Science.gov

Sample records for allyl sulfides studies

  1. Modulation of Histone Deacetylase Activity by Dietary Isothiocyanates and Allyl Sulfides: Studies with Sulforaphane and Garlic Organosulfur Compounds

    PubMed Central

    Nian, Hui; Delage, Barbara; Ho, Emily; Dashwood, Roderick H.

    2009-01-01

    Histone deacetylase (HDAC) inhibitors reactivate epigenetically-silenced genes in cancer cells, triggering cell cycle arrest and apoptosis. Recent evidence suggests that dietary constituents can act as HDAC inhibitors, such as the isothiocyanates found in cruciferous vegetables and the allyl compounds present in garlic. Broccoli sprouts are a rich source of sulforaphane (SFN), an isothiocyanate that is metabolized via the mercapturic acid pathway and inhibits HDAC activity in human colon, prostate, and breast cancer cells. In mouse preclinical models, SFN inhibited HDAC activity and induced histone hyperacetylation coincident with tumor suppression. Inhibition of HDAC activity also was observed in circulating peripheral blood mononuclear cells obtained from people who consumed a single serving of broccoli sprouts. Garlic organosulfur compounds can be metabolized to allyl mercaptan (AM), a competitive HDAC inhibitor that induced rapid and sustained histone hyperacetylation in human colon cancer cells. Inhibition of HDAC activity by AM was associated with increased histone acetylation and Sp3 transcription factor binding to the promoter region of the P21WAF1 gene, resulting in elevated p21 protein expression and cell cycle arrest. Collectively, the results from these studies, and others reviewed herein, provide new insights into the relationships between reversible histone modifications, diet, and cancer chemoprevention. PMID:19197985

  2. Theoretical Comparative Study of the Structure, Dynamics and Electronic Properties of Five Ally Molecules: Allicin, Methyl Propyl Disulfide (MPD), Allyl Methyl Sulfide (AMS), S-allyl cysteine (SAC) and S-allyl mercaptocysteine (SAMC)

    NASA Astrophysics Data System (ADS)

    Deniz Calisir, Emine; Erkoc, Sakir; Yildirim, Handan; Kara, Abdelkader; Rahman, Talat S.; Selvi, Mahmut; Erkoc, Figen

    2006-03-01

    The structural, dynamics and electronic properties of five allyl molecules have been investigated theoretically by performing semi-empirical molecular orbital (AM1 and PM3), ab-initio (RHF) and density functional theory calculations. The geometry of the molecules have been optimized, the vibrational spectra and the electronic properties of the molecules have been calculated in their ground states in gas phase. For each molecule, we found that the optimized geometries resulting from calculations based on the three levels of accuracy, to be very similar. However, we found that an accurate description of the vibrational properties of these molecules necessitates calculations at the ab-initio level. The electronic structures of these molecules were performed at the DFT level, resulting in an accurate description of the HOMO-LUMO gap and the local charges.

  3. Allyl astatide

    SciTech Connect

    Norseev, Yu.V.; Vasaros, L.; Syuch, Z.

    1988-11-01

    Allyl astatide was prepared by the interhalogen exchange method, by replacement of the bromine in allyl bromide with astatide ion. The most favorable conditions for the synthesis were found by variations of the method that uses hydrazine hydrate and sodium formaldehyde sulfoxylate as reductants. A by-product is formed by the reaction of allyl bromide with excited astatine-211 which forms by disintegration of radon-211. Allyl astatide was identified by radio gas-liquid chromatography. Its retention indexes on nonpolar and weakly polar liquid phases were found. The stability of this newly prepared astatine compound was studied. The extrapolated boiling point of allyl astatide is 129 +/- 2/sup 0/C.

  4. Trajectory study of energy transfer and unimolecular dissociation of highly excited allyl with argon.

    PubMed

    Conte, Riccardo; Houston, Paul L; Bowman, Joel M

    2014-09-11

    The influence of rotational excitation on energy transfer in single collisions of allyl with argon and on allyl dissociation is investigated. About 90,000 classical scattering simulations are performed in order to determine collision-induced changes in internal energy and in allyl rotational angular momentum. Dissociation is studied by means of about 50,000 additional trajectories evolved for the isolated allyl under three different conditions: allyl with no angular momentum (J = 0); allyl with the same microcanonically sampled initial conditions used for the collisions (J*); allyl evolving from the corresponding exit conditions after the collision. The potential energy surface is the sum of an intramolecular potential and an interaction one, and it has already been used in a previous work on allyl-argon scattering (Conte, R.; Houston, P. L.; Bowman, J. M. J. Phys. Chem. A 2013, 117, 14028-14041). Energy transfer data show that increased initial rotation favors, on average, increased relaxation of the excited molecule. The availability of a high-level intramolecular potential energy surface permits us to study the dependence of energy transfer on the type of starting allyl isomer. A turning point analysis is presented, and highly efficient collisions are detected. Collision-induced variations in the allyl rotational angular momentum may be quite large and are found to be distributed according to three regimes. The roles of rotational angular momentum, collision, and type of isomer on allyl unimolecular dissociation are considered by looking at dissociations times, kinetic energies of the fragments, and branching ratios. Generally, rotational angular momentum has a strong influence on the dissociation dynamics, while the single collision and the type of starting isomer are less influential. PMID:25116695

  5. Theoretical study on the mechanism of iron carbonyls mediated isomerization of allylic alcohols to saturated carbonyls.

    PubMed

    Branchadell, Vicenç; Crévisy, Christophe; Grée, René

    2003-05-01

    The conversion of allylic alcohols to enols mediated by Fe(CO)(3) has been studied through density functional theoretical calculations. From the results obtained a complete catalytic cycle has been proposed in which the first intermediate is the [(allyl alcohol)Fe(CO)(3)] complex. This intermediate evolves to the [(enol)Fe(CO)(3)] complex through two consecutive 1,3-hydrogen shifts involving a pi-allyl hydride intermediate. The highest Gibbs energy transition state corresponds to the partial decoordination ot the enol ligand prior to the coordination of a new allyl alcohol molecule that regenerates the first intermediate. Alternative processes for the [(enol)Fe(CO)(3)] complex such as [Fe(CO)(3)]-mediated enol-aldehyde transformation and enol isomerization have also been considered. The results obtained show that the former process is unfavourable, whereas the enol isomerization may compete with the enol decoordination step of the catalytic cycle. PMID:12740854

  6. Spectroscopic characterization of alumina-supported bis(allyl)iridium complexes : site-isolation, reactivity, and decomposition studies.

    SciTech Connect

    Trovitch, R. J.; Guo, N.; Janicke, M. T.; Li, H.; Marshall, C. L.; Miller, J. T.; Sattelberger, A. P.; John, K. D.; Baker, R. T.; LANL; Univ. of Ottawa

    2010-01-01

    The covalent attachment of tris(allyl)iridium to partially dehydroxylated ?-alumina is found to proceed via surface hydroxyl group protonation of one allyl ligand to form an immobilized bis(allyl)iridium moiety, (?AlO)Ir(allyl)2, as characterized by CP-MAS 13C NMR, inductively coupled plasma-mass spectrometry, and Ir L3 edge X-ray absorption spectroscopy. Extended X-ray absorption fine-structure (EXAFS) measurements taken on unsupported Ir(allyl)3 and several associated tertiary phosphine addition complexes suggest that the ?3-allyl ligands generally account for an Ir-C coordination number of 2 rather than 3, with an average Ir-C distance of 2.16 A. Using this knowledge, combined EXAFS and X-ray absorption near-edge structure studies reveal that a small amount of Ir0 is also formed upon reaction of Ir(allyl)3 with the surface. It was found that the addition of either 2,6-dimethylphenyl isocyanide or carbon monoxide to the supported complex allows spectroscopic identification of the supported bis(allyl)iridium complexes, (?AlO)Ir(allyl)2(CNAr) [Ar = 2,6-(CH3)2C6H4] and (?AlO)Ir(allyl)2(CO)2, respectively. Although samples of the supported bis(allyl)iridium complex are active for the dehydrogenation of cyclohexane to benzene at temperatures between 180 and 220C, in situ temperature-programmed reaction XAFS and continuous-flow reactor studies suggest that Ir0 nanoparticles, rather than a well-defined Ir3+ complex, are responsible for the observed activity.

  7. Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters

    PubMed Central

    D’Souza, Malcolm J.; Givens, Aaron F.; Lorchak, Peter A.; Greenwood, Abigail E.; Gottschall, Stacey L.; Carter, Shannon E.; Kevill, Dennis N.

    2013-01-01

    At 25.0 °C the specific rates of solvolysis for allyl and vinyl chloroformates have been determined in a wide mix of pure and aqueous organic mixtures. In all the solvents studied, vinyl chloroformate was found to react significantly faster than allyl chloroformate. Multiple correlation analyses of these rates are completed using the extended (two-term) Grunwald-Winstein equation with incorporation of literature values for solvent nucleophilicity (NT) and solvent ionizing power (YCl). Both substrates were found to solvolyze by similar dual bimolecular carbonyl-addition and unimolecular ionization channels, each heavily dependent upon the solvents nucleophilicity and ionizing ability. PMID:23549265

  8. Structural studies in limestone sulfidation

    SciTech Connect

    Fenouil, L.A.; Lynn, S.

    1993-05-01

    This study investigates the sulfidation of limestone at high temperatures (700--900{degree}C) as the first step in the design of a High-Temperature Coal-Gas Clean-Up system using millimeter-size limestone particles. Several workers have found that the rate of this reaction significantly decreases after an initial 10 to 15% conversion of CaCO{sub 3} to CaS. The present work attempts to explain this feature. It is first established that millimeter-size limestone particles do not sinter at temperatures up to the CaCO{sub 3} calcination point (899{degree}C at 1.03 bar CO{sub 2} partial pressure). It is then shown that CaS sinters rapidly at 750 to 900{degree}C if CO{sub 2} is present in the gas phase. Scanning Electron Microscope (SEM) photographs and Electron Dispersive Spectroscopy (EDS) data reveal that the CaS product layer sinters and forms a quasi-impermeable coating around the CaCO{sub 3} grains that greatly hinders more H{sub 2}S from reaching the still unreacted parts of the stone. Moreover, most of the pores initially present within the limestone structure begin to disappear or, at least, are significantly reduced in size. From then on, subsequent conversion is limited by diffusion of H{sub 2}S through the CaS layer, possibly by S{sup 2{minus}} ionic diffusion. The kinetics is then adequately described by a shrinking-core model, in which a sharp front of completely converted limestone is assumed to progress toward the center of the pellet. Finally, experimental evidence and computer simulations using simple sintering models suggest that the CaS sintering, responsible for the sharp decrease in the sulfidation rate, is surface-diffusion controlled.

  9. Experimental and Kinetic Modeling Study of 2-Methyl-2-Butene: Allylic Hydrocarbon Kinetics.

    PubMed

    Westbrook, Charles K; Pitz, William J; Mehl, Marco; Glaude, Pierre-Alexandre; Herbinet, Olivier; Bax, Sarah; Battin-Leclerc, Frederique; Mathieu, Olivier; Petersen, Eric L; Bugler, John; Curran, Henry J

    2015-07-16

    Two experimental studies have been carried out on the oxidation of 2-methyl-2-butene, one measuring ignition delay times behind reflected shock waves in a stainless steel shock tube, and the other measuring fuel, intermediate, and product species mole fractions in a jet-stirred reactor (JSR). The shock tube ignition experiments were carried out at three different pressures, approximately 1.7, 11.2, and 31 atm, and at each pressure, fuel-lean (ϕ = 0.5), stoichiometric (ϕ = 1.0), and fuel-rich (ϕ = 2.0) mixtures were examined, with each fuel/oxygen mixture diluted in 99% Ar, for initial postshock temperatures between 1330 and 1730 K. The JSR experiments were performed at nearly atmospheric pressure (800 Torr), with stoichiometric fuel/oxygen mixtures with 0.01 mole fraction of 2M2B fuel, a residence time in the reactor of 1.5 s, and mole fractions of 36 different chemical species were measured over a temperature range from 600 to 1150 K. These JSR experiments represent the first such study reporting detailed species measurements for an unsaturated, branched hydrocarbon fuel larger than iso-butene. A detailed chemical kinetic reaction mechanism was developed to study the important reaction pathways in these experiments, with particular attention on the role played by allylic C-H bonds and allylic pentenyl radicals. The results show that, at high temperatures, this olefinic fuel reacts rapidly, similar to related alkane fuels, but the pronounced thermal stability of the allylic pentenyl species inhibits low temperature reactivity, so 2M2B does not produce "cool flames" or negative temperature coefficient behavior. The connections between olefin hydrocarbon fuels, resulting allylic fuel radicals, the resulting lack of low-temperature reactivity, and the gasoline engine concept of octane sensitivity are discussed. PMID:25822578

  10. Study on the sulfidation behavior of smithsonite

    NASA Astrophysics Data System (ADS)

    Wu, Dandan; Wen, Shuming; Deng, Jiushuai; Liu, Jian; Mao, Yingbo

    2015-02-01

    Zinc extraction from low-grade mineral resources of oxidized zinc has recently become a focus of study. Sulfidation is an important process in oxidized ore flotation. In this study, the influence of sulfur ion adsorption on smithsonite surface was investigated with the use of zeta potential, inductively coupled plasma (ICP), scanning electron microscope (SEM), and X-ray photoelectron spectroscopic studies. Zeta potential measurements of sodium sulfide showed that sulfur ions were adsorbed onto the surface of pure smithsonite, as evidenced by the increased negative charge and the decrease in the pHIEP of smithsonite from 7.7 to 6 after sodium sulfide treatment. The ICP test revealed the gradual reduction in sulfur ion adsorption onto the surface of smithsonite in pulp sulfur. After 30 min of absorption, CS in the solution declined from 1000 × 10-6 mol/L to 1.4 × 10-6 mol/L. SEM results showed that the mineral surface was partially changed to ZnS film after sodium sulfide treatment, whereas EDS analysis results showed that 2% S is contained on the smithsonite surface. X-ray photoelectron spectroscopy results indicated the presence of a characteristic signal peak of sulfur ions after sulfidation. Sulfur concentration increased to 11.89%, whereas oxygen concentration decreased from 42.31% to 13.74%. Sulfur ions were not only present during chemical adsorption, but were also incorporated into the crystal lattices of minerals by the exchange reaction between S2- and CO32- ions.

  11. From allylic alcohols to aldols through a new nickel-mediated tandem reaction: synthetic and mechanistic studies.

    PubMed

    Cuperly, David; Petrignet, Julien; Crévisy, Christophe; Grée, René

    2006-04-12

    Nickel hydride type complexes have been successfully developed as catalysts for the tandem isomerization-aldolization reaction of allylic alcohols with aldehydes. Optimization of the reaction conditions has shown that a cocatalyst, such as MgBr2, has a very positive effect on the kinetics of the reaction and in the yields of aldols. Under such optimized conditions {[NiHCl(dppe)] + MgBr(2) at 3-5 mol %)}, this reaction affords the aldols in good to excellent yields. It is a full-atom-economy-type reaction that occurs under mild conditions. Furthermore, it has a broad scope for the allylic alcohols and it is compatible with a wide range of aldehydes, including very bulky derivatives. The reaction is completely regioselective, but it exhibits a low stereoselectivity, except for allylic alcohols with a bulky substituent at the carbinol center. The use of chiral nonracemic catalysts was not successful, affording only racemic compounds. However, it was possible to use asymmetric synthesis for the preparation of optically active aldols. Various mechanistic studies have been performed using, for instance, a deuterated alcohol or a deuterated catalyst. They gave strong support to a mechanism involving first a transition-metal-mediated isomerization of the allylic alcohol into the free enol, followed by the addition of the latter intermediate onto the aldehyde in an "hydroxyl-carbonyl-ene" type reaction. These results confirm that allylic alcohols can be considered as new and useful partners in the development of the aldol reaction. PMID:16506253

  12. Allyl alcohol

    Integrated Risk Information System (IRIS)

    Allyl alcohol ; CASRN 107 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  13. Allyl chloride

    Integrated Risk Information System (IRIS)

    Allyl chloride ; CASRN 107 - 05 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  14. A Spectroscopic and Theoretical Study of Weak Intramolecular OH\\cdots π Interactions in Allyl Carbinol and Methallyl Carbinol

    NASA Astrophysics Data System (ADS)

    Schroeder, Sidsel D.; Mackeprang, Kasper; Kjaergaard, Henrik G.

    2013-06-01

    The weak intramolecular OH\\cdots π interactions in allyl carbinol and methallyl carbinol have been studied using a combination of NIR spectroscopy and theory. The third OH-stretching overtone region of vapor phase allyl carbinol and methallyl carbinol have been recorded with intracavity laser photoacoustic spectroscopy to study the effect of an enhanced OH\\cdots π interaction in methallyl carbinol arising from the electron donating methyl group. Local mode calculations were employed to assign the observed bands. The OH-stretching transition frequency of methallyl carbinol was observed to be red shifted relative to the OH-stretching transition frequency of allyl carbinol. A red shift of the transition frequency is in this context normally interpreted as a signature of hydrogen bonding. Whether the OH\\cdots π interaction can be categorized as a hydrogen bond will be discussed in this talk.

  15. Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications of Unactivated Alcohols: Experimental and Computational Study

    PubMed Central

    Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan

    2015-01-01

    Gold(I)-catalysed direct allylic etherifications have been successfully carried out with chirality transfer to yield enantioenriched, γ-substituted secondary allylic ethers. Our investigations include a full substrate-scope screen to ascertain substituent effects on the regioselectivity, stereoselectivity and efficiency of chirality transfer, as well as control experiments to elucidate the mechanistic subtleties of the chirality-transfer process. Crucially, addition of molecular sieves was found to be necessary to ensure efficient and general chirality transfer. Computational studies suggest that the efficiency of chirality transfer is linked to the aggregation of the alcohol nucleophile around the reactive π-bound Au–allylic ether complex. With a single alcohol nucleophile, a high degree of chirality transfer is predicted. However, if three alcohols are present, alternative proton transfer chain mechanisms that erode the efficiency of chirality transfer become competitive. PMID:26248980

  16. X-ray structural and dynamic behaviour study of allyl palladium compounds with fluorinated benzenethiolate bridges

    NASA Astrophysics Data System (ADS)

    Redón, Rocío.; Torrens, Hugo; Ekkehardt Hahn, F.; Lügger, Thomas; Hernández-Ortega, Simón; Toscano, Ruben A.; Morales-Morales, David

    2003-08-01

    In solution, allyl palladium homobimetallic complexes bridged by fluorinated benzenethiolates, [{Pd(μ-SR)(η 3-C 3H 5)} 2] where R=C 6F 5, 1; C 6HF 4-4, 2; C 6H 4F-2, 3; C 6H 4F-3, 4 and C 6H 4F-4, 5, are found as a mixture of syn/ anti and cis/ trans isomers. The variable temperature 1H and 19F NMR study of these compounds show that the four isomers undergo interconversion through two probable mechanisms, allyl rotation assisted by the solvent and inversion of the configuration at the sulphur atoms. The X-ray crystal structure determination of [{Pd(μ-SC 6F 5)(η 3-C 3H 5)} 2] and [{Pd(μ-S C 6HF 4-4)(η 3-C 3H 5)} 2] shown both complexes to be bimetallic with the metal centres found in a slightly distorted square planar environments.

  17. PHOTOOXIDATION OF ALLYL CHLORIDE

    EPA Science Inventory

    The photooxidation of allyl chloride was studied by irradiation either in 100-L Teflon bags or in a 22.7-cu m Teflon smog chamber in the presence of added NOx. In the absence of added hydrocarbons, the reaction involves a Cl atom chain, which leads to a highly reactive system. A ...

  18. Interplay of metal-allyl and metal-metal bonding in dimolybdenum allyl complexes

    SciTech Connect

    John, Kevin D; Martin, Richard L; Obrey, Steven J; Scott, Brian L

    2008-01-01

    Addition of PMe{sub 3} to Mo{sub 2}(allyl){sub 4} afforded Mo{sub 2}(allyl){sub 4}(PMe{sub 3}){sub 2}, in which two of the allyl groups adopt an unprecedented {mu}{sub 2{sup -}}{eta}{sup 1}, {eta}{sup 3} bonding mode; theoretical studies elucidate the role sof the {sigma}- and {pi}-donor ligands in the interplay of metal-allyl and metal-metal bonding.

  19. Palladium(0)-Catalyzed Allylation of Highly Acidic and Nonnucleophilic Anilines. The Origin of Stereochemical Scrambling When Using Allylic Carbonates.

    PubMed

    Moreno-Mañas, Marcial; Morral, Lurdes; Pleixats, Roser

    1998-09-01

    Acidic anilines such as diphenylamine, phenothiazine, and nitroanilines are efficiently allylated under palladium catalysis using allyl carbonates as allylating reagents. A stereochemical study of the reactions of ethyl cis-5-methyl-2-cyclohexenylcarbonate with 4-nitro- and 2,4-dinitroaniline was performed. Bidentate phosphines as stabilizing ligands gave clean retention of configuration whereas triphenylphosphine permitted cis-trans isomerization of the allylic carbonate, the allylation reactions occurring under Curtin-Hammet preequilibrium conditions. PMID:11672246

  20. Enantiomerization of Allylic Trifluoromethyl Sulfoxides Studied by HPLC Analysis and DFT Calculations.

    PubMed

    Bailly, Laetitia; Petit, Emilie; Maeno, Mayaka; Shibata, Norio; Trapp, Oliver; Cardinael, Pascal; Chataigner, Isabelle; Cahard, Dominique

    2016-02-01

    Enantiomerization of allylic trifluoromethyl sulfoxides occurs spontaneously at room temperature through the corresponding allylic trifluoromethanesulfenates via a [2,3]-sigmatropic rearrangement. Dynamic enantioselective high-performance liquid chromatography (HPLC) analysis revealed the stereodynamics of these sulfoxides ranging from chromatographic resolution to peak coalescence at temperatures between 5 and 53 °C. The rate constant of enantiomerization and activation parameters were determined and compared with Density Functional Theory (DFT) calculations. PMID:26689286

  1. From allylic alcohols to aldols by using iron carbonyls as catalysts: computational study on a novel tandem isomerization-aldolization reaction.

    PubMed

    Branchadell, Vicenç; Crévisy, Christophe; Grée, René

    2004-11-01

    The tandem isomerization-aldolization reaction between allyl alcohol and formaldehyde mediated by [Fe(CO)3] was studied with the density functional B3LYP method. Starting from the key [(enol)Fe(CO)3] complex, several reaction paths for the reaction with formaldehyde were explored. The results show that the most favorable reaction path involves first an enol/allyl alcohol ligand-exchange process followed by direct condensation of formaldehyde with the free enol. During this process, formation of the new C-C bond takes place simultaneously with a proton transfer between the enol and the aldehyde. Therefore, the role of [Fe(CO)3] is to catalyze the allyl alcohol to enol isomerization affording the free enol, which adds to the aldehyde in a carbonyl-ene type reaction. Similar results were obtained for the reaction between allyl alcohol and acetaldehyde. PMID:15472940

  2. Mechanistic Study on Oxorhenium-Catalyzed Deoxydehydration and Allylic Alcohol Isomerization.

    PubMed

    Wu, Di; Zhang, Yugen; Su, Haibin

    2016-05-20

    The reaction mechanism of 1,2×n-deoxydehydration (DODH; n=1, 2, 3 …) reactions with 1-butanol as a reductant in the presence of methyltrioxorhenium(VII) catalyst has been investigated by DFT. The reduced rhenium compound, methyloxodihydroxyrhenium(V), serves as the catalytically relevant species in both allylic alcohol isomerization and subsequent DODH processes. Compared with three-step pathway A, involving [1,3]-transposition of allylic alcohols, direct two-step pathway B is an alternative option with lower activation barriers. The rate-limiting step of the DODH reaction is the first hydrogen transfer in methyltrioxorhenium(VII) reduction. Moreover, the increase in the distance between two hydroxyl groups in direct 1,2×n-DODH reactions for C4 and C6 diols results in a higher barrier height. PMID:26991093

  3. Synthetic Studies on Tricyclic Diterpenoids: Direct Allylic Amination Reaction of Isopimaric Acid Derivatives.

    PubMed

    Timoshenko, Mariya A; Kharitonov, Yurii V; Shakirov, Makhmut M; Bagryanskaya, Irina Yu; Shults, Elvira E

    2016-02-01

    A selective synthesis of 7- or 14-nitrogen containing tricyclic diterpenoids was completed according to a strategy in which the key step was the catalyzed direct allylic amination of methyl 14α-hydroxy-15,16-dihydroisopimarate with a wide variety of nitrogenated nucleophiles. It was revealed that the selectivity of the reaction depends on the nature of nucleophile. The catalyzed reaction of the mentioned diterpenoid allylic alcohol with 3-nitroaniline, 3-(trifluoromethyl)aniline, and 4-(trifluoromethyl)aniline yield the subsequent 7α-, 7β- and 14αnitrogen-containing diterpenoids. The reaction with 2-nitroaniline, 4-nitro-2-chloroaniline, 4-methoxy-2-nitroaniline, phenylsulfamide, or tert-butyl carbamate proceeds with the formation of 7α-nitrogen-substituted diterpenoids as the main products. PMID:27308214

  4. Synthetic Studies on Tricyclic Diterpenoids: Direct Allylic Amination Reaction of Isopimaric Acid Derivatives†

    PubMed Central

    Timoshenko, Mariya A.; Kharitonov, Yurii V.; Shakirov, Makhmut M.; Bagryanskaya, Irina Yu.

    2015-01-01

    Abstract A selective synthesis of 7‐ or 14‐nitrogen containing tricyclic diterpenoids was completed according to a strategy in which the key step was the catalyzed direct allylic amination of methyl 14α‐hydroxy‐15,16‐dihydroisopimarate with a wide variety of nitrogenated nucleophiles. It was revealed that the selectivity of the reaction depends on the nature of nucleophile. The catalyzed reaction of the mentioned diterpenoid allylic alcohol with 3‐nitroaniline, 3‐(trifluoromethyl)aniline, and 4‐(trifluoromethyl)aniline yield the subsequent 7α‐, 7β‐ and 14αnitrogen‐containing diterpenoids. The reaction with 2‐nitroaniline, 4‐nitro‐2‐chloroaniline, 4‐methoxy‐2‐nitroaniline, phenylsulfamide, or tert‐butyl carbamate proceeds with the formation of 7α‐nitrogen‐substituted diterpenoids as the main products. PMID:27308214

  5. Chiral sulfoxides in the enantioselective allylation of aldehydes with allyltrichlorosilane: a kinetic study.

    PubMed

    Monaco, Guglielmo; Vignes, Chiara; De Piano, Francesco; Bosco, Assunta; Massa, Antonio

    2012-12-28

    The mechanism of the allylation of aldehydes in the presence of allyltrichlorosilane employing the commercially available (R)-methyl p-tolyl sulfoxide as a Lewis base has been investigated. The combination of kinetic measurements, conductivity analysis and quantum chemical calculations indicates that the reaction proceeds through a dissociative pathway in which an octahedral cationic complex with two sulfoxides is involved. The lack of turnover is ascribed to the formation of neutral sulfurane derivatives. PMID:23139050

  6. Regiodivergent Addition of Phenols to Allylic Oxides

    PubMed Central

    Vaccarello, David N.; Moschitto, Matthew J.; Lewis, Chad A.

    2015-01-01

    The regiodivergent addition of substituted phenols to allylic-oxides has been demonstrated using C2-symmetric palladium complexes. Complex phenol donors tyrosine, estradiol, and griseofulvin follow the predictive model. The Tsuji-Trost reaction is a powerful method to append both O- and C-donors to η3-allyl systems.1 The η3-allyl progenitor structures include allylic esters, carbonates, halides, and oxides. Internal allylic oxides2 remain one of the few systems that retain a marker of stereochemical induction with the newly liberated carbinol. The origin of the products can be traced to the diastereomeric η3-allyl intermediate and stereoisomer of oxide employed. We have recently identified3 a system capable of the conversion of racemic allylic oxides to distinct enantioenriched regioisomers using achiral phenol donors (Scheme 1). The allylic oxide regio-resolution (AORR) allowed the preparation of enantioenriched carbasugar natural products. We have now expanded this study to include a diverse array of achiral and chiral phenol donors. PMID:25933102

  7. Study of intermolecular interaction of allyl chloride with acetone through dielectric and volumetric properties

    NASA Astrophysics Data System (ADS)

    Sudake, Y. S.; Kamble, S. P.; Maharolkar, A. P.; Patil, S. S.; Khirade, P. W.

    2012-06-01

    The static dielectric constant (ɛs)and relaxation time (τ) are determined from complex permittivity spectra of Allyl Chloride (ALC) with Acetone (ACE), which are obtained using the Time Domain Reflectometry (TDR) technique in microwave frequency range 10 MHz to 10 GHz. Density (ρ) and refractive index (nD) were also measured. These parameters are used to determine excess dielectric constant, excess molar volume, and excess molar refraction. The excess parameter is fitted to Redlich-Kister(RK) equation. The values of excess parameters are positive in ALC rich region whereas in ACE rich region are negative.

  8. Iridium-Catalyzed Allylic Substitution

    NASA Astrophysics Data System (ADS)

    Hartwig, John F.; Pouy, Mark J.

    Iridium-catalyzed asymmetric allylic substitution has become a valuable method to prepare products from the addition of nucleophiles at the more substituted carbon of an allyl unit. The most active and selective catalysts contain a phosphoramidite ligand possessing at least one arylethyl substituent on the nitrogen atom of the ligand. In these systems, the active catalyst is generated by a base-induced cyclometalation at the methyl group of this substituent to generate an iridium metalacycle bound by the COD ligand of the [Ir(COD)Cl]2 precursor and one additional labile dative ligand. Such complexes catalyze the reactions of linear allylic esters with alkylamines, arylamines, phenols, alcohols, imides, carbamates, ammonia, enolates and enolate equivalents, as well as typical stabilized carbon nucleophiles generated from malonates and cyanoesters. Iridium catalysts for enantioselective allylic substitution have also been generated from phosphorus ligands with substituents bound by heteroatoms, and an account of the studies of such systems, along with a description of the development of iridium catalysts is included.

  9. Theoretical study on the gas phase reaction of allyl chloride with hydroxyl radical.

    PubMed

    Zhang, Yunju; Chao, Kai; Sun, Jingyu; Zhang, Wanqiao; Shi, Haijie; Yao, Cen; Su, Zhongmin; Pan, Xiumei; Zhang, Jingping; Wang, Rongshun

    2014-02-28

    The reaction of allyl chloride with the hydroxyl radical has been investigated on a sound theoretical basis. This is the first time to gain a conclusive insight into the reaction mechanism and kinetics for important pathways in detail. The reaction mechanism confirms that OH addition to the C=C double bond forms the chemically activated adducts, IM1 (CH2CHOHCH2Cl) and IM2 (CH2OHCHCH2Cl) via low barriers, and direct H-abstraction paths may also occur. Variational transition state model and multichannel RRKM theory are employed to calculate the temperature-, pressure-dependent rate constants. The calculated rate constants are in good agreement with the experimental data. At 100 Torr with He as bath gas, IM6 formed by collisional stabilization is the major products in the temperature range 200-600 K; the production of CH2CHCHCl via hydrogen abstractions becomes dominant at high temperatures (600-3000 K). PMID:24588171

  10. ESCA study of [open quotes]model[close quotes] allyl-based Mo/SiO[sub 2] catalysts

    SciTech Connect

    Aigler, J.M.; Brito, J.L.; Leach, P.A.; Houalla, M.; Proctor, A.; Cooper, N.J.; Hall, W.K.; Hercules, D.M. )

    1993-05-27

    Stoichiometric redox measurements and X-ray photoelectron spectroscopy (XPS or ESCA) studies were performed on an allyl-based Mo/SiO[sub 2] catalyst (1.7 wt % Mo) obtained by the sublimation of Mo([eta][sup 3]-C[sub 3]H[sub 5])[sub 4] onto SiO[sub 2] at 40 [degrees]C. The average oxidation state estimated from stoichiometric measurements correlated well with those reported in the literature. ESCA results indicated that reduction of the Mo/SiO[sub 2] catalyst at 550 [degrees]C primarily led to the formation of Mo[sup 2+]. Also, the results were consistent the reported reversibility of the redox cycle. However, the reported formation of discrete Mo[sup 4+] by oxidation of the reduced catalyst at room temperature could not be substantiated. 17 refs., 4 figs., 2 tabs.

  11. Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix

    NASA Astrophysics Data System (ADS)

    Osuntokun, Jejenija; Ajibade, Peter A.

    2016-09-01

    Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S'-bis(N,N-dimethylthiourea-κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33-7.21 nm for ZnS and 4.95-7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.

  12. Pd-Catalyzed Synthesis of Allylic Silanes from Allylic Ethers

    PubMed Central

    Moser, Ralph; Nishikata, Takashi; Lipshutz, Bruce H.

    2009-01-01

    Allylic phenyl ethers serve as electrophiles towards Pd(0) en route to a variety of allylic silanes. The reactions can be run at room temperature in water as the only medium using micellar catalysis. PMID:19950911

  13. Theoretical Study of the First Transition Row Oxides and Sulfides

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jt.; Maitre, Philippe; Arnold, James O. (Technical Monitor)

    1994-01-01

    The first transition row oxides and sulfides are studied using several different levels of theory. The calculations show the bonding mechanism in the sulfides and oxides to be very similar. For the oxides, accurate experimental data allow the theoretical methods to be calibrated. The same level of theory is used to study the sulfides where there is far less experimental information. For ScO through MnO and CuO the coupled cluster singles and doubles technique including a perturbational estimate of the unliked triple excitations [CCSD(T)] yields spectroscopic constants ((tau)e, (omega)e, and D0) in good agreement with experiment. The triple excitations are found to be very important in achieving this accuracy. For FeO to NiO, the single determinant self-consistent-field (SCF) approach yields pi orbitals that are localized on the metal or oxygen. This appears to cause problems for the single reference techniques; this is discussed in detail for NiO. The complete-active-space SCF/internally contracted averaged coupled pair functional approach (CASSCF/ICACPF) works well for FeO to NiO. The calculation of accurate dipole moments is found to be very difficult.

  14. A computational study on the insertion of CO2 into (PSiP)palladium allyl σ-bond.

    PubMed

    Wang, Qin; Guo, Cai-Hong; Ren, Ying; Wu, Hai-Shun

    2015-05-01

    The insertion of CO2 into the (PSiP)palladium-allyl bond has been investigated using DFT. Three possible modes of CO2 insertion into (PSiP)Pd-allyl bond have been calculated, that is, direct 1.2-insertion mode, metallo-ene mode, and SE2 mode. The metallo-ene mode is the most favorable via the six-membered ring transition state. The results of calculations are consistent with the regioselectivity observed experimentally. The steric and electronic effects of different phosphine substituents have been evaluated by ONIOM and energy decomposition analysis (EDA) methods. For the phosphine substituents P(i-Pr)2 and PPh2, the contribution of electronic effect is greater than that of steric effect for the CO2 insertion into (PSiP)Pd-allyl bond; while for the phosphine substituent PMe2, the contribution of steric effect is slightly greater than that of electronic effect. PMID:25893517

  15. Asymmetric Enzymatic Synthesis of Allylic Amines: A Sigmatropic Rearrangement Strategy.

    PubMed

    Prier, Christopher K; Hyster, Todd K; Farwell, Christopher C; Huang, Audrey; Arnold, Frances H

    2016-04-01

    Sigmatropic rearrangements, while rare in biology, offer opportunities for the efficient and selective synthesis of complex chemical motifs. A "P411" serine-ligated variant of cytochrome P450BM3 has been engineered to initiate a sulfimidation/[2,3]-sigmatropic rearrangement sequence in whole E. coli cells, a non-natural function for any enzyme, providing access to enantioenriched, protected allylic amines. Five mutations in the enzyme substantially enhance its activity toward this new function, demonstrating the evolvability of the catalyst toward challenging nitrene transfer reactions. The evolved catalyst additionally performs the highly enantioselective imidation of non-allylic sulfides. PMID:26970325

  16. NTP Technical Report on the comparative toxicity studies of allyl acetate (CAS No. 591-87-7), allyl alcohol (CAS No. 107-18-6) and acrolein (CAS No. 107-02-8) administered by gavage to F344/N rats and B6C3F1 mice.

    PubMed

    Irwin, Rick D

    2006-07-01

    Allyl acetate, allyl alcohol, and acrolein are used in the manufacture of detergents, plastics, pharmaceuticals, and chemicals and as agricultural agents and food additives. Male and female F344/N rats and B6C3F(1) mice received allyl acetate, allyl alcohol, or acrolein by gavage for 14 weeks. Genetic toxicology studies were conducted in Salmonella typhimurium, Drosophila melanogaster, cultured Chinese hamster ovary cells, rat bone marrow erythrocytes, and mouse peripheral blood erythrocytes. Groups of 10 male and 10 female rats were administered 0, 6, 12, 25, 50, or 100 mg allyl acetate/kg body weight, 0, 1.5, 3, 6, 12, or 25 mg/kg allyl alcohol, or 0, 0.75, 1.25, 2.5, 5, or 10 mg/kg acrolein in 0.5% methylcellulose by gavage, 5 days per week for 14 weeks. Groups of 10 male and 10 female mice were administered 0, 8, 16, 32, 62.5, or 125 mg/kg allyl acetate, 0, 3, 6, 12, 25, or 50 mg/kg allyl alcohol, or 0, 1.25, 2.5, 5, 10, or 20 mg/kg acrolein in 0.5% methylcellulose by gavage, 5 days per week for 14 weeks. In the allyl acetate rat study, all males and females in the 100 mg/kg groups died or were killed moribund by day 8; there were no other deaths. In the allyl alcohol study, all rats survived to the end of the study except one 6 mg/kg female. In the acrolein rat study, eight males and eight females in the 10 mg/kg groups died by week 9 of the study. Two males in the 2.5 and 5 mg/kg groups and one or two females in the 1.25, 2.5, and 5 mg/kg groups also died early; two of these deaths were gavage accidents. In the allyl acetate mouse study, all males and females in the 125 mg/kg group died during the first week of the study. All other early deaths, except five 62.5 mg/kg males and one 32 mg/kg female, were gavage accidents. In the allyl alcohol mouse study, one 50 mg/kg female died due to a gavage accident; all other animals survived to the end of the study. In the acrolein mouse study, all males and females administered 20 mg/kg died during the first week of

  17. XAFS characterization of industrial catalysts: in situ study of phase transformation of nickel sulfide

    NASA Astrophysics Data System (ADS)

    Wang, J.; Jia, Z.; Wang, Q.; Zhao, S.; Xu, Z.; Yang, W.; Frenkel, A. I.

    2016-05-01

    The online sulfiding process for nickel-contained catalyst often ends up with a nickel sulfide mixture in refinery plant. To elucidate the local environment of nickel and its corresponding sulfur species, a model catalyst (nickel sulfide) and model thermal process were employed to explore the possibilities for characterization of real catalysts in industrial conditions. The present investigation shows effectiveness of in situ XANES and EXAFS measurements for studying the phase stability and phase composition in these systems, which could be used to simulate real sulfiding process in industrial reactions, such as hydrodesulfurizations of oil.

  18. Adsorption of acrolein, propanal, and allyl alcohol on Pd(111): a combined infrared reflection-absorption spectroscopy and temperature programmed desorption study.

    PubMed

    Dostert, Karl-Heinz; O'Brien, Casey P; Mirabella, Francesca; Ivars-Barceló, Francisco; Schauermann, Swetlana

    2016-05-18

    Atomistic-level understanding of the interaction of α,β-unsaturated aldehydes and their derivatives with late transition metals is of fundamental importance for the rational design of new catalytic materials with the desired selectivity towards C[double bond, length as m-dash]C vs. C[double bond, length as m-dash]O bond partial hydrogenation. In this study, we investigate the interaction of acrolein, and its partial hydrogenation products propanal and allyl alcohol, with Pd(111) as a prototypical system. A combination of infrared reflection-absorption spectroscopy (IRAS) and temperature programmed desorption (TPD) experiments was applied under well-defined ultrahigh vacuum (UHV) conditions to obtain detailed information on the adsorption geometries of acrolein, propanal, and allyl alcohol as a function of coverage. We compare the IR spectra obtained for multilayer coverages, reflecting the molecular structure of unperturbed molecules, with the spectra acquired for sub-monolayer coverages, at which the chemical bonds of the molecules are strongly distorted. Coverage-dependent IR spectra of acrolein on Pd(111) point to the strong changes in the adsorption geometry with increasing acrolein coverage. Acrolein adsorbs with the C[double bond, length as m-dash]C and C[double bond, length as m-dash]O bonds lying parallel to the surface in the low coverage regime and changes its geometry to a more upright orientation with increasing coverage. TPD studies indicate decomposition of the species adsorbed in the sub-monolayer regime upon heating. Similar strong coverage dependence of the IR spectra were found for propanal and allyl alcohol. For all investigated molecules a detailed assignment of vibrational bands is reported. PMID:27149902

  19. Theoretical Studies on Heavy Metal Sulfides in Solution

    SciTech Connect

    Tossell, John A.

    2007-10-31

    concepts have been worked out and we are therefore proposing to move to a new area, that of humic acids (while continuing our studies complexes formed by As oxides and sulfides, now applied to functional groups present in humic acids).

  20. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Aditi; Attar, Andrew R.; Leone, Stephen R.

    2016-03-01

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH2 =CHCH2I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground (2P3/2, I) and spin-orbit excited (2P1/2, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N4/5 edge (45-60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region of the repulsive nIσ∗C—I excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ∗ states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ∗(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs-65 fs and decay completely by 145 fs-185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic structure in the transition state region. The results provide a benchmark for

  1. Formation, stability, and reactivity studies of neutral iron sulfide clusters

    NASA Astrophysics Data System (ADS)

    Yin, Shi; Wang, Zhechen; Bernstein, Elliot

    2014-03-01

    Different methods are used to generate neutral iron sulfide clusters to study their formation, stability, and reactivity, employing a time of flight mass spectrometer (TOFMS) with VUV (118 nm) radiation single photon ionization (SPI). Neutral FemSn (m = 1-4, n = 1-6), and hydrogen containing FemSnHx (x >0, n > m) clusters are generated by the reaction of seeded H2S in a helium carrier gas with laser ablated iron metal within a supersonic nozzle. The observed strong signal of association products Fe2S2(SH)0,1 M (M = CO, C2H4, C3H6) suggest that the Fe2S2(SH)0,1 clusters have the high activity for interactions with these small molecules. In order to avoid the effect for reactivity from hydrogen containing clusters, pure FemSnclusters are generated through laser ablation of a mixed iron/sulfur target in the presence of a pure helium carrier gas. (FeS)m (m = 1-4) is observed to be the most stable series. Reaction of CO and H2 on neutral (FeS)1,2clusters is farther investigated both experimentally and theoretically. A size dependent reactivity of iron sulfide clusters toward CO is characterized. The reaction FeS + CO --> Fe + OCS is found for the FeS cluster. Products Fe2S 213COH2 and Fe2S 213COH4 are identified for reactions of 13CO and H2 on Fe2S2 clusters: this suggests that the Fe2S2 cluster has a high catalytic activity for hydrogenation reactions of CO to form formaldehyde and methanol. DFT calculations are performed to explore the potential energy surfaces for the two reactions: Fe2S2 + CO + 2H2 --> Fe2S2 + CH3OH; and Fe2S2 + CO + H2 --> Fe2S2 + CH2O.

  2. Mild and Site-Selective Allylation of Enol Carbamates with Allylic Carbonates under Rhodium Catalysis.

    PubMed

    Sharma, Satyasheel; Han, Sang Hoon; Oh, Yongguk; Mishra, Neeraj Kumar; Han, Sangil; Kwak, Jong Hwan; Lee, Seok-Yong; Jung, Young Hoon; Kim, In Su

    2016-03-18

    The rhodium(III)-catalyzed mild and site-selective C-H allylation of enol carbamates with 4-vinyl-1,3-dioxolan-2-one and allylic carbonates affords allylic alcohols and terminal allylated products, respectively. The assistance of the carbamoyl directing group provides a straightforward preparation of biologically and synthetically important allylated enol carbamates. PMID:26906724

  3. Synthesis and study of Sr-substituted misfit layer sulfides

    SciTech Connect

    Grippa, A.Yu. . E-mail: grippa@icr.chem.msu.ru; Lidin, S.; D'yachenko, O.G.; Rupasov, D.P.; Antipov, E.V.

    2005-01-04

    Two series of [(Ln{sub 1/3}Sr{sub 2/3}S){sub 1.5}]{sub 1.15}NbS{sub 2} (1.5Q/1H) and (Ln{sub 1-x}Sr{sub x}S){sub 1+y}NbS{sub 2} (1Q/1H) misfit layer sulfides have been synthesised and studied by X-ray powder and single crystal diffraction, EDX-analysis and magnetic measurements. For the early lanthanides (Ln = La, Ce) only the (Ln{sub 1-x}Sr{sub x}S){sub 1+y}NbS{sub 2} (x < 0.40-0.45, y = 0.15-0.17) compounds were formed whereas for late lanthanides (Ln = Pr, Nd, Sm, Gd-Er, Yb, Lu), and yttrium, both types of phases can be obtained. The crystal structure of (Pr{sub 0.55}Sr{sub 0.45}S){sub 1.15}NbS{sub 2} has been refined on the basis of X-ray single crystal data using the superspace approach. It consists of double layers [Pr{sub 0.55}Sr{sub 0.45}S] of NaCl-type (Q-part: a = 5.799(3) A, b = 5.810(2) A, c = 23.331(9) A, z = 4) and NbS{sub 2}-sandwiches (H-part: a = 3.332(3) A), z = 8, yielding a q-vector q = ({alpha} 0 0), {alpha} = 0.74) alternating along the c-direction. The superspace group pair is Fm2m ({alpha} 0 0):Fm2m ({alpha} 0 0) (No. 42.7). The refinement converged to R{sub w(obs)} = 0.069. According to the structure refinement and EDX-analysis data in the [Pr{sub 0.55}Sr{sub 0.45}S]-slab almost half of the Pr-atoms are randomly replaced by Sr. The minimal formal value of charge transfer from the Q- to the H-part of the structure necessary to stabilise the misfit Nb-based layer sulfides has been estimated as about 0.6 e per Nb atom.

  4. Radical cations of sulfides and disulfides: An ESR study

    SciTech Connect

    Bonazzola, L.; Michaut, J.P.; Roncin, J.

    1985-09-15

    Exposure of dilute solutions of dimethylsulfide, methanethiol, tetrahydrothiophene, terbutyl and diterbutyl-sulfides, dimethyl-disulfide, and diterbutyldisulfide, in freon at 77 K to /sup 60/Co ..gamma.. rays gave the corresponding cations. From the reported ESR spectra, g tensors were obtained. It was found that both sulfide and disulfide cations exhibit the same g tensor: (g/sub max/ = 2.034 +- 0.002, g/sub int/ = 2.017 +- 0.001, g/sub min/ = 2.001 +- 0.005). From this result it has been shown that the disulfide cation is planar. This finding was supported by fully optimized geometry ab initio calculations.

  5. Tsuji-Trost N-allylation with allylic acetates using cellulose-Pd catalyst

    EPA Science Inventory

    Allylic amines are synthesized using heterogeneous cellulose-Pd catalyst via N-allylation of amines; aliphatic and benzyl amines undergo facile reaction with substituted and unsubstituted allyl acetates in high yields.

  6. Aryne 1,2,3-Trifunctionalization with Aryl Allyl Sulfoxides.

    PubMed

    Li, Yuanyuan; Qiu, Dachuan; Gu, Rongrong; Wang, Junli; Shi, Jiarong; Li, Yang

    2016-08-31

    An aryne 1,2,3-trisubstitution with aryl allyl sulfoxides is accomplished, featuring an incorporation of C-S, C-O, and C-C bonds on the consecutive positions of a benzene ring. The reaction condition is mild with broad substrate scope. Preliminary mechanistic study suggests a cascade formal [2 + 2] reaction of aryne with S═O bond, an allyl S → O migration, and a Claisen rearrangement. PMID:27527334

  7. Velocity Map Imaging Study of Ion-Radical Chemistry: Charge Transfer and Carbon-Carbon Bond Formation in the Reactions of Allyl Radicals with C(.).

    PubMed

    Pei, Linsen; Farrar, James M

    2016-08-11

    We present an experimental and computational study of the dynamics of collisions of ground state carbon cations with allyl radicals, C3H5, at a collision energy of 2.2 eV. Charge transfer to produce the allyl cation, C3H5(+), is exoergic by 3.08 eV and proceeds via energy resonance such that the electron transfer occurs without a significant change in nuclear velocities. The products have sufficient energy to undergo the dissociation process C3H5(+) → C3H4(+) + H. Approximately 80% of the reaction products are ascribed to charge transfer, with ∼40% of those products decaying via loss of a hydrogen atom. We also observe products arising from the formation of new carbon-carbon bonds. The experimental velocity space flux distributions for the four-carbon products are symmetric about the centroid of the reactants, providing direct evidence that the products are mediated by formation of a C4H5(+) complex living at least a few rotational periods. The primary four-carbon reaction products are formed by elimination of molecular hydrogen from the C4H5(+) complex. More than 75% of the nascent C4H3(+) products decay by C-H bond cleavage to yield a C4H2(+) species. Quantum chemical calculations at the MP2/6-311+g(d,p) level of theory support the formation of a nonplanar cyclic C4H5(+) adduct that is produced when the p-orbital containing the unpaired electron on C(+) overlaps with the unpaired spin density on the terminal carbon atoms in allyl. Product formation then occurs by 1,2-elimination of molecular hydrogen from the cyclic intermediate to form a planar cyclic C4H3(+) product. The large rearrangement in geometry as the C4H3(+) products are formed is consistent with high vibrational excitation in that product and supports the observation that the majority of those products decay to form the C4H2(+) species. PMID:27434380

  8. Regioselective Transition-Metal-Free Allyl-Allyl Cross-Couplings.

    PubMed

    Ellwart, Mario; Makarov, Ilya S; Achrainer, Florian; Zipse, Hendrik; Knochel, Paul

    2016-08-22

    Readily prepared allylic zinc halides undergo SN 2-type substitutions with allylic bromides in a 1:1 mixture of THF and DMPU providing 1,5-dienes regioselectively. The allylic zinc species reacts at the most branched end (γ-position) of the allylic system furnishing exclusively γ,α'-allyl-allyl cross-coupling products. Remarkably, the double bond stereochemistry of the allylic halide is maintained during the cross-coupling process. Also several functional groups (ester, nitrile) are tolerated. This cross-coupling of allylic zinc reagents can be extended to propargylic and benzylic halides. DFT calculations show the importance of lithium chloride in this substitution. PMID:27430745

  9. Product distribution study of the Cl-atom initiated oxidation of ethyl methyl sulfide and diethyl sulfide

    NASA Astrophysics Data System (ADS)

    Oksdath-Mansilla, Gabriela; Peñéñory, Alicia B.; Barnes, Ian; Wiesen, Peter; Teruel, Mariano A.

    2014-03-01

    The products formed in the gas-phase reactions of Cl atoms with (CH3CH2)2S and CH3CH2SCH3 have been investigated in a large volume reactor in NOx-free air at atmospheric pressure and (298 ± 2) K using long path “in situ” FTIR spectroscopy for the analysis. HCl, SO2 and CH3CHO were identified as the major products for both reactions. For the Cl + CH3CH2SCH3 reaction HCHO was also identified as a major product. The yields of the products obtained for the reaction of Cl with (CH3CH2)2S were (59 ± 2) %, (52 ± 5) % and (103 ± 4) % for HCl, SO2 and CH3CHO, respectively. For the reaction of Cl with CH3CH2SCH3 yields of (43 ± 5) %, (55 ± 3) %, (58 ± 3) % and (53 ± 5) % were obtained for HCl, SO2, CH3CHO and HCHO, respectively. This is the first products and mechanistic study for the gas-phase Cl-initiated oxidation of non-CH3SCH3 alkyl sulfides. Comparison with previous results for the reaction of Cl with dimethyl sulfide is made and simple atmospheric degradation mechanisms are postulated to explain the formation of the observed products.

  10. Palladium-Catalyzed Aminocarbonylation of Allylic Alcohols.

    PubMed

    Li, Haoquan; Neumann, Helfried; Beller, Matthias

    2016-07-11

    A benign and efficient palladium-catalyzed aminocarbonylation reaction of allylic alcohols is presented. The generality of this novel process is demonstrated by the synthesis of β,γ-unsaturated amides including aliphatic, cinnamyl, and terpene derivatives. The choice of ligand is crucial for optimal carbonylation processes: Whereas in most cases the combination of PdCl2 with Xantphos (L6) gave best results, sterically hindered substrates performed better in the presence of simple triphenylphosphine (L10), and primary anilines gave the best results using cataCXium® PCy (L8). The reactivity of the respective catalyst system is significantly enhanced by addition of small amounts of water. Mechanistic studies and control experiments revealed a tandem allylic alcohol amination/C-N bond carbonylation reaction sequence. PMID:27283958

  11. Study of microstructure and electroluminescence of zinc sulfide thin film

    NASA Astrophysics Data System (ADS)

    Zhao-hong, Liu; Yu-jiang, Wang; Mou-zhi, Chen; Zhen-xiang, Chen; Shu-nong, Sun; Mei-chun, Huang

    1998-03-01

    The electroluminscent zinc sulfide thin film doped with erbium, fabricated by thermal evaporation with two boats, are examined. The surface and internal electronic states of ZnS thin film are measured by means of x-ray diffraction and x-ray photoemission spectroscopy. The information on the relations between electroluminescent characteristics and internal electronic states of the film is obtained. And the effects of the microstructure of thin film doped with rare earth erbium on electroluminescence are discussed as well.

  12. Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device

    PubMed Central

    Fremerey, Peter; Jess, Andreas; Moos, Ralf

    2015-01-01

    In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H2S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions. PMID:26512669

  13. Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device.

    PubMed

    Fremerey, Peter; Jess, Andreas; Moos, Ralf

    2015-01-01

    In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H₂S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions. PMID:26512669

  14. Allyl-silica Hybrid Monoliths For Chromatographic Application

    NASA Astrophysics Data System (ADS)

    Guo, Wenjuan

    Column technology continues to be the most investigated topics in the separation world, since the column is the place where the chromatographic separation happens, making it the heart of the separation system. Allyl-silica hybrid monolithic material has been exploited as support material and potential stationary phases for liquid chromatography; the stationary phase anchored to the silica surface by Si-C bond, which is more pH stable than traditional stationary phase. First, nuclear magnetic resonance spectroscopy has been used to study the sol in the synthesis of allyl-silica hybrid monoliths. Allyl-trimethoxysilane (allyl-TrMOS), dimethyldimethoxysilane (DMDMOS) and tetramethoxysilane (TMOS) have been served as co-precursors in the sol-gel synthesis of organo-silica hybrid monolithic columns for liquid chromatography (LC). 29Si nuclear magnetic resonance (NMR) and 1H NMR spectroscopy were employed to monitor reaction profiles for the acid-catalyzed hydrolysis and initial condensation reactions of the individual precursor and the hybrid system. 29Si-NMR has also been used to identify different silane species formed during the reactions. The overall hydrolysis rate has been found to follow the trend DMDMOS > allyl-TrMOS > TMOS, if each precursor is reacted individually (homo-polymerization). Precursors show different hydrolysis rate when reacted together in the hybrid system than they are reacted individually. Cross-condensation products of TMOS and DMDMOS (QD) arise about 10 minutes of initiation of the reaction. The allyl-silica monolithic columns for capillary liquid chromatography can only be prepared in capillaries with 50 im internal diameter with acceptable performance. One of the most prominent problems related to the synthesis of silica monolithic structures is the volume shrinkage. The synthesis of allylfunctionalized silica hybrid monolithic structures has been studied in an attempt to reduce the volume shrinkage during aging, drying and heat treatment

  15. The Reaction of Carbon Dioxide with Palladium Allyl Bonds

    PubMed Central

    Wu, Jianguo; Green, Jennifer C.; Hruszkewycz, Damian P.; Incarvito, Christopher D.; Schmeier, Timothy J.

    2010-01-01

    A family of palladium allyl complexes of the type bis(2-methylallyl)Pd(L) (L = PMe3 (1), PEt3 (2), PPh3 (3) or NHC (4); NHC = 1,3-Bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene) have been prepared through the reaction of bis(2-methylallyl)Pd with the appropriate free ligand. Compounds 1–4 contain one η1 and one η3-2-methylallyl ligand and 3 was characterized by X-ray crystallography. These complexes react rapidly with CO2 at low temperature to form well defined unidentate palladium carboxylates of the type (η3-2-methylallyl)Pd(OC(O)C4H7)(L) (L = PMe3 (6), PEt3 (7), PPh3 (8) or NHC (9). The structure of 9 was elucidated using X-ray crystallography. The mechanism of the reaction of 1–4 with CO2 was probed using a combination of experimental and theoretical (density functional theory) studies. The coordination mode of the allyl ligand is crucial and whereas nucleophilic η1-allyls react rapidly with CO2, η3-allyls do not react. We propose that the reaction of η1-palladium allyls with CO2 does not proceed via direct insertion of CO2 into the Pd-C bond but through nucleophilic attack of the terminal olefin on electrophilic CO2, followed by an associative substitution at palladium. PMID:21218132

  16. High-temperature study of superconducting hydrogen and deuterium sulfide

    NASA Astrophysics Data System (ADS)

    Durajski, A. P.; Szczȩśniak, R.; Pietronero, L.

    2016-05-01

    Hydrogen-rich compounds are extensively explored as candidates for a high-temperature superconductors. Currently, the measured critical temperature of $203$ K in hydrogen sulfide (H$_3$S) is among the highest over all-known superconductors. In present paper, using the strong-coupling Eliashberg theory of superconductivity, we compared in detail the thermodynamic properties of two samples containing different hydrogen isotopes H$_3$S and D$_3$S at $150$ GPa. Our research indicates that it is possible to reproduce the measured values of critical temperature $203$ K and $147$ K for H$_3$S and D$_3$S by using a Coulomb pseudopotential of $0.123$ and $0.131$, respectively. However, we also discuss a scenario in which the isotope effect is independent of pressure and the Coulomb pseudopotential for D$_3$S is smaller than for H$_3$S. For both scenarios, the energy gap, specific heat, thermodynamic critical field and related dimensionless ratios are calculated and compared with other conventional superconductors. We shown that the existence of the strong-coupling and retardation effects in the systems analysed result in significant differences between values obtained within the framework of the Eliashberg formalism and the prediction of the Bardeen-Cooper-Schrieffer theory.

  17. Reflectivity and microhardness of sulfide minerals as genetic information source (case study: pyrite and arsenopyrite)

    NASA Astrophysics Data System (ADS)

    Sinkina, E. A.; Korovkin, M. V.; Savinova, O. V.; Makarova, A. A.

    2016-03-01

    Reflectivity and microhardness of pyrite and arsenopyrite of black shale gold-ore deposits in Chertovo Koryto (Patom upland) were studied. It was found that sulfides of different generations are characterized by different values of above-mentioned parameters which is associated mechanical and isomorphic impurities.

  18. Petrographic Studies of Sulfide Assemblages in the Allende CV3 Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Wetteland, Chris; Brearley, Adrian J.

    2002-01-01

    Studies of sulfides in Allende show that pyrrhotite occurs mainly within chondrules and has been partially replaced by pentlandite. Ni and Co contents of pentlandites within individual chondrules are homogeneous, but are variable between chondrules. Additional information is contained in the original extended abstract.

  19. Allyl isothiocyanate from mustard seed is effective in reducing the levels of volatile sulfur compounds responsible for intrinsic oral malodor.

    PubMed

    Tian, Minmin; Hanley, A Bryan; Dodds, Michael W J

    2013-06-01

    Oral malodor is a major social and psychological issue that affects general populations. Volatile sulfur compounds (VSCs), particularly hydrogen sulfide (H₂S) and methyl mercaptan (CH₃SH), are responsible for most oral malodor. The objectives for this study were to determine whether allyl isothiocyanate (AITC) at an organoleptically acceptable level can eliminate VSCs containing a free thiol moiety and further to elucidate the mechanism of action and reaction kinetics. The study revealed that gas chromatograph with a sulfur detector demonstrated a good linearity, high accuracy and sensitivity on analysis of VSCs. Zinc salts eliminate the headspace level of H₂S but not CH₃SH. AITC eliminates both H₂S and CH₃SH via a nucleophilic addition reaction. In addition, a chemical structure-activity relationship study revealed that the presence of unsaturated group on the side chain of the isothiocyanate accelerates the elimination of VSCs. PMID:23470258

  20. A computational study of adhesion between rubber and metal sulfides at rubber-brass interface

    NASA Astrophysics Data System (ADS)

    Ling, Chian Ye; Hirvi, Janne T.; Suvanto, Mika; Bazhenov, Andrey S.; Ajoviita, Tommi; Markkula, Katriina; Pakkanen, Tapani A.

    2015-05-01

    Computational study at level of density functional theory has been carried out in order to investigate the adhesion between rubber and brass plated steel cord, which has high importance in tire manufacturing. Adsorption of natural rubber based adsorbate models has been studied on zinc sulfide, ZnS(1 1 0), and copper sulfide, Cu2S(1 1 1) and CuS(0 0 1), surfaces as the corresponding phases are formed in adhesive interlayer during rubber vulcanization. Saturated hydrocarbons exhibited weak interactions, whereas unsaturated hydrocarbons and sulfur-containing adsorbates interacted with the metal atoms of sulfide surfaces more strongly. Sulfur-containing adsorbates interacted with ZnS(1 1 0) surface stronger than unsaturated hydrocarbons, whereras both Cu2S(1 1 1) and CuS(0 0 1) surfaces showed opposite adsorption preference as unsaturated hydrocarbons adsorbed stronger than sulfur-containing adsorbates. The different interaction strength order can play role in rubber-brass adhesion with different relative sulfide concentrations. Moreover, Cu2S(1 1 1) surface exhibits higher adsorption energies than CuS(0 0 1) surface, possibly indicating dominant role of Cu2S in the adhesion between rubber and brass.

  1. A computational study of the hydroxy-group directivity in the peroxyformic acid epoxidation of the chiral allylic alcohol (Z)-3-methyl-3-penten-2-ol: control of threo diastereoselectivity through allylic strain and hydrogen bonding

    PubMed

    Adam; Bach; Dmitrenko; Saha-Moller

    2000-10-01

    Eight transition structures for the epoxidation of the chiral allylic alcohol (Z)-3-methyl-3-penten-2-ol (1) with peroxyformic acid have been computed by the B3LYP density functional method with 6-31G(d) and 6-31G(d,p) basis sets. The four lowest-energy transition structures and their respective pre-reaction clusters were fully re-optimized by employing 6-311+G(d,p) and correlation-consistent polarized valence triple-zeta cc-pZTV basis sets. The relative energies of the transition structures were found to be highly sensitive to the basis set applied. The transition state for threo product formation, anti-(2S,3R,4S)-TS-3f, with the lowest total energy (at B3LYP/611+G(d,p) and B3LYP/AUG-cc-pZTV) of all the TSs examined, has a planar peracid moiety and is a precursor for the 1,4 migration of the peracid hydrogen atom Ha to the peroxy oxygen atom O4. The use of different basis sets does not affect markedly the geometry of the anti-(2S,3R,4S)-TS-3f transition structure. The transition state for erythro epoxidation, syn-(2R,3R,4S)-TS-3a, is 0.9 kcal/mol higher in energy and possesses a nonplanar peracid approaching the C=C bond in a manner intermediate between spiro and planar. The relative energy and nonplanarity of this syn transition structure is highly sensitive to the basis set applied. With the smaller basis set, 6-31G(d,p), it is actually the lowest-energy TS and the peracid moiety is significantly skewed. The contribution of the four lowest energy transition stuctures 3a, 3b, 3e, and 3f to the threo/erythro product ratio has been assessed through an extended Curtin-Hammet principle analysis of this multi-transition state reaction. It has been found that this approach agrees well with the experimental threo/erythro product ratio, in particular when the corrections for a solvent effect are made within the self-consistent isodensity polarized continuum model (SCI-PCM). PMID:11052124

  2. Regioselective hydroformylation of allylic alcohols.

    PubMed

    Lightburn, Thomas E; De Paolis, Omar A; Cheng, Ka H; Tan, Kian L

    2011-05-20

    A highly regioselective hydroformylation of allylic alcohols is reported toward the synthesis of β-hydroxy-acid and aldehyde products. The selectivity is achieved through the use of a ligand that reversibly binds to alcohols in situ, allowing for a directed hydroformylation to occur. The application to trisubstituted olefins was also demonstrated, which yields a single diastereomer product consistent with a stereospecific addition of CO and hydrogen. PMID:21504208

  3. Regioselective Hydroformylation of Allylic Alcohols

    PubMed Central

    Lightburn, Thomas E.; De Paolis, Omar A.; Cheng, Ka H.; Tan, Kian L.

    2011-01-01

    A highly regioselective hydroformylation of allylic alcohols is reported towards the synthesis of β-hydroxy-acid and aldehyde products. The selectivity is achieved through the use of a ligand that reversibly binds to alcohols in situ, allowing for a directed hydroformylation to occur. The application to trisubstituted olefins was also demonstrated, which yields a single diastereomer product consistent with a stereospecific addition of CO and hydrogen. PMID:21504208

  4. Allyl alcohol activation of protein kinase C delta leads to cytotoxicity of rat hepatocytes.

    PubMed

    Maddox, Jane F; Roth, Robert A; Ganey, Patricia E

    2003-05-01

    Hepatotoxicity of allyl alcohol involves its bioactivation to acrolein and subsequent protein sulfhydryl loss and lipid peroxidation. However, the links between these events and hepatocellular death are not known. The purpose of these studies was to examine whether specific signal transduction pathways are associated with allyl alcohol toxicity in hepatocytes. Inhibition or augmentation of cyclic AMP and/or protein kinase A (PKA) by Rp-Ado-3N,5N-cyclic monophosphorothioate triethylamine salt or 3-isobutyl-1-methylxanthine had no effect on allyl alcohol-induced cell death. H-7, an inhibitor of PKA, PKC, and PKG, partially inhibited cell killing by allyl alcohol, whereas chelerythrine chloride, a nonselective PKC inhibitor, almost completely abolished allyl alcohol cytotoxicity. Neither 2,2N,3,3N,4,4N-hexahydroxy-1,1N,-biphenyl-6,6N-dimethanol-dimethyl ether, a selective PKC alpha and beta inhibitor, nor bisindolylmaleimide I, an inhibitor of PKC alpha, beta, and epsilon, had any effect on allyl alcohol cytotoxicity. In contrast, rottlerin, a selective PKCdelta inhibitor, blocked hepatocellular killing by allyl alcohol. Cytoprotection by chelerythrine chloride and rottlerin was not the result of inhibition of bioactivation of allyl alcohol because each inhibitor also prevented cell death from acrolein. Western blotting and immunohistochemical techniques revealed that allyl alcohol stimulated phosphorylation and translocation of PKCdelta to hepatocyte membranes (i.e., activation), and this activity was inhibited by rottlerin. Cell death appeared to occur via oncotic necrosis rather than apoptosis based on single-stranded DNA ELISA and propidium iodide staining. Together, these results indicate that activation of PKCdelta is a critical, early event in initiating hepatocyte injury and death from allyl alcohol. PMID:12755590

  5. Feasibility study on high-temperature sorption of hydrogen sulfide by natural soils.

    PubMed

    Ko, Tzu-Hsing; Chu, Hsin; Tseng, Jeou-Jen

    2006-08-01

    In this study, seven natural soils were tested for the sorption of hydrogen sulfide from coal gasification gas at high temperature. Results indicate that the LP natural soil has the best performance and the highest sulfur sorption capacity. After extracting free iron oxides, most natural soils have no sorption efficiency. The free iron oxides, therefore, proved to be the major components that react with hydrogen sulfide to form iron sulfides. The sulfur sorption capacity, either determined by EA or breakthrough time, is very close to the theoretical value based on the stoichiometric calculation with the content of free iron oxides. Moreover, the presence of CO is a positive effect while H2 is a negative effect. This can be explained via the water-shift reaction. On the basis of the results of temperature-programmed sulfidation (TPS), the starting temperature for the sorption of hydrogen sulfide is between 623-673 K. From the analyses of temperature-programmed oxidation (TPO) and XPS, the iron polysulfides are the major products and approximately 90% regeneration efficiency can be theoretically achieved while the temperature is controlled higher than 813 K. In the regeneration tests, the results show that the LP natural soil can be regenerated and thus reused after the oxidation process. No significant degeneration occurs on the LP natural soil after five sorption/regeneration cycles. The sulfur sorption capacity of the tenth regenerated soil can be achieved at least 80% compared to the fresh one. The experimental analyzed SO2 concentration from the regeneration process is almost identical to the theoretical calculated equilibrium concentration of the process. Maghemite is the main product after the regeneration process. PMID:16527331

  6. O-Allylation of phenols with allylic acetates in aqueous media using a magnetically separable catalytic system

    EPA Science Inventory

    Allylic ethers were synthesized in water using magnetically recoverable heterogeneous Pd catalyst via O-allylation of phenols with allylic acetates under ambient conditions. Aqueous reaction medium, easy recovery of the catalyst using an external magnet, efficient recycling, and ...

  7. Chronoamperometric study of mild steel pitting in sodium sulfide aqueous solution

    SciTech Connect

    Otero, T.F.; Achucarro, C. . Dept. de Ciencia y Tecnologia de Polimeros)

    1994-08-01

    Mild steel samples were studied by chronoamperometry in sodium sulfide (Na[sub 2]S) aqueous solution. Pit nucleation and growth also were monitored by optical microscopy. The influence of variables such as temperature, polarization potential, surface roughness, the presence of electrochemically generated oxide layers, and the simultaneous presence of potassium hydroxide (KOH) was studied. The influence of each parameter on pit shape and growth was reviewed. Different reactions and competitive processes were proposed based on the experimental results.

  8. Kinetic and thermodynamic studies on the disulfide-bond reducing potential of hydrogen sulfide.

    PubMed

    Vasas, Anita; Dóka, Éva; Fábián, István; Nagy, Péter

    2015-04-30

    The significance of persulfide species in hydrogen sulfide biology is increasingly recognized. However, the molecular mechanisms of their formation remain largely elusive. The obvious pathway of the reduction of biologically abundant disulfide moieties by sulfide was challenged on both thermodynamic and kinetic grounds. Using DTNB (5,5'-dithiobis-(2-nitrobenzoic acid), also known as Ellman's reagent) as a model disulfide we conducted a comprehensive kinetic study for its reaction with sulfide. The bimolecular reaction is relatively fast with a second-order rate constant of 889 ± 12 M(-1)s(-1) at pH = 7.4. pH dependence of the rate law revealed that the reaction proceeds via the bisulfide anion species with an initial nucleophilic thiol-disulfide exchange reaction to give 5-thio-2-nitrobenzoic acid (TNB) and TNB-persulfide with a pH independent second-order rate constant of 1090 ± 12 M(-1)s(-1). However, kinetic studies and stoichiometric analyses in a wide range of reactant ratios together with kinetic simulations revealed that it is a multistep process that proceeds via kinetically driven, practically irreversible reactions along the disulfide → persulfide → inorganic polysulfides axis. The kinetic model postulated here, which is fully consistent with the experimental data, suggests that the TNB-persulfide is further reduced by sulfide with a second-order rate constant in the range of 5 × 10(3) - 5 × 10(4) M(-1)s(-1) at pH 7.4 and eventually yields inorganic polysulfides and TNB. The reactions of cystine and GSSG with sulfide were found to be significantly slower and to occur via more complicated reaction schemes. (1)H NMR studies suggest that these reactions also generate Cys-persulfide and inorganic polysulfide species, but in contrast with DTNB, in consecutive equilibrium processes that are sensitive to changes in the reactant and product ratios. Collectively, our results demonstrate that the reaction of disulfides with sulfide is a highly system

  9. Interdisciplinary neurotoxicity inhalation studies: Carbon disulfide and carbonyl sulfide research in F344 rats

    SciTech Connect

    Sills, Robert C. . E-mail: sills@niehs.nih.gov; Harry, G. Jean; Valentine, William M.; Morgan, Daniel L.

    2005-09-01

    Inhalation studies were conducted on the hazardous air pollutants, carbon disulfide, which targets the central nervous system (spinal cord) and peripheral nervous system (distal portions of long myelinated axons), and carbonyl sulfide, which targets the central nervous system (brain). The objectives were to investigate the neurotoxicity of these compounds by a comprehensive evaluation of function, structure, and mechanisms of disease. Through interdisciplinary research, the major finding in the carbon disulfide inhalation studies was that carbon disulfide produced intra- and intermolecular protein cross-linking in vivo. The observation of dose-dependent covalent cross-linking in neurofilament proteins prior to the onset of lesions is consistent with this process contributing to the development of the neurofilamentous axonal swellings characteristic of carbon disulfide neurotoxicity. Of significance is that valine-lysine thiourea cross-linking on rat globin and lysine-lysine thiourea cross-linking on erythrocyte spectrin reflect cross-linking events occurring within the axon and could potentially serve as biomarkers of carbon disulfide exposure and effect. In the carbonyl sulfide studies, using magnetic resonance microscopy (MRM), we determined that carbonyl sulfide targets the auditory pathway in the brain. MRM allowed the examination of 200 brain slices and made it possible to identify the most vulnerable sites of neurotoxicity, which would have been missed in our traditional neuropathology evaluations. Electrophysiological studies were focused on the auditory system and demonstrated decreases in auditory brain stem evoked responses. Similarly, mechanistic studies focused on evaluating cytochrome oxidase activity in the posterior colliculus and parietal cortex. A decrease in cytochrome oxidase activity was considered to be a contributing factor to the pathogenesis of carbonyl sulfide neurotoxicity.

  10. Selenium Sulfide

    MedlinePlus

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  11. A study of the trace sulfide mineral assemblages in the Stillwater Complex, Montana, USA

    NASA Astrophysics Data System (ADS)

    Aird, Hannah M.; Ferguson, Katherine M.; Lehrer, Malia L.; Boudreau, Alan E.

    2016-07-01

    The sulfide assemblages of the Stillwater Complex away from the well-studied ore zones are composed mainly of variable proportions of pyrrhotite, chalcopyrite, pentlandite, and ±pyrite. Excluding vein assemblages and those affected by greenschist and lower temperature alteration, the majority can be classified into two broad assemblages, defined here as pristine (multiphase, often globular in shape) or volatile-bearing (multiphase, high-temperature, volatile-rich minerals such as biotite, hornblende, or an unmixed calcite-dolomite assemblage). The volatile-bearing assemblages are mainly found within and below the J-M reef, where native copper and sphalerite are also locally present. Pristine sulfides are found throughout the stratigraphy. Both groups can be affected by apparent S loss in the form of pyrite being converted to magnetite and chalcopyrite to a Cu-Fe-oxide (delafossite), with little to no silicate alteration. An upward trend from pentlandite-rich to pyrrhotite-rich to pyrite-rich assemblages is observed in the footwall rocks in upper GN-I, and the same trend repeats from just below the reef and continues into the overlying N-II and GN-II. Modeling suggests that the sulfide Ni in the Peridotite Zone is largely controlled by silicate Ni. When taken together, observations are most readily explained by the remobilization of selected elements by a high-temperature fluid with the apparent loss of S > Cu > Ni. This could concentrate ore metals by vapor refining, eventually producing a platinum group element-enriched sulfide ore zone, such as the J-M reef.

  12. Electron Microscopy Study of Exotic Nanostructures of Cadmium Sulfide

    NASA Astrophysics Data System (ADS)

    Dong, Lifeng; Jiao, Jun

    2005-04-01

    In this article, two simple methods, evaporation-condensation and catalytic thermal evaporation, were used to investigate the synthesis of CdS nanostructures for nanoscale optoelectronic applications. To understand their growth mechanisms, various electron microscopy and microanalysis techniques were utilized in characterizing their morphologies, internal structures, growth directions and elemental compositions. The electron microscopy study reveals that when using the evaporation-condensation method, branched CdS nanorods and self-assembled arrays of CdS nanorods were synthesized at 800°C and 1000°C, respectively. Instead of morphological differences, both types of CdS nanorods grew along the [0001] direction. However, when using the catalytic thermal evaporation method (Au as the catalyst), patterned CdS nanowires and nanobelts were formed at the temperature region of 500 600°C and 600 750°C, respectively. Their growth direction was along the direction [1010] instead of [0001]. Based on the microscopy and microanalysis results, we propose some growth mechanisms in relation to the growth processes of those exotic CdS nanostructures.

  13. Hemolytic anemia and induction of phase II detoxification enzymes by diprop-1-enyl sulfide in rats: dose-response study.

    PubMed

    Munday, Rex; Munday, Christine M; Munday, John S

    2005-12-14

    Epidemiological evidence indicates that a high dietary intake of plants of the Allium family, such as garlic and onions, is associated with a decreased risk of cancer in humans. It has been suggested that this chemopreventative effect involves the ability of the aliphatic sulfides derived from these vegetables to increase tissue activities of phase II detoxification enzymes. Several highly effective inducers from garlic have been identified, but most of the previously studied compounds from onion have proved to be only weakly active. In the present study, the inductive activity of another onion-derived sulfide, diprop-1-enyl sulfide, has been investigated. This substance was a potent inducer of phase II enzymes in rats, showing significant effects in the lungs and in the lower part of the gastrointestinal tract, suggesting that diprop-1-enyl sulfide could be a useful chemopreventative agent at these sites. At high dose levels, diprop-1-enyl sulfide caused hemolytic anemia, which may be due to in vivo conversion of the sulfide to active metabolites. PMID:16332117

  14. Regio- and Enantioselective N-Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes

    PubMed Central

    Stanley, Levi M.

    2010-01-01

    Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9:N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pKa on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structure of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies has led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base. PMID:19480431

  15. Catalytic deallylation of allyl- and diallylmalonates.

    PubMed

    Necas, David; Turský, Matyás; Kotora, Martin

    2004-08-25

    Substituted allylmalonates undergo the selective C-C bond cleavage in the presence of triethylaluminum and a catalytic amount of nickel and ruthenium phosphine complexes, resulting in the loss of the allyl moiety and formation of monosubstituted malonates. Comparison of reactivity of the nickel and ruthenium complexes showed that the use of the former is general with respect to the structure of the substituted allylmalonates, and the activity of the latter depended on the substitution pattern of the double bond of the allylic moiety. The smooth deallylation may encourage the use of the allyl group as a protective group for the acidic hydrogen in malonates. PMID:15315416

  16. Mechanistically Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution

    PubMed Central

    Hartwig, John F.; Stanley, Levi M.

    2010-01-01

    Conspectus Enantioselective allylic substitution reactions comprise some of the most versatile methods for preparing enantiomerically enriched materials. These reactions form products that contain multiple functionalities by creating carbon–nitrogen, carbon–oxygen, carbon–carbon, and carbon–sulfur bonds. For many years, the development of catalysts for allylic substitution focused on palladium complexes. However, studies of complexes of other metals have revealed selectivities that often complement those of palladium systems. Most striking is the observation that reactions with unsymmetrical allylic electrophiles that typically occur with palladium catalysts at the less hindered site of an allylic electrophile occur at the more hindered site with catalysts based on other metals. In this Account, we describe an iridium precursor and a phosphoramidite ligand that catalyze reactions with a particularly broad scope of nucleophiles. The active form of this iridium catalyst is not generated by the simple binding of the phosphoramidite ligand to the metal precursor. Instead, the initial phosphoramidite and iridium precursor react in the presence of base to form a metallacyclic species that is the active catalyst. This species is generated either in situ or separately in isolated form by reactions with added base. The identification of the structure of the active catalyst led to the development of simplified catalysts as well as the most active form of the catalyst now available, which is stabilized by a loosely bound ethylene. Most recently, this structure was used to prepare intermediates containing allyl ligands, the structures of which provide a model for the enantioselectivities discussed here. Initial studies from our laboratory on the scope of iridium-catalyzed allylic substitution showed that reactions of primary and secondary amines, including alkylamines, benzylamines, and allylamines, and reactions of phenoxides and alkoxides occurred in high yields

  17. Asymmetric Allylic Alkylation of β-Ketoesters with Allylic Alcohols by a Nickel/Diphosphine Catalyst.

    PubMed

    Kita, Yusuke; Kavthe, Rahul D; Oda, Hiroaki; Mashima, Kazushi

    2016-01-18

    Asymmetric allylic alkylation of β-ketoesters with allylic alcohols catalyzed by [Ni(cod)2]/(S)-H8-BINAP was found to be a superior synthetic protocol for constructing quaternary chiral centers at the α-position of β-ketoesters. The reaction proceeded in high yield and with high enantioselectivity using various β-ketoesters and allylic alcohols, without any additional activators. The versatility of this methodology for accessing useful and enantioenriched products was demonstrated. PMID:26637131

  18. Kinetic study of the OH-initiated photo-oxidation of four unsaturated (allyl and vinyl) ethers under simulated atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Peirone, Silvina A.; Aranguren Abrate, Juan P.; Taccone, Raúl A.; Cometto, Pablo M.; Lane, Silvia I.

    2011-09-01

    Using the relative rate technique, rate constants for the gas-phase reactions of hydroxyl radicals with n-propyl vinyl ether ( k1), 2-chloroethyl vinyl ether ( k2), allyl ether ( k3) and allyl ethyl ether ( k4) have been measured. Experiments were carried out at (298 ± 2) K and atmospheric pressure using N 2 and ultra pure air as bath gas. Using isoprene, 1-methyl-1-cyclohexene, 2-methyl-2-butene, 3-buten-1-ol and 2-methyl-2-propen-1-ol as reference compounds, the following rate constants were derived: k1 = (11.0 ± 0.4) × 10 -11, k2 = (9 ± 1) × 10 -11, k3 = (6.8 ± 0.7) × 10 -11 and k4 = (4.2 ± 0.7) × 10 -11, in units of cm 3 molecule -1 s -1. This is the first experimental detcermination of k2- k4. The rate constants obtained are compared with the previous literature data for corresponding alkenes reactions with OH and the observed reactivity trends are discussed. The atmospheric implications of the results are considered.

  19. Control of Diastereoselectivity for Iridium-catalyzed Allylation of a Prochiral Nucleophile with a Phosphate Counterion

    PubMed Central

    Chen, Wenyong; Hartwig, John F.

    2013-01-01

    We report a highly diastereo- and enantioselective allylation of azlactones catalyzed by the combination of a metallayclic iridium complex and an optically inactive phosphate anion. The process demonstrates an approach to conduct diastereoselective reactions with prochiral nucleophiles in the presence of metallacyclic allyliridium complexes. The reaction provides access to an array of enantioenriched allylated azlactones containing adjacent tertiary and quaternary carbon centers. Preliminary mechanistic studies suggest that the phosphate and methyl carbonate anions together induce the unusually high diastereoselectivity. PMID:23286279

  20. Cross coupling of dialkylmagnesium derivatives with allylic compounds catalyzed by copper salts

    SciTech Connect

    Ibragimov, A.G.; Dzhemilev, U.M.; Saraev, R.A.

    1985-07-20

    The reaction of allylic compounds with Grignard reagents catalyzed by salts of copper, nickel, iron and cobalt, titanium and palladium is a simple and efficient method for the preparation of unsaturated hydrocarbons. However, information concerning the use of dialkylmagnesium derivatives, which are more reactive than Grignard reagents, is extremely limited in these reactions. To continue a study of the cross-coupling of allylic compounds with dialkylmagnesium derivatives in an effort to expand the scope of this reaction and to elucidate the effect of the R/sub 2/Mg reagent structure on its reactivity, the authors investigated the reaction of dialkylmagnesium and diarlmagnesium reagents with allylic ethers and esters, thioethers, and amines, by the action of transition metal salts. This work demonstrates the feasibility of the preparation of unsaturated hydrocarbons of given structure by the cross-coupling of dialkylmagnesium derivatives with functional allylic compounds by the action of catalytic amounts of copper complexes.

  1. Nickel-Catalyzed Allylic Alkylation with Diarylmethane Pronucleophiles: Reaction Development and Mechanistic Insights.

    PubMed

    Sha, Sheng-Chun; Jiang, Hui; Mao, Jianyou; Bellomo, Ana; Jeong, Soo A; Walsh, Patrick J

    2016-01-18

    Palladium-catalyzed allylic substitution reactions are among the most efficient methods to construct C-C bonds between sp(3)-hybridized carbon atoms. In contrast, much less work has been done with nickel catalysts, perhaps because of the different mechanisms of the allylic substitution reactions. Palladium catalysts generally undergo substitution by a "soft"-nucleophile pathway, wherein the nucleophile attacks the allyl group externally. Nickel catalysts are usually paired with "hard" nucleophiles, which attack the metal before C-C bond formation. Introduced herein is a rare nickel-based catalyst which promotes substitution with diarylmethane pronucleophiles by the soft-nucleophile pathway. Preliminary studies on the asymmetric allylic alkylation are promising. PMID:26756444

  2. The effects of γ-irradiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisulfide

    NASA Astrophysics Data System (ADS)

    Genshuan, Wei; Guanghui, Wang; Ruipu, Yang; Jilan, Wu

    1996-02-01

    A study of the effects of γ-radiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisulfide and disulfide was carried out. The content of garlic oil in fresh garlic bulbs treated by gamma ray keeps nearly constant when stored for 10 months. The main components of garlic oil are allyl trisulfide (about 60%) and allyl disulfide (about 30%). The G values of radiolysis products of allyl disulfide and trisulfide in ethanol system were determined. The results show that allyl trisulfide is a very effective solvated electron scavenger and can oxidize CH 3CHOH radical into acetaldehyde, which means that the formation of 2,3-butanediol is extensively inhibited.

  3. Mutagenic properties of allylic and alpha, beta-unsaturated compounds: consideration of alkylating mechanisms.

    PubMed

    Eder, E; Henschler, D; Neudecker, T

    1982-12-01

    1. Allyl and allylic compounds may exert alkylating activities by SN1, SN2 and SN2' mechanisms. This direct alkylating potential can be determined quantitatively by a modified 4-NBP (4-nitrobenzyl pyridine) test. 2. The alkylating activities in a systematically selected series of allyl and allylic compounds correlate well with the direct mutagenic potential as determined in the Ames test using Salmonella typhimurium TA 100 as tester strain. 3. The allylic structure is a prerequisite for these types of activities since structurally related molecules lacking the allylic moiety are inactive in this respect. 4. The potency of both the alkylating and mutagenic activity is determined by the strength of the leaving group: --OSO2CH3 greater than I greater than Br greater than Cl greater than--NCS. 5. Indirect mutagenicity, through metabolic activation of the olefinic bond (by addition of S9 mix to the tester medium), can be ruled out for practically all compounds, the only exception found being 2,3-dichloro-1-propene where an increase of mutagenicity is encountered after addition of S9 mix; mechanistic explanations for this exception are provided. 6. Analogous activation is demonstrated for benzyl halides, the alkylating potency of which is even higher than that of genuine allylic compounds. 7. A variety of methyl- and chlorine-substituted allyl compounds has been included in the study: both groups increase activity, either by +I (CH3) or by +M effects (Cl). 8. alpha, beta-Unsaturated carbonyl compounds, e.g. acrolein and crotonaldehyde, also display direct mutagenic activity which is due to a completely different mechanism: covalent binding to nucleophilic sites of DNA bases by Michael addition. Methyl and other alkyl substitutions decrease the mutagenic potential in this type of compound. The corresponding alcohols, also displaying mutagenic activity but to a lesser degree, are metabolically activated by ADH (alcohol dehydrogenase) of the tester strain microbes to the

  4. Selenium Sulfide

    MedlinePlus

    Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium sulfide usually is used twice a week for the first ... it is irritating. Rinse off all of the lotion.Do not use this medication on children younger ...

  5. Weathering processes and pickeringite formation in a sulfidic schist: a consideration in acid precipitation neutralization studies

    SciTech Connect

    Parnell, R.A. Jr.

    1983-01-01

    Extremely low abrasion pH values (2.8-3.3) characterize the weathering products of the Partridge Formation, a Middle-Ordovician metamorphosed, black, sulfidic shale. The local occurrence is observed of two sulfates that are rare in the Northeast: pickeringite and jarosite. X-ray diffraction studies of the weathering residues and the sulfate efflorescences have also identified dioctahedral and trioctahedral illite, kaolinite, vermiculite, and an 11-12 Angstrom phase, thought to be a type of randomly-interstratified biotite-vermiculite. From the mineralogical studies, qualitative weathering processes for the schist are formulated. A probable mechanism for the intense chemical weathering of the schist appears to be oxidation of iron sulfides to form iron oxide-hydroxides, sulfates, and sulfuric acid. This natural weathering process is proposed as an analog to anthropogenic low pH rock weathering resulting from acid precipitation. In the Northeast, natural weathering rates, may, in places, significantly affect the water chemistry and mineralogy used to quantify total (natural plus anthropogenic) weathering and leaching rates. 27 references, 4 figures.

  6. N-Allylation of amines with allyl acetates using chitosan-immobilized palladium

    EPA Science Inventory

    A simple procedure for N-Allylation of allyl Acetates has been developed using a biodegradable and easily recyclable heterogeneous chitosan-supported palladium catalyst. The general methodology, applicable to wide range of substrates, has sustainable features that include a ligan...

  7. Sulfidation kinetics of silver nanoparticles reacted with metal sulfides.

    PubMed

    Thalmann, Basilius; Voegelin, Andreas; Sinnet, Brian; Morgenroth, Eberhard; Kaegi, Ralf

    2014-05-01

    Recent studies have documented that the sulfidation of silver nanoparticles (Ag-NP), possibly released to the environment from consumer products, occurs in anoxic zones of urban wastewater systems and that sulfidized Ag-NP exhibit dramatically reduced toxic effects. However, whether Ag-NP sulfidation also occurs under oxic conditions in the absence of bisulfide has not been addressed, yet. In this study we, therefore, investigated whether metal sulfides that are more resistant toward oxidation than free sulfide, could enable the sulfidation of Ag-NP under oxic conditions. We reacted citrate-stabilized Ag-NP of different sizes (10-100 nm) with freshly precipitated and crystalline CuS and ZnS in oxygenated aqueous suspensions at pH 7.5. The extent of Ag-NP sulfidation was derived from the increase in dissolved Cu(2+) or Zn(2+) over time and linked with results from X-ray absorption spectroscopy (XAS) analysis of selected samples. The sulfidation of Ag-NP followed pseudo first-order kinetics, with rate coefficients increasing with decreasing Ag-NP diameter and increasing metal sulfide concentration and depending on the type (CuS and ZnS) and crystallinity of the reacting metal sulfide. Results from analytical electron microscopy revealed the formation of complex sulfidation patterns that seemed to follow preexisting subgrain boundaries in the pristine Ag-NP. The kinetics of Ag-NP sulfidation observed in this study in combination with reported ZnS and CuS concentrations and predicted Ag-NP concentrations in wastewater and urban surface waters indicate that even under oxic conditions and in the absence of free sulfide, Ag-NP can be transformed into Ag2S within a few hours to days by reaction with metal sulfides. PMID:24678586

  8. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines

    PubMed Central

    Xu, Kun; Gilles, Thomas; Breit, Bernhard

    2015-01-01

    The asymmetric synthesis of N-allylic indoles is important for natural product synthesis and pharmaceutical research. The regio- and enantioselective N-allylation of indoles is a true challenge due to the favourable C3-allylation. We develop here a new strategy to the asymmetric synthesis of N-allylic indoles via rhodium-catalysed N-selective coupling of aryl hydrazines with allenes followed by Fischer indolization. The exclusive N-selectivities and good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable chiral N-allylated indoles, and avoids the N- or C-selectivity issue. PMID:26137886

  9. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines.

    PubMed

    Xu, Kun; Gilles, Thomas; Breit, Bernhard

    2015-01-01

    The asymmetric synthesis of N-allylic indoles is important for natural product synthesis and pharmaceutical research. The regio- and enantioselective N-allylation of indoles is a true challenge due to the favourable C3-allylation. We develop here a new strategy to the asymmetric synthesis of N-allylic indoles via rhodium-catalysed N-selective coupling of aryl hydrazines with allenes followed by Fischer indolization. The exclusive N-selectivities and good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable chiral N-allylated indoles, and avoids the N- or C-selectivity issue. PMID:26137886

  10. Rotational Spectroscopy of Isocyanic Molecules: Allyl Isocyanide and Diisocyanomethane

    NASA Astrophysics Data System (ADS)

    Motiyenko, R. A.; Margules, L.; Haykal, I.; Huet, T. R.; Cocinero, E. J.; Ecija, P.; Fernandez, J. A.; Castano, F.; Lesarri, A.; Guillemin, J.-C.

    2012-06-01

    Isocyanides are less stable isomers of nitriles and some of them have already been observed in the interstellar medium (HNC, CH_3NC, HCCNC). But still there exists a lack of experimental spectroscopic data on simple isocyanic molecules that can represent potential astrophysical interest. In this view we have performed high resolution studies of rotational spectra of allyl isocyanide (CH_2=CH--CH_2--NC) and diisocyanomethane (CN--CH_2--NC). The rotational spectra of allyl isocyanide have been measured in the frequency range 6 -- 18 GHz by means of FTMW spectrometer in Bilbao and in the frequency range 150 -- 945 GHz by means of classic absorption spectroscopy in Lille. Two stable confomers of allyl isocyanide have been observed in both series of measurements. In addition, all 13C-monosubstituted isotopologues and 15N isotopologues were detected in natural abundance. Due to much lower kinetic stability the rotational spectrum of diisocyanomethane has been measured only in absorption using the Lille spectrometer. The spectral assignments have been supported by high-level quantum chemical calculations. For both molecules accurate sets of rotational and centrifugal distortion constants (up to the octics) have been produced. As a result, reliable predictions of transitions frequencies suitable for astrophysical detection have been obtained for both molecules. Finally, the effective and substitution structures were determined for the two conformers of allyl isocyanide, comparing the result with ab initio data. This work is supported by Centre Nationale d'Etudes Spatiales (CNES), Action sur Projet Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) and by the contract ANR-08-BLAN-0054. Spanish part acknowledges funding from the MICINN and the MINECO.

  11. Solubility, stability, and electrochemical studies of sulfur-sulfide solutions in organic solvents

    NASA Technical Reports Server (NTRS)

    Fielder, W. L.; Singer, J.

    1978-01-01

    A preliminary study of the sulfur electrode in organic solvents suggests that the system warrants further investigation for use in a low temperature (100 deg to 120 C) Na-S secondary battery. A qualitative screening was undertaken at 120 C to determine the solubilities and stabilities of Na2S and Na2S2 in representatives of many classes of organic solvents. From the screening and quantitative studies, two classes of solvents were selected for work; amides and cyclic polyalcohols. Voltammetric and Na-S cell charge discharge studies of sulfide solutions in organic solvents (e.g., N, N-dimethylformamide) at 120 C suggested that the reversibilities of the reactions on Pt or high density graphite were moderately poor. However, the sulfur electrode was indeed reducible (and oxidizable) through the range of elemental sulfur to Na2S. Reactions and mechanisms are proposed for the oxidation reduction processes occurring at the sulfur electrode.

  12. A novel method for improving cerussite sulfidization

    NASA Astrophysics Data System (ADS)

    Feng, Qi-cheng; Wen, Shu-ming; Zhao, Wen-juan; Cao, Qin-bo; Lü, Chao

    2016-06-01

    Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests indicate that the addition of chloride ions prior to sulfidization can significantly increase the flotation recovery of cerussite, which is attributed to the formation of more lead sulfide species on the mineral surface. Solution measurement results suggest that the addition of chloride ions prior to sulfidization induces the transformation of more sulfide ions from pulp solution onto the mineral surface by the formation of more lead sulfide species. X-ray diffraction and energy-dispersive spectroscopy indicate that more lead sulfide species form on the mineral surface when chloride ions are added prior to sulfidization. These results demonstrate that the addition of chloride ions prior to sulfidization can significantly improve the sulfidization of cerussite, thereby enhancing the flotation performance.

  13. Liquid immiscibility between arsenide and sulfide melts: evidence from a LA-ICP-MS study in magmatic deposits at Serranía de Ronda (Spain)

    NASA Astrophysics Data System (ADS)

    Piña, R.; Gervilla, F.; Barnes, S.-J.; Ortega, L.; Lunar, R.

    2015-03-01

    The chromite-Ni arsenide (Cr-Ni-As) and sulfide-graphite (S-G) deposits from the Serranía de Ronda (Málaga, South Spain) contain an arsenide assemblage (nickeline, maucherite and nickeliferous löllingite) that has been interpreted to represent an arsenide melt and a sulfide-graphite assemblage (pyrrhotite, pentlandite, chalcopyrite and graphite) that has been interpreted to represent a sulfide melt, both of which have been interpreted to have segregated as immiscible liquids from an arsenic-rich sulfide melt. We have determined the platinum-group element (PGE), Au, Ag, Se, Sb, Bi and Te contents of the arsenide and sulfide assemblages using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to establish their partitioning behaviour during the immiscibility of an arsenide melt from a sulfide melt. Previous experimental work has shown that PGE partition more strongly into arsenide melts than into sulfide melts and our results fit with this observation. Arsenide minerals are enriched in all PGE, but especially in elements with the strongest affinity for the arsenide melt, including Ir, Rh and Pt. In contrast and also in agreement with previous studies, Se and Ag partition preferentially into the sulfide assemblage. The PGE-depleted nature of sulfides in the S-G deposits along with the discordant morphologies of the bodies suggest that these sulfides are not mantle sulfides, but that they represent the crystallization product of a PGE-depleted sulfide melt due to the sequestering of PGE by an arsenide melt.

  14. Study of electrical and thermoelecrical properties of sulfides Tm x Mn1- x S

    NASA Astrophysics Data System (ADS)

    Aplesnin, S. S.; Romanova, O. B.; Galyas, A. I.; Sokolov, V. V.

    2016-01-01

    Variable-valence Tm x Mn1- x S (0 ⩽ x ⩽ 0.15) compounds have been synthesized and their structural, electrical, and thermoelectrical properties have been studied in the temperature range of 80-1100 K. The regions of existence of solid solutions of sulfides Tm x Mn1- x S with the NaCl-type fcc lattice have been determined. It has been found that, as thulium ions are substituted for manganese cations, the electrical resistivity increases, and the lattice parameter increases more sharply than that corresponding to the Vegard's law. The study of the temperature dependences of the thermopower coefficient has revealed that the current carrier sign is retained to 500 K for all the substitution concentrations, and the charge carrier type changes from the hole type to the electron type with variations in the temperature. The experimental data have been explained in terms of the exciton model.

  15. A STUDY TO EVALUATE CARBON MONOXIDE AND HYDROGEN SULFIDE CONTINUOUS EMISSION MONITORS AT AN OIL REFINERY

    EPA Science Inventory

    An eleven month field evaluation was done on five hydrogen sulfide and four carbon monoxide monitors located at an oil refinery. The hydrogen sulfide monitors sampled a fuel gas feed line and the carbon monoxide monitors sampled the emissions from a fluid cat cracker (FCC). Two o...

  16. Acidification and sulfide formation control during reductive dechlorination of 1,2-dichloroethane in groundwater: Effectiveness and mechanistic study.

    PubMed

    Wang, S Y; Chen, S C; Lin, Y C; Kuo, Y C; Chen, J Y; Kao, C M

    2016-10-01

    To enhance the reductive dechlorination of 1,2-dichloroethane (DCA) in groundwater, substrate injection may be required. However, substrate biodegradation causes groundwater acidification and sulfide production, which inhibits the bacteria responsible for DCA dechlorination and results in an odor problem. In the microcosm study, the effectiveness of the addition of ferrous sulfate (FS), desulfurization slag (DS), and nanoscale zero-valent iron (nZVI) on acidification and sulfide control was studied during reductive dechlorination of DCA, and the emulsified substrate (ES) was used as the substrate. Up to 94% of the sulfide was removed with FS and DS addition (0.25 wt%) (initial DCA concentration = 13.5 mg/L). FS and DS amendments resulted in the formation of a metal sulfide, which reduced the hydrogen sulfide concentration as well as the subsequent odor problem. Approximately 96% of the DCA was degraded under reductive dechlorination with nZVI or DS addition using ES as the substrate. In microcosms with nZVI or DS addition, the sulfide concentration was reduced to less than 15 μg/L. Acidification can be controlled via hydroxide ions production after nZVI oxidation and reaction of free CaO (released from DS) with water, which enhanced DCA dechlorination. The quantitative polymerase chain reaction results confirmed that the microcosms with nZVI added had the highest Dehalococcoides population (up to 2.5 × 10(8) gene copies/g soil) due to effective acidification control. The α-elimination mechanism was the main abiotic process, and reductive dechlorination dominated by Dehalococcides was the biotic mechanism that resulted in DCA removal. More than 22 bacterial species were detected, and dechlorinating bacteria existed in soils under alkaline and acidic conditions. PMID:27376861

  17. Preliminary study of the electrolysis of aluminum sulfide in molten salts

    SciTech Connect

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1983-02-01

    A preliminary laboratory-scale study of the electrolysis of aluminum sulfide in molten salts investigated the (1) solubility of Al/sub 2/S/sub 3/ in molten salts, (2) electrochemical behavior of Al/sub 2/S/sub 3/, and (3) electrolysis of Al/sub 2/S/sub 3/ with the determination of current efficiency as a function of current density. The solubility measurements show that MgCl/sub 2/-NaCl-KCl eutectic electrolyte at 1023 K can dissolve up to 3.3 mol % sulfide. The molar ratio of sulfur to aluminum in the eutectic is about one, which suggests that some sulfur remains undissolved, probably in the form of MgS. The experimental data and thermodynamic calculations suggest that Al/sub 2/S/sub 3/ dissolves in the eutectic to form AlS/sup +/ species in solution. Addition of AlCl/sub 3/ to the eutectic enhances the solubility of Al/sub 2/S/sub 3/; the solubility increases with increasing AlCl/sub 3/ concentration. The electrode reaction mechanism for the electrolysis of Al/sub 2/S/sub 3/ was elucidated by using linear sweep voltammetry. The cathodic reduction of aluminum-ion-containing species to aluminum proceeds by a reversible, diffusion-controlled, three-electron reaction. The anodic reaction involves the two-electron discharge of sulfide-ion-containing species, followed by the fast dimerization of sulfur atoms to S/sub 2/. Electrolysis experiments show that Al/sub 2/S/sub 3/ dissolved in molten MgCl/sub 2/-NaCl-KCl eutectic or in eutectic containing AlCl/sub 3/ can be electrolyzed to produce aluminum and sulfur. In the eutectic at 1023 K, the electrolysis can be conducted up to about 300 mA/cm/sup 2/ for the saturation solubility of Al/sub 2/S/sub 3/. Although these preliminary results are promising, additional studies are needed to elucidate many critical operating parameters before the technical potential of the electrolysis can be accurately assessed. 20 figures, 18 tables.

  18. The stability of allyl radicals following the photodissociation of allyl iodide at 193 nm.

    SciTech Connect

    Fan, H.; Pratt, S. T.; Chemistry

    2006-01-01

    The photodissociation of allyl iodide (C{sub 3}H{sub 5}I) at 193 nm was investigated by using a combination of vacuum-ultraviolet photoionization of the allyl radical, resonant multiphoton ionization of the iodine atoms, and velocity map imaging. The data provide insight into the primary C-I bond fission process and into the dissociative ionization of the allyl radical to produce C{sub 3}H{sup 3+}. The experimental results are consistent with the earlier results of Szpunar et al. [J. Chem. Phys. 119, 5078 (2003)], in that some allyl radicals with internal energies higher than the secondary dissociation barrier are found to be stable. This stability results from the partitioning of available energy between the rotational and vibrational degrees of freedom of the radical, the effects of a centrifugal barrier along the reaction coordinate, and the effects of the kinetic shift in the secondary dissociation of the allyl radical. The present results suggest that the primary dissociation of allyl iodide to allyl radicals plus I*({sup 2}P{sub 1/2}) is more important than previously suspected.

  19. The stability of allyl radicals following the photodissociation of allyl iodide at 193 nm.

    PubMed

    Fan, H; Pratt, S T

    2006-10-14

    The photodissociation of allyl iodide (C3H5I) at 193 nm was investigated by using a combination of vacuum-ultraviolet photoionization of the allyl radical, resonant multiphoton ionization of the iodine atoms, and velocity map imaging. The data provide insight into the primary C-I bond fission process and into the dissociative ionization of the allyl radical to produce C3H3+. The experimental results are consistent with the earlier results of Szpunar et al. [J. Chem. Phys. 119, 5078 (2003)], in that some allyl radicals with internal energies higher than the secondary dissociation barrier are found to be stable. This stability results from the partitioning of available energy between the rotational and vibrational degrees of freedom of the radical, the effects of a centrifugal barrier along the reaction coordinate, and the effects of the kinetic shift in the secondary dissociation of the allyl radical. The present results suggest that the primary dissociation of allyl iodide to allyl radicals plus I*(2P(1/2)) is more important than previously suspected. PMID:17042585

  20. Transition‐Metal‐Free Borylation of Allylic and Propargylic Alcohols

    PubMed Central

    Miralles, Núria; Alam, Rauful

    2016-01-01

    Abstract The base‐catalyzed allylic borylation of tertiary allylic alcohols allows the synthesis of 1,1‐disubstituted allyl boronates, in moderate to high yield. The unexpected tandem performance of the Lewis acid–base adduct, [Hbase]+[MeO‐B2pin2]− favored the formation of 1,2,3‐triborylated species from the tertiary allylic alcohols and 1‐propargylic cyclohexanol at 90 °C. PMID:26934578

  1. Transition-Metal-Free Borylation of Allylic and Propargylic Alcohols.

    PubMed

    Miralles, Núria; Alam, Rauful; Szabó, Kálmán J; Fernández, Elena

    2016-03-18

    The base-catalyzed allylic borylation of tertiary allylic alcohols allows the synthesis of 1,1-disubstituted allyl boronates, in moderate to high yield. The unexpected tandem performance of the Lewis acid-base adduct, [Hbase](+) [MeO-B2 pin2 ](-) favored the formation of 1,2,3-triborylated species from the tertiary allylic alcohols and 1-propargylic cyclohexanol at 90 °C. PMID:26934578

  2. Cadmium Telluride, Cadmium Telluride/Cadmium Sulfide Core/Shell, and Cadmium Telluride/Cadmium Sulfide/Zinc Sulfide Core/Shell/Shell Quantum Dots Study

    NASA Astrophysics Data System (ADS)

    Yan, Yueran

    aqueous phase can quench CdTe/CdS QDs. Additionally, the stability of the different ligands capped CdTe/CdS QDs was tested by dialysis measurement, the hydrodynamic diameters of CdTe and CdTe/CdS core/shell QDs were measured by dynamic light scattering, and dissolving issue was found when CdTe and CdTe/CdS core/shell QDs were diluted in CHCl3. We have characterized the CdTe core and the CdTe/CdS core/shell QDs by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), and ICP-OES measurements. We have found that the CdTe core was of a zincblende structure, and the shell was a wurtzite structure. And the CdTe/CdS QDs were core/shell QDs instead of alloying QDs. We have also analyzed the photophysical properties of CdTe and CdTe/CdS core/shell QDs. Time-resolved photoluminescence (PL) measurements showed the emission decay lifetimes in the tens of nanoseconds. Additionally, ultrafast charge carrier relaxation dynamics of the CdTe core and CdTe/CdS core/shell QDs were studied by the femtosecond transient absorption (TA) spectroscopy. The transient absorption spectra of CdTe and CdTe/CdS core/shell QDs showed multiple bleaches, which have been assigned to the 1S3/2(h)-1S(e), 2S3/2(h)-1S(e), and 1P3/2(h)-1P(e) transitions. The spectral shifts of these bleaches after shell deposition have been analyzed in the context of a quasi-type-II carrier distribution in the core/shell samples, and interestingly the red shift was only contributed from the conduction band energy levels shifting to lower energy. In addition, the ultrafast evolution of these bleach features has been examined to extract electron cooling rates in these samples. A fast decay component in the 1S3/2(h)-1S(e) transition of the small CdTe QDs was discovered due to the hole being trapped by the defects on the surface of QD. Further, we have studied the PL quenching process of the air exposed CdTe QDs via the PL decay and transient absorption measurements. Oxygen

  3. In situ solvothermal growth of metal-organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides.

    PubMed

    Hu, Yuling; Lian, Haixian; Zhou, Langjun; Li, Gongke

    2015-01-01

    The present study reported on an in situ solvothermal growth method for immobilization of metal-organic framework MOF-5 on porous copper foam support for enrichment of plant volatile sulfides. The porous copper support impregnated with mother liquor of MOF-5 anchors the nucleation and growth of MOF crystallites at its surface, and its architecture of the three-dimensional channel enables accommodation of the MOF-5 crystallite seed. A continuous and well-intergrown MOF-5 layer, evidenced from scanning electron microscope imaging and X-ray diffraction, was successfully immobilized on the porous metal bar with good adhesion and high stability. Results show that the resultant MOF-5 coating was thermally stable up to 420 °C and robust enough for replicate extraction for at least 200 times. The MOF-5 bar was then applied to the headspace sorptive extraction of the volatile organic sulfur compounds in Chinese chive and garlic sprout in combination with thermal desorption-gas chromatography/mass spectrometry. It showed high extraction sensitivity and good selectivity to these plant volatile sulfides owing to the extraordinary porosity of the metal-organic framework as well as the interaction between the S-donor sites and the surface cations at the crystal edges. Several primary sulfur volatiles containing allyl methyl sulfide, dimethyl disulfide, diallyl sulfide, methyl allyl disulfide, and diallyl disulfide were quantified. Their limits of detection were found to be in the range of 0.2-1.7 μg/L. The organic sulfides were detected in the range of 6.0-23.8 μg/g with recoveries of 76.6-100.2% in Chinese chive and 11.4-54.6 μg/g with recoveries of 77.1-99.8% in garlic sprout. The results indicate the immobilization of MOF-5 on copper foam provides an efficient enrichment formats for noninvasive sampling of plant volatiles. PMID:25435245

  4. Enantioselective synthesis of fluorinated branched allylic compounds via Ir-catalyzed allylations of functionalized fluorinated methylene derivatives.

    PubMed

    Zhang, Hongbo; Chen, Jiteng; Zhao, Xiao-Ming

    2016-08-14

    Enantioselective introduction of the functionalized monofluorinated methylenes into the allylic fragment under Ir catalysis has been realized, which gave the fluorinated branched allyl products in good to high yields with excellent regio- and enantioselectivities. PMID:27383920

  5. Catalytic Asymmetric Synthesis of Chiral Allylic Esters

    PubMed Central

    Cannon, Jeffrey S.; Kirsch, Stefan F.; Overman, Larry E.

    2010-01-01

    A broadly useful catalytic enantioselective synthesis of branched allylic esters from prochiral (Z)-2-alkene-1-ols has been developed. The starting allylic alcohol is converted to its trichloroacetimidate intermediate by reaction with trichloroacetonitrile, either in situ or in a separate step, and this intermediate undergoes clean enantioselective SN2′ substitution with a variety of carboxylic acids in the presence of the palladium(II) catalyst (Rp,S)-di-μ -acetatobis[(η5-2-(2'-(4'-methylethyl)oxazolinyl)cyclopentadienyl,1-C,3'-N)(η4-tetraphenylcyclobutadiene)cobalt]dipalladium, (Rp,S)-[COP-OAc]2 or its enantiomer. The scope and limitations of this useful catalytic asymmetric allylic esterification are defined. PMID:15740118

  6. Evaluation of thiosulfate as a substitute for hydrogen sulfide in sour corrosion fatigue studies

    NASA Astrophysics Data System (ADS)

    Kappes, Mariano Alberto

    This work evaluates the possibility of replacing hydrogen sulfide (H 2S) with thiosulfate anion (S2O32- ) in sour corrosion fatigue studies. H2S increases the corrosion fatigue crack growth rate (FCGR) and can be present in carbon steel risers and flowlines used in off-shore oil production. Corrosion tests with gaseous H2S require special facilities with safety features, because H2S is a toxic and flammable gas. The possibility of replacing H2S with S2O32-, a non-toxic anion, for studying stress corrosion cracking of stainless and carbon steels in H2S solutions was first proposed by Tsujikawa et al. ( Tsujikawa et al., Corrosion, 1993. 49(5): p. 409-419). In this dissertation, Tsujikawa work will be extended to sour corrosion fatigue of carbon steels. H2S testing is often conducted in deareated condition to avoid oxygen reaction with sulfide that yields sulfur and to mimic oil production conditions. Nitrogen deareation was also adopted in S2O3 2- testing, and gas exiting the cell was forced through a sodium hydroxide trap. Measurements of the sulfide content of this trap were used to estimate the partial pressure of H2S in nitrogen, and Henry's law was used to estimate the content of H2S in the solution in the cell. H2S was produced by a redox reaction of S2O 32-, which required electrons from carbon steel corrosion. This reaction is spontaneous at the open circuit potential of steel. Therefore, H2S concentration was expected to be maximum at the steel surface, and this concentration was estimated by a mass balance analysis. Carbon steel specimens exposed to S2O32- containing solutions developed a film on their surface, composed by iron sulfide and cementite. The film was not passivating and a good conductor of electrons. Hydrogen permeation experiments proved that this film controls the rate of hydrogen absorption of steels exposed to thiosulfate containing solutions. The absorption of hydrogen in S2O3 2- solutions was compared with the absorption of hydrogen in

  7. Kinetic Resolution of Racemic and Branched Monosubstituted Allylic Acetates by a Ruthenium-Catalyzed Regioselective Allylic Etherification.

    PubMed

    Shinozawa, Toru; Terasaki, Shou; Mizuno, Shota; Kawatsura, Motoi

    2016-07-01

    We demonstrated the kinetic resolution of racemic and branched monosubstituted allylic acetates by a ruthenium-catalyzed regioselective allylic etherification. The reaction was effectively catalyzed by the chiral ruthenium catalyst, which was generated by [RuCl2(p-cymene)]2 and (S,S)-iPr-pybox and a catalytic amount of TFA, and both the allylic etherification product and recovered allylic acetate were obtained as an enantiomerically enriched form with up to a 103 s value. PMID:27276556

  8. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    NASA Astrophysics Data System (ADS)

    Chasse, Kevin Robert

    Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility

  9. Study of the mechanism of the hydrogen sulfide/dolomite reaction. Final report for the period July 1976-December 1979

    SciTech Connect

    Li, K.; Rogan, F.H.; Yen, J.H.; Huang, C.S.; Spencer, J.L.

    1980-06-01

    The kinetics and structural changes of the basic reactions - half-calcination, sulfidation and carbonation - involved in the cyclic use of dolomite for hot-gas desulfurization were investigated over wide ranges of experimental conditions including the origin of dolomite, pellet size and method of pretreatment. Kinetic data were collected for samples of spherical pellets in a high-temperature/high-pressure thermogravimetric analysis system specifically designed and constructed for this study. Solid-phase structures at various stages of each reaction were analyzed by optical and scanning electron microscopy, energy-dispersive x-ray analysis, nitrogen adsorption, and mercury porosimetry. Based on the kinetic and structural data for each reaction, models were developed and mathematically formulated. Agreement between model and experiment in all cases is generally good. Cyclic experiments of the sulfidation of half-calcined dolomite and the carbonation of sulfided dolomite were also performed. The adsorption capacity of dolomite for hydrogen sulfide was found to decrease at first and remain approximately constant upon continued cycling. However, a 75% utilization of calcium atoms in the dolomite was shown to be possible under certain selected conditions. 33 figures, 4 tables.

  10. Structural and optical studied of nano structured lead sulfide thin films prepared by the chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Al Din, Nasser Saad; Hussain, Nabiha; Jandow, Nidhal

    2016-07-01

    Lead (II) Sulfide PbS thin films were deposited on glass substrates at 25°C by chemical bath deposition (CBD) method. The structural properties of the films were studied as a function of the concentration of Thiourea (CS (NH2)2) as Source of Sulfide and deposition time. The surface morphology of the films was characterized by X-ray diffraction and SEM. The obtained results showed that the as-deposited films Polycrystalline had cubic crystalline phase that belong to S.G: Fm3m. We found that they have preferred orientation [200]. Also the thickness of thin films decrease with deposition time after certain value and, it observed free sulfide had orthorhombic phase. Optical properties showed that the thin films have high transmission at visible range and low transmission at UV, IR range. The films of PbS have direct band gap (I.68 - 2.32 ev) at 300K the values of band energy decreases with increases thickness of the Lead (II) Sulfide films.

  11. Resonance interactions in acyclic systems. 1. Energies and charge distributions in allyl anions and related compounds

    SciTech Connect

    Wiberg, K.B.; Breneman, C.M.; LePage, T.J. )

    1990-01-03

    The energies of dissociation of propane to 1-propyl cation and anion and of propene to allyl cation and anion may be satisfactorily reproduced via ab initio calculations at the MP4/6-311++G**//6-31G* level. The reaction of 1-propyl cation with propene to give the unconjugated allyl cation was found to be endothermic, whereas the corresponding reaction of the anion was exothermic. The rotational barrier for allyl cation was 36 kcal/mol, whereas that for the anion was 19 kcal/mol. These data were analyzed in terms of electron delocalization and the electrostatic energies of the ions, and it was concluded that whereas the cation had significant resonance stabilization, the anion had little stabilization. A series of allyl type anions were examined making use of 6-311++G** wave functions calculated at the 6-31G* geometries. Correction for electron correlation at the MP3 level led to calculated proton affinities which agreed well with the experimental values. Electronegative atoms at the central position had little affect on the proton affinities, but when they were at the terminal positions, there was a large change. The changes in electron population among the amions were studied via numerical integration of the charge densities within boundaries which may be assigned to the atoms in the ions. The more stable anions are characterized by a -+- charge distribution for the three atoms in the allylic system, leading to internal coulombic stabilization.

  12. A comprehensive study on atomic layer deposition of molybdenum sulfide for electrochemical hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Kwon, Do Hyun; Jin, Zhenyu; Shin, Seokhee; Lee, Wook-Seong; Min, Yo-Sep

    2016-03-01

    Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs). The ALD process results in the growth of particle-like MoSx on the CFP due to the lack of adsorption sites, and its crystallographic structure is a mixture of amorphous and nano-crystalline phases. In order to unveil the intrinsic activity of the ALD-MoSx, the exchange current densities, Tafel slopes, and turnover frequencies of the catalysts grown under various ALD conditions have been investigated by considering the fractional surface coverage of MoSx on the CFP and catalytically-active surface area. In addition, the ALD-MoSx/CFP catalysts exhibit excellent catalytic stability due to the strong adhesion of MoSx on the CFP and the mixed phase.Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs). The ALD process results in the growth of particle-like MoSx on the CFP due to the lack of adsorption sites, and its crystallographic structure is a mixture of amorphous and nano-crystalline phases. In order to unveil the intrinsic activity of the ALD-MoSx, the exchange current densities, Tafel slopes, and turnover frequencies of the catalysts grown under various ALD conditions have been investigated by considering the fractional surface coverage of MoSx on the CFP and catalytically

  13. Kinetic and mechanistic study of the reaction of atomic chlorine with dimethyl sulfide

    SciTech Connect

    Stickel, R.E.; Nicovich, J.M.; Wang, S.; Zhao, Z.; Wine, P.H.

    1992-11-26

    Time-resolved resonance fluorescence detection of Cl({sup 2}P{sub J}) following 266-nm laser flash photolysis of Cl{sub 2}CO/CH{sub 3}SCH{sub 3}(DMS)/N{sub 2} mixtures has been employed to study the kinetics of the title reaction over the temperature and pressure ranges 240-421 K and 3-700 Torr. The reaction is found to be very fast, occurring on essentially every Cl({sup 2}P{sub J}) + DMS encounter. The reaction rate increases with decreasing temperature and shows a significant pressure dependence. At 297 K, for example, the rate coefficient increases from a low-pressure limit value of approximately 1.8 x 10{sup {minus}10} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1} to a value of (3.3 {+-} 0.5) x 10{sup {minus}10} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1} at P = 700 Torr. A few experiments were carried out with CD{sub 3}SCD{sub 3} or C{sub 2}H{sub 5}SC{sub 2}H{sub 5} replacing DMS as the sulfide reactant; within experimental uncertainty, no dependence of the rate coefficient on the identity of the sulfide reactant was observed. In a separate study, time-resolved tunable diode laser spectroscopic detection of HCl has been coupled with 248-nm laser flash photolysis of Cl{sub 2}CO/DMS/CO{sub 2}/N{sub 2} mixtures to measure the HCl product yield from the title reaction as a function of pressure at T = 297 K. The HCl yield approaches unity as P {yields} 0 but decreases with increasing pressure to a value of {approximately}0.5 at P = 203 Torr. The yield experiments demonstrate that hydrogen abstraction is the dominant reaction mechanism in the low-pressure limit. With increasing pressure, stabilization of a (CH{sub 3}){sub 2}SCl adduct apparently becomes competitive with the hydrogen abstraction pathway. The potential role of the title reaction in marine atmospheric chemistry is discussed. 59 refs., 7 figs., 3 tabs.

  14. Selenium sulfide

    Integrated Risk Information System (IRIS)

    Selenium sulfide ; CASRN 7446 - 34 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  15. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    Hydrogen sulfide ; 7783 - 06 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  16. Carbonyl sulfide

    Integrated Risk Information System (IRIS)

    Carbonyl sulfide ; CASRN 463 - 58 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  17. Expanding insight into asymmetric palladium-catalyzed allylic alkylation of N-heterocyclic molecules and cyclic ketones.

    PubMed

    Bennett, Nathan B; Duquette, Douglas C; Kim, Jimin; Liu, Wen-Bo; Marziale, Alexander N; Behenna, Douglas C; Virgil, Scott C; Stoltz, Brian M

    2013-04-01

    Eeny, meeny, miny ... enaminones! Lactams and imides have been shown to consistently provide enantioselectivities substantially higher than other substrate classes previously investigated in the palladium-catalyzed asymmetric decarboxylative allylic alkylation. Several new substrates have been designed to probe the contributions of electronic, steric, and stereoelectronic factors that distinguish the lactam/imide series as superior alkylation substrates (see scheme). These studies culminated in marked improvements on carbocyclic allylic alkylation substrates. PMID:23447555

  18. Kinetic and mechanistic study of reaction between sulfide and sulfite in aqueous solution

    SciTech Connect

    Siu, T.; Jia, C.Q.

    1999-10-01

    The reaction between sulfide and sulfite in neutral to weak alkaline aqueous solutions was studied by following thiosulfate and sulfite concentrations using ion chromatography. The thiosulfate formation rate from the reaction 2HS{sup {minus}} + 4HSO{sub 3}{sup {minus}} {yields} 3S{sub 2}O{sub 3}{sup 2{minus}} + 3H{sub 2}O at pH 8 to 9 was found to be d[S{sub 2}O{sub 3}{sup 2{minus}}]/dt = k{sub A}[HS{sup {minus}}][HSO{sub 3}{sup {minus}}]{sup 2}, where k{sub A} = 1.1 x 10{sup 12} exp({minus}48000/RT) M{sup {minus}2} s{sup {minus}1}. A mechanism for this reaction has been proposed with disulfite (S{sub 2}O{sub 5}{sup 2{minus}}) and HSO{sub 2}{sup {minus}} intermediates. The measured rate of sulfite disappearance was higher than that calculated from the stoichiometry of the above reaction. This phenomenon is attributed to other reactions, that consume sulfite and form other sulfur compounds such as polythionates, polysulfides, and elemental sulfur. These reactions were treated as a single reaction, whose rate was found to be ({minus}d[HSO{sub 3}{sup {minus}}]/dt){sub B} = k{sub B}[H{sup +}]{sup {minus}0.6}[HS{sup {minus}}]{sup 0.7}[HSO{sub 3}{sup {minus}}]{sup 1.5}, where k{sub B} = 5 x 10{sup {minus}5} M{sup {minus}0.6} s{sup {minus}1} at 20 C. A kinetic model was established on the basis of the kinetic data obtained in this and a previous work. The experimental data at pH 7 agreed with the model prediction in a satisfactory manner. The biphasic behavior of thiosulfate is considered to be critical in developing a new sulfur-producing flue gas desulfurization (SP-FGD) process based on sulfur dioxide absorption using sodium sulfide solution.

  19. Kinetic studies on the sulfidation of iron by sulfur bearing low-Btu gases

    SciTech Connect

    Joyce, E.L. Jr.; Li, K.; Philbrook, W.O.

    1988-01-01

    The use of a low-Btu gas as a reducing agent for iron oxide was shown to be favorable at temperatures of 800/sup 0/C or greater. Little benefit was seen in terms of increased reduction rates at higher pressures (up to 5 atmospheres) or in varying either the H/sub 2/ concentration or CO/CO/sub 2/ ratio, within the range of a low-Btu gas. Sulfidation was found to occur in reaction with iron and not iron oxide. It was found that to avoid contamination of the reduced iron, very low levels of H/sub 2/S are necessary in the gas phase (approx. =0.05%). Kinetic data for the sulfidation of reduced iron oxide discs by a sulfur bearing low-Btu gas were taken to clarify the mechanism for the sulfidation reaction. Sulfidation was found to increase with H/sub 2/S concentration, system pressure and temperature, and to depend weakly on H/sub 2/ concentration and CO/CO/sub 2/ ratio. A model based on combined Multicomponent and Knudsen diffusion through the FeS product layer was developed and used to describe sulfidation. 40 refs., 16 figs.

  20. Sulfidization of Au(111) from thioacetic acid: an experimental and theoretical study.

    PubMed

    Fischer, Jeison A; Zoldan, Vinícius C; Benitez, Guillermo; Rubert, Aldo A; Ramirez, Eduardo A; Carro, Pilar; Salvarezza, Roberto C; Pasa, André A; Vela, Maria E

    2012-10-30

    We have studied the adsorption of thioacetic acid (TAAH) on Au(111) from solution deposition. The close proximity of the SH groups to CO groups makes this molecule very attractive for exploring the effect of the functional group on the stability of the S-C and S-Au bonds. Although thioacetic acid was supposed to decompose slowly in water by hydrolysis supplying hydrogen sulfide, this behavior is not expected in nonpolar solvents such as toluene or hexane. Therefore, we have used these solvents for TAAH self-assembly on the Au(111) surface. The characterization of the adsorbates has been done by electrochemical techniques, X-ray photoelectron spectroscopy (XPS), and scanning tunneling microscopy (STM). We have found that even in nonpolar solvents thioacetic acid decomposes to S. The results have been discussed on the basis that the adsorbed species suffer a cleavage on the Au surface, leaving the S attached to it. The dissociation is a spontaneous process that reaches the final state very fast once it is energetically favorable, as can be interpreted from DFT calculations. The thioacetic acid adsorption reveals the strong effect that produces a functional group and the key role of the S-H bond cleavage in the self-assembly process. PMID:23002810

  1. Infrared spectroscopic studies of galvanic effect influence on surface modification of sulfide minerals by surfactant adsorption.

    PubMed

    Mielczarski, Ela; Mielczarski, Jerzy A

    2005-08-15

    The influence of interaction between mineral components in natural mixtures on the adsorption of organic and inorganic species on the mineral surfaces is recognized. However, the surface phenomena have been meagerly investigated. In this study the formation of different surface species of surfactant (amyl xanthate, C5H11OC(S)S-) adsorbed on FeS2, PbS, and CuFeS2 has been spectroscopically investigated in single-mineral and complex systems. The type and amount of adsorbed species were determined directly on each mineral surface by infrared external reflection spectroscopy. Galvanic interaction between grains of different minerals could have tremendous consequence on the adsorption of surfactants on each mineral component and their future reactivity. The detected changes are dramatic, from no adsorption to the formation of several layers of hydrophobic or hydrophilic surface products depending on which minerals are in contact. It has been documented that even very short contact time between different mineral grains by collision is sufficient to produce dramatic modification of the surface composition and structure. The results obtained indicate clearly that the observations and conclusions aboutthe surfactant adsorption made in a single mineral system cannot be simply extrapolated to describe the real situation in natural multicomponent mineral systems. The obtained information on sulfide mineral interaction in complex systems is indispensable to understand processes taking place in nature at mineral-water interfaces (dissolution of heavy metals). An additional benefit is the improved ability to design efficient separation processes of these minerals. PMID:16173571

  2. Genetic Targets of Hydrogen Sulfide in Ventilator-Induced Lung Injury – A Microarray Study

    PubMed Central

    Spassov, Sashko; Pfeifer, Dietmar; Strosing, Karl; Ryter, Stefan; Hummel, Matthias; Faller, Simone; Hoetzel, Alexander

    2014-01-01

    Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection. PMID:25025333

  3. A comprehensive study on atomic layer deposition of molybdenum sulfide for electrochemical hydrogen evolution.

    PubMed

    Kwon, Do Hyun; Jin, Zhenyu; Shin, Seokhee; Lee, Wook-Seong; Min, Yo-Sep

    2016-03-24

    Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs). The ALD process results in the growth of particle-like MoSx on the CFP due to the lack of adsorption sites, and its crystallographic structure is a mixture of amorphous and nano-crystalline phases. In order to unveil the intrinsic activity of the ALD-MoSx, the exchange current densities, Tafel slopes, and turnover frequencies of the catalysts grown under various ALD conditions have been investigated by considering the fractional surface coverage of MoSx on the CFP and catalytically-active surface area. In addition, the ALD-MoSx/CFP catalysts exhibit excellent catalytic stability due to the strong adhesion of MoSx on the CFP and the mixed phase. PMID:26973254

  4. Sulfur isotope values in the sulfidic Frasassi cave system, central Italy: A case study of a chemolithotrophic S-based ecosystem

    NASA Astrophysics Data System (ADS)

    Zerkle, Aubrey L.; Jones, Daniel S.; Farquhar, James; Macalady, Jennifer L.

    2016-01-01

    Sulfide oxidation forms a critical step in the global sulfur cycle, although this process is notoriously difficult to constrain due to the multiple pathways and highly reactive intermediates involved. Multiple sulfur isotopes (δ34S and Δ33S) can provide a powerful tool for unravelling sulfur cycling processes in modern (and ancient) environments, although they have had limited application to systems with well-resolved oxidative S cycling. In this study, we report the major (δ34S) and minor (Δ33S) isotope values of sulfur compounds in streams and sediments from the sulfidic Frasassi cave system, Marche Region, Italy. These microaerophilic cave streams host prominent white biofilms dominated by chemolithotrophic organisms that oxidize sulfide to S0, allowing us to estimate S isotope fractionations associated with in situ sulfide oxidation and to evaluate any resulting isotope biosignatures. Our results demonstrate that chemolithotrophic sulfide oxidation produces 34S enrichments in the S0 products that are larger than those previously measured in laboratory experiments, with 34εS0-H2S of up to 8‰ calculated. These small reverse isotope effects are similar to those produced during phototrophic sulfide oxidation (⩽7‰), but distinct from the small normal isotope effects previously calculated for abiotic oxidation of sulfide with O2 (∼-5‰). An inverse correlation between the magnitude of 34εS0-H2S effects and sulfide availability, along with substantial differences in Δ33S, both support complex sulfide oxidation pathways and intracellular recycling of S intermediates by organisms inhabiting the biofilms. At the ecosystem level, we calculate fractionations of less than 40‰ between sulfide and sulfate in the water column and in the sediments. These fractionations are smaller than those typically calculated for systems dominated by sulfate reduction (>50‰), and contrast with the commonly held assumption that oxidative recycling of sulfide generally

  5. A DFT study on PBu3-catalyzed intramolecular cyclizations of N-allylic substituted α-amino nitriles for the formation of functionalized pyrrolidines: mechanisms, selectivities, and the role of catalysts.

    PubMed

    Zheng, Linjie; Tang, Mingsheng; Wang, Yang; Guo, Xiaokang; Wei, Donghui; Qiao, Yan

    2016-03-21

    The mechanisms and chemo- and stereo-selectivities of PBu3-catalyzed intramolecular cyclizations of N-allylic substituted α-amino nitriles leading to functionalized pyrrolidines (5-endo-trig cyclization, Mechanism A) and their competing reaction leading to another kind of pyrrolidine (5-exo-trig cyclization, Mechanism B) have been investigated using density functional theory (DFT). Multiple possible reaction pathways associated with four different isomers (RR, SR, RS, and SS) for Mechanism A, and two isomers (R and S) for Mechanism B have been studied. The calculated results indicate that the Gibbs free energy barriers of Mechanism A are remarkably lower than those of Mechanism B, and the reaction pathway leading to the RS-configured product has the lowest Gibbs free energy barrier, which is in agreement with the experiments. A C-Hπ interaction has been identified to be responsible for the favorability of RS isomers by non-covalent interaction (NCI) analysis. Moreover, global reaction indexes (GRIs) and NBO analyses confirm that PBu3 acts as a Lewis base to strengthen the nucleophilicity of the reaction active site. The mechanistic insights gained in the present study should be valuable for the rational design of effective organocatalysts for this kind of reaction with high chemo- and stereo-selectivities. PMID:26911423

  6. Mechanistic chemical perspective of hydrogen sulfide signaling.

    PubMed

    Nagy, Péter

    2015-01-01

    Hydrogen sulfide is now a well-appreciated master regulator in a diverse array of physiological processes. However, as a consequence of the rapid growth of the area, sulfide biology suffers from an increasing number of controversial observations and interpretations. A better understanding of the underlying molecular pathways of sulfide's actions is key to reconcile controversial issues, which calls for rigorous chemical/biochemical investigations. Protein sulfhydration and coordination/redox chemical interactions of sulfide with heme proteins are the two most extensively studied pathways in sulfide biochemistry. These pathways are important mediators of protein functions, generate bioactive sulfide metabolites, contribute to sulfide storage/trafficking and carry antioxidant functions. In addition, inorganic polysulfides, which are oxidative sulfide metabolites, are increasingly recognized as important players in sulfide biology. This chapter provides an overview of our mechanistic perspective on the reactions that govern (i) sulfide's bioavailability (including the delicate enzyme machineries that orchestrate sulfide production and consumption and the roles of the large sulfide-storing pools as biological buffers), (ii) biological significance and mechanisms of persulfide formation (including the reduction of disulfides, condensation with sulfenic acids, oxidation of thiols with polysulfides and radical-mediated pathways), (iii) coordination and redox chemical interactions of sulfide with heme proteins (including cytochrome c oxidase, hemoglobins, myoglobins and peroxidases), and (iv) the chemistry of polysulfides. PMID:25725513

  7. Allylic Amines as Key Building Blocks in the Synthesis of (E)-Alkene Peptide Isosteres

    PubMed Central

    Skoda, Erin M.; Davis, Gary C.

    2012-01-01

    Nucleophilic imine additions with vinyl organometallics have developed into efficient, high yielding, and robust methodologies to generate structurally diverse allylic amines. We have used the hydrozirconation-transmetalation-imine addition protocol in the synthesis of allylic amine intermediates for peptide bond isosteres, phosphatase inhibitors, and mitochondria-targeted peptide mimetics. The gramicidin S-derived XJB-5-131 and JP4-039 and their analogs have been prepared on up to 160 g scale for preclinical studies. These (E)-alkene peptide isosteres adopt type II′ β-turn secondary structures and display impressive biological properties, including selective reactions with reactive oxygen species (ROS) and prevention of apoptosis. PMID:22323894

  8. Synthesis of (-)-Piperitylmagnolol Featuring ortho-Selective Deiodination and Pd-Catalyzed Allylation.

    PubMed

    Ikoma, Atsushi; Ogawa, Narihito; Kondo, Daiki; Kawada, Hiroki; Kobayashi, Yuichi

    2016-05-01

    A 1,4-addition strategy using an enone and a copper reagent was studied for the synthesis of (-)-piperitylmagnolol. A MOM-protected biphenol copper reagent was added to BF3·OEt2-activated 4-isopropylcyclohexenone, whereas 1,4-addition of protected monophenol reagents possessing an allyl group was found to be unsuccessful. The allyl group was later attached to the p-,p'-diiodo-biphenol ring by Pd-catalyzed coupling with allylborate. The aforementioned iodide was synthesized using a new method for ortho-selective deiodination of o-,p-diiodophenols. PMID:27109890

  9. Allylic Oxidations Catalyzed by Dirhodium Caprolactamate via Aqueous tert-Butyl Hydroperoxide: The Role of the tert-Butylperoxy Radical

    PubMed Central

    McLaughlin, Emily C.; Choi, Hojae; Wang, Kan; Chiou, Grace; Doyle, Michael P.

    2009-01-01

    Dirhodium(II) caprolactamate exhibits optimal efficiency for the production of the tert-butylperoxy radical, which is a selective reagent for hydrogen atom abstraction. These oxidation reactions occur with aqueous tert-butyl hydroperoxide (TBHP) without rapid hydrolysis of the caprolactamate ligands on dirhodium. Allylic oxidations of enones yield the corresponding enedione in moderate to high yields, and applications include allylic oxidations of steroidal enones. Although methylene oxidation to a ketone is more effective, methyl oxidation to a carboxylic acid can also be achieved. The superior efficiency of dirhodium(II) caprolactamate as a catalyst for allylic oxidations by TBHP (mol % catalyst, % conversion) is described in comparative studies with other metal catalysts that are also reported to be effective for allylic oxidations. That different catalysts produce essentially the same mixture of products with the same relative yields suggests that the catalyst is not involved in product forming steps. Mechanistic implications arising from studies of allylic oxidation with enones provide new insights into factors that control product formation. A previously undisclosed disproportionation pathway, catalyzed by the tert-butoxy radical, of mixed peroxides for the formation of ketone products via allylic oxidation has been uncovered. PMID:19072696

  10. Studies on the regeneration of sulfided iron oxide sorbent with steam-air mixtures. Final technical report

    SciTech Connect

    Tamhankar, S.S.

    1982-10-01

    The work reported here was performed as a continuation of studies conducted previously at West Virginia University (WVU), Department of Chemical Engineering on a hot-fuel-gas desulfurization process using a regenerable iron oxide-silica sorbent. The overall process consists of two stages: the absorption or the H/sub 2/S removal stage and the sorbent regeneration stage. In the absorption stage the iron oxide reacts with H/sub 2/S to form iron sulfide. For regeneration of the sulfided sorbent, various schemes have been proposed. Studies at WVU have been aimed at identifying the important reactions involved in absorption and regeneration stages, elucidating their mechanisms and investigating detailed kinetics. In the first two phases of the study, reactions in H/sub 2/S absorption and in sorbent regeneration by air/SO/sub 2/ were investigated. This report addresses regeneration of the sulfided sorbent using steam-air mixtures. Experiments were conducted in a thermo-gravimetric analyzer (TGA) apparatus. The weight changes were recorded as a function of time during the reactions of iron sulfide (in the presulfided sorbent) with nitrogen-stream and air-steam mixtures. In addition, several solid samples at different conversion levels were anlayzed by LECO sulfur anlaysis technique and by Mossbauer spectroscopy. Based on these results, a reaction mechanism has been postulated. Additional work is necessary to investigate the gas-phase reactions which may be taking place simultaneously in a fixed - or a fluidized-bed reactor, and to formulate the overall reaction scheme. 14 figures, 3 tables.

  11. Mineralogical studies of sulfide samples and volatile concentrations of basalt glasses from the southern Juan de Fuca Ridge

    NASA Technical Reports Server (NTRS)

    Brett, Robin; Evans, Howard T., Jr.; Wandless, M. V.; Gibson, E. K., Jr.; Hedenquist, Jeffrey W.

    1987-01-01

    Sulfide samples obtained from Alvin dives on the southern Juan de Fuca Ridge were examined, showing the presence of two previously undiscovered minerals, both formed at low temperatures. The first detection of lizardite, starkeyite, and anatase in such an environment is also reported. Sulfide geothermometry involving the Cu-Fe-S system shows a vent temperature of less than 328 C for one sample. Ice-melting temperatures on inclusions from this sample are about -2.8 C, and fluid inclusion studies on crystals near this sample show pressure-corrected homogenization temperatures of 268 and 285 C. Volatile concentrations from vesicle-free basalt glass from the vent field are found to be about 0.0013 wt pct CO2 and 0.16 wt pct H2O.

  12. Transient Overexpression of adh8a Increases Allyl Alcohol Toxicity in Zebrafish Embryos

    PubMed Central

    Klüver, Nils; Ortmann, Julia; Paschke, Heidrun; Renner, Patrick; Ritter, Axel P.; Scholz, Stefan

    2014-01-01

    Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in

  13. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos.

    PubMed

    Klüver, Nils; Ortmann, Julia; Paschke, Heidrun; Renner, Patrick; Ritter, Axel P; Scholz, Stefan

    2014-01-01

    Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in

  14. Raman and photoluminescence studies of poly (p-phenylene sulfide) films

    SciTech Connect

    Pan, Z.

    1992-01-01

    Scope and method of study. Micro-Raman and photoluminescence (PL) measurements have been performed on various poly (p-phenylene sulfide) (PPS) films to investigate the morphology and emission properties of this important polymer material. A cw argon laser at 514.5 nm was used in the Raman study while a pulsed Nd:YAG laser at 355 nm was used in the PL study. A phenylene-sulfur stretching vibration model was proposed to interpret the influence of polymer crystallinity on the Raman spectrum and to calculate the effective force constant. A lattice relaxation model was developed to explain the vibronic structure in the PL spectrum and the electron-phonon coupling in PPS. Findings and conclusions: It was found that: (i) the intensity, and the line profile of the main Raman band at 1076 cm[sup [minus]1] were related to the crystallinity of the PPS film; (ii) the effective stretching and bending force constants between the phenylene ring and the sulfur atom were determined; (iii) new Raman lines at 840 and 919 cm[sup [minus]1] were observed and assigned to the out of plane C-H bending modes; (iv) the vibronic structure with energy spacing equal to the phenylene-sulfur stretching mode was observed in low temperature PL spectrum of all PPS samples, which provided evidence that the electronic transition was coupled to the intrachain stretching in PPS; (V) the electron-phonon coupling strength and the temporary lattice distortion were determined for the unaged and aged films. The coupling strength was reduced in the aged sample possibly due to the increased [pi]-orbital overlap caused by the crosslinking which resulted from the thermal-aging process.

  15. Studying inhibition of calcium oxalate stone formation: an in vitro approach for screening hydrogen sulfide and its metabolites

    PubMed Central

    Vaitheeswari, S.; Sriram, R.; Brindha, P.; Kurian, Gino A.

    2015-01-01

    ABSTRACT Purpose: Calcium oxalate urolithiasis is one of the most common urinary tract diseases and is of high prevalence. The present study proposes to evaluate the antilithiatic property of hydrogen sulfide and its metabolites like thiosulfate & sulfate in an in vitro model. Materials and Methods: The antilithiatic activity of sodium hydrogen sulfide (NaSH), sodium thiosulfate (Na2S2O3) and sodium sulfate (Na2SO4) on the kinetics of calcium oxalate crystal formation was investigated both in physiological buffer and in urine from normal and recurrent stone forming volunteers. The stones were characterized by optical and spectroscopic techniques. Results: The stones were characterized to be monoclinic, prismatic and bipyramidal habit which is of calcium monohydrate and dihydrate nature. The FTIR displayed fingerprint corresponding to calcium oxalate in the control while in NaSH treated, S=O vibrations were visible in the spectrum. The order of percentage inhibition was NaSH>Na2S2O3>Na2SO4. Conclusion: Our study indicates that sodium hydrogen sulfide and its metabolite thiosulfate are inhibitors of calcium oxalate stone agglomeration which makes them unstable both in physiological buffer and in urine. This effect is attributed to pH changes and complexing of calcium by S2O3 2-and SO4 2- moiety produced by the test compounds. PMID:26200543

  16. Mineralogical and isotopic studies of base metal sulfides from the Jiawula Ag-Pb-Zn deposit, Inner Mongolia, NE China

    NASA Astrophysics Data System (ADS)

    Niu, Si-Da; Li, Sheng-Rong; Santosh, M.; Zhang, De-Hui; Li, Zeng-Da; Shan, Meng-Jie; Lan, Yi-Xiang; Gao, De-Rong; Zhao, Wen-Bin

    2016-01-01

    The Jiawula Ag-Pb-Zn deposit is located in the northern part of the Da Hinggan Mountains metallogenic belt in the eastern section of the Central Asian Orogenic Belt. Sphalerite, galena, pyrite, chalcopyrite, and arsenopyrite are the major sulfide minerals occurring in this deposit. Here we report results from electron probe micro-analysis (EPMA), thermoelectricity, and sulfur isotope studies of the constituent silver minerals and sulfide phases of the Jiawula deposit. Petrographic observations and EPMA study reveal abundant silver mineralization in the ore, especially within sphalerite and galena. Discrete grains of silver minerals (including argentite, pyrargyrite, and canfieldite) and isomorphism in silver-bearing sulfides are identified. Silver and tellurium contents in galena are relatively high and show interrelationship. Significant substitution of S by Te in the galena lattice facilitates silver entering the galena structure, which might have been promoted by relatively low lg fS2. The thermoelectric coefficient of pyrite shows a marked gradient from N-type to P-type from pre- to post-metallogenic stages. Pyrites in Jiawula are enriched in Co and As and in the absence of Ni, displaying features typical of epithermal deposits. The isotopic data present a close relationship between the sulfur source and magmatism.

  17. Studies of the surface reactivity of metal oxyhydroxides and sulfides with relevance to environmental chemistry

    NASA Astrophysics Data System (ADS)

    Pierre-Louis, Andro-Marc

    With the benefits of an ever increasing advance of industrialization around the globe come formidable environmental problems. Three environmental problems that have relevance to the research described in this thesis are the 1) buildup of atmospheric CO2 gas through the burning of fossil fuels, 2) eutrophication of aquatic systems, and 3) the acidification of environments from acid mine drainage (AMD) resulting from coal-mining activities. In particular research is presented in this thesis that investigated the surface chemistry of CO2 and phosphate (PO43-) on a suite of environmentally relevant iron oxyhydroxide materials and the chemistry of phospholipid molecules on environmentally relevant iron sulfide surfaces to suppress AMD. To develop a microscopic understanding of the surface chemistry of the different systems, an array of experimental and computational techniques were used in the research. Techniques included X-ray photoelectron spectroscopy, atomic adsorption, X-ray diffraction, scanning transmission microscopy with electron dispersive X-ray spectroscopy (STEM/EDS), ion chromatography (IC), and attenuated total reflectance Fourier transform Infrared (ATR-FTIR). Results from the latter technique were interpreted with the aid of density function theory (DFT) calculations. Iron oxyhydroxides, which consisted of ferrihydrite (FeOOH), goethite (α-FeOOH), ferrimagnetic ferrihydrite (FerriFh), and aluminum-doped iron oxyhydroxide (content from 0-100 mol%) were synthesized and studied before and after exposure to gaseous CO2, CO32-, and PO43- species. FeOOH and mixed Al/Fe oxyhydroxide surfaces showed high affinities for the formation of carbonate and bicarbonate species upon exposure to gaseous CO2. Within the Al/Fe oxyhydroxide circumstance, a low Al level of incorporation in the iron oxyhydroxide structure caused a slight increase in surface area and increase in the amount of oxyanion (e.g., CO32- or PO43-) adsorption up to an Al level of 30 mol%. Significant

  18. Studies of the surface reactivity of metal oxyhydroxides and sulfides with relevance to environmental chemistry

    NASA Astrophysics Data System (ADS)

    Pierre-Louis, Andro-Marc

    With the benefits of an ever increasing advance of industrialization around the globe come formidable environmental problems. Three environmental problems that have relevance to the research described in this thesis are the 1) buildup of atmospheric CO2 gas through the burning of fossil fuels, 2) eutrophication of aquatic systems, and 3) the acidification of environments from acid mine drainage (AMD) resulting from coal-mining activities. In particular research is presented in this thesis that investigated the surface chemistry of CO2 and phosphate (PO43-) on a suite of environmentally relevant iron oxyhydroxide materials and the chemistry of phospholipid molecules on environmentally relevant iron sulfide surfaces to suppress AMD. To develop a microscopic understanding of the surface chemistry of the different systems, an array of experimental and computational techniques were used in the research. Techniques included X-ray photoelectron spectroscopy, atomic adsorption, X-ray diffraction, scanning transmission microscopy with electron dispersive X-ray spectroscopy (STEM/EDS), ion chromatography (IC), and attenuated total reflectance Fourier transform Infrared (ATR-FTIR). Results from the latter technique were interpreted with the aid of density function theory (DFT) calculations. Iron oxyhydroxides, which consisted of ferrihydrite (FeOOH), goethite (α-FeOOH), ferrimagnetic ferrihydrite (FerriFh), and aluminum-doped iron oxyhydroxide (content from 0-100 mol%) were synthesized and studied before and after exposure to gaseous CO2, CO32-, and PO43- species. FeOOH and mixed Al/Fe oxyhydroxide surfaces showed high affinities for the formation of carbonate and bicarbonate species upon exposure to gaseous CO2. Within the Al/Fe oxyhydroxide circumstance, a low Al level of incorporation in the iron oxyhydroxide structure caused a slight increase in surface area and increase in the amount of oxyanion (e.g., CO32- or PO43-) adsorption up to an Al level of 30 mol%. Significant

  19. Assessment of DNA damage and repair in adults consuming allyl isothiocyanate or Brassica vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Allyl isothiocyanate (AITC) is a dietary component with potentially important anti-cancer effects, though much of the information about AITC and cancer processes has been obtained from cell studies. To investigate the effect of AITC on DNA integrity and repair in vivo, a human feeding study was con...

  20. Sulfide formation in reservoir carbonates of the Devonian Nisku Formation, Alberta, Canada: An ion microprobe study

    SciTech Connect

    Riciputi, L.R.; Cole, D.R.; Machel, H.G.

    1996-01-01

    The processes affecting sulfur during diagenesis in carbonates have been investigated by ion microprobe analysis of {sigma} {sup 34}S values of pyrite, marcasite, and anhydrite from the Devonian Nisku Formation in the Western Canada Sedimentary Basin. Pyrite and marcasite from three Nisku wells have {sigma}{sup 34}S ranging between -35 and +20{per_thousand}. The {sigma}{sup 34}S values increase b6y up to 50{per_thousand} with increasing well depth in two different Nisku wells, and {sigma}{sup 34}S also increases by up to 15{per_thousand} as grain size increases form 40 to over 100 {mu}m in individual samples. The appearance of native sulfur is accompanied by an increase of up to 30{per_thousand} in pyrite {sigma}{sup 34}S values. Bulk and ion probe analyses of anhydrite are relatively uniform ({sigma}{sup 34}S = +22 to +30{per_thousand} CDT). The predominately low {sigma}{sup 34}S values of Nisku sulfides indicate bacterial sulfate reduction. Textural relations indicate that Fe-sulfide formation in Nisku carbonates may have occurred by two different mechanisms. Much of the sulfide has {sigma}{sup 34}S values that suggest that it was associated with bacterial sulfate reduction, although most Fe-sulfides did not form until after pervasive matrix dolomitization (depths of 300-1000 m). Other sulfide may have formed later, during deep ({approximately}4km) burial via thermochemical sulfate reduction. The range in {sigma}{sup 34}S values in a single thin section and correlations between pyrite morphology and isotopic values suggest that sulfate reduction was a very localized process, and that the sulfate reduction environment varied considerably on a small scale. 61 refs., 10 figs., 1 tab.

  1. Sulfidation of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Levard, C.; Michel, F. M.; Brown, G. E.

    2010-12-01

    the kinetics of sulfidation and in solubility behavior. The results of this type of fundamental study are important for predicting the behavior and fate of Ag-NPs in natural ecosystems. For example, aggregation caused by sulfidation may limit transport in porous media such as soils. Modification of surface charge during the sulfidation process may have an important impact on electrostatic interactions between Ag-NPs and charged phases such as natural organic matter. Finally, it is well known that Ag+ has a greater toxicity than metallic Ag (3) and the observed decrease in solubility of Ag-NPs after sulfidation may strongly impact the toxicity of silver in the environment. (1) www.nanotechproject.org (2) F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin and M. Figlarz, Solid State Ionics 32/33, 198 (1989) (3) G.A. Sotiriou and S.E. Pratsinis, Environmental Science & Technology 14, 5649 (2010).

  2. Asymmetric synthesis of α-chiral allylic silanes by enantioconvergent γ-selective copper(I)-catalyzed allylic silylation.

    PubMed

    Delvos, Lukas B; Vyas, Devendra J; Oestreich, Martin

    2013-04-22

    Gamma way: Regio- and enantioselective allylic substitution with a silicon nucleophile generated by copper(I)-catalyzed Si-B bond activation provides direct access to α-chiral allylic silanes from linear acceptors. The enantioconvergent catalysis employing McQuade's six-membered N-heterocyclic-carbene-copper(I) catalyst is applicable to aryl- and alkyl-substituted allylic phosphates (see scheme). PMID:23512610

  3. Enantioselective domino reaction of CO2, amines and allyl chlorides under iridium catalysis: formation of allyl carbamates.

    PubMed

    Zhang, Min; Zhao, Xiaoming; Zheng, Shengcai

    2014-05-01

    The enantioselective domino reaction between CO2 (1 atm), amines and linear allyl chlorides in the presence of an iridium complex, DABCO and toluene at 15 °C was realized, which gave branched allyl carbamates in acceptable to high yields with up to excellent regioselectivity (99/1) and 94% ee. This is the first example of the synthesis of chiral allyl carbamates through catalytic domino reactions using CO2. PMID:24652315

  4. Nanostructured metal sulfides for energy storage.

    PubMed

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-09-01

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices. PMID:25073046

  5. Temperature-controlled redox-neutral ruthenium(ii)-catalyzed regioselective allylation of benzamides with allylic acetates.

    PubMed

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2016-08-10

    Substituted aromatic amides reacted efficiently with allylic acetates in the presence of a cationic ruthenium complex in ClCH2CH2Cl at room temperature providing ortho allylated benzamides in a highly regioselective manner without any oxidant and base. The whole catalytic reaction occurred in a Ru(ii) oxidation state and thus the oxidation step is avoided. By tuning the reaction temperature, ortho allyl and vinyl benzamides were prepared exclusively. Later, ortho allyl and vinylated benzamides were converted into biologically useful six- and five-membered benzolactones in the presence of HCl. PMID:27456467

  6. Stereoselectivity of nitrile oxide cycloadditions to chiral allylic fluorides: experiment and theory.

    PubMed

    Prakesch, Michael; Grée, Danielle; Grée, René; Carter, Jennifer; Washington, Ilyas; Houk, K N

    2003-11-21

    The cycloadditions of nitrile oxides with new and previously studied allylic fluorides were examined. The 1,3-dipolar cycloaddition reactions were also investigated theoretically with density functional theory (B3LYP) based transition-state modelling. The predictions provided reasonable agreement with experiment, indicating that both steric and electronic effects have important influences on the stereoselectivities of these reactions. PMID:14639650

  7. Effect of allyl isothiocyanate on antioxidants and fruit decay of blueberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of allyl isothiocyanate (AITC) on flavonoids, radical scavenging capacity, fruit decay and quality of blueberries (Vaccinium corymbosum L. cv. Duke) was evaluated. Results from this study showed that AITC was effective in retarding blueberry decay during storage at 10 'C. AITC treatment r...

  8. Biomonitoring the intake of garlic via urinary excretion of allyl mercapturic acid.

    PubMed

    Verhagen, H; Hageman, G J; Rauma, A L; Versluis-de Haan, G; van Herwijnen, M H; de Groot, J; Törrönen, R; Mykkänen, H

    2001-08-01

    Allium vegetables (onions, leeks, chives) and in particular garlic have been claimed to have health-promoting potential. This study was conducted to get insight into the perspectives for monitoring the intake of garlic by a biomarker approach. Chemically, the biomarker results from exposure to gamma-glutamyl-S-allyl-l-cysteine, which is first hydrolysed by gamma-glutamine-transpeptidase resulting in the formation of S-allyl-l-cysteine. The latter compound is subsequently N-acetylated by N-acetyltransferase into S-allyl-mercapturic acid (ALMA) and excreted into urine. The mercapturic acid was measured in urine using gaschromatography with mass spectrometry. Thus the intake of garlic was determined to check the compliance of garlic intake in a placebo-controlled intervention study. Results indicate that S-allyl-mercapturic acid could be detected in 15 out of 16 urine samples of garlic supplement takers, indicating good compliance. In addition, the intake of garlic was also monitored in a cross-section study of vegans versus controls in Finland, in which no differences in garlic consumption nor in ALMA output were recorded between vegans and controls. These data indicate good possibilities for further studies in the field of biomarkers to investigate the putative chemopreventive effects of garlic and garlic-containing products. PMID:11520428

  9. Studies on the structure and morphology of ultrafine particles of metallic sulfides

    NASA Astrophysics Data System (ADS)

    Kaito, Chihiro; Saito, Yoshio; Fujita, Kazuo

    1989-04-01

    Ultrafine particles of metallic sulfides have been produced by the reaction of metal and sulfur vapor. The sulfur vapor was prepared by evaporating sulfur powder from a quartz boat using the atmospheric temperature of either the heated metal or the boat. PbS particles grew as single crystal cubes. β-In 2S 3 particles grew as single crystal octahedra. Mo 3S 4, W 3S 4, Bi 2S 3, β-SnS 2 and β-Cu 2S particles grew as thin plates. Sb 2S 3 grew as amorphous spheres. Ag 2S, α-In 2S 3 and Sb 2S 3 grew as complicated polyhedra. It is shown by HREM images that the coalescence growth took place in the metallic sulfide smokes.

  10. Inhibition of sulfide mineral oxidation by surface coating agents: batch and field studies.

    PubMed

    Ji, Min-Kyu; Gee, Eun-Do; Yun, Hyun-Shik; Lee, Woo-Ram; Park, Young-Tae; Khan, Moonis Ali; Jeon, Byong-Hun; Choi, Jaeyoung

    2012-08-30

    The potential of several surface coating agents to inhibit the oxidation of metal sulfide minerals from Young-Dong coal mine and the Il-Gwang gold mine was examined by conducting laboratory scale batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH(2)PO(4), MgO and KMnO(4) as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H(2)O(2) or NaClO). For the observed time period (8 days), Young-Dong coal mine samples exhibited the least sulfate (SO(4)(2-)) production in the presence of KMnO(4) (16%) or cement (4%) while, for Il-Gwang mine samples, the least SO(4)(2-) production was observed in presence of KH(2)PO(4) (8%) or cement (2%) compared to control. Field-scale pilot tests at the Il-Gwang site also showed that addition of KH(2)PO(4) decreased SO(4)(2-) production from 200 to 13 mg L(-1) and it also reduced Cu and Mn from 8 and 3 mg L(-1), respectively to <0.05 mg L(-1) (below ICP-OES detection limits). The experimental results suggested that the use of surface coating agents is a promising alternative for sulfide oxidation inhibition at acid mine drainage sites. PMID:22727481

  11. Comparative studies between 4-allyl-, 4-phenyl- and 4-ethyl-1-(2-hydroxybenzoyl) thiosemicarbazides and the synthesis, characterization and DFT calculations of binary and ternary complexes derived from 4-ethyl (L(1)) and 2,2'-dipyridyl.

    PubMed

    Azhari, Shaker J; Mlahi, Mosaad R; Mostafa, Mohsen M

    2015-11-01

    The metal complexes of 4-ethyl-1-(2-hydroxybenzoyl) thiosemicarbazide (L(1)) with MCl2 (M=Co(2+), Cu(2+) and Zn(2+)) and Zn(Ac)2 in EtOH were synthesized and characterized using spectral (IR, (1)H-NMR, mass, UV-Visible), magnetic moment and thermal measurements. Binary and ternary complexes with the general formulae, [Cu(L(1)-H)2]·EtOH, [Co(L(1)-H)2], [Zn3(L(1)-H)(L(1))(Ac)5], [Cu2(L(2))2(L(1)-2H)2(H2O)2]·4H2O, [Co(L(2))(L(1)-2H)]·3H2O and [Zn2(L(2))(OH)(L(1)-3H)(H2O)]·1/2EtOH where L(2) is 2,2'-dipyridyl, have been suggested and characterized. The bond lengths, bond angles, chemical reactivates, energy components, binding energies and dipole moments for the isolated complexes were evaluated by DFT method from DMOL(3). Also, the MEP for L(1) is illustrated. The existence of the OH group in the Zn(2+) ternary complexes is confirmed by IR, mass and (1)H-NMR spectra. Biological activity for the L(1) and some its complexes was tested against DNA. Comparative studies between the ligation behavior and reactivity of our previous work derived from 4-phenyl- and 4-allyl-1-(2-hydroxybenzoyl) thiosemicarbazides have been investigated. PMID:26123512

  12. Mineralogical, petrological, and geochemical studies of the Limahe mafic-ultramatic intrusion and associated Ni-Cu sulfide ores, SW China

    NASA Astrophysics Data System (ADS)

    Tao, Yan; Li, Chusi; Song, Xie-Yan; Ripley, Edward M.

    2008-11-01

    The Limahe Ni-Cu sulfide deposit is hosted by a small mafic-ultramafic intrusion (800 × 200 × 300 m) that is temporally associated with the voluminous Permian flood basalts in SW China. The objective of this study is to better understand the origin of the deposit in the context of regional magmatism which is important for the ongoing mineral exploration in the region. The Limahe intrusion is a multiphase intrusion with an ultramafic unit at the base and a mafic unit at the top. The two rock units have intrusive contacts and exhibit similar mantle-normalized trace element patterns and Sr-Nd isotopic compositions but significantly different cumulus mineralogy and major element compositions. The similarities suggest that they are related to a common parental liquid, whereas the differences point to magma differentiation by olivine crystallization at depth. Sulfide mineralization is restricted to the ultramafic unit. The abundances of sulfides in the ultramafic unit generally increase towards the basal contacts with sedimentary footwall. The δ 34S values of sulfide minerals from the Limahe deposit are elevated, ranging from +2.4 to +5.4‰. These values suggest the involvement of external S with elevated δ 34S values. The mantle-normalized platinum-group element (PGE) patterns of bulk sulfide ores are similar to those of picrites associated with flood basalts in the region. The abundances of PGE in the sulfide ores, however, are significantly lower than that of sulfide liquid expected to segregate from undepleted picrite magma. Cr-spinel and olivine are present in the Limahe ultramafic rocks as well as in the picrites. Mantle-normalized trace element patterns of the Limahe intrusion generally resemble those of the picrites. However, negative Nb-Ta anomalies, common features of contamination with the lower or middle crust, are present in the intrusion but absent in the picrites. Sr-Nd isotopes suggest that the Limahe intrusion experienced higher degrees of

  13. Pilot field-verification studies of the sodium sulfide/ferrous sulfate treatment process. Final report, September 1987-May 1988

    SciTech Connect

    Wiloff, P.M.; Suciu, D.F.; Prescott, D.S.; Schober, R.K.; Loyd, F.S.

    1988-09-01

    In previous project, jar and dynamic testing showed that the sodium sulfide/ferrous sulfate process was a viable method for reducing hexavalent chromium and removing heavy metals from the Tinker AFB industrial wastewater with significant decrease in sludge production and treatment costs. In this phase, pilot-plant field verification studies were conducted to evaluate the chemical and physical parameters of the chromium reduction process, the precipitation and clarification process, and the activated-sludge system. Sludge production was evaluated and compared to the sulfuric acid/sulfur dioxide/lime process.

  14. Mineralogical studies of sulfide samples and volatile concentrations of basalt glasses from the southern Juan de Fuca Ridge.

    PubMed

    Brett, R; Evans, H T; Gibson, E K; Hedenquist, J W; Wandless, M V; Sommer, M A

    1987-10-10

    Sulfide samples obtained from the U.S. Geological Survey's DSRV Alvin dives on the southern Juan de Fuca Ridge closely resemble those from the same area described by Koski et al. (1984). Major minerals include sphalerite, wurtzite, pyrite, marcasite, isocubanite, anhydrite, and chalcopyrite. Equilibrium, if attained at all, during deposition of most sulfides was a transient event over a few tens of micrometers at most and was perturbed by rapid temperature and compositional changes of the circulating fluid. Two new minerals were found: one, a hydrated Zn, Fe hydroxy-chlorosulfate, and the other, a (Mn, Mg, Fe) hydroxide or hydroxy-hydrate. Both were formed at relatively low temperatures. Lizardite, starkeyite, and anatase were found for the first time in such an environment. Sulfide geothermometry involving the system Cu-Fe-S indicates a vent temperature of <328 degrees C for one sample. Fluid inclusion studies on crystals from the same vicinity of the same sample give pressure-corrected homogenization temperatures of 268 degrees and 285 degrees C. Ice-melting temperatures on inclusions from the same sample are about -2.8 degrees C, indicating that the equivalent salinity of the trapped fluid is about 50% greater than that of seawater. Volatile concentrations from vesicle-free basalt glass from the vent field are about 0.013 wt% CO2 and 0.16 wt% H2O, CO2 contents in these samples yield an entrapment depth of 2200 m of seawater, which is the depth from which the samples were collected. PMID:11542121

  15. Study on application of biological iron sulfide composites in treating vanadium-extraction wastewater containing chromium (VI) and chromium reclamation.

    PubMed

    Xie, Yi-Fei; Li, Xu-Dong; Li, Fu-De

    2013-04-01

    In this study, the Cr(VI)-resistant properties and regeneration characteristics of biological iron sulfide composites were investigated, which consist of sulfate reducing bacteria (SRB) and its in situ synthesized nanosized iron sulfides. Then the application of the composites in treating vanadium-extraction wastewater containing high concentration Cr(VI) and reclaiming Cr were performed. It was found that SRB in composites still survived after being used to treat vanadium-extraction wastewater, which could reduce reaction products Fe3+ and sulphur into Fe2+ and S2 by using them as the electron accepters and thus regenerating biological iron sulfide composites. The SRB also could be resistant to 600 mgl(-1) Cr(VI) and reduce it gradually. Based on the Cr(VI)-resistant properties and regeneration characteristics of the composites, a reduction-regeneration recirculation process for treating vanadium-extraction wastewater and reclamation of Cr was developed. The results indicated that the contaminants in effluent reached the Chinese discharge standard of pollutants for vanadium industry (GB 26452-2011), i.e. the concentration of total Cr(TCr) was less than 0.912 mgl(-1), Cr(VI) was less than 0.017 mgl(-1) and V was less than 0.260 mgl(-1). After 10 cycles of treatment, the Cr2O3 content in sludge reached 41.03%, and the ratio of Cr2O3/FeO was 7.35. The sludge reached the chemical and metallurgical (hydrometallurgy) grade of chromite ore and could be reclaimed. PMID:24620597

  16. Chemical tools for the study of hydrogen sulfide (H2S) and sulfane sulfur and their applications to biological studies.

    PubMed

    Takano, Yoko; Shimamoto, Kazuhito; Hanaoka, Kenjiro

    2016-01-01

    Hydrogen sulfide (H2S) functions in many physiological processes, including relaxation of vascular smooth muscles, mediation of neurotransmission, inhibition of insulin signaling, and regulation of inflammation. On the other hand, sulfane sulfur, which is a sulfur atom with six valence electrons but no charge, has the unique ability to bind reversibly to other sulfur atoms to form hydropersulfides (R-S-SH) and polysulfides (-S-Sn-S-). H2S and sulfane sulfur always coexist, and recent work suggests that sulfane sulfur species may be the actual signaling molecules in at least some biological phenomena. For example, one of the mechanisms of activity regulation of proteins by H2S is the S-sulfhydration of cysteine residues (protein Cys-SSH). In this review, we summarize recent progress on chemical tools for the study of H2S and sulfane sulfur, covering fluorescence probes utilizing various design strategies, H2S caged compounds, inhibitors of physiological H2S-producing enzymes (cystathionine γ-lyase, cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase), and labeling reagents. Fluorescence probes offer particular advantages as chemical tools to study physiological functions of biomolecules, including ease of use and real-time, nondestructive visualization of biological processes in live cells and tissues. PMID:26798192

  17. Chemical tools for the study of hydrogen sulfide (H2S) and sulfane sulfur and their applications to biological studies

    PubMed Central

    Takano, Yoko; Shimamoto, Kazuhito; Hanaoka, Kenjiro

    2016-01-01

    Hydrogen sulfide (H2S) functions in many physiological processes, including relaxation of vascular smooth muscles, mediation of neurotransmission, inhibition of insulin signaling, and regulation of inflammation. On the other hand, sulfane sulfur, which is a sulfur atom with six valence electrons but no charge, has the unique ability to bind reversibly to other sulfur atoms to form hydropersulfides (R-S-SH) and polysulfides (-S-Sn-S-). H2S and sulfane sulfur always coexist, and recent work suggests that sulfane sulfur species may be the actual signaling molecules in at least some biological phenomena. For example, one of the mechanisms of activity regulation of proteins by H2S is the S-sulfhydration of cysteine residues (protein Cys-SSH). In this review, we summarize recent progress on chemical tools for the study of H2S and sulfane sulfur, covering fluorescence probes utilizing various design strategies, H2S caged compounds, inhibitors of physiological H2S-producing enzymes (cystathionine γ-lyase, cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase), and labeling reagents. Fluorescence probes offer particular advantages as chemical tools to study physiological functions of biomolecules, including ease of use and real-time, nondestructive visualization of biological processes in live cells and tissues. PMID:26798192

  18. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1985-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  19. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1985-11-26

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  20. Thermoelectric Properties of Lanthanum Sulfide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, R.; Parker, J. B.; Zoltan, A.; Zoltan, L. D.; Danielson, L.; Raag, V.

    1987-01-01

    Report describes measurement of Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect in gamma-phase lanthanum sulfide with composition of La3-x S4. Results of study, part of search for high-temperature thermoelectric energy-conversion materials, indicate this sulfide behaves like extrinsic semiconductor over temperature range of 300 to 1,400 K, with degenerate carrier concentration controlled by stoichiometric ratio of La to S.

  1. Glutathione-garlic sulfur conjugates: slow hydrogen sulfide releasing agents for therapeutic applications.

    PubMed

    Bhuiyan, Ashif Iqbal; Papajani, Vilma Toska; Paci, Maurizio; Melino, Sonia

    2015-01-01

    Natural organosulfur compounds (OSCs) from Allium sativum L. display antioxidant and chemo-sensitization properties, including the in vitro inhibition of tumor cell proliferation through the induction of apoptosis. Garlic water- and oil-soluble allyl sulfur compounds show distinct properties and the capability to inhibit the proliferation of tumor cells. In the present study, we optimized a new protocol for the extraction of water-soluble compounds from garlic at low temperatures and the production of glutathionyl-OSC conjugates during the extraction. Spontaneously, Cys/GSH-mixed-disulfide conjugates are produced by in vivo metabolism of OSCs and represent active molecules able to affect cellular metabolism. Water-soluble extracts, with (GSGaWS) or without (GaWS) glutathione conjugates, were here produced and tested for their ability to release hydrogen sulfide (H2S), also in the presence of reductants and of thiosulfate:cyanide sulfurtransferase (TST) enzyme. Thus, the TST catalysis of the H2S-release from garlic OSCs and their conjugates has been investigated by molecular in vitro experiments. The antiproliferative properties of these extracts on the human T-cell lymphoma cell line, HuT 78, were observed and related to histone hyperacetylation and downregulation of GAPDH expression. Altogether, the results presented here pave the way for the production of a GSGaWS as new, slowly-releasing hydrogen sulfide extract for potential therapeutic applications. PMID:25608858

  2. Aerobic Linear Allylic C-H Amination: Overcoming Benzoquinone Inhibition.

    PubMed

    Pattillo, Christopher C; Strambeanu, Iulia I; Calleja, Pilar; Vermeulen, Nicolaas A; Mizuno, Tomokazu; White, M Christina

    2016-02-01

    An efficient aerobic linear allylic C-H amination reaction is reported under palladium(II)/bis-sulfoxide/Brønsted base catalysis. The reaction operates under preparative, operationally simple conditions (1 equiv of olefin, 1 atm O2 or air) with reduced Pd(II)/bis-sulfoxide catalyst loadings while providing higher turnovers and product yields than systems employing stoichiometric benzoquinone (BQ) as the terminal oxidant. Pd(II)/BQ π-acidic interactions have been invoked in various catalytic processes and are often considered beneficial in promoting reductive functionalizations. When such electrophilic activation for functionalization is not needed, however, BQ at high concentrations may compete with crucial ligand (bis-sulfoxide) binding and inhibit catalysis. Kinetic studies reveal an inverse relationship between the reaction rate and the concentration of BQ, suggesting that BQ is acting as a ligand for Pd(II) which results in an inhibitory effect on catalysis. PMID:26730458

  3. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense

    PubMed Central

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A.; Lin, Catherine; Kerwin, Rachel E.; Burow, Meike; Kliebenstein, Daniel J.

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis. PMID:27462337

  4. Decarboxylative Allylation of Amino Alkanoic Acids and Esters via Dual Catalysis

    PubMed Central

    2015-01-01

    A combination of photoredox and palladium catalysis has been employed to facilitate the room temperature decarboxylative allylation of recalcitrant α-amino and phenylacetic allyl esters. This operationally simple process produces CO2 as the only byproduct and provides direct access to allylated alkanes. After photochemical oxidation, the carboxylate undergoes radical decarboxylation to site-specifically generate radical intermediates which undergo allylation. A radical dual catalysis mechanism is proposed. Free phenylacetic acids were also allylated utilizing similar reactions conditions. PMID:25228064

  5. Copper(I)-Catalyzed Allylic Substitutions with a Hydride Nucleophile.

    PubMed

    Nguyen, T N Thanh; Thiel, Niklas O; Pape, Felix; Teichert, Johannes F

    2016-05-20

    An easily accessible copper(I)/N-heterocyclic carbene (NHC) complex enables a regioselective hydride transfer to allylic bromides, an allylic reduction. The resulting aryl- and alkyl-substituted branched α-olefins, which are valuable building blocks for synthesis, are obtained in good yields and regioselectivity. A commercially available silane, (TMSO)2Si(Me)H, is employed as hydride source. This protocol offers a unified alternative to the established metal-catalyzed allylic substitutions with carbon nucleophiles, as no adaption of the catalyst to the nature of the nucleophile is required. PMID:27151495

  6. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    PubMed Central

    Bai, Da-Chang; Yu, Fei-Le; Wang, Wan-Ying; Chen, Di; Li, Hao; Liu, Qing-Rong; Ding, Chang-Hua; Chen, Bo; Hou, Xue-Long

    2016-01-01

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of β-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic studies by both experiments and density functional theory (DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism—nucleophilic attack of enolate oxygen on Palladium followed by C–C bond-forming [3,3']-reductive elimination. PMID:27283477

  7. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism.

    PubMed

    Bai, Da-Chang; Yu, Fei-Le; Wang, Wan-Ying; Chen, Di; Li, Hao; Liu, Qing-Rong; Ding, Chang-Hua; Chen, Bo; Hou, Xue-Long

    2016-01-01

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of β-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic studies by both experiments and density functional theory (DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination. PMID:27283477

  8. Mössbauer study of electrochemically deposited amorphous iron-sulfide-oxide thin films

    NASA Astrophysics Data System (ADS)

    Ichimura, Masaya; Kajima, Takahiro; Kawai, Shoichi; Mibu, Ko

    2016-03-01

    Iron-sulfide-oxide thin films, which are promising candidates for solar cell materials, were deposited by electrochemical deposition. As-deposited and annealed films were characterized by Mössbauer spectroscopy, X-ray diffraction (XRD), and Raman scattering at room temperature. The as-deposited film is amorphous, and the oxygen content is about 1/4 of the sulfur content (S/Fe ≈ 1.5, O/Fe ≈ 0.4). The Mössbauer spectrum for the as-deposited film is a doublet with a broad line profile having hyperfine parameters similar to those of FeS2 pyrite or marcasite. This indicates that Fe atoms are in the Fe2+ low-spin state, as in FeS2.

  9. An Ion Microprobe Study of Fractionated Sulfur Isotopes in Hydrothermal Sulfides of the Kaidun Meteorite Breccia

    NASA Astrophysics Data System (ADS)

    McSween, H. Y., Jr.; Riciputi, L. R.; Paterson, B. A.

    1996-03-01

    The Kaidun breccia contains diverse clasts of enstatite and carbonaceous chondrite, identified by their petrography and oxygen isotopic compositions. One distinctive lithology, classified as CM1 to reflect its CM parentage and highly altered state, contains texturally unusual pyrrhotite needles wrapped in sheaths of phyllosilicate, as well as aggregates and crosscutting veins of pentlandite. The unique textures and associated alteration minerals (serpentine, saponite, melanite garnet, framboidal magnetite) indicate that these sulfides formed in a precursor parent body by reactions with hydrothermal fluids at temperatures as high as 450 degrees C . The alteration conditions recorded by these clasts are extreme in comparison to other carbonaceous chondrites, and coated, jackstraw pyrrhotites are unknown from other meteorites. Thus, it is important to document the reaction products as completely as possible. Here we report the results of in situ analyses of sulfur isotopes in Kaidun pyrrhotite and pentlandite, obtained using a Cameca ims-4f ion microprobe.

  10. Allyl­ammonium hydrogen oxalate hemihydrate

    PubMed Central

    Dziuk, Błażej; Zarychta, Bartosz; Ejsmont, Krzysztof

    2014-01-01

    In the title hydrated mol­ecular salt, C3H8N+·C2HO4 −·0.5H2O, the water O atom lies on a crystallographic twofold axis. The C=C—C—N torsion angle in the cation is 2.8 (3)° and the dihedral angle between the CO2 and CO2H planes in the anion is 1.0 (4)°. In the crystal, the hydrogen oxalate ions are linked by O—H⋯O hydrogen bonds, generating [010] chains. The allyl­ammonium cations bond to the chains through N—H⋯O and N—H⋯(O,O) hydrogen bonds. The water mol­ecule accepts two N—H⋯O hydrogen bonds and makes two O—H⋯O hydrogen bonds. Together, the hydrogen bonds generate (100) sheets. PMID:25249903

  11. Hydrogen Sulfide Oxidation by Myoglobin.

    PubMed

    Bostelaar, Trever; Vitvitsky, Victor; Kumutima, Jacques; Lewis, Brianne E; Yadav, Pramod K; Brunold, Thomas C; Filipovic, Milos; Lehnert, Nicolai; Stemmler, Timothy L; Banerjee, Ruma

    2016-07-13

    Enzymes in the sulfur network generate the signaling molecule, hydrogen sulfide (H2S), from the amino acids cysteine and homocysteine. Since it is toxic at elevated concentrations, cells are equipped to clear H2S. A canonical sulfide oxidation pathway operates in mitochondria, converting H2S to thiosulfate and sulfate. We have recently discovered the ability of ferric hemoglobin to oxidize sulfide to thiosulfate and iron-bound hydropolysulfides. In this study, we report that myoglobin exhibits a similar capacity for sulfide oxidation. We have trapped and characterized iron-bound sulfur intermediates using cryo-mass spectrometry and X-ray absorption spectroscopy. Further support for the postulated intermediates in the chemically challenging conversion of H2S to thiosulfate and iron-bound catenated sulfur products is provided by EPR and resonance Raman spectroscopy in addition to density functional theory computational results. We speculate that the unusual sensitivity of skeletal muscle cytochrome c oxidase to sulfide poisoning in ethylmalonic encephalopathy, resulting from the deficiency in a mitochondrial sulfide oxidation enzyme, might be due to the concentration of H2S by myoglobin in this tissue. PMID:27310035

  12. Response of sulfide:quinone oxidoreductase to sulfide exposure in the echiuran worm Urechis unicinctus.

    PubMed

    Ma, Yu-Bin; Zhang, Zhi-Feng; Shao, Ming-Yu; Kang, Kyoung-Ho; Shi, Xiao-Li; Dong, Ying-Ping; Li, Jin-Long

    2012-04-01

    Sulfide is a natural, widely distributed, poisonous substance, and sulfide:quinone oxidoreductase (SQR) is responsible for the initial oxidation of sulfide in mitochondria. In this study, we examined the response of SQR to sulfide exposure (25, 50, and 150 μM) at mRNA, protein, and enzyme activity levels in the body wall and hindgut of the echiuran worm Urechis unicinctus, a benthic organism living in marine sediments. The results revealed SQR mRNA expression during sulfide exposure in the body wall and hindgut increased in a time- and concentration-dependent manner that increased significantly at 12 h and continuously increased with time. At the protein level, SQR expression in the two tissues showed a time-dependent relationship that increased significantly at 12 h in 50 μM sulfide and 6 h in 150 μM, and then continued to increase with time while no significant increase appeared after 25 μM sulfide exposure. SQR enzyme activity in both tissues increased significantly in a time-dependent manner after 50 μM sulfide exposure. We concluded that SQR expression could be induced by sulfide exposure and that the two tissues studied have dissimilar sulfide metabolic patterns. A U. unicinctus sulfide-induced detoxification mechanism was also discussed. PMID:21997848

  13. Laboratory studies of Aedes aegypti (L.) attraction to ketones, sulfides and primary chloroalkanes tested alone and in combination with l-lactic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The attraction of female Aedes aegypti to single compounds and binary compositions comprised of L-lactic acid and an additional saturated compound from a set of ketones, sulfides, and chloroalkanes was studied using a triple-cage dual-port olfactometer. These chemical classes were studied because o...

  14. Biotechnological reduction of sulfide in an industrial primary wastewater treatment system: A sustainable and successful case study

    SciTech Connect

    Rajamani, S.

    1996-12-31

    The leather industry is an important export-oriented industry in India, with more than 3,000 tanneries located in different clusters. Sodium sulfide, a toxic chemical, is used in large quantities to remove hair and excess flesh from hides and skins. Most of the sodium sulfide used in the process is discharged as waste in the effluent, which causes serious environmental problems. Reduction of sulfide in the effluent is generally achieved by means of chemicals in the pretreatment system, which involves aerobic mixing using large amounts of chemicals and high energy, and generating large volumes of sludge. A simple biotechnological system that uses the residual biosludge from the secondary settling tank was developed, and the commercial-scale application established that more than 90% of the sulfide could be reduced in the primary treatment system. In addition to the reduction of sulfide, foul smells, BOD and COD are reduced to a considerable level. 3 refs., 2 figs., 1 tab.

  15. Synthesis of a Series of γ-Keto Allyl Phosphonates.

    PubMed

    Elleuch, Haitham; Ayadi, Marwa; Bouajila, Jalloul; Rezgui, Farhat

    2016-03-01

    Under solvent-free conditions and at 80 °C, a DMAP- or imidazole-mediated clean and rapid conversion of cyclic Morita-Baylis-Hillman (MBH) acetates into the corresponding γ-keto allyl phosphonates in 70-93% yields is described herein. This allylic nucleophilic substitution works well with primary and secondary acetates bearing, at the β'-position, linear or branched alkyl groups and aryl groups. PMID:26872500

  16. A SeCSe-Pd(II) pincer complex as a highly efficient catalyst for allylation of aldehydes with allyltributyltin.

    PubMed

    Yao, Qingwei; Sheets, Matthew

    2006-07-01

    An air- and moisture-stable SeCSe-Pd(II) pincer complex was synthesized and found to catalyze the nucleophilic allylation of aldehydes with allyltributyltin. The allylation of a variety of aromatic and aliphatic aldehydes to give the corresponding homoallyl alcohols was performed at room temperature to 60 degrees C in yields ranging from 50% (for typical aliphatic aldehydes) to up to 97% (for aromatic aldehydes) using 5 x 10(-3) to 1 mol % of the Pd catalyst. NMR spectroscopic study indicated that a sigma-allylpalladium intermediate was formed and possibly functions as the nucleophilic species that undergoes addition to the aldehydes. PMID:16808533

  17. (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol inhibits growth of colon tumors in mice

    PubMed Central

    Son, Dong Ju; Choi, Min Gi; Choi, Jeong Soon; Nam, Kyung Tak; Kim, Hae Deun; Rodriguez, Kevin; Gann, Benjamin; Ham, Young Wan; Han, Sang Bae; Hong, Jin Tae

    2015-01-01

    In our previous study, we found that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal showed anti-cancer effect, but it showed lack of stability and drug likeness. We have prepared several (E)-2,4-bis(p-hydroxyphenyl)-2-butenal analogues by Heck reaction. We selected two compounds which showed significant inhibitory effect of colon cancer cell growth. Thus, we evaluated the anti-cancer effects and possible mechanisms of one compound (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol in vitro and in vivo. In this study, we found that (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol induced apoptotic cell death in a dose dependent manner (0-15 μg/ml) through activation of Fas and death receptor (DR) 3 in HCT116 and SW480 colon cancer cell lines. Moreover, the combination treatment with (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol and nuclear factor κB (NF-κB) inhibitor, phenylarsine oxide (0.1 μM) or signal transducer and activator of transcription 3 (STAT3) inhibitor, Stattic (50 μM) increased the expression of Fas and DR3 more significantly. In addition, (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol suppressed the DNA binding activity of both STAT3 and NF-κB. Knock down of STAT3 or NF-κB p50 subunit by STAT3 small interfering RNA (siRNA) or p50 siRNA magnified (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol-induced inhibitory effect on colon cancer cell growth. Besides, the expression of Fas and DR3 was increased in STAT3 siRNA or p50 siRNA transfected cells. Moreover, docking model and pull-down assay showed that (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol directly bound to STAT3 and NF-κB p50 subunit. Furthermore, (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol inhibited colon tumor growth in a dose dependent manner (2.5 mg/kg-5 mg/kg) in mice. Therefore, these findings indicated that (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol may be a promising anti-cancer agent for colon cancer with more advanced research. PMID

  18. A chemical assessment of the suitability of allyl- iso-propyltelluride as a Te precursor for metal organic vapour phase epitaxy

    NASA Astrophysics Data System (ADS)

    Hails, Janet E.; Cole-Hamilton, David J.; Stevenson, John; Bell, William; Foster, Douglas F.; Ellis, David

    2001-04-01

    The chemical studies, which led to the testing of allyl- iso-propyltelluride (allylTePr i) as a Te precursor in metal organic vapour phase epitaxy are presented. The pyrolysis in hydrogen of allylTePr i gave products including 1,5-hexadiene, propane and propene. Co-pyrolysis of dimethylcadmium (Me 2Cd) and allylTePr i gave the hydrocarbons expected from the pyrolysis of the individual precursors plus additional hydrocarbons including 2-methylpropane and 1-butene. Plots of percentage decomposition versus temperature, which proved extremely useful in determining the likely growth temperatures for both CdTe and HgTe, showed that allylTePr i is less stable than both Pr 2iTe (di- iso-propyltelluride) and Me 2Cd. The possible role of Hg in the growth of CdTe is also discussed. The chemistry of allylTePr i is well suited for use as an efficient precursor for epitaxial growth of tellurium containing semiconductors since there is very little formation of other organotellurium compounds on pyrolysis.

  19. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  20. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  1. Experimental studies of selective acid gas removal: Absorption of hydrogen sulfide and carbon dioxide into aqueous methyldiethanolamine using packed columns

    SciTech Connect

    Schubert, C.N.

    1988-01-01

    The use of aqueous methyldiethanolamine (MDEA) for selective removal of hydrogen sulfide from acid gas streams has been studied in a 2 inch column packed with 1/4 inch ceramic Intalox saddles. The column was operated in a counter-current, steady state fashion. The feed gas composition varied between 1 and 5 mole % hydrogen sulfide and between 0 and 50 mole % carbon dioxide. In order to assist the development of packed column absorption models, the rate at which pure carbon dioxide absorbs into 2 M MDEA was measured as a function of pressure, liquid flow rate and packed bed length. The importance of end effects was carefully evaluated. In addition, draining and tracer methods were used to estimate the amount of static holdup present in the column. Using classical draining methods, as much as 50 % of the total holdup was found to be static. However, according to the step decrease in tracer method, less than 5 % of the total holdup was static. Since the step decrease in tracer method measures the amount of static holdup present in the bed under irrigated conditions, it seems likely that the draining method provides an unrealistic estimate of static holdup. Thus, although the notion of static holdup may be useful as a means of correlating mass transfer coefficients, the data indicate that very little static holdup exists in the column under irrigated conditions. Hence, in the absence of a mechanistically sound model, the choice of whether to use static holdup or dispersion as a means of accounting for deviations from plug flow in the liquid phase should be made on the basis of computational convenience.

  2. Hydrogen sulfide to the rescue in obstructive kidney injury

    PubMed Central

    Kasinath, Balakuntalam S.

    2014-01-01

    Hydrogen sulfide is a gasotransmitter with far reaching effects on cell function. Studies show that depending on the context hydrogen sulfide can function as an ameliorative agent or as a mediator of kidney injury. PMID:24875544

  3. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  4. ESEM Studies of Colloidal Sulfur Deposition in a Natural Microbial Community from a Cold Sulfide Spring Near Ancaster, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Douglas, S.; Douglas, D.

    2000-01-01

    We have used a relatively new microscopial technique, environmental scanning electron microscopy (ESEM), together with transmission electron microscopy (TEM) and light microscopy to investigate a unique microbial community from a temperate climate, cold sulfide spring near Ancaster, Ontario, Canada.

  5. The soft X-ray absorption spectrum of the allyl free radical.

    PubMed

    Alagia, M; Bodo, E; Decleva, P; Falcinelli, S; Ponzi, A; Richter, R; Stranges, S

    2013-01-28

    The first experimental study of the X-ray absorption spectrum (XAS) of the allyl free radical, CH(2)CHCH(2), is reported. A supersonic He seeded beam of hyperthermal allyl radicals was crossed by a high resolution synchrotron radiation (SR) in the focus of a 3D ion momentum imaging time-of-flight (TOF) spectrometer to investigate the soft X-ray absorption and fragmentation processes. The XAS, recorded as Total-Ion-Yield (TIY), is dominated by C1s electron excitations from either the central carbon atom, C(C), or the two terminal carbon atoms, C(T), to the frontier orbitals, the semi-occupied-molecular-orbital (SOMO) and the lowest-unoccupied-molecular-orbital (LUMO). All of the intense features in the XAS could only be assigned with the aid of ab initio spectral simulation at the Multi-Configuration Self-Consistent-Field (MCSCF) level of theory, this level being required because of the multi-reference nature of the core-excited state wavefunctions of the open shell molecule. The ionization energies (IEs) of the singlet and triplet states of the C1s ionized allyl radical (XPS) were also calculated at the MCSCF level. PMID:23232557

  6. New biologically active hydrogen sulfide donors.

    PubMed

    Roger, Thomas; Raynaud, Francoise; Bouillaud, Frédéric; Ransy, Céline; Simonet, Serge; Crespo, Christine; Bourguignon, Marie-Pierre; Villeneuve, Nicole; Vilaine, Jean-Paul; Artaud, Isabelle; Galardon, Erwan

    2013-11-25

    Generous donors: The dithioperoxyanhydrides (CH3 COS)2 , (PhCOS)2 , CH3 COSSCO2 Me and PhCOSSCO2 Me act as thiol-activated hydrogen sulfide donors in aqueous buffer solution. The most efficient donor (CH3 COS)2 can induce a biological response in cells, and advantageously replace hydrogen sulfide in ex vivo vascular studies. PMID:24115650

  7. Effect of allyl isothiocyanate on antioxidant enzyme activities, flavonoids and fruit quality of blueberry (Vaccinium corymbosum L., cv. Duke)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of allyl isothiocyanate (AITC) on antioxidant enzyme activities, flavonoid content, and fruit quality of blueberries var. Duke (Vaccinium corymbosum L.) was evaluated. Results from this study showed that AITC was effective in maintaining higher amounts of sugars and lower organic acids co...

  8. Sulfur and sulfides in chondrules

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Libourel, Guy

    2013-10-01

    The nature and distribution of sulfides within type I PO, POP and PP chondrules of the carbonaceous chondrite Vigarano (CV3) have been studied by secondary electron microscopy and electron microprobe. They occur predominantly as spheroidal blebs composed entirely of low-Ni iron sulfide (troilite, FeS) or troilite + magnetite but in less abundance in association with metallic Fe-Ni beads in opaque assemblages. Troilites are mainly located within the low-Ca pyroxene outer zone and their amounts increase with the abundance of low-Ca pyroxene within chondrules, suggesting co-crystallization of troilite and low-Ca pyroxene during high-temperature events. We show that sulfur concentration and sulfide occurrence in chondrules obey high temperature sulfur solubility and saturation laws. Depending on the fS2 and fO2 of the surrounding gas and on the melt composition, mainly the FeO content, sulfur dissolved in chondrule melts may eventually reach a concentration limit, the sulfur content at sulfide saturation (SCSS), at which an immiscible iron sulfide liquid separates from the silicate melt. The occurrence of both a silicate melt and an immiscible iron sulfide liquid is further supported by the non-wetting behavior of sulfides on silicate phases in chondrules due to the high interfacial tension between their precursor iron-sulfide liquid droplets and the surrounding silicate melt during the high temperature chondrule-forming event. The evolution of chondrule melts from PO to PP towards more silicic compositions, very likely due to high PSiO(g) of the surrounding nebular gas, induces saturation of FeS at much lower S content in PP than in PO chondrules, leading to the co-crystallization of iron sulfides and low-Ca pyroxenes. Conditions of co-saturation of low-Ca pyroxene and FeS are only achieved in non canonical environments characterized by high partial pressures of sulfur and SiO and redox conditions more oxidizing than IW-3. Fe and S mass balance calculations also

  9. XAS Study at Mo and Co K-Edges of the Sulfidation of a CoMo / Al2O3 Hydrotreating Catalyst

    NASA Astrophysics Data System (ADS)

    Pichon, C.; Gandubert, A. D.; Legens, C.; Guillaume, D.

    2007-02-01

    Because of its impact on environment, the removal of sulfur is an indispensable step, called hydrotreatment, in the refining of petroleum. One of the most commonly used hydrotreating catalysts is CoMo-type catalyst which is composed of molybdenum disulfide slabs promoted by cobalt atoms (CoMoS phase) and well dispersed on a high specific area alumina. As far as the highest sulfur content allowed in gasoline and diesel is continually decreasing, more and more efficient and active hydrotreating catalysts are required. In order to optimize the reactivity of the CoMo-type catalyst in hydrotreatment, a better understanding of the processes used to produce the active phase (CoMoS slabs) of the catalyst is necessary. The study reported here deals with the sulfiding mechanism of the slabs and the influence of temperature on the phenomenon. Ex situ X-ray absorption spectroscopy (XANES and EXAFS) was used to study the evolution of the structure of CoMo-type catalyst sulfided at various temperatures (from 293 to 873 K). XAS analysis was performed at both molybdenum and cobalt K-edges to obtain a cross-characterization of the sulfidation of the slabs. It evidenced the formation of various compounds, including two molybdenum oxides, MoS3 (or MoS3-like compound) and Co9S8, at specific steps of the sulfiding process. It showed the role of intermediate played by MoS3 (or MoS3-like compound) during the formation of the slabs and the competition between the appearance of promoted slabs (CoMoS phase) and Co9S8. At last, it leaded to the proposal of a mechanism for the sulfidation of the catalyst.

  10. XAS Study at Mo and Co K-Edges of the Sulfidation of a CoMo / Al2O3 Hydrotreating Catalyst

    SciTech Connect

    Pichon, C.; Gandubert, A. D.; Legens, C.; Guillaume, D.

    2007-02-02

    Because of its impact on environment, the removal of sulfur is an indispensable step, called hydrotreatment, in the refining of petroleum. One of the most commonly used hydrotreating catalysts is CoMo-type catalyst which is composed of molybdenum disulfide slabs promoted by cobalt atoms (CoMoS phase) and well dispersed on a high specific area alumina. As far as the highest sulfur content allowed in gasoline and diesel is continually decreasing, more and more efficient and active hydrotreating catalysts are required. In order to optimize the reactivity of the CoMo-type catalyst in hydrotreatment, a better understanding of the processes used to produce the active phase (CoMoS slabs) of the catalyst is necessary. The study reported here deals with the sulfiding mechanism of the slabs and the influence of temperature on the phenomenon. Ex situ X-ray absorption spectroscopy (XANES and EXAFS) was used to study the evolution of the structure of CoMo-type catalyst sulfided at various temperatures (from 293 to 873 K). XAS analysis was performed at both molybdenum and cobalt K-edges to obtain a cross-characterization of the sulfidation of the slabs. It evidenced the formation of various compounds, including two molybdenum oxides, MoS3 (or MoS3-like compound) and Co9S8, at specific steps of the sulfiding process. It showed the role of intermediate played by MoS3 (or MoS3-like compound) during the formation of the slabs and the competition between the appearance of promoted slabs (CoMoS phase) and Co9S8. At last, it leaded to the proposal of a mechanism for the sulfidation of the catalyst.

  11. Association between Daily Hydrogen Sulfide Exposure and Incidence of Emergency Hospital Visits: A Population-Based Study

    PubMed Central

    Finnbjornsdottir, Ragnhildur Gudrun; Carlsen, Hanne Krage; Thorsteinsson, Throstur; Oudin, Anna; Lund, Sigrun Helga; Gislason, Thorarinn; Rafnsson, Vilhjalmur

    2016-01-01

    Background The adverse health effects of high concentrations of hydrogen sulfide (H2S) exposure are well known, though the possible effects of low concentrations have not been thoroughly studied. The aim was to study short-term associations between modelled ambient low-level concentrations of intermittent hydrogen sulfide (H2S) and emergency hospital visits with heart diseases (HD), respiratory diseases, and stroke as primary diagnosis. Methods The study is population-based, using data from patient-, and population-registers from the only acute care institution in the Reykjavik capital area, between 1 January, 2007 and 30 June, 2014. The study population was individuals (≥18yr) living in the Reykjavik capital area. The H2S emission originates from a geothermal power plant in the vicinity. A model was used to estimate H2S exposure in different sections of the area. A generalized linear model assuming Poisson distribution was used to investigate the association between emergency hospital visits and H2S exposure. Distributed lag models were adjusted for seasonality, gender, age, traffic zones, and other relevant factors. Lag days from 0 to 4 were considered. Results The total number of emergency hospital visits was 32961 with a mean age of 70 years. In fully adjusted un-stratified models, H2S concentrations exceeding 7.00μg/m3 were associated with increases in emergency hospital visits with HD as primary diagnosis at lag 0 risk ratio (RR): 1.067; 95% confidence interval (CI): 1.024–1.111, lag 2 RR: 1.049; 95%CI: 1.005–1.095, and lag 4 RR: 1.046; 95%CI: 1.004–1.089. Among males an association was found between H2S concentrations exceeding 7.00μg/m3, and HD at lag 0 RR: 1.087; 95%CI: 1.032–1.146 and lag 4 RR: 1080; 95%CI: 1.025–1.138; and among those 73 years and older at lag 0 RR: 1.075; 95%CI: 1.014–1.140 and lag 3 RR: 1.072; 95%CI: 1.009–1.139. No associations were found with other diseases. Conclusions The study showed an association between

  12. Catalytic Asymmetric Generation of (Z)-Disubstituted Allylic Alcohols

    PubMed Central

    Salvi, Luca; Jeon, Sang-Jin; Fisher, Ethan L.; Carroll, Patrick J.; Walsh, Patrick J.

    2008-01-01

    A one-pot method for the direct preparation of enantioenriched (Z)-disubstituted allylic alcohols is introduced. Hydroboration of 1-halo-1-alkynes with dicyclohexylborane, reaction with t-BuLi, and transmetallation with dialkylzinc reagents generates (Z)-disubstituted vinylzinc intermediates. In situ reaction of these reagents with aldehydes in the presence of a catalyst derived from (−)-MIB generates (Z)-disubstituted allylic alcohols. It was found that the resulting allylic alcohols were racemic, most likely due to a rapid addition reaction promoted by LiX (X = Br and Cl). To suppress the LiX promoted reaction, a series of inhibitors was screened. It was found that 20–30 mol % tetraethylethylene diamine (TEEDA) inhibited LiCl without inhibiting the chiral zinc-based Lewis acid. In this fashion, (Z)-disubstituted allylic alcohols were obtained with up to 98% ee. The asymmetric (Z)-vinylation could be coupled with tandem diastereoselective epoxidation reactions to provide epoxy alcohols and allylic epoxy alcohols with up to three contiguous stereogenic centers, enabling the rapid construction of complex building blocks with high levels of enantio- and diastereoselectivity. PMID:18052173

  13. Scalable and sustainable electrochemical allylic C-H oxidation.

    PubMed

    Horn, Evan J; Rosen, Brandon R; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D; Baran, Phil S

    2016-05-01

    New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as "classics". Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact. PMID:27096371

  14. Scalable and sustainable electrochemical allylic C–H oxidation

    NASA Astrophysics Data System (ADS)

    Horn, Evan J.; Rosen, Brandon R.; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S.

    2016-05-01

    New methods and strategies for the direct functionalization of C–H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C–H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”. Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C–H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C–H oxidation (demonstrated on 100 grams), enabling the adoption of this C–H oxidation strategy in large-scale industrial settings without substantial environmental impact.

  15. Sulfide Stability of Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Caiazza, C. M.; Righter, K.; Gibson, E. K., Jr.; Chesley, J. T.; Ruiz, J.

    2004-01-01

    The isotopic system, 187Re 187Os, can be used to determine the role of crust and mantle in magma genesis. In order to apply the system to natural samples, we must understand variations in Re/Os concentrations. It is thought that low [Os] and [Re] in basalts can be attributed to sulfide (FeS) saturation, as Re behaves incompatibly to high degrees of evolution until sulfide saturation occurs [1]. Previous work has shown that lunar basalts are sulfide under-saturated, and mid-ocean ridge, ocean-island and Martian (shergottites) basalts are saturated [2,3]. However, little is known about arc basalts. In this study, basaltic rocks were analyzed across the Trans-Mexican Volcanic Belt.

  16. Mechanisms of hydrogen sulfide removal with steel making slag.

    PubMed

    Kim, Kyunghoi; Asaoka, Satoshi; Yamamoto, Tamiji; Hayakawa, Shinjiro; Takeda, Kazuhiko; Katayama, Misaki; Onoue, Takasumi

    2012-09-18

    In the present study, we experimentally investigated the removal of hydrogen sulfide using steel-making slag (SMS) and clarified the mechanism of hydrogen sulfide removal with the SMS. The results proved that SMS is able to remove hydrogen sulfide dissolved in water, and the maximum removal amount of hydrogen sulfide per unit weight of the SMS for 8 days was estimated to be 37.5 mg S/g. The removal processes of hydrogen sulfide were not only adsorption onto the SMS, but oxidation and precipitation as sulfur. The chemical forms of sulfide adsorbed onto the SMS were estimated to be sulfur and manganese sulfide in the ratio of 81% and 19%, respectively. It is demonstrated here that the SMS is a promising material to remediate organically enriched coastal sediments in terms of removal of hydrogen sulfide. Furthermore, using SMS is expected to contribute to development of a recycling-oriented society. PMID:22894171

  17. Copper-catalyzed divergent kinetic resolution of racemic allylic substrates.

    PubMed

    Pineschi, Mauro; Di Bussolo, Valeria; Crotti, Paolo

    2011-10-01

    When a racemic mixture is fully consumed the products may still be enantiomerically enriched. In particular, the regiodivergent kinetic resolution is a process in which a single chiral catalyst or reagent reacts with a racemic substrate to form regioisomers possessing an opposite configuration on the newly-formed stereogenic centers. This review reports the major advances in the field of the copper-catalyzed regiodivergent and stereodivergent kinetic resolution of allylic substrates with organometallic reagents. The chiral recognition matching phenomena found with particular allylic substrates with the absolute configuration of the chiral catalyst allows in some cases an excellent control of the regio- and stereoselectivity, sheding some light on the so-called "black-box" mechanism of a copper-catalyzed asymmetric allylic alkylation. PMID:21837639

  18. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  19. 40 CFR 721.9952 - Alkoxylated aliphatic diisocyanate allyl ether (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... allyl ether (generic). 721.9952 Section 721.9952 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.9952 Alkoxylated aliphatic diisocyanate allyl ether... identified generically as alkoxylated aliphatic diisocyanate allyl ether (PMN P-00-0353) is subject...

  20. 40 CFR 721.9952 - Alkoxylated aliphatic diisocyanate allyl ether (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... allyl ether (generic). 721.9952 Section 721.9952 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.9952 Alkoxylated aliphatic diisocyanate allyl ether... identified generically as alkoxylated aliphatic diisocyanate allyl ether (PMN P-00-0353) is subject...

  1. Pyridine-NHC: effective ligand in Pd-catalyzed cyclopropanation of esters with substituted allyl carbonates.

    PubMed

    Huang, Jian-Qiang; Ding, Chang-Hua; Hou, Xue-Long

    2014-12-19

    By consideration of the mechanism of Pd-catalyzed cyclopropanation and allylation, NHC-pyridine compounds were adopted as the ligand in Pd-catalyzed cyclopropanation of esters and monosubstituted allylic reagents. The corresponding cyclopropanes were afforded as major products in moderate to good yields with high cyclopropane/allylation selectivity. PMID:25284365

  2. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  3. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  4. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  5. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  6. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  7. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    SciTech Connect

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  8. A Gas Chromatography-Mass Spectrometry Based Study on Urine Metabolomics in Rats Chronically Poisoned with Hydrogen Sulfide

    PubMed Central

    Deng, Mingjie; Zhang, Meiling; Sun, Fa; Ma, Jianshe; Hu, Lufeng; Yang, Xuezhi; Lin, Guanyang; Wang, Xianqin

    2015-01-01

    Gas chromatography-mass spectrometry (GS-MS) in combination with multivariate statistical analysis was applied to explore the metabolic variability in urine of chronically hydrogen sulfide- (H2S-) poisoned rats relative to control ones. The changes in endogenous metabolites were studied by partial least squares-discriminate analysis (PLS-DA) and independent-samples t-test. The metabolic patterns of H2S-poisoned group are separated from the control, suggesting that the metabolic profiles of H2S-poisoned rats were markedly different from the controls. Moreover, compared to the control group, the level of alanine, d-ribose, tetradecanoic acid, L-aspartic acid, pentanedioic acid, cholesterol, acetate, and oleic acid in rat urine of the poisoning group decreased, while the level of glycine, d-mannose, arabinofuranose, and propanoic acid increased. These metabolites are related to amino acid metabolism as well as energy and lipid metabolism in vivo. Studying metabolomics using GC-MS allows for a comprehensive overview of the metabolism of the living body. This technique can be employed to decipher the mechanism of chronic H2S poisoning, thus promoting the use of metabolomics in clinical toxicology. PMID:25954748

  9. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-01

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  10. Characterization of low dimensional molybdenum sulfide nanostructures

    SciTech Connect

    Camacho-Bragado, G. Alejandra; Elechiguerra, Jose Luis; Yacaman, Miguel Jose

    2008-03-15

    It is presented a detailed structural characterization of a nanostructured form of molybdenum disulfide. The material consists of a layer of highly textured molybdenum sulfide growing off a molybdenum dioxide core. The structure and chemical composition of the synthesized nanostructured sulfide was compared to two well-known forms of molybdenum disulfide, i.e. a commercial molybdenite sample and a poorly crystalline sulfide. X-ray diffraction, high-resolution electron microscopy and electron diffraction showed that the material reported here presents crystalline nanodomains with a crystal structure corresponding to the 2H polytype of molybdenum disulfide. X-ray photoelectron spectroscopy was used to demonstrate the differences between our sulfide and other materials such as amorphous MoS{sub 3}, oxysulfides and poorly crystalline MoS{sub 2}, corroborating the molybdenite-2H stacking in this form of sulfide. The material under study showed a high proportion of crystalline planes different from the basal plane.

  11. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols.

    PubMed

    Li, Houhua; Mazet, Clément

    2016-06-21

    This Account presents the development of the iridium-catalyzed isomerization of primary allylic alcohols in our laboratory over the past 8 years. Our initial interest was driven by the long-standing challenge associated with the development of a general catalyst even for the nonasymmetric version of this seemingly simple chemical transformation. The added value of the aldehyde products and the possibility to rapidly generate molecular complexity from readily accessible allylic alcohols upon a redox-economical isomerization reaction were additional sources of motivation. Certainly influenced by the success story of the related isomerization of allylic amines, most catalysts developed for the selective isomerization of allylic alcohols were focused on rhodium as a transition metal of choice. Our approach has been based on the commonly accepted precept that hydrogenation and isomerization are often competing processes, with the latter being usually suppressed in favor of the former. The cationic iridium complexes [(Cy3P)(pyridine)Ir(cod)]X developed by Crabtree (X = PF6) and Pfaltz (X = BArF) are usually considered as the most versatile catalysts for the hydrogenation of allylic alcohols. Using molecular hydrogen to generate controlled amounts of the active form of these complexes but performing the reaction in the absence of molecular hydrogen enabled deviation from the typical hydrogenation manifold and favored exclusively the isomerization of allylic alcohols into aldehydes. Isotopic labeling and crossover experiments revealed the intermolecular nature of the process. Systematic variation of the ligand on the iridium center allowed us to identify the structural features beneficial for catalytic activity. Subsequently, three generations of chiral catalysts have been investigated and enabled us to reach excellent levels of enantioselectivity for a wide range of 3,3-disubstituted aryl/alkyl and alkyl/alkyl primary allylic alcohols leading to β-chiral aldehydes. The

  12. Allyl isothiocyanate induces stomatal closure in Vicia faba.

    PubMed

    Sobahan, Muhammad Abdus; Akter, Nasima; Okuma, Eiji; Uraji, Misugi; Ye, Wenxiu; Mori, Izumi C; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Isothiocyanates are enzymatically produced from glucosinolates in plants, and allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis thaliana. In this study, we investigated stomatal responses to AITC in Vicia faba. AITC-induced stomatal closure accompanied by reactive oxygen species (ROS) and NO production, cytosolic alkalization and glutathione (GSH) depletion in V. faba. GSH monoethyl ester induced stomatal reopening and suppressed AITC-induced GSH depletion in guard cells. Exogenous catalase and a peroxidase inhibitor, salicylhydroxamic acid, inhibited AITC-induced stomatal closure, unlike an NAD(P)H oxidase inhibitor, diphenylene iodonium chloride. The peroxidase inhibitor also abolished the AITC-induced ROS production, NO production, and cytosolic alkalization. AITC-induced stomatal closure was suppressed by an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and an agent to acidify cytosol, butyrate. These results indicate that AITC-induced stomatal closure in V. faba as well as in A. thaliana and suggest that AITC signaling in guard cells is conserved in both plants. PMID:26027691

  13. Release of allyl isothiocyanate from mustard seed meal powder.

    PubMed

    Dai, Ruyan; Lim, Loong-Tak

    2014-01-01

    Allyl isothiocyanate (AITC) is a wide-spectrum antimicrobial compound found in mustard seeds, produced when their tissues are disrupted. The formation of AITC in mustard seed is mediated by the myrosinase enzyme which catalyzes the release of volatile AITC from a glucosinolate-sinigrin. Since water is a substrate in the reaction, humidity from the air can be used to activate the release of AITC from mustard seed. In this study, defatted and partially defatted mustard seed meals were ground into powders with particle size ranging from 5 to 300 μm. The mustard seed meal powder (MSMP) samples were enclosed within hermetically sealed glass jars wherein the headspace air was adjusted to 85% or 100% relative humidity at 5, 20, or 35 °C. Data from gas chromatography analysis showed that AITC release rate and amount increased with increasing relative humidity and temperature. Moreover, the release rate can be manipulated by particle size and lipid content of the MSMP samples. The amount of AITC released ranged from 2 to 17 mg/g MSMP within 24 h under the experimental conditions tested. In view of the antimicrobial properties of AITC, the mustard meal powder may be used as a natural antimicrobial material for extending the shelf life of food products. PMID:24313968

  14. Methodological approach to study energetic and structural properties of nanostructured cadmium sulfide by using ab-initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Burresi, E.; Celino, M.

    2012-05-01

    A single wurtzite phase of cadmium sulfide cluster is investigated by ab-initio molecular dynamics simulations at different temperatures, ranging from 100 K to 600 K. In this study we propose a possible procedure to characterize the CdS quantum dots system by means of molecular dynamics calculations using a standard Car-Parrinello scheme. In order to ensure the accuracy of the numerical approach, preliminary calculations to test pseudopotentials, cutoff and box size on both single atoms systems and Cd-Cd, S-S, Cd-S dimers have been performed. Calculated binding energies and bond lengths are obtained in good agreement with experimental data. Subsequently, an uncapped CdS cluster with size below 2 nm, 48 atoms of cadmium and 48 atoms of sulfur, in a wurtzite geometry was structurally optimized to minimize internal stresses. The CdS cluster has been carefully characterized structurally at several temperatures up to T = 600 K. At the temperature of 340 K atomic diffusion on the surface allows the onset of a new stable atomic configuration.

  15. Gene expression studies reveal that DNA damage, vascular perturbation, and inflammation contribute to the pathogenesis of carbonyl sulfide neurotoxicity.

    PubMed

    Morrison, James P; Ton, Thai-Vu; Collins, Jennifer B; Switzer, Robert C; Little, Peter B; Morgan, Daniel L; Sills, Robert C

    2009-06-01

    Carbonyl sulfide (COS) is an odorless gas that produces highly reproducible lesions in the central nervous system. In the present study, the time course for the development of the neurotoxicological lesions was defined and the gene expression changes occurring in the posterior colliculus upon exposure to COS were characterized. Fischer 344 rats were exposed to 0 or 500 ppm COS for one, two, three, four, five, eight, or ten days, six hours per day. On days 1 and 2, no morphological changes were detected; on day 3, 10/10 (100%) rats had necrosis in the posterior colliculi; and on day 4 and later, necrosis was observed in numerous areas of the brain. Important gene expression changes occurring in the posterior colliculi after one or two days of COS exposure that were predictive of the subsequent morphological findings included up-regulation of genes associated with DNA damage and G1/S checkpoint regulation (KLF4, BTG2, GADD45g), apoptosis (TGM2, GADD45g, RIPK3), and vascular mediators (ADAMTS, CTGF, CYR61, VEGFC). Proinflammatory mediators (CCL2, CEBPD) were up-regulated prior to increases in expression of the astrocytic marker GFAP and macrophage marker CSF2rb1. These gene expression findings were predictive of later CNS lesions caused by COS exposure and serve as a model for future investigations into the mechanisms of disease in the central nervous system. PMID:19395590

  16. Study and modeling of the evolution of gas-liquid partitioning of hydrogen sulfide in model solutions simulating winemaking fermentations.

    PubMed

    Mouret, Jean-Roch; Sablayrolles, Jean-Marie; Farines, Vincent

    2015-04-01

    The knowledge of gas-liquid partitioning of aroma compounds during winemaking fermentation could allow optimization of fermentation management, maximizing concentrations of positive markers of aroma and minimizing formation of molecules, such as hydrogen sulfide (H2S), responsible for defects. In this study, the effect of the main fermentation parameters on the gas-liquid partition coefficients (Ki) of H2S was assessed. The Ki for this highly volatile sulfur compound was measured in water by an original semistatic method developed in this work for the determination of gas-liquid partitioning. This novel method was validated and then used to determine the Ki of H2S in synthetic media simulating must, fermenting musts at various steps of the fermentation process, and wine. Ki values were found to be mainly dependent on the temperature but also varied with the composition of the medium, especially with the glucose concentration. Finally, a model was developed to quantify the gas-liquid partitioning of H2S in synthetic media simulating must to wine. This model allowed a very accurate prediction of the partition coefficient of H2S: the difference between observed and predicted values never exceeded 4%. PMID:25763810

  17. Study of structural, optical and photoluminescence properties of indium-doped zinc sulfide thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Jrad, Abdelhak; Ben Nasr, Tarek; Turki-Kamoun, Najoua

    2015-12-01

    In the present work, we have deposited indium-doped zinc sulfide (ZnS:In) thin films by chemical bath deposition technique (CBD). The structural properties studied by X-ray diffraction indicate that ZnS:In has a cubic structure with an average crystallite size 4.7-11.0 nm. Transmission and reflection spectra reveal the presence of interference fringes indicating thickness uniformity and surface homogeneity of deposited material. All the films were transparent in the visible and infrared regions (⩾60%), which allows us to use this material as an optical window or a buffer layer in solar cells. The obtained band gap energy Eg is in the range of 3.70-3.76 eV. The refractive index and thickness of ZnS:In thin films was calculated using envelope method. The variation of the refractive index along the Cauchy distribution was observed in all ZnS:In thin films. The analysis of the refractive index data through the Wemple-DiDomenico model leads to the single oscillator energy (E0) and the dispersion energy (Ed).

  18. The effect of sulfide inhibition on the ANAMMOX process.

    PubMed

    Jin, Ren-Cun; Yang, Guang-Feng; Zhang, Qian-Qian; Ma, Chun; Yu, Jin-Jin; Xing, Bao-Shan

    2013-03-01

    The feasibility of anaerobic ammonium oxidation (ANAMMOX) process to treat wastewaters containing sulfide was studied in this work. Serum bottles were used as experimental containers in batch tests to analyze the short-term response of the ANAMMOX process under sulfide stress. The IC(50) of sulfide-S for ANAMMOX biomass was substrates-dependent and was calculated to be 264 mg L(-1) at an initial total nitrogen level of 200 mg L(-1) (molar ratio of ammonium and nitrite was 1:1). The long-term effects and the performance recovery under sulfide stress were continuously monitored and evaluated in an upflow anaerobic sludge blanket reactor. The performance of the ANAMMOX system was halved at an sulfide-S level of 32 mg L(-1) within 13 days; however, the nitrogen removal rate (NRR) decreased by only 17.2% within 18 days at an sulfide-S concentration of 40 mg L(-1) after long-time acclimatization of sludge in the presence of sulfide. The ANAMMOX performance recovered under sulfide-S level of 8 mg L(-1) with a steady NRR increasing speed, linear relationship between the NRR and operation time. The synchronic reduce in the specific ANAMMOX activity and the biomass extended the apparent doubling time of the nitrogen removal capacity and decreased biomass growth rate. PMID:23273856

  19. Sulfide Mineral Surfaces

    SciTech Connect

    Rosso, Kevin M.; Vaughan, David J.

    2006-08-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by structure type

  20. Highly Enantioselective Formation of α-Allyl-α-Arylcyclopentanones via Pd-Catalysed Decarboxylative Asymmetric Allylic Alkylation.

    PubMed

    Akula, Ramulu; Doran, Robert; Guiry, Patrick J

    2016-07-11

    A highly enantioselective Pd-catalysed decarboxylative asymmetric allylic alkylation of cyclopentanone derived α-aryl-β-keto esters employing the (R,R)-ANDEN-phenyl Trost ligand has been developed. The product (S)-α-allyl-α-arylcyclopentanones were obtained in excellent yields and enantioselectivities (up to >99.9 % ee). This represents one of the most highly enantioselective formations of an all-carbon quaternary stereogenic center reported to date. This reaction was demonstrated on a 4.0 mmol scale without any deterioration of enantioselectivity and was exploited as the key enantioselective transformation in an asymmetric formal synthesis of the natural product (+)-tanikolide. PMID:27191198

  1. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: I. Iron-copper-zinc-lead sulfide solubility relations

    USGS Publications Warehouse

    Hemley, J.J.; Cygan, G.L.; Fein, J.B.; Robinson, G.R.; d'Angelo, W. M.

    1992-01-01

    Experimental studies, using cold-seal and extraction vessel techniques, were conducted on Fe, Pb, Zn, and Cu sulfide solubilities in chloride soultions at temperatures from 300?? to 700??C and pressures from 0.5 to 2 kbars. The solutions were buffered in pH by quartz monzonite and the pure potassium feldspar-muscovite-quartz assemblage and in fS2-fO2 largely by the assemblage pyrite-pyrrhotite-magnetite. Solubilities increase with increasing temperature and total chloride, and decrease with increasing pressure. The effect of increasing chloride concentration on solubility reflects primarily a shift to lower pH via the silicate buffer reactions. Similarity in behaviour with respect to the temperature and pressure of Fe, Zn, and Pb sulfide solubilities points to similarity in chloride speciation, and the neutral species appear to be dominant in the high-temperature region. -from Authors

  2. Fluorescent probes for hydrogen sulfide (H2S) and sulfane sulfur and their applications to biological studies.

    PubMed

    Shimamoto, Kazuhito; Hanaoka, Kenjiro

    2015-04-30

    Hydrogen sulfide (H2S), a toxic gas with the smell of rotten eggs, plays key roles in many physiological processes, including relaxation of vascular smooth muscles, mediation of neurotransmission, inhibition of insulin signaling, and regulation of inflammation. The most commonly used methods or detecting H2S are the methylene blue method and the electrode method, but these methods require destructive sampling, e.g., homogenization of biological samples. On the other hand, the fluorescence detection method has been widely used in biological studies to study the physiological roles of H2S, because this technology provides real-time, easy-to-use, nondestructive detection in live cells or tissues. Many selective fluorescent probes for H2S have been reported. Sulfane sulfur compounds contain divalent sulfur atoms bonded to other sulfur atom(s), as in persulfides (R-S-SH) and polysulfides (R-S-Sn-S-R). They are currently attracting increasing interest because one of the mechanisms of activity regulation of proteins by H2S is sulfhydration of cysteine residues (RSH → RSSH). Since H2S and sulfane sulfur are redox partners, they are very likely to coexist in biological systems, and from a reactivity point-of-view, sulfane sulfur seems likely to be much more effective than H2S in S-sulfhydration. Therefore, sulfane sulfur may be involved in mediating at least some of the biological activities of H2S. In this review, we summarize recent work on fluorescent probes selective for H2S and/or sulfane sulfur, and we briefly review their applications to biological studies. PMID:25461270

  3. [Cu(NHC)]-Catalyzed C-H Allylation and Alkenylation of both Electron-Deficient and Electron-Rich (Hetero)arenes with Allyl Halides.

    PubMed

    Xie, Weilong; Chang, Sukbok

    2016-01-26

    New reactivity of a [Cu(NHC)] (NHC=N-heterocyclic carbene) catalyst is disclosed for the efficient C-H allylation of polyfluoroarenes using allyl halides in benzene at room temperature. The same catalyst system also promotes an isomerization-induced alkenylation of initially the generated allyl arenes when the reaction is run in tetrahydrofuran. Significantly, not only electron-deficient but also electron-rich (hetero)arenes undergo this double-bond migration process, thus leading to alkenylated products. The present system features mild reaction conditions, broad scope with respect to the arene substrates and allyl halide reactants, good functional-group tolerance, and high stereoselectivity. PMID:26695120

  4. Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites: a coupled study of samples from the Kane Fracture Zone (45°W 23°20N, MARK area, Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Luguet, Ambre; Lorand, Jean-Pierre; Seyler, Monique

    2003-04-01

    Nineteen samples from the Kane Fracture Zone have been studied for sulfide mineralogy and analyzed for S, Se, platinum-group elements (PGE), and Au to assess the effect of refertilization processes on the PGE systematics of abyssal peridotites. The lherzolites show broadly chondritic PGE ratios and sulfide modal abundances (0.01 to 0.03 wt%) consistent with partial melting models, although the few pyroxene-hosted sulfide inclusions and in situ LAM-ICPMS analyses provide evidence for in situ mobilization of a Cu-Ni-rich sulfide partial melt. The most refractory harzburgites (spinel Cr# > 29) are almost devoid of magmatic sulfides and show uniformly low Pd N/Ir N (<0.5) for variable Pt N/Ir N (0.8 to 1.2). The compatible behavior of Os, Ir, Ru, Rh, and Pt reflects the presence of primary Os-Ru alloys. Some harzburgites displaying petrographic evidence for refertilization by incremental melts en route to the surface are enriched in sulfides (up to 0.1 wt%). Some of these sulfides are concentrated in small veinlets of clinopyroxene and spinel crystallized from these melts. These S-rich harzburgites display superchondritic Pd N/Ir N (up to 2.04) positively correlated with sulfide modal contents. It is concluded that refertilization processes resulting in precipitation of metasomatic sulfides may significantly enhance Pd concentrations of abyssal peridotites while marginally affecting Pt (Pt N/Ir N ≤ 1.24) and Rh (Rh N/Ir N ≤ 1.23) as well. When the effects of such processes are screened out, our database suggests PGE relative abundances in the DMM (Depleted MORB Mantle; MORB: Mid-Ocean Ridge) within the uncertainty range of chondritic meteorites, without evidence of superchondritic Pt/Ir and/or Rh/Ir ratios.

  5. Textural, mineralogical and stable isotope studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA

    USGS Publications Warehouse

    Li, C.; Ripley, E.M.; Oberthur, T.; Miller, J.D., Jr.; Joslin, G.D.

    2008-01-01

    Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type. ?? Springer-Verlag 2007.

  6. Health and environmental effects profile for allyl chloride

    SciTech Connect

    Not Available

    1986-07-01

    The Health and Environmental Effects Profile for allyl chloride was prepared to support listings of hazardous constituents of a wide range of waste streams under Section 3001 of the Resource Conservation and Recovery Act (RCRA) and to provide health-related limits for emergency actions under Section 101 of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Both published literature and information obtained from Agency program office files were evaluated as they pertained to potential human health, aquatic life, and environmental effects of hazardous-waste constituents. Quantitative estimates are presented provided sufficient data are available. Allyl chloride has been evaluated as a carcinogen. The human carcinogen potency factor (q1*) for allyl chloride is 0.0206 for oral exposure. The Reportable Quantity (RQ) value of 1, 10, 100, 1000 or 5000 pounds is used to determine the quantity of a hazardous substance for which notification is required in the event of a release as specified by CERCLA based on chronic toxicity. The RQ value for allyl chloride is 100.

  7. Sulfonium-based Ionic Liquids Incorporating the Allyl Functionality

    PubMed Central

    Zhao, Dongbin; Fei, Zhaofu; Ang, Wee Han; Dyson, Paul J.

    2007-01-01

    A series of sulfonium halides bearing allyl groups have been prepared and characterized. Anion metathesis with Li[Tf2N] and Ag[N(CN)2] resulted in sulfonium-based ionic liquids which exhibit low viscosities at room temperature. The solid state structure of one of the halide salts was determined by single crystal X-ray diffraction.

  8. Mechanistic study of the hydrodesulfurization of methanethiol over tungsten disulfide; a survey of rare earth sulfides for hydrodesulfurization activity

    SciTech Connect

    Dowd, D.Q.

    1985-06-01

    Hydrodesulfurization is a process whereby sulfur bound in organic compounds is removed as hydrogen sulfide, and is important to the control of sulfur dioxide emissions in the combustion of petroleum and coal fuels. It involves the cleavage of carbon sulfur bonds, and is catalyzed by layered disulfides such as molybdenum and tungsten disulfide. The simplest example is the reaction CH/sub 3/SH + H/sub 2/ ..-->.. CH/sub 4/ + H/sub 2/S. The mechanism of even this protypical reaction is unclear. In an effort to clarify it, the kinetics of methanethiol hydrodesulfurization over tungsten disulfide at low pressures was established, with partial pressures of methanethiol and hydrogen varied over a hundred fold. The kinetic order in each reactant was positive when its partial pressure was low negative when its partial pressure was high. The negative order in hydrogen had not been previously seen. The product gases, methane and hydrogen sulfide, each exhibited negative kinetic orders at high partial pressures, zero kinetic orders at low partial pressures. A dual site Langmuir-Hinshelwood type mechanism, which defines one active site as two adjacent edge sulfur vacancies and the second as a neighboring sulfur atom, describes these results quite well. Seventeen rare earth sulfides were surveyed for catalytic activity toward methanethiol hydrodesulfurization. These sulfides included both stoichiometric and nonstoichiometric compositions and four different morphologies. In general, nonconductors were inactive and conductors were active. This correlation extended to the nonstoichiometric ..gamma..-phase sesquisulfides which exhibit both insulating and conducting properties. 96 refs.

  9. Mechanistic study of the hydrodesulfurization of methanethiol over tungsten disulfide. II. A survey of rare earth sulfides for hydrodesulfurization activity

    SciTech Connect

    Dowd, D.Q.

    1985-01-01

    I. Hydrodesulfurization is a process whereby sulfur bound in organic compounds is removed as hydrogen sulfide, and is important to the control of sulfur dioxide emissions in the combustion of petroleum and coal fuels. It involves the cleavage of carbon sulfur bonds, and is catalyzed by layered disulfides such as molybdenum and tungsten disulfide. The simplest example is the reaction CH/sub 3/SH + H/sub 2/ ..-->.. CH/sub 4/ + H/sub 2/S. The mechanism of even this prototypical reaction is unclear. In an effort to clarify it, the kinetics of methanethiol hydro desulfurization over tungsten disulfide at low pressures was established, with partial pressures of methanethiol and hydrogen varied over a hundred fold. The kinetic order in each reactant was positive when its partial pressure was low, negative when its partial pressure was high. The negative order in hydrogen had not been previously seen. The product gases, methane and hydrogen sulfide, each exhibited negative kinetic orders at high partial pressures, zero kinetic orders at low partial pressures. A dual site Langmuir-Hinshelwood type mechanism, which defines one active site as two adjacent edge sulfur vacancies and the second as a neighboring sulfur atom, describes these results quite well. II. Seventeen rare earth sulfides were surveyed for catalytic activity toward methanethiol hydrodesulfurization. These sulfides included both stoichiometric and nonstoichiometric compositions and four different morphologies. In general, nonconductors were inactive and conductors were active. This correlation extended to the nonstoichiometric ..gamma..-phase sesquisulfides which exhibit both insulating and conducting properties.

  10. Quenching and radical formation in the reaction of photoexcited benzophenone with thiols and thioethers (sulfides). Nanosecond flash studies

    SciTech Connect

    Inbar, S.; Linschitz, H.; Cohen, S.G.

    1982-01-01

    Laser flash measurements have been made of rate constants and primary radical yields in the reactions of triplet benzophenone with aliphatic and aromatic thiols and with dialkyl and aryl alkyl sulfides. Reaction with n-pentylthiol in benzene leads mainly to quenching, with k/sub ir/ = 9 x 10/sup 6/ M/sup -1/ s/sup -1/ and radical yield (ketyl) = 0.14; with mesitylene-2 thiol in benzene k/sub ir/ = 7 x 10/sup 8/ M/sup -1/ s/sup -1/ and hydrogen transfer is efficient, radical yield (ketyl) approx. 1.0. In reactions with both p-chlorophenyl ethyl and diisopropyl sulfides, k/sub ir/ increases and radical yield (ketyl) decreases with increasing solvent polarity. Values of k/sub ir/ are higher and those of radical yield (ketyl) are lower for the dialkyl than for the aryl alkyl sulfide. Results are discussed in terms of rapid interaction of the triplet with S, followed by quenching and/or hydrogen transfer. Quenching without hydrogen transfer occurs to a much greater extent with sulfides and aliphatic thiols than with amines.

  11. Sulfide Mineralogy and Geochemistry

    NASA Astrophysics Data System (ADS)

    Dilles, John

    2007-02-01

    Reviews in Mineralogy and Geochemistry Series, Volume 61 David J. Vaughan, Editor Geochemical Society and Mineralogical Society of America; ISBN 0-939950-73-1 xiii + 714 pp.; 2006; $40. Sulfide minerals as a class represent important minor rock-forming minerals, but they are generally known as the chief sources of many economic metallic ores. In the past two decades, sulfide research has been extended to include important roles in environmental geology of sulfide weathering and resultant acid mine drainage, as well as in geomicrobiology in which bacteria make use of sulfides for metabolic energy sources. In the latter respect, sulfides played an important role in early evolution of life on Earth and in geochemical cycling of elements in the Earth's crust and hydrosphere.

  12. Cadmium sulfide/copper sulfide heterojunction cell research: critical studies in materials and durability. Quarterly progress report, September 1-November 30, 1980

    SciTech Connect

    1981-02-01

    This report refers to two papers. The first describes the results of a study on the grain structure of CdS and (CdZn)S films. The other paper is a study of the band structure in heterojunctions between Cu/sub 2/S and Cd/sub 1-x/Zn/sub x/S. Ongoing material studies are focused on the optical properties of Cu/sub 2/S as influenced by oxidation-reduction heat treatments. A set of high efficiency Cu/sub 2/S/(CdZn)S cells stored in hydrogen are being monitored for changes in efficiency and nine cells have been put on test under continuous illumination.

  13. Impact history of the Chelyabinsk meteorite: Electron microprobe and LA-ICP-MS study of sulfides and metals

    NASA Astrophysics Data System (ADS)

    Andronikov, A. V.; Andronikova, I. E.; Hill, D. H.

    2015-12-01

    Electron microprobe and LA-ICP-MS study of sulfides and metals from two fragments of the LL5 Chelyabinsk meteorite were conducted. The fragments are impact breccias, one fragment contains both chondritic and shock vein lithologies, and the other contains shock-darkened chondritic clasts and vesicular impact melts. The chondritic lithology and shock veins display very similar opaque mineral compositions. The mineral compositions in the impact-melt breccias are distinctly different. The brecciated state of the Chelyabinsk meteorite suggests strong involvement of shock-related processes during the evolution of the parent body. Multiple heavy impact events occurred on the parent asteroid and on the Chelyabinsk meteoroid itself over the time period from ca. 4.5 Ga until ca. 1.2 Ma. The shock veins were produced in situ on the parent body. The impact-melt breccias could have formed because of the dramatic impact to the parent LL-chondrite body that could be partly disintegrated. The fragment containing shock-darkened chondritic clasts and vesicular impact melt lithologies preserves a record of melting, volatilization, partial degassing, and quenching of the molten material. The abundance and size (up to 1 mm) of the vesicles suggest that the impact melt must have been buried at some depth after formation. After impact and subsequent melting occurred, the impact-induced pressure on the shallow asteroid interior was released that caused "boiling" of volatiles and generation of S-rich bubbles. Such an impact excavated down to depths of the body generating multiple fragments with complicated histories. These fragments reaccumulated into a gravitational aggregate and formed the parental meteoroid for the Chelyabinsk meteorite.

  14. Nanostructured lead sulfide: synthesis, structure and properties

    NASA Astrophysics Data System (ADS)

    Sadovnikov, S. I.; Gusev, A. I.; Rempel, A. A.

    2016-07-01

    The theoretical and experimental results of recent studies dealing with nanostructured lead sulfide are summarized and analyzed. The key methods for the synthesis of nanostructured lead sulfide are described. The crystal structure of PbS in nanopowders and nanofilms is discussed. The influence of the size of nanostructure elements on the optical and thermal properties of lead sulfide is considered. The dependence of the band gap of PbS on the nanoparticle (crystallite) size for powders and films is illustrated. The bibliography includes 222 references.

  15. Effect of sulfide on growth of marine bacteria.

    PubMed

    Mirzoyan, Natella; Schreier, Harold J

    2014-04-01

    Severe hypoxia leads to excess production of hydrogen sulfide in marine environments. In this study, we examined the effect of sulfide on growth of four facultative anaerobic marine bacteria in minimal media under anaerobic conditions. The Gram-negative chemolithoautotrophic Marinobacter sp. tolerated sulfide concentrations up to 0.60 mM, with doubling and lag times increasing as a function of increasing sulfide concentration but with no change in maximum culture yields; growth did not occur at 1.2 mM sulfide. Similar results were obtained for the metabolically diverse Gram-negative denitrifying Pseudomonas stutzeri, except that growth occurred at 1.2 mM and culture yields at 0.60 and 1.2 mM sulfide were approximately 10-fold lower than at sulfide concentrations between 0 and 0.30 mM. Increases in doubling and lag times accompanied by an overall 10-fold decrease in maximum culture yields were found for the Gram-negative chemoheterotrophic Vibrio sp. at all sulfide concentrations tested. In contrast, growth of a Gram-positive chemoheterotrophic Bacillus sp. was resistant to all sulfide concentrations tested (0.15-1.2 mM). Our results highlight the variable responses of marine bacteria to sulfide and provide some insight into shifts that may occur in microbial community structure and diversity as a consequence of changes in sulfide levels that are the result of hypoxia. PMID:24609188

  16. Cadmium sulfide/copper sulfide heterojunction cell research. Critical studies in materials and durability. Annual progress report, July 1, 1979-August 31, 1980

    SciTech Connect

    1981-01-01

    A summary of the structural and morphological features of CdS and (CdZn)S layers and their heterojunctions with Cu/sub 2/S is presented. The growth of the Cu/sub 2/S layer has been studied as a function of time for both the solution and solid state process using transmission electron microscopy. Preliminary observations have also been made on vapor and sputter deposited Cu/sub 2/S layers. The effect of oxidation and reduction heat treatments on the optical properties of Cu/sub 2/S are reported. Changes of cell performance with time for cells loaded to various points in the power quadrant are described.

  17. New insight into the formation of nitrogen sulfide: a quantum chemical study.

    PubMed

    Pereira, Priscila S S; Macedo, Luiz G M; Pimentel, André S

    2010-01-14

    We studied the chemical mechanism for the formation of (2)NS in the interstellar medium was by using the CCSD/6-311++G(d,p) and CCSD(T)/6-311++G(3df,3pd) levels of theory. To the best of our knowledge, this is the first detailed study of the chemical mechanism for the formation of (2)NS. Several reactions proposed in this article are spin-forbidden. They were treated with the Landau-Zener theory and by the MRCI methodology. The following reactions paths proposed in this article are energetically favorable: (1) (1)NH + (2)SH --> cis-(2)HNSH --> TS1 --> trans-(2)HNSH --> TS2 --> (2)H(2)NS --> TS3 --> (2)NS + H(2) and (2) (4)N + (1)SH --> (1)NSH --> TS13 --> (1)HNS --> (2)NS + (2)H. However, the latter reaction, (4)N + (1)SH --> (1)NSH, is spin-forbidden, and its probability of occuring (p(sh)) is zero. The chemical mechanism for the formation of (2)NS in the interstellar medium is now presented in more detail, which is of great importance. PMID:20000609

  18. Study of the active surface on titanium oxide catalysts for the oxidation of hydrogen sulfide

    SciTech Connect

    Khanmamedov, T.K.; Kalinkin, A.V.; Rakhimova, N.R.

    1989-02-01

    A study was carried out on the change in the composition of a Ti-Mo-W catalyst depending on the conditions for their treatment by H/sub 2/S-SO/sub 2/ and H/sub 2/S-O/sub 2/ gas mixtures, which serve as models for the technological gases in Klaus apparatuses and the direct catalytic oxidation of H/sub 2/S. X-ray photoelectron spectroscopy was used to establish the formation of sulfur as S/sup 2/minus// and S/sup 6+/ on the surface. The presence of S/sup 6+/ along with the changes in E/sub b/ of the electrons in the T-Mo-W catalyst indicates the formation of MoS/sub 2/ and TiO(SO/sub 4/) species.

  19. An XPS study of gold deposition at low temperatures on sulfide minerals: Reducing agents

    SciTech Connect

    Hyland, M.M.; Bancroft, G.M. )

    1989-02-01

    The reduction of KAuCl{sub 4} to metallic gold by pyrite, high iron content sphalerite and galena was studied using surface analytical and solution techniques, including X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (A.A.). High resolution XPS of the reacted mineral showed that the mineral surface is the Au reducing agent. On galena and high iron sphalerite, a corroded layer forms rapidly as S{sup 2 minus} is oxidized to polysulfides, S{sup 2{minus}}{sub x}, and the metals are leached from the surface. Although Au is also reduced on pyrite, the formation of surface polysulfide is not concurrent with Au reduction. Solution analysis for the pyrite and high iron sphalerite reactions shows, however, that considerable sulfate is produced due to the oxidation of S{sup 2{minus}}, S{sup 2{minus}}{sub 2} or the intermediate polysulphide.

  20. Surface modification and multiple exciton generation studies of lead(II) sulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Zemke, Jennifer M.

    2011-12-01

    Solar energy is a green alternative to fossil fuels but solar technologies to date have been plagued by low conversion efficiencies and high input costs making solar power inaccessible to much of the developing world. Semiconductor nanoparticles (NPs) may provide a route to efficient, economical solar devices through a phenomenon called multiple exciton generation (MEG). Through MEG, semiconductor NPs use a high-energy input photon to create more than one exciton (electron-hole pair) per photon absorbed, thereby exhibiting large photoconversion efficiencies. While MEG has been studied in many NP systems, and we understand some of the factors that affect MEG, a rigorous analysis of the NP-ligand interface with respect to MEG is missing. This dissertation describes how the NP ligand shell directly affects MEG and subsequent charge carrier recombination. Chapter I describes the motivation for studying MEG with respect to NP surface chemistry. Chapter II provides an in-depth overview of the transient absorption experiment used to measure MEG in the NP samples. Chapter III highlights the effect of oleic acid and sodium 2, 3-dimercaptopropane sulfonate on MEG in PbS NPs. The differences in carrier recombination were accounted for by two differences between these ligands: the coordinating atom and/or the secondary structure of the ligand. Because of these hypotheses, experiments were designed to elucidate the origin of these effects by controlling the NP ligand shell. Chapter IV details a viable synthetic route to thiol and amine-capped PbS NPs using sodium 3-mercaptopropane sulfonate as an intermediate ligand. With the versatile ligand exchange described in Chapter IV, the MEG yield and carrier recombination was investigated for ligands with varying headgroups but the same secondary structure. The correlation of ligand donor atom to MEG is outlined in Chapter V. Finally, Chapter VI discusses the conclusions and future outlook of the research reported in this dissertation

  1. Thermophysical properties and reaction kinetics of γ-irradiated poly allyl diglycol carbonates nuclear track detector

    NASA Astrophysics Data System (ADS)

    Elmaghraby, Elsayed K.; Seddik, Usama

    2015-07-01

    Kinetic thermogravimetric technique was used to study the effect of gamma irradiation on the poly allyl diglycol carbonates (PADC) within the dose range from 50 to ? Gy. The approach of Coats-Redfern was used to analyze the data. Results showed that low doses around 50 Gy make the polymer slightly more resistive to heat treatment. Higher radiation doses cause severe effects in the samples accompanied by the formation of lower molecular mass species and consequent crosslinking. Results support the domination of re-polymerization and crosslinking for the γ radiation interaction PADC at dose below about ? Gy, while the situation is inverted above ? Gy in which chain secession dominates.

  2. Monitoring the Reaction Products of Perfluoropropionic Acid and Allyl Phenyl Ether Using Chirped-Pulse Fourier Transform Microwave Cp-Ftmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Frank, Derek S.; Obenchain, Daniel A.; Lin, Wei; Novick, Stewart E.; Cooke, S. A.; Grubbs, G. S., II

    2014-06-01

    The pure rotational spectra of the reaction mixture of perfluoropropionic acid, CF3CF2COOH, and allyl phenyl ether, C6H5OCH2CH=CH2, have been studied by a pulsed nozzle, chirped-pulse Fourier transform microwave spectrometer in the frequency range of 8-14 GHz. Transitions corresponding to multiple species, two of which being starting materials allyl phenyl ether and perfluoropropionic acid, have been observed and analyzed. Determination of the reaction products was carried out by matching observed rotational constants with ab initio quantum chemical calculations of predicted products and will be discussed. Rotational constants, centrifugal distortion constants and the assignment of allyl phenyl ether and reaction products spectra will all be discussed.

  3. Study of the effects of gaseous environments on sulfidation attack of superalloys

    NASA Technical Reports Server (NTRS)

    Smeggil, J. G.; Bornstein, N. S.

    1977-01-01

    Studies were conducted to examine the effect of the gaseous corrodents NaCl, HCl, and NaOH on the high temperature oxidation and Na2SO4-induced corrosion behavior of the alumina former NiAl, the chromia former Ni-25 wt.% Cr, elemental Cr, and the superalloy B-1900. Experiments were conducted at 900 and 1050 C in air in the presence and absence of the gaseous corrodents. Effects involving both reaction rates and microstructural changes in oxide morphology were observed due to the presence of these corrodents at levels anticipated to be present in operating industrial and marine gas turbines. The effect of gaseous NaCl, HCl, and possibly NaOH on NiAl in simple oxidation was to remove aluminum from below the protective alumina layer and to simultaneously weaken the adherence of the protective alumina oxide scale to the substrate. The aluminum removed from below the oxide scale was redeposited on its surface as alpha-Al2O3 whiskers. With respect to the chromia formers, gaseous NaCl and HCl promoted breakaway oxidation kinetics and changes in the microstructures of the oxide scales.

  4. Studies of Adsorbate Effects on the Photoluminescence of Cadmium Sulfide and Cadmium Selenide.

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongju

    1993-01-01

    Chapter One. The electronic properties of semiconductors and their surface and photoluminescence properties are introduced. A short introduction to chemisorption and the Langmuir adsorption isotherm model is presented. The properties of II-VI semiconductors are briefly reviewed. Chapter Two. Adsorption from CH_2 Cl_2 solution of a family of ring-substituted, 7,7,8,8-tetracyanoquinodimethane (TCNQ) derivatives onto the surface of etched, single-crystal n-CdSe quenches the band gap photoluminescence (PL) intensity of the semiconductor. PL quenching increases with the electron-withdrawing ability of the ring substituent. The C_{60} and C_ {70} fullerenes can also be adsorbed from toluene solution onto the surfaces of n-CdS and n-CdSe, causing quenching of the PL intensity. Quantitatively, the magnitude of the PL quenching can be fit to a dead -layer model, permitting an estimate of maximum expansions in dead-layer thickness caused by adsorption of TCNQ derivatives and C_{60} onto the n -CdSe surface to reach ~1400 A and ~300 A, respectively. The PL intensity changes are concentration-dependent and give good fits to the Langmuir adsorption isotherm model, yielding equilibrium binding constants on the order of ~10 ^5 to 10^6 M^{-1} for TCNQ derivatives and fullerenes, among the largest reported to date. With etched samples, the opposing Cd-rich (0001)and Se-rich (000 1) faces of individual CdSe samples are distinguishable through their interaction with TCNQ and C_ {60}, with adsorption onto the former face resulting in a substantially larger PL change but an experimentally indistinguishable equilibrium binding constant. Possible binding schemes that could account for these effects are presented. Chapter Three. The carrier concentration of CdS crystals can be increased by annealing the crystal in the vapor of Cd metal. The effect of the carrier concentration of CdS on its adsorption properties has been explored with p-toluidine and C_{60} adsorbates. The PL study has

  5. Comparative investigation of the mutagenicity of propenylic and allylic asarone isomers in the Ames fluctuation assay.

    PubMed

    Berg, Kerstin; Bischoff, Roland; Stegmüller, Simone; Cartus, Alexander; Schrenk, Dieter

    2016-07-01

    α-, β- and γ-asarone are naturally occurring phenylpropenes that occur in different plant families, mainly in Aristolochiaceae, Acoraceae and Lauraceae. Plants containing asarones are used as flavouring ingredients in alcoholic beverages (bitters), traditional phytomedicines and the rhizome of e.g. Acorus calamus is used to prepare tea. Although α- and β-asarone show a potential in the treatment of several diseases, previous studies have shown carcinogenicity in rodents (duodenum, liver). However, the mechanism of action remained unclear. Studies on the mutagenicity of propenylic α- and β-asarone are inconsistent and data on carcinogenicity and genotoxicity of allylic γ-asarone are lacking completely. Thus, the present study determined the mutagenicity of the three asarone isomers using the Ames fluctuation assay with and without exogenous metabolic activation (S9 mix) in the standard Salmonella typhimurium strains TA98 and TA100. A concentration dependent increase in mutagenicity could be verified for α- and β-asarone in strain TA100 in the presence of rat liver homogenate. The side-chain epoxides of α- and β-asarone, major metabolites formed in liver microsomes, caused mutations in TA100, supporting the hypothesis that epoxidation of the side chain plays a key role in mutagenicity of the propenylic alkenylbenzenes. The allylic γ-asarone, not undergoing detectable side-chain epoxidation in liver microsomes, was supposed to be activated via side-chain hydroxylation and further sulphonation, a typical pathway for other allylic alkenylbenzenes like estragole or methyleugenol. However, neither y-asarone nor 1'-OH-γ-asarone showed any mutagenic effect even in the human SULT-expressing Salmonella strains (TA100-hSULT1A1 and TA100-hSULT1C2), while 1'-OH-methyleugenol used as a positive control was mutagenic under these conditions. These results indicate that the propenylic asarones are genotoxic via metabolic formation of side-chain epoxides while the side

  6. Branching Out: Rhodium-Catalyzed Allylation with Alkynes and Allenes.

    PubMed

    Koschker, Philipp; Breit, Bernhard

    2016-08-16

    We present a new and efficient strategy for the atom-economic transformation of both alkynes and allenes to allylic functionalized structures via a Rh-catalyzed isomerization/addition reaction which has been developed in our working group. Our methodology thus grants access to an important structural class valued in modern organic chemistry for both its versatility for further functionalization and the potential for asymmetric synthesis with the construction of a new stereogenic center. This new methodology, inspired by mechanistic investigations by Werner in the late 1980s and based on preliminary work by Yamamoto and Trost, offers an attractive alternative to other established methods for allylic functionalization such as allylic substitution or allylic oxidation. The main advantage of our methodology consists of the inherent atom economy in comparison to allylic oxidation or substitution, which both produce stoichiometric amounts of waste and, in case of the substitution reaction, require prefunctionalization of the starting material. Starting out with the discovery of a highly branched-selective coupling reaction of carboxylic acids with terminal alkynes using a Rh(I)/DPEphos complex as the catalyst system, over the past 5 years we were able to continuously expand upon this chemistry, introducing various (pro)nucleophiles for the selective C-O, C-S, C-N, and C-C functionalization of both alkynes and the double-bond isomeric allenes by choosing the appropriate rhodium/bidentate phosphine catalyst. Thus, valuable compounds such as branched allylic ethers, sulfones, amines, or γ,δ-unsaturated ketones were successfully synthesized in high yields and with a broad substrate scope. Beyond the branched selectivity inherent to rhodium, many of the presented methodologies display additional degrees of selectivity in regard to regio-, diastereo-, and enantioselective transformations, with one example even proceeding via a dynamic kinetic resolution. Many advances

  7. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters.

    PubMed

    Wei, Xuan; Liu, Delong; An, Qianjin; Zhang, Wanbin

    2015-12-01

    A Pd-catalyzed asymmetric allylic alkylation of azlactones with 4-arylvinyl-1,3-dioxolan-2-ones was developed, providing "branched" chiral α-amino acids with vicinal tertiary and quaternary stereocenters, in high yields and with excellent selectivities. Mechanistic studies revealed that the formation of a hydrogen bond between the Pd-allylic complex and azlactone isomer is responsible for the excellent regioselectivities. This asymmetric alkylation can be carried out on a gram scale without a loss of catalytic efficiency, and the resulting product can be further transformed to a chiral azetidine in two simple steps. PMID:26575242

  8. Corrosion Study of Super Ferritic Stainless Steel UNS S44660 (26Cr-3Ni-3Mo) and Several Other Stainless Steel Grades (UNS S31603, S32101, and S32205) in Caustic Solution Containing Sodium Sulfide

    NASA Astrophysics Data System (ADS)

    Chasse, Kevin R.; Singh, Preet M.

    2013-11-01

    Electrochemical techniques, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used in this study to show how the corrosion mechanism of several commercial grades of stainless steel in hot caustic solution is strongly influenced by the presence of sodium sulfide. Experimental results from super ferritic stainless steel UNS S44660 (26Cr-3Ni-3Mo) were compared to austenitic stainless steel UNS S31603, lean duplex stainless steel (DSS) UNS S32101, and standard DSS UNS S32205 in caustic solution, with and without sodium sulfide, at 443 K (170 °C). Weight loss measurements indicated that corrosion rates of UNS44660 were much lower than the other grades of stainless steel in the presence of the sodium sulfide. Potentiodynamic polarization and linear polarization resistance measurements showed that the electrochemical behavior was altered by the adhesion of sulfur species, which reduced the polarization resistances and increased the anodic current densities. SEM and XPS results imply that the surface films that formed in caustic solution containing sodium sulfide were defective due to the adsorption of sulfide, which destabilized the passive film and led to the formation of insoluble metal sulfide compounds.

  9. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    DOEpatents

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  10. Competing sigmatropic shift rearrangements in excited allyl radicals

    SciTech Connect

    Stranges, D.; O'Keeffe, P.; Scotti, G.; Di Santo, R.; Houston, P. L.

    2008-04-21

    The competition between rearrangement of the excited allyl radical via a 1,3 sigmatropic shift versus sequential 1,2 shifts has been observed and characterized using isotopic substitution, laser excitation, and molecular beam techniques. Both rearrangements produce a 1-propenyl radical that subsequently dissociates to methyl plus acetylene. The 1,3 shift and 1,2 shift mechanisms are equally probable for CH{sub 2}CHCH{sub 2}, whereas the 1,3 shift is favored by a factor of 1.6 in CH{sub 2}CDCH{sub 2}. The translational energy distributions for the methyl and acetylene products of these two mechanisms are substantially different. Both of these allyl dissociation channels are minor pathways compared to hydrogen atom loss.