng; Hsu, Cheng-Chin; Kuo, Shyh-Ming; Chuang, Chin-Wen; Lin, Hui-Hsuan; Chen, Jing-Hsien

    2016-02-17

    The effect of pepino polyphenolic extract (PPE) on diabetic neuropathy was examined. Using HPLC/ESI-MS-MS analysis, PPE was demonstrated to contain coumaroyl and caffeoyl derivatives among polyphenols. PPE at 0.5 or 1% was supplied to diabetic mice for 12 weeks. The PPE intake at two doses significantly improved glycaemic control. These treatments reserved the glutathione (GSH) level, and decreased the thiobarbituric acid reactive substances (TBARS) level, reactive oxygen species (ROS), interleukin (IL)-6, tumour necrosis factor (TNF)-alpha, fructose, and glycation intermediates and precursors of advanced glycation end products (AGEs), such as methylglyoxal (MG) and N-(carboxymethyl)lysine (CML), in the sciatic nerves of diabetic mice. In a histological study of sciatic nerves, PPE had the effects in improving the nerves of diabetic mice, showing disorganization of the fascicle with numerous small myelinated fibers. The PPE intake at two doses retained the activity, and the protein and mRNA levels of glutathione peroxidase (GPX), and decreased protein expressions of aldose reductase (AR) and the receptor for the advanced glycation end product (RAGE) in sciatic nerves. These findings support that pepino polyphenolic extract could attenuate oxidative, inflammatory and glycative stress in diabetic peripheral nerves. PMID:26791916

  3. Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice.

    PubMed

    Lian, Kun; Du, Chaosheng; Liu, Yi; Zhu, Di; Yan, Wenjun; Zhang, Haifeng; Hong, Zhibo; Liu, Peilin; Zhang, Lijian; Pei, Haifeng; Zhang, Jinglong; Gao, Chao; Xin, Chao; Cheng, Hexiang; Xiong, Lize; Tao, Ling

    2015-01-01

    The branched-chain amino acids (BCAA) accumulated in type 2 diabetes are independent contributors to insulin resistance. The activity of branched-chain ?-keto acid dehydrogenase (BCKD) complex, rate-limiting enzyme in BCAA catabolism, is reduced in diabetic states, which contributes to elevated BCAA concentrations. However, the mechanisms underlying decreased BCKD activity remain poorly understood. Here, we demonstrate that mitochondrial phosphatase 2C (PP2Cm), a newly identified BCKD phosphatase that increases BCKD activity, was significantly downregulated in ob/ob and type 2 diabetic mice. Interestingly, in adiponectin (APN) knockout (APN(-/-)) mice fed with a high-fat diet (HD), PP2Cm expression and BCKD activity were significantly decreased, whereas BCKD kinase (BDK), which inhibits BCKD activity, was markedly increased. Concurrently, plasma BCAA and branched-chain ?-keto acids (BCKA) were significantly elevated. APN treatment markedly reverted PP2Cm, BDK, BCKD activity, and BCAA and BCKA levels in HD-fed APN(-/-) and diabetic animals. Additionally, increased BCKD activity caused by APN administration was partially but significantly inhibited in PP2Cm knockout mice. Finally, APN-mediated upregulation of PP2Cm expression and BCKD activity were abolished when AMPK was inhibited. Collectively, we have provided the first direct evidence that APN is a novel regulator of PP2Cm and systematic BCAA levels, suggesting that targeting APN may be a pharmacological approach to ameliorating BCAA catabolism in the diabetic state. PMID:25071024

  4. Modulating Notch Signaling to Enhance Neovascularization and Reperfusion in Diabetic Mice

    PubMed Central

    Cao, Lan; Arany, Praveen; Kim, Jaeyun; Rivera-Feliciano, Jos; Wang, Yuan-Shuo; He, Zhiheng; Rask-Madsen, Christian; King, George L.; Mooney, David J.

    2010-01-01

    Diabetes can diminish the responsiveness to angiogenic factors (e.g., VEGF) important for wound healing and the treatment of ischemic diseases, and this study investigated the hypothesis that this effect can be reversed by altering Notch signaling. Aortic endothelial cells (ECs) isolated from diabetic mice demonstrated reduced sprouting capability in vitro, but adding a Notch inhibitor (DAPT) led to cell-density and VEGF-dose dependent enhancement of proliferation, migration and sprouting, in both 2-D and 3-D cultures, as compared to VEGF alone. The in vivo effects of VEGF and DAPT were tested in the ischemic hindlimbs of diabetic mice. Combining VEGF and DAPT delivery resulted in increased blood vessel density (~150%) and improved tissue perfusion (~160%), as compared to VEGF alone. To examine if DAPT would interfere with vessel maturation, DAPT was also delivered with a combination of VEGF and platelet derived growth factor (PDGF). DAPT and PDGF did not interfere with the effects of the other, and highly functional and mature networks of vessels could be formed with appropriate delivery. In summary, modulating Notch signaling enhances neovascularization and perfusion recovery in diabetic mice suffering from ischemia, suggesting this approach could have utility for human diabetics. PMID:20800279

  5. Hypoglycemic Effect of Jicama (Pachyrhizus erosus) Extract on Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Park, Chan Joo; Han, Ji-Sook

    2015-01-01

    The purpose of this research was to investigate the inhibitory effect of jicama extract on ?-glucosidase activity, ?-amylase activity, and postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. Jicama extract showed prominent inhibitory effects against ?-glucosidase and ?-amylase. The IC50 values of jicama extract against ?-glucosidase and ?-amylase were 0.0830.004 and 0.0910.017 mg/mL, respectively. The increase in postprandial blood glucose levels was more significantly suppressed in the jicama extract-administered group than in the control group of both STZ-induced diabetic and normal mice. Blood glucose levels of the control group increased to 383.7511.54 and 402.5015.32 mg/dL at 30 and 60 min after a meal and decreased to 349.6711.62 mg/dL at 120 min. However, postprandial blood glucose levels were significantly decreased, when diabetic mice were fed with jicama extract (342.0015.73, 367.0013.00, and 329.6712.43 mg/dL at 30, 60, and 120 min, respectively). Furthermore, the area under the curve was significantly decreased with jicama extract administration in diabetic mice (P<0.05). Therefore, these results indicate that jicama extract may help decrease postprandial blood glucose level by inhibiting ?-glucosidase. PMID:26175995

  6. Hypoglycemic Effect of Jicama (Pachyrhizus erosus) Extract on Streptozotocin-Induced Diabetic Mice.

    PubMed

    Park, Chan Joo; Han, Ji-Sook

    2015-06-01

    The purpose of this research was to investigate the inhibitory effect of jicama extract on ?-glucosidase activity, ?-amylase activity, and postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. Jicama extract showed prominent inhibitory effects against ?-glucosidase and ?-amylase. The IC50 values of jicama extract against ?-glucosidase and ?-amylase were 0.0830.004 and 0.0910.017 mg/mL, respectively. The increase in postprandial blood glucose levels was more significantly suppressed in the jicama extract-administered group than in the control group of both STZ-induced diabetic and normal mice. Blood glucose levels of the control group increased to 383.7511.54 and 402.5015.32 mg/dL at 30 and 60 min after a meal and decreased to 349.6711.62 mg/dL at 120 min. However, postprandial blood glucose levels were significantly decreased, when diabetic mice were fed with jicama extract (342.0015.73, 367.0013.00, and 329.6712.43 mg/dL at 30, 60, and 120 min, respectively). Furthermore, the area under the curve was significantly decreased with jicama extract administration in diabetic mice (P<0.05). Therefore, these results indicate that jicama extract may help decrease postprandial blood glucose level by inhibiting ?-glucosidase. PMID:26175995

  7. INFLUENCE OF TYPE II DIABETES AND OBESITY ON THE DISPOSITION AND ELIMINATION OF TCDD IN MICE

    EPA Science Inventory

    INFLUENCE OF TYPE II DIABETES AND OBESITY ON THE DISPOSTION AND ELIMINATION OF TCDD IN MICE. MJ DeVito', JJ Diliberto', DG Ross', C Emond2, VM Richardson', and LS Birnbaum', 'ETD, NHEERL, ORD, US EPA, RTP, NC, 27711, USA, 2National Research Council.
    One possible explanation fo...

  8. Anti-diabetic activity of a leaf extract prepared from Salacia reticulata in mice.

    PubMed

    Yoshino, Kyoji; Miyauchi, Yuko; Kanetaka, Takashi; Takagi, Yasutaka; Koga, Kunimasa

    2009-05-01

    The effects of a water extract prepared from the leaves of Salacia reticulata on the absorption of sugars in normal and type 1 diabetic mice were investigated. The simultaneous oral administration of the extract at a dose of 1.0 mg/mouse with maltose or sucrose inhibited the postprandial elevation of the plasma glucose and insulin levels and intestinal alpha-glucosidase activities in mice. In addition, the supply of a 0.01% solution of the extract as drinking water prevented the elevation of the plasma glucose level and intestinal alpha-glucosidase activities in type 1 diabetic mice. This treatment also prevented the elevation of the plasma, pancreatic, and kidney lipid peroxide levels, lowering of the plasma insulin level, and elevation of the kidney aldose reductase activities in diabetic mice. These results suggest that the water extract of the leaves of S. reticulata could be a beneficial food material for the prevention of diabetes and obesity because of its multiple effects. PMID:19420711

  9. Sustained Inflammasome Activity in Macrophages Impairs Wound Healing in Type 2 Diabetic Humans and Mice

    PubMed Central

    Mirza, Rita E.; Fang, Milie M.; Weinheimer-Haus, Eileen M.; Ennis, William J.; Koh, Timothy J.

    2014-01-01

    The hypothesis of this study was that sustained activity of the Nod-like receptor protein (NLRP)-3 inflammasome in wounds of diabetic humans and mice contributes to the persistent inflammatory response and impaired healing characteristic of these wounds. Macrophages (Mp) isolated from wounds on diabetic humans and db/db mice exhibited sustained inflammasome activity associated with low level of expression of endogenous inflammasome inhibitors. Soluble factors in the biochemical milieu of these wounds are sufficient to activate the inflammasome, as wound-conditioned medium activates caspase-1 and induces release of interleukin (IL)-1? and IL-18 in cultured Mp via a reactive oxygen speciesmediated pathway. Importantly, inhibiting inflammasome activity in wounds of db/db mice using topical application of pharmacological inhibitors improved healing of these wounds, induced a switch from proinflammatory to healing-associated Mp phenotypes, and increased levels of prohealing growth factors. Furthermore, data generated from bone marrowtransfer experiments from NLRP-3 or caspase-1 knockout to db/db mice indicated that blocking inflammasome activity in bone marrow cells is sufficient to improve healing. Our findings indicate that sustained inflammasome activity in wound Mp contributes to impaired early healing responses of diabetic wounds and that the inflammasome may represent a new therapeutic target for improving healing in diabetic individuals. PMID:24194505

  10. Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice.

    PubMed

    Wang, Bo; Yang, Qing; Sun, Yuan-yuan; Xing, Yi-fan; Wang, Ying-bin; Lu, Xiao-ting; Bai, Wen-wu; Liu, Xiao-qiong; Zhao, Yu-xia

    2014-08-01

    Autophagic dysfunction is observed in diabetes mellitus. Resveratrol has a beneficial effect on diabetic cardiomyopathy. Whether the resveratrol-induced improvement in cardiac function in diabetes is via regulating autophagy remains unclear. We investigated the mechanisms underlying resveratrol-mediated protection against heart failure in diabetic mice, with a focus on the role of sirtuin 1 (SIRT1) in regulating autophagic flux. Diabetic cardiomyopathy in mice was induced by streptozotocin (STZ). Long-term resveratrol treatment improved cardiac function, ameliorated oxidative injury and reduced apoptosis in the diabetic mouse heart. Western blot analysis revealed that resveratrol decreased p62 protein expression and promoted SIRT1 activity and Rab7 expression. Inhibiting autophagic flux with bafilomycin A1 increased diabetic mouse mortality and attenuated resveratrol-induced down-regulation of p62, but not SIRT1 activity or Rab7 expression in diabetic mouse hearts. In cultured H9C2 cells, redundant or overactive H?O? increased p62 and cleaved caspase 3 expression as well as acetylated forkhead box protein O1 (FOXO1) and inhibited SIRT1 expression. Sirtinol, SIRT1 and Rab7 siRNA impaired the resveratrol amelioration of dysfunctional autophagic flux and reduced apoptosis under oxidative conditions. Furthermore, resveratrol enhanced FOXO1 DNA binding at the Rab7 promoter region through a SIRT1-dependent pathway. These results highlight the role of the SIRT1/FOXO1/Rab7 axis in the effect of resveratrol on autophagic flux in vivo and in vitro, which suggests a therapeutic strategy for diabetic cardiomyopathy. PMID:24889822

  11. Antidiabetic activity of ethanolic extract of Cyperus rotundus rhizomes in streptozotocin-induced diabetic mice

    PubMed Central

    Singh, Pradeep; Khosa, Ratan L.; Mishra, Garima; Jha, Keshri K.

    2015-01-01

    Objective: In the present investigation, ethanolic extract of Cyperus rotundus (EECR) rhizomes was evaluated for antidiabetic activity in streptozotocin (STZ)-induced diabetic swiss mice. Materials and Methods: After administration of EECR extract for 3 weeks, the body weight, blood glucose, biomarker enzymes (serum glutamic pyruvic transaminase [SGPT] and serum glutamic oxaloacetic transaminase [SGOT]), and plasma lipid levels were measured in STZ-induced diabetic mice. Results: The ethanolic extract at dose levels of 250 and 500 mg/kg body weight revealed significant antidiabetic activity, improvement in body weight, and reduction in elevated biochemical parameters such as SGPT, SGOT, cholesterol, and triglyceride levels. Conclusion: These experimental findings seemed to indicate the use of this plant in traditional Indian medicine for the treatment of diabetes. PMID:26681885

  12. Central diabetes insipidus associated with impaired renal aquaporin-1 expression in mice lacking liver X receptor ?.

    PubMed

    Gabbi, Chiara; Kong, Xiaomu; Suzuki, Hitoshi; Kim, Hyun-Jin; Gao, Min; Jia, Xiao; Ohnishi, Hideo; Ueta, Yoichi; Warner, Margaret; Guan, Youfei; Gustafsson, Jan-ke

    2012-02-21

    The present study demonstrates a key role for the oxysterol receptor liver X receptor ? (LXR?) in the etiology of diabetes insipidus (DI). Given free access to water, LXR?(-/-) but not LXR?(-/-) mice exhibited polyuria (abnormal daily excretion of highly diluted urine) and polydipsia (increased water intake), both features of diabetes insipidus. LXR?(-/-) mice responded to 24-h dehydration with a decreased urine volume and increased urine osmolality. To determine whether the DI was of central or nephrogenic origin, we examined the responsiveness of the kidney to arginine vasopressin (AVP). An i.p. injection of AVP to LXR?(-/-) mice revealed a partial kidney response: There was no effect on urine volume, but there was a significant increase of urine osmolality, suggesting that DI may be caused by a defect in central production of AVP. In the brain of WT mice LXR? was expressed in the nuclei of magnocellular neurons in the supraoptic and paraventricular nuclei of the hypothalamus. In LXR?(-/-) mice the expression of AVP was markedly decreased in the magnocellular neurons as well as in urine collected over a 24-h period. The persistent high urine volume after AVP administration was traced to a reduction in aquaporin-1 expression in the kidney of LXR?(-/-) mice. The LXR agonist (GW3965) in WT mice elicited an increase in urine osmolality, suggesting that LXR? is a key receptor in controlling water balance with targets in both the brain and kidney, and it could be a therapeutic target in disorders of water balance. PMID:22323586

  13. Marrow-Derived Cells Regulate the Development of Early Diabetic Retinopathy and Tactile Allodynia in Mice

    PubMed Central

    Li, Guangyuan; Veenstra, Alexander A.; Talahalli, Ramaprasad R.; Wang, Xiaoqi; Gubitosi-Klug, Rose A.; Sheibani, Nader; Kern, Timothy S.

    2012-01-01

    The hypothesis that marrow-derived cells, and specifically proinflammatory proteins in those cells, play a critical role in the development of diabetes-induced retinopathy and tactile allodynia was investigated. Abnormalities characteristic of the early stages of retinopathy and allodynia were measured in chimeric mice lacking inducible nitric oxide synthase (iNOS) or poly(ADP-ribosyl) polymerase (PARP1) in only their marrow-derived cells. Diabetes-induced capillary degeneration, proinflammatory changes, and superoxide production in the retina and allodynia were inhibited in diabetic animals in which iNOS or PARP1 was deleted from bone marrow cells only. Of the various marrow cells, neutrophils (and monocytes) play a major role in retinopathy development, because retinal capillary degeneration likewise was significantly inhibited in diabetic mice lacking the receptor for granulocyte colony-stimulating factor in their marrow-derived cells. Immunodepletion of neutrophils or monocytes inhibited the endothelial death otherwise observed when coculturing leukocytes from wild-type diabetic animals with retinal endothelium. iNOS and PARP1 are known to play a role in inflammatory processes, and we conclude that proinflammatory processes within marrow-derived cells play a central role in the development of diabetes complications in the retina and nerve. PMID:22923475

  14. Dammarenediol-II Prevents VEGF-Mediated Microvascular Permeability in Diabetic Mice.

    PubMed

    Kim, Su-Hyeon; Jung, Se-Hui; Lee, Yeon-Ju; Han, Jung Yeon; Choi, Yong-Eui; Hong, Hae-Deun; Jeon, Hye-Yoon; Hwang, JongYun; Na, SungHun; Kim, Young-Myeong; Ha, Kwon-Soo

    2015-12-01

    Diabetic retinopathy is a major diabetic complication predominantly caused by vascular endothelial growth factor (VEGF)-induced vascular permeability in the retina; however, treatments targeting glycemic control have not been successful. Here, we investigated the protective effect of dammarenediol-II, a precursor of triterpenoid saponin biosynthesis, on VEGF-induced vascular leakage using human umbilical vein endothelial cells (HUVECs) and diabetic mice. We overproduced the compound in transgenic tobacco expressing Panax ginseng dammarenediol-II synthase gene and purified using column chromatography. Analysis of the purified compound using a gas chromatography-mass spectrometry system revealed identical retention time and fragmentation pattern to those of authentic standard dammarenediol-II. Dammarenediol-II inhibited VEGF-induced intracellular reactive oxygen species generation, but it had no effect on the levels of intracellular Ca(2+) in HUVECs. We also found that dammarenediol-II inhibited VEGF-induced stress fiber formation and vascular endothelial-cadherin disruption, both of which play critical roles in modulating endothelial permeability. Notably, microvascular leakage in the retina of diabetic mice was successfully inhibited by intravitreal dammarenediol-II injection. Our results suggest that the natural drug dammarenediol-II may have the ability to prevent diabetic microvascular complications, including diabetic retinopathy. Copyright 2015 John Wiley & Sons, Ltd. PMID:26400610

  15. Hypoglycemic and Hypolipidemic Effects of Ethanolic Extract of Mirabilis jalapa L. Root on Normal and Diabetic Mice

    PubMed Central

    Zhou, Ji-Yin; Zhou, Shi-Wen; Zeng, Sheng-Ya; Zhou, Jian-Yun; Jiang, Ming-Jin; He, Yan

    2012-01-01

    The present study investigated the insulin sensitivity, hypoglycemic, and hypolipidemic activities of ethanolic extract of Mirabilis jalapa L. root (EEM) in normal and diabetic mice. After induction of diabetes with streptozotocin, both normal and diabetic mice were singly or repeatedly for 28 days administrated with EEM at doses of 2, 4, 8 g/kg, respectively. Before induction of diabetes, mice were administrated with EEM at doses of 2, 4, 8 g/kg for 14 days and were injected with streptozotocin and continued on EEM administration for another 28 days. Both after and before induction of diabetes, repeated administration with 4, 8 g/kg EEM continually lowered blood glucose level, decreased serum insulin level and improved insulin sensitivity index, and lowered serum total cholesterol, triglyceride levels and triglyceride content in liver and skeletal muscle, and increased glycogen content in these tissues; but repeated administration had no influence on those indexes of normal mice. Single administration with EEM (4, 8 g/kg) showed hypoglycemic effect in oral glucose tolerance test in normal and diabetic mice. Single administration with EEM had no hypoglycemic and hypolipidemic effects on normal and diabetic mice. These results suggest that EEM possesses both potential insulin sensitivity, hypoglycemic, and hypolipidemic effects on diabetes. PMID:22474494

  16. The Induction of Heme Oxygenase 1 Decreases Painful Diabetic Neuropathy and Enhances the Antinociceptive Effects of Morphine in Diabetic Mice

    PubMed Central

    Castany, Sílvia; Carcolé, Mireia; Leánez, Sergi; Pol, Olga

    2016-01-01

    Painful diabetic neuropathy is a common complication of diabetes mellitus which is poorly controlled by conventional analgesics. This study investigates if treatment with an heme oxygenase 1 (HO-1) inducer, cobalt protoporphyrin IX (CoPP), could modulate the allodynia and hyperalgesia induced by diabetes and enhanced the antinociceptive effects of morphine. In a diabetic mice model induced by the injection of streptozotocin (STZ), we evaluated the antiallodynic and antihyperalgesic effects produced by the intraperitoneal administration of 5 and 10 mg/kg of CoPP at several days after its administration. The antinociceptive actions produced by the systemic administration of morphine alone or combined with CoPP were also evaluated. In addition, the effects of CoPP treatment on the expression of HO-1, the microglial activation marker (CD11b/c), the inducible nitric oxide synthase (NOS2) and μ-opioid receptors (MOR), were also assessed. Our results showed that the administration of 10 mg/kg of CoPP during 5 consecutive days completely blocked the mechanical and thermal hypersensitivity induced by diabetes. These effects are accompanied by the increased spinal cord, dorsal root ganglia and sciatic nerve protein levels of HO-1. In addition, the STZ-induced activation of microglia and overexpression of NOS2 in the spinal cord were inhibited by CoPP treatment. Furthermore, the antinociceptive effects of morphine were enhanced by CoPP treatment and reversed by the administration of an HO-1 inhibitor, tin protoporphyrin IX (SnPP). The spinal cord expression of MOR was also increased by CoPP treatment in diabetic mice. In conclusion, our data provide the first evidence that the induction of HO-1 attenuated STZ-induced painful diabetic neuropathy and enhanced the antinociceptive effects of morphine via inhibition of microglia activation and NOS2 overexpression as well as by increasing the spinal cord levels of MOR. This study proposes the administration of CoPP alone or combined with morphine as an interesting therapeutic approach for the treatment of painful diabetic neuropathy. PMID:26730587

  17. Left ventricular dysfunction with reduced functional cardiac reserve in diabetic and non-diabetic LDL-receptor deficient apolipoprotein B100-only mice

    PubMed Central

    2011-01-01

    Background Lack of suitable mouse models has hindered the studying of diabetic macrovascular complications. We examined the effects of type 2 diabetes on coronary artery disease and cardiac function in hypercholesterolemic low-density lipoprotein receptor-deficient apolipoprotein B100-only mice (LDLR-/-ApoB100/100). Methods and results 18-month-old LDLR-/-ApoB100/100 (n = 12), diabetic LDLR-/-ApoB100/100 mice overexpressing insulin-like growth factor-II (IGF-II) in pancreatic beta cells (IGF-II/LDLR-/-ApoB100/100, n = 14) and age-matched C57Bl/6 mice (n = 15) were studied after three months of high-fat Western diet. Compared to LDLR-/-ApoB100/100 mice, diabetic IGF-II/LDLR-/-ApoB100/100 mice demonstrated more calcified atherosclerotic lesions in aorta. However, compensatory vascular enlargement was similar in both diabetic and non-diabetic mice with equal atherosclerosis (cross-sectional lesion area ~60%) and consequently the lumen area was preserved. In coronary arteries, both hypercholesterolemic models showed significant stenosis (~80%) despite positive remodeling. Echocardiography revealed severe left ventricular systolic dysfunction and anteroapical akinesia in both LDLR-/-ApoB100/100 and IGF-II/LDLR-/-ApoB100/100 mice. Myocardial scarring was not detected, cardiac reserve after dobutamine challenge was preserved and ultrasructural changes revealed ischemic yet viable myocardium, which together with coronary artery stenosis and slightly impaired myocardial perfusion suggest myocardial hibernation resulting from chronic hypoperfusion. Conclusions LDLR-/-ApoB100/100 mice develop significant coronary atherosclerosis, severe left ventricular dysfunction with preserved but diminished cardiac reserve and signs of chronic myocardial hibernation. However, the cardiac outcome is not worsened by type 2 diabetes, despite more advanced aortic atherosclerosis in diabetic animals. PMID:21718508

  18. Impaired cytokine expression, neutrophil infiltration and bacterial clearance in response to urinary tract infection in diabetic mice.

    PubMed

    Ozer, Ahmet; Altuntas, Cengiz Z; Bicer, Fuat; Izgi, Kenan; Hultgren, Scott J; Liu, Guiming; Daneshgari, Firouz

    2015-04-01

    Diabetic patients have increased susceptibility to infections, and urinary tract infections (UTI) are the most common type in women with diabetes mellitus. Knowledge of bacterial clearance effectiveness following UTI in diabetics is sparse. In this study, the effects of diabetes on bacterial clearance efficiency and components of the innate immune system in response to UTI in a murine model were investigated. Streptozotocin-induced diabetic and control female C57BL/6J mice were infected with uropathogenic Escherichia coli, and bacterial load, expression of chemokines, and neutrophil infiltration in the bladder over time were investigated. Expression levels of histone deacetylases were also measured to address a potential mechanism underlying the phenotype. Bacterial clearance during UTI was significantly prolonged in diabetic mice relative to controls. Neutrophil infiltration in bladder tissue and urine, and both mRNA and protein expression of chemokines MIP-2, KC, MCP-1 and IL-6 in bladder tissue were diminished at early time points after infection in diabetic mice relative to controls. In addition, mRNA levels of histone deacetylases 1-5 were increased in diabetic mice. This is the first study to show an association of impaired bacterial clearance in diabetic mice with suppression of UTI-induced chemokine expression and neutrophil infiltration in the bladder. PMID:25663347

  19. Complete suppression of insulitis and diabetes in NOD mice lacking interferon regulatory factor-1.

    PubMed

    Nakazawa, T; Satoh, J; Takahashi, K; Sakata, Y; Ikehata, F; Takizawa, Y; Bando, S I; Housai, T; Li, Y; Chen, C; Masuda, T; Kure, S; Kato, I; Takasawa, S; Taniguchi, T; Okamoto, H; Toyota, T

    2001-09-01

    Interferon regulatory factor-1 (IRF-1), a transcriptional factor, regulates type I interferon and interferon-induced genes. It was reported that IRF-1 regulates important molecules required for inflammation and immune reactions. To investigate the role of IRF-1 in the development of autoimmune diabetes, we established IRF-1 deficient (IRF-1(-/-)) non-obese diabetic (NOD) mice. IRF-1-deficient C57BL/6J mice were out-crossed to NOD mice, and F1 were backcrossed to NOD mice. At the N8 generation, the heterozygote for IRF-1 mutation was intercrossed and N8F1 was obtained. Out of three NOD genotypes, IRF-1(+/+) and IRF-1(+/-) developed spontaneous diabetes with an incidence of 47% (9/19) and 50% (10/20) by 30 weeks of age, respectively; whereas IRF-1(-/-) did not develop diabetes (0/18, P< 0.01 vs. (+/+) and (+/-)). Histologically, IRF-1(+/+) and IRF-1(+/-) had various degrees of insulitis, but IRF-1(-/-) had no insulitis. In comparison with IRF-1(+/+), the percentage of CD4(+) and Mac-1(+) splenic cells significantly increased, whereas CD3(+), CD8(+) and B220(+) cells decreased in IRF-1(-/-). Furthermore, spleen cell proliferation in response to Con A or murine GAD65 peptide, a major autoantigen of the pancreatic beta-cell, significantly increased, and the IFN-gamma/IL-10 ratio in the culture supernatant significantly decreased in IRF-1(-/-), suggesting Th2 deviation in cytokine balance. These results indicate that IRF-1 plays a key role in developing insulitis and diabetes in NOD mice. PMID:11591120

  20. Adoptive Transfer of Syngeneic Bone Marrow-Derived Cells in Mice with Obesity-Induced Diabetes

    PubMed Central

    Chen, Jun; Li, Houwei; Addabbo, Francesco; Zhang, Fung; Pelger, Edward; Patschan, Daniel; Park, Hyeong-Cheon; Kuo, Mei-Chuan; Ni, Jei; Gobe, Glenda; Chander, Praveen N.; Nasjletti, Alberto; Goligorsky, Michael S.

    2009-01-01

    There are conflicting data regarding the effects of transplantation of bone marrow-derived cells (BMDCs) on the severity of diabetes. We therefore inquired whether the competence of BMDCs is preserved on adoptive transfer into diabetic (db/db) mice and how the adoptive transfer of BMDCs affects vascular and metabolic abnormalities in these mice. Recipient db/db mice received infusions of BMDCs prepared from either db/db or non-diabetic heterozygout mice (db/m) mice and effects on endothelium-dependent relaxation, insulin sensitivity, and renal function were evaluated. Recipients of BMDCs from db/m, but not db/db donors showed better glucose control, exhibited striking improvement in endothelium-dependent relaxation in response to acetylcholine, and had partially restored renal function. Improved glucose control was due to enhanced insulin sensitivity, most likely secondary to improved vascular function. Enhanced apoptosis of endothelial progenitor cells under oxidative stress, as well as decreased endothelial progenitor cell numbers were responsible for the apparent functional incompetence of BMDCs from db/db donors. Treatment of db/db mice with Ebselen restored the resistance of both BMDCs and endothelial progenitor cells to oxidative stress, improved acetylcholine-induced vasorelaxation, and reduced proteinuria in db/db recipients of BMDC transplantation. In conclusion, infusion of BMDCs obtained from db/m donors to db/db recipient mice benefited macrovascular function, insulin sensitivity, and nephropathy. BMDCs obtained from db/db mice were functionally incompetent secondary to the increased proportion of apoptotic cells on oxidative stress challenge; their competence was restored by Ebselen therapy. PMID:19147816

  1. Multi-Tissue Computational Modeling Analyzes Pathophysiology of Type 2 Diabetes in MKR Mice

    PubMed Central

    Kumar, Amit; Harrelson, Thomas; Lewis, Nathan E.; Gallagher, Emily J.; LeRoith, Derek; Shiloach, Joseph; Betenbaugh, Michael J.

    2014-01-01

    Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2 diabetes mellitus (T2DM) can provide a better understanding of disease pathophysiology and avoid high experimentation costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented, along with the resulting multi-confidence level (MCL) multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale model of all metabolic pathways in T2DM, we found out that branched-chain amino acids' degradation and fatty acids oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective. PMID:25029527

  2. Multi-tissue computational modeling analyzes pathophysiology of type 2 diabetes in MKR mice.

    PubMed

    Kumar, Amit; Harrelson, Thomas; Lewis, Nathan E; Gallagher, Emily J; LeRoith, Derek; Shiloach, Joseph; Betenbaugh, Michael J

    2014-01-01

    Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2 diabetes mellitus (T2DM) can provide a better understanding of disease pathophysiology and avoid high experimentation costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented, along with the resulting multi-confidence level (MCL) multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale model of all metabolic pathways in T2DM, we found out that branched-chain amino acids' degradation and fatty acids oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective. PMID:25029527

  3. Malfunction of bone marrow-derived osteoclasts and the delay of bone fracture healing in diabetic mice.

    PubMed

    Kasahara, Toshiyuki; Imai, Sinji; Kojima, Hideto; Katagi, Miwako; Kimura, Hiroshi; Chan, Lawrence; Matsusue, Yoshitaka

    2010-09-01

    It is well known that bone fracture healing is delayed in diabetes mellitus, but the mechanism remains to be elucidated. Since several studies have demonstrated that diabetes causes abnormalities in bone marrow-derived cells, we used the streptozotocin (STZ)-induced diabetic mouse model after bone marrow transfer from green fluorescent protein (GFP) transgenic mice, and examined fracture healing. Compared with nondiabetic mice, diabetic mice at 3 weeks after fracture showed a decrease in mineralized callus, with the remainder consisting of cartilage. Bone formation parameters and mineralization rate were not altered in the STZ mice, but bone resorption parameters were significantly decreased. Therefore, the delayed bone formation in the STZ mice may have resulted from an impairment of cartilage resorption. Interestingly, we found that 80% of the osteoclasts in the callus were derived from bone marrow and the sizes of the osteoclasts as well as the resorption pits formed were significantly smaller in the diabetic mice. Moreover, transcript analysis using RNA isolated by laser capture microdissection (LCM) showed that the expression of DC-STAMP, a putative pivotal gene for osteoclast fusion, was decreased in osteoclasts from diabetic mice. Since the sustainability of osteoclast function depends on the controlled renewal of multinuclear osteoclasts, impaired osteoclast function in diabetes may contribute to decreased cartilage resorption and delayed endochondral ossification. PMID:20601287

  4. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiao; Lee, Florence Ying; Barrera, Gabriel; Lee, Hans; Vales, Charisse; Gonzalez, Frank J.; Willson, Timothy M.; Edwards, Peter A.

    2006-01-01

    Farnesoid X receptor (FXR) plays an important role in maintaining bile acid and cholesterol homeostasis. Here we demonstrate that FXR also regulates glucose metabolism. Activation of FXR by the synthetic agonist GW4064 or hepatic overexpression of constitutively active FXR by adenovirus-mediated gene transfer significantly lowered blood glucose levels in both diabetic db/db and wild-type mice. Consistent with these data, FXR null mice exhibited glucose intolerance and insulin insensitivity. We further demonstrate that activation of FXR in db/db mice repressed hepatic gluconeogenic genes and increased hepatic glycogen synthesis and glycogen content by a mechanism that involves enhanced insulin sensitivity. In view of its central roles in coordinating regulation of both glucose and lipid metabolism, we propose that FXR agonists are promising therapeutic agents for treatment of diabetes mellitus. glucose | GW4064 | farnesoid X receptor-VP16 | triglyceride | cholesterol

  5. Dietary Epicatechin Promotes Survival of Obese Diabetic Mice and Drosophila melanogaster123

    PubMed Central

    Si, Hongwei; Fu, Zhuo; Babu, Pon Velayutham Anandh; Zhen, Wei; LeRoith, Tanya; Meaney, Mary Pat; Voelker, Kevin A.; Jia, Zhenquan; Grange, Robert W.; Liu, Dongmin

    2011-01-01

    The lifespan of diabetic patients is 7–8 y shorter than that of the general population because of hyperglycemia-induced vascular complications and damage to other organs such as the liver and skeletal muscle. Here, we investigated the effects of epicatechin, one of the major flavonoids in cocoa, on health-promoting effects in obese diabetic (db/db) mice (0.25% in drinking water for 15 wk) and Drosophila melanogaster (0.01–8 mmol/L in diet). Dietary intake of epicatechin promoted survival in the diabetic mice (50% mortality in diabetic control group vs. 8.4% in epicatechin group after 15 wk of treatment), whereas blood pressure, blood glucose, food intake, and body weight gain were not significantly altered. Pathological analysis showed that epicatechin administration reduced the degeneration of aortic vessels and blunted fat deposition and hydropic degeneration in the liver caused by diabetes. Epicatechin treatment caused changes in diabetic mice that are associated with a healthier and longer lifespan, including improved skeletal muscle stress output, reduced systematic inflammation markers and serum LDL cholesterol, increased hepatic antioxidant glutathione concentration and total superoxide dismutase activity, decreased circulating insulin-like growth factor-1 (from 303 ± 21 mg/L in the diabetic control group to 189 ± 21 mg/L in the epicatechin-treated group), and improved AMP-activated protein kinase-α activity in the liver and skeletal muscle. Consistently, epicatechin (0.1–8 mmol/L) also promoted survival and increased mean lifespan of Drosophila. Therefore, epicatechin may be a novel food-derived, antiaging compound. PMID:21525262

  6. Dietary epicatechin promotes survival of obese diabetic mice and Drosophila melanogaster.

    PubMed

    Si, Hongwei; Fu, Zhuo; Babu, Pon Velayutham Anandh; Zhen, Wei; Leroith, Tanya; Meaney, Mary Pat; Voelker, Kevin A; Jia, Zhenquan; Grange, Robert W; Liu, Dongmin

    2011-06-01

    The lifespan of diabetic patients is 7-8 y shorter than that of the general population because of hyperglycemia-induced vascular complications and damage to other organs such as the liver and skeletal muscle. Here, we investigated the effects of epicatechin, one of the major flavonoids in cocoa, on health-promoting effects in obese diabetic (db/db) mice (0.25% in drinking water for 15 wk) and Drosophila melanogaster (0.01-8 mmol/L in diet). Dietary intake of epicatechin promoted survival in the diabetic mice (50% mortality in diabetic control group vs. 8.4% in epicatechin group after 15 wk of treatment), whereas blood pressure, blood glucose, food intake, and body weight gain were not significantly altered. Pathological analysis showed that epicatechin administration reduced the degeneration of aortic vessels and blunted fat deposition and hydropic degeneration in the liver caused by diabetes. Epicatechin treatment caused changes in diabetic mice that are associated with a healthier and longer lifespan, including improved skeletal muscle stress output, reduced systematic inflammation markers and serum LDL cholesterol, increased hepatic antioxidant glutathione concentration and total superoxide dismutase activity, decreased circulating insulin-like growth factor-1 (from 303 21 mg/L in the diabetic control group to 189 21 mg/L in the epicatechin-treated group), and improved AMP-activated protein kinase-? activity in the liver and skeletal muscle. Consistently, epicatechin (0.1-8 mmol/L) also promoted survival and increased mean lifespan of Drosophila. Therefore, epicatechin may be a novel food-derived, antiaging compound. PMID:21525262

  7. Coronary endothelial dysfunction and mitochondrial reactive oxygen species in type 2 diabetic mice

    PubMed Central

    Cho, Young-Eun; Basu, Aninda; Dai, Anzhi; Heldak, Michael

    2013-01-01

    Endothelial cell (EC) dysfunction is implicated in cardiovascular diseases, including diabetes. The decrease in nitric oxide (NO) bioavailability is the hallmark of endothelial dysfunction, and it leads to attenuated vascular relaxation and atherosclerosis followed by a decrease in blood flow. In the heart, decreased coronary blood flow is responsible for insufficient oxygen supply to cardiomyocytes and, subsequently, increases the incidence of cardiac ischemia. In this study we investigate whether and how reactive oxygen species (ROS) in mitochondria contribute to coronary endothelial dysfunction in type 2 diabetic (T2D) mice. T2D was induced in mice by a high-fat diet combined with a single injection of low-dose streptozotocin. ACh-induced vascular relaxation was significantly attenuated in coronary arteries (CAs) from T2D mice compared with controls. The pharmacological approach reveals that NO-dependent, but not hyperpolarization- or prostacyclin-dependent, relaxation was decreased in CAs from T2D mice. Attenuated ACh-induced relaxation in CAs from T2D mice was restored toward control level by treatment with mitoTempol (a mitochondria-specific O2? scavenger). Coronary ECs isolated from T2D mice exhibited a significant increase in mitochondrial ROS concentration and decrease in SOD2 protein expression compared with coronary ECs isolated from control mice. Furthermore, protein ubiquitination of SOD2 was significantly increased in coronary ECs isolated from T2D mice. These results suggest that augmented SOD2 ubiquitination leads to the increase in mitochondrial ROS concentration in coronary ECs from T2D mice and attenuates coronary vascular relaxation in T2D mice. PMID:23986204

  8. Contribution of different mechanisms to pancreatic beta-cell hyper-secretion in non-obese diabetic (NOD) mice during pre-diabetes.

    PubMed

    Liang, Kuo; Du, Wen; Zhu, Wenzhen; Liu, Shuang; Cui, Yeqing; Sun, Haichen; Luo, Bin; Xue, Yanhong; Yang, Lu; Chen, Liangyi; Li, Fei

    2011-11-11

    The development of insulin-dependent diabetes mellitus (IDDM) results from the selective destruction of pancreatic beta-cells. Both humans and spontaneous models of IDDM, such as NOD mice, have an extended pre-diabetic stage. Dynamic changes in beta-cell mass and function during pre-diabetes, such as insulin hyper-secretion, remain largely unknown. In this paper, we evaluated pre-diabetic female NOD mice at different ages (6, 10, and 14 weeks old) to illustrate alterations in beta-cell mass and function as disease progressed. We found an increase in beta-cell mass in 6-week-old NOD mice that may account for improved glucose tolerance in these mice. As NOD mice aged, beta-cell mass progressively reduced with increasing insulitis. In parallel, secretory ability of individual beta-cells was enhanced due to an increase in the size of slowly releasable pool (SRP) of vesicles. Moreover, expression of both SERCA2 and SERCA3 genes were progressively down-regulated, which facilitated depolarization-evoked secretion by prolonging Ca(2+) elevation upon glucose stimulation. In summary, we propose that different mechanisms contribute to the insulin hyper-secretion at different ages of pre-diabetic NOD mice, which may provide some new ideas concerning the progression and management of type I diabetes. PMID:21914804

  9. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension.

    PubMed

    Gembardt, Florian; Bartaun, Christoph; Jarzebska, Natalia; Mayoux, Eric; Todorov, Vladimir T; Hohenstein, Bernd; Hugo, Christian

    2014-08-01

    Diabetic nephropathy is the leading cause of end-stage renal disease in humans in the Western world. The recent development of Na+-glucose cotransporter 2 (SGLT2) inhibitors offers a new antidiabetic therapy via enhanced glucose excretion. Whether this strategy exerts beneficial effects on the development of type 2 diabetic nephropathy is still largely unclear. We investigated the effects of the specific SGLT2 inhibitor empagliflozin in BTBR.Cg-Lep/WiscJ (BTBR ob/ob) mice, which spontaneously develop type 2 diabetic nephropathy. In the first experiment, BTBR ob/ob mice received either a diet containing 300 ppm empagliflozin or equicaloric placebo chow for 12 wk. In the second experiment, BTBR ob/ob mice received 1 ?gkg body wt(-1)day(-1) ANG II to induce arterial hypertension and were separated into the same two diet groups for 6 wk. In both experiments, empagliflozin treatment enhanced glucosuria, thereby lowering blood glucose. Independently of hypertension, empagliflozin reduced albuminuria in diabetic mice. However, empagliflozin treatment affected diabetes-related glomerular hypertrophy, markers of renal inflammation, and mesangial matrix expansion only in BTBR ob/ob mice without hypertension. In summary, empagliflozin demonstrated significant antihyperglycemic effects, differentially ameliorating early features of diabetic nephropathy in BTBR ob/ob mice with and without hypertension. PMID:24944269

  10. The PPARgamma ligand, rosiglitazone, reduces vascular oxidative stress and NADPH oxidase expression in diabetic mice.

    PubMed

    Hwang, Jinah; Kleinhenz, Dean J; Rupnow, Heidi L; Campbell, Adam G; Thul, Peter M; Sutliff, Roy L; Hart, C Michael

    2007-06-01

    Oxidative stress plays an important role in diabetic vascular dysfunction. The sources and regulation of reactive oxygen species production in diabetic vasculature continue to be defined. Because peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reduced superoxide anion (O(2)(-.)) generation in vascular endothelial cells in vitro by reducing NADPH oxidase and increasing Cu/Zn superoxide dismutase (SOD) expression, the current study examined the effect of PPARgamma ligands on vascular NADPH oxidase and O(2)(-.) generation in vivo. Lean control (db(+)/db(-)) and obese, diabetic, leptin receptor-deficient (db(-)/db(-)) mice were treated with either vehicle or rosiglitazone (3 mg/kg/day) by gavage for 7-days. Compared to controls, db(-)/db(-) mice weighed more and had metabolic derangements that were not corrected by treatment with rosiglitazone for 1-week. Aortic O(2)(-.) generation and mRNA levels of the NADPH oxidase subunits, Nox-1, Nox-2, and Nox-4 as well as Nox-4 protein expression were elevated in db(-)/db(-) compared to db(+)/db(-) mice, whereas aortic Cu/Zn SOD protein and PPARgamma mRNA levels were reduced in db(-)/db(-) mice. Treatment with rosiglitazone for 1-week significantly reduced aortic O(2)(-.) production and the expression of Nox-1, 2, and 4 but failed to increase Cu/Zn SOD or PPARgamma in aortic tissue from db(-)/db(-) mice. These data demonstrate that the vascular expression of Nox-1, 2, and 4 subunits of NADPH oxidase is increased in db(-)/db(-) mice and that short-term treatment with the PPARgamma agonist, rosiglitazone, has the potential to rapidly suppress vascular NADPH oxidase expression and O(2)(-.) production through mechanisms that do not appear to depend on correction of diabetic metabolic derangements. PMID:17337254

  11. High ?-cell mass prevents streptozotocin-induced diabetes in thioredoxin-interacting protein-deficient mice

    PubMed Central

    Masson, Elodie; Koren, Shlomit; Razik, Fathima; Goldberg, Howard; Kwan, Edwin P.; Sheu, Laura; Gaisano, Herbert Y.; Fantus, I. George

    2010-01-01

    Thioredoxin-interacting protein (TxNIP) is an endogenous inhibitor of thioredoxin, a ubiquitous thiol oxidoreductase, that regulates cellular redox status. Diabetic mice exhibit increased expression of TxNIP in pancreatic islets, and recent studies suggest that TxNIP is a proapoptotic factor in ?-cells that may contribute to the development of diabetes. Here, we examined the role of TxNIP deficiency in vivo in the development of insulin-deficient diabetes and whether it impacted on pancreatic ?-cell mass and/or insulin secretion. TxNIP-deficient (Hcb-19/TxNIP?/?) mice had lower baseline glycemia, higher circulating insulin concentrations, and higher total pancreatic insulin content and ?-cell mass than control mice (C3H). Hcb-19/TxNIP?/? did not develop hyperglycemia when injected with standard multiple low doses of streptozotocin (STZ), in contrast to C3H controls. Surprisingly, although ?-cell mass remained higher in Hcb-19/TxNIP?/? mice compared with C3H after STZ exposure, the relative decrease induced by STZ was as great or even greater in the TxNIP-deficient animals. Consistently, cultured pancreatic INS-1 cells transfected with small-interfering RNA against TxNIP were more sensitive to cell death induced by direct exposure to STZ or to the combination of inflammatory cytokines interleukin-1?, interferon-?, and tumor necrosis factor-?. Furthermore, when corrected for insulin content, isolated pancreatic islets from TxNIP?/? mice exhibited reduced glucose-induced insulin secretion. These data indicate that TxNIP functions as a regulator of ?-cell mass and influences insulin secretion. In conclusion, the relative resistance of TxNIP-deficient mice to STZ-induced diabetes appears to be because of an increase in ?-cell mass. However, TxNIP deficiency is associated with sensitization to STZ- and cytokine-induced ?-cell death, indicating complex regulatory roles of TxNIP under different physiological and pathological conditions. PMID:19223654

  12. Photobiomodulation Mitigates Diabetes-Induced Retinopathy by Direct and Indirect Mechanisms: Evidence from Intervention Studies in Pigmented Mice

    PubMed Central

    Liu, Haitao; Patel, Shyam; Roberts, Robin; Berkowitz, Bruce A.; Kern, Timothy S.

    2015-01-01

    Objective Daily application of far-red light from the onset of diabetes mitigated diabetes-induced abnormalities in retinas of albino rats. Here, we test the hypothesis that photobiomodulation (PBM) is effective in diabetic, pigmented mice, even when delayed until weeks after onset of diabetes. Direct and indirect effects of PBM on the retina also were studied. Methods Diabetes was induced in C57Bl/6J mice using streptozotocin. Some diabetics were exposed to PBM therapy (4 min/day; 670 nm) daily. In one study, mice were diabetic for 4 weeks before initiation of PBM for an additional 10 weeks. Retinal oxidative stress, inflammation, and retinal function were measured. In some mice, heads were covered with a lead shield during PBM to prevent direct illumination of the eye, or animals were treated with an inhibitor of heme oxygenase-1. In a second study, PBM was initiated immediately after onset of diabetes, and administered daily for 2 months. These mice were examined using manganese-enhanced MRI to assess effects of PBM on transretinal calcium channel function in vivo. Results PBM intervention improved diabetes-induced changes in superoxide generation, leukostasis, expression of ICAM-1, and visual performance. PBM acted in part remotely from the retina because the beneficial effects were achieved even with the head shielded from the light therapy, and because leukocyte-mediated cytotoxicity of retinal endothelial cells was less in diabetics treated with PBM. SnPP+PBM significantly reduced iNOS expression compared to PBM alone, but significantly exacerbated leukostasis. In study 2, PBM largely mitigated diabetes-induced retinal calcium channel dysfunction in all retinal layers. Conclusions PBM induces retinal protection against abnormalities induced by diabetes in pigmented animals, and even as an intervention. Beneficial effects on the retina likely are mediated by both direct and indirect mechanisms. PBM is a novel non-pharmacologic treatment strategy to inhibit early changes of diabetic retinopathy. PMID:26426815

  13. The dipeptide Phe-Phe amide attenuates signs of hyperalgesia, allodynia and nociception in diabetic mice using a mechanism involving the sigma receptor system

    PubMed Central

    2011-01-01

    Background Previous studies have demonstrated that intrathecal administration of the substance P amino-terminal metabolite substance P1-7 (SP1-7) and its C-terminal amidated congener induced antihyperalgesic effects in diabetic mice. In this study, we studied a small synthetic dipeptide related to SP1-7 and endomorphin-2, i.e. Phe-Phe amide, using the tail-flick test and von Frey filament test in diabetic and non-diabetic mice. Results Intrathecal treatment with the dipeptide increased the tail-flick latency in both diabetic and non-diabetic mice. This effect of Phe-Phe amide was significantly greater in diabetic mice than non-diabetic mice. The Phe-Phe amide-induced antinociceptive effect in both diabetic and non-diabetic mice was reversed by the ?1 receptor agonist (+)-pentazocine. Moreover, Phe-Phe amide attenuated mechanical allodynia in diabetic mice, which was reversible by (+)-pentazocine. The expression of spinal ?1 receptor mRNA and protein did not differ between diabetic mice and non-diabetic mice. On the other hand, the expression of phosphorylated extracellular signal-regulated protein kinase 1 (ERK1) and ERK2 proteins was enhanced in diabetic mice. (+)-Pentazocine caused phosphorylation of ERK1 and ERK2 proteins in non-diabetic mice, but not in diabetic mice. Conclusions These results suggest that the spinal ?1 receptor system might contribute to diabetic mechanical allodynia and thermal hyperalgesia, which could be potently attenuated by Phe-Phe amide. PMID:22040520

  14. Metabolic stressinduced activation of FoxO1 triggers diabetic cardiomyopathy in mice

    PubMed Central

    Battiprolu, Pavan K.; Hojayev, Berdymammet; Jiang, Nan; Wang, Zhao V.; Luo, Xiang; Iglewski, Myriam; Shelton, John M.; Gerard, Robert D.; Rothermel, Beverly A.; Gillette, Thomas G.; Lavandero, Sergio; Hill, Joseph A.

    2012-01-01

    The leading cause of death in diabetic patients is cardiovascular disease; diabetic cardiomyopathy is typified by alterations in cardiac morphology and function, independent of hypertension or coronary disease. However, the molecular mechanism that links diabetes to cardiomyopathy is incompletely understood. Insulin resistance is a hallmark feature of diabetes, and the FoxO family of transcription factors, which regulate cell size, viability, and metabolism, are established targets of insulin and growth factor signaling. Here, we set out to evaluate a possible role of FoxO proteins in diabetic cardiomyopathy. We found that FoxO proteins were persistently activated in cardiac tissue in mice with diabetes induced either genetically or by high-fat diet (HFD). FoxO activity was critically linked with development of cardiomyopathy: cardiomyocyte-specific deletion of FoxO1 rescued HFD-induced declines in cardiac function and preserved cardiomyocyte insulin responsiveness. FoxO1-depleted cells displayed a shift in their metabolic substrate usage, from free fatty acids to glucose, associated with decreased accumulation of lipids in the heart. Furthermore, we found that FoxO1-dependent downregulation of IRS1 resulted in blunted Akt signaling and insulin resistance. Together, these data suggest that activation of FoxO1 is an important mediator of diabetic cardiomyopathy and is a promising therapeutic target for the disease. PMID:22326951

  15. Aerobic interval training reduces inducible ventricular arrhythmias in diabetic mice after myocardial infarction.

    PubMed

    Rolim, Natale; Skrdal, Kristine; Hydal, Morten; Sousa, Mirta M L; Malmo, Vegard; Kaurstad, Guri; Ingul, Charlotte B; Hansen, Harald E M; Alves, Marcia N; Thuen, Marte; Haraldseth, Olav; Brum, Patricia C; Slupphaug, Geir; Loennechen, Jan Pl; Stlen, Tomas; Wislff, Ulrik

    2015-01-01

    Diabetes mellitus (DM) increases the risk of heart failure after myocardial infarction (MI), and aggravates ventricular arrhythmias in heart failure patients. Although exercise training improves cardiac function in heart failure, it is still unclear how it benefits the diabetic heart after MI. To study the effects of aerobic interval training on cardiac function, susceptibility to inducible ventricular arrhythmias and cardiomyocyte calcium handling in DM mice after MI (DM-MI). Male type 2 DM mice (C57BLKS/J Lepr (db) /Lepr (db) ) underwent MI or sham surgery. One group of DM-MI mice was submitted to aerobic interval training running sessions during 6 weeks. Cardiac function and structure were assessed by echocardiography and magnetic resonance imaging, respectively. Ventricular arrhythmias were induced by high-frequency cardiac pacing in vivo. Protein expression was measured by Western blot. DM-MI mice displayed increased susceptibility for inducible ventricular arrhythmias and impaired diastolic function when compared to wild type-MI, which was associated with disruption of cardiomyocyte calcium handling and increased calcium leak from the sarcoplasmic reticulum. High-intensity exercise recovered cardiomyocyte function in vitro, reduced sarcoplasmic reticulum diastolic calcium leak and significantly reduced the incidence of inducible ventricular arrhythmias in vivo in DM-MI mice. Exercise training also normalized the expression profile of key proteins involved in cardiomyocyte calcium handling, suggesting a potential molecular mechanism for the benefits of exercise in DM-MI mice. High-intensity aerobic exercise training recovers cardiomyocyte function and reduces inducible ventricular arrhythmias in infarcted diabetic mice. PMID:26112154

  16. Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects.

    PubMed

    Jung, Young-Mi; Lee, Seon-Ha; Lee, Dong-Sub; You, Myung-Jin; Chung, In Kwon; Cheon, Woo Hyun; Kwon, Young-Sam; Lee, Young-Joon; Ku, Sae-Kwang

    2011-05-01

    This study examined the bioactivity of yeast (Saccharomyces cerevisiae)-fermented aged black garlic (FBG) on obese mice supplied a high-fat diet (HFD) and its in vitro antioxidant activity. Aged black garlic (BG) exhibits potent antioxidative effects and has been subjected to extensive research. In addition, the bioactivity of some natural products is increased by fermentation. In a preliminary test, this study found that the antioxidant activity of FBG is stronger than that of BG. Therefore, it was hypothesized that the bioactivity of BG would be increased by yeast fermentation and would be a good candidate as a nutraceutical product for improving the oxidative defense systems in older patients or patients affected by various oxidative stresses, for example, diabetes and diabetic complications. To test this hypothesis, the bioactivities of FBG in diabetic and obese mice as well as the antioxidant activity in vitro were examined. After 91 days of continuous HFD supply, the mice showed marked obesity, hyperglycemia, hyperlipemia, and liver and kidney damages. Black garlic and all 3 different doses of FBG showed favorable hepatoprotective, nephroprotective, hypolipidemic, and antiobesity effects compared with the HFD control, but no hypoglycemic effects. In particular, more favorable bioactivity against all 4 HFD-induced diabetic complications was detected in the FBG-treated groups compared with the group given equivalent doses of BG. These findings suggest that the bioactivities of BG can be improved by yeast fermentation. PMID:21636017

  17. Metabonomic analysis of potential biomarkers and drug targets involved in diabetic nephropathy mice

    PubMed Central

    Wei, Tingting; Zhao, Liangcai; Jia, Jianmin; Xia, Huanhuan; Du, Yao; Lin, Qiuting; Lin, Xiaodong; Ye, Xinjian; Yan, Zhihan; Gao, Hongchang

    2015-01-01

    Diabetic nephropathy (DN) is one of the lethal manifestations of diabetic systemic microvascular disease. Elucidation of characteristic metabolic alterations during diabetic progression is critical to understand its pathogenesis and identify potential biomarkers and drug targets involved in the disease. In this study, 1H nuclear magnetic resonance (1H NMR)-based metabonomics with correlative analysis was performed to study the characteristic metabolites, as well as the related pathways in urine and kidney samples of db/db diabetic mice, compared with age-matched wildtype mice. The time trajectory plot of db/db mice revealed alterations, in an age-dependent manner, in urinary metabolic profiles along with progression of renal damage and dysfunction. Age-dependent and correlated metabolite analysis identified that cis-aconitate and allantoin could serve as biomarkers for the diagnosis of DN. Further correlative analysis revealed that the enzymes dimethylarginine dimethylaminohydrolase (DDAH), guanosine triphosphate cyclohydrolase I (GTPCH I), and 3-hydroxy-3-methylglutaryl-CoA lyase (HMG-CoA lyase) were involved in dimethylamine metabolism, ketogenesis and GTP metabolism pathways, respectively, and could be potential therapeutic targets for DN. Our results highlight that metabonomic analysis can be used as a tool to identify potential biomarkers and novel therapeutic targets to gain a better understanding of the mechanisms underlying the initiation and progression of diseases. PMID:26149603

  18. Hypoglycemic activities of lyophilized powder of Gynura divaricata by improving antioxidant potential and insulin signaling in type 2 diabetic mice

    PubMed Central

    Xu, Bing-Qing; Yang, Ping; Zhang, Yu-Qing

    2015-01-01

    Background Diabetes mellitus is a serious disease affecting about 5% of people worldwide. Although several studies have indicated hypoglycemic activities of Gynura divaricata (GD), the mechanisms by which GD improves the symptoms of diabetes remain unclear. Objective The aim of this study was to investigate the potential hypoglycemic effects of GD. Design The leaves and stems of GD were prepared and lyophilized into a powder, which was added to the diet of mice with type 2 diabetes induced by a high-fat diet in combination with streptozotocin for 4 weeks. During this period, fasting blood glucose (FBG) levels and body weight of mice were measured. In addition, at the end of the experiment, a series of assays was performed. Results GD administration effectively alleviates insulin resistance and induces a decrease in FBG by 59.54% in 1.2% (L) GD-treated diabetic group and 56.13% in 4.8% (H) GD-treated diabetic group after 4 weeks, respectively, relative to diabetic model mice. The antioxidant capacity was improved by increasing the activities of glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) by 64.87% and 53.42% in treatment group H, compared to diabetic model mice, while GD treatment induced a significant decrease in malondialdehyde (MDA) level by 50% in treatment group L, compared to the level in diabetic model mice. Furthermore, glucose metabolism was ameliorated by the increased glycogen synthesis in the livers of diabetic mice. In addition, we also demonstrated that the messenger RNA (mRNA) and protein expression levels of AKT, PI3K and PDK-1, which are involved in insulin signaling, were significantly increased. Conclusions Oral administration of the GD-lyophilized powder has been effectively hypoglycemic, which is done by activating insulin signaling and improving antioxidant capacity in mice with type 2 diabetes. PMID:26715102

  19. Diabetes

    MedlinePLUS

    ... version of this page please turn Javascript on. Diabetes What is Diabetes? Too Much Glucose in the Blood Diabetes means ... high, causing pre-diabetes or diabetes. Types of Diabetes There are three main kinds of diabetes: type ...

  20. Reduced Alpha-Lipoic Acid Synthase Gene Expression Exacerbates Atherosclerosis in Diabetic Apolipoprotein EDeficient Mice

    PubMed Central

    Yi, Xianwen; Xu, Longquan; Hiller, Sylvia; Kim, Hyung-Suk; Maeda, Nobuyo

    2012-01-01

    Objectives To study the effects of reduced lipoic acid gene expression on diabetic atherosclerosis in apolipoprotein E null mice (Apoe?/?). Methods and Results Heterozygous lipoic acid synthase gene knockout mice (Lias+/?) crossed with Apoe?/? mice were used to evaluate the diabetic effect induced by streptozotocin on atherosclerosis in the aortic sinus of the heart. While diabetes markedly increased atherosclerotic plaque size in Apoe?/? mice, a small but significant effect of reduced expression of lipoic acid gene was observed in diabetic Lias+/?Apoe?/? mice. In the aortic lesion area, the Lias+/?Apoe?/? mice exhibited significantly increased macrophage accumulation and cellular apoptosis than diabetic Lias+/+Apoe?/? littermates. Plasma glucose, cholesterol, and interleukin-6 were also higher. These abnormalities were accompanied with increased oxidative stress including a decreased ratio of reduced glutathione/oxidized glutathione in erythrocytes, increased systemic lipid peroxidation, and increased Gpx1 and MCP1 gene expression in the aorta. Conclusions Decreased endogenous lipoic acid gene expression plays a role in development of diabetic atherosclerosis. These findings extend our understanding of the role of antioxidant in diabetic atherosclerosis. PMID:22658261

  1. Altered parasympathetic nervous system regulation of the sinoatrial node in Akita diabetic mice.

    PubMed

    Krishnaswamy, Pooja S; Egom, Emmanuel E; Moghtadaei, Motahareh; Jansen, Hailey J; Azer, John; Bogachev, Oleg; Mackasey, Martin; Robbins, Courtney; Rose, Robert A

    2015-05-01

    Cardiovascular autonomic neuropathy (CAN) is a serious complication of diabetes mellitus that impairs autonomic regulation of heart rate (HR). This has been attributed to damage to the nerves that modulate spontaneous pacemaker activity in the sinoatrial node (SAN). Our objective was to test the hypothesis that impaired parasympathetic regulation of HR in diabetes is due to reduced responsiveness of the SAN to parasympathetic agonists. We used the Akita mouse model of type 1 diabetes to study the effects of the parasympathetic agonist carbachol (CCh) on SAN function using intracardiac programmed stimulation, high resolution optical mapping and patch-clamping of SAN myocytes. CCh decreased HR by 30% and increased corrected SAN recovery time (cSNRT) by 123% in wildtype mice. In contrast, CCh only decreased HR by 12%, and only increased cSNRT by 37% in Akita mice. These alterations were due to smaller effects of CCh on SAN electrical conduction and spontaneous action potential firing in isolated SAN myocytes. Voltage clamp experiments demonstrate that the acetylcholine-activated K(+) current (IKACh) is reduced in Akita SAN myocytes due to enhanced desensitization and faster deactivation kinetics. These IKACh alterations were normalized by treating Akita SAN myocytes with PI(3,4,5)P3 or an inhibitor of regulator of G-protein signaling 4 (RGS4). There was no difference in the effects of CCh on the hyperpolarization-activated current (If) between wildtype and Akita mice. Our study demonstrates that Akita diabetic mice demonstrate impaired parasympathetic regulation of HR and SAN function due to reduced responses of the SAN to parasympathetic agonists. Our experiments demonstrate a key role for insulin-dependent phosphoinositide 3-kinase (PI3K) signaling in the parasympathetic dysfunction seen in the SAN in diabetes. PMID:25754673

  2. Aqueous Extract from Pepino (Solanum muricatum Ait.) Attenuated Hyperlipidemia and Cardiac Oxidative Stress in Diabetic Mice.

    PubMed

    Wang, Zhi-Hong; Hsu, Cheng-Chin; Yin, Mei-Chin

    2012-01-01

    This study examined the lipid-lowering and cardiac protective effects of aqueous extract of pepino (Solanum muricatum Ait.) in type 2 diabetic mice. Pepino at 1, 2, or 5% was supplied for 8 weeks. Results showed that pepino significantly decreased water intake and epididymal fat pad weight in diabetic mice (P < 0.05). Pepino treatments also significantly reduced plasma glucose and insulin levels, HOMA-IR index, and improved oral glucose tolerance (P < 0.05). Plasma and hepatic levels of triglyceride and total cholesterol (TC) were higher in diabetic groups when compared with normal group (P < 0.05), pepino treatments at 2 and 5% decreased triglyceride and TC levels in both plasma and liver (P < 0.05). Diabetes enhanced mRNA expression of resistin and diacylglycerol acyltransferase1 (DGAT1) in epididymal fat pad (P < 0.05); however, pepino intake significantly suppressed mRNA expression of resistin and DGAT1 in epididymal fat pad (P < 0.05). Pepino intake significantly reduced reactive oxygen species level, increased glutathione level, and retained glutathione peroxidase and catalase activities in cardiac tissues (P < 0.05). These findings suggest that pepino could be considered as a functional food for the alleviation of type 2 diabetes. PMID:24527264

  3. Methadone ameliorates multiple-low-dose streptozotocin-induced type 1 diabetes in mice

    SciTech Connect

    Amirshahrokhi, K.; Dehpour, A.R.; Hadjati, J.; Sotoudeh, M.; Ghazi-Khansari, M.

    2008-10-01

    Type 1 diabetes is an autoimmune disease characterized by inflammation of pancreatic islets and destruction of {beta} cells by the immune system. Opioids have been shown to modulate a number of immune functions, including T helper 1 (Th1) and T helper 2 (Th2) cytokines. The immunosuppressive effect of long-term administration of opioids has been demonstrated both in animal models and humans. The aim of this study was to determine the effect of methadone, a {mu}-opioid receptor agonist, on type 1 diabetes. Administration of multiple low doses of streptozotocin (STZ) (MLDS) (40mg/kg intraperitoneally for 5 consecutive days) to mice resulted in autoimmune diabetes. Mice were treated with methadone (10mg/kg/day subcutaneously) for 24days. Blood glucose, insulin and pancreatic cytokine levels were measured. Chronic methadone treatment significantly reduced hyperglycemia and incidence of diabetes, and restored pancreatic insulin secretion in the MLDS model. The protective effect of methadone can be overcome by pretreatment with naltrexone, an opioid receptor antagonist. Also, methadone treatment decreased the proinflammatory Th1 cytokines [interleukin (IL)-1{beta}, tumor necrosis factor-{alpha} and interferon-{gamma}] and increased anti-inflammatory Th2 cytokines (IL-4 and IL-10). Histopathological observations indicated that STZ-mediated destruction of {beta} cells was attenuated by methadone treatment. It seems that methadone as an opioid agonist may have a protective effect against destruction of {beta} cells and insulitis in the MLDS model of type 1 diabetes.

  4. Heparanase Is Essential for the Development of Diabetic Nephropathy in Mice

    PubMed Central

    Gil, Natali; Goldberg, Rachel; Neuman, Tzahi; Garsen, Marjolein; Zcharia, Eyal; Rubinstein, Ariel M.; van Kuppevelt, Toin; Meirovitz, Amichay; Pisano, Claudio; Li, Jin-Ping; van der Vlag, Johan; Vlodavsky, Israel; Elkin, Michael

    2012-01-01

    Diabetic nephropathy (DN) is the major life-threatening complication of diabetes. Abnormal permselectivity of glomerular basement membrane (GBM) plays an important role in DN pathogenesis. Heparanase is the predominant enzyme that degrades heparan sulfate (HS), the main polysaccharide of the GBM. Loss of GBM HS in diabetic kidney was associated with increased glomerular expression of heparanase; however, the causal involvement of heparanase in the pathogenesis of DN has not been demonstrated. We report for the first time the essential involvement of heparanase in DN. With the use of Hpse-KO mice, we found that deletion of the heparanase gene protects diabetic mice from DN. Furthermore, by investigating the molecular mechanism underlying induction of the enzyme in DN, we found that transcription factor early growth response 1 (Egr1) is responsible for activation of heparanase promoter under diabetic conditions. The specific heparanase inhibitor SST0001 markedly decreased the extent of albuminuria and renal damage in mouse models of DN. Our results collectively underscore the crucial role of heparanase in the pathogenesis of DN and its potential as a highly relevant target for therapeutic interventions in patients with DN. PMID:22106160

  5. Sildenafil Ameliorates Long Term Peripheral Neuropathy in Type II Diabetic Mice

    PubMed Central

    Wang, Lei; Chopp, Michael; Szalad, Alexandra; Jia, LongFei; Lu, XueRong; Lu, Mei; Zhang, Li; Zhang, Yi; Zhang, RuiLan; Zhang, Zheng Gang

    2015-01-01

    Diabetic peripheral neuropathy is a common complication of long-standing diabetes mellitus. To mimic clinical trials in which patients with diabetes enrolled have advanced peripheral neuropathy, we investigated the effect of sildenafil, a specific inhibitor of phosphodiesterase type 5 enzyme, on long term peripheral neuropathy in middle aged male mice with type II diabetes. Treatment of diabetic mice (BKS.Cg-m+/+Leprdb/J, db/db) at age 36 weeks with sildenafil significantly increased functional blood vessels and regional blood flow in the sciatic nerve, concurrently with augmentation of intra-epidermal nerve fiber density in the skin and myelinated axons in the sciatic nerve. Functional analysis showed that the sildenafil treatment considerably improved motor and sensory conduction velocities in the sciatic nerve and peripheral thermal stimulus sensitivity compared with the saline treatment. In vitro studies showed that mouse dermal endothelial cells (MDE) cultured under high glucose levels exhibited significant down regulation of angiopoietin 1 (Ang1) expression and reduction of capillary-like tube formation, which were completely reversed by sildenafil. In addition, incubation of dorsal root ganglia (DRG) neurons with conditioned medium harvested from MDE under high glucose levels suppressed neurite outgrowth, where as conditional medium harvested from MDE treated with sildenafil under high glucose levels did not inhibit neurite outgrowth of DRG neurons. Moreover, blockage of the Ang1 receptor, Tie2, with a neutralized antibody against Tie2 abolished the beneficial effect of sildenafil on tube formation and neurite outgrowth. Collectively, our data indicate that sildenafil has a therapeutic effect on long term peripheral neuropathy of middle aged diabetic mice and that improvement of neurovascular dysfunction by sildenafil likely contributes to the amelioration of nerve function. The Ang1/Tie2 signaling pathway may play an important role in these restorative processes. PMID:25689401

  6. Sildenafil ameliorates long term peripheral neuropathy in type II diabetic mice.

    PubMed

    Wang, Lei; Chopp, Michael; Szalad, Alexandra; Jia, LongFei; Lu, XueRong; Lu, Mei; Zhang, Li; Zhang, Yi; Zhang, RuiLan; Zhang, Zheng Gang

    2015-01-01

    Diabetic peripheral neuropathy is a common complication of long-standing diabetes mellitus. To mimic clinical trials in which patients with diabetes enrolled have advanced peripheral neuropathy, we investigated the effect of sildenafil, a specific inhibitor of phosphodiesterase type 5 enzyme, on long term peripheral neuropathy in middle aged male mice with type II diabetes. Treatment of diabetic mice (BKS.Cg-m+/+Leprdb/J, db/db) at age 36 weeks with sildenafil significantly increased functional blood vessels and regional blood flow in the sciatic nerve, concurrently with augmentation of intra-epidermal nerve fiber density in the skin and myelinated axons in the sciatic nerve. Functional analysis showed that the sildenafil treatment considerably improved motor and sensory conduction velocities in the sciatic nerve and peripheral thermal stimulus sensitivity compared with the saline treatment. In vitro studies showed that mouse dermal endothelial cells (MDE) cultured under high glucose levels exhibited significant down regulation of angiopoietin 1 (Ang1) expression and reduction of capillary-like tube formation, which were completely reversed by sildenafil. In addition, incubation of dorsal root ganglia (DRG) neurons with conditioned medium harvested from MDE under high glucose levels suppressed neurite outgrowth, where as conditional medium harvested from MDE treated with sildenafil under high glucose levels did not inhibit neurite outgrowth of DRG neurons. Moreover, blockage of the Ang1 receptor, Tie2, with a neutralized antibody against Tie2 abolished the beneficial effect of sildenafil on tube formation and neurite outgrowth. Collectively, our data indicate that sildenafil has a therapeutic effect on long term peripheral neuropathy of middle aged diabetic mice and that improvement of neurovascular dysfunction by sildenafil likely contributes to the amelioration of nerve function. The Ang1/Tie2 signaling pathway may play an important role in these restorative processes. PMID:25689401

  7. Experimental protection of diabetic mice against Lethal P. aeruginosa infection by bacteriophage.

    PubMed

    Shivshetty, Nagaveni; Hosamani, Rajeshwari; Ahmed, Liyakat; Oli, Ajay Kumar; Sannauallah, Syed; Sharanbassappa, Shivshetty; Patil, S A; Kelmani, Chandrakanth R

    2014-01-01

    The emergence of antibiotic-resistant bacterial strains has become a global crisis and is vulnerable for the exploration of alternative antibacterial therapies. The present study emphasizes the use of bacteriophage for the treatment of multidrug resistant P. aeruginosa. P. aeruginosa was used to induce septicemia in streptozotocin (STZ) induced diabetic and nondiabetic mice by intraperitoneal (i.p.) injection of 3 10(8)?CFU, resulting in a fatal bacteremia within 48?hrs. A single i.p. injection of 3 10(9)?PFU phage GNCP showed efficient protection in both diabetic (90%) and nondiabetic (100%) bacteremic mice. It was further noted that the protection rate was reduced in diabetic mice when phage GNCP was administered after 4?h and 6?h of lethal bacterial challenge. In contrast, nondiabetic bacteremic mice were rescued even when treatment was delayed up to 20?h after lethal bacterial challenge. Evaluation of results confirmed that a single intraperitoneal injection of the phage dose (3 10(9)?PFU/mL) was more effective than the multiple doses of imipenem. These results uphold the efficacy of phage therapy against pernicious P. aeruginosa infections, especially in cases of immunocompromised host. PMID:24999476

  8. Experimental Protection of Diabetic Mice against Lethal P. aeruginosa Infection by Bacteriophage

    PubMed Central

    Shivshetty, Nagaveni; Hosamani, Rajeshwari; Ahmed, Liyakat; Oli, Ajay Kumar; Sannauallah, Syed; Sharanbassappa, Shivshetty; Patil, S. A.; Kelmani, Chandrakanth R.

    2014-01-01

    The emergence of antibiotic-resistant bacterial strains has become a global crisis and is vulnerable for the exploration of alternative antibacterial therapies. The present study emphasizes the use of bacteriophage for the treatment of multidrug resistant P. aeruginosa. P. aeruginosa was used to induce septicemia in streptozotocin (STZ) induced diabetic and nondiabetic mice by intraperitoneal (i.p.) injection of 3 108?CFU, resulting in a fatal bacteremia within 48?hrs. A single i.p. injection of 3 109?PFU phage GNCP showed efficient protection in both diabetic (90%) and nondiabetic (100%) bacteremic mice. It was further noted that the protection rate was reduced in diabetic mice when phage GNCP was administered after 4?h and 6?h of lethal bacterial challenge. In contrast, nondiabetic bacteremic mice were rescued even when treatment was delayed up to 20?h after lethal bacterial challenge. Evaluation of results confirmed that a single intraperitoneal injection of the phage dose (3 109?PFU/mL) was more effective than the multiple doses of imipenem. These results uphold the efficacy of phage therapy against pernicious P. aeruginosa infections, especially in cases of immunocompromised host. PMID:24999476

  9. Long-term bisphenol A exposure accelerates insulitis development in diabetes-prone NOD mice.

    PubMed

    Bodin, Johanna; Bølling, Anette Kocbach; Samuelsen, Mari; Becher, Rune; Løvik, Martinus; Nygaard, Unni Cecilie

    2013-06-01

    Exposure to the endocrine disruptor (ED) bisphenol A (BPA) used in polycarbonate plastic and epoxy resins appears ubiquitous since BPA can be found in over 90% of analyzed urine samples from all age groups. There is a parallel occurrence of increased prevalence in type 1 diabetes mellitus (T1DM) and an increased exposure to EDs the last decades. T1DM is caused by insulin deficiency due to autoimmune destruction of insulin producing pancreatic beta cells and has been suggested to be induced by various environmental factors acting together with a genetic predisposition. The objective of the present study was to investigate the effect of BPA (0, 1 and 100 mg/l BPA in the drinking water) on T1DM development in nonobese diabetic (NOD) mice, spontaneously developing T1DM. Histological evaluation of pancreas from 12-weeks-old female mice revealed significantly increased insulitis in mice exposed to 1 mg/l BPA, while the insulitis was less severe at the higher BPA exposure. Serum glucose levels in the 1 mg/ml BPA group tended to be hyperglycaemic, also indicating an accelerated onset of T1DM. The high BPA exposure seemed to counteract the diabetes development in females and also in male NOD mice for both BPA concentrations. Prior to insulitis, both BPA concentrations resulted in increased apoptosis and reduced numbers of tissue resident macrophages in pancreatic islets. In conclusion, long-term BPA exposure at a dose three times higher than the tolerable daily intake of 50 µg/kg, appeared to accelerate spontaneous insulitis and diabetes development in NOD mice. PMID:23496298

  10. Improvement of diabetes, obesity and hypertension in type 2 diabetic KKA{sup y} mice by bis(allixinato)oxovanadium(IV) complex

    SciTech Connect

    Adachi, Yusuke; Yoshikawa, Yutaka; Yoshida, Jiro; Kodera, Yukihiro . E-mail: kodera_y@wakunaga.co.jp; Katoh, Akira . E-mail: katoh@st.seikei.ac.jp; Takada, Jitsuya . E-mail: takada@hl.rri.kyoto-u.ac.jp; Sakurai, Hiromu . E-mail: sakurai@mb.kyoto-phu.ac.jp

    2006-07-07

    Previously, we found that bis(allixinato)oxovanadium(IV) (VO(alx){sub 2}) exhibits a potent hypoglycemic activity in type 1-like diabetic mice. Since the enhancement of insulin sensitivity is involved in one of the mechanisms by which vanadium exerts its anti-diabetic effects, VO(alx){sub 2} was further tested in type 2 diabetes with low insulin sensitivity. The effect of oral administration of VO(alx){sub 2} was examined in obesity-linked type 2 diabetic KKA{sup y} mice. Treatment of VO(alx){sub 2} for 4 weeks normalized hyperglycemia, glucose intolerance, hyperinsulinemia, hypercholesterolemia and hypertension in KKA{sup y} mice; however, it had no effect on hypoadiponectinemia. VO(alx){sub 2} also improved hyperleptinemia, following attenuation of obesity in KKA{sup y} mice. This is the first example in which a vanadium compound improved leptin resistance in type 2 diabetes by oral administration. On the basis of these results, VO(alx){sub 2} is proposed to enhance not only insulin sensitivity but also leptin sensitivity, which in turn improves diabetes, obesity and hypertension in an obesity-linked type 2 diabetic animal.

  11. Hydrangea dulcis folium preserves beta-cell mass in diabetic db/db mice.

    PubMed

    Kim, Mi-Ja; Leem, Kang-Hyun; Kim, Hye Kyung

    2009-07-01

    The anti-diabetic efficacy of Hydrangea dulcis folium (HDF) was studied in db/db mice and their littermates (db/-). Supplementation of HDF (1% and 3%) decreased glucose level significantly by 2- and 4-fold and increased significantly insulin level by 3- and 4.5-fold compared to db/db mice (P<0.05). Administration of HDF (1% and 3%) ameliorates hyperglycemia and improves glucose homeostasis in db/db mice in a dose-dependent manner by preventing loss of beta-cell mass resulting in increase of insulin secretion. In addition, 3% HDF treatment significantly reduced the food intake, weight gain, and blood lipids in db/db mice. PMID:19394398

  12. Cellular Action of Vasopressin in Medullary Tubules of Mice with Hereditary Nephrogenic Diabetes Insipidus

    PubMed Central

    Jackson, Brian A.; Edwards, Richard M.; Valtin, Heinz; Dousa, Thomas P.

    1980-01-01

    Our previous studies (1974. J. Clin. Invest.54: 753-762.) suggested that impaired metabolism of cyclic AMP (cAMP) may be involved in the renal unresponsiveness to vasopressin (VP) in mice with hereditary nephrogenic diabetes insipidus (NDI). To localize such a defect to specific segments of the nephron, we studied the activities of VP-sensitive adenylate cyclase, cAMP phosphodiesterase (cAMP-PDIE), as well as accumulation of cAMP in medullary collecting tubules (MCT) and in medullary thick ascending limbs of Henle's loop (MAL) microdissected from control mice with normal concentrating ability and from mice with hereditary NDI. Adenylate cyclase activity stimulated by VP or by NaF was only slightly lower (?24%) in MCT from NDI mice, compared with controls. In MAL of NDI mice, basal, VP-sensitive, and NaF-sensitive adenylate cyclase was markedly (> ?60%) lower compared with MAL of controls. The specific activity of cAMP-PDIE was markedly higher in MCT of NDI mice compared with controls, but was not different between MAL of control and NDI mice. Under present in vitro conditions, incubation of intact MCT from control mice with VP caused a striking increase in cAMP levels (>10), but VP failed to elicit a change in cAMP levels in MCT from NDI mice. When the cAMP-PDIE inhibitor 1-methyl-3-isobutyl xanthine (MIX) was added to the above incubation, VP caused a significant increase in cAMP levels in MCT from both NDI mice and control mice. Under all tested conditions, cAMP levels in MCT of NDI mice were lower than corresponding values in control MCT. Under the present experimental setting, VP and other stimulating factors (MIX, cholera toxin) did not change cAMP levels in MAL from either control mice or from NDI mice. The results of the present in vitro experiments suggest that the functional unresponsiveness of NDI mice to VP is perhaps mainly the result of the inability of collecting tubules to increase intracellular cAMP levels in response to VP. In turn, this inability to increase cAMP in response to VP is at least partly the result of abnormally high activity of cAMP-PDIE, a somewhat lower activity of VP-sensitive adenylate cyclase in MCT of NDI mice, and perhaps to a deficiency of some other as yet unidentified factors. The possible contribution of low VP-sensitive adenylate cyclase activity in MAL of NDI mice to the renal resistance to VP remains to be defined. PMID:6249843

  13. Proregenerative Microenvironment Triggered by Donor Mesenchymal Stem Cells Preserves Renal Function and Structure in Mice with Severe Diabetes Mellitus

    PubMed Central

    Ezquer, Fernando; Giraud-Billoud, Maximiliano; Carpio, Daniel; Cabezas, Fabián; Conget, Paulette; Ezquer, Marcelo

    2015-01-01

    The aim of our work was to evaluate, in an animal model of severe diabetes mellitus, the effect of mesenchymal stem cells (MSCs) administration on diabetic nephropathy (DN) progression. After diabetes induction, one group of mice received the vehicle (DM) and other group received a single dose of MSCs (DM + MSCs). DM + MSCs mice showed a significant improvement in functional parameters of the kidney compared with untreated mice. While DM mice presented marked histopathological changes characteristics of advanced stages of DN (fibrosis, glomerulosclerosis, glomerular basement membrane thickening, capillary occlusion, decreased podocyte density, and effacement of foot processes), DM + MSCs mice showed only slight tubular dilatation. The renoprotection was not associated with an improvement in diabetic condition and very low number of donor cells was found in the kidney of DM + MSCs mice, suggesting that renoprotection could be mediated by paracrine effects. Indeed, DM + MSC mice presented increased renal proliferation index, decreased renal apoptotic index and the restoration of proregenerative factors, and anti-inflammatory cytokines levels. Moreover, macrophage infiltration and oxidative stress damage were also reduced in DM + MSCs mice. Our data demonstrate that MSC administration triggers a proregenerative microenvironment in DN kidney, which allows the preservation of the renal function even if diabetes was uncorrected. PMID:26167475

  14. Nasal administration of CTB-insulin induces active tolerance against autoimmune diabetes in non-obese diabetic (NOD) mice

    PubMed Central

    Aspord, C; Thivolet, C

    2002-01-01

    Nasal administration of beta cell-derived auto-antigens has been reported to suppress the development of autoimmune diabetes. We investigated the tolerogenic effects of insulin conjugated to the B subunit of cholera toxin (CTB). Nasal administration of 1 g of CTB-insulin significantly delayed the incidence of diabetes in comparison to CTB treated mice. However, administration of 4 or 8 g of the conjugate had no protective effect. Protection induced by CTB-insulin was transferred to naive recipients by splenic CD4+ T cells. This result favours an active cellular mechanism of regulation, which was lost using higher (48 g) or lower (0105 g) amounts of the conjugate. When co-administered with diabetogenic T cells, splenic T cells from CTB-insulin-treated mice reduced the lymphocytic infiltration of the islets. Reverse transcription-polymerase chain reaction analysis of recipients pancreatic glands revealed an increase of TGF-? and IL-10 transcripts after donor mice tolerization, while levels of IFN-? and IL-4 RNAs were unchanged. We observed a significant increase of T cell proliferation after unspecific stimulation in the spleen and pancreatic lymph nodes 24 h after CTB-insulin administration in comparison to control treatment. Higher amounts of IL-4 and IFN-? were noticed in pancreatic lymph nodes of tolerized mice upon in vitro stimulation. Antigen-specific unresponsiveness after immunization and upon subsequent in vitro exposure to homologous antigen was obtained in nasally treated animals. Our results underlined the importance of nasal mucosa as an inducing site of tolerance and provided evidence for similar mechanisms of action to what has been described for the oral route, which favoured a CTB-insulin specific effect. PMID:12390307

  15. Evaluation of Anticonvulsive Effect of Magnesium Oxide Nanoparticles in Comparison with Conventional MgO in Diabetic and Non-diabetic Male Mice

    PubMed Central

    Jahangiri, Leila; Kesmati, Mahnaz; Najafzadeh, H.

    2014-01-01

    Introduction Some studies showed that magnesium has anticonvulsive effect in some animal models. Despite of the availability of well-studied anticonvulsant drugs, this evaluation was not carried on new kind of magnesium supplement, magnesium oxide nanoparticles (nMgO). According to the association between magnesium and convulsion and high prevalence of seizure and epilepsy in diabetics, this study was designed to evaluate the effect of nMgO compared to conventional MgO (cMgO) on strychnine-induced convulsion model in diabetic and non-diabetic mice. Methods Healthy male albino mice were divided into 10 groups. Diabetes mellitus was induced by streptozotocin in 5 groups. Conventional and nanoparticle MgO (5 and 10mg/kg) were administered to diabetic and non-diabetic mice, then strychnine were injected and onset of convulsions and time of death measured after strychnine administration. Results There were no significant differences between normal and diabetic groups in onset of convulsions and time of death. Pretreatment of cMgO did not have anticonvulsant effect in strychnine-induced convulsion in normal and diabetic mice. But nMgO significantly changed convulsion onset and death time after strychnine administration in normal and diabetic status (p < 0.05). Discussion According to our results, it seems that acute administration of nMgO may be important in prevention of convulsion and is more effective than its conventional form in showing anticonvulsive effect that probably is related to the physicochemical properties of nMgO, especially in diabetic subjects, a point that need further investigations. PMID:25337374

  16. Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice.

    TOXLINE Toxicology Bibliographic Information

    Wang HY; Kan WC; Cheng TJ; Yu SH; Chang LH; Chuu JJ

    2014-07-01

    Momordica charantia Linn. (Cucurbitaceae), also called bitter melon, has traditionally been used as a natural anti-diabetic agent for anti-hyperglycemic activity in several animal models and clinical trials. We investigated the differences in the anti-diabetic properties and mechanism of action of Taiwanese M. charantia (MC) between type 1 diabetic (T1D) and type 2 diabetic (T2D) mice. To clarify the beneficial effects of MC, we measured non-fasting glucose, oral glucose tolerance, and plasma insulin levels in KK/HIJ mice with high-fat diet-induced diabetes (200 mg/kg/day of charantin-rich extract of MC [CEMC]) and in ICR mice with STZ-induced diabetes. After 8 weeks, all the mice were exsanguinated, and the expression of the insulin-signaling-associated proteins in their tissue was evaluated, in coordination with the protective effects of CEMC against pancreatic ?-cell toxicity (in vitro). Eight weeks of data indicated that CEMC caused a significant decline in non-fasting blood glucose, plasma glucose intolerance, and insulin resistance in the KK/HIJ mice, but not in the ICR mice. Furthermore, CEMC decreased plasma insulin and promoted the sensitivity of insulin by increasing the expression of GLUT4 in the skeletal muscle and of IRS-1 in the liver of KK/HIJ mice; however, CEMC extract had no effect on the insulin sensitivity of ICR mice. In vitro study showed that CEMC prevented pancreatic ? cells from high-glucose-induced cytotoxicity after 24 h of incubation, but the protective effect was not detectable after 72 h. Collectively, the hypoglycemic effects of CEMC suggest that it has potential for increasing insulin sensitivity in patients with T2D rather than for protecting patients with T1D against ?-cell dysfunction.

  17. Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice.

    PubMed

    Wang, Hsien-Yi; Kan, Wei-Chih; Cheng, Tain-Junn; Yu, Sung-Hsun; Chang, Liang-Hao; Chuu, Jiunn-Jye

    2014-07-01

    Momordica charantia Linn. (Cucurbitaceae), also called bitter melon, has traditionally been used as a natural anti-diabetic agent for anti-hyperglycemic activity in several animal models and clinical trials. We investigated the differences in the anti-diabetic properties and mechanism of action of Taiwanese M. charantia (MC) between type 1 diabetic (T1D) and type 2 diabetic (T2D) mice. To clarify the beneficial effects of MC, we measured non-fasting glucose, oral glucose tolerance, and plasma insulin levels in KK/HIJ mice with high-fat diet-induced diabetes (200 mg/kg/day of charantin-rich extract of MC [CEMC]) and in ICR mice with STZ-induced diabetes. After 8 weeks, all the mice were exsanguinated, and the expression of the insulin-signaling-associated proteins in their tissue was evaluated, in coordination with the protective effects of CEMC against pancreatic ?-cell toxicity (in vitro). Eight weeks of data indicated that CEMC caused a significant decline in non-fasting blood glucose, plasma glucose intolerance, and insulin resistance in the KK/HIJ mice, but not in the ICR mice. Furthermore, CEMC decreased plasma insulin and promoted the sensitivity of insulin by increasing the expression of GLUT4 in the skeletal muscle and of IRS-1 in the liver of KK/HIJ mice; however, CEMC extract had no effect on the insulin sensitivity of ICR mice. In vitro study showed that CEMC prevented pancreatic ? cells from high-glucose-induced cytotoxicity after 24 h of incubation, but the protective effect was not detectable after 72 h. Collectively, the hypoglycemic effects of CEMC suggest that it has potential for increasing insulin sensitivity in patients with T2D rather than for protecting patients with T1D against ?-cell dysfunction. PMID:24751968

  18. Immunomodulatory and Antidiabetic Effects of a New Herbal Preparation (HemoHIM) on Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Kim, Jong-Jin; Choi, Jina; Lee, Mi-Kyung; Kang, Kyung-Yun; Paik, Man-Jeong; Jo, Sung-Kee; Jung, Uhee; Park, Hae-Ran; Yee, Sung-Tae

    2014-01-01

    HemoHIM (a new herbal preparation of three edible herbs: Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia japonica Miyabe) was developed to protect immune, hematopoietic, and self-renewal tissues against radiation. This study determined whether or not HemoHIM could alter hyperglycemia and the immune response in diabetic mice. Both nondiabetic and diabetic mice were orally administered HemoHIM (100?mg/kg) once a day for 4 weeks. Diabetes was induced by single injection of streptozotocin (STZ, 200?mg/kg, i.p.). In diabetic mice, HemoHIM effectively improved hyperglycemia and glucose tolerance compared to the diabetic control group as well as elevated plasma insulin levels with preservation of insulin staining in pancreatic ?-cells. HemoHIM treatment restored thymus weight, white blood cells, lymphocyte numbers, and splenic lymphocyte populations (CD4+ T and CD8+ T), which were reduced in diabetic mice, as well as IFN-? production in response to Con A stimulation. These results indicate that HemoHIM may have potential as a glucose-lowering and immunomodulatory agent by enhancing the immune function of pancreatic ?-cells in STZ-induced diabetic mice. PMID:25045390

  19. Effect of C-peptide Alone or in Combination with Nicotinamide on Glucose and Insulin Levels in StreptozotocinNicotinamide-Induced Type 2 Diabetic Mice

    PubMed Central

    AHANGARPOUR, Akram; RAMEZANI ALI AKBARI, Fatemeh; FATHI MOGHADAM, Hadi

    2014-01-01

    Background: Both C-peptide and nicotinamide are known to reduce blood glucose in type 1 diabetes. In the present study, the effects of C-peptide alone or in combination with nicotinamide on glucose and insulin levels in streptozotocin-nicotinamide-induced type 2 diabetic mice. Methods: The study used 70 adult male NMARI mice, weighing 2535 g, divided into seven groups: control; type 1 diabetic; type 2 diabetic; type 2 diabetic + C-peptide; type 2 diabetic + nicotinamide; type 2 diabetic + nicotinamide and C-peptide; type 2 diabetic + glyburide. Type 2 diabetes was induced with ip injection of streptozotocinnicotinamide. Twenty eight days after the onset of diabetes, treatment with C-peptide, nicotinamide, nicotinamide + C-peptide, or glyburide were initiated. Glucose and insulin levels were evaluated. One-way ANOVA and Least Significant Difference (LSD) tests were used to test for significance. Results: Blood glucose significantly increased (P < 0.001) in all diabetic mice compared with control mice. Insulin resistance and blood glucose levels were significantly reduced (P < 0.05) in C-peptide and nicotinamide + C-peptide mice compared with type 2 diabetic mice. Conclusion: The present study supports the anti-diabetic effects of C-peptide, nicotinamide + C-peptide, and suggests that one of the anti-diabetic mechanisms of these compounds is mediated through the reduction of insulin resistance. PMID:25977616

  20. Hypoglycemic, hypolipidemic and antioxidant effects of Sarcandra glabra polysaccharide in type 2 diabetic mice.

    PubMed

    Liu, Wei; Zheng, Ying; Zhang, Zhenzhen; Yao, Wenbing; Gao, Xiangdong

    2014-11-01

    Sarcandra glabra (Thunb.) Nakai is a traditional Chinese herbal medicine and dietary supplement used for treating several diseases. The anti-diabetic activity of S. glabra polysaccharides is reported for the first time. The in vitro α-glucosidase inhibition assay indicated that the acidic S. glabra polysaccharide (SGP-2) has an IC50 of 87.06 ± 11.76 μg mL(-1), which was much lower than acarbose at 338.90 ± 46.86 μg mL(-1). Moreover, high fat diet (HFD) with streptozotocin (STZ) induced diabetic mice were administered SGP-2 (150, 300, or 600 mg kg(-1) per day, respectively) for 3 weeks. Postprandial blood glucose levels (PBGL), total cholesterol, triglyceride and free fatty acid levels in diabetic mice treated with SGP-2 were significantly decreased (p < 0.05) compared to those of the model group. The results of the oral glucose tolerance test (OGTT) and the homeostasis model assessment-insulin resistance (HOMA-IR) index indicated that SGP-2 could significantly improve (p < 0.05) the insulin resistance and glucose tolerance in diabetic mice. Furthermore, the activities of antioxidant enzymes, hexokinase and pyruvate kinase were significantly increased (p < 0.05) in SGP-2 treated groups. Thus we proposed that SGP-2 exerted hypoglycemic activity by relieving insulin resistance, reducing postprandial blood glucose levels and ameliorating lipid metabolism, as well as alleviating oxidative stress. These data suggested that SGP-2 with anti-hyperglycemic activity could be used in medicinal preparations for diabetes mellitus and its complications. PMID:25254968

  1. Severe diabetes and leptin resistance cause differential hepatic and renal transporter expression in mice

    PubMed Central

    2012-01-01

    Background Type-2 Diabetes is a major health concern in the United States and other Westernized countries, with prevalence increasing yearly. There is a need to better model and predict adverse drug reactions, drug-induced liver injury, and drug efficacy in this population. Because transporters significantly contribute to drug clearance and disposition, it is highly significant to determine whether a severe diabetes phenotype alters drug transporter expression, and whether diabetic mouse models have altered disposition of acetaminophen (APAP) metabolites. Results Transporter mRNA and protein expression were quantified in livers and kidneys of adult C57BKS and db/db mice, which have a severe diabetes phenotype due to a lack of a functional leptin receptor. The urinary excretion of acetaminophen-glucuronide, a substrate for multidrug resistance-associated proteins transporters was also determined. The mRNA expression of major uptake transporters, such as organic anion transporting polypeptide Slco1a1 in liver and kidney, 1a4 in liver, and Slc22a7 in kidney was decreased in db/db mice. In contrast, Abcc3 and 4 mRNA and protein expression was more than 2 fold higher in db/db male mouse livers as compared to C57BKS controls. Urine levels of APAP-glucuronide, -sulfate, and N-acetyl cysteine metabolites were higher in db/db mice. Conclusion A severe diabetes phenotype/presentation significantly altered drug transporter expression in liver and kidney, which corresponded with urinary APAP metabolite levels. PMID:22524730

  2. Sex differences in the development of diabetes in mice with deleted wolframin (Wfs1) gene.

    PubMed

    Noormets, K; Kõks, S; Muldmaa, M; Mauring, L; Vasar, E; Tillmann, V

    2011-05-01

    Wolfram syndrome, caused by mutations in the wolframin (Wfs1) gene, is characterised by juvenile-onset diabetes mellitus, progressive optic atrophy, diabetes insipidus and deafness. Diabetes tend to start earlier in boys. This study investigated sex differences in longitudinal changes in blood glucose concentration (BGC) in wolframin-deficient mice (Wfs1KO) and compared their plasma proinsulin and insulin levels with those of wild-type (wt) mice. Non-fasting BGC was measured weekly in 42 (21 males) mice from both groups at nine weeks of age. An intraperitoneal glucose tolerance test (IPGTT) was conducted at the 30 (th) week and plasma insulin, c-peptide and proinsulin levels were measured at the 32 (nd) week. At the 32 (nd) week, Wfs1KO males had increased BGC compared to wt males (9.40±0.60 mmol/l vs. 7.91±0.20 mmol/l; p<0.05). The opposite tendency was seen in females. Both male and female Wfs1KO mice had impaired glucose tolerance on IPGTT. Wfs1KO males had significantly lower mean plasma insulin levels than wt males (57.78±1.80 ng/ml vs. 69.42±3.06 ng/ml; p<0.01) and Wfs1KO females (70.30±4.42 ng/ml; p<0.05). Wfs1KO males had a higher proinsulin/insulin ratio than wt males (0.09±0.02 vs. 0.05±0.01; p=0.05) and Wfs1KO females (0.04±0.01; p<0.05). Plasma c-peptide levels in males were lower in Wfs1KO males (mean 55.3±14.0 pg/ml vs. 112.7±21.9 pg/ml; p<0.05). Male Wfs1KO mice had a greater risk of developing diabetes than female Wfs1KO mice. Low plasma insulin concentration with an increased proinsulin/insulin ratio in Wfs1KO males indicates possible disturbances in converting proinsulin to insulin which in long-term may lead to insulin deficiency. Further investigation is needed to clarify the mechanism for the sex differences in the development of diabetes in Wolfram syndrome. PMID:21031341

  3. Differentiation of pancreatic stem and progenitor ?-cells into insulin secreting cells in mice with diabetes mellitus.

    PubMed

    Skurikhin, E G; Ermakova, N N; Khmelevskaya, E S; Pershina, O V; Krupin, V A; Ermolaeva, L A; Dygai, A M

    2014-04-01

    We studied in vitro differentiation of pancreatic stem and progenitor cells into insulin secreting cells in the model of streptozotocin-induced diabetes in C57Bl/6 mice. Streptozotocin was shown to increase the population of pancreatic oligopotent ?-cell precursors (CD45(-), TER119(-), CD133(+), and CD49f(low)) and did not affect multipotent (stem) progenitor cells (CD45(-), TER119(-), CD17(-), CD309(-)). During long-term culturing, diabetic multipotent progenitor cells showed high capacity for self-renewal. A population of dithizone-positive (insulin secreting cells) mononuclear cells was obtained releasing insulin after prolonged culturing in suspension enriched with diabetic CD45(-), TER119(-), CD17(-), and CD309(-) cells. The rate of generation of "new" insulin-producing cells and insulin release in the samples of experimental group considerably exceeded activity of the corresponding processes in the control group. PMID:24824681

  4. Immune responses to an encapsulated allogeneic islet {beta}-cell line in diabetic NOD mice

    SciTech Connect

    Black, Sasha P. . E-mail: Sasha.Black@ca.crl.com; Constantinidis, Ioannis; Cui, Hong; Tucker-Burden, Carol; Weber, Collin J.; Safley, Susan A.

    2006-02-03

    Our goal is to develop effective islet grafts for treating type 1 diabetes. Since human islets are scarce, we evaluated the efficacy of a microencapsulated insulin-secreting conditionally transformed allogeneic {beta}-cell line ({beta}TC-tet) in non-obese diabetic mice treated with tetracycline to inhibit cell growth. Relatively low serum levels of tetracycline controlled proliferation of {beta}TC-tet cells without inhibiting effective control of hyperglycemia in recipients. There was no significant host cellular reaction to the allografts or host cell adherence to microcapsules, and host cytokine levels were similar to those of sham-operated controls. We conclude that encapsulated allogeneic {beta}-cell lines may be clinically relevant, because they effectively restore euglycemia and do not elicit a strong cellular immune response following transplantation. To our knowledge, this is First extensive characterization of the kinetics of host cellular and cytokine responses to an encapsulated islet cell line in an animal model of type 1 diabetes.

  5. HEMATOLOGICAL AND IMMUNOBIOCHEMICAL STUDY OF GREEN TEA AND GINGER EXTRACTS IN EXPERIMENTALLY INDUCED DIABETIC RABBITS.

    PubMed

    Elkirdasy, Ahmed; Shousha, Saad; Alrohaimi, Abdulmohsen H; Arshad, M Faiz

    2015-01-01

    The present study was designed to investigate the effects of the extract of green tea and/or ginger on some hematological and immunobiochemical profiles in alloxan-induced diabetic rabbits. The results revealed that treatment of diabetic animals with extract of green tea and/or ginger elevated the decreased HDL-c and LDL-c but significantly decreased triglycerides, the elevated glucose and GOT concentrations. The result also displayed a non-significant increase in the levels of CRP and fibrinogen. The experiment also revealed that the elevated MDA and GSH level fell down to the normal control group. The result also showed that after green tea and/or ginger extract treatment, the lowered RBC, WBC counts, PCV, percentage of neutrophils were increased and the elevated MCV, MCH, and MCHC of diabetic rabbits were decreased to normal levels. Thus, the overall results may indicate that green tea and/or ginger extracts have a significant hypoglycemic effect in diabetic rabbits. In addition, the extracts may be capable of improving hyperlipidemia, the impaired kidney function and hemogram in alloxan-induced diabetic rabbits. PMID:26642658

  6. A combination hydrogel microparticle-based vaccine prevents type 1 diabetes in non-obese diabetic mice

    PubMed Central

    Yoon, Young Mee; Lewis, Jamal S.; Carstens, Matthew R.; Campbell-Thompson, Martha; Wasserfall, Clive H.; Atkinson, Mark A.; Keselowsky, Benjamin G.

    2015-01-01

    Targeted delivery of self-antigens to the immune system in a mode that stimulates a tolerance-inducing pathway has proven difficult. To address this hurdle, we developed a vaccine based-approach comprised of two synthetic controlled-release biomaterials, poly(lactide-co-glycolide; PLGA) microparticles (MPs) encapsulating denatured insulin (key self-antigen in type 1 diabetes; T1D), and PuraMatrixTM peptide hydrogel containing granulocyte macrophage colony-stimulating factor (GM-CSF) and CpG ODN1826 (CpG), which were included as vaccine adjuvants to recruit and activate immune cells. Although CpG is normally considered pro-inflammatory, it also has anti-inflammatory effects, including enhancing IL-10 production. Three subcutaneous administrations of this hydrogel (GM-CSF/CpG)/insulin-MP vaccine protected 40% of NOD mice from T1D. In contrast, all control mice became diabetic. In vitro studies indicate CpG stimulation increased IL-10 production, as a potential mechanism. Multiple subcutaneous injections of the insulin containing formulation resulted in formation of granulomas, which resolved by 28 weeks. Histological analysis of these granulomas indicated infiltration of a diverse cadre of immune cells, with characteristics reminiscent of a tertiary lymphoid organ, suggesting the creation of a microenvironment to recruit and educate immune cells. These results demonstrate the feasibility of this injectable hydrogel/MP based vaccine system to prevent T1D. PMID:26279095

  7. Effect of resveratrol on behavioral performance of streptozotocin-induced diabetic mice in anxiety tests.

    PubMed

    Damián, Juan P; Acosta, Victoria; Da Cuña, Maira; Ramírez, Isara; Oddone, Natalia; Zambrana, Ana; Bervejillo, Verónica; Benech, Juan C

    2014-01-01

    The aim of this study was to evaluate with anxiety tests the effect of resveratrol (RSV) on streptozotocin (STZ)-induced diabetic mouse behavioral performance at the second and fourth week of treatment. Confirmed diabetic mice (>250 mg/dl of glucose in blood after STZ injection) were treated with RSV (RDM, n=12) or control treated (DM, n=12) for 4 weeks. DM and RDM were tested in the Open Field Test (OFT) and Elevated Plus Maze (EPM). In the second week of RSV treatment, a higher grooming frequency (P<0.05) and a lower defecation and rearing frequency (P<0.05) were detected in the OFT in the RDM group compared with the DM. There was a higher grooming frequency (P<0.05) and higher percentage of entries in open arms (P<0.05) in the RDM group than in the DM group in the EPM. However, in the fourth week of RSV treatment, the only effect observed was a higher grooming frequency in the RDM group than in the DM group (P<0.05) in the EPM. In conclusion, RSV treatment in diabetic mice provoked anxiolytic-like effects in both tests (OFT and EPM), and these effects were observed in a short time window (2 weeks). It is suggested that RSV may help diabetic animals to adapt to new stressing and anxiety situations and thus to improve their welfare. PMID:25077757

  8. Effect of Resveratrol on Behavioral Performance of Streptozotocin-induced Diabetic Mice inAnxiety Tests

    PubMed Central

    Damin, Juan P.; Acosta, Victoria; Da Cua, Maira; Ramrez, Isara; Oddone, Natalia; Zambrana, Ana; Bervejillo, Vernica; Benech, Juan C.

    2014-01-01

    The aim of this study was to evaluate with anxiety tests the effect of resveratrol (RSV) on streptozotocin (STZ)-induced diabetic mouse behavioral performance at the second and fourth week of treatment. Confirmed diabetic mice (>250 mg/dl of glucose in blood after STZ injection) were treated with RSV (RDM, n=12) or control treated (DM, n=12) for 4 weeks. DM and RDM were tested in the Open Field Test (OFT) and Elevated Plus Maze (EPM). In the second week of RSV treatment, a higher grooming frequency (P<0.05) and a lower defecation and rearing frequency (P<0.05) were detected in the OFT in the RDM group compared with the DM. There was a higher grooming frequency (P<0.05) and higher percentage of entries in open arms (P<0.05) in the RDM group than in the DM group in the EPM. However, in the fourth week of RSV treatment, the only effect observed was a higher grooming frequency in the RDM group than in the DM group (P<0.05) in the EPM. In conclusion, RSV treatment in diabetic mice provoked anxiolytic-like effects in both tests (OFT and EPM), and these effects were observed in a short time window (2 weeks). It is suggested that RSV may help diabetic animals to adapt to new stressing and anxiety situations and thus to improve their welfare. PMID:25077757

  9. FSP-1 Impairs the Function of Endothelium Leading to Failure of Arteriovenous Grafts in Diabetic Mice.

    PubMed

    Luo, Jinlong; Liang, Ming; Mitch, William E; Danesh, Farhad R; Yu, Michael; Cheng, Jizhong

    2015-06-01

    To understand how endothelial cell (EC) dysfunction contributes to the failure of arteriovenous graft (AVG), we investigated the role of fibroblast-specific protein 1 (FSP-1) in cultured ECs and a mouse AVG model. In vitro, we uncovered a new FSP-1-dependent pathway that activates rho-associated, coiled-coil-containing protein kinase 1 (ROCK1) in ECs, leading to phosphorylation of myosin light chain 2 resulting in EC dysfunction. In cultured ECs, high glucose stimulated FSP-1 expression and increased permeability of an EC monolayer. The increase in permeability by the high glucose concentration was mediated by FSP-1 expression. Treatment of cultured ECs with FSP-1 caused leakage of the endothelial barrier plus increased expression of adhesion molecules and decreased expression of junction molecules. These responses were initiated by binding of FSP-1 to receptor for advanced glycation end products, which resulted in ROCK1 activation. In vivo, diabetes increased infiltration of inflammatory cells into AVGs and stimulated neointima formation. Increased FSP-1 expression and ROCK1 activation were found in AVGs of diabetic mice. Blocking FSP-1 suppressed diabetes-induced ROCK1 activation in AVGs. In mice with FSP-1 knockout or with ROCK1 knockout, accumulation of inflammatory cells and neointima formation in AVG were attenuated despite diabetes. Thus, mechanisms of inhibiting FSP-1 in ECs could improve AVG function. PMID:25774552

  10. Alleviating Effects of Baechu Kimchi Added Ecklonia cava on Postprandial Hyperglycemia in Diabetic Mice.

    PubMed

    Lee, Hyun-Ah; Song, Yeong-Ok; Jang, Mi-Soon; Han, Ji-Sook

    2013-09-01

    In this study, we investigated the inhibitory effects of Baechu kimchi added Ecklonia cava on the activities of ?-glucosidase and ?-amylase and its alleviating effect on the postprandial hyperglycemia in STZ-induced diabetic mice. Baechu kimchi added Ecklonia cava (BKE, 15%) was fermented at 5C for 28 days. Optimum ripened BKE was used in this study as it showed the strongest inhibitory activities on ?-glucosidase and ?-amylase by fermentation time among the BKEs in our previous study. The BKE was extracted with 80% methanol and the extract solution was concentrated, and then used in this study. The BKE extract showed higher inhibitory activities than Baechu kimchi extract against ?-glucosidase and ?-amylase. The IC50 values of the BKE extract against ?-glucosidase and ?-amylase were 0.58 and 0.35 mg/mL, respectively; BKE exhibited a lower ?-glucosidase inhibitory activity but a higher ?-amylase inhibitory activity than those of acarbose. The BKE extract alleviated postprandial hyperglycemia caused by starch loading in normal and streptozotocin-induced diabetic mice. Furthermore, the BKE extract significantly lowered the incremental area under the curve in both normal and diabetic mice (P<0.05). These results indicated that the BKE extract may delay carbohydrate digestion and thus glucose absorption. PMID:24471127

  11. Hypoglycemic Effect of Padina arborescens Extract in Streptozotocin-induced Diabetic Mice

    PubMed Central

    Park, Mi Hwa; Han, Ji Sook

    2012-01-01

    This study investigated the hypoglycemic effect of the Padina arborescens extract in STZ-induced diabetic mice. Freeze-dried Padina arborescens were extracted with 80% methanol and concentrated for use in this study. The hypoglycemic effect was determined by inhibitory activities against ?-glucosidase and ?-amylase as well as the alleviation of postprandial blood glucose level. Padina arborescens extracts showed higher inhibitory activities than acarbose, a positive control against ?-glucosidase and ?-amylase. The IC50 values of Padina arborescens extracts against ?-glucosidase and ?-amylase were 0.26 and 0.23 mg/mL, respectively, which evidenced as more effective than observed with acarbose. The increase of postprandial blood glucose levels were significantly suppressed in the Padina arborescens extract administered group than the control group in the streptozotocin induced diabetic mice. Furthermore, the area under the curve (AUC) was significantly lowered via Padina arborescens extract administration in diabetic mice (p < 0.05). These results indicated that the Padina arborescens extract might be used as an inhibitor of ?-glucosidase and ?-amylase and delay absorption of dietary carbohydrates. PMID:24471091

  12. Hypoglycemic activity of constituents from Astianthus viminalis in normal and streptozotocin-induced diabetic mice.

    PubMed

    Prez Gutirrez, Rosa Martha; Vargas Solis, Rosario; Garcia Baez, Efren; Gallardo Navarro, Yoha

    2009-10-01

    Astianthus viminalis has been used as a medicinal plant for a long time owing to its many physiological actions such as anti-inflammatory and antidiabetic activities. A new tetracyclic triterpenoid 3beta,19alpha-dihydroxyurs-12,20(21)-diene-28-oic acid (1), known constituents oleanolic acid (2) and ursolic acid (3), and the coumarins 7,8-dimethoxycoumarin (4) and 7-methoxycoumarin (5) were isolated from the chloroform extract of the leaves of A. viminalis. The structure and relative configurations of 1 were determined by spectroscopic methods (1H- and 13C-NMR, IR, and MS) and 2D-NMR experiments. The hypoglycemic ingredients of A. viminalis were characterized as compounds 1-3. The hypoglycemic effect of the isolated natural product 1 was investigated in normoglycemic and streptozotocin (STZ)-induced diabetic mice. All effects were compared with those of tolbutamide. Triterpenoid 1 showed potent hypoglycemic and hypolipidemic effects in the STZ-induced diabetic mice. Continuous administration of 1 (30 mg/kg, orally) led to significant decrease in the level of glucose, triglycerides, total cholesterol, LDL, and VLDL in the diabetic mice, whereas the level of HDL did not alter significantly in any of the groups studied. PMID:19484331

  13. Evaluation of Chios mastic gum on lipid and glucose metabolism in diabetic mice.

    PubMed

    Georgiadis, Ioannis; Karatzas, Theodore; Korou, Laskarina-Maria; Agrogiannis, George; Vlachos, Ioannis S; Pantopoulou, Alkisti; Tzanetakou, Irene P; Katsilambros, Nikolaos; Perrea, Despina N

    2014-03-01

    Chios mastic gum (MG), a resin produced from Pistacia lentiscus var. Chia, is reported to possess beneficial cardiovascular and hepatoprotective properties. This study investigated the effect of crude Chios MG on metabolic parameters in diabetic mice. Streptozotocin-induced diabetic 12-week-old male C57bl/6 mice were assigned to three groups: NC (n=9) control; LdM (n=9) animals receiving low dose mastic for 8 weeks (20?mg/kg body weight [BW]); and HdM (n=9) animals receiving high dose mastic (500?mg/kg BW) for the same period. Serum lipid and glucose levels were determined at baseline, at 4 and 8 weeks. Serum total protein, adiponectin, and resistin levels were also measured at the end of the experiment. Histopathological examination for liver, kidney, aorta, and heart lesions was performed. After 4 weeks, MG administration resulted in decreased serum glucose and triglyceride levels in both LdM and HdM, whereas BW levels were reduced in LdM group compared with controls. At the end of the experiment, LdM presented significantly lower serum glucose, cholesterol, low-density lipoprotein cholesterol, and triglyceride levels and improved high-density lipoprotein cholesterol levels compared with control group. HdM group had ameliorated serum triglyceride levels. Hepatic steatosis observed in control group was partially reversed in LdM and HdM groups. MG administered in low dosages improves glucose and lipid disturbances in diabetic mice while alleviating hepatic damage. PMID:24404977

  14. BIM Deficiency Protects NOD Mice From Diabetes by Diverting Thymocytes to Regulatory T Cells.

    PubMed

    Krishnamurthy, Balasubramanian; Chee, Jonathan; Jhala, Gaurang; Trivedi, Prerak; Catterall, Tara; Selck, Claudia; Gurzov, Esteban N; Brodnicki, Thomas C; Graham, Kate L; Wali, Jibran A; Zhan, Yifan; Gray, Daniel; Strasser, Andreas; Allison, Janette; Thomas, Helen E; Kay, Thomas W H

    2015-09-01

    Because regulatory T-cell (Treg) development can be induced by the same agonist self-antigens that induce negative selection, perturbation of apoptosis will affect both negative selection and Treg development. But how the processes of thymocyte deletion versus Treg differentiation bifurcate and their relative importance for tolerance have not been studied in spontaneous organ-specific autoimmune disease. We addressed these questions by removing a critical mediator of thymocyte deletion, BIM, in the NOD mouse model of autoimmune diabetes. Despite substantial defects in the deletion of autoreactive thymocytes, BIM-deficient NOD (NODBim(-/-)) mice developed less insulitis and were protected from diabetes. BIM deficiency did not impair effector T-cell function; however, NODBim(-/-) mice had increased numbers of Tregs, including those specific for proinsulin, in the thymus and peripheral lymphoid tissues. Increased levels of Nur77, CD5, GITR, and phosphorylated I?B-? in thymocytes from NODBim(-/-) mice suggest that autoreactive cells receiving strong T-cell receptor signals that would normally delete them escape apoptosis and are diverted into the Treg pathway. Paradoxically, in the NOD model, reduced thymic deletion ameliorates autoimmune diabetes by increasing Tregs. Thus, modulating apoptosis may be one of the ways to increase antigen-specific Tregs and prevent autoimmune disease. PMID:25948683

  15. IRAK-M Deficiency Promotes the Development of Type 1 Diabetes in NOD Mice

    PubMed Central

    Tan, Qiyuan; Majewska-Szczepanik, Monika; Zhang, Xiaojun; Szczepanik, Marian; Zhou, Zhiguang; Wong, F. Susan

    2014-01-01

    Type 1 diabetes mellitus (T1DM) is an organ-specific autoimmune disease characterized by progressive destruction of insulin-secreting pancreatic β-cells. Both T-cell–mediated adaptive responses as well as innate immune processes are involved in pathogenesis. Interleukin-1 receptor–associated kinase M (IRAK-M) can effectively inhibit the MyD88 downstream signals in Toll-like receptor pathways, while lack of IRAK-M is known to be associated with autoimmunity. Our study showed that IRAK-M–deficient (IRAK-M−/−) nonobese diabetic (NOD) mice displayed early onset and rapid progression of T1DM with impaired glucose tolerance, more severe insulitis, and increased serum anti-insulin autoantibodies. Mechanistic studies showed that the enhanced activation and antigen-presenting function of IRAK-M−/− antigen-presenting cells from IRAK-M−/− mice were responsible for the rapid progression of disease. Moreover, IRAK-M−/− dendritic cells induced enhanced activation of diabetogenic T cells in vitro and the rapid onset of T1DM in vivo in immunodeficient NOD mice when cotransferred with diabetogenic T cells. This study illustrates how the modulation of innate immune pathways through IRAK-M influences the development of autoimmune diabetes. PMID:24696448

  16. Involvement of macrophages in the development of encephalomyocarditis (EMC) virus-induced diabetes in mice.

    PubMed

    Hirasawa, K; Takeda, M; Itagaki, S; Doi, K

    1996-01-01

    The role of macrophages in the development of diabetes following infection with encephalomyocarditis (EMC) virus was examined in 3 strains of mice (DBA/2 and BALB/c: susceptible, C57BL/6: resistant). After infection with 100 plaque forming units (PFU)/head of EMC-D (highly diabetogenic variant), the incidence of diabetes at 3 days post infection (DPI) (DBA/2: 7/8, BALB/c: 3/8, C57BL/6: 0/8) was well correlated with the severity of macrophage infiltration with beta cell damage in the pancreatic islets (DBA/2: sever, BALB/c: moderate, C57BL/6: slight). Silica-pretreatment depleted macrophage infiltration in the pancreatic islets and decreased the incidence of diabetes at 7 DPI from 100% to 40% in DBA/2 and from 80% to 0% in BALB/c mice, respectively. These results suggest that macrophages play a critical role in the process of pancreatic beta cell damage in EMC virus infection in mice. PMID:8689584

  17. Effects of Bauhinia forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice

    PubMed Central

    Salgueiro, Andréia Caroline Fernandes; da Silva, Marianne Pires; Mendez, Andreas Sebastian Loureiro; Zemolin, Ana Paula Pegoraro; Posser, Thaís; Puntel, Robson Luiz; Puntel, Gustavo Orione

    2016-01-01

    This study was designed to evaluate the effects of Bauhinia forficata Link subsp. pruinosa (BF) tea on oxidative stress and liver damage in streptozotocin (STZ)-induced diabetic mice. Diabetic male mice have remained 30 days without any treatment. BF treatment started on day 31 and continued for 21 days as a drinking-water substitute. We evaluated (1) BF chemical composition; (2) glucose levels; (3) liver/body weight ratio and liver transaminases; (4) reactive oxygen species (ROS), lipid peroxidation, and protein carbonylation in liver; (5) superoxide dismutase (SOD) and catalase (CAT) activities in liver; (6) δ-aminolevulinate dehydratase (δ-ALA-D) and nonprotein thiols (NPSH) in liver; (7) Nrf2, NQO-1, and HSP70 levels in liver and pancreas. Phytochemical analyses identified four phenols compounds. Diabetic mice present high levels of NQO-1 in pancreas, increased levels of ROS and lipid peroxidation in liver, and decrease in CAT activity. BF treatment normalized all these parameters. BF did not normalize hyperglycemia, liver/body weight ratio, aspartate aminotransferase, protein carbonyl, NPSH levels, and δ-ALA-D activity. The raised oxidative stress seems to be a potential mechanism involved in liver damage in hyperglycemic conditions. Our results indicated that BF protective effect could be attributed to its antioxidant capacity, more than a hypoglycemic potential. PMID:26839634

  18. Modulation of macrophage inflammatory profile in pregnant nonobese diabetic (NOD) mice.

    PubMed

    Larocca, Luciana; Hauk, Vanesa; Calafat, Mario; Roca, Valeria; Fraccaroli, Laura; Franchi, Ana; Ramhorst, Rosanna; Leirs, Claudia Prez

    2011-02-20

    During normal early pregnancy circulating monocytes are recruited to the maternal-placental interface where they differentiate to macrophages expressing different functional phenotypes for the maintenance of tissue homeostasis. Pregnancy in the nonobese diabetic (NOD) mouse model presents some pathological features in the pre-diabetic stage. The aim of this work was to analyze the functional profile of peritoneal macrophages faced with inflammatory and phagocytic stimuli in early pregnant pre-diabetic NOD mice and their modulation by vasoactive intestinal peptide (VIP). Pregnant NOD mouse macrophages showed no basal NF?B activation, lower IL-12 and nitrites production compared with the macrophages from non-pregnant NOD mice. Their pro-inflammatory aberrant response to LPS and apoptotic cell challenge was reduced and VIP inhibited macrophage residual deleterious responses to apoptotic cells. A functional phenotype switch in macrophages during pregnancy in NOD mice and a promoting effect of VIP towards this regulatory phenotype would be in line with the central role of macrophages in the maternal-placental dialogue. PMID:21145370

  19. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-Ay mice

    PubMed Central

    2012-01-01

    Background Fucoxanthin is a xanthophyll present in brown seaweeds and has several beneficial effects, including anti-obesity and anti-diabetic effects. However, we and another group previously observed that fucoxanthin increases serum cholesterol levels in rodents. Cholesterol is an important component of cell membranes and biosynthesis of bile acids. Serum cholesterol levels are also closely associated with atherosclerosis. Therefore, we sought to identify the mechanism underlying the increase in serum cholesterol levels by fucoxanthin. Methods Diabetic/obese KK-Ay mice were fed a diet containing 0.2% fucoxanthin for 4?weeks. The mice were sacrificed, and total blood samples were collected for the measurement of serum total cholesterol, HDL-cholesterol and non-HDL-cholesterol levels. Cholesterol content in tissues was also analyzed. Real-time PCR and Western blotting were performed to determine hepatic mRNA and protein expression of genes involved in cholesterol metabolism, respectively. Results Dietary fucoxanthin significantly increased serum HDL and non-HDL cholesterol levels, and reduced hepatic cholesterol content. In liver, the expression of SREBP1, SREBP2 and their target genes involved in cholesterol biosynthesis significantly increased and tended to increase in the fucoxanthin-fed mice, respectively. In contrast, hepatic levels of LDLR and SR-B1 proteins which is important factors for LDL-cholesterol and HDL-cholesterol uptake in the liver from serum, decreased to 60% and 80% in the fucoxanthin-fed mice, respectively, compared with the control mice. Further, we found that dietary fucoxanthin significantly increased the mRNA expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), which enhances intracellular degradation of LDLR in lysosomes. Conclusions Fucoxanthin increased HDL-cholesterol and non-HDL-cholesterol levels in KK-Ay mice by inducing SREBP expression and reduced cholesterol uptake in the liver via down-regulation of LDLR and SR-B1, resulted in increased serum cholesterol in the mice. PMID:22962999

  20. Hepatocyte TRAF3 promotes insulin resistance and type 2 diabetes in mice with obesity

    PubMed Central

    Chen, Zheng; Canet, Mark J.; Sheng, Liang; Jiang, Lin; Xiong, Yi; Yin, Lei; Rui, Liangyou

    2015-01-01

    Objective Metabolic inflammation is believed to promote insulin resistance and type 2 diabetes progression in obesity. TRAF3, a cytoplasmic signaling protein, has been known to mediate/modulate cytokine signaling in immune cells. The goal is to define the metabolic function of hepatic TRAF3 in the setting of obesity. Methods Hepatocyte-specific TRAF3 knockout mice were generated using the loxp/albumin-cre system. Liver TRAF3 was deleted in adult obese mice via Cre adenoviral infection. Both high fat diet-induced and genetic obesity were examined. TRAF3 levels and insulin signaling were measured by immunoblotting. Insulin sensitivity, hepatic glucose production, and glucose metabolism were examined by glucose, insulin, and pyruvate tolerance tests. Hepatic steatosis was examined by Oil red O staining of liver sections and measuring liver triacylglycerol levels. Results Liver TRAF3 levels were lower in the fasted states in normal mice, and were aberrantly higher in obese mice and in mice with streptozotocin-induced hyperglycemia. Glucose directly increased TRAF3 levels in primary hepatocytes. Hepatocyte-specific deletion of TRAF3 decreased hyperinsulinemia, insulin resistance, glucose intolerance, and hepatic steatosis in mice with either high fat diet-induced obesity or genetic obesity (ob/ob); conversely, in lean mice, adenovirus-mediated overexpression of TRAF3 in the liver induced hyperinsulinemia, insulin resistance, and glucose intolerance. Deletion of TRAF3 enhanced the ability of insulin to stimulate phosphorylation of Akt in hepatocytes, whereas overexpression of TRAF3 suppressed insulin signaling. Conclusions Glucose increases the levels of hepatic TRAF3. TRAF3 in turn promotes hyperglycemia through increasing hepatic glucose production, thus forming a glucose-TRAF3 reinforcement loop in the liver. This positive feedback loop may drive the progression of type 2 diabetes and nonalcoholic fatty liver disease in obesity. PMID:26909311

  1. Role of Metformin in Suppressing 1,2-Dimethylhydrazine-Induced Colon Cancer in Diabetic and Non-Diabetic Mice: Effect on Tumor Angiogenesis and Cell Proliferation

    PubMed Central

    Zaafar, Dalia K.; Zaitone, Sawsan A.; Moustafa, Yasser M.

    2014-01-01

    Several studies indicated that type 2 diabetes mellitus and insulin resistance are associated with increased colon cancer risk. Recently, studies suggest that metformin can reduce cancer risk in diabetic or non-diabetic patients with unclear mechanisms. This work aimed to determine the effect of metformin on chemically-induced colon cancer in mice. Colon cancer was induced using 1,2-dimethylhydrazine (DMH, 20 mg/kg/week, s.c.) for fifteen weeks. Experiment I: healthy mice were fed with basal diet for four weeks and then allocated into seven groups, (i) saline, (ii) DMH, (iii) oxaliplatin, (ivv): metformin (100 or 200 mg/kg) and (vivii): oxaliplatin+metformin (100 or 200 mg/kg), respectively. Experiment II: type 2 diabetes mellitus was induced by injection of STZ (30 mg/kg) after four weeks of high-fat feeding and then mice were allocated into seven groups similar to those reported in experiment I. Examination of the colonic tissue at the end of the experiment highlighted an increase in angiogenic markers and cell proliferation and showed a greater immunostaining for insulin growth factor I receptors and CD34 in the colon of diabetic mice compared to non-diabetics. In general, metformin downregulated tumor angiogenesis and augmented the antitumor effect of oxaliplatin. Overall, the current results showed that metformin protected against DMH-induced colon cancer in non-diabetic and diabetic mice. This therapeutic effect was, at least in part, attributed to its anti-angiogenic and anti-proliferative mechanisms. PMID:24971882

  2. Treated of type 1 diabetes mellitus in non-obese diabetic mice by transplantation of allogeneic bone marrow and pancreatic tissue

    SciTech Connect

    Yasumizu, R.; Sugiura, K.; Iwai, H.; Inaba, M.; Makino, S.; Ida, T.; Imura, H.; Hamashima, Y.; Good, R.A.; Ikehara, S.

    1987-09-01

    Non-obese diabetic (NOD) mice provide a model for type 1 diabetes mellitus. We previously showed that allogeneic bone marrow transplantation (ABMT) can prevent and treat insulitis and overt diabetes in NOD mice. However, ABMT alone could not be used to treat overt diabetes in NOD mice whose islets had been completely destroyed. To provide insulin-producing cells, pancreatic tissue from newborn mice was grafted under the renal capsules in combination with ABMT. The aims of concomitant ABMT are as follows. (i) It induces immunological tolerance to the donor-type major histocompatibility complex determinants and permits the host to accept subsequent pancreatic allografts from the bone marrow donor. (ii) ABMT replaces abnormal stem cells with normal stem cells. After transplantation of bone marrow plus newborn pancreas, NOD mice showed reduction of the glycosuria and a normal response in the glucose-tolerance test. Immunohistological study revealed the presence of clustered insulin-containing beta cells in the grafted pancreatic transplants. ABMT may become a viable treatment of established type 1 diabetes mellitus in humans.

  3. Anti-diabetic effect of Coptis Chinensis polysaccharide in high-fat diet with STZ-induced diabetic mice.

    PubMed

    Jiang, Shuang; Du, Peige; An, Liping; Yuan, Guangxin; Sun, Zhiwei

    2013-04-01

    For the past few years, numerous polysaccharides and polysaccharide-protein complexes have been isolated from plant or animal and used as a promising source of therapeutic agents for diabetes mellitus (DM). In this study, a water-soluble polysaccharide, named as CCPW-1, was extracted and fractioned from the roots of Coptis Chinensis by DEAE Sepharose Fast Flow anion-exchange and Sephadex G-100 column chromatography. The determination of the monosaccharide composition in CCPW-1 with gas chromatography (GC) showed that CCPW-1 was composed of glucose (54.8%), arabinose (22.3%), xylose (11.5%), galactose (7.6%) and galacturonic acid (3.8%). Diabetic mice induced by high-fat diet (HFD) with streptozotocin (STZ) were administered CCPW-1 (100, 50, 25 mg/kg b.w.). Effects of CCPW-1 on bodyweight, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), fasting serum insulin (FINS), total glycerin (TG), total cholesterol (TC), super oxygen dehydrogenises (SOD), catalase (CAT) and methane dicarboxylic aldehyde (MDA) were investigated. CCPW-1 could improve the bodyweight, reduce the content of FBG and enhance FINS level. Meanwhile, CCPW-1 significantly suppressed the rise in blood glucose after 30 min in OGTT. TG and TC levels of diabetic mice also decreased after CCPW-1 treatment. Furthermore, CCPW-1 showed an obvious antioxidant effect through increasing SOD, CAT activities and decreasing MDA content in pancreas. These results indicate that CCPW-1 could be developed to a potent drug used for the treatment of DM in the future. PMID:23295205

  4. Preventive and therapeutic potential of p38 alpha-selective mitogen-activated protein kinase inhibitor in nonobese diabetic mice with type 1 diabetes.

    PubMed

    Medicherla, Satyanarayana; Protter, Andrew A; Ma, Jing Ying; Mangadu, Ruban; Almirez, Ramona; Koppelman, Bruce; Kerr, Irene; Navas, Tony A; Movius, Fabiola; Reddy, Mamatha; Liu, Yu-Wang; Luedtke, Gregory; Perumattam, John; Mavunkel, Babu; Dugar, Sundeep; Schreiner, George F

    2006-07-01

    Mitogen-activated protein kinases (MAPKs) and heat shock proteins (HSPs) are ubiquitous proteins that function within T cells in both normal and stress-related pathophysiological states, including type 1 diabetes. The nonobese diabetic (NOD) mouse spontaneously develops T cell-mediated autoimmune pancreatic beta cell destruction that is similar to type 1 diabetes in humans. Because p38 MAPKs have been shown to modulate T cell function, we studied the effects of a p38alpha MAPK-selective inhibitor, indole-5-carboxamide (SD-169), on the development and progression of type 1 diabetes in the NOD mouse. In preventive treatment studies, SD-169 significantly reduced p38 and HSP60 expression in T cells of the pancreatic beta islets. Following treatment, the incidence of diabetes as determined by blood glucose levels was significantly lower, and immuno-histochemistry of pancreatic beta islet tissue demonstrated significant reduction in CD5+ T cell infiltration in the SD-169 treatment group as compared with untreated NOD mice. In therapeutic studies using mildly and moderately hyperglycemic NOD mice, SD-169 treatment lowered blood glucose and improved glucose homeostasis. Furthermore, following cessation of SD-169 treatment, NOD mice showed significant arrest of diabetes. In conclusion, we report that this p38alpha-selective inhibitor prevents the development and progression of diabetes in NOD mice by inhibiting T cell infiltration and activation, thereby preserving beta cell mass via inhibition of the p38 MAPK signaling pathway. These results have bearing on current prophylactic and therapeutic protocols using p38alpha-selective inhibitors in the prediabetic period for children at high risk of type 1 diabetes, in the honeymoon period, and for adults with latent autoimmune diabetes. PMID:16603672

  5. Oxidative stress contributes to the impaired sonic hedgehog pathway in type 1 diabetic mice with myocardial infarction

    PubMed Central

    XIAO, QING; YANG, YA; ZHAO, XIAO-YA; HE, LI-SHAN; QIN, YUAN; HE, YAN-HUA; ZHANG, GUI-PING; LUO, JIAN-DONG

    2015-01-01

    Our previous study demonstrated that an impaired sonic hedgehog (Shh) pathway contributed to cardiac dysfunction in type 1 diabetic mice with myocardial infarction (MI). The present study aimed to test the hypothesis that oxidative stress may contribute to the impaired Shh pathway and cardiac dysfunction in type 1 diabetic mice with MI. Streptozotocin-induced type 1 diabetic mice (C57/Bl6, male) and rat neonatal cardiomyocytes were used in the present study. Mice were randomly assigned to undergo ligation of the coronary artery or pseudosurgery. A potent antioxidant Tempol was administered in vivo and in vitro. Cardiac function was assessed by echocardiography, capillary density by immunohistochemisty, percentage of myocardial infarct using Massons trichrome staining, reactive oxygen species detection using dihydroethidium dye or 2,7-dichlorofluorescein diacetate probe and protein expression levels of the Shh pathway by western blot analysis. The antioxidant Tempol was shown to significantly increase myocardial protein expression levels of Shh and patched-1 (Ptc1) at 718 weeks and improved cardiac function at 18 weeks in type 1 diabetic mice, as compared with mice receiving no drug treatment. Furthermore, myocardial protein expression levels of Shh and Ptc1 were significantly upregulated on day 7 after MI, and capillary density was enhanced. In addition, the percentage area of myocardial infarct was reduced, and the cardiac dysfunction and survival rate were improved on day 21 in diabetic mice treated with Tempol. In vitro, treatment of rat neonatal cardiomyocytes with a mixture of xanthine oxidase and xanthine decreased protein expression levels of Shh and Ptc1 in a concentration-dependent manner, and Tempol attenuated this effect. These results indicate that oxidative stress may contribute to an impaired Shh pathway in type 1 diabetic mice, leading to diminished myocardial healing and cardiac dysfunction. Antioxidative strategies aimed at restoring the endogenous Shh pathway may offer a useful means for improving diabetic cardiac function. PMID:26640546

  6. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice.

    PubMed

    Geiger, Adolf; Walker, Audrey; Nissen, Erwin

    2015-11-13

    Diabetic ulcers represent a substantial societal and healthcare burden worldwide and scarcely respond to current treatment strategies. This study was addressed to evaluate the therapeutic potential of exosomes secreted by human circulating fibrocytes, a population of mesenchymal progenitors involved in normal wound healing via paracrine signaling. The exosomes released from cells sequentially stimulated with platelet-derived growth factor-BB and transforming growth factor-β1, in the presence of fibroblast growth factor 2, did not show potential immunogenicity. These exosomes exhibited in-vitro proangiogenic properties, activated diabetic dermal fibroblasts, induced the migration and proliferation of diabetic keratinocytes, and accelerated wound closure in diabetic mice in vivo. Important components of the exosomal cargo were heat shock protein-90α, total and activated signal transducer and activator of transcription 3, proangiogenic (miR-126, miR-130a, miR-132) and anti-inflammatory (miR124a, miR-125b) microRNAs, and a microRNA regulating collagen deposition (miR-21). This proof-of-concept study demonstrates the feasibility of the use of fibrocytes-derived exosomes for the treatment of diabetic ulcers. PMID:26454169

  7. Insulin Treatment Directly Restores Neutrophil Phagocytosis and Bactericidal Activity in Diabetic Mice and Thereby Improves Surgical Site Staphylococcus aureus Infection

    PubMed Central

    Yano, Hidekazu; Fujino, Keiichi; Nakashima, Masahiro; Yamamoto, Yoritsuna; Miyazaki, Hiromi; Hamada, Koji; Ono, Satoshi; Iwaya, Keiichi; Saitoh, Daizoh; Seki, Shuhji; Tanaka, Yuji

    2012-01-01

    Bacterial infections, including surgical site infections (SSI), are a common and serious complication of diabetes. Staphylococcus aureus, which is eliminated mainly by neutrophils, is a major cause of SSI in diabetic patients. However, the precise mechanisms by which diabetes predisposes to staphylococcal infection are not fully elucidated. The effect of insulin on this infection is also not well understood. We therefore investigated the effect of insulin treatment on SSI and neutrophil function in diabetic mice. S. aureus was inoculated into the abdominal muscle in diabetic db/db and high-fat-diet (HFD)-fed mice with or without insulin treatment. Although the diabetic db/db mice developed SSI, insulin treatment ameliorated the infection. db/db mice had neutrophil dysfunction, such as decreased phagocytosis, superoxide production, and killing activity of S. aureus; however, insulin treatment restored these functions. Ex vivo treatment (coincubation) of neutrophils with insulin and euglycemic control by phlorizin suggest that insulin may directly activate neutrophil phagocytic and bactericidal activity independently of its euglycemic effect. However, insulin may indirectly restore superoxide production by neutrophils through its euglycemic effect. HFD-fed mice with mild hyperglycemia also developed more severe SSI by S. aureus than control mice and had impaired neutrophil phagocytic and bactericidal activity, which was improved by insulin treatment. Unlike db/db mice, in HFD mice, superoxide production was increased in neutrophils and subsequently suppressed by insulin treatment. Glycemic control by insulin also normalized the neutrophil superoxide-producing capability in HFD mice. Thus, insulin may restore neutrophil phagocytosis and bactericidal activity, thereby ameliorating SSI. PMID:23027538

  8. Knockout of the TauT Gene Predisposes C57BL/6 Mice to Streptozotocin-Induced Diabetic Nephropathy

    PubMed Central

    Han, Xiaobin; Patters, Andrea B.; Ito, Takashi; Schaffer, Stephen W.; Chesney, Russell W.

    2015-01-01

    Diabetic nephropathy is the leading cause of end stage renal disease in the world. Although tremendous efforts have been made, scientists have yet to identify an ideal animal model that can reproduce the characteristics of human diabetic nephropathy. In this study, we hypothesize that taurine insufficiency is a critical risk factor for development of diabetic nephropathy associated with diabetes mellitus. This hypothesis was tested in vivo in TauT heterozygous (TauT+/-) and homozygous (TauT-/-) knockout in C57BL/6 background mice. We have shown that alteration of the TauT gene (also known as SLC6A6) has a substantial effect on the susceptibility to development of extensive diabetic kidney disease in both TauT+/- and TauT-/-mouse models of diabetes. These animals developed histological changes characteristic of human diabetic nephropathy that included glomerulosclerosis, nodular lesions, arteriosclerosis, arteriolar dilation, and tubulointerstitial fibrosis. Immunohistochemical staining of molecular markers of smooth muscle actin, CD34, Ki67 and collagen IV further confirmed these observations. Our results demonstrated that both homozygous and heterozygous TauT gene deletion predispose C57BL/6 mice to develop end-stage diabetic kidney disease, which closely replicates the pathological features of diabetic nephropathy in human diabetic patients. PMID:25629817

  9. Dissociation of diabetes and obesity in mice lacking orphan nuclear receptor small heterodimer partner

    PubMed Central

    Park, Young Joo; Kim, Seong Chul; Kim, Jeehee; Anakk, Sayeepriyadarshini; Lee, Jae Man; Tseng, Hsiu-Ting; Yechoor, Vijay; Park, Junchol; Choi, June-Seek; Jang, Hak Chul; Lee, Ki-Up; Novak, Colleen M.; Moore, David D.; Lee, Yoon Kwang

    2011-01-01

    Mixed background SHP?/? mice are resistant to diet-induced obesity due to increased energy expenditure caused by enhanced PGC-1? expression in brown adipocytes. However, congenic SHP?/? mice on the C57BL/6 background showed normal expression of PGC-1? and other genes involved in brown adipose tissue thermogenesis. Thus, we reinvestigated the impact of small heterodimer partner (SHP) deletion on diet-induced obesity and insulin resistance using congenic SHP?/? mice. Compared with their C57BL/6 wild-type counterparts, SHP?/? mice subjected to a 6 month challenge with a Western diet (WestD) were leaner but more glucose intolerant, showed hepatic insulin resistance despite decreased triglyceride accumulation and increased ?-oxidation, exhibited alterations in peripheral tissue uptake of dietary lipids, maintained a higher respiratory quotient, which did not decrease even after WestD feeding, and displayed islet dysfunction. Hepatic mRNA expression analysis revealed that many genes expressed higher in SHP?/? mice fed WestD were direct peroxisome proliferator-activated receptor alpha (PPAR?) targets. Indeed, transient transfection and chromatin immunoprecipitation verified that SHP strongly repressed PPAR?-mediated transactivation. SHP is a pivotal metabolic sensor controlling lipid homeostasis in response to an energy-laden diet through regulating PPAR?-mediated transactivation. The resultant hepatic fatty acid oxidation enhancement and dietary fat redistribution protect the mice from diet-induced obesity and hepatic steatosis but accelerate development of type 2 diabetes. PMID:21949050

  10. Immunotherapeutic effects of pentoxifylline in type 1 diabetic mice and its role in the response of T-helper lymphocytes

    PubMed Central

    Malekifard, Farin; Delirezh, Nowruz; Hobbenaghi, Rahim; Malekinejad, Hassan

    2015-01-01

    Objective(s): Pentoxifylline is an immunomodulatory and anti-inflammatory agent and is used in vascular disorders. It has been shown that pentoxifylline inhibits proinflammatory cytokines production. The purpose of this study was to investigate the therapeutic effects of pentoxifylline on the treatment of autoimmune diabetes in mice. Materials and Methods: Diabetes was induced by multiple low dose of streptozotocin (MLDS) injection (40 mg/kg/day for 5 consecutive days) in male C57BL/6 mice. After induction of diabetes, mice were treated with pentoxifylline (100 mg/kg/day IP) for 21 days. Blood glucose levels and plasma levels of insulin were measured. Splenocytes were tested for proliferation by MTT test and cytokine production by ELISA. Results: Pentoxifylline treatment prevented hyperglycemia and increased plasma insulin levels in the diabetic mice. Aside from reducing lymphocyte proliferation, pentoxifylline significantly inhibited the production of proinflammatory interleukin 17 (IL-17) as well as interferon gamma (IFN-γ), while increased anti-inflammatory cytokine IL-10 as compared with those in MLDS group (diabetic control group). Conclusion: These findings indicate that pentoxifylline may have therapeutic effect against the autoimmune destruction of the pancreatic beta-cells during the development of MLDS-induced type 1 diabetes in mice. PMID:25945237

  11. Deregulation of Protein Phosphatase 2A and Hyperphosphorylation of ? Protein Following Onset of Diabetes in NOD Mice

    PubMed Central

    Papon, Marie-Amlie; El Khoury, Noura B.; Marcouiller, Franois; Julien, Carl; Morin, Franoise; Bretteville, Alexis; Petry, Franck R.; Gaudreau, Simon; Amrani, Abdelaziz; Mathews, Paul M.; Hbert, Sbastien S.; Planel, Emmanuel

    2013-01-01

    The histopathological hallmarks of Alzheimer disease (AD) include intraneuronal neurofibrillary tangles composed of abnormally hyperphosphorylated ? protein. Insulin dysfunction might influence AD pathology, as population-based and cohort studies have detected higher AD incidence rates in diabetic patients. But how diabetes affects ? pathology is not fully understood. In this study, we investigated the impact of insulin dysfunction on ? phosphorylation in a genetic model of spontaneous type 1 diabetes: the nonobese diabetic (NOD) mouse. Brains of young and adult female NOD mice were examined, but young NOD mice did not display ? hyperphosphorylation. ? phosphorylation at ?-1 and pS422 epitopes was slightly increased in nondiabetic adult NOD mice. At the onset of diabetes, ? was hyperphosphorylated at the ?-1, AT8, CP13, pS262, and pS422. A subpopulation of diabetic NOD mice became hypothermic, and ? hyperphosphorylation further extended to paired helical filament-1 and TG3 epitopes. Furthermore, elevated ? phosphorylation correlated with an inhibition of protein phosphatase 2A (PP2A) activity. Our data indicate that insulin dysfunction in NOD mice leads to AD-like ? hyperphosphorylation in the brain, with molecular mechanisms likely involving a deregulation of PP2A. This model may be a useful tool to address further mechanistic association between insulin dysfunction and AD pathology. PMID:22961084

  12. Experimental Induction of Type 2 Diabetes in Aging-Accelerated Mice Triggered Alzheimer-Like Pathology and Memory Deficits

    PubMed Central

    Mehla, Jogender; Chauhan, Balwantsinh C.; Chauhan, Neelima B.

    2014-01-01

    Alzheimer’s disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD. PMID:24121970

  13. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits.

    PubMed

    Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B

    2014-01-01

    Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-?, dysregulated tau-phosphorylating glycogen synthase kinase 3?, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD. PMID:24121970

  14. Hyperglycemia and xerostomia are key determinants of tooth decay in type 1 diabetic mice

    PubMed Central

    Yeh, Chih-Ko; Harris, Stephen E; Mohan, Sumathy; Horn, Diane; Fajardo, Roberto; Chun, Yong-Hee Patricia; Jorgensen, James; MacDougall, Mary; Abboud-Werner, Sherry

    2012-01-01

    Insulin-dependent type 1 diabetes mellitus (DM) and oral diseases are closely interrelated. Poor metabolic control in diabetics is associated with a high risk of gingivitis, periodontitis and tooth loss. Salivary flow declines in diabetics and patients suffer from xerostomia. Reduced saliva predisposes to enamel hypomineralization and caries formation; however, the mechanisms that initiate and lead to progression of tooth decay and periodontitis in type 1 DM have not been explored. To address this issue, we analyzed tooth morphology in Akita ?/? mice that harbor a point mutation in the Ins2 insulin gene, which leads to progressive hyperglycemia. Mandibles from Akita ?/? and wild-type littermates were analyzed by microCT, scanning EM and histology; teeth were examined for amelogenin (Amel) and ameloblastin (Ambn) expression. Mice were injected with pilocarpine to assess saliva production. As hyperglycemia may alter pulp repair, the effect of high glucose levels on the proliferation/differentiation of cultured MD10-F2 pulp cells was also analyzed. Results showed that Akita ?/? mice at 6 weeks of age showed chalky white incisors that correlated with marked hyperglycemia and impaired saliva production. MicroCT of Akita ?/? teeth revealed excessive enamel wearing and hypomineralization; immunostaining for Amel and Ambn was decreased. A striking feature was invasion of dentinal tubules with Streptococcus mitis and microabcesses that originated in the coronal pulp and progressed to pulp necrosis and periapical periodontitis. High levels of glucose also inhibited MD10-F2 cell proliferation and differentiation. Our findings provide the first evidence that hyperglycemia in combination with reduced saliva in a model of type1 DM leads to decreased enamel mineralization/matrix proteins and predisposes to excessive wearing and decay. Importantly, hyperglycemia adversely affects enamel matrix proteins and pulp repair. Early detection and treatment of hyperglycemia and hyposalivation may provide a useful strategy for preventing the dental complications of diabetes and promoting oral health in this population. PMID:22449801

  15. Hyperglycemia and xerostomia are key determinants of tooth decay in type 1 diabetic mice.

    PubMed

    Yeh, Chih-Ko; Harris, Stephen E; Mohan, Sumathy; Horn, Diane; Fajardo, Roberto; Chun, Yong-Hee Patricia; Jorgensen, James; Macdougall, Mary; Abboud-Werner, Sherry

    2012-06-01

    Insulin-dependent type 1 diabetes mellitus (DM) and oral diseases are closely interrelated. Poor metabolic control in diabetics is associated with a high risk of gingivitis, periodontitis and tooth loss. Salivary flow declines in diabetics and patients suffer from xerostomia. Reduced saliva predisposes to enamel hypomineralization and caries formation; however, the mechanisms that initiate and lead to progression of tooth decay and periodontitis in type 1 DM have not been explored. To address this issue, we analyzed tooth morphology in Akita ?/? mice that harbor a point mutation in the Ins2 insulin gene, which leads to progressive hyperglycemia. Mandibles from Akita ?/? and wild-type littermates were analyzed by microCT, scanning EM and histology; teeth were examined for amelogenin (Amel) and ameloblastin (Ambn) expression. Mice were injected with pilocarpine to assess saliva production. As hyperglycemia may alter pulp repair, the effect of high glucose levels on the proliferation/differentiation of cultured MD10-F2 pulp cells was also analyzed. Results showed that Akita ?/? mice at 6 weeks of age showed chalky white incisors that correlated with marked hyperglycemia and impaired saliva production. MicroCT of Akita ?/? teeth revealed excessive enamel wearing and hypomineralization; immunostaining for Amel and Ambn was decreased. A striking feature was invasion of dentinal tubules with Streptococcus mitis and microabcesses that originated in the coronal pulp and progressed to pulp necrosis and periapical periodontitis. High levels of glucose also inhibited MD10-F2 cell proliferation and differentiation. Our findings provide the first evidence that hyperglycemia in combination with reduced saliva in a model of type1 DM leads to decreased enamel mineralization/matrix proteins and predisposes to excessive wearing and decay. Importantly, hyperglycemia adversely affects enamel matrix proteins and pulp repair. Early detection and treatment of hyperglycemia and hyposalivation may provide a useful strategy for preventing the dental complications of diabetes and promoting oral health in this population. PMID:22449801

  16. Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors

    PubMed Central

    Kakoki, Masao; Kizer, Catherine M.; Yi, Xianwen; Takahashi, Nobuyuki; Kim, Hyung-Suk; Bagnell, C. Robert; Edgell, Cora-Jean S.; Maeda, Nobuyo; Jennette, J. Charles; Smithies, Oliver

    2006-01-01

    We have previously reported that genetically increased angiotensin-converting enzyme levels, or absence of the bradykinin B2 receptor, increase kidney damage in diabetic mice. We demonstrate here that this is part of a more general phenomenon diabetes and, to a lesser degree, absence of the B2 receptor, independently but also largely additively when combined, enhance senescence-associated phenotypes in multiple tissues. Thus, at 12 months of age, indicators of senescence (alopecia, skin atrophy, kyphosis, osteoporosis, testicular atrophy, lipofuscin accumulation in renal proximal tubule and testicular Leydig cells, and apoptosis in the testis and intestine) are virtually absent in WT mice, detectable in B2 receptornull mice, clearly apparent in mice diabetic because of a dominant mutation (Akita) in the Ins2 gene, and most obvious in Akita diabetic plus B2 receptornull mice. Renal expression of several genes that encode proteins associated with senescence and/or apoptosis (TGF-?1, connective tissue growth factor, p53, ?-synuclein, and forkhead box O1) increases in the same progression. Concomitant increases occur in 8-hydroxy-2?-deoxyguanosine, point mutations and deletions in kidney mitochondrial DNA, and thiobarbituric acidreactive substances in plasma, together with decreases in the reduced form of glutathione in erythrocytes. Thus, absence of the bradykinin B2 receptor increases the oxidative stress, mitochondrial DNA damage, and many senescence-associated phenotypes already present in untreated Akita diabetic mice. PMID:16604193

  17. Anti-Diabetic Effect of Balanced Deep-Sea Water and Its Mode of Action in High-Fat Diet Induced Diabetic Mice

    PubMed Central

    Ha, Byung Geun; Shin, Eun Ji; Park, Jung-Eun; Shon, Yun Hee

    2013-01-01

    In this study, we investigated the effects of balanced deep-sea water (BDSW) on hyperglycemia and glucose intolerance in high-fat diet (HFD)-induced diabetic C57BL/6J mice. BDSW was prepared by mixing deep-sea water (DSW) mineral extracts and desalinated water to give a final hardness of 5002000. Mice given an HFD with BDSW showed lowered fasting plasma glucose levels compared to HFD-fed mice. Oral and intraperitoneal glucose tolerance tests showed that BDSW improves impaired glucose tolerance in HFD-fed mice. Histopathological evaluation of the pancreas showed that BDSW recovers the size of the pancreatic islets of Langerhans, and increases the secretion of insulin and glucagon in HFD-fed mice. Quantitative reverse transcription polymerase chain reaction results revealed that the expression of hepatic genes involved in glucogenesis, glycogenolysis and glucose oxidation were suppressed, while those in glucose uptake, ?-oxidation, and glucose oxidation in muscle were increased in mice fed HFD with BDSW. BDSW increased AMP-dependent kinase (AMPK) phosphorylation in 3T3-L1 pre- and mature adipocytes and improved impaired AMPK phosphorylation in the muscles and livers of HFD-induced diabetic mice. BDSW stimulated phosphoinositol-3-kinase and AMPK pathway-mediated glucose uptake in 3T3-L1 adipocytes. Taken together, these results suggest that BDSW has potential as an anti-diabetic agent, given its ability to suppress hyperglycemia and improve glucose intolerance by increasing glucose uptake. PMID:24172214

  18. Anti-diabetic effect of balanced deep-sea water and its mode of action in high-fat diet induced diabetic mice.

    PubMed

    Ha, Byung Geun; Shin, Eun Ji; Park, Jung-Eun; Shon, Yun Hee

    2013-11-01

    In this study, we investigated the effects of balanced deep-sea water (BDSW) on hyperglycemia and glucose intolerance in high-fat diet (HFD)-induced diabetic C57BL/6J mice. BDSW was prepared by mixing deep-sea water (DSW) mineral extracts and desalinated water to give a final hardness of 500-2000. Mice given an HFD with BDSW showed lowered fasting plasma glucose levels compared to HFD-fed mice. Oral and intraperitoneal glucose tolerance tests showed that BDSW improves impaired glucose tolerance in HFD-fed mice. Histopathological evaluation of the pancreas showed that BDSW recovers the size of the pancreatic islets of Langerhans, and increases the secretion of insulin and glucagon in HFD-fed mice. Quantitative reverse transcription polymerase chain reaction results revealed that the expression of hepatic genes involved in glucogenesis, glycogenolysis and glucose oxidation were suppressed, while those in glucose uptake, ?-oxidation, and glucose oxidation in muscle were increased in mice fed HFD with BDSW. BDSW increased AMP-dependent kinase (AMPK) phosphorylation in 3T3-L1 pre- and mature adipocytes and improved impaired AMPK phosphorylation in the muscles and livers of HFD-induced diabetic mice. BDSW stimulated phosphoinositol-3-kinase and AMPK pathway-mediated glucose uptake in 3T3-L1 adipocytes. Taken together, these results suggest that BDSW has potential as an anti-diabetic agent, given its ability to suppress hyperglycemia and improve glucose intolerance by increasing glucose uptake. PMID:24172214

  19. Gold nanorods in an oil-base formulation for transdermal treatment of type 1 diabetes in mice.

    PubMed

    Nose, Keisuke; Pissuwan, Dakrong; Goto, Masahiro; Katayama, Yoshiki; Niidome, Takuro

    2012-06-21

    Efficient transdermal insulin delivery to the systemic circulation would bring major benefit to diabetic patients. We investigated the possibility of using gold nanorods (GNRs) that formed a complex with an edible surfactant and insulin (INS) in an oil phase to form a solid-in-oil (SO) formulation (SO-INS-GNR) for transdermal treatment of diabetes. Diabetic mice comprised the model for our study. In vitro, there was high penetration of insulin through the stratum corneum (SC) and the dermis in mouse skin treated with an SO-INS-GNR complex plus near-infrared (NIR) light irradiation. Blood glucose levels in the diabetic mice were significantly decreased after treatment with SO-INS-GNR plus irradiation. To our knowledge, this is the first study to use gold nanorods for systemic insulin delivery through the skin. The use of an SO-INS-GNR complex combined with NIR irradiation may provide the possibility of transdermal insulin delivery to diabetic patients. PMID:22622618

  20. Hepatic Circadian-Clock System Altered by Insulin Resistance, Diabetes and Insulin Sensitizer in Mice

    PubMed Central

    Yang, Shih-Hsien; Shieh, Kun-Ruey

    2015-01-01

    Circadian rhythms are intrinsic rhythms that are coordinated with the rotation of the Earth and are also generated by a set of circadian-clock genes at the intracellular level. Growing evidence suggests a strong link between circadian rhythms and energy metabolism; however, the fundamental mechanisms remain unclear. In the present study, neonatal streptozotocin (STZ)-treated mice were used to model the molecular and physiological progress from insulin resistance to diabetes. Two-day-old male C57BL/6 mice received a single injection of STZ and were tested for non-obese, hyperglycemic and hyperinsulinemic conditions in the early stage, insulin resistance in the middle stage, and diabetes in the late stage. Gene expression levels of the hepatic circadian-clock system were examined by real-time quantitative PCR. Most of the components of the hepatic circadian-clock gene expression system, such as the mRNAs of Bmal1 (brain and muscle Arnt-like protein-1), Per2 (period 2) and Cry1 (cryptochrome 1), were elevated, and circadian patterns were retained in the early and middle stages of insulin-resistant conditions. The insulin sensitizer, rosiglitazone, returns the physiological and molecular changes associated with the diabetic phenotype to normal levels through peroxisome proliferator-activated receptor ? (PPAR?) rather than PPAR?. Early and chronic treatment with rosiglitazone has been shown to be effective to counter the diabetic condition. Over time, this effect acts to attenuate the increased gene expression levels of the hepatic circadian-clock system and delay the severity of diabetic conditions. Together, these results support an essential role for the hepatic circadian-clock system in the coordinated regulation and/or response of metabolic pathways. PMID:25799429

  1. Impaired Musculoskeletal Response to Age and Exercise in PPARβ−/− Diabetic Mice

    PubMed Central

    Fu, He; Desvergne, Beatrice; Ferrari, Serge

    2014-01-01

    Fragility fractures are recognized complication of diabetes, but yet the underlying mechanisms remain poorly understood. This is particularly pronounced in type 2 diabetes in which the propensity to fall is increased but bone mass is not necessarily low. Thus, whether factors implicated in the development of insulin resistance and diabetes directly impact on the musculoskeletal system remains to be investigated. PPARβ−/− mice have reduced metabolic activity and are glucose intolerant. We examined changes in bone and muscle in PPARβ−/− mice and investigated both the mechanism behind those changes with age as well as their response to exercise. Compared with their wild type, PPARβ−/− mice had an accelerated and parallel decline in both muscle and bone strength with age. These changes were accompanied by increased myostatin expression, low bone formation, and increased resorption. In addition, mesenchymal cells from PPARβ−/− had a reduced proliferation capacity and appeared to differentiate into more of an adipogenic phenotype. Concomitantly we observed an increased expression of PPARγ, characteristic of adipocytes. The anabolic responses of muscle and bone to exercise were also diminished in PPARβ−/− mice. The periosteal bone formation response to direct bone compression was, however, maintained, indicating that PPARβ controls periosteal bone formation through muscle contraction and/or metabolism. Taken together, these data indicate that PPARβ deficiency leads to glucose intolerance, decreased muscle function, and reduced bone strength. On a molecular level, PPARβ appears to regulate myostatin and PPARγ expression in muscle and bone, thereby providing potential new targets to reverse bone fragility in patients with metabolic disturbances. PMID:25279796

  2. Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice

    PubMed Central

    Sapieha, P; Chen, J; Stahl, A; Seaward, M R; Favazza, T L; Juan, A M; Hatton, C J; Joyal, J-S; Krah, N M; Dennison, R J; Tang, J; Kern, T S; Akula, J D; Smith, L E H

    2012-01-01

    Objective: Diabetic retinopathy (DR) is associated with hyperglycemia-driven microvascular pathology and neuronal compromise in the retina. However, DR is also linked to dyslipidemia. As omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are protective in proliferative retinopathy, we investigated the capacity of ω-3PUFAs to preserve retinal function in a mouse model of type 2 diabetes mellitus (T2DM). Design: Male leptin-receptor-deficient (db/db) mice were maintained for 22 weeks (4 weeks–26 weeks of life) on calorically and compositionally matched diets, except for 2% enrichment in either ω-3 or ω-6PUFAs. Visual function was assessed at 9, 14 and 26 weeks by electroretinography. Retinal capillary and neuronal integrity, as well as glucose challenge responses, were assessed on each diet. Results: The ω-3PUFA diet significantly preserved retinal function in the mouse model of T2DM to levels similar to those observed in nondiabetic control mice on normal chow. Conversely, retinal function gradually deteriorated in db/db mice on a ω-6PUFA-rich diet. There was also an enhanced ability of ω-3PUFA-fed mice to respond to glucose challenge. The protection of visual function appeared to be independent of cytoprotective or anti-inflammatory effects of ω-3PUFAs. Conclusion: This study identifies beneficial effects of dietary ω-3PUFAs on visual function in T2DM. The data are consistent with dyslipidemia negatively impacting retinal function. As ω-3PUFA lipid dietary interventions are readily available, safe and inexpensive, increasing ω-3PUFA intake in diabetic patients may slow the progression of vision loss in T2DM. PMID:23448719

  3. Chlorogenic Acid Improves Late Diabetes through Adiponectin Receptor Signaling Pathways in db/db Mice

    PubMed Central

    Jin, Shasha; Chang, Cuiqing; Zhang, Lantao; Liu, Yang; Huang, Xianren; Chen, Zhimin

    2015-01-01

    The aim of this study was to examine the effects of chlorogenic acid (CGA) on glucose and lipid metabolism in late diabetic db/db mice, as well as on adiponectin receptors and their signaling molecules, to provide evidence for CGA in the prevention of type 2 diabetes. We randomly divided 16 female db/db mice into db/db-CGA and db/db-control (CON) groups equally; db/m mice were used as control mice. The mice in both the db/db-CGA and db/m-CGA groups were administered 80 mg/kg/d CGA by lavage for 12 weeks, whereas the mice in both CON groups were given equal volumes of phosphate-buffered saline (PBS) by lavage. At the end of the intervention, we assessed body fat and the parameters of glucose and lipid metabolism in the plasma, liver and skeletal muscle tissues as well as the levels of aldose reductase (AR) and transforming growth factor-β1 (TGF-β1) in the kidneys and measured adiponectin receptors and the protein expression of their signaling molecules in liver and muscle tissues. After 12 weeks of intervention, compared with the db/db-CON group, the percentage of body fat, fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c) in the db/db-CGA group were all significantly decreased; TGF-β1 protein expression and AR activity in the kidney were both decreased; and the adiponectin level in visceral adipose was increased. The protein expression of adiponectin receptors (ADPNRs), the phosphorylation of AMP-activated protein kinase (AMPK) in the liver and muscle, and the mRNA and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) in the liver were all significantly greater. CGA could lower the levels of fasting plasma glucose and HbA1c during late diabetes and improve kidney fibrosis to some extent through the modulation of adiponectin receptor signaling pathways in db/db mice. PMID:25849026

  4. Inhibitory effects of ursolic acid on hepatic polyol pathway and glucose production in streptozotocin-induced diabetic mice.

    PubMed

    Jang, Sun-Mi; Kim, Myung-Joo; Choi, Myung-Sook; Kwon, Eun-Young; Lee, Mi-Kyung

    2010-04-01

    The effects of ursolic acid on the polyol pathway and glucose homeostasis-related metabolism were examined in the livers of streptozotocin (STZ)-induced diabetic mice fed a high-fat (37% calories from fat) diet for 4 weeks. Male mice were divided into nondiabetic, diabetic control, and diabetic-ursolic acid (0.05% wt/wt) groups. Diabetes was induced by the injection of STZ (200 mg/kg body weight, intraperitoneally). Although an ursolic acid supplement lowered the blood glucose level, it did not affect the plasma leptin and adiponectin levels. The present study shows that the blood glucose levels have a positive correlation with the hepatic sorbitol dehydrogenase activities (r = 0.39, P < .05). Ursolic acid significantly inhibited sorbitol dehydrogenase activity as well as aldose reductase activity in the liver. The supplementation of ursolic acid significantly increased glucokinase activity, while decreasing glucose-6-phosphatase activity in the livers of STZ-induced diabetic mice. Ursolic acid significantly elevated the hepatic glycogen content compared with the diabetic control group. Supplementation with ursolic acid significantly lowered the plasma total cholesterol, free fatty acid, and triglyceride concentrations compared with the diabetic control group, whereas it normalized hepatic triglyceride concentration. A negative correlation was found between the hepatic triglyceride concentration and blood glucose levels (r = -0.50, P < .01) in regard to insulin-dependent diabetic mice. The hepatic fatty acid synthase activity was significantly lower in the ursolic acid group than in the diabetic control group, whereas hepatic fatty acid beta-oxidation and carnitine palmitoyltransferase activities were significantly higher. These results indicate that ursolic acid may be beneficial in preventing diabetic complications by improving the polyol pathway as well as the lipid metabolism and that it can function as a potential modulator of hepatic glucose production, which is partly mediated by up-regulating glucose utilization and glycogen storage and down-regulating glyconeogenesis in the liver. PMID:19846180

  5. Oxytocin treatment prevents the cardiomyopathy observed in obese diabetic male db/db mice.

    PubMed

    Plante, Eric; Menaouar, Ahmed; Danalache, Bogdan A; Yip, Denis; Broderick, Tom L; Chiasson, Jean-Louis; Jankowski, Marek; Gutkowska, Jolanta

    2015-04-01

    Oxytocin (OT) is involved in the regulation of energy metabolism and in the activation of cardioprotective mechanisms. We evaluated whether chronic treatment with OT could prevent the metabolic and cardiac abnormalities associated with diabetes and obesity using the db/db mice model. Four-week-old male db/db mice and their lean nondiabetic littermates (db/+) serving as controls were treated with OT (125 ng/kg h) or saline vehicle for a period of 12 weeks. Compared with db/+ mice, the saline-treated db/db mice developed obesity, hyperglycemia, and hyperinsulinemia. These mice also exhibited a deficient cardiac OT/natriuretic system and developed systolic and diastolic dysfunction resulting from cardiomyocyte hypertrophy, fibrosis, and apoptosis. These abnormalities were associated with increased reactive oxygen species (ROS) production, inflammation, and suppressed 5'-adenosine monophosphate kinase signaling pathway. The db/db mice displayed reduced serum levels of adiponectin and adipsin and elevated resistin. OT treatment increased circulating OT levels, significantly reduced serum resistin, body fat accumulation (19%; P<.001), fasting blood glucose levels by (23%; P<.001), and improved glucose tolerance and insulin sensitivity. OT also normalized cardiac OT receptors, atrial natriuretic peptide, and brain natriuretic peptide, expressions and prevented systolic and diastolic dysfunction as well as cardiomyocyte hypertrophy, fibrosis, and apoptosis. Furthermore, OT reduced cardiac oxidative stress and inflammation and normalized the 5'-adenosine monophosphate-activated protein kinase signaling pathway. The complete normalization of cardiac structure and function by OT treatment in db/db mice contrasted with only partial improvement of hyperglycemia and hyperinsulinemia. These results indicate that chronic treatment with OT partially improves glucose and fat metabolism and reverses abnormal cardiac structural remodeling, preventing cardiac dysfunction in db/db mice. PMID:25562615

  6. Estrogen Therapy Delays Autoimmune Diabetes and Promotes the Protective Efficiency of Natural Killer T-Cell Activation in Female Nonobese Diabetic Mice.

    PubMed

    Gourdy, Pierre; Bourgeois, Elvire A; Levescot, Anas; Pham, Linh; Riant, Elodie; Ahui, Marie-Louise; Damotte, Diane; Gombert, Jean-Marc; Bayard, Francis; Ohlsson, Claes; Arnal, Jean-Franois; Herbelin, Andr

    2016-01-01

    Therapeutic strategies focused on restoring immune tolerance remain the main avenue to prevent type 1 diabetes (T1D). Because estrogens potentiate FoxP3+ regulatory T cells (Treg) and invariant natural killer T (iNKT) cells, two regulatory lymphocyte populations that are functionally deficient in nonobese diabetic (NOD) mice, we investigated whether estradiol (E2) therapy influences the course of T1D in this model. To this end, female NOD mice were sc implanted with E2- or placebo-delivering pellets to explore the course of spontaneous and cyclophosphamide-induced diabetes. Treg-depleted and iNKT-cell-deficient (J?18(-/-)) NOD mice were used to assess the respective involvement of these lymphocyte populations in E2 effects. Early E2 administration (from 4 wk of age) was found to preserve NOD mice from both spontaneous and cyclophosphamide-induced diabetes, and a complete protection was also observed throughout treatment when E2 treatment was initiated after the onset of insulitis (from 12 wk of age). This delayed E2 treatment remained fully effective in Treg-depleted mice but failed to entirely protect J?18(-/-) mice. Accordingly, E2 administration was shown to restore the cytokine production of iNKT cells in response to in vivo challenge with the cognate ligand ?-galactosylceramide. Finally, transient E2 administration potentiated the previously described protective action of ?-galactosylceramide treatment in NOD females. This study provides original evidence that E2 therapy strongly protects NOD mice from T1D and reveals the estrogen/iNKT cell axis as a new effective target to counteract diabetes onset at the stage of insulitis. Estrogen-based therapy should thus be considered for T1D prevention. PMID:26485613

  7. Anti-diabetic properties of a non-conventional radical scavenger, as compared to pioglitazone and exendin-4, in streptozotocin-nicotinamide diabetic mice.

    PubMed

    Novelli, Michela; Canistro, Donatella; Martano, Manuela; Funel, Niccola; Sapone, Andrea; Melega, Simone; Masini, Matilde; De Tata, Vincenzo; Pippa, Anna; Vecoli, Cecilia; Campani, Daniela; De Siena, Rocco; Soleti, Antonio; Paolini, Moreno; Masiello, Pellegrino

    2014-04-15

    We previously showed that the innovative radical scavenger bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)-decandioate (IAC) improves metabolic dysfunctions in a diabetic mouse model. Here, we compared the in vivo effects of IAC with those of the anti-diabetic drugs pioglitazone (PIO) and exendin-4 (EX-4). Diabetes was induced in C57Bl/6J mice by streptozotocin and nicotinamide administration. Paralleled by healthy controls, diabetic animals (D) were randomly assigned to four groups and treated daily for 7 consecutive weeks: D+saline, ip; D+IAC 30mg/kgb.w., ip; D+PIO 10mg/kgb.w. per os; and D+EX-4, 50μg/kgb.w., ip. Our results show that IAC reduced basal hyperglycemia and improved glucose tolerance better than PIO or EX-4. Interestingly, in the heart of diabetic mice, IAC treatment normalized the increased levels of GSSG/GSH ratio and thiobarbituric acid reactive substances, indexes of oxidative stress and damage, while PIO and EX-4 were less effective. As supported by immunohistochemical data, IAC markedly prevented diabetic islet β-cell reduced density, differently from PIO and EX-4 that had only a moderate effect. Interestingly, in diabetic animals, IAC treatment enhanced the activity of pancreatic-duodenal homeobox 1 (PDX-1), an oxidative stress-sensitive transcription factor essential for maintenance of β-cell function, as evaluated by quantification of its nuclear immunostaining, whereas PIO or EX-4 treatments did not. Altogether, these observations support the improvement of the general redox balance and β-cell function induced by IAC treatment in streptozotocin-nicotinamide diabetic mice. Furthermore, in this model, the correction of diabetic alterations was better obtained by treatment with the radical scavenger IAC than with pioglitazone or exendin-4. PMID:24530416

  8. Assessment of gastric emptying in non-obese diabetic mice using a [13C]-octanoic acid breath test.

    PubMed

    Creedon, Christopher T; Verhulst, Pieter-Jan; Choi, Kyoung M; Mason, Jessica E; Linden, David R; Szurszewski, Joseph H; Gibbons, Simon J; Farrugia, Gianrico

    2013-01-01

    Gastric emptying studies in mice have been limited by the inability to follow gastric emptying changes in the same animal since the most commonly used techniques require killing of the animals and postmortem recovery of the meal(1,2). This approach prevents longitudinal studies to determine changes in gastric emptying with age and progression of disease. The commonly used [(13)C]-octanoic acid breath test for humans(3) has been modified for use in mice(4-6) and rats(7) and we previously showed that this test is reliable and responsive to changes in gastric emptying in response to drugs and during diabetic disease progression(8). In this video presentation the principle and practical implementation of this modified test is explained. As in the previous study, NOD LtJ mice are used, a model of type 1 diabetes(9). A proportion of these mice develop the symptoms of gastroparesis, a complication of diabetes characterized by delayed gastric emptying without mechanical obstruction of the stomach(10). This paper demonstrates how to train the mice for testing, how to prepare the test meal and obtain 4 hr gastric emptying data and how to analyze the obtained data. The carbon isotope analyzer used in the present study is suitable for the automatic sampling of the air samples from up to 12 mice at the same time. This technique allows the longitudinal follow-up of gastric emptying from larger groups of mice with diabetes or other long-standing diseases. PMID:23542813

  9. Neonatal Catch-Up Growth Increases Diabetes Susceptibility But Improves Behavioral and Cardiovascular Outcomes of Low Birth Weight Male Mice

    PubMed Central

    Hermann, Gregory M.; Miller, Rachel L.; Erkonen, Gwen E.; Dallas, Lindsay M.; Hsu, Elise; Zhu, Vivian; Roghair, Robert D.

    2009-01-01

    Premature infants are at increased risk for persistent growth failure, neurodevelopmental impairment, hypertension and diabetes. Rapid neonatal growth has been linked to the increasing prevalence of diabetes and obesity. Nutritional goals for the premature infant with incipient growth failure have thus become a source of controversy. We used isogenic mice with natural variation in perinatal growth to test the hypothesis that neonatal catch-up growth improves the neurobehavioral and cardiovascular outcomes of low birth weight mice, despite an increase in diabetes susceptibility. Adult mice that experienced prenatal and neonatal growth restriction had persistent growth failure, hypertension and neurobehavioral alterations. When switched from standard rodent chow to a hypercaloric diet, growth restricted mice were protected from diet-induced obesity. Among low birth weight male mice, neonatal catch-up growth normalized neurobehavioral and cardiovascular phenotypes, but led to insulin resistance and high-fat diet-induced diabetes. Among low birth weight female mice, neonatal catch-up growth did not prevent the development of adult hypertension and significantly increased measures of anxiety, including self-injury and the avoidance of open spaces. These studies support the importance of the perinatal environment in the resetting of adult disease susceptibility and suggest an earlier window of vulnerability among growth restricted female mice. PMID:19342983

  10. Lentivectors Encoding Immunosuppressive Proteins Genetically Engineer Pancreatic ? Cells to Correct Diabetes in Allogeneic Mice

    PubMed Central

    Kojaoghlanian, Tsoline; Joseph, Aviva; Follenzi, Antonia; Zheng, Jian Hua; Leiser, Margarita; Fleischer, Norman; Horwitz, Marshall S.; DiLorenzo, Teresa P.; Goldstein, Harris

    2010-01-01

    The effectiveness of genetic engineering with lentivectors to protect transplanted cells from allogeneic rejection was examined using, as a model, type 1 diabetes treatment with ? cell transplantation, whose widespread use has been limited by the requirement for sustained immunosuppressive treatment to prevent graft rejection. We examined whether lentivectors expressing select immunosuppressive proteins encoded by the adenoviral genome early region 3 (AdE3) would protect transplanted ? cells from an alloimmune attack. The insulin-producing ? cell line ?TC-tet (C3HeB/FeJ-derived) was transduced with lentiviruses encoding the AdE3 proteins gp19K and RID?/?. The efficiency of lentiviral transduction of ?TC-tet cells exceeded 85%. Lentivector expression of gp19K decreased surface class I MHC expression by over 90%, while RID?/? expression inhibited cytokine-induced Fas upregulation by over 75%. ?TC-tet cells transduced with gp19K and RID?/? lentivectors, but not with a control lentivector, provided prolonged correction of hyperglycemia after transplantation into diabetic BALB/c SCID mice reconstituted with allogeneic immune effector cells or into diabetic allogeneic BALB/c mice. Thus, genetic engineering of ? cells using gp19K and RID?/? expressing lentiviral vectors may provide an alternative that has the potential to eliminate or reduce treatment with the potent immunosuppressive agents currently necessary for prolonged engraftment with transplanted islets. PMID:19112449

  11. Inhibition of inflammation by astaxanthin alleviates cognition deficits in diabetic mice.

    PubMed

    Zhou, Xiaoyan; Zhang, Fang; Hu, Xiaotong; Chen, Jing; Wen, Xiangru; Sun, Ying; Liu, Yonghai; Tang, Renxian; Zheng, Kuiyang; Song, Yuanjian

    2015-11-01

    Neurons in the hippocampal and cortical functional regions are more susceptible to damage induced by hyperglycemia, which can result in severe spatial learning and memory impairment. Neuroprotection ameliorates cognitive impairment induced by hyperglycemia in diabetic encephalopathy (DE). Astaxanthin has been widely studied in diabetes mellitus and diabetic complications due to its hypoglycemic, antioxidant and anti-apoptotic effects. However, whether astaxanthin can alleviate cognition deficits induced by DE and its precise mechanisms remain undetermined. In this study, DE was induced by streptozotocin (STZ, 150 mg/kg) in ICR mice. We observed the effect of astaxanthin on cognition and investigated its potential mechanisms in DE mice. Results showed that astaxanthin treatment significantly decreased the latency and enhanced the distance and time spent in the target quadrant in the Morris water maze test. Furthermore, neuronal survival was significantly increased in the hippocampal CA3 region and the frontal cortex following treatment with astaxanthin. Meanwhile, immunoblotting was used to observe the nuclear translocation of nuclear factor-kappaB (NF-?B) p65 and the expression of tumor necrosis factor-? (TNF-?) in the hippocampus and frontal cortex. The results indicated that astaxanthin could inhibit NF-?B nuclear translocation and downregulate TNF-? expression in the hippocampus and frontal cortex. Overall, the present study implied that astaxanthin could improve cognition by protecting neurons against inflammation injury potentially through inhibiting the nuclear translocation of NF-?B and down-regulating TNF-?. PMID:26272354

  12. P2X7 receptor knockout prevents streptozotocin-induced type 1 diabetes in mice.

    PubMed

    Vieira, Flvia Sarmento; Nanini, Hayandra Ferreira; Takiya, Christina Maeda; Coutinho-Silva, Robson

    2016-01-01

    Type 1 diabetes (T1D) is caused by autoimmune destruction of islet of Langerhans ?-cells. P2X7 receptors (P2X7R) modulate proinflammatory immune responses by binding extracellular ATP, a classic 'danger signal'. Here, we evaluated whether the P2X7R has a role in T1D development. P2X7(-/-) mice are resistant to TD1 induction by streptozotocin (STZ) treatment, with no increase in blood glucose, decrease in insulin-positive cells, and pancreatic islet reduction, compared to WT (C57BL/6) mice. Also, the levels of proinflammatory mediators (IL-1?, IFN-? and NO) did not increase after STZ treatment in P2X7(-/-) animals, with reduced infiltration of CD4(+), CD8(+), B220(+), CD11b(+) and CD11c(+) cells in the pancreatic lymph nodes. Treatment with a P2X7 antagonist mimicked the effect of P2X7 knockout, preventing STZ-induced diabetes. Our results show that the absence of the P2X7R provides resistance in the induction of diabetes in this model, and suggest that therapy targeting the P2X7R may be useful against clinical T1D. PMID:26483196

  13. Hypoglycemic, hypolipidemic and antioxidant effects of peptides from red deer antlers in streptozotocin-induced diabetic mice.

    PubMed

    Jiang, Ning; Zhang, Shuangjian; Zhu, Jing; Shang, Jing; Gao, Xiangdong

    2015-01-01

    Diabetes mellitus is a serious chronic metabolic disorder. To develop novel anti-diabetic drugs from nature sources has always been the focus of research. Red deer (Cervus elaphu Linnaeus) antler is one of the most famous Chinese traditional medicines. We found that the peptides of 5-10 kDa from red deer antlers (PRDA) promoted the growth of cultured rat islet cells. The purpose of this study was to investigate the anti-diabetic actions of PRDA in vivo and purify a pure active peptide. We therefore investigated the hypoglycemic, hypolipidemic and antioxidant effects of PRDA in streptozotocin-induced diabetic mice and isolated a pure anti-diabetic peptide. PRDA, given intraperitoneally (75, 150, or 300 ?g/kg), significantly decreased the blood glucose levels, significantly increased the insulin concentrations, and remarkably improved the lipid metabolism in the diabetic mice. PRDA significantly increased the superoxide dismutase activity, catalase activity and the total antioxidant capacity in the serum and liver, and simultaneously decreased the malondialdehyde levels. The activities of hexokinase and pyruvate kinase, two important enzymes involved in glucose utilization, were also significantly increased in the liver of the PRDA-treated diabetic mice. Moreover, a novel anti-diabetic peptide isolated from PRDA significantly promoted the viability of cultured rat insulinoma cells. The molecular mass of the purified peptide was 7064.8 Da under mass spectrometry, and its N-terminal amino acid sequence was identified as LSPFTTKTYFPHFDLSHGSA. Thus, PRDA may be useful in managing the hyperglycemia, hyperlipidemia, and oxidative stress in diabetes, and the anti-diabetic peptide is a promising drug for the treatment of diabetes. PMID:25985857

  14. SOD1, but not SOD3, deficiency accelerates diabetic renal injury in C57BL/6-Ins2Akita diabetic mice

    PubMed Central

    Fujita, Hiroki; Fujishima, Hiromi; Takahashi, Keiko; Sato, Takehiro; Shimizu, Tatsunori; Morii, Tsukasa; Shimizu, Takahiko; Shirasawa, Takuji; Qi, Zhonghua; Breyer, Matthew D.; Harris, Raymond C.; Yamada, Yuichiro; Takahashi, Takamune

    2015-01-01

    Superoxide dismutase (SOD) is a major defender against excessive superoxide generated under hyperglycemia. We have recently reported that renal SOD1 (cytosolic CuZn-SOD) and SOD3 (extracellular CuZn-SOD) isoenzymes are remarkably down-regulated in KK/Ta-Ins2Akita diabetic mice, which exhibit progressive diabetic nephropathy (DN), but not in DN-resistant C57BL/6- Ins2Akita (C57BL/6-Akita) diabetic mice. To determine the role of SOD1 and SOD3 in DN, we generated C57BL/6-Akita diabetic mice with deficiency of SOD1 and/or SOD3 and investigated their renal phenotype at the age of 20 weeks. Increased glomerular superoxide levels were observed in SOD1−/−SOD3+/+ and SOD1−/−SOD3−/− C57BL/6-Akita mice but not in SOD1+/+SOD3−/− C57BL/6-Akita mice. The SOD1−/−SOD3+/+ and SOD1−/−SOD3−/− C57BL/6-Akita mice exhibited higher glomerular filtration rate, increased urinary albumin levels, and advanced mesangial expansion as compared with SOD1+/+SOD3+/+ C57BL/6-Akita mice, yet the severity of DN did not differ between the SOD1−/−SOD3+/+ and SOD1−/−SOD3−/− C57BL/6-Akita groups. Increased renal mRNA expression of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF), reduced glomerular nitric oxide (NO), and increased renal prostaglandin E2 (PGE2) production were noted in the SOD1−/−SOD3+/+ and SOD1−/−SOD3−/− C57BL/6-Akita mice. This finding indicates that such renal changes in fibrogenic cytokines, NO, and PGE2, possibly caused by superoxide excess, would contribute to the development of overt albuminuria by promoting mesangial expansion, endothelial dysfunction, and glomerular hyperfiltration. The present results demonstrate that deficiency of SOD1, but not SOD3, increases renal superoxide in the setting of diabetes and causes overt renal injury in nephropathy-resistant diabetic mice, and that SOD3 deficiency does not provide additive effects on the severity of DN in SOD1-deficient C57BL/6-Akita mice. PMID:22632894

  15. Anti-diabetic activities of catalpol in db/db mice

    PubMed Central

    Shen, Xiaozhu; Qian, Li; Gong, Chen; Nie, Maoxiao; Dong, Yan

    2016-01-01

    The objective was to investigate the hypoglycemic action of catalpol in spontaneous diabetes db/db mice. 40 db/db mice were randomly divided into fi ve groups: model control gourp; db/db plus catalpol 40, 80, 120 mg/kg body wt. groups and db/db plus metformin 250 mg/kg group. Age-matched db/m mice were selected as normal control group. The mice were administered with corresponding drugs or solvent by gavage for 4 weeks. The oral glucose tolerance test was carried out at the end of 3rd week. After 4 weeks of treatment, the concentrations of fasting blood glucose (FBG), glycated serum protein (GSP), insulin (INS), triglyceride (TG), total cholesterol (TC) and adiponection (APN) in serum were detected. The protein expressions of phosphorylation-AMPKα1/2 in liver, phosphorylation-AMPKα1/2 and glucose transporter-4 (GLUT-4) in skeletal muscle and adipose tissues were detected by western blot. Real time RT-PCR was used to detect the mRNA expressions of acetyl-CoA carboxylase (ACC) and Hydroxymethyl glutaric acid acyl CoA reductase (HMGCR) in liver. Our results showed that catalpol could significantly improve the insulin resistance, decrease the serum concentrations of INS, GSP, TG, and TC. The concentrations of APN in serum, the protein expression of phosphorylation-AMPKα1/2 in liver, phosphorylation-AMPKα1/2 and GLUT-4 in peripheral tissue were increased. Catalpol could also down regulate the mRNA expressions of ACC and HMGCR in liver. In conclusion, catalpol ameliorates diabetes in db/db mice. It has benefi t eff ects against lipid/glucose metabolism di