Science.gov

Sample records for alma valiukait laimutis

  1. ALMA science data management

    NASA Astrophysics Data System (ADS)

    Stoehr, Felix

    2015-12-01

    ALMA has transitioned now from the construction to the operation phase. We review the Science Data Management of ALMA including the concepts of Data Reduction, Quality Assurance as well as of the Science Archive. We also place the Science Data Management of ALMA into the larger context.

  2. ALMA science operations

    NASA Astrophysics Data System (ADS)

    Nyman, Lars-Åke; Andreani, Paola; Hibbard, John; Okumura, Sachiko K.

    2010-07-01

    The ALMA (Atacama Large Millimeter/submillimeter Array) project is an international collaboration between Europe, East Asia and North America in cooperation with the Republic of Chile. The ALMA Array Operations Site (AOS) is located at Chajnantor, a plateau at an altitude of 5000 m in the Atacama desert in Chile, and the ALMA Operations Support Facility (OSF) is located near the AOS at an altitude of 2900 m. ALMA will consist of an array of 66 antennas, with baselines up to 16 km and state-of-the-art receivers that cover all the atmospheric windows up to 1 THz. An important component of ALMA is the compact array of twelwe 7-m and four 12-m antennas (the Atacama Compact Array, ACA), which will greatly enhance ALMA's ability to image extended sources. Construction of ALMA started in 2003 and will be completed in 2013. Commissioning started in January 2010 and Early Science Operations is expected to start during the second half of 2011. ALMA science operations is provided by the Joint ALMA Observatory (JAO) in Chile, and the three ALMA Regional Centers (ARCs) located in each ALMA region - Europe, North America and East Asia. ALMA observations will take place 24h per day, interrupted by maintenance periods, and will be done in service observing mode with flexible (dynamic) scheduling. The observations are executed in the form of scheduling blocks (SBs), each of which contains all information necessary to schedule and execute the observations. The default output to the astronomer will be pipeline-reduced images calibrated according to the calibration plan. The JAO is responsible for the data product quality. All science and calibration raw data are captured and archived in the ALMA archive, a distributed system with nodes at the OSF, the Santiago central office and the ARCs. Observation preparation will follow a Phase 1/Phase 2 process. During Phase 1, observation proposals will be created using software tools provided by the JAO and submitted for scientific and

  3. ALMA Pipeline Heuristics

    NASA Astrophysics Data System (ADS)

    Lightfoot, J.; Wyrowski, F.; Muders, D.; Boone, F.; Davis, L.; Shepherd, D.; Wilson, C.

    2006-07-01

    The ALMA (Atacama Large Millimeter Array) Pipeline Heuristics system is being developed to automatically reduce data taken with the standard observing modes. The goal is to make ALMA user-friendly to astronomers who are not experts in radio interferometry. The Pipeline Heuristics system must capture the expert knowledge required to provide data products that can be used without further processing. Observing modes to be processed by the system include single field interferometry, mosaics and single dish `on-the-fly' maps, and combinations of these modes. The data will be produced by the main ALMA array, the ALMA Compact Array (ACA) and single dish antennas. The Pipeline Heuristics system is being developed as a set of Python scripts. For interferometry these use as data processing engines the CASA/AIPS++ libraries and their bindings as CORBA objects within the ALMA Common Software (ACS). Initial development has used VLA and Plateau de Bure data sets to build and test a heuristic script capable of reducing single field data. In this paper we describe the reduction datapath and the algorithms used at each stage. Test results are presented. The path for future development is outlined.

  4. A Roof for ALMA

    NASA Astrophysics Data System (ADS)

    2007-03-01

    On 10 March, an official ceremony took place on the 2,900m high site of the Atacama Large Millimeter/submillimeter Array (ALMA) Operations Support Facility, from where the ALMA antennas will be remotely controlled. The ceremony marked the completion of the structural works, while the building itself will be finished by the end of the year. This will become the operational centre of one of the most important ground-based astronomical facilities on Earth. ESO PR Photo 13a/07 ESO PR Photo 13a/07 Cutting the Red Ribbon The ceremony, known as 'Tijerales' in Chile, is the equivalent to the 'roof-topping ceremony' that takes place worldwide, in one form or another, to celebrate reaching the highest level of a construction. It this case, the construction is the unique ALMA Operations Support Facility (OSF), located near the town of San Pedro de Atacama. "The end of this first stage represents an historic moment for ALMA," said Hans Rykaczewski, the European ALMA Project Manager. "Once completed in December 2007, this monumental building of 7,000 square metres will be one of the largest and most important astronomical operation centres in the world." ALMA, located at an elevation of 5,000m in the Atacama Desert of northern Chile, will provide astronomers with the world's most advanced tool for exploring the Universe at millimetre and submillimetre wavelengths. ALMA will detect fainter objects and be able to produce much higher-quality images at these wavelengths than any previous telescope system. The OSF buildings are designed to suit the requirements of this exceptional observatory in a remote, desert location. The facility, which will host about 100 people during operations, consists of three main buildings: the technical building, hosting the control centre of the observatory, the antenna assembly building, including four antenna foundations for testing and maintenance purposes, and the warehouse building, including mechanical workshops. Further secondary buildings are

  5. ALMA, APEX and beyond

    NASA Astrophysics Data System (ADS)

    Zwaan, M.; Testi, L.

    The Atacama Large Millimeter/submillimeter Array (ALMA) is currently being constructed at the 5000m Chajnantor plateau in the Chilean Andes. ALMA has been designed and is being built to deliver transformational science in the millimeter and submillimeter regime for many years to come. We briefly describe the project status and timeline. The Atacama Pathfinder Experiment (APEX), built at the same site, is already operational and proves to be an effective survey instrument. We discuss which niches in millimeter/submillimeter astronomy will remain open for a possible facility in Antarctica.

  6. ALMA and Reionization

    NASA Astrophysics Data System (ADS)

    Blain, A. W.

    2013-10-01

    ALMA is presenting a huge opportunity to find and study the very faintest targets, including the most distant galaxies. However, ALMA usually detects radiation reprocessed by metals, and thus requires that the debris from the first stars has polluted the interstellar and intergalactic mediums. The very first dusty objects should be revealed, although their surface brightness will be low. The ‘negative K-correction’ enjoyed by millimeter-wave observers continues to support ALMA users out to redshifts z > 10, but at great distances the cosmic microwave background (CMB) radiation imposes a minimum temperature. As a result, the favorable effect has a limit, and it also imposes a fixed color on the continuum radiation from the most distant objects regardless of redshift. Primordial molecules, shocked molecular hydrogen, perhaps even He+H, hydrogen recombination lines and high-n line series could provide insight into the environment, infall and outfall in the most massive, early protogalaxies. Denser ionized gas offers to be possibly visible via the Sunyaev-Zeldovich (SZ) effect, with its a very characteristic spectral signature, and a surface brightness that is independent of redshift. Competing with and complementing James Webb Space Telescope (JWST) in the near- and mid-infrared (IR), Extremely Large Telescopes (ELTs) in the near-IR and the Square Kilometer Array (SKA) and its precursors in the radio, ALMA can enjoy a useful role in keeping a look out for reionizing galaxies in the archive of deep observations, enabled by its unprecedented, excellent sensitivity and spatial resolution.

  7. The ALMA Regional Centers (ARC)

    NASA Astrophysics Data System (ADS)

    Andreani, P.; Hibbard, J.; Okumura, S. K.; Braatz, J.

    2011-04-01

    ALMA is an international facility, a partnership between Europe, East Asia, and North America, in cooperation with the Republic of Chile. As such, ALMA will serve a worldwide community of astronomers. To interface with the geographically distributed user community, the partners have established three ALMA Regional Centers, or ARCs. The ARCs provide the primary gateway to ALMA for the user community. The ARCs are staffed by scientists with expertise in radio astronomy and interferometry, and their purpose is to work with the community of astronomers to maximize the scientific productivity of the telescope.

  8. ALMA correlator computer systems

    NASA Astrophysics Data System (ADS)

    Pisano, Jim; Amestica, Rodrigo; Perez, Jesus

    2004-09-01

    We present a design for the computer systems which control, configure, and monitor the Atacama Large Millimeter Array (ALMA) correlator and process its output. Two distinct computer systems implement this functionality: a rack- mounted PC controls and monitors the correlator, and a cluster of 17 PCs process the correlator output into raw spectral results. The correlator computer systems interface to other ALMA computers via gigabit Ethernet networks utilizing CORBA and raw socket connections. ALMA Common Software provides the software infrastructure for this distributed computer environment. The control computer interfaces to the correlator via multiple CAN busses and the data processing computer cluster interfaces to the correlator via sixteen dedicated high speed data ports. An independent array-wide hardware timing bus connects to the computer systems and the correlator hardware ensuring synchronous behavior and imposing hard deadlines on the control and data processor computers. An aggregate correlator output of 1 gigabyte per second with 16 millisecond periods and computational data rates of approximately 1 billion floating point operations per second define other hard deadlines for the data processing computer cluster.

  9. From Virgil to Alma Mater

    ERIC Educational Resources Information Center

    Spitz, Ellen Handler

    2007-01-01

    For a college to become an alma mater in the hearts of its students, it must show, true to the Latin meaning, the wisdom and comfort of a good foster mother. Since "alma mater" is Latin, and since the study of Latin has waned on all educational levels in both pious and secular milieus, the author wonders whether folks who use that term really know…

  10. ALMA from the Users' Perspective

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2010-05-01

    After decades of dreaming and preparation, the call for early science with ALMA is just around the corner. The goal of this talk is to illustrate the process of preparing and carrying out a research program with ALMA. This presentation will step through the user interface for proposal preparation, proposal review, project tracking, data acquisition, and post-processing. Examples of the software tools, including the simulator and spectral line catalog, will be included.

  11. ALMA telescope reaches new heights

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The ALMA (Atacama Large Millimeter/submillimeter Array) astronomical observatory has taken another step forward - and upwards. One of its state-of-the-art antennas was carried for the first time to the 5000m plateau of Chajnantor, in the Chilean Andes, on the back of a custom-built giant transporter. The antenna, which weighs about 100 tons and has a diameter of 12 metres, was transported up to the high-altitude Array Operations Site, where the extremely dry and rarefied air is ideal for ALMA's observations of the Universe. The conditions at the Array Operations Site on Chajnantor, while excellent for astronomy, are also very harsh. Only half as much oxygen is available as at sea level, making it very difficult to work there. This is why ALMA's antennas are assembled and tested at the lower 2900 m altitude of the ALMA Operations Support Facility. It was from this relatively hospitable base camp that the ALMA antenna began its journey to the high Chajnantor site. "This is an important moment for ALMA. We are very happy that the first transport of an antenna to the high site went flawlessly. This achievement was only possible through contributions from all international ALMA partners: this particular antenna is provided by Japan, the heavy-lift transporter by Europe, and the receiving electronics inside the antenna by North America, Europe, and Asia", said Wolfgang Wild, European ALMA Project Manager. The trip began when one of the two ALMA transporters, named Otto, lifted the antenna onto its back. It then carried its heavy load along the 28 km road from the Operations Support Facility up to the Array Operations Site. While the transporter is capable of speeds of up to 12 km/hour when carrying an antenna, this first journey was made more slowly to ensure that everything worked as expected, taking about seven hours. The ALMA antennas are the most advanced submillimetre-wavelength antennas ever made. They are designed to operate fully exposed in the harsh conditions

  12. ADMIT: ALMA Data Mining Toolkit

    NASA Astrophysics Data System (ADS)

    Friedel, Douglas N.; Xu, Lisa; Looney, Leslie; Teuben, Peter J.; Pound, Marc W.; Rauch, Kevin P.; Mundy, Lee G.; Kern, Jeffrey S.

    2015-01-01

    ADMIT (ALMA Data Mining Toolkit) is a toolkit for the creation and analysis of new science products from ALMA data. ADMIT is an ALMA Development Project written purely in Python. While specifically targeted for ALMA science and production use after the ALMA pipeline, it is designed to be generally applicable to radio-astronomical data. ADMIT quickly provides users with a detailed overview of their science products: line identifications, line 'cutout' cubes, moment maps, emission type analysis (e.g., feature detection), etc. Users can download the small ADMIT pipeline product (< 20MB), analyze the results, then fine-tune and re-run the ADMIT pipeline (or any part thereof) on their own machines and interactively inspect the results. ADMIT will have both a GUI and command line interface available for this purpose. By analyzing multiple data cubes simultaneously, data mining between many astronomical sources and line transitions will be possible. Users will also be able to enhance the capabilities of ADMIT by creating customized ADMIT tasks satisfying any special processing needs. Future implementations of ADMIT may include EVLA and other instruments.

  13. Admit: Alma Data Mining Toolkit

    NASA Astrophysics Data System (ADS)

    Friedel, Douglas; Looney, Leslie; Xu, Lisa; Pound, Marc W.; Teuben, Peter J.; Rauch, Kevin P.; Mundy, Lee; Kern, Jeffrey S.

    2015-06-01

    ADMIT (ALMA Data Mining Toolkit) is a toolkit for the creation and analysis of new science products from ALMA data. ADMIT is an ALMA Development Project written purely in Python. While specifically targeted for ALMA science and production use after the ALMA pipeline, it is designed to be generally applicable to radio-astronomical data. ADMIT quickly provides users with a detailed overview of their science products: line identifications, line 'cutout' cubes, moment maps, emission type analysis (e.g., feature detection), etc. Users can download the small ADMIT pipeline product (<20MB), analyze the results, then fine-tune and re-run the ADMIT pipeline (or any part thereof) on their own machines and interactively inspect the results. ADMIT will have both a GUI and command line interface available for this purpose. By analyzing multiple data cubes simultaneously, data mining between many astronomical sources and line transitions will be possible. Users will also be able to enhance the capabilities of ADMIT by creating customized ADMIT tasks satisfying any special processing needs. Future implementations of ADMIT may include EVLA and other instruments.

  14. ALMA Telescope Reaches New Heights

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The ALMA (Atacama Large Millimeter/submillimeter Array) astronomical observatory took another step forward and upward, as one of its state-of-the-art antennas was carried for the first time to Chile's 16,500-foot-high plateau of Chajnantor on the back of a giant, custom-built transporter. The 40-foot-diameter antenna, weighing about 100 tons, was moved to ALMA's high-altitude Array Operations Site, where the extremely dry and rarefied air is ideal for observing the Universe. The conditions at the Array Operations Site on Chajnantor, while excellent for astronomy, are also very harsh. Only about half as much oxygen is available as at sea level, making it very difficult to work there. This is why ALMA's antennas are assembled and tested at the lower 9,500-foot altitude of the ALMA Operations Support Facility (OSF). It was from this relatively hospitable base camp that the ALMA antenna began its journey to the high Chajnantor site. "The successful transport of the first ALMA Antenna to the high site marks the start of the next phase of the project. Now that we are starting to move the ALMA antennas to the high site, the real work begins and the exciting part is just beginning," said Adrian Russell, North American ALMA Project Manager. The antenna's trip began when one of the two ALMA transporters lifted the antenna onto its back, carrying its heavy load along the 17-mile road from the Operations Support Facility up to the Array Operations Site. While the transporter is capable of speeds of up to 8 miles per hour when carrying an antenna, this first journey was made more slowly to ensure that everything worked as expected, taking about seven hours. The ALMA antennas use state-of-the-art technology, and are the most advanced submillimeter-wavelength antennas ever made. They are designed to operate fully exposed in the harsh conditions of the Array Operations Site, to survive strong winds and extreme temperatures, to point precisely enough that they could pick out a golf

  15. ALMA Cycle 0 Publication Statistics

    NASA Astrophysics Data System (ADS)

    Stoehr, F.; Grothkopf, U.; Meakins, S.; Bishop, M.; Uchida, A.; Testi, L.; Iono, D.; Tatematsu, K.; Wootten, A.

    2015-12-01

    The scientific impact of a facility is the most important measure of its success. Monitoring and analysing the scientific return can help to modify and optimise operations and adapt to the changing needs of scientific research. The methodology that we have developed to monitor the scientific productivity of the ALMA Observatory, as well as the first results, are described. We focus on the outcome of the first cycle (Cycle 0) of ALMA Early Science operations. Despite the fact that only two years have passed since the completion of Cycle 0 and operations have already changed substantially, this analysis confirms the effectiveness of the underlying concepts. We find that ALMA is fulfilling its promise as a transformational facility for the observation of the Universe in the submillimetre.

  16. ALMA Common Software - UTFSM Group

    NASA Astrophysics Data System (ADS)

    Araya, M.; Avarias, J.; Mora, M.; Tobar, R.

    The ACS-UTFSM Group was created as a distributed systems research team on astronomical and non-astronomical applications on the year 2004. The choice of the ALMA Common Software framework (ACS) as the development platform came from the experience gained during summerjobs at ESO observatories. After three years of informal contributions to ACS development, the team presented a technology exchange initiative to the ALMA-CONICYT Fund 2006, which was granted in 2007. Through the past years, the UTFSM helped the ACS team with "nice-to-have" applications and testing. Currently the ACS-UTFSM is involved in several contributions to ACS, and the development of a flexible telescope control system (gTCS) framework which aims to encapsulate common requirements and will provide a uniform software. In preparation for this challenging objective, several small projects are currently being developed. The other interesting edge of the team work is the technology transfer initiatives. Several inter-universities collaborations are flourishing (PUC, UCN, UV) after the first ACS Workshop held at the UTFSM this year. Today three former team members are working at NRAO's ALMA Test Facility in Socorro, New Mexico. Two other students will have a summer job next year to work in ALMA related development.

  17. Experiences Virtualizing the ALMA Software

    NASA Astrophysics Data System (ADS)

    Zambrano, M.; Arredondo, D.; Bartsch, M.; Shen, T.; Ibsen, J.; Condorelli, L.; Turolla, S.

    2010-12-01

    One of the most exciting subjects in system administration during the last years has been the virtualization of complete systems with all the benefits it implies. Hardware and operative systems are now offering new features that improve the performance of such virtual environments up to a point that nearly matches the real hardware performance. ALMA Software is tested among others in simulation on a controlled standard tests environment (STE). STEs are a set of computers and network hardware. We took an open source hypervisor and made the tools to build, manage and deploy complete copies of virtual STEs, which are used for testing the ALMA Common Software. For many years, ALMA has provided pre-installed virtual machines (VMs) to developers. We took this approach one step further, allowing to run ALMA software in simulation on a fully virtualized STE on a single server. The work we present here shows the goals, scopes and policies for virtualization and the benefits gained from their usage since its adoption in late 2008.

  18. The ALMA Pipeline Procedure Execution Framework

    NASA Astrophysics Data System (ADS)

    Davis, L.; Williams, S.; Nakazato, T.; Lightfoot, J.; Muders, D.; Kent, B.

    2015-09-01

    The ALMA pipeline processes data taken in standard observing modes. The ALMA pipeline execution framework is responsible for executing the standard reduction procedure for each standard mode. The execution framework is written in Python. The pipeline reduction procedures are layered on and run inside the CASA package. The framework is flexible enough to support observatory operations, reprocessing, commissioning and testing, and user desktop reprocessing.

  19. ALMA Debuts High-Resolution Results

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    The exciting results of the highest-resolution test campaign yet attempted by the Atacama Large Millimeter/submillimeter Array (ALMA) are detailed in a recent set of four papers. Animation (click to watch) of the asteroid Juno as seen in mm wavelengths by ALMA's Long Baseline Campaign. Image credit: ALMA (NRAO/ESO/NAOJ) ALMA's array of antennas can be configured so that the baseline of the simulated telescope is as small as 150 m or as large as 15 km across. In its smaller configurations, ALMA studies the large-scale structure of cold objects in the Universe — and this is how the array has been used since it began its first operations in 2011. But now ALMA has begun to test its long-baseline configuration, in which it is able to make its highest-resolution observations and study the small-scale structure of objects in detail. The Targets ALMA's Long Baseline Campaign, run in late 2014, observed five science targets using 22-36 antennas arranged with a baseline of up to the full 15 km. The targets were selected to push the limits of ALMA's capabilities: each target has a small angular size (less than two arcseconds) with fine-scale structure that is largely unresolved in previous observations. Two of the targets, the variable star Mira and the active galaxy 3C138, were primarily used for calibration and comparisons of ALMA data to those of other telescopes. The remaining three targets not only demonstrated ALMA's capabilities, but also resulted in new science discoveries. ALMA's highest resolution observation yet, of the gravitationally lensed galaxy SDP.81. The maximum resolution of this image is 23 milliarcseconds. Image credit: ALMA (NRAO/ESO/NAOJ); B. Saxton NRAO/AUI/NSF Juno is one of the largest asteroids in our solar system's main asteroid belt. ALMA's observations of Juno were made when the asteroid was approximately 295 million km from Earth, and the ten images ALMA took have been stitched together into a brief animation that show the asteroid tumbling

  20. ALMA Band 5 Cartridge Performance

    NASA Astrophysics Data System (ADS)

    Billade, Bhushan; Lapkin, I.; Nystrom, O.; Sundin, E.; Fredrixon, M.; Finger, R.; Rashid, H.; Desmaris, V.; Meledin, D.; Pavolotsky, A.; Belitsky, Victor

    2010-03-01

    Work presented here concerns the design and performance of the ALMA Band 5 cold cartridge, one of the 10 frequency channels of ALMA project, a radio interferometer under construction at Atacama Desert in Chile. The Band 5 cartridge is a dual polarization receiver with the polarization separation performed by orthomode transducer (OMT). For each polarization, Band 5 receiver employs sideband rejection (2SB) scheme based on quadrature layout, with SIS mixers covering 163-211 GHz with 4-8 GHz IF. The LO injection circuitry is integrated with mixer chip and is implemented on the same substrate, resulting in a compact 2SB assembly. Amongst the other ALMA bands, the ALMA Band 5 being the lowest frequency band that uses all cold optics, has the largest mirror. Consequently, ALMA Band 5 mirror along with its support structure leaves very little room for placing OMT, mixers and IF subsystems. The constraints put by the size of cold optics and limited cartridge space, required of us to revise the original 2SB design and adopt a design where all the components like OMT, mixer, IF hybrid, isolators and IF amplifier are directly connected to each other without using any co-ax cables in-between. The IF subsystem uses the space between 4 K and 15 K stage of the cartridge and is thermally connected to 4 K stage. Avoiding co-ax cabling required use of custom designed IF hybrid, furthermore, due to limited cooling capacity at 4 K stage, resistive bias circuitry for the mixers is moved to 15 K stage and the IF hybrid along with an integrated bias-T is implemented using superconducting micro-strip lines. The E-probes for both LO and RF waveguide-to-microstrip transitions are placed perpendicular to the wave direction (back-piece configuration). The RF choke at the end of the probes provides a virtual ground for the RF/LO signal, and the choke is DC grounded to the chassis. The on-chip LO injection is done using a microstrip line directional coupler with slot-line branches in the

  1. ALMA observations of protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Hogerheijde, Michiel

    2015-08-01

    The Universe is filled with planetary systems, as recent detections of exo-planets have shown. Such systems grow out of disks of gas and dust that surround newly formed stars. The ground work for our understanding of the structure, composition, and evolution of such disks has been laid with infrared telescopes in the 1980's, 1990's, and 2000's, as well as with millimeter interferometers operating in the United States, France, and Japan. With the construction of the Atacama Large Millimeter / submillimeter Array, a new era of studying planet-forming disks has started. The unprecedented leap in sensitivity and angular resolution that ALMA offers, has truely revolutionized our understanding of disks. No longer featureless objects consisting of gas and smalll dust, they are now seen to harbor a rich structure and chemistry. The ongoing planet-formation process sculpts many disks into systems of rings and arcs; grains grown to millimeter-sizes collect in high-pressure areas where they could grow out to asteroids or comets or further generations of planets. This wealth of new information directly addresses bottlenecks in our theoretical understanding of planet formation, such as the question how grains can grow past the 'meter-sized' barrier or overcome the 'drift barrier', and how gas and ice evolve together and ultimately determine the elemental compositions of both giant and terrestrial planets. I will review the recent ALMA results on protoplanetary disks, presenting results on individual objects and from the first populations studies. I will conclude with a forward look, on what we might expect from ALMA in this area for the years and decades to come.

  2. ADMIT: The ALMA Data Mining Toolkit

    NASA Astrophysics Data System (ADS)

    Teuben, P.; Pound, M.; Mundy, L.; Rauch, K.; Friedel, D.; Looney, L.; Xu, L.; Kern, J.

    2015-09-01

    ADMIT (ALMA Data Mining ToolkiT), a toolkit for the creation of new science products from ALMA data, is being developed as an ALMA Development Project. It is written in Python and, while specifically targeted for a uniform analysis of the ALMA science products that come out of the ALMA pipeline, it is designed to be generally applicable to (radio) astronomical data. It first provides users with a detailed view of their science products created by ADMIT inside the ALMA pipeline: line identifications, line ‘cutout' cubes, moment maps, emission type analysis (e.g., feature detection). Using descriptor vectors the ALMA data archive is enriched with useful information to make archive data mining possible. Users can also opt to download the (small) ADMIT pipeline product, then fine-tune and re-run the pipeline and inspect their hopefully improved data. By running many projects in a parallel fashion, data mining between many astronomical sources and line transitions will also be possible. Future implementations of ADMIT may include EVLA and other instruments.

  3. ALMA observatory equipped with its first antenna

    NASA Astrophysics Data System (ADS)

    2008-12-01

    High in the Atacama region in northern Chile, one of the world's most advanced telescopes has just passed a major milestone. The first of many state-of-the-art antennas has just been handed over to the Atacama Large Millimeter/submillimeter Array (ALMA) project. ALMA is under construction on the plateau of Chajnantor, at an altitude of 5000 m. The telescope is being built by a global partnership, including ESO as the European partner. ALMA ESO PR Photo 49a/08 ALMA antenna ALMA will initially comprise 66 high precision antennas, with the option to expand in the future. There will be an array of fifty 12-metre antennas, acting together as a single giant telescope, and a compact array composed of 7-metre and 12-metre diameter antennas. With ALMA, astronomers will study the cool Universe -- the molecular gas and tiny dust grains from which stars, planetary systems, galaxies and even life are formed. ALMA will provide new, much-needed insights into the formation of stars and planets, and will reveal distant galaxies in the early Universe, which we see as they were over ten billion years ago. The first 12-metre diameter antenna, built by Mitsubishi Electric Corporation for the National Astronomical Observatory of Japan, one of the ALMA partners, has just been handed over to the observatory. It will shortly be joined by North American and European antennas. "Our Japanese colleagues have produced this state-of-the-art antenna to exacting specifications. We are very excited about the handover because now we can fully equip this antenna for scientific observations," said Thijs de Graauw, ALMA Director. Antennas arriving at the ALMA site undergo a series of tests to ensure that they meet the strict requirements of the telescope. The antennas have surfaces accurate to less than the thickness of a human hair, and can be pointed precisely enough to pick out a golf ball at a distance of 15 km. "ALMA is very important to European astronomers and to ESO, the European partner in

  4. Interstellar Isotopes: Prospects with ALMA

    NASA Technical Reports Server (NTRS)

    Charnley Steven B.

    2010-01-01

    Cold molecular clouds are natural environments for the enrichment of interstellar molecules in the heavy isotopes of H, C, N and O. Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets, that may trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. Models of the fractionation chemistry of H, C, N and O in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred, make several predictions that can be tested in the near future by molecular line observations. The range of fractionation ratios expected in different interstellar molecules will be discussed and the capabilities of ALMA for testing these models (e.g. in observing doubly-substituted isotopologues) will be outlined.

  5. ALMA: the first year of observations

    NASA Astrophysics Data System (ADS)

    Lundgren, Andreas; Nyman, Lars-Ake; Saito, Masao; Vila Vilaro, Baltasar; Mathys, Gautier; Andreani, Paola; Hibbard, John; Okumura, Sachiko K.; Tatematsu, Ken'ichi; Dent, Bill; Rawlings, Mark G.; Villard, Eric; Ball, Lewis

    2012-09-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a major new interferometer operated on Llano de Chajnantor at 5050 m altitude in the Chilean high Andes. This location is considered one of the world's outstanding sites for submillimeter astronomy. ALMA is still under construction, but science observations has started already in what is commonly known as ALMA Early Science Cycle 0. The purpose of ALMA Early Science Cycle 0 is to deliver scientically useful results to the astronomy community and to facilitate the ongoing characterization of ALMA systems and instrumentation as the capability of the array continues to grow. Early Science will continue through Cycle 1 and until construction and commissioning of ALMA is complete. This publication aims to give an insight into the challenges we face operating telescope of this scale at Chajnantor, a plateau 4800{5100 meter above sea level in one of the driest places of earth. It also will also present statistics from the proposal submission, describe the path from an accepted proposal to a calibrated data product, and nally an outlook for the future.

  6. Tools for the ALMA Users for Early Science

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; NAASC Team

    2011-01-01

    The first opportunity to use ALMA will be announced shortly in a Early Science Call for Proposals. In this talk, we provide an overview of the Phase I user tools (ALMA Observing Tool, ALMA Sensitivity Calculator, SIMData and Splatalogue) needed for the North American community to plan and propose for observing time with ALMA. We will also provide a brief overview of the phase II tools (Project Tracker, ALMA Science Archive) that will be used by PIs of approved programs to execute their science programs. After observations are complete, users will likely use the ALMA Science Archive and CASA to further examine the data and data products, which will be described briefly.

  7. ALMA Observatory Equipped with its First Antenna

    NASA Astrophysics Data System (ADS)

    2008-12-01

    High in the Atacama region of northern Chile one of the world’s most advanced telescopes has just passed a major milestone. The first of many state-of-the-art antennas has been handed over to the Atacama Large Millimeter/submillimeter Array (ALMA) project. ALMA is being built by a global partnership whose North American partners are led by the National Radio Astronomy Observatory (NRAO). With ALMA, astronomers will study the cool Universe, the molecular gas and tiny dust grains from which stars, planetary systems, galaxies and even life are formed. ALMA will provide new, much-needed insights into the formation of stars and planets, and will reveal distant galaxies in the early Universe, which we see as they were over ten billion years ago. ALMA will initially comprise 66 high-precision antennas, with the option to expand in the future. There will be an array of fifty 12-meter diameter antennas, acting together as a single giant telescope, and a compact array composed of 7-meter and 12-meter antennas. The first 12-meter antenna to be handed over to the observatory was built by Mitsubishi Electric Corporation for the National Astronomical Observatory of Japan, one of the ALMA partners. It will shortly be joined by North American and European antennas. “Our Japanese colleagues have produced this state-of-the-art antenna to exacting specifications. We are very excited about the handover because now we can fully equip this antenna for scientific observations,” said Thijs de Graauw, ALMA Director. Antennas arriving at the ALMA site undergo a series of tests to ensure that they meet the strict requirements of the telescope. The antennas have surfaces accurate to less than the thickness of a human hair, and can be pointed precisely enough to pick out a golf ball at a distance of 9 miles. “The handover of the first Japanese antenna is the crowning achievement of the ALMA Project to date,” said Adrian Russell, the North American ALMA Project Director at NRAO. The

  8. The enduring legacy of Alma Ata: 30 years on.

    PubMed

    Exworthy, Mark

    2008-01-01

    The 1978 Alma Ata conference and declaration was a landmark in defining and providing a direction for primary healthcare. Despite the initial enthusiasm for Alma Ata, its impact appeared to have declined in the 1990s. However, in recent years, there has been a revitalisation of primary healthcare. This article reviews the Alma Ata conference and declaration, assesses its waxing and waning, and examines its recent revival. The paper draws conclusions about the relevance of Alma Ata, 30 years on. PMID:25949564

  9. The enduring legacy of Alma Ata: 30 years on

    PubMed Central

    2008-01-01

    The 1978 Alma Ata conference and declaration was a landmark in defining and providing a direction for primary healthcare. Despite the initial enthusiasm for Alma Ata, its impact appeared to have declined in the 1990s. However, in recent years, there has been a revitalisation of primary healthcare. This article reviews the Alma Ata conference and declaration, assesses its waxing and waning, and examines its recent revival. The paper draws conclusions about the relevance of Alma Ata, 30 years on. PMID:25949564

  10. ALMA high performance nutating subreflector

    NASA Astrophysics Data System (ADS)

    Gasho, Victor L.; Radford, Simon J. E.; Kingsley, Jeffrey S.

    2003-02-01

    For the international ALMA project"s prototype antennas, we have developed a high performance, reactionless nutating subreflector (chopping secondary mirror). This single axis mechanism can switch the antenna"s optical axis by +/-1.5" within 10 ms or +/-5" within 20 ms and maintains pointing stability within the antenna"s 0.6" error budget. The light weight 75 cm diameter subreflector is made of carbon fiber composite to achieve a low moment of inertia, <0.25 kg m2. Its reflecting surface was formed in a compression mold. Carbon fiber is also used together with Invar in the supporting structure for thermal stability. Both the subreflector and the moving coil motors are mounted on flex pivots and the motor magnets counter rotate to absorb the nutation reaction force. Auxiliary motors provide active damping of external disturbances, such as wind gusts. Non contacting optical sensors measure the positions of the subreflector and the motor rocker. The principle mechanical resonance around 20 Hz is compensated with a digital PID servo loop that provides a closed loop bandwidth near 100 Hz. Shaped transitions are used to avoid overstressing mechanical links.

  11. Sense and sensitivity: How ALMA receivers work

    NASA Astrophysics Data System (ADS)

    Wilson, T. L.; Mauersberger, R.; Hales, A.

    2010-09-01

    In previous articles, we described how electromagnetic waves emitted from objects in the sky are collected by the ALMA antennas (Anatomy of ALMA), and how they are combined in order to produce images. Before these images can be processed, they are picked up by the antennas and concentrated by the large main mirror and a smaller secondary mirror in the so called focal point of each antenna. In order to process the data they must be first converted to electromagnetic waves of a lower frequency and amplified. This is the role of the ALMA receivers. In principle they work like a normal FM receiver, but at much higher frequencies. Here we describe how they work and what makes them special.

  12. The ALMA Science Archive: Data Flow

    NASA Astrophysics Data System (ADS)

    Manning, A.; Wicenec, A.; Checcucci, A.; Gonzalez Villalba, J. A.

    2012-09-01

    The Atacama Large Millimeter Array (ALMA) relies on a globally distributed Archive across 4 continents to disseminate scientific data to the community and ensure the safety of the data against disaster. The last year has seen the realisation of this design with data flowing from the Atacama desert in Chile out to the ALMA Regional Centers, via Santiago. Here we give a high level overview of the computers and networks that are in place to support this and of the current data volume and capacity as the observatory prepares for it's first observing cycle.

  13. The European ALMA Regional Centre: a model of user support

    NASA Astrophysics Data System (ADS)

    Andreani, P.; Stoehr, F.; Zwaan, M.; Hatziminaoglou, E.; Biggs, A.; Diaz-Trigo, M.; Humphreys, E.; Petry, D.; Randall, S.; Stanke, T.; van Kampen, E.; Bárta, M.; Brand, J.; Gueth, F.; Hogerheijde, M.; Bertoldi, F.; Muxlow, T.; Richards, A.; Vlemmings, W.

    2014-08-01

    The ALMA Regional Centres (ARCs) form the interface between the ALMA observatory and the user community from the proposal preparation stage to the delivery of data and their subsequent analysis. The ARCs provide critical services to both the ALMA operations in Chile and to the user community. These services were split by the ALMA project into core and additional services. The core services are financed by the ALMA operations budget and are critical to the successful operation of ALMA. They are contractual obligations and must be delivered to the ALMA project. The additional services are not funded by the ALMA project and are not contractual obligations, but are critical to achieve ALMA full scientific potential. A distributed network of ARC nodes (with ESO being the central ARC) has been set up throughout Europe at the following seven locations: Bologna, Bonn-Cologne, Grenoble, Leiden, Manchester, Ondrejov, Onsala. These ARC nodes are working together with the central node at ESO and provide both core and additional services to the ALMA user community. This paper presents the European ARC, and how it operates in Europe to support the ALMA community. This model, although complex in nature, is turning into a very successful one, providing a service to the scientific community that has been so far highly appreciated. The ARC could become a reference support model in an age where very large collaborations are required to build large facilities, and support is needed for geographically and culturally diverse communities.

  14. First ALMA Transporter Ready for Challenging Duty

    NASA Astrophysics Data System (ADS)

    2008-07-01

    The first of two ALMA transporters -- unique vehicles designed to move high-tech radio-telescope antennas in the harsh, high-altitude environment of the Atacama Large Millimeter/submillimeter Array -- has been completed and passed its initial operational tests. The 130-ton machine moves on 28 wheels and will be able to transport a 115-ton antenna and set it down on a concrete pad within millimeters of a prescribed position. ALMA Transporter The ALMA Transporter on a Test Run CREDIT: ESO Click on image for high-resolution file (244 KB) The ALMA transporter rolled out of its hangar and underwent the tests at the Scheuerle Fahrzeugfabrik company site near Nuremberg, Germany. The machine is scheduled for delivery at the ALMA site in Chile by the end of 2007, and a second vehicle will follow about three months later. ALMA is a giant, international observatory under construction in the Atacama Desert of northern Chile at an elevation of 16,500 feet. Using at least 66 high-precision antennas, with the possibility of increasing the number in the future, ALMA will provide astronomers with an unprecedented ability to explore the Universe as seen at wavelengths of a few millimeters to less than a millimeter. By moving the antennas from configurations as compact as 150 meters to as wide as 15 kilometers, the system will provide a zoom-lens ability for scientists. "The ability to move antennas to reconfigure the array is vital to fulfilling ALMA's scientific mission. The operations plan calls for moving antennas on a daily basis to provide the flexibility that will be such a big part of ALMA's scientific value. That's why the transporters are so important and why this is such a significant milestone," said Adrian Russell, North American Project Manager for ALMA. "The ALMA antennas will be assembled and their functionality will be verified at a base camp, located at an altitude of 2900 meters (9500 feet) and the transporters will in a first step bring the telescopes up to the

  15. ALMA communication backbone in Chile goes optical

    NASA Astrophysics Data System (ADS)

    Filippi, G.; Ibsen, J.; Jaque, Sandra; Liello, F.; Navarro, C.

    2014-07-01

    High-bandwidth communication has become a key factor for scientific installations as Observatories. This paper describes the technical, organizational, and operational goals and the level of completion of the ALMA Optical Link Project. The project focus is the creation and operation of an effective and sustainable communication infrastructure to connect the ALMA Observatory, located in the Atacama Desert, in the Northern region of Chile, with the point of presence in ANTOFAGASTA, about 400km away, of the EVALSO infrastructure, and from there to the Central Office in the Chilean capital, Santiago. This new infrastructure that will be operated in behalf of ALMA by REUNA, the Chilean National Research and Education Network, will use state of the art technologies, like dark fiber from newly built cables and DWDM transmission, allowing extending the reach of high capacity communication to the remote region where the Observatory is located. When completed, the end-to-end Gigabit-per-second (Gbps) capable link will provide ALMA with a modern, effective, robust, communication infrastructure capable to cope with present and future demands, like those coming from fast growing data transfer to rapid response mode, from remote monitoring and engineering to virtual presence.

  16. Alma Flor Ada: Writer, Translator, Storyteller.

    ERIC Educational Resources Information Center

    Brodie, Carolyn S.

    2003-01-01

    Discusses the work of children's author Alma Flor Ada, a Cuban native who has won awards honoring Latino writers and illustrators. Includes part of an interview that explores her background, describes activity ideas, and presents a bibliography of works written by her (several title published in both English and Spanish) as well as sources of…

  17. ALMA - the Atacama large millimeter array

    NASA Astrophysics Data System (ADS)

    Brown, Robert L.; Wild, Wolfgang; Cunningham, Charles

    2004-01-01

    The Atacama Large Millimeter Array (ALMA) is a major ground-based telescope for millimeter and submillimeter astronomy to be realized during this decade. It is comprised of 64 antennas of 12 m diameter, each of which is equipped with receivers in ten frequency bands that cover the atmospheric windows from 30 to 950 GHz. All the antennas may be moved on a specially-designed antenna transporter so that the antenna array may be reconfigured: At the extremes, the antennas may all be grouped together in an area 150 m in diameter to provide arcsecond angular resolution, or they may be distributed over an area 14 km in extent to provide an angular resolution as high as 10 milli-arcsec. ALMA will be located in the Chilean Andes east of the Atacama Desert at an elevation of 5000 m above sea level. The ALMA Project is a joint venture of the European Southern Observatory and the U.S. National Science Foundation acting in partnership with the National Research Council of Canada. Interim science operations are expected to begin in 2007 with completion of ALMA scheduled for 2011.

  18. The ALMA Real Time Control System

    NASA Astrophysics Data System (ADS)

    Kern, Jeffrey S.; Juerges, Thomas A.; Marson, Ralph G.

    2009-01-01

    The Atacama Large Millimeter Array (ALMA) is a revolutionary millimeter and submillimeter array being developed on the Atacama plateau of northern Chile. An international partnership lead by NRAO, ESO, and NAOJ this powerful and flexible telescope will provide unprecedented observations of this relatively unexplored frequency range. The control subsystem for the Atacama Large Millimeter Array must coordinate the monitor and control of at least sixty six antennas (in four different styles), two correlators, and all of the ancillary equipment (samplers, local oscillators, front ends, etc.). This equipment will be spread over tens of kilometers and operated remotely. Operation of the array requires a robust, scalable, and maintainable real time control system. The real time control system is responsible for monitoring and control of any devices where there are fixed deadlines. Examples in the ALMA context are antenna pointing and fringe tracking. Traditionally the real time portion of a large software system is an intricate and error prone portion of the software. As a result the real time portion is very expensive in terms of effort expended both during construction and during maintenance phases of a project. The ALMA real time control system uses a Linux based real time operating system to interact with the hardware and the CORBA based ALMA Common Software to communicate in the distributed computing environment. Mixing the requirements of real time computing and the non-deterministic CORBA middleware has produced an interesting design. We discuss the architecture, design, and implementation of the ALMA real time control system. Highlight some lessons learned along the way, and justify our assertion that this should be the last large scale real time control system in radio astronomy.

  19. The ALMA computing project: initial commissioning

    NASA Astrophysics Data System (ADS)

    Glendenning, B. E.; Raffi, G.

    2008-08-01

    The Atacama Large Millimeter/Submillimeter Array (ALMA) is a large radio interferometric telescope consisting of 66 antennas with variable positions, to be located at the Chajnantor 5000mat a high site (5000m) in Chile. ALMA commissioning has now started with the arrival of several antennas in Chile and will continue for the next 4 years. The ALMA Software was from the beginning has been developed as an end-to-end system including: proposal preparation, dynamic scheduling, instrument control, data handling and formatting, data archiving and retrieval, automatic and manual data processing systems, and support for observatory operations. This presentation will expand mostly on ALMA software aspects issues on which we are concentrating in this phase: management, procedures, testing and validation. While software development was based on a common software infrastructure (ALMA Common Software - ACS) from the beginning, end-to-end testing was limited by the hardware available, and was possible for years until recently only on computer models. Although the control software was available early in prototype stand-alone form to support testing of prototypes antennas, it was only recently that dynamic interferometry was reached and software could be tested end to end with a somewhat stable hardware platform. The lessons learned so far will be explained, in particular the need for a realistic validation environment, the balance to be achieved between incremental development and the needed for stability and usability, and the way to achieve all the above with a development team distributed over three four continents. Some general lessons can be drown drawn on the potential conflicts between software and system (hardware) testing, or in other words on the danger in taking short-cuts in software testing and validation.

  20. World-Wide Effort Bringing ALMA Telescope Into Reality

    NASA Astrophysics Data System (ADS)

    2008-02-01

    In the thin, dry air of northern Chile's Atacama Desert, at an altitude of 16,500 feet, an amazing new telescope system is taking shape, on schedule to provide the world's astronomers with unprecedented views of the origins of stars, galaxies, and planets. The Atacama Large Millimeter/submillimeter Array (ALMA) will open an entirely new "window" on the Universe, allowing scientists to unravel longstanding and important astronomical mysteries. ALMA Artist's Concept Artist's Concept of Completed ALMA CREDIT: ALMA/ESO/NRAO/NAOJ Click on image for high-resolution file (182 KB) "Most of the photons in the Universe are in the wavelength range that ALMA will receive, and ALMA will give us our first high-resolution views at these wavelengths. This will be a tremendous advancement for astronomy and open one of our science's last frontiers," Anneila Sargent, a Caltech professor and ALMA Board member, told the American Association for the Advancement of Science at its meeting in Boston, Mass. The millimeter and submillimeter wavelength range lies between what is traditionally considered radio waves and infrared waves. ALMA, a system using up to 66 high-precision dish antennas working together, will provide astronomers with dramatically greater sensitivity, the ability to detect faint objects, and resolving power, the ability to see fine detail, than has ever before been available in this range. "This ambitious project is the product of an international collaboration that spans the globe," Sargent said. "ALMA truly will enable transformational science and providing this capability has required a massive, world-wide effort," she added. The ALMA project is a partnership between Europe, Japan and North America in cooperation with the Republic of Chile. ALMA is funded in Europe by ESO, in Japan by the National Institutes of Natural Sciences in cooperation with the Academia Sinica in Taiwan and in North America by the U.S. National Science Foundation in cooperation with the

  1. ALMA band 3 cartridge maintenance plan

    NASA Astrophysics Data System (ADS)

    Yeung, Keith; Seifried, Kerry; Randolph, William

    2012-09-01

    Under the "Memorandum of Understanding between the National Radio Astronomy Observatory (NRAO)/Associated Universities Incorporated (AUI), Herzberg Institute of Astrophysics (HIA) and the University of Calgary related to Canadian ALMA Construction Phase Work Packages", HIA is committed to deliver a suite of seventy-three Band 3 100 GHz receiver cartridges to the ALMA Project. After the acceptance of each cartridge at the Front End Integration Centers, HIA is responsible to perform any post-delivery maintenance, repair or rework of the cartridges for a warranty period of up to one year. This paper defines a framework for the maintenance and repair services for the Band 3 cartridges after the post-delivery warranty period has expired.

  2. Scientists Meet to Plan ALMA Science Program

    NASA Astrophysics Data System (ADS)

    1999-09-01

    Two hundred astronomers from around the world will meet in Washington, DC on October 7 and 8 to discuss exciting new science to be done with the Atacama Large Millimeter Array (ALMA). The conference will be held at the Carnegie Institution of Washington (CIW), 1530 P St. NW, and is sponsored by Associated Universities, Inc., which operates the National Radio Astronomy Observatory (NRAO) for the National Science Foundation (NSF). ALMA will study the structure of the early universe and the evolution of galaxies; gather crucial data on the formation of stars, protoplanetary disks, and planets; and provide new insights on the familiar objects of our own solar system. The array, expected to consist of 64 telescopes with 12-meter dish antennas, will be built at a high-altitude, extremely dry mountain site in Chile's Atacama desert in the next decade. ALMA is an international partnership between the United States (National Science Foundation) and Europe. European participants include the member states of the European Southern Observatory (Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland), the Centre National de la Recherche Scientifique (France), the Max-Planck Gesellschaft (Germany), the Netherlands Foundation for Research in Astronomy, and the United Kingdom Particle Physics and Astronomy Research Council. The project is currently in a Design and Development phase governed by a Memorandum of Understanding between the United States and Europe. It is hoped and expected that Japan will also join the project as a third equal partner. Negotiations are currently underway to add Canada to the United States team and Spain to the European team. "The ALMA partners from the U.S. team, the European team, and hopefully Japan, will form the world's first truly global astronomical collaboration," said Dr. Riccardo Giacconi, President of Associated Universities, Inc., "and together will build a magnificent millimeter/submillimeter observatory for the

  3. Star Formation Research - Now And With Alma

    NASA Astrophysics Data System (ADS)

    Shepherd, Debra S.

    2006-06-01

    Optical, infrared, X-ray, and radio (single dish and interferometric) observations of star forming regions have made great strides toward improving our understanding of the characteristics and evolution of molecular clouds and embedded forming stars and their circumstellar disks. Once the Atacama Large Millimeter Array (ALMA) is completed, it will provide a significant increase in sensitivity and resolution at millimeter and sub-millimeter wavelengths that will allow all astronomers to address critical issues that cannot be explored with established observatories. I will review our current observational limitations and provide examples about how ALMA will contribute to the study of star forming regions and compliment other new or expanded observatories at optical, infrared, and radio wavelengths.The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  4. Detecting the First Quasars with ALMA

    NASA Astrophysics Data System (ADS)

    Schleicher, Dominik R. G.; Spaans, Marco; Klessen, Ralf S.

    2010-05-01

    We show that ALMA is the first telescope that can probe the dust-obscured central region of quasars at z > 5 with a maximum resolution of ~ 30 pc employing the 18 km baseline. We explore the possibility of detecting the first quasars with ALMA (Schleicher, Spaans, & Klessen 2009). For this purpose, we adopt the Seyfert 2 galaxy NGC 1068 as a reference system and calculate the expected fluxes if this galaxy were placed at high redshift. This choice is motivated by the detailed observations available for this system and the absence of any indication for an evolution in metallicity in high-redshift quasars. It is a conservative choice due to the moderate column densities in NGC 1068, leading to moderate fluxes.

  5. The exciting future of (sub-)millimeter interferometry: ALMA

    NASA Astrophysics Data System (ADS)

    Casasola, V.; Brand, J.

    The Atacama Large Millimeter/submillimeter Array (ALMA), presently under construction, is a revolutionary astronomical interferometer, that will operate at (sub)millimeter wavelengths. With unprecedented sensitivity, resolution, and imaging capability, ALMA will explore the (sub-)mm Universe, one of astronomy's last frontiers. ALMA is expected to provide insight in star- and galaxy formation in the early Universe and to image local star- and planet formation in great detail. The ALMA Commissioning and Science Verification phase is currently in course, preparing the path for Early Science. The Call for ALMA Early Science proposals is expected to be released before the end of 2010. In this contribution we will describe the ALMA project, the array and its receivers, its science goals, and its scientific and technological potential. We will outline the organizational structure of the ALMA Regional Centres, that will play an important role in providing support to the users, with particular attention to the Italian ALMA Regional Centre in Bologna. Finally, we will illustrate what ALMA can contribute to the specific science case of AGN fueling.

  6. Performance highlights of the ALMA correlators

    NASA Astrophysics Data System (ADS)

    Baudry, Alain; Lacasse, Richard; Escoffier, Ray; Webber, John; Greenberg, Joseph; Platt, Laurence; Treacy, Robert; Saez, Alejandro F.; Cais, Philippe; Comoretto, Giovanni; Quertier, Benjamin; Okumura, Sachiko K.; Kamazaki, Takeshi; Chikada, Yoshihiro; Watanabe, Manabu; Okuda, Takeshi; Kurono, Yasutake; Iguchi, Satoru

    2012-09-01

    Two large correlators have been constructed to combine the signals captured by the ALMA antennas deployed on the Atacama Desert in Chile at an elevation of 5050 meters. The Baseline correlator was fabricated by a NRAO/European team to process up to 64 antennas for 16 GHz bandwidth in two polarizations and another correlator, the Atacama Compact Array (ACA) correlator, was fabricated by a Japanese team to process up to 16 antennas. Both correlators meet the same specifications except for the number of processed antennas. The main architectural differences between these two large machines will be underlined. Selected features of the Baseline and ACA correlators as well as the main technical challenges met by the designers will be briefly discussed. The Baseline correlator is the largest correlator ever built for radio astronomy. Its digital hybrid architecture provides a wide variety of observing modes including the ability to divide each input baseband into 32 frequency-mobile sub-bands for high spectral resolution and to be operated as a conventional 'lag' correlator for high time resolution. The various observing modes offered by the ALMA correlators to the science community for 'Early Science' are presented, as well as future observing modes. Coherently phasing the array to provide VLBI maps of extremely compact sources is another feature of the ALMA correlators. Finally, the status and availability of these large machines will be presented.

  7. Probing Massive Star Cluster Formation with ALMA

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2015-08-01

    Observationally constraining the physical conditions that give rise to massive star clusters has been a long-standing challenge. Now with the ALMA Observatory coming on-line, we can finally begin to probe the birth environments of massive clusters in a variety of galaxies with sufficient angular resolution. In this talk I will give an overview of ALMA observations of galaxies in which candidate proto-super star cluster molecular clouds have been identified. These new data probe the physical conditions that give rise to super star clusters, providing information on their densities, pressures, and temperatures. In particular, the observations indicate that these clouds may be subject to external pressures of P/k > 108 K cm-3, which is consistent with the prevalence of optically observed adolescent super star clusters in interacting galaxy systems and other high pressure environments. ALMA observations also enable an assessement of the molecular cloud chemical abundances in the regions surrounding super star clusters. Molecular clouds associated with existing super star clusters are strongly correlated with HCO+ emission, but appear to have relatively low ratio of CO/HCO+ emission compared to other clouds, indicating that the super star clusters are impacting the molecular abundances in their vicinity.

  8. The Atacama Large Millimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    1999-06-01

    The Atacama Large Millimeter Array (ALMA) is the new name [2] for a giant millimeter-wavelength telescope project. As described in the accompanying joint press release by ESO and the U.S. National Science Foundation , the present design and development phase is now a Europe-U.S. collaboration, and may soon include Japan. ALMA may become the largest ground-based astronomy project of the next decade after VLT/VLTI, and one of the major new facilities for world astronomy. ALMA will make it possible to study the origins of galaxies, stars and planets. As presently envisaged, ALMA will be comprised of up to 64 12-meter diameter antennas distributed over an area 10 km across. ESO PR Photo 24a/99 shows an artist's concept of a portion of the array in a compact configuration. ESO PR Video Clip 03/99 illustrates how all the antennas will move in unison to point to a single astronomical object and follow it as it traverses the sky. In this way the combined telescope will produce astronomical images of great sharpness and sensitivity [3]. An exceptional site For such observations to be possible the atmosphere above the telescope must be transparent at millimeter and submillimeter wavelengths. This requires a site that is high and dry, and a high plateau in the Atacama desert of Chile, probably the world's driest, is ideal - the next best thing to outer space for these observations. ESO PR Photo 24b/99 shows the location of the chosen site at Chajnantor, at 5000 meters altitude and 60 kilometers east of the village of San Pedro de Atacama, as seen from the Space Shuttle during a servicing mission of the Hubble Space Telescope. ESO PR Photo 24c/99 and ESO PR Photo 24d/99 show a satellite image of the immediate vicinity and the site marked on a map of northern Chile. ALMA will be the highest continuously operated observatory in the world. The stark nature of this extreme site is well illustrated by the panoramic view in ESO PR Photo 24e/99. High sensitivity and sharp images ALMA

  9. ESO and NSF Sign Agreement on ALMA

    NASA Astrophysics Data System (ADS)

    2003-02-01

    Green Light for World's Most Powerful Radio Observatory On February 25, 2003, the European Southern Observatory (ESO) and the US National Science Foundation (NSF) are signing a historic agreement to construct and operate the world's largest and most powerful radio telescope, operating at millimeter and sub-millimeter wavelength. The Director General of ESO, Dr. Catherine Cesarsky, and the Director of the NSF, Dr. Rita Colwell, act for their respective organizations. Known as the Atacama Large Millimeter Array (ALMA), the future facility will encompass sixty-four interconnected 12-meter antennae at a unique, high-altitude site at Chajnantor in the Atacama region of northern Chile. ALMA is a joint project between Europe and North America. In Europe, ESO is leading on behalf of its ten member countries and Spain. In North America, the NSF also acts for the National Research Council of Canada and executes the project through the National Radio Astronomy Observatory (NRAO) operated by Associated Universities, Inc. (AUI). The conclusion of the ESO-NSF Agreement now gives the final green light for the ALMA project. The total cost of approximately 650 million Euro (or US Dollars) is shared equally between the two partners. Dr. Cesarsky is excited: "This agreement signifies the start of a great project of contemporary astronomy and astrophysics. Representing Europe, and in collaboration with many laboratories and institutes on this continent, we together look forward towards wonderful research projects. With ALMA we may learn how the earliest galaxies in the Universe really looked like, to mention but one of the many eagerly awaited opportunities with this marvellous facility". "With this agreement, we usher in a new age of research in astronomy" says Dr. Colwell. "By working together in this truly global partnership, the international astronomy community will be able to ensure the research capabilities needed to meet the long-term demands of our scientific enterprise, and

  10. The ALMA Observing Tool: A Brief Introduction and Status Report

    NASA Astrophysics Data System (ADS)

    Bridger, A.

    2009-09-01

    A short introduction to the motivation and design of the ALMA Observing Tool for proposal and observation preparation is given. This is supplemented by a rapid tour of the tool's features, a summary of its current status, and the plans for its completion for use by ALMA observers and staff.

  11. NRAO Welcomes Taiwan as a New North American ALMA Partner

    NASA Astrophysics Data System (ADS)

    2008-12-01

    The National Radio Astronomy Observatory (NRAO) has announced a formal agreement enabling Taiwanese astronomers to participate in the North American component of the international ALMA partnership, alongside American and Canadian astronomers. Taiwan's efforts will be led by the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA). ALMA, the Atacama Large Millimeter/submillimeter Array, is the most ambitious ground-based astronomical observatory in history. Currently under construction in Chile’s Atacama Desert at an altitude of 16,500 feet, it promises to revolutionize our understanding of the formation of planets, stars, and galaxies when it begins full science operations early in the next decade. The agreement, signed by the Taipei Economic and Cultural Representative Office and the American Institute in Taiwan, provides for approximately $20 million in ALMA construction funding through the National Science Council (NSC), Taiwan’s equivalent to the US National Science Foundation (NSF) and Canada's National Research Council (NRC), which have jointly funded North America's existing contribution to the international ALMA project. Activities under the agreement will include joint research projects, development projects, collaboration on construction, support of observatory operations and other forms of cooperation. Access to ALMA observing time will be shared, as will membership on advisory committees. “Taiwan is a world-class center for submillimeter-wavelength astronomical research, and we’re delighted that the ALMA project and all its future users will benefit from the resources and expertise that Taiwan’s deepening participation brings to this great, global endeavor,” said Dr. Fred Lo, NRAO's director. This new agreement increases and diversifies Taiwan’s Academia Sinica investment in ALMA beyond the levels achieved through its participation in the East Asian component of the ALMA partnership, which is led by the National Astronomical

  12. ALMA Achieves Major Milestone With Antenna-Link Success

    NASA Astrophysics Data System (ADS)

    2007-03-01

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on March 2, when two ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. The milestone achievement, technically termed "First Fringes," came at the ALMA Test Facility (ATF) on the grounds of the National Radio Astronomy Observatory's (NRAO) Very Large Array (VLA) radio telescope in New Mexico. NRAO is a facility of the National Science Foundation (NSF), managed by Associated Universities, Incorporated (AUI). AUI also is designated by NSF as the North American Executive for ALMA. ALMA Test Facility ALMA Test Facility, New Mexico: VertexRSI antenna, left; AEC antenna, right. CREDIT: Drew Medlin, NRAO/AUI/NSF Click on image for page of graphics and full information Faint radio waves emitted by the planet Saturn were collected by the two ALMA antennas, then processed by new, state-of-the-art electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. Such pairs of antennas are the basic building blocks of multi-antenna imaging systems such as ALMA and the VLA. In such a system, each antenna is combined electronically with every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly-detailed image of the astronomical object under observation. When completed in 2012, ALMA will have 66 antennas. The successful Saturn observation began at 7:13 p.m., U.S. Mountain Time Friday (0213 UTC Saturday). The planet's radio emissions at a frequency of 104 GigaHertz (GHz) were tracked by the ALMA system for more than an hour. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO

  13. The Atacama Large Millimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    1999-06-01

    The Atacama Large Millimeter Array (ALMA) is the new name [2] for a giant millimeter-wavelength telescope project. As described in the accompanying joint press release by ESO and the U.S. National Science Foundation , the present design and development phase is now a Europe-U.S. collaboration, and may soon include Japan. ALMA may become the largest ground-based astronomy project of the next decade after VLT/VLTI, and one of the major new facilities for world astronomy. ALMA will make it possible to study the origins of galaxies, stars and planets. As presently envisaged, ALMA will be comprised of up to 64 12-meter diameter antennas distributed over an area 10 km across. ESO PR Photo 24a/99 shows an artist's concept of a portion of the array in a compact configuration. ESO PR Video Clip 03/99 illustrates how all the antennas will move in unison to point to a single astronomical object and follow it as it traverses the sky. In this way the combined telescope will produce astronomical images of great sharpness and sensitivity [3]. An exceptional site For such observations to be possible the atmosphere above the telescope must be transparent at millimeter and submillimeter wavelengths. This requires a site that is high and dry, and a high plateau in the Atacama desert of Chile, probably the world's driest, is ideal - the next best thing to outer space for these observations. ESO PR Photo 24b/99 shows the location of the chosen site at Chajnantor, at 5000 meters altitude and 60 kilometers east of the village of San Pedro de Atacama, as seen from the Space Shuttle during a servicing mission of the Hubble Space Telescope. ESO PR Photo 24c/99 and ESO PR Photo 24d/99 show a satellite image of the immediate vicinity and the site marked on a map of northern Chile. ALMA will be the highest continuously operated observatory in the world. The stark nature of this extreme site is well illustrated by the panoramic view in ESO PR Photo 24e/99. High sensitivity and sharp images ALMA

  14. Nearby stars to distant galaxies: TMT-ALMA synergies

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Wilson, Christine

    2014-07-01

    Although they will probe very different wavelength regimes, significant synergies will exist for TMT and ALMA due to their capabilities for high angular resolution photometric and spectroscopic imaging. We illustrate this complementarity by examining a few specific science examples ranging from exoplanets, star forming disks in our Milky Way to black hole mass measurements in nearby galaxies to high redshift galaxy assemly. Since ALMA will be a relatively mature instrument by the end of TMT construction, we focus on synergies with the TMT first-light instruments as much as possible. We will also describe the current status and capabilities of ALMA and showcase some recent science results.

  15. The ALMA OT in early science: supporting multiple customers

    NASA Astrophysics Data System (ADS)

    Bridger, Alan; Williams, Stewart; McLay, Stewart; Yatagai, Hiroshi; Schilling, Marcus; Biggs, Andrew; Tobar, Rodrigo; Warmels, Rein H.

    2012-09-01

    The ALMA Observatory is currently operating 'Early Science' observing. The Cycle0 and Cycle1 Calls for Proposals are part of this Early Science, and in both the ALMA Observing Tool plays a crucial role. This paper describes how the ALMA OT tackles the problem of making millimeter/sub-millimeter interferometry accessible to the wider community, while allowing "experts" the power and flexibility they need. We will also describe our approach to the challenges of supporting multiple customers, and explore the lessons learnt from the Early Science experiences. Finally we look ahead to the challenges presented by future observing cycles.

  16. ALMA Partners Break Ground on World's Largest Millimeter Wavelength Telescope

    NASA Astrophysics Data System (ADS)

    2003-11-01

    Scientists and dignitaries from North America, Europe, and Chile broke ground today (Thursday, November 6, 2003) on what will be the world's largest, most sensitive radio telescope operating at millimeter wavelengths. ALMA - the Atacama Large Millimeter Array - will be a single instrument composed of 64 high-precision antennas located on the Chajnantor plain of the Chilean Andes in the District of San Pedro de Atacama, 16,500 feet (5,000 meters) above sea level. ALMA's primary function will be to observe and image with unprecedented clarity the enigmatic cold regions of the Universe, which are optically dark, yet shine brightly in the millimeter portion of the electromagnetic spectrum. ALMA Array Artist's Conception of ALMA Array in Compact Configuration (Click on Image for Larger Version) Other Images Available: Artist's conception of the antennas for the Atacama Large Millimeter Array Moonrise over ALMA test equipment near Cerro Chajnantor, Chile VertexRSI antenna at the VLA test site The Atacama Large Millimeter Array is an international astronomy facility. ALMA is an equal partnership between Europe and North America, in cooperation with the Republic of Chile, and is funded in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Europe by the European Southern Observatory (ESO) and Spain. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO. "The U.S. National Science Foundation joins today with our North American partner, Canada, and with the European Southern Observatory, Spain, and Chile to prepare for a spectacular new instrument," said Dr. Rita Colwell, director of the U.S. National Science Foundation. "The Atacama Large Millimeter Array will expand our vision of the Universe with "eyes" that pierce the shrouded mantles of

  17. ALMA Correlator Real-Time Data Processor

    NASA Astrophysics Data System (ADS)

    Pisano, J.; Amestica, R.; Perez, J.

    2005-10-01

    The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem

  18. Estimating Circumnuclear Disk temperatures using ALMA data

    NASA Astrophysics Data System (ADS)

    Gima, Kevin; Mills, Elisabeth A.; Rosero, Viviana A.; Liu, Hauyu Baobab; Harada, Nanase; Requena Torres, Miguel A.; Morris, Mark; Riquelme, Denise; Zhao, Jun-Hui; Moser, Lydia; Martin, Sergio; Ho, Paul T. P.; Ginsburg, Adam; Wardle, M.; Guesten, Rolf

    2016-01-01

    The Circumnuclear Disk(CND) is a gas disk with an inner radius of approximately 1.5-2 pc surrounding Sagittarius A*, the supermassive black hole at the center of our galaxy. Observations of the CND were made using the ALMA telescope in bands 3 and 6 with a spatial resolution of 1-3 km/s. Two noteworthy clumps of molecular gas were detected. These clumps possess high abundances of CH3CCH but no CH3CN was detected. Via the population diagram method we derived CH3CCH column densities and temperatures for both sources. We then discuss the physical and chemical nature of the gas clumps. Future work will constrain temperature values across the entire CND. Along with HC3N observations, this work will yield refined values of the gas density and mass of the CND. This is essential for finding its future impact on star formation and black hole accretion.

  19. ALMA Presents a Transformational View of the Universe

    NASA Astrophysics Data System (ADS)

    Wootten, Al

    2015-01-01

    ALMA Early Science results began transforming astronomy in 2011. Construction has recently ended as scheduled and on budget.* Seven receiver bands achieve wavelength coverage sweeping from 3mm to 0.3mm across a decade of nearly complete frequency access, broken only by the atmospheric limitations of its spectacular site. With access to nearly any line redshifted within that range, ALMA's sensitivity allows it to address the questions of how the first stars and galaxies in the Universe were born, to measure the abundances of the first metals and to chronicle the development of isotopic diversity among the elements.* As this is written, the longest baselines are being commissioned for ALMA, enabling resolutions down to 0.01". Very long baseline capability, also currently under initial testing, can tie other antennas' collecting area in with ALMA's to create a global telescope capable of delineating detail as fine as ten microarcseconds, allowing imaging of the black hole at the center of our galaxy.Already ALMA has changed paradigms for objects both distant and near. Oxygen and carbon, the most abundant metals produced by the first stars, and CO all have lines detectable by ALMA in its wavelength range. The 157 micron [C II] line has already been detected out to z~7 in ALMA Early Science observations. ALMA's sensitivity and resolution have revolutionized the study of circumstellar planet-forming disks. Molecular imaging has revealed CO 'snow lines' in those disks, delineating where in a disk mid plane where ice grains may form as the temperature drops. ALMA has also imaged highly asymmetric distribution of gas and particularly of dust in evolved disks, revealing 'dust traps' where new planets may form from agglomerated material.ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI

  20. ALMA observations of the Orion proplyds

    SciTech Connect

    Mann, Rita K.; Di Francesco, James; Johnstone, Doug; Matthews, Brenda C.; Andrews, Sean M.; Williams, Jonathan P.; Bally, John; Ricci, Luca; Hughes, A. Meredith

    2014-03-20

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of protoplanetary disks ('proplyds') in the Orion Nebula Cluster. We imaged five individual fields at 856 μm containing 22 Hubble Space Telescope (HST)-identified proplyds and detected 21 of them. Eight of those disks were detected for the first time at submillimeter wavelengths, including the most prominent, well-known proplyd in the entire Orion Nebula, 114-426. Thermal dust emission in excess of any free-free component was measured in all but one of the detected disks, and ranged between 1 and 163 mJy, with resulting disk masses of 0.3-79 M {sub jup}. An additional 26 stars with no prior evidence of associated disks in HST observations were also imaged within the 5 fields, but only 2 were detected. The disk mass upper limits for the undetected targets, which include OB stars, θ{sup 1} Ori C, and θ{sup 1} Ori F, range from 0.1 to 0.6 M {sub jup}. Combining these ALMA data with previous Submillimeter Array observations, we find a lack of massive (≳3 M {sub jup}) disks in the extreme-UV-dominated region of Orion, within 0.03 pc of θ{sup 1} Ori C. At larger separations from θ{sup 1} Ori C, in the far-UV-dominated region, there is a wide range of disk masses, similar to what is found in low-mass star forming regions. Taken together, these results suggest that a rapid dissipation of disk masses likely inhibits potential planet formation in the extreme-UV-dominated regions of OB associations, but leaves disks in the far-UV-dominated regions relatively unaffected.

  1. ALMA does Galaxies! A User's Perspective on Early Science

    NASA Astrophysics Data System (ADS)

    Turner, Jean

    2011-01-01

    Star formation and its regulation, rotation curves, dust and gas masses, gas dynamics and secular evolution of galaxies, interactions and mergers, cosmic pyrotechnics, and monster-feeding are among the many topics that can be studied with ALMA. We talk about many of the explorations of the extragalactic world that are possible with this awesome instrument in its Early Science incarnation, and discuss how these first generation studies with Early-ALMA compare to what will eventually be possible with the full array.

  2. Studying Young Circumstellar Disks with ALMA

    NASA Astrophysics Data System (ADS)

    Ménard, F. C.

    2005-12-01

    Accretion disks are pivotal elements in the formation and early evolution of solar-like stars. On top of supplying the raw material for stellar build-up, their internal conditions also regulate the formation of planets. Their study therefore holds the key to solve the mystery of the formation of our Solar System. This article focuses on observational studies of circumstellar disks associated with pre-main sequence solar-like stars and presents a few selected problems where ALMA will contribute in finding answers. At optical and near-infrared wavelengths, the direct measurement of disk parameters poses an obvious challenge: at the distance of typical star forming regions (e.g. ˜140 pc for Taurus), a planetary system like ours (with a diameter of ≃ 50 AU out to Pluto, but excluding the Kuiper belt) subtends only 0.35 arcsec. Moreover, its surface brightness is low in comparison to the bright central star. Hence, high angular resolution and high contrast imaging techniques are required if one hopes to resolve and measure such protoplanetary disks. Fortunately, potent imaging instruments have been available for about 10 years now. They cover a large part of the electromagnetic spectrum, from the UV/optical with HST, the near-infrared with ground-based adaptive optics systems to the millimeter range with long-baseline radio interferometers. It is therefore not surprising that our knowledge of the structure of disks surrounding low-mass stars has made a gigantic leap forward in the last decade. However, the angular resolution of current millimeter interferometers will remain significantly poorer than the resolution that is available at shorter wavelengths (˜ 0.1 arcsec) until ALMA provides the necessary long baselines. At that time, astronomers will have access to data of comparable resolution over a very large wavelength range, with unprecedented sensitivity. As a direct consequence, our understanding of the disk structure and evolution should improve just as much

  3. ALMA Telescope Passes Major Milestone with Successful Antenna Link

    NASA Astrophysics Data System (ADS)

    2009-05-01

    The Atacama Large Millimeter/submillimeter Array (ALMA), an immense international telescope project under construction in northern Chile, reached a major milestone on April 30, when two ALMA antennas were linked together as an integrated system to observe an astronomical object for the first time. The milestone achievement, technically termed "First Fringes," came at ALMA’s Operations Support Facility, 9,500 feet above sea level. Faint radio waves emitted by the planet Mars were collected by the two 12-meter diameter ALMA antennas, then processed by state-of-the-art electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. Such pairs of antennas are the basic building blocks of imaging systems that enable radio telescopes to deliver pictures that approach or even exceed the resolving power of visible light telescopes. In such a system, each antenna is combined electronically with every other antenna to form a multitude of antenna pairs. Each pair contributes unique information that is used to build a highly-detailed image of the astronomical object under observation. When completed early in the next decade, ALMA’s 66 antennas will provide over a thousand such antenna pairings, with distances between antennas exceeding ten miles. This will enable ALMA to see with a sharpness surpassing that of the best space telescopes. The antennas will operate at an altitude of 16,500 feet, high above the OSF, in one of the best locations on Earth for millimeter-wavelength astronomy, the Chajnantor Plateau in Chile’s Atacama Desert. Last week’s successful Mars observation was conducted at an observing frequency of 104.2 GHz. Astronomers measured the distinctive varying “fringes” detected by the interferometer as the planet moved across the sky. “This is a great success,” said Adrian Russell, North American ALMA Project Director at the National Radio Astronomy Observatory (NRAO), “not because we observed a

  4. U.S., European ALMA Partners Award Prototype Antenna Contracts

    NASA Astrophysics Data System (ADS)

    2000-03-01

    The U.S. and European partners in the Atacama Large Millimeter Array (ALMA) project have awarded contracts to U.S. and Italian firms, respectively, for two prototype antennas. ALMA is a planned telescope array, expected to consist of 64 millimeter-wave antennas with 12-meter diameter dishes. The array will be built at a high-altitude, extremely dry mountain site in Chile's Atacama desert, and is scheduled to be completed sometime in this decade. On February 22, 2000, Associated Universities Inc. (AUI) signed an approximately $6.2 million contract with Vertex Antenna Systems, of Santa Clara, Calif., for construction of one prototype ALMA antenna. AUI operates the U.S. National Radio Astronomy Observatory (NRAO) for the National Science Foundation under a cooperative agreement. The European partners contracted with the consortium of European Industrial Engineering and Costamasnaga, of Mestre, Italy, on February 21, 2000, for the production of another prototype. (Mestre is located on the inland side of Venice.) The two antennas must meet identical specifications, but will inherently be of different designs. This will ensure that the best possible technologies are incorporated into the final production antennas. Only one of the designs will be selected for final production. Several technical challenges must be met for the antennas to perform to ALMA specifications. Each antenna must have extremely high surface accuracy (25 micrometers, or one-third the diameter of a human hair, over the entire 12-meter diameter). This means that, when completed, the surface accuracy of the ALMA dishes will be 20 times greater than that of the Very Large Array (VLA) antennas, and about 50 times greater than dish antennas for communications or radar. The ALMA antennas must also have extremely high pointing accuracy (0.6 arcseconds). An additional challenge is that the antennas, when installed at the ALMA site in Chile, will be exposed to the ravages of weather at 16,500 feet (5000 meters

  5. ALMA: Millimeter/submillimeter Astronomy at high sensitivity and resolution

    NASA Astrophysics Data System (ADS)

    Wootten, Alwyn; Corder, Stuartt Alan; Iono, Daisuke; Testi, Leonardo

    2015-08-01

    Vigorous and transformative investigation of the millimeter/submillimeter sky at high sensitivity and high resolution has benefitted from the recent completion of the Atacama Large Millimeter/submillimeter Array (ALMA), an effort of 22 countries. ALMA, a versatile interferometric telescope at 5000m elevation in the Atacama Desert of northern Chile, is comprised of sixty-six precision telescopes which may be arrayed over a 16 km extent on the high Chajnantor plain. Owing to its large collecting area of over 6600m^2 and its commodious spectral grasp of 8 GHz of spectrum in dual polarizations within an 84-950 GHz range, ALMA provides astronomers with vastly improved spectroscopic sensitivity. Spatial resolutions of 30 milliarcsec were demonstrated recently, revealing rings within the HL Tau protoplanetary disk, the rotating structure of the asteroid Juno and the molecular structure of the z~3 lensed galaxy SDP.81. The astrometric accuracy even at this early stage of deployment is better than 3 milliarcsec, providing improved ephemerides for the encounter of the New Horizons spacecraft with the Pluto-Charon system. Very long baseline capability is expected to bring microarcsecond imaging to a worldwide array anchored by ALMA with potential for imaging nearby Black Holes on the scales of their Event Horizons.ALMA's huge collecting area has enabled detection of lines of C, N and CO and continuum for characterization of massive complexes near the Era of Recombination. ALMA's sensitivity and resolution have enabledmeasurement of molecular emission through cosmic time from numerous molecules characterizing galactic star-forming regions and tracing their kinematics near active nuclei, starbursts, interacting clouds and quiescent disks. ALMA's sensitivity, resolution and spectral grasp have enabled it to image molecules and dust characterizing circumstellar disks and embedded bodies in protostellar, transition and debris stages of development.ALMA is a partnership of ESO

  6. Automating engineering verification in ALMA subsystems

    NASA Astrophysics Data System (ADS)

    Ortiz, José; Castillo, Jorge

    2014-08-01

    The Atacama Large Millimeter/submillimeter Array is an interferometer comprising 66 individual high precision antennas located over 5000 meters altitude in the north of Chile. Several complex electronic subsystems need to be meticulously tested at different stages of an antenna commissioning, both independently and when integrated together. First subsystem integration takes place at the Operations Support Facilities (OSF), at an altitude of 3000 meters. Second integration occurs at the high altitude Array Operations Site (AOS), where also combined performance with Central Local Oscillator (CLO) and Correlator is assessed. In addition, there are several other events requiring complete or partial verification of instrument specifications compliance, such as parts replacements, calibration, relocation within AOS, preventive maintenance and troubleshooting due to poor performance in scientific observations. Restricted engineering time allocation and the constant pressure of minimizing downtime in a 24/7 astronomical observatory, impose the need to complete (and report) the aforementioned verifications in the least possible time. Array-wide disturbances, such as global power interruptions and following recovery, generate the added challenge of executing this checkout on multiple antenna elements at once. This paper presents the outcome of the automation of engineering verification setup, execution, notification and reporting in ALMA and how these efforts have resulted in a dramatic reduction of both time and operator training required. Signal Path Connectivity (SPC) checkout is introduced as a notable case of such automation.

  7. ALMA nutator design and preliminary performances

    NASA Astrophysics Data System (ADS)

    Martin-Cocher, Pierre; Ford, John; Koch, Patrick M.; Ni, Chih-Wen; Chen, Wei-Long; Chen, Ming-Tang; Raffin, Philippe; Ong, Ching-Long; Ho, Paul T. P.; Symmes, Arthur H.

    2012-09-01

    We report the past two years of collaboration between the different actors on the ALMA nutator. Building on previous developments, the nutator has seen changes in much of the design. A high-modulus carbon fiber structure has been added on the back of the mirror in order to transfer the voice coils forces with less deformation, thus reducing delay problems due to flexing. The controller is now an off-the-shelf National Instrument NI-cRIO, and the amplifier a class D servo drive from Advanced Motion Controls, with high peak power able to drive the coils at 300 Volts DC. The stow mechanism has been totally redesigned to improve on the repeatability and precision of the stow position, which is also the reference for the 26 bits Heidenhain encoders. This also improves on the accuracy of the stow position with wind loading. Finally, the software, written largely with National Instrument's LabView, has been developed. We will discuss these changes and the preliminary performance achieved to date.

  8. Exploring remote operation for ALMA Observatory

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Ovando, Nicolás.; Velez, Gaston; Fuica, Soledad; Schemrl, Anton; Robles, Andres; Ibsen, Jorge; Filippi, Giorgio; Pietriga, Emmanuel

    2014-08-01

    The Atacama Large Millimeter /submillimeter Array (ALMA) will be a unique research instrument composed of at least 66 reconfigurable high-precision antennas, located at the Chajnantor plain in the Chilean Andes at an elevation of 5000 m. The observatory has another office located in Santiago of Chile, 1600 km from the Chajnantor plain. In the Atacama desert, the wonderful observing conditions imply precarious living conditions and extremely high operation costs: i.e: flight tickets, hospitality, infrastructure, water, electricity, etc. It is clear that a purely remote operational model is impossible, but we believe that a mixture of remote and local operation scheme would be beneficial to the observatory, not only in reducing the cost but also in increasing the observatory overall efficiency. This paper describes the challenges and experience gained in such experimental proof of the concept. The experiment was performed over the existing 100 Mbps bandwidth, which connects both sites through a third party telecommunication infrastructure. During the experiment, all of the existent capacities of the observing software were validated successfully, although room for improvement was clearly detected. Network virtualization, MPLS configuration, L2TPv3 tunneling, NFS adjustment, operational workstations design are part of the experiment.

  9. The Soul of Lupus with ALMA (SOLA) Project Overview

    NASA Astrophysics Data System (ADS)

    Saito, M.; de Gregorio, I.; Team SOLA

    2015-12-01

    The SOLA (Soul of Lupus with ALMA) project is conducting comprehensive studies of the Lupus Molecular Clouds and their star formation processes. Our goal is to exploit ALMA and other facilities over a wide wavelength range to establish a prototypical low-mass star forming scenario based on the Lupus region. We focus mainly on 10-104 au scale physics, kinematics, density, and temperature, together with detailed modelling of radiative transfer. Our unique source catalog so far contains more than 700 sources at various evolutionary stages and we have obtained complementary data with Mopra, APEX, etc. In the poster, we will report the latest status of SOLA and the expected outcome in observing runs in the near future, including ALMA Cycle 3.

  10. Testing the Generation of Jets in Young Stars with ALMA

    NASA Astrophysics Data System (ADS)

    Bacciotti, F.; Podio, L.; Codella, C.; Coffey, D.

    2015-12-01

    Jets are a crucial element in the star formation process, as they are thought to remove the excess angular momentum from the system. A firm detection of jet rotation could lend support to this statement. Jet rotation studies, however, are hindered by the requirement of simultaneous high spatial and spectral resolution, and as a matter of fact, the rotation interpretation is still debated. Soon, however, the improved spatial resolution of ALMA will allow us to firmly establish rotation patterns. At the same time the new ALMA polarimetric capabilities will permit the determination of the magnetic configuration in the system. The ALMA combined search for rotation properties and magnetic fields will be a powerful test of the proposed jet generation mechanisms.

  11. Translating PI observing proposals into ALMA observing scripts

    NASA Astrophysics Data System (ADS)

    Liszt, Harvey S.

    2014-08-01

    The ALMA telescope is a complex 66-antenna array working in the specialized domain of mm- and sub-mm aperture synthesis imaging. To make ALMA accessible to technically inexperienced but scientifically expert users, the ALMA Observing Tool (OT) has been developed. Using the OT, scientifically oriented user input is formatted as observing proposals that are packaged for peer-review and assessment of technical feasibility. If accepted, the proposal's scientifically oriented inputs are translated by the OT into scheduling blocks, which function as input to observing scripts for the telescope's online control system. Here I describe the processes and practices by which this translation from PI scientific goals to online control input and schedule block execution actually occurs.

  12. New Eyes on the Sun — Solar Science with ALMA

    NASA Astrophysics Data System (ADS)

    Wedemeyer, S.

    2016-03-01

    In Cycle 4, which starts in October 2016, the Atacama Large Millimeter/submillimeter Array (ALMA) will be open for regular observations of the Sun for the first time. ALMA’s impressive capabilities have the potential to revolutionise our understanding of our host star, with far-reaching implications for our knowledge about stars in general. The radiation emitted at ALMA wavelengths originates mostly from the chromosphere — a complex and dynamic layer between the photosphere and the corona that is prominent during solar eclipses. Despite decades of intensive research, the chromosphere is still elusive due to its complex nature and the resulting challenges to its observation. ALMA will change the scene substantially by opening up a new window on the Sun, promising answers to long-standing questions.

  13. η Carinae Baby Homunculus uncovered by ALMA

    SciTech Connect

    Abraham, Zulema; Beaklini, Pedro P. B.; Falceta-Gonçalves, Diego

    2014-08-20

    We report observations of η Carinae obtained with ALMA in the continuum of 100, 230, 280, and 660 GHz in 2012 November, with a resolution that varied from 2.''88 to 0.''45 for the lower and higher frequencies, respectively. The source is not resolved, even at the highest frequency; its spectrum is characteristic of thermal bremsstrahlung of a compact source, but different from the spectrum of optically thin wind. The recombination lines H42α, He42α, H40α, He40α, H50β, H28α, He28α, H21α, and He21α were also detected, and their intensities reveal non-local thermodynamic equilibrium effects. We found that the line profiles could only be fit by an expanding shell of dense and ionized gas, which produces a slow shock in the surroundings of η Carinae. Combined with fittings to the continuum, we were able to constrain the shell size, radius, density, temperature, and velocity. The detection of the He recombination lines is compatible with the high-temperature gas and requires a high-energy ionizing photon flux, which must be provided by the companion star. The mass-loss rate and wind velocity, necessary to explain the formation of the shell, are compatible with an luminous blue variable eruption. The position, velocity, and physical parameters of the shell coincide with those of the Weigelt blobs. The dynamics found for the expanding shell correspond to matter ejected by η Carinae in 1941 in an event similar to that which formed the Little Homunculus; for that reason, we called the new ejecta the 'Baby Homunculus'.

  14. η Carinae Baby Homunculus Uncovered by ALMA

    NASA Astrophysics Data System (ADS)

    Abraham, Zulema; Falceta-Gonçalves, Diego; Beaklini, Pedro P. B.

    2014-08-01

    We report observations of η Carinae obtained with ALMA in the continuum of 100, 230, 280, and 660 GHz in 2012 November, with a resolution that varied from 2.''88 to 0.''45 for the lower and higher frequencies, respectively. The source is not resolved, even at the highest frequency; its spectrum is characteristic of thermal bremsstrahlung of a compact source, but different from the spectrum of optically thin wind. The recombination lines H42α, He42α, H40α, He40α, H50β, H28α, He28α, H21α, and He21α were also detected, and their intensities reveal non-local thermodynamic equilibrium effects. We found that the line profiles could only be fit by an expanding shell of dense and ionized gas, which produces a slow shock in the surroundings of η Carinae. Combined with fittings to the continuum, we were able to constrain the shell size, radius, density, temperature, and velocity. The detection of the He recombination lines is compatible with the high-temperature gas and requires a high-energy ionizing photon flux, which must be provided by the companion star. The mass-loss rate and wind velocity, necessary to explain the formation of the shell, are compatible with an luminous blue variable eruption. The position, velocity, and physical parameters of the shell coincide with those of the Weigelt blobs. The dynamics found for the expanding shell correspond to matter ejected by η Carinae in 1941 in an event similar to that which formed the Little Homunculus; for that reason, we called the new ejecta the "Baby Homunculus."

  15. ALMA Detected Overdensity Around z˜2 Dusty Quasars

    NASA Astrophysics Data System (ADS)

    Silva, A.; Sajina, A.; Lonsdale, C.; Lacy, M.

    2015-12-01

    We study the environments of 49 WISE/NVSS-selected hyper-luminous, heavily obscured, z˜2 quasars. The fields were observed with ALMA in Band 7. We find that 17 of the 49 WISE/NVSS sources show companion sub-mm galaxies within the ALMA primary beam. The 870 μm source counts measured from these fields are >10 times larger than expectations for unbiased regions. This suggests that these red WISE/NVSS quasars reside in highly clustered environments.

  16. Synergies with ALMA and mm/submm facilities

    NASA Astrophysics Data System (ADS)

    Russell, H.; McNamara, B.; Fabian, A.

    2016-06-01

    New sub-mm facilities, such as ALMA, have opened up exciting new areas of astrophysics. I will review some of ALMA's exciting discoveries from the first five years of science including observations of massive molecular gas flows at the centres of nearby galaxies. Feedback from a central active galactic nucleus is thought to regulate the growth of massive galaxies by suppressing gas cooling and star formation. I will also focus on the potential contribution that XMM-Newton observations could make to these fields over the next decade.

  17. The Labour Market Effects of "Alma Mater": Evidence from Italy

    ERIC Educational Resources Information Center

    Brunello, Giorgio; Cappellari, Lorenzo

    2008-01-01

    We use data from a nationally representative survey of Italian graduates to study whether "Alma Mater" matters for employment and earnings 3 years after graduation. We find that the attended college matters, and that there are important college-related differences, both among and within regions of the country. These differences, however, do not…

  18. Alma Flor Ada and the Quest for Change

    ERIC Educational Resources Information Center

    Manna, Anthony, L.; Hill, Janet; Kellogg, Kathy

    2004-01-01

    Alma Flor Ada, a folklorist, novelist, scholar, teacher, and children's book author has passionate dedication to education for social justice, equality, and peace. As a faculty member at the University of San Francisco, Ada has developed programs that help students and others transform their lives and has written several bilingual legends and…

  19. Circumnuclear molecular gas in M87 detected with ALMA

    NASA Astrophysics Data System (ADS)

    Vlahakis, Catherine E.

    2016-01-01

    We present the detection of circumnuclear molecular gas residing within 100 pc of the supermassive black hole (SMBH) in the galaxy M87 (3C 274), using the Atacama Large Millimeter/submillimeter Array (ALMA) to image the gas on spatial scales from 100 to 10 pc. The proximity of M87, the archetypical giant elliptical radio galaxy at the centre of the Virgo galaxy cluster, presents a unique opportunity to investigate in detail the circumnuclear molecular gas revealed first by single-dish observations and recently imaged for the first time with ALMA (Vlahakis et al., in prep). ALMA's unique long baseline capability now allows us to make the first detailed investigation of the properties of the interstellar medium around the galaxy's SMBH on scales down to 10 pc (0.1 arcsec). Here, we present results of ALMA Band 3 CO J=1-0 observations obtained at different angular resolutions. With this data we are able to trace the bulk of the molecular gas as well as the continuum emission, providing the deepest and highest spatial resolution images yet of the molecular gas content of this giant elliptical galaxy. The highest resolution data allow us to unambiguously resolve the molecular gas structures for the first time and investigate, in unprecedented detail, the nature and origin of molecular gas that resides within the sphere of influence of the SMBH.

  20. The High Redshift Universe Seen Through the Eyes of ALMA

    NASA Astrophysics Data System (ADS)

    Wiklind, Tommy

    2012-07-01

    The Atacama Large Millimeter/submm Array (ALMA) is an interferometric telescope currently under construction on the Chajnantor Plateau in northern Chile. It is situated at an altitude of 5000m, in one of the driest places in the world. The combination of the meteorological conditions, increased total collecting area and the use of state-of-the-art receivers means that the fully operational ALMA is a factor 10-1000 more sensitive than existing facilities, depending on the wavelength. When completed in 2013, ALMA will consists of 66 antennas, with maximum baselines of up to 15 km and it will be able to observe at wavelengths from 10 millimeter to ~350micron. ALMA will be able to provide an angular resolution of ~0.05 arcseconds. ALMA is still under construction, but has started producing science in an 'Early Science' phase. The goal with ALMA has from the beginning been to provide very high sensitivity as well as an angular resolution matching that of space based optical observatories such as the HST. One of three main drivers when designing ALMA has been the ability to study the high redshift universe. The main reason behind this is that almost half of the integrated background radiation comes from the far-infrared wavelength regime. This emission is interpreted as originating from dust re-radiated stellar emission in high redshift galaxies. Interstellar dust is almost invariably associated with molecular gas, that can be studied using molecular rotational transitions. The shape of the dust spectral energy distribution ensures that the observed flux at a fixed wavelength long-ward of the far-infrared peak (about 100micron) remains more or less constant over a redshift range z=1-10. This aspect makes dust continuum emission extraordinarily important for studying galaxies and Active Galactic Nuclei at high redshift. Through observations of line emission from molecular transitions it is possible to study the associated molecular gas distribution and its kinematics. The

  1. ALMA to Help Solving Acute Mountain Sickness Mystery

    NASA Astrophysics Data System (ADS)

    2007-04-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) astronomical project will not only enlarge our knowledge of the vast Universe beyond the imaginable. It will also help scientists learn more about the human body. Located 5000m above sea level, in the Chilean Atacama desert, ALMA is the highest site for ground-based astronomy. This property will be put to good use for academic institutions in Chile and in Europe in order to study the human response to extreme altitude conditions. During a ceremony held on 2 April in Antofagasta, the largest town close to ESO's Very Large Telescope, representatives from ALMA, ESO and the University of Antofagasta have officially launched a collaborative agreement that also involves the University of Chile and the University of Copenhagen (Denmark). The newly established cooperation aims at contributing to the promotion of teaching, scientific research, and the expansion of altitude physiology and medicine or other related areas considered appropriate. ESO PR Photo 20/07 ESO PR Photo 20/07 Working at 5000 metres "An increasing number of people are periodically exposed to brisk changes in altitude, and not only for astronomical research," said Jacques Lassalle, the ALMA Safety Manager. "Short stays at high altitude alternate with short stays at sea level but the corresponding shifts are very often established by agreement, and not based on scientific arguments. With this project, we aim at improving our knowledge and procedures in order to protect the long term health of the operators, engineers, and scientists as well as ALMA visitors of all ages and all physical conditions," he added. Around the world, a large number of people systematically commute between sea level and high altitude, for example when working in mountainous mines. This poses stringent conditions that may affect health, wellbeing and working performance. Some of the factors in question are the shift work regime, the perturbation of circadian rhythms, fatigue

  2. U.S., European ALMA Partners Award Prototype Antenna Contracts

    NASA Astrophysics Data System (ADS)

    2000-03-01

    The U.S. and European partners in the Atacama Large Millimeter Array (ALMA) project have awarded contracts to U.S. and Italian firms, respectively, for two prototype antennas. ALMA is a planned telescope array, expected to consist of 64 millimeter-wave antennas with 12-meter diameter dishes. The array will be built at a high-altitude, extremely dry mountain site in Chile's Atacama desert, and is scheduled to be completed sometime in this decade. On February 22, 2000, Associated Universities Inc. (AUI) signed an approximately $6.2 million contract with Vertex Antenna Systems, of Santa Clara, Calif., for construction of one prototype ALMA antenna. AUI operates the U.S. National Radio Astronomy Observatory (NRAO) for the National Science Foundation under a cooperative agreement. The European partners contracted with the consortium of European Industrial Engineering and Costamasnaga, of Mestre, Italy, on February 21, 2000, for the production of another prototype. (Mestre is located on the inland side of Venice.) The two antennas must meet identical specifications, but will inherently be of different designs. This will ensure that the best possible technologies are incorporated into the final production antennas. Only one of the designs will be selected for final production. Several technical challenges must be met for the antennas to perform to ALMA specifications. Each antenna must have extremely high surface accuracy (25 micrometers, or one-third the diameter of a human hair, over the entire 12-meter diameter). This means that, when completed, the surface accuracy of the ALMA dishes will be 20 times greater than that of the Very Large Array (VLA) antennas, and about 50 times greater than dish antennas for communications or radar. The ALMA antennas must also have extremely high pointing accuracy (0.6 arcseconds). An additional challenge is that the antennas, when installed at the ALMA site in Chile, will be exposed to the ravages of weather at 16,500 feet (5000 meters

  3. National Academy of Sciences Recommends Continued Support of ALMA Project

    NASA Astrophysics Data System (ADS)

    2000-05-01

    A distinguished panel of scientists today announced their support for the continued funding of the Atacama Large Millimeter Array (ALMA) Project at a press conference given by the National Academy of Sciences. The ALMA Project is an international partnership between U.S. and European astronomy organizations to build a complete imaging telescope that will produce astronomical images at millimeter and submillimeter wavelengths. The U.S. partner is the National Science Foundation, through Associated Universities, Inc., (AUI), led by Dr. Riccardo Giacconi, and the National Radio Astronomy Observatory (NRAO). "We are delighted at this show of continued support from our peers in the scientific community," said Dr. Robert Brown, ALMA U.S. Project Director and Deputy Director of NRAO. "The endorsement adds momentum to the recent strides we've made toward the building of this important telescope." In 1998, the National Research Council, the working arm of the National Academy of Sciences, charged the Astronomy and Astrophysics Survey Committee to "survey the field of space- and ground-based astronomy and astrophysics" and to "recommend priorities for the most important new initiatives of the decade 2000-2010." In a report released today, the committee wrote that it "re-affirms the recommendations of the 1991 Astronomy and Astrophysics Survey Committee by endorsing the completion of . . . the Millimeter Array (MMA, now part of the Atacama Large Millimeter Array)." In the 1991 report "The Decade of Discovery," a previous committee chose the Millimeter Array as one of the most important projects of the decade 1990-2000. Early last year, the National Science Foundation signed a Memorandum of Understanding with a consortium of European organizations that effectively merged the MMA Project with the European Large Southern Array project. The combined project was christened the Atacama Large Millimeter Array. ALMA, expected to consist of 64 antennas with 12-meter diameter dishes

  4. Design and Characterization of the ALMA Band 5 Vacuum Window

    NASA Astrophysics Data System (ADS)

    Schroder, Arne; Murk, Axel; Yagoubov, Pavel; Patt, Ferdinand

    2016-01-01

    This paper summarizes the electromagnetic design process of the vacuum window for the Atacama Large Millimeter/sub-millimeter Array (ALMA) Band 5 (163-211 GHz). We have carried out investigations by means of numerical simulations as well as reflection and transmission measurements. Simulations were performed using the finite element method, an efficient quasi-analytical technique, and rigorous coupled-wave analysis. We used an injection-molded vacuum window prototype as a starting point of the design process and investigated deterioration in the electromagnetic performance caused by different types of manufacturing artifacts. Following these analyses, an optimization of the window has been performed based on simulations. We measured the reflectivity and transmittance of the newly designed window and this paper demonstrates that the optimized window exhibits a return loss better than -20 dB, as required by the ALMA specifications.

  5. New Inspiring Planetarium Show Introduces ALMA to the Public

    NASA Astrophysics Data System (ADS)

    2009-03-01

    As part of a wide range of education and public outreach activities for the International Year of Astronomy 2009 (IYA2009), ESO, together with the Association of French Language Planetariums (APLF), has produced a 30-minute planetarium show, In Search of our Cosmic Origins. It is centred on the global ground-based astronomical Atacama Large Millimeter/submillimeter Array (ALMA) project and represents a unique chance for planetariums to be associated with the IYA2009. ESO PR Photo 09a/09 Logo of the ALMA Planetarium Show ESO PR Photo 09b/09 Galileo's first observations with a telescope ESO PR Photo 09c/09 The ALMA Observatory ESO PR Photo 09d/09 The Milky Way band ESO PR Video 09a/09 Trailer in English ALMA is the leading telescope for observing the cool Universe -- the relic radiation of the Big Bang, and the molecular gas and dust that constitute the building blocks of stars, planetary systems, galaxies and life itself. It is currently being built in the extremely arid environment of the Chajnantor plateau, at 5000 metres altitude in the Chilean Andes, and will start scientific observations around 2011. ALMA, the largest current astronomical project, is a revolutionary telescope, comprising a state-of-the-art array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. In Search of our Cosmic Origins highlights the unprecedented window on the Universe that this facility will open for astronomers. "The show gives viewers a fascinating tour of the highest observatory on Earth, and takes them from there out into our Milky Way, and beyond," says Douglas Pierce-Price, the ALMA Public Information Officer at ESO. Edited by world fulldome experts Mirage3D, the emphasis of the new planetarium show is on the incomparable scientific adventure of the ALMA project. A young female astronomer guides the audience through a story that includes unique animations and footage, leading the viewer from the first observations by Galileo

  6. Development of ALMA process: Advances maleic anhydride production technology

    SciTech Connect

    Arnoia, S.C.; Komeya, M.; Pedretti, D.; Stanecki, J.W.

    1987-01-01

    Shin-Daikyowa Petrochemical Co. (SDPC) has initiated a project to build a 15,000 MTA maleic anhydride plant at Yokkaichi, Japan. For technology, SDPC evaluated many alternatives and elected to utilize the ALMA Process in what will be the first full-scale plant for this new process. Startup is scheduled for late 1988. This paper describes the economic advantages of the ALMA Process and their technical bases which have led to its selection by SDPC. The advantages are in variable costs (primarily feed and energy) for any size plant, and in initial capital as well for plants larger than 10,000 MTA. They are derived from the use of n-butane feed, a fluidized-bed reactor system, and a non-aqueous recovery system.

  7. The ALMA assembly, integration, and verification project: a retrospective analysis

    NASA Astrophysics Data System (ADS)

    Lopez, B.; Knee, L. B. G.; Jager, H.; Whyborn, N.; McMullin, J.; Murowinski, R.; Peck, A.; Corder, S.

    2014-08-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a joint project between astronomical organizations in Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA consists of 54 twelve-meter antennas and 12 seven-meter antennas operating as an aperture synthesis array in the (sub)millimeter wavelength range. Assembly, Integration, and Verification (AIV) of the antennas was completed at the end of the year 2013, while the final optimization and complete expansion to validate all planned observing modes will continue. This paper compares the actually obtained results of the period 2008-2013 with the baselines that had been laid out in the early project-planning phase (2005-2007). First plans made for ALMA AIV had already established a two-phased project life-cycle: phase 1 for setting up necessary infrastructure and common facilities, and taking the first three antennas to the start of commissioning; and phase 2 focused on the steady state processing of the remaining units. Throughout the execution of the project this lifecycle was refined and two additional phases were added, namely a transition phase between phases 1 and 2, and a closing phase to address the project ramp-down. A sub-project called Accelerated Commissioning and Science Verification (ACSV) was carried out during the year 2009 in order to provide focus to the whole ALMA organization, and to accomplish the start-of-commissioning milestone. Early phases of CSV focused on validating the basic performance and calibration. Over time additional observing modes have been validated as capabilities expanded both in hardware and software. This retrospective analysis describes the originally presented project staffing plans and schedules, the underlying assumptions, identified risks and operational models, among others. For comparison actual data on staffing levels, the resultant schedule, additional risks identified and those that actually materialized, are presented. The

  8. Complementarity of NGST, ALMA, and far IR Space Observatories

    NASA Technical Reports Server (NTRS)

    Mather, John C.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    The Next Generation Space Telescope (NGST) and the Atacama Large Millimeter Array (ALMA) will both start operations long before a new far IR observatory in space can be launched. What will be unknown even after they are operational, and what will a far IR space observatory be able to add? I will compare the telescope design concepts and capabilities and the advertised scientific programs for the projects and attempt to forecast the research topics that will be at the forefront in 2010.

  9. Revealing the dynamics of Class 0 protostellar discs with ALMA

    NASA Astrophysics Data System (ADS)

    Seifried, D.; Sánchez-Monge, Á.; Walch, S.; Banerjee, R.

    2016-06-01

    We present synthetic ALMA observations of Keplerian, protostellar discs in the Class 0 stage studying the emission of molecular tracers like 13CO, C18O, HCO+, H13CO+, N2H+, and H2CO. We model the emission of discs around low- and intermediate-mass protostars. We show that under optimal observing conditions ALMA is able to detect the discs already in the earliest stage of protostellar evolution, although the emission is often concentrated to the innermost 50 au. Therefore, a resolution of a few 0.1 arcsec might be too low to detect Keplerian discs around Class 0 objects. We also demonstrate that under optimal conditions for edge-on discs Keplerian rotation signatures are recognisable, from which protostellar masses can be inferred. For this we here introduce a new approach, which allows us to determine protostellar masses with higher fidelity than before. Furthermore, we show that it is possible to reveal Keplerian rotation even for strongly inclined discs and that ALMA should be able to detect possible signs of fragmentation in face-on discs. In order to give some guidance for future ALMA observations, we investigate the influence of varying observing conditions and source distances. We show that it is possible to probe Keplerian rotation in inclined discs with an observing time of 2 h and a resolution of 0.1 arcsec, even in the case of moderate weather conditions. Furthermore, we demonstrate that under optimal conditions, Keplerian discs around intermediate-mass protostars should be detectable up to kpc distances.

  10. Solar ALMA Observations - A New View of Our Host Star

    NASA Astrophysics Data System (ADS)

    Wedemeyer, S.; Bastian, T.; Brajša, R.; Barta, M.; Shimojo, M.; Hales, A.; Yagoubov, P.; Hudson, H.

    2015-12-01

    ALMA provides the necessary spatial, temporal and spectral resolution to explore central questions in contemporary solar physics with potentially far-reaching implications for stellar atmospheres and plasma physics. It can uniquely constraint the thermal and magnetic field structure in the solar chromosphere with measurements that are highly complementary to simultaneous observations with other ground-based and space-borne instruments. Here, we highlight selected science cases.

  11. Final tests and performances verification of the European ALMA antennas

    NASA Astrophysics Data System (ADS)

    Marchiori, Gianpietro; Rampini, Francesco

    2012-09-01

    The Atacama Large Millimeter Array (ALMA) is under erection in Northern Chile. The array consists of a large number (up to 64) of 12 m diameter antennas and a number of smaller antennas, to be operated on the Chajnantor plateau at 5000 m altitude. The antennas will operate up to 950 GHz so that their mechanical performances, in terms of surface accuracy, pointing precision and dimensional stability, are very tight. The AEM consortium constituted by Thales Alenia Space France, Thales Alenia Space Italy, European Industrial Engineering (EIE GROUP), and MT Mechatronics is assembling and testing the 25 antennas. As of today, the first set of antennas have been delivered to ALMA for science. During the test phase with ESO and ALMA, the European antennas have shown excellent performances ensuring the specification requirements widely. The purpose of this paper is to present the different results obtained during the test campaign: surface accuracy, pointing error, fast motion capability and residual delay. Very important was also the test phases that led to the validation of the FE model showing that the antenna is working with a good margin than predicted at design level thanks also to the assembly and integration techniques.

  12. Observing turbulent fragmentation in simulations: predictions for CARMA and ALMA

    NASA Astrophysics Data System (ADS)

    Offner, Stella S. R.; Capodilupo, John; Schnee, Scott; Goodman, Alyssa A.

    2012-02-01

    Determining the initial stellar multiplicity is a challenging problem since protostars are faint and deeply embedded at early times; once formed, multiple protostellar systems may significantly dynamically evolve before they are optically revealed. Interferometers such as Combined Array for Research in Millimeter-wave Astronomy (CARMA) and Atacama Large Millimeter/submillimeter Array (ALMA) make it possible to probe the scales at which turbulent fragmentation occurs in dust continuum emission, potentially constraining early stellar multiplicity. In this Letter, we present synthetic observations of starless and protostellar cores undergoing fragmentation on scales of a few thousand astronomical units to produce wide binary systems. We show that interferometric observations of starless cores by CARMA should be predominantly featureless at early stages, although wide protostellar companions should be apparent. The enhanced capabilities of ALMA improve the detection of core morphology so that it may be possible to detect substructure at earlier times. In either case, spatial filtering from interferometry reduces the observed core substructure and often eradicates traces of existing filamentary morphology on scales down to 0.025 pc. However, some missing structure may be recaptured by combining data from the ALMA full science and Atacama compact arrays.

  13. ALMA resolves SN 1987A's dust factory and particle accelerator

    NASA Astrophysics Data System (ADS)

    Indebetouw, Remy; SN1987A ALMA Cycle 0 Team

    2014-01-01

    SN1987A in the Large Magellanic Cloud is the closest supernova to earth to be observed since 1604, making it a unique laboratory to study supernova physics in real time. Among SN87A's remarkable properties are a very large mass of new dust forming in the supernova ejecta. This dust was inferred from Herschel data, but its location not proven since Herschel could not resolve the 1.8" diameter remnant. Another mystery is whether the explosion left behind a neutron star - neither pulsar nor pulsar wind nebula has been detected so far. Excess emission from a PWN should be easiest to detect at millimeter wavelengths, if it can be spatially resolved from the synchrotron-emitting supernova shock. We present the first spatially resolved images of SN1987A at 450um, 870um, and 1.4mm, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). ALMA resolves emission from the newly formed dust, unambiguously locating it within the ejecta, interior to the reverse shock. The shocked ring is also well-resolved, and separated spatially from the ejecta. The ring shows no spectral break compared to centimeter wavelengths, and no free-free or PWN emission is required to explain the data. We discuss physical properties of the components of the remnant determined from these high resolution ALMA images.

  14. ALMA test interferometer control system: past experiences and future developments

    NASA Astrophysics Data System (ADS)

    Marson, Ralph G.; Pokorny, Martin; Kern, Jeff; Stauffer, Fritz; Perrigouard, Alain; Gustafsson, Birger; Ramey, Ken

    2004-09-01

    The Atacama Large Millimeter Array (ALMA) will, when it is completed in 2012, be the world's largest millimeter & sub-millimeter radio telescope. It will consist of 64 antennas, each one 12 meters in diameter, connected as an interferometer. The ALMA Test Interferometer Control System (TICS) was developed as a prototype for the ALMA control system. Its initial task was to provide sufficient functionality for the evaluation of the prototype antennas. The main antenna evaluation tasks include surface measurements via holography and pointing accuracy, measured at both optical and millimeter wavelengths. In this paper we will present the design of TICS, which is a distributed computing environment. In the test facility there are four computers: three real-time computers running VxWorks (one on each antenna and a central one) and a master computer running Linux. These computers communicate via Ethernet, and each of the real-time computers is connected to the hardware devices via an extension of the CAN bus. We will also discuss our experience with this system and outline changes we are making in light of our experiences.

  15. ALMA to Help Solving Acute Mountain Sickness Mystery

    NASA Astrophysics Data System (ADS)

    2007-04-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) astronomical project will not only enlarge our knowledge of the vast Universe beyond the imaginable. It will also help scientists learn more about the human body. Located 5000m above sea level, in the Chilean Atacama desert, ALMA is the highest site for ground-based astronomy. This property will be put to good use for academic institutions in Chile and in Europe in order to study the human response to extreme altitude conditions. During a ceremony held on 2 April in Antofagasta, the largest town close to ESO's Very Large Telescope, representatives from ALMA, ESO and the University of Antofagasta have officially launched a collaborative agreement that also involves the University of Chile and the University of Copenhagen (Denmark). The newly established cooperation aims at contributing to the promotion of teaching, scientific research, and the expansion of altitude physiology and medicine or other related areas considered appropriate. ESO PR Photo 20/07 ESO PR Photo 20/07 Working at 5000 metres "An increasing number of people are periodically exposed to brisk changes in altitude, and not only for astronomical research," said Jacques Lassalle, the ALMA Safety Manager. "Short stays at high altitude alternate with short stays at sea level but the corresponding shifts are very often established by agreement, and not based on scientific arguments. With this project, we aim at improving our knowledge and procedures in order to protect the long term health of the operators, engineers, and scientists as well as ALMA visitors of all ages and all physical conditions," he added. Around the world, a large number of people systematically commute between sea level and high altitude, for example when working in mountainous mines. This poses stringent conditions that may affect health, wellbeing and working performance. Some of the factors in question are the shift work regime, the perturbation of circadian rhythms, fatigue

  16. The Alma College Career Preparation Program. Final Report, October 1, 1977-December 31, 1978.

    ERIC Educational Resources Information Center

    Alma Coll., MI.

    A career preparation program (CPP) at Alma College, Alma, Michigan, intended to strengthen career planning services, add new programs supporting and augmenting liberal arts program strengths, more effectively integrate educational progress with plans to enter the world of work, and develop faculty career planning skills and liaison with business,…

  17. Tracing large-scale structures in circumstellar disks with ALMA

    NASA Astrophysics Data System (ADS)

    Ruge, J. P.; Wolf, S.; Uribe, A. L.; Klahr, H. H.

    2013-01-01

    Context. Planets are supposed to form in circumstellar disks. The additional gravitational potential of a planet perturbs the disk and leads to characteristic structures, i.e. spiral waves and gaps, in the disk's density profile. Aims: We perform a large-scale parameter study of the observability of these planet-induced structures in circumstellar disks in the (sub)mm wavelength range for the Atacama Large (Sub)Millimeter Array (ALMA). Methods: On the basis of hydrodynamical and magneto-hydrodynamical simulations of star-disk-planet models, we calculated the disk temperature structure and (sub)mm images of these systems. These were used to derive simulated ALMA images. Because appropriate objects are frequent in the Taurus-Auriga region, we focused on a distance of 140 pc and a declination of ≈ 20°. The explored range of star-disk-planet configurations consists of six hydrodynamical simulations (including magnetic fields and different planet masses), nine disk sizes with outer radii ranging from 9 AU to 225 AU, 15 total disk masses in the range between 2.67 × 10-7 M⊙ and 4.10 × 10-2 M⊙, six different central stars, and two different grain size distributions, resulting in 10 000 disk models. Results: On almost all scales and in particular down to a scale of a few AU, ALMA is able to trace disk structures induced by planet-disk interaction or by the influence of magnetic fields on the wavelength range between 0.4 and 2.0 mm. In most cases, the optimum angular resolution is limited by the sensitivity of ALMA. However, within the range of typical masses of protoplanetary disks (0.1-0.001 M⊙) the disk mass has a minor impact on the observability. It is possible to resolve disks down to 2.67 × 10-6 M⊙ and trace gaps induced by a planet with Mp/M⋆ = 0.001 in disks with 2.67 × 10-4 M⊙ with a signal-to-noise ratio greater than three. The central star has a major impact on the observability of gaps, as well as the considered maximum grainsize of the dust

  18. Using ALMA for Solar and Extrasolar System Studies

    NASA Astrophysics Data System (ADS)

    Butler, B.; Wootten, A.

    2000-10-01

    The next generation millimeter to submillimeter wavelength synthesis telescope, the Atacama Large Millimeter Array (ALMA), will be an excellent instrument for solar and extrasolar system studies. Once ALMA is equipped with receivers of the expected performance, and given the expected quality of the antennas and the measured quality of the chosen site (at 5000m in northern Chile), the sensitivity of the instrument will be fantastic - better than 1 K in 1 minute at millimeter wavelengths in all but the most spread out configuration, and better than 5 K in 1 minute even in that configuration. The resolution of ALMA will be as good as 15 milliarcseconds, allowing for linear resolutions of 10 km at 1 AU distance. With this sensitivity and resolution, a new era of solar and extrasolar system studies based on observations in this wavelength region will be enabled. The continuum capability of the instrument will allow for high spatial and time resolution maps of surface and near-surface temperature on the solid bodies of the solar system, and will allow for detailed mapping of dust in cometary atmospheres and protoplanetary disks. Young giant planets could be directly detected out to many parsecs, and very young giant protoplanets should be directly detected in the nearest star forming regions. In addition to direct detections, astrometric techniques (via reflex motion of the star) are expected to provide detections of many planetary systems. The spectral line capability of the instrument will allow for the observation of multiple molecular species in planetary and cometary atmospheres and protoplanetary disks, providing temperature and wind (for the atmospheres) profiles at high spatial and time resolution and clues as to the chemistry in these places.

  19. The ALMA common software: dispatch from the trenches

    NASA Astrophysics Data System (ADS)

    Schwarz, J.; Sommer, H.; Jeram, B.; Sekoranja, M.; Chiozzi, G.; Grimstrup, A.; Caproni, A.; Paredes, C.; Allaert, E.; Harrington, S.; Turolla, S.; Cirami, R.

    2008-07-01

    The ALMA Common Software (ACS) provides both an application framework and CORBA-based middleware for the distributed software system of the Atacama Large Millimeter Array. Building upon open-source tools such as the JacORB, TAO and OmniORB ORBs, ACS supports the development of component-based software in any of three languages: Java, C++ and Python. Now in its seventh major release, ACS has matured, both in its feature set as well as in its reliability and performance. However, it is only recently that the ALMA observatory's hardware and application software has reached a level at which it can exploit and challenge the infrastructure that ACS provides. In particular, the availability of an Antenna Test Facility(ATF) at the site of the Very Large Array in New Mexico has enabled us to exercise and test the still evolving end-to-end ALMA software under realistic conditions. The major focus of ACS, consequently, has shifted from the development of new features to consideration of how best to use those that already exist. Configuration details which could be neglected for the purpose of running unit tests or skeletal end-to-end simulations have turned out to be sensitive levers for achieving satisfactory performance in a real-world environment. Surprising behavior in some open-source tools has required us to choose between patching code that we did not write or addressing its deficiencies by implementing workarounds in our own software. We will discuss these and other aspects of our recent experience at the ATF and in simulation.

  20. Observations of CO in Titan's Atmosphere Using ALMA

    NASA Astrophysics Data System (ADS)

    Serigano, Joseph; Nixon, Conor A.; Cordiner, Martin; Irwin, Patrick G. J.; Teanby, Nicholas; Charnley, Steven B.; Lindberg, Johan E.; Remijan, Anthony J.

    2015-11-01

    The advent of the Atacama Large Millimeter/submillimeter Array (ALMA) has provided a powerful facility for probing the atmospheres of solar system targets at long wavelengths (84-720 GHz) where the rotational lines of small, polar molecules are prominent. In the dense, nitrogen-dominated atmosphere of Titan, photodissociation of molecular nitrogen and methane leads to a wealth of complex hydrocarbons and nitriles in small abundances. Past millimeter/submillimeter observations, including ground-based observations as well as those by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft, have proven the significance of this wavelength region for the derivation of vertical mixing profiles, latitudinal and seasonal variations, and molecular detections. Previous ALMA studies of Titan have presented mapping and vertical column densities of hydrogen isocyanide (HNC) and cyanoacetylene (HC3N) (Cordiner et al. 2014) as well as the first spectroscopic detection of ethyl cyanide (C2H5CN) in Titan’s atmosphere (Cordiner et al. 2015).Here, we report several submillimetric observations of carbon monoxide (CO) and its isotopologues 13CO, C18O, and C17O in Titan’s atmosphere obtained with flux calibration data from the ALMA Science Archive. We employ NEMESIS, a line-by-line radiative transfer code, to determine the stratospheric abundances of these molecules. The abundance of CO in Titan's atmosphere is determined to be approximately 50±1 ppm, constant with altitude, and isotopic ratios are determined to be approximately 12C/13C = 90, 16O/18O = 470, and 16O/17O = 2800. This report presents the first spectroscopic detection of C17O in the outer solar system, detected at >11σ confidence. This talk will focus on isotopic ratios in CO in Titan's atmosphere and will compare our results to previously measured values for Titan and other bodies in the Solar System. General implications for the history of Titan from measurements of CO and its isotopologues will be

  1. Complementarity of NGST, ALMA, and Far IR Space Observatories

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2004-01-01

    The Next Generation Space Telescope (NGST) and the Atacama Large Millimeter Array (ALMA) will both start operations long before a new far IR observatory to follow SIRTF into space can be launched. What will be unknown even after they are operational, and what will a far IR space observatory be able to add? I will compare the telescope design concepts and capabilities and the advertised scientific programs for the projects and attempt to forecast the research topics that will be at the forefront in 2010.

  2. ALMA and the Future of Millimeter Imaging Observations

    NASA Astrophysics Data System (ADS)

    Wilner, David J.

    2016-01-01

    The Nearby Young Moving Groups sample the critical age when primordial disks around stars complete their transformation into planetary systems with associated debris. Millimeter wavelengths provide direct access to cool material in these circumstellar disks. The high angular resolution of interferometry at these long wavelengths enables resolved observations of solids in an optically thin regime, as well as the thermal, chemical, and dynamical structure of gas, if present. In this contribution, I briefly review the evolving landscape of millimeter telescopes, with emphasis on the revolutionary capabilities of the new international Atacama Large Millimeter/submillimeter Array (ALMA) and describe pertinent early science results.

  3. 12. VIEW OF WESTERN CANAL AT ALMA SCHOOL ROAD IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF WESTERN CANAL AT ALMA SCHOOL ROAD IN MESA, THE LOCATION AT WHICH THE PECK, PINE AND WALLACE FEEDERS FORMERLY JOINED TO FORM THE WESTERN CANAL. THE PECK AND PINE FEEDERS, NOW KNOWN AS LATERAL 9 AND LATERAL 10, AND ALMOST ENTIRELY PIPED, STILL JOIN THE WESTERN CANAL AT THIS POINT, BUT AN EQUALLY IMPORTANT SOURCE OF SUPPLY IS THE NUMEROUS GROUNDWATER PUMPS LOCATED ON THE SYSTEM. - Western Canal, South side of Salt River between Tempe, Phoenix & Mesa, Mesa, Maricopa County, AZ

  4. ACS (Alma Common Software) operating a set of robotic telescopes

    NASA Astrophysics Data System (ADS)

    Westhues, C.; Ramolla, M.; Lemke, R.; Haas, M.; Drass, H.; Chini, R.

    2014-07-01

    We use the ALMA Common Software (ACS) to establish a unified middleware for robotic observations with the 40cm Optical, 80cm Infrared and 1.5m Hexapod telescopes located at OCA (Observatorio Cerro Armazones) and the ESO 1-m located at La Silla. ACS permits to hide from the observer the technical specifications, like mount-type or camera-model. Furthermore ACS provides a uniform interface to the different telescopes, allowing us to run the same planning program for each telescope. Observations are carried out for long-term monitoring campaigns to study the variability of stars and AGN. We present here the specific implementation to the different telescopes.

  5. Evaluation of Amigas Latinas Motivando el Alma (ALMA): a pilot promotora intervention focused on stress and coping among immigrant Latinas.

    PubMed

    Tran, Anh N; Ornelas, India J; Perez, Georgina; Green, Melissa A; Lyn, Michelle; Corbie-Smith, Giselle

    2014-04-01

    Recent immigrant Latinas are at increased risk of poor mental health due to stressors associated with adapting to life in the United States. This study evaluated Amigas Latinas Motivando el Alma, a promotora intervention to reduce stress and promote health and coping among recent immigrant Latinas. Using a pre- and post-test design, we evaluated mental health outcomes, specifically, in promotoras. Promotoras' knowledge levels related to role of promotora and stress management increased, depressive symptoms and stress levels decreased, and coping responses and perceived social support increased as well. Results suggest that promotora programs may be an effective way to improve mental health in recent immigrant Latinas. PMID:23117693

  6. Simulating ALMA Observations of High-Redshift Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Carilli, Michael; Wagg, J.

    2007-12-01

    Until now, the coarse angular resolution of single-dish submm/mm telescopes has limited the depth of extragalactic surveys through confusion noise, meaning that only 20-30% of the 850 micron background can be resolved. However, the majority of this population should have flux densities of 1 mJy or fainter, and so either cannot be resolved or would require prohibitively long integration times to conduct surveys with existing interferometers. This will change with the advent of the Atacama Large Millimeter Array (ALMA); beginning operation within the next decade, it will provide an order of magnitude increase in sensitivity over that of current interferometers. To better plan for future surveys with this facility, I have prepared a set of simulated 850 micron and 1 mm maps covering 16 square arcminutes with an angular resolution of 1 arcsecond. The input models used to create these simulations are based on our current constraints on the 850 micron and 1 mm number counts, as well as a heuristic model which assumes an evolving 60 micron IRAS luminosity function. This work shows how ALMA will constrain the number counts well below the sub-mJy level. Research was conducted as part of the National Science Foundation's Research Experience for Undergraduates program.

  7. Observations of HCN and its Isotopologues on Titan using ALMA

    NASA Astrophysics Data System (ADS)

    Molter, Edward; Nixon, Conor A.; Cordiner, Martin; Charnley, Steven B.; Irwin, Patrick GJ; Serigano, Joseph; Teanby, Nicholas

    2016-01-01

    Titan's atmosphere is primarily composed of molecular nitrogen (N2, 98%) and methane (CH4, ≈2%), but also hosts a myriad of trace organic species; the simplest and most abundant of these is hydrogen cyanide (HCN). The advent of ALMA provides the opportunity to observe rotational transitions in this molecule and many of its isotopologues with unprecendented sensitivity and spatial resolution. In this study we make use of publicly available ALMA calibration observations of Titan taken between April and July 2014, each lasting around 160 seconds. We report the detection of a new HCN isotopologue on Titan, H13C15N, and determine the isotopic ratios 14N/15N, 12C/13C, and D/H using high signal-to-noise observations of HCN, H13CN, HC15N, and DCN. Isotopic ratios are known to diverge throughout the solar system in planetary atmospheres due to a variety of processes, including mass-dependent escape, photochemistry, and condensation. Therefore, accurate knowledge of isotopic ratios can provide important constraints on models of the origin and evolution of planetary atmospheres.

  8. ALMA as the ideal probe of the solar chromosphere

    NASA Astrophysics Data System (ADS)

    Loukitcheva, Maria A.; Solanki, Sami K.; White, Stephen

    2008-01-01

    The very nature of the solar chromosphere, its structuring and dynamics, remains far from being properly understood, in spite of intensive research. Here we point out the potential of chromospheric observations at millimeter wavelengths to resolve this long-standing problem. Computations carried out with a sophisticated dynamic model of the solar chromosphere due to Carlsson and Stein demonstrate that millimeter emission is extremely sensitive to dynamic processes in the chromosphere and the appropriate wavelengths to look for dynamic signatures are in the range 0.8 5.0 mm. The model also suggests that high resolution observations at mm wavelengths, as will be provided by ALMA, will have the unique property of reacting to both the hot and the cool gas, and thus will have the potential of distinguishing between rival models of the solar atmosphere. Thus, initial results obtained from the observations of the quiet Sun at 3.5 mm with the BIMA array (resolution of 12″) reveal significant oscillations with amplitudes of 50 150 K and frequencies of 1.5 8 mHz with a tendency toward short-period oscillations in internetwork and longer periods in network regions. However higher spatial resolution, such as that provided by ALMA, is required for a clean separation between the features within the solar atmosphere and for an adequate comparison with the output of the comprehensive dynamic simulations.

  9. Business Intelligence Applied to the ALMA Software Integration Process

    NASA Astrophysics Data System (ADS)

    Zambrano, M.; Recabarren, C.; González, V.; Hoffstadt, A.; Soto, R.; Shen, T.-C.

    2012-09-01

    Software quality assurance and planning of an astronomy project is a complex task, specially if it is a distributed collaborative project such as ALMA, where the development centers are spread across the globe. When you execute a software project there is much valuable information about this process itself that you might be able to collect. One of the ways you can receive this input is via an issue tracking system that will gather the problem reports relative to software bugs captured during the testing of the software, during the integration of the different components or even worst, problems occurred during production time. Usually, there is little time spent on analyzing them but with some multidimensional processing you can extract valuable information from them and it might help you on the long term planning and resources allocation. We present an analysis of the information collected at ALMA from a collection of key unbiased indicators. We describe here the extraction, transformation and load process and how the data was processed. The main goal is to assess a software process and get insights from this information.

  10. ALMA images of discs: are all gaps carved by planets?

    NASA Astrophysics Data System (ADS)

    Gonzalez, J.-F.; Laibe, G.; Maddison, S. T.; Pinte, C.; Ménard, F.

    2015-11-01

    Protoplanetary discs are now routinely observed and exoplanets, after the numerous indirect discoveries, are starting to be directly imaged. To better understand the planet formation process, the next step is the detection of forming planets or of signposts of young planets still in their disc, such as gaps. A spectacular example is the Atacama Large Millimeter/submillimeter Array (ALMA) science verification image of HL Tau showing numerous gaps and rings in its disc. To study the observability of planet gaps, we ran 3D hydrodynamical simulations of a gas and dust disc containing a 5 MJ gap-opening planet and characterized the spatial distribution of migrating, growing and fragmenting dust grains. We then computed the corresponding synthetic images for ALMA. For a value of the dust fragmentation threshold of 15 m s-1 for the collisional velocity, we identify for the first time a self-induced dust pile-up in simulations taking fragmentation into account. This feature, in addition to the easily detected planet gap, causes a second apparent gap that could be mistaken for the signature of a second planet. It is therefore essential to be cautious in the interpretation of gap detections.

  11. UNVEILING THE DUST NUCLEATION ZONE OF IRC+10216 WITH ALMA

    SciTech Connect

    Cernicharo, J.; Daniel, F.; Goicoechea, J. R.; Castro-Carrizo, A.; Guélin, M.; Agundez, M.; Marcelino, N.; Joblin, C.

    2013-12-01

    We report the detection in IRC+10216 of lines of HNC J = 3 – 2 pertaining to nine excited vibrational states with energies up to ∼5300 K. The spectrum, observed with ALMA, also shows a surprising large number of narrow, unidentified lines that arise in the vicinity of the star. The HNC data are interpreted through a 1D-spherical non-local radiative transfer model, coupled to a chemical model that includes chemistry at thermochemical equilibrium for the innermost regions and reaction kinetics for the external envelope. Although unresolved by the current early ALMA data, the radius inferred for the emitting region is ∼0.''06 (i.e., ≅ 3 stellar radii), similar to the size of the dusty clumps reported by IR studies of the innermost region (r < 0.''3). The derived abundance of HNC relative to H{sub 2} is 10{sup –8} < χ(HNC) <10{sup –6}, and drops quickly where the gas density decreases and the gas chemistry is dominated by reaction kinetics. Merging HNC data with that of molecular species present throughout the inner envelope, such as vibrationally excited HCN, SiS, CS, or SiO, should allow us to characterize the physical and chemical conditions in the dust formation zone.

  12. Molecular Spectroscopy and the Atacama Large Millimeter/submillimeter Array (alma)

    NASA Astrophysics Data System (ADS)

    Remijan, Anthony J.

    2009-06-01

    The next generation of powerful millimeter/submillimeter (e.g. ALMA, LMT & Herschel) and radio (GBT, NRAO's our most over-subscribed telescope, & eVLA) observatories require extensive resources to help identify and analyse spectral line transitions. The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of East Asia, Europe and North America in cooperation with the Republic of Chile. The North American ALMA Science Center (NAASC) in Charlottesville, Virginia, is responsible for supporting the science use of ALMA by the North American astronomical community (the USA via the NRAO and Canada via the National Research Council of Canada) and for research and development activities in support of future upgrades of ALMA. In this presentation, I will first present the current state of the ALMA project and the NAASC and second, the steps taken by the NA ALMA partners to address the spectroscopic needs of the observatory including project "Splatalogue". Finally, I will discuss the additional plans of the NAASC to provide tools for the analysis of spectroscopic products of the observatory, such as spectral line data cubes.

  13. Astronomers Break Ground on Atacama Large Millimeter Array (ALMA) - World's Largest Millimeter Wavelength Telescope

    NASA Astrophysics Data System (ADS)

    2003-11-01

    Scientists and dignitaries from Europe, North America and Chile are breaking ground today (Thursday, November 6, 2003) on what will be the world's largest, most sensitive radio telescope operating at millimeter wavelengths . ALMA - the "Atacama Large Millimeter Array" - will be a single instrument composed of 64 high-precision antennas located in the II Region of Chile, in the District of San Pedro de Atacama, at the Chajnantor altiplano, 5,000 metres above sea level. ALMA 's primary function will be to observe and image with unprecedented clarity the enigmatic cold regions of the Universe, which are optically dark, yet shine brightly in the millimetre portion of the electromagnetic spectrum. The Atacama Large Millimeter Array (ALMA) is an international astronomy facility. ALMA is an equal partnership between Europe and North America, in cooperation with the Republic of Chile, and is funded in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Europe by the European Southern Observatory (ESO) and Spain. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO. " ALMA will be a giant leap forward for our studies of this relatively little explored spectral window towards the Universe" , said Dr. Catherine Cesarsky , Director General of ESO. "With ESO leading the European part of this ambitious and forward-looking project, the impact of ALMA will be felt in wide circles on our continent. Together with our partners in North America and Chile, we are all looking forward to the truly outstanding opportunities that will be offered by ALMA , also to young scientists and engineers" . " The U.S. National Science Foundation joins today with our North American partner, Canada, and with the European Southern Observatory, Spain, and Chile to prepare

  14. Extending the Device Support for the ALMA Control Subsystem Code Generation Framework

    NASA Astrophysics Data System (ADS)

    Reveco, J.; Mora, M.; González, V.; Sáez, N.; Ibsen, J.; Staig, T.; Reyes, C.; Kern, J.; Juerges, T.

    2010-12-01

    The existing code generation framework in the ALMA Control subsystem provides basic and functional code for ALMA antenna devices using CAN bus as communication interface. There are also devices which use Ethernet communication. This paper explains how the code generation framework, based on openArchitectureWare, was extended to include the code generation of Ethernet control components, working on top of the ALMA Common Software (ACS) distributed control framework. In order to achieve this, a new datamodel and new class templates were created, and the device components design adapted.

  15. Linear polarization of submillimetre masers. Tracing magnetic fields with ALMA

    NASA Astrophysics Data System (ADS)

    Pérez-Sánchez, A. F.; Vlemmings, W. H. T.

    2013-03-01

    Context. Once ALMA full polarization capabilities are offered, it will become possible to perform detailed studies of polarized maser emission towards star-forming regions and late-type stars, such as (post-) asymptotic giant branch stars and young planetary nebulae. To derive the magnetic field orientation from maser linear polarization, a number of conditions involving the rate of stimulated emission R, the decay rate of the molecular state Γ, and the Zeeman frequency gΩ need to be satisfied. Aims: The goal of this work is to investigate if SiO, H2O and HCN maser emission within the ALMA frequency range can be detected with observable levels of fractional linear polarization in the regime where the Zeeman frequency is greater than the stimulated emission rate. Methods: We used a radiative transfer code to calculate the fractional linear polarization as a function of the emerging brightness temperature for a number of rotational transition of SiO, H2O and HCN that have been observed to display maser emission at submillimetre wavelengths. We assumed typical magnetic field strengths measured towards galactic star-forming regions and circumstellar envelopes of late-type stars from previous VLBI observations. Since the Landé g-factors have not been reported for the different rotational transitions we modelled, we performed our calculations assuming conservative values of the Zeeman frequency for the different molecular species. Results: Setting a lower limit for the Zeeman frequency that still satisfies the criteria gΩ > R and gΩ > Γ, we find fractional polarization levels of up to 13%, 14% and 19% for the higher J transitions analysed for SiO, H2O and HCN, respectively, without considering anisotropic pumping or any other non-Zeeman effect. These upper limits were calculated assuming a magnetic field oriented perpendicular to the direction of propagation of the maser radiation. Conclusions: According to our results, SiO, H2O, and HCN maser emission within the

  16. The high altitude qualification tests of the cryogenic and vacuum system for ALMA

    NASA Astrophysics Data System (ADS)

    Silber, Armin

    2012-09-01

    The Cryogenic System of ALMA is one of the core sub systems of the Front End low noise receiver and the failsafe operation is mandatory to ensure the successful astronomical observations. ESO has done a comprehensive test campaign on the ALMA operational site Chajnantor1 at an altitude of 5000m, to qualify this system for the harsh operational conditions. In this contribution we will present an overview of those Qualification tests which have been carried out on ALMA`s 4K Cryogenic and Vacuum System components and the additional required measures to operate the system under the special environmental conditions, respectively the operational constrains. That will include the findings concerning the optimization of the remote diagnostic and the definition of additional monitor and control parameters. The resulting solutions have considerable influence on the maintenance processes, the operational staff requirements and the reduction of the operational costs in particularly with regards to the large system number of 66 antennas.

  17. The Millimeter Astronomy Legacy Team 90 GHz Survey (MALT90) and ALMA

    NASA Astrophysics Data System (ADS)

    Foster, J.; Rathborne, J.; Jackson, J.; Longmore, S.; Whitaker, S.; Hoq, S.

    2013-10-01

    ALMA will revolutionize our understanding of star formation within our galaxy, but before we can use ALMA we need to know where to look. The Millimeter Astronomy Legacy Team 90 GHz (MALT90) Survey is a large international project to map the molecular line emission of over 2,000 dense clumps in the Galactic plane. MALT90 serves as a pathfinder mission for ALMA, providing a large public database of dense molecular clumps associated with high-mass star formation. In this proceedings, we describe the survey parameters and share early science highlights from the survey, including (1) a comparison between galactic and extragalactic star formation relations, (2) chemical trends in MALT90 clumps, (3) the distribution of high-mass star formation in the Milky Way, and (4) a discussion of the “Brick”, the target of successful ALMA Cycle 0 and Cycle 1 proposals.

  18. Oskar Kokoschka and Alma Mahler: art as diary and as therapy.

    PubMed

    Blum, Harold P

    2011-01-01

    The Austrian artist, Oskar Kokoschka, had an affair with Alma Mahler, widow of the composer Gustav Mahler, 1912-1914. This affair profoundly influenced his life and art. His palette at first brightened, with thick brush strokes and flashes of light and dark, indicating his psychological and emotional lability. Painting what he did not or could not express in words, his art of this period can be understood as an intimate visual diary of the vicissitudes of his relationship with Alma Mahler. For Kokoschka his work became a form of art therapy, following the crushing loss of Alma Mahler and near fatal physical injuries sustained in World War I. His gradual recovery was associated with his extraordinary attachment to and destruction of a lifelike effigy of Alma Mahler, thereby working through childhood trauma. PMID:26027149

  19. ALMA Observations of Anisotropic Dust Mass Loss around VY CMa

    NASA Astrophysics Data System (ADS)

    O'Gorman, E.; Vlemmings, W.; Richards, A. M. S.; Baudry, A.; De Beck, E.; Decin, L.; Harper, G. M.; Humphreys, E. M.; Kervella, P.; Khouri, T.; Muller, S.

    2015-12-01

    We present high resolution ALMA Science Verification data of the continuum emission around the highly evolved oxygen-rich red supergiant VY CMa. These data enable us to study the dust in its inner circumstellar environment at a spatial resolution of 129 mas at 321 GHz and 59 mas at 658 GHz, thus allowing us to trace dust on spatial scales down to 11 R⋆ (71 AU). Two prominent dust components are detected and resolved. We find that at least 17% of the dust mass around VY CMa is located in clumps ejected within a more quiescent roughly spherical stellar wind, with a quiescent dust mass loss rate of 5×10-6 M⊙ yr-1. The anisotropic morphology of the dust indicates a continuous, directed mass loss over a few decades, suggesting that this mass loss cannot be driven by large convection cells alone.

  20. Tiers of the maintenance concept at ALMA in operations

    NASA Astrophysics Data System (ADS)

    Rabanus, David

    2014-08-01

    The Atacama Large Millimeter/submillimeter Array finds itself in the transition into full operations. Previous construction activities are being wrapped up, and regular, repetitive maintenance and upkeep will dominate the daily life, which asks for a consolidation and streamlining of the activities at the observatory. Especially the shifting focus to the high site of the observatory deserves more attention, since assembly, integration and verification activities at the base camp have ceased by now. In parallel, adjustments in the host country's labor legislation for operations at high geographic altitudes demand a review of the way things are done. This talk outlines the underlying operational concepts, lists the limiting constraints, describes the implementation of our reactions to those, and outlines our future intentions, which will be one in a number of steps towards optimization of the productivity of the observatory. The latter is the top level goal, which the Joint ALMA Observatory (JAO) has signed up for.

  1. Measuring the Distribution and Excitation of Cometary Volatiles Using ALMA

    NASA Astrophysics Data System (ADS)

    Charnley, S. B.; Cordiner, M. A.; Remijan, A. J.; Boissier, J.; Milam, S. N.; Mumma, M. J.; Villanueva, G.; Paganini, L.; Bockelée-Morvan, D.; Biver, N.; Kuan, Y.-J.; Chuang, Y.-L.; Lis, D. C.; Crovisier, J.; Coulson, I.; Minniti, D.

    2015-12-01

    We present measurements of spatially and spectrally resolved CH3OH emission from the coma of comet C/2012 K1 (PanSTARRS) observed using the Atacama Large Millimeter/submillimeter Array (ALMA) in June 2014. The CH3OH distribution is centrally peaked, with a spatial profile consistent with production from the sublimation of ices from the nucleus. From the detection of seven strong CH3OH lines in the J=7-6 band, the line-of-sight average rotational excitation temperature (Trot) is derived as a function of distance across the coma. At the CH3OH peak, we find Trot=92±6 K, falling to about 40 K at a distance of 1000 km.

  2. Herschel and ALMA observations of AGB star envelopes

    NASA Astrophysics Data System (ADS)

    Katrien Els Decin, Leen

    2015-08-01

    The stellar winds of evolved (super)giant stars are known to be the prime birthplaces for the interstellar material in our galaxy. Fusion in the stellar interiors creates carbon, nitrogen, oxygen, and for more massive stars elements such as magnesium, sulphur etc. are synthesized. Thanks to dredge-ups in the stellar atmosphere and subsequent extensive mass loss through a stellar wind this material is injected into the interstellar medium (ISM).These stellar winds are really unique chemical laboratories in which various gas-phase and gas-dust processes create and destroy gas and dust species and hence manufacture the pristine building blocks of the ISM. The efficiency and working of these various chemical processes is ultimately linked to the dynamical processes which establish the morpho-kinematical structure of the wind. Unraveling the intriguing coupling between these macro-scale dynamical and micro-scale chemical processes is a real challenge to which recent advances in instrumentation, theoretical modeling, and laboratory experiments have contributed a lot. Thanks to their unprecedented sensitivity, spatial resolution and wavelength coverage, Herschel and ALMA have proven to be two key instruments in solving some enigmas related to AGB stellar winds. In this talk, I will give a review of some of the most recent results in the field of AGB stellar winds based on Herschel and ALMA data and I will discuss some open questions that I hope will be answered in the next decade thanks to a combined effort between instrumentation and laboratory specialists and theoretical astrophysicists.

  3. Goodbye to WIMPs: A Scalable Interface for ALMA Operations

    NASA Astrophysics Data System (ADS)

    Schwarz, J.; Pietriga, E.; Schilling, M.; Grosbol, P.

    2011-07-01

    The operators of the ALMA Observatory will monitor and control more than 50 mm/submm radio antennas and their associated instrumentation from an operations site that is separated from this hardware by 35-50 km. Software that enables them to identify trouble spots and react to failures quickly in this environment will be critical to the safe and efficient functioning of the observatory. Early commissioning of ALMA uses a operator interface implemented with a standard window, icon, menu, pointing device (WIMP) toolkit. Early experience indicates that this paradigm will not scale well as the number of antennas approaches its full complement. Operators lose time as they manipulate overlapping or tabbed windows to drill-down to detailed diagnostic data, losing a feeling for "where they are" in the process. The WIMP model reaches its limits when there is so much information to present to users that they cannot focus on details while maintaining a view from above. To simplify the operators' tasks and let them concentrate on the real issues at hand rather than continually re-organizing their use of screen space, we are replacing the existing top-level interface with a multi-scale interface that takes advantage of semantic zooming, dynamic network visualization and other advanced filtering, navigation and visualization features. Following the first of several planned participatory design workshops, we have developed prototypes to show how users' needs can be met with the kinds of navigation that become possible when the restrictions of the WIMP model are lifted. Cycles of design and implementation coupled with active user feedback will characterize this project up through deployment.

  4. JCMT in the Post-Herschel ERA of Alma

    NASA Astrophysics Data System (ADS)

    Johnstone, Doug

    2013-07-01

    The James Clerk Maxwell Telescope (JCMT), with a 15m dish, is the largest single-dish astronomical telescope in the world designed specifically to operate in the sub-mm wavelength regime. The JCMT is located close to the summit of Mauna Kea, Hawaii, at an altitude of 4092m. The most recent addition to the JCMT's suite of instruments is the 10,000 bolometer sub-mm continuum instrument: SCUBA-2. SCUBA-2 operates simultaneously with 7' x7' foot print sub-arrays at both 450 and 850-microns. SCUBA-2's wide field surveying potential, combined with a 65% shared view of the sky from both sites, makes it the ideal instrument to provide complementary data for the ALMA Project. Furthermore, the SCUBA-2 sub-millimetre wavelength coverage and angular resolution complement existing Herschel observations. A set of comprehensive surveys of the submillimetre sky is underway at the James Clerk Maxwell Telescope (JCMT) using SCUBA-2 and HARP, a heterodyne array receiver operating between 325 and 375 GHz. The JCMT Legacy Survey (JLS) is comprised of seven survey projects, and ranges in scope from the study of nearby debris disk systems, the study of star formation in nearby molecular cloud systems and more distant structures in our Galactic Plane, to the structure and composition of galaxies in our local neighbourhood and the number and evolution of submillimetre galaxies at high redshifts in the early Universe. In addition to the JLS, the COHR survey is imaging the Galactic plane in CO (3-2) and a JAC Staff-led project is using SCUBA-2 to survey the Galactic Centre. This poster highlights the significant survey capabilities of SCUBA-2 and HARP and reveals the continuing importance of the JCMT in a post-Herschel, ALMA world.

  5. ACA phase calibration scheme with the ALMA water vapor radiometers

    NASA Astrophysics Data System (ADS)

    Asaki, Yoshiharu; Matsushita, Satoki; Morita, Koh-Ichiro; Nikolic, Bojan

    2012-09-01

    In Atacama Large Millimeter/submillimeter Array (ALMA) commissioning and science verification we have conducted a series of experiments of a novel phase calibration scheme for Atacama Compact Array (ACA). In this scheme water vapor radiometers (WVRs) devoted to measurements of tropospheric water vapor content are attached to ACA’s four total-power array (TP Array) antennas surrounding the 7 m dish interferometer array (7 m Array). The excess path length (EPL) due to the water vapor variations aloft is fitted to a simple two-dimensional slope using WVR measurements. Interferometric phase fluctuations for each baseline of the 7 m Array are obtained from differences of EPL inferred from the two-dimensional slope and subtracted from the interferometric phases. In the experiments we used nine ALMA 12-m antennas. Eight of them were closely located in a 70-m square region, forming a compact array like ACA. We supposed the most four outsiders to be the TP Array while the inner 4 antennas were supposed to be the 7 m Array, so that this phase correction scheme (planar-fit) was tested and compared with the WVR phase correction. We estimated residual root-mean-square (RMS) phases for 17- to 41-m baselines after the planar-fit phase correction, and found that this scheme reduces the RMS phase to a 70 - 90 % level. The planar-fit phase correction was proved to be promising for ACA, and how high or low PWV this scheme effectively works in ACA is an important item to be clarified.

  6. Demonstration of a Data Distribution System for ALMA Data Cubes

    NASA Astrophysics Data System (ADS)

    Eguchi, S.; Kawasaki, W.; Shirasaki, Y.; Komiya, Y.; Kosugi, G.; Ohishi, M.; Mizumoto, Y.; Kobayashi, T.

    2014-05-01

    The Atacama Large Millimeter / submillimeter Array (ALMA) is the world's largest radio telescope in Chile. As a part of Japanese Virtual Observatory (JVO) system, we have been constructing a prototype of data service to distribute ALMA data, which are three or four dimensional cubes and expected to exceed 2 TB in total size, corresponding to 75 days at world-averaged Internet bandwidth of 2.6 Mbps, in the next three years. To utilize the limited bandwidth, our system adopts a higher dimensional version of so-called "deep zoom": the system generates and stores lower resolution FITS data cubes with various binning parameters in directions of both space and frequency. Users of our portal site can easily visualize and cut out those data cubes by using ALMAWebQL, which is a web application built on customized GWT. Once the FITS files are downloaded via ALMAWebQL, one can visualize them in more detail using Vissage, a Java-based FITS cube browser. We exhibited our web and desktop viewer “fresh from the oven” at the last ADASS conference (Shirasaki et al. 2013). Improvement of their performance and functionality after that made the system nearly to a practical level. The performance problem of ALMAWebQL reported last year (Eguchi et al. 2013) was overcome by optimizing the network topology and applying the just-in-time endian conversion algorithm; the latest ALMAWebQL can follow up any user actions almost in real time for files smaller than 5 GB. It also enables users to define either a sub-region or sub-frequency range and move it freely on the graphical user interface, providing more detailed information of the FITS file. In addition, the latest Vissage now supports data from other telescopes including HST, Subaru, Chandra, etc. and overlaying two images. In this paper, we introduce the latest version of our VO system.

  7. The European ALMA project: new design and technologies for innovative performances

    NASA Astrophysics Data System (ADS)

    Marchiori, G.; Rampini, F.; Lapeyre, P.

    2008-07-01

    The development process of the ALMA project from its first prototype phase to the present one of serial production, has stimulated the development of concepts of innovative engineering and manufacturing design. The technologies adopted such as the large use of composite materials, motorizations without contact (Direct Drive) etc., have allowed to obtain extreme performances with reference to the scientific/environmental context. ALMA technologies represent a new gateway for the astrophysical applications of the future.

  8. Observing the Sun with ALMA: A New Window into Solar Physics

    NASA Astrophysics Data System (ADS)

    Bastian, Timothy S.; Shimojo, Masumi; Wedemeyer-Bohm, Sven; ALMA North American Solar Development Team

    2015-01-01

    The Atacama Large Millimeter/Submillimeter Array (ALMA) is a joint North American, European, and East Asian interferometric array that opens the mm-submm wavelength part of the electromagnetic spectrum for general astrophysical exploration, providing high resolution imaging in frequency bands. Despite being a general purpose instrument, provisions have been made to enable solar observations with ALMA, thereby offering a new window into solar physics. Radiation emitted at ALMA wavelengths originates mostly from the chromosphere, which plays an important role in the transport of energy and matter and the heating of the outer layers of the solar atmosphere. Despite decades of intensive research, an understanding of the chromosphere is still elusive, and challenging to observe owing to the complicated formation mechanisms of currently available diagnostics. ALMA will change the scene substantially as it serves as a nearly linear thermometer at high spatial, temporal, and spectral resolution, enabling us to study the complex interaction of magnetic fields and shock waves and yet-to-be-discovered dynamical processes.Moreover, ALMA will play an important role in the study of energetic emissions associated with solar flares at sub-THz frequencies.This presentations introduces ALMA to the solar physcis community and motivates the science that can be addressed by ALMA using a number of examples based on 3D MHD simulations. In addition, the means by which ALMA is used to acquire and calibrate solar observations will be discussed. Finally, we encourage potential users to join us in further defining and articulating the exciting science to be explored with this fundamentally new instrument.

  9. Serendipitous ALMA Detection of a Distant CO-emitting X-Ray Bright Galaxy

    NASA Astrophysics Data System (ADS)

    Tamura, Yoichi; Saito, Toshiki; Tsuru, Takeshi G.; Uchida, Hiroyuki; Iono, Daisuke; Yun, Min S.; Espada, Daniel; Kawabe, Ryohei

    2014-02-01

    We report the detection of a distant star-forming galaxy, ALMA J010748.3-173028, which is identified by a 13σ emission line at 99.75 GHz (SΔv = 3.1 Jy km s-1), behind the nearby merging galaxies VV114 using the Atacama Large Millimeter/submillimeter Array (ALMA) Band 3. We also find an 880 μm counterpart with ALMA Band 7 (S 880μm = 11.2 mJy). A careful comparison of the intensities of the line and the continuum suggests that the line is a redshifted 12CO transition. A photometric redshift analysis using the infrared to radio data favors a CO redshift of z = 2.467, although z = 3.622 is acceptable. We also find a hard X-ray counterpart, suggesting the presence of a luminous (L X ~ 1044 erg s-1) active galactic nucleus obscured by a large hydrogen column (N H ~ 2 × 1023 cm-2 if z = 2.47). A cosmological simulation shows that the chance detection rate of a CO-emitting galaxy at z > 1 with >=1 Jy km s-1 is ~10-3 per single ALMA field of view and 7.5 GHz bandwidth at 99.75 GHz. This demonstrates that ALMA has sufficient sensitivity to find an emission-line galaxy such as ALMA J010748.3-173028 even by chance, although the likelihood of stumbling across such a source is not high.

  10. Solar Observations with the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Bastian, Timothy S.

    2015-04-01

    The Atacama Large Millimeter/Submillimeter Array (ALMA) is a joint North American, European, and East Asian project that opens the mm-submm wavelength part of the electromagnetic spectrum for general astrophysical exploration, providing high-resolution imaging in frequency bands currently ranging from 84 GHz to 950 GHz (300 microns to 3 mm). Despite being a general purpose instrument, provisions have been made to enable solar observations with ALMA. Radiation emitted at ALMA wavelengths originates mostly from the chromosphere, which plays an important role in the transport of matter and energy, and the in heating the outer layers of the solar atmosphere. Despite decades of research, the solar chromosphere remains a significant challenge: both to observe, owing to the complicated formation mechanisms of currently available diagnostics; and to understand, as a result of the complex nature of the structure and dynamics of the chromosphere. ALMA has the potential to change the scene substantially as it serves as a nearly linear thermometer at high spatial and temporal resolution, enabling us to study the complex interaction of magnetic fields and shock waves and yet-to-be-discovered dynamical processes. Moreover, ALMA will play an important role in the study of energetic emissions associated with solar flares at sub-THz frequencies.In this paper we describe recent efforts to ensure that ALMA can be usefully exploited by the scientific community to address outstanding questions in solar physics. We summarize activities by the ALMA solar development team comprised of scientists from the East Asia, North America, and Europe. These activities include instrument testing, development of calibration and imaging strategies, software requirements development, and science simulations. Opportunities for the wider community to contribute to these efforts will be highlighted.

  11. Detection of Atmospheric CO on Pluto with ALMA

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark; Lellouch, Emmanuel; Butler, Bryan; Moullet, Arielle; Moreno, Raphael; Bockelée-Morvan, Dominique; Biver, Nicolas; Fouchet, Thierry; Lis, Darek; Stern, Alan; Young, Leslie; Young, Eliot; Weaver, Hal; Boissier, Jeremie; Stansberry, John

    2015-11-01

    We observed Pluto and Charon using the Atacama Large Millimeter/submillimeter Array (ALMA) interferometer in Northern Chile on June 12.2 and June 13.15, 2015, just one month prior to the New Horizons flyby of the system. The configuration of ALMA at the time provided ~0.3" resolution, allowing separation of emission from Pluto and Charon. This project targeted multiple science goals, including a search for HCN in Pluto's atmosphere [1] and high precision measurements of the individual brightness temperatures of Pluto and Charon [2], also presented at this meeting. Here we report the high SNR detection of carbon monoxide in the atmosphere of Pluto. The CO(3-2) rotational line, at 345.796 GHz (867 μm), was observed with 117 kHz spectral resolution for 45 min (on-source) on each date, providing ~3.5mJy/channel RMS. CO emission was clearly detected on both days, with a contrast of ~65 mJy above the Pluto continuum, and ~1.8 MHz FWHM linewidth, with the combined integrated line SNR >50. The presence of CO in Pluto's atmosphere is expected due to it's presence as ice on the surface in vapor pressure equilibrium with the atmosphere (e.g. [3],[4]), and it was previously detected at modest SNR in the near-IR using the VLT [5]. A preliminary assessment based upon the CO line wings shows the fractional abundance of CO is 500-750 ppm, consistent with that found in [5]. Further, the shape of the line core emission (assuming a constant CO mixing ratio), suggests that the atmospheric temperature rises quickly from the surface to ~100-110 K in the altitude range 20-70 km but decreases above that, falling to about 70 K by 200 km altitude. A detailed line inversion analysis will be performed and results presented.[1] Lellouch et al, this meeting. [2] Butler et al., this meeting. [3] Owen et al (1993), Science, 261, pp. 745-748. [4] Spencer et al (1993), In Pluto and Charon, pp. 435-473. Univ. of Arizona Press, Tucson. [5] Lellouch et al (2011), A&A, 530, L4.

  12. Development of Balanced SIS Mixers for ALMA Band-10

    NASA Astrophysics Data System (ADS)

    Shitov, Sergey V.; Koryukin, Oleg V.; Uzawa, Yoshinory; Noguchi, Takashi; Uvarov, Andrey V.; Cohn, Ilya A.

    2006-05-01

    A few concepts of a wide-band balanced SIS mixer employing submicron-sized SIS junctions are under development for 787-950 GHz frequency range. A quasioptical DSB balanced mixer with integrated cross-slot antenna is considered as the less laborious and cheaper option. The silicon lens-antenna beam efficiency is expected above 80 % across the whole band with first-order sidelobe below -16 dB. To use the conservative horn antenna solution, a single chamber waveguide DSB balanced mixer is developed. Two equal probe-type SIS chips are inserted into a full-height waveguide through its opposite broad walls; these two mixers are driven by the signal waveguide in series. The LO current is transferred to the mixers in parallel via a capacitive probe inserted through the narrow wall of the signal waveguide from the neighboring LO waveguide. The HFSS model demonstrated the LO power coupling efficiency above -3 dB, almost perfect signal transfer and the LO cross talk below -30 dB that take into account misalignment (misbalance) of the chips. It is demonstrated numerically using Tucker's 3-port model that unequal pump of junctions of a twin-SIS mixer can lead, in spite of the perfect signal coupling, to degradation of the gain performance up to -3 dB, especially at the top of the ALMA Band-10.

  13. Resolving the planetesimal belt of HR 8799 with ALMA

    NASA Astrophysics Data System (ADS)

    Booth, Mark; Jordán, Andrés; Casassus, Simon; Hales, Antonio S.; Dent, William R. F.; Faramaz, Virginie; Matrà, Luca; Barkats, Denis; Brahm, Rafael; Cuadra, Jorge

    2016-07-01

    The star HR 8799 hosts one of the largest known debris discs and at least four giant planets. Previous observations have found evidence for a warm belt within the orbits of the planets, a cold planetesimal belt beyond their orbits and a halo of small grains. With the infrared data, it is hard to distinguish the planetesimal belt emission from that of the grains in the halo. With this in mind, the system has been observed with ALMA in band 6 (1.34 mm) using a compact array format. These observations allow the inner edge of the planetesimal belt to be resolved for the first time. A radial distribution of dust grains is fitted to the data using an MCMC method. The disc is best fitted by a broad ring between 145^{+12}_{-12} au and 429^{+37}_{-32} au at an inclination of 40^{+5}_{-6}° and a position angle of 51^{+8}_{-8}°. A disc edge at ˜145 au is too far out to be explained simply by interactions with planet b, requiring either a more complicated dynamical history or an extra planet beyond the orbit of planet b.

  14. Fast Single-Dish Scans of the Sun Using ALMA

    NASA Astrophysics Data System (ADS)

    Phillips, N.; Hills, R.; Bastian, T.; Hudson, H.; Marson, R.; Wedemeyer, S.

    2015-12-01

    We have implemented control and data-taking software that makes it possible to scan the beams of individual ALMA antennas to perform quite complex patterns while recording the signals at high rates. We conducted test observations of the Sun in September and December, 2014. The data returned have excellent quality; in particular they allow us to characterize the noise and signal fluctuations present in this kind of observation. The fast-scan experiments included both Lissajous patterns covering rectangular areas, and “double-circle” patterns of the whole disk of the Sun and smaller repeated maps of specific disk-shaped targets. With the latter we find that we can achieve roughly Nyquist sampling of the Band 6 (230 GHz) beam in 60 s over a region 300” in diameter. These maps show a peak-to-peak brightness-temperature range of up to 1000 K, while the time-series variability at any given point appears to be of order 0.5% RMS over times of a few minutes. We thus expect to be able to separate the noise contributions due to transparency fluctuations from variations in the Sun itself. Such timeseries have many advantages, in spite of the non-interferometric observations. In particular such data should make it possible to observe microflares in active regions and nanoflares in any part of the solar disk and low corona.

  15. Resolving the Planetesimal Belt of HR 8799 with ALMA

    NASA Astrophysics Data System (ADS)

    Booth, Mark; Jordán, Andrés; Casassus, Simon; Hales, Antonio S.; Dent, William R. F.; Faramaz, Virginie; Matrà, Luca; Barkats, Denis; Brahm, Rafael; Cuadra, Jorge

    2016-03-01

    The star HR 8799 hosts one of the largest known debris discs and at least four giant planets. Previous observations have found evidence for a warm belt within the orbits of the planets, a cold planetesimal belt beyond their orbits and a halo of small grains. With the infrared data, it is hard to distinguish the planetesimal belt emission from that of the grains in the halo. With this in mind, the system has been observed with ALMA in band 6 (1.34 mm) using a compact array format. These observations allow the inner edge of the planetesimal belt to be resolved for the first time. A radial distribution of dust grains is fitted to the data using an MCMC method. The disc is best fit by a broad ring between 145^{+12}_{-12} AU and 429^{+37}_{-32} AU at an inclination of 40^{+5}_{-6}° and a position angle of 51^{+8}_{-8}°. A disc edge at ˜145 AU is too far out to be explained simply by interactions with planet b, requiring either a more complicated dynamical history or an extra planet beyond the orbit of planet b.

  16. ALMA Observations of HCN and Its Isotopologues on Titan

    NASA Astrophysics Data System (ADS)

    Molter, Edward M.; Nixon, C. A.; Cordiner, M. A.; Serigano, J.; Irwin, P. G. J.; Teanby, N. A.; Charnley, S. B.; Lindberg, J. E.

    2016-08-01

    We present sub-millimeter spectra of HCN isotopologues on Titan, derived from publicly available ALMA flux calibration observations of Titan taken in early 2014. We report the detection of a new HCN isotopologue on Titan, H13C15N, and confirm an earlier report of detection of DCN. We model high signal-to-noise observations of HCN, H13CN, HC15N, DCN, and H13C15N to derive abundances and infer the following isotopic ratios: 12C/13C = 89.8 ± 2.8, 14N/15N = 72.3 ± 2.2, D/H = (2.5 ± 0.2) × 10‑4, and HCN/H13C15N = 5800 ± 270 (1σ errors). The carbon and nitrogen ratios are consistent with and improve on the precision of previous results, confirming a factor of ∼2.3 elevation in 14N/15N in HCN compared to N2 and a lack of fractionation in 12C/13C from the protosolar value. This is the first published measurement of D/H in a nitrile species on Titan, and we find evidence for a factor of ∼2 deuterium enrichment in hydrogen cyanide compared to methane. The isotopic ratios we derive may be used as constraints for future models to better understand the fractionation processes occurring in Titan’s atmosphere.

  17. A code generation framework for the ALMA common software

    NASA Astrophysics Data System (ADS)

    Troncoso, Nicolás; von Brand, Horst H.; Ibsen, Jorge; Mora, Matias; Gonzalez, Victor; Chiozzi, Gianluca; Jeram, Bogdan; Sommer, Heiko; Zamora, Gabriel; Tejeda, Alexis

    2010-07-01

    Code generation helps in smoothing the learning curve of a complex application framework and in reducing the number of Lines Of Code (LOC) that a developer needs to craft. The ALMA Common Software (ACS) has adopted code generation in specific areas, but we are now exploiting the more comprehensive approach of Model Driven code generation to transform directly an UML Model into a full implementation in the ACS framework. This approach makes it easier for newcomers to grasp the principles of the framework. Moreover, a lower handcrafted LOC reduces the error rate. Additional benefits achieved by model driven code generation are: software reuse, implicit application of design patterns and automatic tests generation. A model driven approach to design makes it also possible using the same model with different frameworks, by generating for different targets. The generation framework presented in this paper uses openArchitectureWare1 as the model to text translator. OpenArchitectureWare provides a powerful functional language that makes this easier to implement the correct mapping of data types, the main difficulty encountered in the translation process. The output is an ACS application readily usable by the developer, including the necessary deployment configuration, thus minimizing any configuration burden during testing. The specific application code is implemented by extending generated classes. Therefore, generated and manually crafted code are kept apart, simplifying the code generation process and aiding the developers by keeping a clean logical separation between the two. Our first results show that code generation improves dramatically the code productivity.

  18. Design of Balanced Mixers for ALMA Band-10

    NASA Astrophysics Data System (ADS)

    Shitov, Sergey V.; Koryukin, Oleg V.; Uzawa, Yoshinori; Noguchi, Takashi; Uvarov, Andrey V.; Bukovski, Maksim A.; Cohn, Ilya A.

    2007-06-01

    Two variants of balanced mixer employing twin-SIS structure are under development for 787-950 GHz frequency range. Easy-to-use Geometry Transformation method for modeling of superconducting microstrips is developed, compared to referenced methods and used for design of the mixers. Lens-antenna mixer is based on cross-slot antenna; it does not need any intervening optics between its lens and sub-reflector of ALMA telescope; simple yet efficient composition of lens-antenna cartridge is suggested. Compact single-chamber balanced waveguide mixer employs two SIS chips and capacitive probe for LO injection; coupling above -3 dB and signal loss below -20 dB are expected. Need in shifting of resonance frequency of twin-SIS mixer towards top of the frequency band is predicted using Tucker's theory in large-signal approximation. TRX considerably below 200 K (DSB) is simulated using high-quality hybrid SIS junction for NbTiN/Nb - AlOx - Nb/Al for Jc = 12 kA/cm2.

  19. ALMA observations of TiO2 around VY CMa

    NASA Astrophysics Data System (ADS)

    De Beck, Elvire; Vlemmings, Wouter; Muller, Sébastien; Black, John H.; O'Gorman, Eamon; Richards, Anita M. S.; Baudry, Alain; Maercker, Matthias; Decin, Leen; Humphreys, Elizabeth M.

    2016-07-01

    Titanium dioxide, TiO2, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. We present and discuss the detections of 15 emission lines of TiO2 with ALMA in the complex environment of the red supergiant VY CMa. The observations reveal a highly clumpy, anisotropic outflow in which the TiO2 emission likely traces gas exposed to the stellar radiation field. We find evidence for a roughly east-west oriented, accelerating bipolar-like structure, of which the blue component runs into and breaks up around a solid continuum component. We see a distinct tail to the south-west for some transitions, consistent with features seen in the optical and near-infrared. We find that a significant fraction of TiO2 remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa.

  20. The ALMA view of the Antennae galaxy collision

    NASA Astrophysics Data System (ADS)

    Herrera, Cinthya N.; Boulanger, Francois; Falgarone, Edith G.; Pineau des Forets, Guillaume; Garcia-Burillo, Santiago; Iono, Daisuke; Guillard, Pierre

    2015-08-01

    The Antennae galaxies are a spectacular example of a burst of star formation triggered by the encounter of two galaxies, being an ideal source to understand how the dynamics of galaxy mergers trigger the star formation. Most of the newly formed stars are observed in massive clusters, potentially the progenitors of globular clusters. In the Antennae, their formation must involve a complex interplay of merger-driven gas dynamics, turbulence fed by galaxy interaction and dissipation of the gas kinetic energy.We will present archive ALMA CO(3-2) and new 13CO(2-1) and C18O(2-1) Cycle 2 observations, at 50 pc resolution, and VLT near-IR H2 spectro-imaging observations. We will show an analysis of the excitation of the CO gas in the region where the two galaxies collide, and demonstrate that most of the H2 emission associated with this gas is shock-excited. We will focus on a compact, bright H2 source, associated with cold molecular gas and dust continuum emission, located where the velocity gradient in the interaction region is observed to be the largest. The characteristics of this source suggest that we are witnessing the formation, initiated by turbulent dissipation, of a cloud massive enough to form a super star cluster within 1 Myr.

  1. Exploring No-SQL alternatives for ALMA monitoring system

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Merino, Patricio; Peña, Leonel; Bartsch, Marcelo; Aguirre, Alvaro; Ibsen, Jorge

    2014-07-01

    The Atacama Large Millimeter /submillimeter Array (ALMA) will be a unique research instrument composed of at least 66 reconfigurable high-precision antennas, located at the Chajnantor plain in the Chilean Andes at an elevation of 5000 m. This paper describes the experience gained after several years working with the monitoring system, which has a strong requirement of collecting and storing up to 150K variables with a highest sampling rate of 20.8 kHz. The original design was built on top of a cluster of relational database server and network attached storage with fiber channel interface. As the number of monitoring points increases with the number of antennas included in the array, the current monitoring system demonstrated to be able to handle the increased data rate in the collection and storage area (only one month of data), but the data query interface showed serious performance degradation. A solution based on no-SQL platform was explored as an alternative to the current long-term storage system. Among several alternatives, mongoDB has been selected. In the data flow, intermediate cache servers based on Redis were introduced to allow faster streaming of the most recently acquired data to web based charts and applications for online data analysis.

  2. ALMA Observations of HCN and Its Isotopologues on Titan

    NASA Astrophysics Data System (ADS)

    Molter, Edward M.; Nixon, C. A.; Cordiner, M. A.; Serigano, J.; Irwin, P. G. J.; Teanby, N. A.; Charnley, S. B.; Lindberg, J. E.

    2016-08-01

    We present sub-millimeter spectra of HCN isotopologues on Titan, derived from publicly available ALMA flux calibration observations of Titan taken in early 2014. We report the detection of a new HCN isotopologue on Titan, H13C15N, and confirm an earlier report of detection of DCN. We model high signal-to-noise observations of HCN, H13CN, HC15N, DCN, and H13C15N to derive abundances and infer the following isotopic ratios: 12C/13C = 89.8 ± 2.8, 14N/15N = 72.3 ± 2.2, D/H = (2.5 ± 0.2) × 10‑4, and HCN/H13C15N = 5800 ± 270 (1σ errors). The carbon and nitrogen ratios are consistent with and improve on the precision of previous results, confirming a factor of ˜2.3 elevation in 14N/15N in HCN compared to N2 and a lack of fractionation in 12C/13C from the protosolar value. This is the first published measurement of D/H in a nitrile species on Titan, and we find evidence for a factor of ˜2 deuterium enrichment in hydrogen cyanide compared to methane. The isotopic ratios we derive may be used as constraints for future models to better understand the fractionation processes occurring in Titan’s atmosphere.

  3. Sideband separating mixer for 600-720 GHz for ALMA band 9 upgrade

    NASA Astrophysics Data System (ADS)

    Khudchenko, Andrey; Hesper, Ronald; Baryshev, Andrey; Gerlofma, Gerrit; Barkhof, Jan; Adema, Joost; Mena, Patricio; Klapwijk, Teun; Spaans, Marco

    2012-09-01

    For high-frequency observational bands like ALMA (Atacama Large Millimeter Array) Band 9 (600—720 GHz), which tend to be dominated by atmospheric noise, implementation of sideband-separating mixers can reduce, up to a factor of two, the integration time needed to reach a certain signal-to-noise ratio for spectral line observations. Because of very high oversubscription factor for observation in ALMA Band 9, an upgrade of the current Double Sideband (DSB) mixer to a Two Sideband (2SB) configuration is a promising option for future ALMA development. Here we present a developed 2SB mixer and a modified cartridge design. The 2SB mixer includes a waveguide RF hybrid block, which have been produced on a micro-milling machine and equipped with standard Band 9 SIS mixer devices. These two SIS mixers have been separately tested in DSB mode. The SSB noise temperature is within the ALMA requirements of 336 K over 80% of the band, and 500 K over the entire band. The 2SB mixer has the sideband rejection ratio better than 12 dB over the full RF band, which is also well within the ALMA specifications of 10 dB.

  4. Solar Observations with the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Kobelski, A.; ALMA Solar Development Team

    2016-04-01

    The Atacama Large Millimeter/Submillimeter Array (ALMA) is a joint North American, European, and East Asian project that opens the mm-sub mm wavelength part of the electromagnetic spectrum for general astrophysical exploration, providing high-resolution imaging in frequency bands currently ranging from 84 GHz to 950 GHz (300 microns to 3 mm). It is located in the Atacama desert in northern Chile at an elevation of 5000 m. Despite being a general purpose instrument, provisions have been made to enable solar observations with ALMA. Radiation emitted at ALMA wavelengths originates mostly from the chromosphere, which plays an important role in the transport of matter and energy, and the in heating the outer layers of the solar atmosphere. Despite decades of research, the solar chromosphere remains a significant challenge: both to observe, owing to the complicated formation mechanisms of currently available diagnostics; and to understand, as a result of the complex nature of the structure and dynamics of the chromosphere. ALMA has the potential to change the scene substantially as it serves as a nearly linear thermometer at high spatial and temporal resolution, enabling us to study the complex interaction of magnetic fields and shock waves and yet-to-be-discovered dynamical processes. Moreover, ALMA will play an important role in the study of energetic emissions associated with solar flares at sub-THz frequencies.

  5. Millimeter and Sub-millimeter High Resolution Spectroscopy: New Frontiers with ALMA

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.

    2016-06-01

    It is becoming increasingly clear that new laboratory data will be critical for the next decade of observations with the Atacama Large Millimeter Array (ALMA). The high spatial resolution offered by ALMA will probe new regions of molecular complexity, including the inner envelopes of evolved stars, regions dominated by UV radiation, and the densest cores of molecular clouds. New molecular lines will be discovered in the wide wavelength range covered by the ALMA bands, and high resolution, gas-phase spectroscopy are needed to provide crucial “rest frequencies.” In particular, highly accurate methods that measure millimeter and sub-millimeter rotational transitions, such as direct absorption and Fourier transform mm-wave techniques, are important, especially when coupled to exotic molecular production schemes. Recent ALMA studies of SH+ and larger organic species have already demonstrated the need for laboratory measurements. New laboratory work will likely be required for circumstellar refractory molecules, radicals and ions generated near photon-dominated regions (PDRs), and large, organic-type species. This talk will give an overview of current contributions of laboratory spectroscopy to ALMA observations, summarize relevant spectroscopic techniques, and provide input into future prospects and directions.

  6. The Cultural Implications of Primary Health Care and the Declaration of Alma-Ata: The Health District of Kedougou, Senegal

    ERIC Educational Resources Information Center

    Blanas, Demetri A.

    2008-01-01

    In 1978, the World Health Organization (WHO) and the international health community convoked a conference in Alma-Ata, Kazakhstan, to address global inequalities in health. The conference resulted in the publication of the "Declaration of Alma-Ata," which made the ambitious call "for urgent action by all governments, all health and development…

  7. First North American Antenna Enables Next Phase in Joint ALMA Observatory

    NASA Astrophysics Data System (ADS)

    2009-02-01

    Astronomers celebrated today the formal acceptance of the first North American antenna by the Joint ALMA Observatory. ALMA, the Atacama Large Millimeter/submillimeter Array, is a gathering armada of short-wavelength radio telescopes whose combined power will enable astronomers to probe with unprecedented sharpness phenomena and regions that are beyond the reach of visible-light telescopes. The observatory is being assembled high in the Chilean Andes by a global partnership. The 12-meter-diameter antenna delivered today is the first of twenty-five being provided by North America’s ALMA partners, whose efforts are led by the National Radio Astronomy Observatory (NRAO) and supported by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada and the National Science Council of Taiwan. The antenna was manufactured by General Dynamics SATCOM Technologies. The acceptance comes just weeks after the first ALMA antenna, produced under the direction of the National Astronomical Observatory of Japan on behalf of ALMA’s East Asian partners, was handed over to the observatory. “These ALMA antennas are technological marvels,” said Thijs de Graauw, ALMA Director. “They are more precise and more capable than any ever made. Their performance in the harsh winds and temperatures of our high-altitude site bodes well for the observatory’s future.” A single 12-meter antenna’s dish is bigger than the largest optical telescope’s reflective mirror, but to match the sharpness achieved by an optical telescope, a millimeter-wavelength dish would have to be impossibly large, miles across. ALMA will combine signals from dozens of antennas spread across miles of desert to synthesize the effective sharpness of such a single, gigantic antenna. The process involves analysis of the ways in which the signals coming from each antenna interfere with one another, and is called interferometry. “This is a major milestone for the ALMA

  8. The European ALMA Regional Centre Network: A Geographically Distributed User Support Model

    NASA Astrophysics Data System (ADS)

    Hatziminaoglou, E.; Zwaan, M.; Andreani, P.; Barta, M.; Bertoldi, F.; Brand, J.; Gueth, F.; Hogerheijde, M.; Maercker, M.; Massardi, M.; Muehle, S.; Muxlow, Th.; Richards, A.; Schilke, P.; Tilanus, R.; Vlemmings, W.; Afonso, J.; Messias, H.

    2015-12-01

    In recent years there has been a paradigm shift from centralised to geographically distributed resources. Individual entities are no longer able to host or afford the necessary expertise in-house, and, as a consequence, society increasingly relies on widespread collaborations. Although such collaborations are now the norm for scientific projects, more technical structures providing support to a distributed scientific community without direct financial or other material benefits are scarce. The network of European ALMA Regional Centre (ARC) nodes is an example of such an internationally distributed user support network. It is an organised effort to provide the European ALMA user community with uniform expert support to enable optimal usage and scientific output of the ALMA facility. The network model for the European ARC nodes is described in terms of its organisation, communication strategies and user support.

  9. ALMA Reveals a Compact Starburst Around a Hidden QSO at z˜5

    NASA Astrophysics Data System (ADS)

    Gilli, R.; Norman, C. A.; Vignali, C.

    2015-12-01

    We present ALMA 1.3mm observations of XID403, an SMG at z=4.75 in the Chandra Deep Field South hosting a heavily obscured, Compton-thick QSO. The ALMA data show that the dust heated by star formation is distributed within ˜0.9 kpc from the nucleus (effective radius). The SFR and dust temperature obtained from the Herschel+ALMA far-IR SED, reveal a warm and compact starburst with surface density of 200 M⊙ yr-1 kpc-2. Our analysis suggest that, besides the mass, SFR and gas consumption timescale, objects like XID403 have also the right size to be the progenitors of the compact quiescent massive galaxies seen at z˜3. It is finally shown that the density of the gas co-spatial with the dust provides a substantial contribution to the absorbing column density towards the QSO as measured from the X-rays.

  10. Photonic Local Oscillator Test System for Atacama Large Millimeter/submillimeter Array (ALMA) - Summer Student Project

    NASA Astrophysics Data System (ADS)

    Gross, Cathleen; Christophe Jacques, Jason Castro, Bill Shillue

    2015-01-01

    The Atacama Large Millimeter Array (ALMA) consists of 66 high-precision antennas in Chile and draws great worldwide interest from astronomers and engineers. The objective of my summer research was to construct a subset of the installed Photonic Local Oscillator (LO) test station at the National Radio Astronomy Observatory (NRAO) in Charlottesville, VA. Installation of a full test system expedites the preparation of a fifth Laser Synthesizer (LS) for integration in the ALMA system. By utilizing the capabilities and partnership of fiber optics and electronics, the Charlottesville, Central LO Test System (cvCLOTS) was completed to test the LS, troubleshoot future malfunctioning parts, and creates an opportunity for other future ALMA upgrades.

  11. The ALMA Common Software as a Basis for a Distributed Software Development

    NASA Astrophysics Data System (ADS)

    Raffi, Gianni; Chiozzi, Gianluca; Glendenning, Brian

    The Atacama Large Millimeter Array (ALMA) is a joint project involving astronomical organizations in Europe, North America and Japan. ALMA will consist of 64 12-m antennas operating in the millimetre and sub-millimetre wavelength range, with baselines of more than 10 km. It will be located at an altitude above 5000 m in the Chilean Atacama desert. The ALMA Computing group is a joint group with staff scattered on 3 continents and is responsible for all the control and data flow software related to ALMA, including tools ranging from support of proposal preparation to archive access of automatically created images. Early in the project it was decided that an ALMA Common Software (ACS) would be developed as a way to provide to all partners involved in the development a common software platform. The original assumption was that some key middleware like communication via CORBA and the use of XML and Java would be part of the project. It was intended from the beginning to develop this software in an incremental way based on releases, so that it would then evolve into an essential embedded part of all ALMA software applications. In this way we would build a basic unity and coherence into a system that will have been developed in a distributed fashion. This paper evaluates our progress after 1.5 year of work, following a few tests and preliminary releases. It analyzes the advantages and difficulties of such an ambitious approach, which creates an interface across all the various control and data flow applications.

  12. Submillimeter mapping of mesospheric minor species on Venus with ALMA

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; Moreno, R.; Moullet, A.; Lellouch, E.; Fouchet, T.

    2015-08-01

    Millimeter and submillimeter heterodyne spectroscopy offers the possibility of probing the mesosphere of Venus and monitoring minor species and winds. ALMA presents a unique opportunity to map mesospheric species of Venus. During Cycle 0, we have observed Venus on November 14 and 15, 2011, using the compact configuration of ALMA. The diameter of Venus was 11″ and the illumination factor was about 90%. Maps of CO, SO, SO2 and HDO have been built from transitions recorded in the 335-347 GHz frequency range. A mean mesospheric thermal profile has been inferred from the analysis of the CO transition at the disk center, to be used in support of minor species retrieval. Maps of SO and SO2 abundance show significant local variations over the disk and contrast variations by as much as a factor 4. In the case of SO2, the spatial distribution appears more "patchy", i.e. shows short-scale structures apparently disconnected from day-side and latitudinal variations. For both molecules, significant changes occur over a timescale of one day. From the disk averaged spectrum of SO recorded on November 14 at 346.528 GHz, we find that the best fit is obtained with a cutoff in the SO vertical distribution at 88±2 km and a uniform mixing ratio of 8.0±2.0 ppb above this level. The SO2 map of November 14, derived from the weaker transition at 346.652 GHz, shows a clear maximum in the morning side at low latitudes, which is less visible in the map of November 15. We find that the best fit for SO2 is obtained for a cutoff in the vertical distribution at 88±3 km and a uniform mixing ratio of 12.0±3.5 ppb above this level. The HDO maps retrieved from the 335.395 GHz show some enhancement in the northern hemisphere, but less contrasted variations than for the sulfur species maps, with little change between November 14 and 15. Assuming a typical D/H ratio of 200 times the terrestrial value in the mesosphere of Venus, we find that the disk averaged HDO spectrum is best fitted with a

  13. The Early ALMA View of the FU Ori Outburst System

    NASA Astrophysics Data System (ADS)

    Hales, A. S.; Corder, S. A.; Dent, W. R. D.; Andrews, S. M.; Eisner, J. A.; Cieza, L. A.

    2015-10-01

    We have obtained ALMA Band 7 observations of the FU Ori outburst system at a 0.″6 × 0.″5 resolution to measure the link between the inner disk instability and the outer disk through submillimeter continuum and molecular line observations. Our observations detect continuum emission that can be well-modeled by two unresolved sources located at the position of each binary component. The interferometric observations recover the entire flux reported in previous single-dish studies, ruling out the presence of a large envelope. Assuming that the dust is optically thin, we derive disk dust masses of 2 × 10‑4 M⊙ and 8× {10}-5 M⊙ for the north and south components, respectively. We place limits on the disks’ radii of r < 45 AU. We report the detection of molecular emission from 12CO(3-2), HCO+(4-3), and from HCN(4-3). The 12CO appears widespread across the two binary components and is slightly more extended than the continuum emission. The denser gas tracer HCO+ peaks close to the position of the southern binary component, while HCN appears to be peaked at the position of the northern component. This suggests that the southern binary component is embedded in denser molecular material, consistent with previous studies that indicate a heavily reddened object. At this angular resolution, any interaction between the two unresolved disk components cannot be disentangled. Higher-resolution images are vital for understanding the process of star formation via rapid accretion FU Ori-type episodes.

  14. The Dynamics of Massive Starless Cores with ALMA

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan C.; Kong, Shuo; Butler, Michael J.; Caselli, Paola; Fontani, Francesco

    2013-12-01

    How do stars that are more massive than the Sun form, and thus how is the stellar initial mass function (IMF) established? Such intermediate- and high-mass stars may be born from relatively massive pre-stellar gas cores, which are more massive than the thermal Jeans mass. The turbulent core accretion model invokes such cores as being in approximate virial equilibrium and in approximate pressure equilibrium with their surrounding clump medium. Their internal pressure is provided by a combination of turbulence and magnetic fields. Alternatively, the competitive accretion model requires strongly sub-virial initial conditions that then lead to extensive fragmentation to the thermal Jeans scale, with intermediate- and high-mass stars later forming by competitive Bondi-Hoyle accretion. To test these models, we have identified four prime examples of massive (~100 M ⊙) clumps from mid-infrared extinction mapping of infrared dark clouds. Fontani et al. found high deuteration fractions of N2H+ in these objects, which are consistent with them being starless. Here we present ALMA observations of these four clumps that probe the N2D+ (3-2) line at 2.''3 resolution. We find six N2D+ cores and determine their dynamical state. Their observed velocity dispersions and sizes are broadly consistent with the predictions of the turbulent core model of self-gravitating, magnetized (with Alfvén Mach number mA ~ 1) and virialized cores that are bounded by the high pressures of their surrounding clumps. However, in the most massive cores, with masses up to ~60 M ⊙, our results suggest that moderately enhanced magnetic fields (so that mA ~= 0.3) may be needed for the structures to be in virial and pressure equilibrium. Magnetically regulated core formation may thus be important in controlling the formation of massive cores, inhibiting their fragmentation, and thus helping to establish the stellar IMF.

  15. ETHYL CYANIDE ON TITAN: SPECTROSCOPIC DETECTION AND MAPPING USING ALMA

    SciTech Connect

    Cordiner, M. A.; Palmer, M. Y.; Nixon, C. A.; Charnley, S. B.; Mumma, M. J.; Serigano, J.; Irwin, P. G. J.; Teanby, N. A.; Kisiel, Z.; Wang, K.-S.

    2015-02-10

    We report the first spectroscopic detection of ethyl cyanide (C{sub 2}H{sub 5}CN) in Titan’s atmosphere, obtained using spectrally and spatially resolved observations of multiple emission lines with the Atacama Large Millimeter/submillimeter Array (ALMA). The presence of C{sub 2}H{sub 5}CN in Titan’s ionosphere was previously inferred from Cassini ion mass spectrometry measurements of C{sub 2}H{sub 5}CNH{sup +}. Here we report the detection of 27 rotational lines from C{sub 2}H{sub 5}CN (in 19 separate emission features detected at >3σ confidence) in the frequency range 222–241 GHz. Simultaneous detections of multiple emission lines from HC{sub 3}N, CH{sub 3}CN, and CH{sub 3}CCH were also obtained. In contrast to HC{sub 3}N, CH{sub 3}CN, and CH{sub 3}CCH, which peak in Titan’s northern (spring) hemisphere, the emission from C{sub 2}H{sub 5}CN is found to be concentrated in the southern (autumn) hemisphere, suggesting a distinctly different chemistry for this species, consistent with a relatively short chemical lifetime for C{sub 2}H{sub 5}CN. Radiative transfer models show that C{sub 2}H{sub 5}CN is most concentrated at altitudes ≳200 km, suggesting production predominantly in the stratosphere and above. Vertical column densities are found to be in the range (1–5) × 10{sup 14} cm{sup −2}.

  16. A web-based dashboard for the high-level monitoring of ALMA

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; Filippi, Giorgio; Véliz, Luis; del Campo, Fernando; Ibsen, Jorge

    2014-07-01

    The ALMA radio-telescope's operations depend on the availability of high-level, easy-to-understand status information about all of its components. The ALMA Dashboard aims at providing an all-in-one-place near-real-time overview of the observatory's key elements and figures to both line and senior management. The Dashboard covers a wide range of elements beyond antennas, such as pads, correlator and central local oscillator. Data can be displayed in multiple ways, including: a table view, a compact view fitting on a single screen, a timeline showing detailed information over time, a logbook, a geographical map.

  17. Imaging the Gas Distribution and Kinematics in the Early Universe with ALMA

    NASA Astrophysics Data System (ADS)

    Brown, Robert L.

    1999-12-01

    A summary is presented of the status of the Atacama Large Millimeter Array (ALMA) project. The scientific goals for the project, in particular the goals for imaging gas in early galaxies, are used to illustrate the specific needs for the development of ALMA technology making it, uniquely, a complete imaging system. The plans to achieve this development by means of common international effort and under a common Memorandum of Understanding are noted. Finally, estimates are given of the construction timescale and the principle issues that remain to be settled are highlighted.

  18. HerMES: ALMA Imaging of Herschel-selected Dusty Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Riechers, D.; Fialkov, A.; Scudder, J.; Hayward, C. C.; Cowley, W. I.; Bock, J.; Calanog, J.; Chapman, S. C.; Cooray, A.; De Bernardis, F.; Farrah, D.; Fu, Hai; Gavazzi, R.; Hopwood, R.; Ivison, R. J.; Jarvis, M.; Lacey, C.; Loeb, A.; Oliver, S. J.; Pérez-Fournon, I.; Rigopoulou, D.; Roseboom, I. G.; Scott, Douglas; Smith, A. J.; Vieira, J. D.; Wang, L.; Wardlow, J.

    2015-10-01

    The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the limited spatial resolution of Herschel. We present 870 μm 0.″45 resolution imaging obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) of a sample of 29 HerMES DSFGs that have far-infrared (FIR) flux densities that lie between the brightest of sources found by Herschel and fainter DSFGs found via ground-based surveys in the submillimeter region. The ALMA imaging reveals that these DSFGs comprise a total of 62 sources (down to the 5σ point-source sensitivity limit in our ALMA sample; σ ≈ 0.2 {mJy}). Optical or near-infrared imaging indicates that 36 of the ALMA sources experience a significant flux boost from gravitational lensing (μ \\gt 1.1), but only six are strongly lensed and show multiple images. We introduce and make use of uvmcmcfit, a general-purpose and publicly available Markov chain Monte Carlo visibility-plane analysis tool to analyze the source properties. Combined with our previous work on brighter Herschel sources, the lens models presented here tentatively favor intrinsic number counts for DSFGs with a break near 8 {mJy} at 880 μ {{m}} and a steep fall-off at higher flux densities. Nearly 70% of the Herschel sources break down into multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sources discovered in single-dish submillimeter or FIR surveys. The ALMA counterparts to our Herschel targets are located significantly closer to each other than ALMA counterparts to sources found in the LABOCA ECDFS Submillimeter Survey. Theoretical models underpredict the excess number of sources with small separations seen in our ALMA sample. The high multiplicity rate and small projected separations between sources seen in our sample argue in favor of interactions

  19. The ALMA archive and its place in the astronomy of the future

    NASA Astrophysics Data System (ADS)

    Stoehr, Felix; Lacy, Mark; Leon, Stephane; Muller, Erik; Manning, Alisdair; Moins, Christophe; Jenkins, Dustin

    2014-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international partnership of Europe, North America and East Asia in cooperation with the Republic of Chile, is the largest astronomical project in existence. While ALMA's capabilities are ramping up, Early Science observations have started. The ALMA Archive is at the center of the operations of the telescope array and is designed to manage the 200 TB of data that will be taken each year, once the observatory is in full operations. We briefly describe design principles. The second part of this paper focuses on how astronomy is likely to evolve as the amount and complexity of data taken grows. We argue that in the future observatories will compete for astronomers to work with their data, that observatories will have to reorient themselves to from providing good data only to providing an excellent end-to-end user-experience with all its implications, that science-grade data-reduction pipelines will become an integral part of the design of a new observatory or instrument and that all this evolution will have a deep impact on how astronomers will do science. We show how ALMA's design principles are in line with this paradigm.

  20. ESO Signs Largest-Ever European Industrial Contract For Ground-Based Astronomy Project ALMA

    NASA Astrophysics Data System (ADS)

    2005-12-01

    ESO, the European Organisation for Astronomical Research in the Southern Hemisphere, announced today that it has signed a contract with the consortium led by Alcatel Alenia Space and composed also of European Industrial Engineering (Italy) and MT Aerospace (Germany), to supply 25 antennas for the Atacama Large Millimeter Array (ALMA) project, along with an option for another seven antennas. The contract, worth 147 million euros, covers the design, manufacture, transport and on-site integration of the antennas. It is the largest contract ever signed in ground-based astronomy in Europe. The ALMA antennas present difficult technical challenges, since the antenna surface accuracy must be within 25 microns, the pointing accuracy within 0.6 arc seconds, and the antennas must be able to be moved between various stations on the ALMA site. This is especially remarkable since the antennas will be located outdoor in all weather conditions, without any protection. Moreover, the ALMA antennas can be pointed directly at the Sun. ALMA will have a collecting area of more than 5,600 square meters, allowing for unprecedented measurements of extremely faint objects. The signing ceremony took place on December 6, 2005 at ESO Headquarters in Garching, Germany. "This contract represents a major milestone. It allows us to move forward, together with our American and Japanese colleagues, in this very ambitious and unique project," said ESO's Director General, Dr. Catherine Cesarsky. "By building ALMA, we are giving European astronomers access to the world's leading submillimetre facility at the beginning of the next decade, thereby fulfilling Europe's desire to play a major role in this field of fundamental research." Pascale Sourisse, Chairman and CEO of Alcatel Alenia Space, said: "We would like to thank ESO for trusting us to take on this new challenge. We are bringing to the table not only our recognized expertise in antenna development, but also our long-standing experience in

  1. Massive and dusty Hα emitters in protocluster revealed by ALMA and JVLA

    NASA Astrophysics Data System (ADS)

    Lee, Minju

    We investigate the physical properties of Hα emitters (HAEs) associated to the protocluster 4C23.56 at z ~ 2.5 using continuum observations at submm (270 GHz) and radio (3 GHz) frequencies with Atacama Large Mm/submm Array (ALMA) and K. Jansky Very Large Array (JVLA). For more details see Lee et al. (in prep).

  2. Alternative Learning Methodologies through Academics (Project ALMA). 1991-92 Final Evaluation Profile. OREA Report.

    ERIC Educational Resources Information Center

    Clark, Andrew

    Under Title VII of the Elementary and Secondary Education Act, Project Alternative Learning Methodologies through Academics (Project ALMA) in New York City was evaluated. It was designed to emphasize acquisition of English language and mathematics and computer skills. High school students were to take English as a Second Language (ESL) and…

  3. Alternative Learning Methodologies through Academics (Project ALMA). Final Evaluation Report, 1993-94. OER Report.

    ERIC Educational Resources Information Center

    Roman, Elliott M.

    The Alternative Learning Methodologies through Academics Project (Project ALMA) was an Elementary and Secondary Education Act Title VII-funded project in its fourth year of operation in two high schools in Queens and the Bronx (New York). The program served 436 Spanish-speaking students, most of whom were of limited English proficiency.…

  4. Alma Reed: A Unique Bicultural Bridge between North American and Mexican Cultures in the Twentieth Century.

    ERIC Educational Resources Information Center

    Finer, Neal

    Alma Reed, a Californian who became a noted figure in Mexican art history, was a bicultural individual who introduced famed Mexican muralists to the United States art world and who became a legendary figure in Mexican folklore from the 1920s through the 1960s. This paper traces her career. (JB)

  5. Equilibrium chemical reaction of supersonic hydrogen-air jets (the ALMA computer program)

    NASA Technical Reports Server (NTRS)

    Elghobashi, S.

    1977-01-01

    The ALMA (axi-symmetrical lateral momentum analyzer) program is concerned with the computation of two dimensional coaxial jets with large lateral pressure gradients. The jets may be free or confined, laminar or turbulent, reacting or non-reacting. Reaction chemistry is equilibrium.

  6. The Latin Grammys and the ALMAs: Awards Programs, Cultural Epideictic, and Intercultural Pedagogy.

    ERIC Educational Resources Information Center

    Gonzalez, Alberto; Heuman, Amy N.

    2003-01-01

    Examines the Latin Grammy Awards and the ALMA Awards as media texts that can be used as course content on Latino people and cultures in an intercultural communication course. Outlines a critical reformulation of epideictic rhetoric, provides background on the two programs, and interprets their import as epideictic discourse. (Contains 25…

  7. Solar ALMA observations - A revolutionizing new view at our host star

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Brajsa, Roman; Bastian, Timothy S.; Barta, Miroslav; Hales, Antonio; Yagoubov, Pavel; Hudson, Hugh; Loukitcheva, Maria; Fleishman, Gregory

    2015-08-01

    Observations of the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA) have a large potential for revolutionizing our understanding of our host star with far reaching implications for stars in general. The radiation emitted at ALMA wavelengths originates mostly from the chromosphere - a complex and dynamic layer between the photosphere and the corona, which plays an important role in the transport of energy and matter and the heating of the outer layers of the solar atmosphere.Despite decades of intensive research, the chromosphere is still elusive and challenging to observe owing to the complicated formation mechanisms of currently available diagnostics. ALMA will change the scene substantially as it serves as a nearly linear thermometer at high spatial, temporal, and spectral resolution, enabling us to study the complex interaction of magnetic fields and shock waves and yet-to-be-discovered dynamical processes. Furthermore, radio recombination and molecular lines may have great diagnostic potential but need to be investigated first. These unprecedented capabilities promise important new findings for a large range of topics in solar physics including the structure, dynamics and energy balance of quiet Sun regions, active regions and sunspots, flares and prominences. As a part of ongoing development studies, an international network has been initiated, which aims at defining and preparing key solar science with ALMA through simulation studies: SSALMON -- Solar Simulations for the Atacama Large Millimeter Observatory Network (http://ssalmon.uio.no). Here, we give an overview of potential science cases.

  8. ALMA finds dew drops in the dusty spider's web

    NASA Astrophysics Data System (ADS)

    Gullberg, Bitten; Lehnert, Matthew D.; De Breuck, Carlos; Branchu, Steve; Dannerbauer, Helmut; Drouart, Guillaume; Emonts, Bjorn; Guillard, Pierre; Hatch, Nina; Nesvadba, Nicole P. H.; Omont, Alain; Seymour, Nick; Vernet, Joël

    2016-06-01

    We present 0.̋5 resolution ALMA detections of the observed 246 GHz continuum, [CI] 3P2→3P1 fine structure line ([CI]2-1), CO(7-6), and H2O lines in the z = 2.161 radio galaxy MRC1138-262, the so-called Spiderweb galaxy. We detect strong [CI]2-1 emission both at the position of the radio core, and in a second component ~4 kpc away from it. The 1100 km s-1 broad [CI]2-1 line in this latter component, combined with its H2 mass of 1.6 × 1010 M⊙, implies that this emission must come from a compact region <60 pc, possibly containing a second active galactic nucleus (AGN). The combined H2 mass derived for both objects, using the [CI]2-1 emission, is 3.3 × 1010 M⊙. The total CO(7-6)/[CI]2-1 line flux ratio of 0.2 suggests a low excitation molecular gas reservoir and/or enhanced atomic carbon in cosmic ray dominated regions. We detect spatially-resolved H2O 211-202 emission - for the first time in a high-z unlensed galaxy - near the outer radio lobe to the east, and near the bend of the radio jet to the west of the radio galaxy. No underlying 246 GHz continuum emission is seen at either position. We suggest that the H2O emission is excited in the cooling region behind slow (10-40 km s-1) shocks in dense molecular gas (103-5 cm-3). The extended water emission is likely evidence of the radio jet's impact on cooling and forming molecules in the post-shocked gas in the halo and inter-cluster gas, similar to what is seen in low-z clusters and other high-z radio galaxies. These observations imply that the passage of the radio jet in the interstellar and inter-cluster medium not only heats gas to high temperatures, as is commonly assumed or found in simulations, but also induces cooling and dissipation, which can lead to substantial amounts of cold dense molecular gas. The formation of molecules and strong dissipation in the halo gas of MRC1138-262 may explain both the extended diffuse molecular gas and the young stars observed around MRC1138-262. The reduced data cubes

  9. The dynamics of massive starless cores with ALMA

    SciTech Connect

    Tan, Jonathan C.; Kong, Shuo; Butler, Michael J.; Caselli, Paola; Fontani, Francesco

    2013-12-20

    How do stars that are more massive than the Sun form, and thus how is the stellar initial mass function (IMF) established? Such intermediate- and high-mass stars may be born from relatively massive pre-stellar gas cores, which are more massive than the thermal Jeans mass. The turbulent core accretion model invokes such cores as being in approximate virial equilibrium and in approximate pressure equilibrium with their surrounding clump medium. Their internal pressure is provided by a combination of turbulence and magnetic fields. Alternatively, the competitive accretion model requires strongly sub-virial initial conditions that then lead to extensive fragmentation to the thermal Jeans scale, with intermediate- and high-mass stars later forming by competitive Bondi-Hoyle accretion. To test these models, we have identified four prime examples of massive (∼100 M {sub ☉}) clumps from mid-infrared extinction mapping of infrared dark clouds. Fontani et al. found high deuteration fractions of N{sub 2}H{sup +} in these objects, which are consistent with them being starless. Here we present ALMA observations of these four clumps that probe the N{sub 2}D{sup +} (3-2) line at 2.''3 resolution. We find six N{sub 2}D{sup +} cores and determine their dynamical state. Their observed velocity dispersions and sizes are broadly consistent with the predictions of the turbulent core model of self-gravitating, magnetized (with Alfvén Mach number m{sub A} ∼ 1) and virialized cores that are bounded by the high pressures of their surrounding clumps. However, in the most massive cores, with masses up to ∼60 M {sub ☉}, our results suggest that moderately enhanced magnetic fields (so that m{sub A} ≅ 0.3) may be needed for the structures to be in virial and pressure equilibrium. Magnetically regulated core formation may thus be important in controlling the formation of massive cores, inhibiting their fragmentation, and thus helping to establish the stellar IMF.

  10. Measuring turbulence in TW Hydrae with ALMA: methods and limitations

    NASA Astrophysics Data System (ADS)

    Teague, R.; Guilloteau, S.; Semenov, D.; Henning, Th.; Dutrey, A.; Piétu, V.; Birnstiel, T.; Chapillon, E.; Hollenbach, D.; Gorti, U.

    2016-07-01

    Aims: We aim to obtain a spatially resolved measurement of velocity dispersions in the disk of TW Hya. Methods: We obtained images with high spatial and spectral resolution of the CO J = 2-1, CN N = 2-1 and CS J = 5-4 emission with ALMA in Cycle 2. The radial distribution of the turbulent broadening was derived with two direct methods and one modelling approach. The first method requires a single transition and derives Tex directly from the line profile, yielding a vturb. The second method assumes that two different molecules are co-spatial, which allows using their relative line widths for calculating Tkin and vturb. Finally we fitted a parametric disk model in which the physical properties of the disk are described by power laws, to compare our direct methods with previous values. Results: The two direct methods were limited to the outer r > 40 au disk because of beam smear. The direct method found vturb to range from ≈130 m s-1 at 40 au, and to drop to ≈50 m s-1 in the outer disk, which is qualitatively recovered with the parametric model fitting. This corresponds to roughly 0.2-0.4 cs. CN was found to exhibit strong non-local thermal equilibrium effects outside r ≈ 140 au, so that vturb was limited to within this radius. The assumption that CN and CS are co-spatial is consistent with observed line widths only within r ≲ 100 au, within which vturb was found to drop from 100 m s-1 (≈0.4 cs) to zero at 100 au. The parametric model yielded a nearly constant 50 m s-1 for CS (0.2-0.4 cs). We demonstrate that absolute flux calibration is and will be the limiting factor in all studies of turbulence using a single molecule. Conclusions: The magnitude of the dispersion is comparable with or below that predicted by the magneto-rotational instability theory. A more precise comparison would require reaching an absolute calibration precision of about 3%, or finding a suitable combination of light and heavy molecules that are co-located in the disk. The reduced

  11. NRAO welcomes new Head of the North American ALMA Science Center

    NASA Astrophysics Data System (ADS)

    2008-09-01

    The National Radio Astronomy Observatory (NRAO) has announced the appointment of Dr. Carol Jean Lonsdale as the Observatory's new Assistant Director for the North American ALMA Science Center (NAASC). As NAASC head, Lonsdale will lead the team that will enable North American astronomers to exploit the capabilities of the Atacama Large Millimeter/submillimeter Array (ALMA), a powerful new international astronomical facility under construction in the high-altitude Atacama Desert of northeastern Chile. Dr. Carol Lonsdale Dr. Carol Lonsdale CREDIT: NRAO/AUI/NSF "With ALMA, our understanding of such crucial processes as the formation of galaxies, stars, and planetary systems is going to take a giant leap. I look forward to leading the people here at NRAO who are working to make ALMA accessible to a wide range of science users," said Lonsdale. Lonsdale comes to NRAO with an extensive background in overseeing large astronomical projects. She has held senior positions at the Infrared Processing and Analysis Center (IPAC) of the California Institute of Technology, where she served as Senior Research Scientist, Head of Science Staff, and Manager of the Wide-Field Infrared Explorer and Infrared Science Archive. She has been a science team member on the Infrared-Red Astronomy Satellite, Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer, and other missions. "Carol brings a new dimension to the NAASC, with broad experience in user support of space infrared missions at IPAC and world-class scientific leadership in the study of star forming galaxies," said Christopher Carilli, who headed the NAASC prior to his new appointment as NRAO Chief Scientist. When completed in 2012, ALMA will be an array of at least 66 high-precision radio telescopes that will image faint millimeter- and submillimeter-wavelength light emitted by cold objects in the Universe, such as molecular clouds where stars are forming. It will also study warmer objects in the early Universe whose infrared

  12. Bulk data transfer distributer: a high performance multicast model in ALMA ACS

    NASA Astrophysics Data System (ADS)

    Cirami, R.; Di Marcantonio, P.; Chiozzi, G.; Jeram, B.

    2006-06-01

    A high performance multicast model for the bulk data transfer mechanism in the ALMA (Atacama Large Millimeter Array) Common Software (ACS) is presented. The ALMA astronomical interferometer will consist of at least 50 12-m antennas operating at millimeter wavelength. The whole software infrastructure for ALMA is based on ACS, which is a set of application frameworks built on top of CORBA. To cope with the very strong requirements for the amount of data that needs to be transported by the software communication channels of the ALMA subsystems (a typical output data rate expected from the Correlator is of the order of 64 MB per second) and with the potential CORBA bottleneck due to parameter marshalling/de-marshalling, usage of IIOP protocol, etc., a transfer mechanism based on the ACE/TAO CORBA Audio/Video (A/V) Streaming Service has been developed. The ACS Bulk Data Transfer architecture bypasses the CORBA protocol with an out-of-bound connection for the data streams (transmitting data directly in TCP or UDP format), using at the same time CORBA for handshaking and leveraging the benefits of ACS middleware. Such a mechanism has proven to be capable of high performances, of the order of 800 Mbits per second on a 1Gbit Ethernet network. Besides a point-to-point communication model, the ACS Bulk Data Transfer provides a multicast model. Since the TCP protocol does not support multicasting and all the data must be correctly delivered to all ALMA subsystems, a distributer mechanism has been developed. This paper focuses on the ACS Bulk Data Distributer, which mimics a multicast behaviour managing data dispatching to all receivers willing to get data from the same sender.

  13. Assembly, integration, and verification (AIV) in ALMA: series processing of array elements

    NASA Astrophysics Data System (ADS)

    Lopez, Bernhard; Jager, Rieks; Whyborn, Nicholas D.; Knee, Lewis B. G.; McMullin, Joseph P.

    2012-09-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a joint project between astronomical organizations in Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA will consist of at least 54 twelve-meter antennas and 12 seven-meter antennas operating as an aperture synthesis array in the (sub)millimeter wavelength range. It is the responsibility of ALMA AIV to deliver the fully assembled, integrated, and verified antennas (array elements) to the telescope array. After an initial phase of infrastructure setup AIV activities began when the first ALMA antenna and subsystems became available in mid 2008. During the second semester of 2009 a project-wide effort was made to put in operation a first 3- antenna interferometer at the Array Operations Site (AOS). In 2010 the AIV focus was the transition from event-driven activities towards routine series production. Also, due to the ramp-up of operations activities, AIV underwent an organizational change from an autonomous department into a project within a strong matrix management structure. When the subsystem deliveries stabilized in early 2011, steady-state series processing could be achieved in an efficient and reliable manner. The challenge today is to maintain this production pace until completion towards the end of 2013. This paper describes the way ALMA AIV evolved successfully from the initial phase to the present steady-state of array element series processing. It elaborates on the different project phases and their relationships, presents processing statistics, illustrates the lessons learned and relevant best practices, and concludes with an outlook of the path towards completion.

  14. Revised spectroscopic parameters of SH+ from ALMA and IRAM 30 m observations

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Goicoechea, Javier R.; Cernicharo, José; Agúndez, Marcelino; Pety, Jérôme; Cuadrado, Sara; Gerin, Maryvonne; Dumas, Gaëlle; Chapillon, Edwige

    2014-09-01

    Hydrides represent the first steps of interstellar chemistry. Sulfanylium (SH+), in particular, is a key tracer of energetic processes. We used ALMA and the IRAM 30 m telescope to search for the lowest frequency rotational lines of SH+ toward the Orion Bar, the prototypical photo-dissociation region illuminated by a strong UV radiation field. On the basis of previous Herschel/HIFI observations of SH+, we expected to detect emission of the two SH+ hyperfine structure (HFS) components of the NJ = 10-01 fine structure (FS) component near 346 GHz. While we did not observe any lines at the frequencies predicted from laboratory data, we detected two emission lines, each ~15 MHz above the SH+ predictions and with relative intensities and HFS splitting expected for SH+. The rest frequencies of the two newly detected lines are more compatible with the remainder of the SH+ laboratory data than the single line measured in the laboratory near 346 GHz and previously attributed to SH+. Therefore, we assign these new features to the two SH+ HFS components of the NJ = 10-01 FS component and re-determine its spectroscopic parameters, which will be useful for future observations of SH+, in particular if its lowest frequency FS components are studied. Our observations demonstrate the suitability of these lines for SH+ searches at frequencies easily accessible from the ground. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2012.1.00352.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.This paper makes use of observations obtained with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.org

  15. The ALMA common software: a developer-friendly CORBA-based framework

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Jeram, Bogdan; Sommer, Heiko; Caproni, Alessandro; Plesko, Mark; Sekoranja, Matej; Zagar, Klemen; Fugate, David W.; Di Marcantonio, Paolo; Cirami, Roberto

    2004-09-01

    The ALMA Common Software (ACS) is a set of application frameworks built on top of CORBA. It provides a common software infrastructure to all partners in the ALMA collaboration. The usage of ACS extends from high-level applications such as the Observation Preparation Tool [7] that will run on the desk of astronomers, down to the Control Software [6] domain. The purpose of ACS is twofold: from a system perspective, it provides the implementation of a coherent set of design patterns and services that will make the whole ALMA software [1] uniform and maintainable; from the perspective of an ALMA developer, it provides a friendly programming environment in which the complexity of the CORBA middleware and other libraries is hidden and coding is drastically reduced. The evolution of ACS is driven by a long term development plan, however on the 6-months release cycle the plan is adjusted based on incoming requests from ALMA subsystem development teams. ACS was presented at SPIE 2002[2]. In the two years since then, the core services provided by ACS have been extended, while the coverage of the application framework has been increased to satisfy the needs of high-level and data flow applications. ACS is available under the LGPL public license. The patterns implemented and the services provided can be of use also outside the astronomical community; several projects have already shown their interest in ACS. This paper presents the status of ACS and the progress over the last two years. Emphasis is placed on showing how requests from ACS users have driven the selection of new features.

  16. Solar ALMA: Observation-Based Simulations of the mm and sub-mm Emissions from Active Regions

    NASA Astrophysics Data System (ADS)

    Fleishman, G.; Loukitcheva, M.; Nita, G.

    2015-12-01

    We developed an efficient algorithm integrated in our 3D modeling tool, GX Simulator (Nita et al. 2015), allowing quick computation of the synthetic intensity and polarization maps of solar active regions (AR) in the ALMA spectral range.

  17. ALMA Partners Award Prototype Antenna Contracts in Europe and the USA

    NASA Astrophysics Data System (ADS)

    2000-03-01

    The European and U.S. partners in the Atacama Large Millimeter Array (ALMA) project have awarded contracts to firms in Italy and the USA, respectively, for two prototype antennas. ALMA is a planned telescope array, expected to consist of 64 millimeter-wave antennas with 12-meter diameter dishes, cf. ESO Press Release 09/99 and ESO PR Video Clip 08/99. The array will be built at a high-altitude, extremely dry mountain site in Chile's Atacama desert, and is scheduled to be completed sometime in this decade. The European partners contracted with the consortium of European Industrial Engineering and Costamasnaga (Mestre, Italy), on February 21, 2000, for the production of one prototype ALMA antenna. On February 22, 2000, Associated Universities Inc. signed a contract with Vertex Antenna Systems (Santa Clara, California), for construction of another prototype antenna. The two antennas must meet identical specifications, but will inherently be of different designs. This will ensure that the best possible technologies are incorporated into the final production antennas. Several technical challenges must be met for the antennas to perform to ALMA specifications. Each antenna must have extremely high surface accuracy (25 µm, or one-third the diameter of a human hair, over the entire 12-meter diameter). This means that, when completed, the surface accuracy of the ALMA dishes will be 20 times greater than that of the Very Large Array (VLA) antennas near Socorro (New Mexico, USA), and about 50 times greater than dish antennas for communications or radar. The ALMA antennas must also have extremely high pointing accuracy (0.6 arcseconds). An additional challenge is that the antennas, when installed at the ALMA site in Chile, will be exposed to the ravages of weather at 5000 m elevation. All previous millimeter-wavelength antennas that meet such exacting specifications for surface accuracy and pointing accuracy have been housed within telescope enclosures. The U.S. and European

  18. The Peculiar Distribution of CH3CN in IRC +10216 Seen by ALMA

    NASA Astrophysics Data System (ADS)

    Agúndez, M.; Cernicharo, J.; Quintana-Lacaci, G.; Velilla Prieto, L.; Castro-Carrizo, A.; Marcelino, N.; Guélin, M.

    2015-12-01

    IRC +10216 is a circumstellar envelope around a carbon-rich evolved star which contains a large variety of molecules. According to interferometric observations, molecules are distributed either concentrated around the central star or as a hollow shell with a radius of ˜15″. We present ALMA Cycle 0 band 6 observations of the J = 14 - 13 rotational transition of CH3CN in IRC +10216, obtained with an angular resolution of 0.″76 × 0.″61. The bulk of the emission is distributed as a hollow shell located at just ˜2″ from the star, with a void of emission in the central region up to a radius of ˜1″. This spatial distribution is markedly different from those found to date in this source for other molecules. Our analysis indicates that methyl cyanide is not formed in either the stellar photosphere or far in the outer envelope, but at radial distances as short as 1″-2″, reaching a maximum abundance of ˜0.02 molecules cm-3 at 2″ from the star. Standard chemical models of IRC +10216 predict that the bulk of CH3CN molecules should be present at a radius of ˜15″ where other species such as polyyne radicals and cyanopolyynes are observed, with an additional inner component within 1″ from the star. The non-uniform structure of the circumstellar envelope and grain surface processes are discussed as possible causes of the peculiar distribution of methyl cyanide in IRC +10216. Based on observations carried out with ALMA and the IRAM 30 m Telescope. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00229.S.

  19. The ALMA Band 9 receiver. Design, construction, characterization, and first light

    NASA Astrophysics Data System (ADS)

    Baryshev, A. M.; Hesper, R.; Mena, F. P.; Klapwijk, T. M.; van Kempen, T. A.; Hogerheijde, M. R.; Jackson, B. D.; Adema, J.; Gerlofsma, G. J.; Bekema, M. E.; Barkhof, J.; de Haan-Stijkel, L. H. R.; van den Bemt, M.; Koops, A.; Keizer, K.; Pieters, C.; Koops van het Jagt, J.; Schaeffer, H. H. A.; Zijlstra, T.; Kroug, M.; Lodewijk, C. F. J.; Wielinga, K.; Boland, W.; de Graauw, M. W. M.; van Dishoeck, E. F.; Jager, H.; Wild, W.

    2015-05-01

    Aims: We describe the design, construction, and characterization of the Band 9 heterodyne receivers (600-720 GHz) for the Atacama Large Millimeter/submillimeter Array (ALMA). First-light Band 9 data, obtained during ALMA commissioning and science verification phases, are presented as well. Methods: The ALMA Band 9 receiver units (so-called "cartridges"), which are installed in the telescope's front end, have been designed to detect and down-convert two orthogonal linear polarization components of the light collected by the ALMA antennas. The light entering the front end is refocused with a compact arrangement of mirrors, which is fully contained within the cartridge. The arrangement contains a grid to separate the polarizations and two beam splitters to combine each resulting beam with a local oscillator signal. The combined beams are fed into independent double-sideband mixers, each with a corrugated feedhorn coupling the radiation by way of a waveguide with backshort cavity into an impedance-tuned superconductor-insulator-superconductor (SIS) junction that performs the heterodyne down-conversion. Finally, the generated intermediate frequency (IF) signals are amplified by cryogenic and room-temperature HEMT amplifiers and exported to the telescope's IF back end for further processing and, finally, correlation. Results: The receivers have been constructed and tested in the laboratory and they show an excellent performance, complying with ALMA requirements. Performance statistics on all 73 Band 9 receivers are reported. Importantly, two different tunnel-barrier technologies (necessitating different tuning circuits) for the SIS junctions have been used, namely conventional AlOx barriers and the more recent high-current-density AlN barriers. On-sky characterization and tests of the performance of the Band 9 cartridges are presented using commissioning data. Continuum and line images of the low-mass protobinary IRAS 16293-2422 are presented which were obtained as part

  20. Synthetic observations of first hydrostatic cores in collapsing low-mass dense cores. II. Simulated ALMA dust emission maps

    NASA Astrophysics Data System (ADS)

    Commerçon, B.; Levrier, F.; Maury, A. J.; Henning, Th.; Launhardt, R.

    2012-12-01

    Context. First hydrostatic cores are predicted by theories of star formation, but their existence has never been demonstrated convincingly by (sub)millimeter observations. Furthermore, the multiplicity in the early phases of the star formation process is poorly constrained. Aims: The purpose of this paper is twofold. First, we seek to provide predictions for ALMA dust continuum emission maps from early Class 0 objects. Second, we show to what extent ALMA will be able to probe the fragmentation scale in these objects. Methods: Following our companion paper, we post-processed three state-of-the-art radiation-magneto-hydrodynamic 3D adaptive mesh refinement calculations to compute the emanating dust emission maps. We then produced synthetic ALMA observations of the dust thermal continuum from first hydrostatic cores. Results: We present the first synthetic ALMA observations of dust continuum emission from the first hydrostatic cores. We analyze the results given by the different bands and configurations and we discuss for which combinations of the two the first hydrostatic cores would most likely be observed. We also show that observing dust continuum emission with ALMA will help in identifying the physical processes occurring within collapsing dense cores. If the magnetic field is playing a role, the emission pattern will show evidence of a pseudo-disk and even of a magnetically driven outflow, which pure hydrodynamical calculations cannot reproduce. Conclusions: The capabilities of ALMA will enable us to make significant progress towards understanding the fragmentation at the early Class 0 stage and discovering first hydrostatic cores.

  1. ALMA observation of high-z extreme star-forming environments discovered by Planck/Herschel

    NASA Astrophysics Data System (ADS)

    Kneissl, R.

    2016-05-01

    The Comic Microwave Background satellite Planck with its High Frequency Instrument has surveyed the mm/sub-mm sky in six frequency channels from 100 to 900 GHz. A sample of 228 cold sources of the Cosmic Infrared Background was observed in follow-up with Herschel SPIRE. The majority of sources appear to be over-densities of star-forming galaxies matching the size of high-z proto-cluster regions, while a 3% fraction are individual bright, lensed galaxies. A large observing program is underway with the aim of resolving the regions into the constituent members of the Planck sources. First ALMA data have been received on one Planck/Herschel proto-cluster candidate, showing the expected large over-abundance of bright mm/sub-mm sources within the cluster region. ALMA long baseline data of the brightest lensed galaxy in the sample with > 1 Jy at 350 μm are also forthcoming.

  2. New detections of Galactic molecular absorption systems toward ALMA calibrator sources

    NASA Astrophysics Data System (ADS)

    Ando, Ryo; Kohno, Kotaro; Tamura, Yoichi; Izumi, Takuma; Umehata, Hideki; Nagai, Hiroshi

    2016-02-01

    We report on Atacama Large Millimeter/submillimeter Array (ALMA) detections of molecular absorption lines in Bands 3, 6, and 7 toward four radio-loud quasars, which were observed as the bandpass and complex gain calibrators. The absorption systems, three of which are newly detected, are found to be Galactic origin. Moreover, HCO absorption lines toward two objects are detected, which almost doubles the number of HCO absorption samples in the Galactic diffuse medium. In addition, high HCO-to-H13CO+ column density ratios are found, suggesting that the interstellar media (ISM) observed toward the two calibrators are in photodissociation regions, which observationally illustrates the chemistry of diffuse ISM driven by ultraviolet (UV) radiation. These results demonstrate that calibrators in the ALMA Archive are potential sources for the quest for new absorption systems and for detailed investigation of the nature of the ISM.

  3. Debris Disks in Nearby Young Moving Groups in the ALMA Era

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Moór, A.

    2016-01-01

    Many members of nearby young moving groups exhibit infrared excess attributed to circumstellar debris dust, formed via erosion of planetesimals. With their proximity and well-dated ages, these groups are excellent laboratories for studying the early evolution of debris dust and of planetesimal belts. ALMA can spatially resolve the disk emission, revealing the location and extent of these belts, putting constraints on planetesimal evolution models, and allowing us to study planet-disk interactions. While the main trends of dust evolution in debris disks are well-known, there is almost no information on the evolution of gas. During the transition from protoplanetary to debris state, even the origin of gas is dubious. Here we review the exciting new results ALMA provided by observing young debris disks, and discuss possible future research directions.

  4. De Herschel à Alma. Les galaxies dévoilent enfin leurs secrets.

    NASA Astrophysics Data System (ADS)

    Elbaz, David

    2016-08-01

    With deep surveys, one can measure the amount of stars born in slices of the Universe and infer a "cosmic rate of star formation." The latest estimates from the Herschel satellite show a rapid drop of star formation in galaxies since ten billion years. To understand the cause of this fall, we can now measure the interstellar reservoirs of galaxies by combining observations from Herschel and the millimeter interferometer ALMA. Early results suggest that this fall comes from the rapid consumption of interstellar matter which served as reservoir to galaxies. Thanks to the technique of interferometry, ALMA can map interstellar dust within galaxies observed at the time of the peak of cosmic star formation, ten billion years ago. We discover that the stars of the most massive galaxies are born not only at very high rates but also with an extreme concentration.

  5. VizieR Online Data Catalog: VY CMa ALMA NaCl images (Decin+, 2016)

    NASA Astrophysics Data System (ADS)

    Decin, L.; Richards, A. M. S.; Millar, T. J.; Baudry, A.; de, Beck E.; Homan, W.; Smith, N.; van de Sande, M.; Walsh, C.

    2016-07-01

    VY CMa was observed for ALMA Science Verification on 2013 16-19 August using 16-20 12-m antennas on baselines from 0.014-2.7km. The main objective was to map the H2O maser lines at 321 and 325GHz (Band 7) and 658GHz (Band 9), but several thermal lines identified with various rotational transitions of NaCl, TiO2, SO2, and SiO were also present in the spectral setting in addition to the continuum data. Four NaCl lines in the ground or first vibrational state are covered in the ALMA band 7 data. All of them are detected, albeit only two are unblended (see Table 1). (3 data files).

  6. Resolving the Extragalactic Background Light with Multi-field Deep ALMA Data

    NASA Astrophysics Data System (ADS)

    Fujimoto, S.; Ouchi, M.; Ono, Y.; Shibuya, T.; Ishigaki, M.; Momose, R.

    2015-12-01

    We explore the origin of the faint submilimeter (submm) - mm emission (< 0.1 mJy) which is thought to contribute the previously un-resolved 50% of the extra-galactic background light (EBL) around mm by making full use of our latest ALMA cycle 2 and archival cycle 0-1 multi-field deep data. With > 100 pointings in Band 6 and 7, which is largest to date, we identify 87 faint ALMA sources down to ˜ 0.01 mJy (SFRIR˜ 5M⊙ yr-1). Combining the bright source studies in literatures, we derive reliable 1.2 mm number counts in the wide range of flux density, 0.01 - 10.0 mJy, which enables us to almost fully (75 - 145%) resolve the EBL.

  7. Design and performance of mass-produced sideband separating SIS mixers for ALMA band 4 receivers

    NASA Astrophysics Data System (ADS)

    Kojima, Takafumi; Kuroiwa, Koichi; Takahashi, Toshikazu; Fujii, Yumi; Uzawa, Yoshinori; Asayama, Shin'ichiro; Noguchi, Takashi

    2015-09-01

    We have designed and mass-produced low-noise sideband separating superconductor-insulator-superconductor (SIS) mixers for the Atacama Large Millimeter/submillimeter Array (ALMA) band 4 over the frequency range of 125-163 GHz. An integrated design was adopted for the band 4 sideband separating (2SB) mixer block because of the advantages it offers in terms of compactness, reduced testing time and lower cost. The mixer chip was designed to be robust for handling errors to avoid performance degradation caused by generation of the higher order mode in the mixer chip slot. Detailed analyses revealed its robustness and ability to ensure mass production of the 2SB mixers. Using the robust mixer design in addition to well-established waveguide technologies, all of the 2SB mixers met ALMA specifications for noise temperature and image rejection ratio.

  8. Testing Wave Propagation Properties in the Solar Chromosphere with ALMA and IRIS

    NASA Astrophysics Data System (ADS)

    Fleck, Bernard; Straus, Thomas; Wedemeyer, Sven

    2016-05-01

    Waves and oscillations are interesting not only from the point of view that they can propagate energy into the chromosphere and dissipate that energy to produce non-radiative heating, they also carry information about the structure of the atmosphere in which they propagate. Since the late 80s there is substantial evidence that the chromospheric wave field is dominated by a non-propagating component, presumably resulting from wave reflection at the transition region. Observations of Doppler oscillations measured in the Ca II infrared tripet lines, Ca II K, and He 10830 all show vanishing phase lags (i.e. vanishing travel time differences) between the various lines, in particular also for frequencies above the cut-off frequency. Why is the apparent phase speed of high frequency acoustic waves in the chromosphere so high? Are these results misleading because of complex radiation transfer effects in these optically thick lines? ALMA, which acts as a linear thermometer of the solar chromosphere, will provide measurements of the local plasma conditions that should be, at least in principle, much easier to interpret. Multi-wavelength time series of ALMA observations of the temperature fluctuations of inter-network oscillations should allow travel time measurements between different heights as these disturbances propagate through the chromosphere and thus should finally settle the long-standing question about the propagation characteristics of high frequency acoustic waves in the chromosphere. We plan to combine ALMA mm-observations with high resolution IRIS observations in the Mg II h and k lines, and until ALMA observations are available, will study the expected signals using time series of mm-maps from 3D radiation hydrodynamics simulations that are being prepared within the framework of the Solar Simulations for the Atacama Large Millimeter Observatory Network (SSALMON).

  9. Detection of Lensing Substructure Using ALMA Observations of the Dusty Galaxy SDP.81

    NASA Astrophysics Data System (ADS)

    Hezaveh, Yashar D.; Dalal, Neal; Marrone, Daniel P.; Mao, Yao-Yuan; Morningstar, Warren; Wen, Di; Blandford, Roger D.; Carlstrom, John E.; Fassnacht, Christopher D.; Holder, Gilbert P.; Kemball, Athol; Marshall, Philip J.; Murray, Norman; Perreault Levasseur, Laurence; Vieira, Joaquin D.; Wechsler, Risa H.

    2016-05-01

    We study the abundance of substructure in the matter density near galaxies using ALMA Science Verification observations of the strong lensing system SDP.81. We present a method to measure the abundance of subhalos around galaxies using interferometric observations of gravitational lenses. Using simulated ALMA observations we explore the effects of various systematics, including antenna phase errors and source priors, and show how such errors may be measured or marginalized. We apply our formalism to ALMA observations of SDP.81. We find evidence for the presence of a M = 108.96±0.12 M ⊙ subhalo near one of the images, with a significance of 6.9σ in a joint fit to data from bands 6 and 7; the effect of the subhalo is also detected in both bands individually. We also derive constraints on the abundance of dark matter (DM) subhalos down to M ∼ 2 × 107 M ⊙, pushing down to the mass regime of the smallest detected satellites in the Local Group, where there are significant discrepancies between the observed population of luminous galaxies and predicted DM subhalos. We find hints of additional substructure, warranting further study using the full SDP.81 data set (including, for example, the spectroscopic imaging of the lensed carbon monoxide emission). We compare the results of this search to the predictions of ΛCDM halos, and find that given current uncertainties in the host halo properties of SDP.81, our measurements of substructure are consistent with theoretical expectations. Observations of larger samples of gravitational lenses with ALMA should be able to improve the constraints on the abundance of galactic substructure.

  10. ALMA observations of the not-so detached shell around the carbon AGB star R Sculptoris

    NASA Astrophysics Data System (ADS)

    Maercker, Matthias

    2016-07-01

    I present our ALMA observations of the CO emission around the carbon AGB star R Sculptoris. The data reveal the known detached shell and a previously unknown, binary induced, spiral shape. The observations confirm a formation of the shell during a thermal pulse about 2300 years ago. The full analysis of the ALMA data shows that the shell around R Scl in fact is entirely filled with molecular gas, and hence not as detached as previously thought. This has implications for the mass-loss rate evolution immediately after the pulse, indicating a much higher mass-loss rate than previously assumed. Comparing the ALMA images to our optical observations of polarised, dust scattered light, we further show that the distributions of the dust and gas coincide almost perfectly, implying a common evolution of the dust and gas, and constraining the wind-driving mechanism. The mass-loss process and amount of mass lost during the thermal pulse cycle affect the chemical evolution of the star, its lifetime on the AGB, and the return of heavy elements to the ISM. New high-resolution ALMA observations constrain the parameters of the binary system and the inner spiral, and will allow for a detailed hydrodynamical modelling of the gas and dust during and after the last thermal pulse. Our results present the only direct measurements of the thermal pulse evolution currently available. They greatly increase our understanding of this fundamental period of stellar evolution, and the implications it has for the chemical evolution of evolved stars, the ISM, and galaxie

  11. The ALMA Band 3 (84-116 GHz) receiver production plan

    NASA Astrophysics Data System (ADS)

    Yeung, Keith; Claude, Stéphane; Loop, David

    2008-07-01

    The NRC Herzberg Institute of Astrophysics (NRC-HIA) is currently responsible to contribute Band 3 (84-116 GHz) receivers to the international ALMA project - a partnership involving North America, Europe and, now, Asia. Not only are the technical requirements for these receivers far more stringent than those for any existing radio astronomy receivers operating at these frequencies, but the delivery schedule for these receivers is equally challenging. Since the Asian partnership joined the ALMA project in 2006, NRC-HIA has been asked to deliver an additional 11 cartridges, for a total of 73 units. Some of these new cartridges will be used for the ALMA Compact Array (ACA) and others as spares. Moreover, the project has also requested that these additional cartridges be delivered in the same time period as the original 62 units. To meet this requirement, production must increase from the existing rate of one unit every four weeks to one every two, taxing the existing production infrastructure at NRC-HIA. Additional test facilities and human resources must be planned to sustain the required production rate over the next several years. Industrial involvement is one of the important elements in our production plan. In order to supplement the existing human resources at NRC-HIA, we are planning to outsource a number of low-risk and labor-intensive tasks to industry. However, NRC-HIA will retain overall project management responsibility and will conduct all the cartridge integration and acceptance test activities in-house. This paper focuses on the resource estimation, planning and project management required to deliver the Band 3 receivers to the ALMA project on time and on budget.

  12. Detection of Lensing Substructure Using Alma Observations of the Dusty Galaxy SDP.81

    DOE PAGESBeta

    Hezaveh, Yashar D.; Dalal, Neal; Marrone, Daniel P.; Mao, Yao-Yuan; Morningstar, Warren; Wen, Di; Blandford, Roger D.; Carlstrom, John E.; Fassnacht, Christopher D.; Holder, Gilbert P.; et al

    2016-05-19

    We study the abundance of substructure in the matter density near galaxies using ALMA Science Verification observations of the strong lensing system SDP.81. We present a method to measure the abundance of subhalos around galaxies using interferometric observations of gravitational lenses. Using simulated ALMA observations we explore the effects of various systematics, including antenna phase errors and source priors, and show how such errors may be measured or marginalized. We apply our formalism to ALMA observations of SDP.81. We find evidence for the presence of a M = 108.96±0.12 M⊙ subhalo near one of the images, with a significance ofmore » 6.9σ in a joint fit to data from bands 6 and 7; the effect of the subhalo is also detected in both bands individually. We also derive constraints on the abundance of dark matter (DM) subhalos down to M ~ 2 × 107 M⊙, pushing down to the mass regime of the smallest detected satellites in the Local Group, where there are significant discrepancies between the observed population of luminous galaxies and predicted DM subhalos. We find hints of additional substructure, warranting further study using the full SDP.81 data set (including, for example, the spectroscopic imaging of the lensed carbon monoxide emission). We compare the results of this search to the predictions of ΛCDM halos, and find that given current uncertainties in the host halo properties of SDP.81, our measurements of substructure are consistent with theoretical expectations. Finally, observations of larger samples of gravitational lenses with ALMA should be able to improve the constraints on the abundance of galactic substructure.« less

  13. Dust properties across the CO snowline in the HD 163296 disk from ALMA and VLA observations

    NASA Astrophysics Data System (ADS)

    Guidi, G.; Tazzari, M.; Testi, L.; de Gregorio-Monsalvo, I.; Chandler, C. J.; Pérez, L.; Isella, A.; Natta, A.; Ortolani, S.; Henning, Th.; Corder, S.; Linz, H.; Andrews, S.; Wilner, D.; Ricci, L.; Carpenter, J.; Sargent, A.; Mundy, L.; Storm, S.; Calvet, N.; Dullemond, C.; Greaves, J.; Lazio, J.; Deller, A.; Kwon, W.

    2016-04-01

    Context. To characterize the mechanisms of planet formation it is crucial to investigate the properties and evolution of protoplanetary disks around young stars, where the initial conditions for the growth of planets are set. The high spatial resolution of Atacama Large Millimeter/submillimeter Array (ALMA) and Karl G. Jansky Very Large Array (VLA) observations now allows the study of radial variations of dust properties in nearby resolved disks and the investigation of the early stages of grain growth in disk midplanes. Aims: Our goal is to study grain growth in the well-studied disk of the young, intermediate-mass star HD 163296 where dust processing has already been observed and to look for evidence of growth by ice condensation across the CO snowline, which has already been identified in this disk with ALMA. Methods: Under the hypothesis of optically thin emission, we compare images at different wavelengths from ALMA and VLA to measure the opacity spectral index across the disk and thus the maximum grain size. We also use a Bayesian tool based on a two-layer disk model to fit the observations and constrain the dust surface density. Results: The measurements of the opacity spectral index indicate the presence of large grains and pebbles (≥1 cm) in the inner regions of the disk (inside ~50 AU) and smaller grains, consistent with ISM sizes, in the outer disk (beyond 150 AU). Re-analyzing ALMA Band 7 science verification data, we find (radially) unresolved excess continuum emission centered near the location of the CO snowline at ~90 AU. Conclusions: Our analysis suggests a grain size distribution consistent with an enhanced production of large grains at the CO snowline and consequent transport to the inner regions. Our results combined with the excess in infrared scattered light suggests there is a structure at 90 AU involving the whole vertical extent of the disk. This could be evidence of small scale processing of dust at the CO snowline.

  14. First year of ALMA site software deployment: where everything comes together

    NASA Astrophysics Data System (ADS)

    González, Víctor; Mora, Matias; Araya, Rodrigo; Arredondo, Diego; Bartsch, Marcelo; Burgos, Pablo; Ibsen, Jorge; Reveco, Johnny; Sáez, Norman; Schemrl, Anton; Sepulveda, Jorge; Shen, Tzu-Chiang; Soto, Rubén; Troncoso, Nicolás; Zambrano, Mauricio; Barriga, Nicolás; Glendenning, Brian; Raffi, Gianni; Kern, Jeff

    2010-07-01

    Starting 2009, the ALMA project initiated one of its most exciting phases within construction: the first antenna from one of the vendors was delivered to the Assembly, Integration and Verification team. With this milestone and the closure of the ALMA Test Facility in New Mexico, the JAO Computing Group in Chile found itself in the front line of the project's software deployment and integration effort. Among the group's main responsibilities are the deployment, configuration and support of the observation systems, in addition to infrastructure administration, all of which needs to be done in close coordination with the development groups in Europe, North America and Japan. Software support has been the primary interaction key with the current users (mainly scientists, operators and hardware engineers), as the software is normally the most visible part of the system. During this first year of work with the production hardware, three consecutive software releases have been deployed and commissioned. Also, the first three antennas have been moved to the Array Operations Site, at 5.000 meters elevation, and the complete end-to-end system has been successfully tested. This paper shares the experience of this 15-people group as part of the construction team at the ALMA site, and working together with Computing IPT, on the achievements and problems overcomed during this period. It explores the excellent results of teamwork, and also some of the troubles that such a complex and geographically distributed project can run into. Finally, it approaches the challenges still to come, with the transition to the ALMA operations plan.

  15. Observing the Circumstellar Environment of the Eruptive FUor/EXor Protostar V1647 Ori with ALMA

    NASA Astrophysics Data System (ADS)

    Principe, David; Cieza, Lucas A.; Zhu, Zhaohuan; Tobin, John J.; Prieto, Jose Luis

    2016-01-01

    Fu Ori (FUor) and EXor objects represent a short-lived stage of protostellar evolution characterized by intense mass accretion events which cause extreme variability in the form of outbursts. While it is well demonstrated that these objects exhibit sudden outbursts (ΔV~2-6), the mechanism causing such variability is not well understood. High spatial and spectral resolution observations of the circumstellar environment of these objects are essential to distinguish between different outbursting mechanisms. We present ALMA observations of the FUor/EXor object V1647 Ori as part of an ALMA campaign, which has observed a combined eight FUor and EXor type objects. Deeply embedded in the dark cloud LDN 1630 (L1630), V1647 Ori is one of a few FUor/EXor objects to have been extensively studied at multiple wavelengths before, during and after an outburst. We present preliminary results derived from ALMA 12CO, 13CO, C18O and continuum observations of the circumstellar environment of V1647 Ori. By measuring gas/dust masses and gas kinematics of the circumstellar disk, we investigate the potential mechanisms producing variability in these eruptive protostars during an essential, yet rarely observed, stage of pre-main sequence stellar evolution.

  16. Prototype Implementation of Web and Desktop Applications for ALMA Science Verification Data and the Lessons Learned

    NASA Astrophysics Data System (ADS)

    Eguchi, S.; Kawasaki, W.; Shirasaki, Y.; Komiya, Y.; Kosugi, G.; Ohishi, M.; Mizumoto, Y.

    2013-10-01

    ALMA is estimated to generate TB scale data during only one observation; astronomers need to identify which part of the data they are really interested in. We have been developing new GUI software for this purpose utilizing the VO interface: ALMA Web Quick Look System (ALMAWebQL) and ALMA Desktop Application (Vissage). The former is written in JavaScript and HTML5 generated from Java code by the Google Web Toolkit, and the latter is in pure Java. An essential point of our approach is how to reduce network traffic: we prepare, in advance, “compressed” FITS files of 2x2x1 (horizontal, vertical, and spectral directions, respectively) binning, 2 x 2 x 2 binning, 4 x 4 x 2 binning data, and so on. These files are hidden from users, and Web QL automatically chooses the proper one for each user operation. Through this work, we find that network traffic in our system is still a bottleneck towards TB scale data distribution. Hence we have to develop alternative data containers for much faster data processing. In this paper, we introduce our data analysis systems, and describe what we learned through the development.

  17. Virtualization in network and servers infrastructure to support dynamic system reconfiguration in ALMA

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Ovando, Nicolás.; Bartsch, Marcelo; Simmond, Max; Vélez, Gastón; Robles, Manuel; Soto, Rubén.; Ibsen, Jorge; Saldias, Christian

    2012-09-01

    ALMA is the first astronomical project being constructed and operated under industrial approach due to the huge amount of elements involved. In order to achieve the maximum through put during the engineering and scientific commissioning phase, several production lines have been established to work in parallel. This decision required modification in the original system architecture in which all the elements are controlled and operated within a unique Standard Test Environment (STE). The advance in the network industry and together with the maturity of virtualization paradigm allows us to provide a solution which can replicate the STE infrastructure without changing their network address definition. This is only possible with Virtual Routing and Forwarding (VRF) and Virtual LAN (VLAN) concepts. The solution allows dynamic reconfiguration of antennas and other hardware across the production lines with minimum time and zero human intervention in the cabling. We also push the virtualization even further, classical rack mount servers are being replaced and consolidated by blade servers. On top of them virtualized server are centrally administrated with VMWare ESX. Hardware costs and system administration effort will be reduced considerably. This mechanism has been established and operated successfully during the last two years. This experience gave us confident to propose a solution to divide the main operation array into subarrays using the same concept which will introduce huge flexibility and efficiency for ALMA operation and eventually may simplify the complexity of ALMA core observing software since there will be no need to deal with subarrays complexity at software level.

  18. ALMA CONTINUUM OBSERVATIONS OF A 30 Myr OLD GASEOUS DEBRIS DISK AROUND HD 21997

    SciTech Connect

    Moór, A.; Ábrahám, P.; Kiss, Cs.; Gabányi, K.; Juhász, A.; Schmalzl, M.; Kóspál, Á.; Apai, D.; Pascucci, I.; Csengeri, T.; Grady, C.; Henning, Th.; Hughes, A. M.

    2013-11-10

    Circumstellar disks around stars older than 10 Myr are expected to be gas-poor. There are, however, two examples of old (30-40 Myr) debris-like disks containing a detectable amount of cold CO gas. Here we present Atacama Large Millimeter/Submillimeter Array (ALMA) and Herschel Space Observatory observations of one of these disks, around HD 21997, and study the distribution and origin of the dust and its connection to the gas. Our ALMA continuum images at 886 μm clearly resolve a broad ring of emission within a diameter of ∼4.''5, adding HD 21997 to the dozen debris disks resolved at (sub)millimeter wavelengths. Modeling the morphology of the ALMA image with a radiative transfer code suggests inner and outer radii of ∼55 and ∼150 AU, and a dust mass of 0.09 M {sub ⊕}. Our data and modeling hints at an extended cold outskirt of the ring. Comparison with the morphology of the CO gas in the disk reveals an inner dust-free hole where gas nevertheless can be detected. Based on dust grain lifetimes, we propose that the dust content of this gaseous disk is of secondary origin and is produced by planetesimals. Since the gas component is probably primordial, HD 21997 is one of the first known examples of a hybrid circumstellar disk, a thus-far little studied late phase of circumstellar disk evolution.

  19. Development of a 0.6 THz SIS Receiver for ALMA

    NASA Astrophysics Data System (ADS)

    Baryshev, A. M.; van de Stadt, H.; Schaeffer, H.; Hesper, R.; Zijlstra, T.; Zuiddam, M.; Wild, W.; de Jong, L.

    2001-12-01

    The Atacama Large Millimeter Array (ALMA) requires low noise SIS receivers for frequencies from about 80 GHz to 950 GHz with very large IF bandwidth (4-12 GHz). Additional requirements for these receivers are high reliability, low cost and the possibility of series production. In this paper we report on mixer designs based on standard Nb/A10x/Nb SIS junction technology and an optics design for ALMA band 9 (602 - 720 GHz). We present the design of a tunerless balanced waveguide SIS mixer and a quasi-optical double slot-antenna mixer as well as an optical design to couple the telescope beam to the mixer. The waveguide balanced mixer is based on a magic T with integrated RF and LO feed horns. Losses in the Nb film increase at frequencies above the Nb gap frequency of 690 GHz and limit the mixer sensitivity at the high end of ALMA band 9. In this paper we present a layout concept of the optics and the mixers as well as an analysis of its RF properties which shows that efficient mixer operation is still possible across this band without changing the material of tuning elements.

  20. ALMA Spectroscopy of Titan's Atmosphere: First Detections of Vinyl Cyanide and Acetonitrile Isotopologues

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin; Y Palmer, Maureen; Nixon, Conor A.; Charnley, Steven B.; Mumma, Michael J.; Irwin, Pat G. J.; Teanby, Nick A.; Kisiel, Zbigniew; Serigano, Joseph

    2015-11-01

    Studies of Titan's atmospheric chemistry provide a unique opportunity to explore the origin and evolution of complex organic matter in primitive planetary atmospheres. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new telescope, well suited to the study of molecular emission from Titan's stratosphere and mesosphere. Here we present early results from our ongoing study to exploit the large volume of Titan data taken using ALMA in Early Science Mode (during the period 2012-2014). Combining data from multiple ALMA Band 6 observations, we obtained high-resolution mm-wave spectra with unprecedented sensitivity, enabling the first detection of vinyl cyanide (C2H3CN) in Titan's atmosphere. Initial estimates indicate a mesospheric abundance ratio with respect to ethyl cyanide (C2H5CN) of [C2H3CN]/[C2H5CN] = 0.31. In addition, we report the first detections on Titan of the 13C and 15N-substituted isotopologues of acetonitrile (13CH3CN and CH3C15N). Radiative transfer models and possible chemical formation pathways for these molecules will be discussed.

  1. Reflections on the twenty-fifth anniversary of the Alma-Ata Declaration.

    PubMed

    Banerji, Debabar

    2003-01-01

    The Alma-Ata Declaration on Primary Health Care of 1978-based on the World Health Assembly's resolution of 1977 on Health for All by the Year 2000--was a watershed in the concepts and practices of public health as a scientific discipline; it was endorsed by every country in the world, rich and poor. According to the Declaration, health is a fundamental right, to be guaranteed by the state; people should be the prime movers in shaping their health services, using and enlarging upon the capacities developed in their societies; health services should operate as an integral whole, with promotive, preventive, curative, and rehabilitative components; and any western medical technology used in non-western societies must conform to the cultural, social, economic, and epidemiological conditions of the individual countries. Since Alma-Ata, a syndicate of the rich countries and the ruling elites of the poor countries, aided by the WHO, World Bank, World Trade Organization, and other international institutions, has done much to overturn the Declaration's primary health care initiatives. The WHO's recent attempt to regain some credibility, its Commission on Macroeconomics and Health, ignored the primary health care principles of the Alma-Ata Declaration. A struggle for these principles will have to be part of the larger struggle, by like-minded individuals working in individual countries, for a just world order. PMID:14758860

  2. Chemical and Thermal Structure of Protoplanetary Disks as Observed with ALMA

    NASA Astrophysics Data System (ADS)

    Semenov, D.; Pavlyuchenkov, Ya.; Henning, Th.; Wolf, S.; Launhardt, R.

    2008-02-01

    We predict how protoplanetary disks around low-mass young stars would appear in molecular lines observed with the ALMA interferometer. Our goal is to identify those molecules and transitions that can be used to probe and distinguish between chemical and physical disk structure and to define necessary requirements for ALMA observations. Disk models with and without vertical temperature gradient as well as with uniform abundances and those from a chemical network are considered. As an example, we show the channel maps of HCO+(4-3) synthesized with a non-LTE line radiative transfer code and used as an input to the GILDAS ALMA simulator to produce noise-added realistic images. The channel maps reveal complex asymmetric patterns even for the model with uniform abundances and no vertical thermal gradient. We find that a spatial resolution of 0.2''-0.5'' and 0.5-10 hr of integration time will be needed to disentangle large-scale temperature gradients and the chemical stratification in disks in lines of abundant molecules.

  3. The Alma-Bacon County Story: A Model for Rural America. Committee Print, 92nd Congress, 2nd Session, July 24, 1972.

    ERIC Educational Resources Information Center

    Nipp, Robert E.

    Designed to illustrate the revitalization process of a small rural community via use of the Model Cities Program, this case study of Alma-Bacon County, Georgia traces Alma-Bacon's: (1) historical background; (2) community development beginnings; (3) political development; (4) outstanding problems; and (5) development plans and accomplishments…

  4. Tracing Planets in Circumstellar Discs. Observability of Large-scale Disc Structures with ALMA

    NASA Astrophysics Data System (ADS)

    Ruge, Jan Philipp; Wolf, Sebastian; Uribe, Ana L.; Klahr, Hubert H.

    2013-04-01

    Planets are assumed to form in circumstellar discs around young stellar objects. The additional gravitational potential of a planet perturbs the disc and leads to characteristic structures, i.e. spiral waves and gaps, in the disc density profile. We perform a large-scale parameter study on the observability of these planet-induced structures in circumstellar discs in the (sub)mm wavelength range for the Atacama Large (Sub)Millimeter Array (ALMA). On the basis of hydrodynamical and magneto-hydrodynamical simulations of star-disc-planet models we calculate the disc temperature structure and (sub)mm images of these systems. These are used to derive simulated ALMA maps. Because appropriate objects are frequent in the Taurus-Auriga region, we focus on a distance of 140 pc and a declination of ≈ 20°. The explored range of star-disc-planet configurations consists of six hydrodynamical simulations (including magnetic fields and different planet masses), nine disc sizes with outer radii ranging from 9 AU to 225 AU, 15 total disc masses in the range between 2.67·10-7 M⊙ and 4.10·10-2 M⊙, six different central stars and two different grain size distributions, resulting in 10 000 disc models. At almost all scales and in particular down to a scale of a few AU, ALMA is able to trace disc structures induced by planet-disc interaction or the influence of magnetic fields in the wavelength range between 0.4...2.0 mm. In most cases, the optimum angular resolution is limited by the sensitivity of ALMA. However, within the range of typical masses of protoplane tary discs (0.1 M⊙...0.001 M⊙) the disc mass has a minor impact on the observability. At the distance of 140 pc it is possible to resolve discs down to 2.67·10-6 M⊙ and trace gaps in discs with 2.67·10-4 M⊙ with a signal-to-noise ratio greater than three. In general, it is more likely to trace planet-induced gaps in magneto-hydrodynamical disc models, because gaps are wider in the presence of magnetic fields [1

  5. The ALMA CONOPS project: the impact of funding decisions on observatory performance

    NASA Astrophysics Data System (ADS)

    Ibsen, Jorge; Hibbard, John; Filippi, Giorgio

    2014-08-01

    In time when every penny counts, many organizations are facing the question of how much scientific impact a budget cut can have or, putting it in more general terms, which is the science impact of alternative (less costly) operational modes. In reply to such question posted by the governing bodies, the ALMA project had to develop a methodology (ALMA Concepts for Operations, CONOPS) that attempts to measure the impact that alternative operational scenarios may have on the overall scientific production of the Observatory. Although the analysis and the results are ALMA specific, the developed approach is rather general and provides a methodology for a cost-performance analysis of alternatives before any radical alterations to the operations model are adopted. This paper describes the key aspects of the methodology: a) the definition of the Figures of Merit (FoMs) for the assessment of quantitative science performance impacts as well as qualitative impacts, and presents a methodology using these FoMs to evaluate the cost and impact of the different operational scenarios; b) the definition of a REFERENCE operational baseline; c) the identification of Alternative Scenarios each replacing one or more concepts in the REFERENCE by a different concept that has a lower cost and some level of scientific and/or operational impact; d) the use of a Cost-Performance plane to graphically combine the effects that the alternative scenarios can have in terms of cost reduction and affected performance. Although is a firstorder assessment, we believe this approach is useful for comparing different operational models and to understand the cost performance impact of these choices. This can be used to take decision to meet budget cuts as well as in evaluating possible new emergent opportunities.

  6. The 2014 ALMA Long Baseline Campaign: Observations of Asteroid 3 Juno at 60 Kilometer Resolution

    NASA Astrophysics Data System (ADS)

    ALMA Partnership; Hunter, T. R.; Kneissl, R.; Moullet, A.; Brogan, C. L.; Fomalont, E. B.; Vlahakis, C.; Asaki, Y.; Barkats, D.; Dent, W. R. F.; Hills, R. E.; Hirota, A.; Hodge, J. A.; Impellizzeri, C. M. V.; Liuzzo, E.; Lucas, R.; Marcelino, N.; Matsushita, S.; Nakanishi, K.; Pérez, L. M.; Phillips, N.; Richards, A. M. S.; Toledo, I.; Aladro, R.; Broguiere, D.; Cortes, J. R.; Cortes, P. C.; Espada, D.; Galarza, F.; Garcia-Appadoo, D.; Guzman-Ramirez, L.; Hales, A. S.; Humphreys, E. M.; Jung, T.; Kameno, S.; Laing, R. A.; Leon, S.; Marconi, G.; Mignano, A.; Nikolic, B.; Nyman, L.-A.; Radiszcz, M.; Remijan, A.; Rodón, J. A.; Sawada, T.; Takahashi, S.; Tilanus, R. P. J.; Vila Vilaro, B.; Watson, L. C.; Wiklind, T.; De Gregorio-Monsalvo, I.; Di Francesco, J.; Mangum, J.; Francke, H.; Gallardo, J.; Garcia, J.; Gonzalez, S.; Hill, T.; Kaminski, T.; Kurono, Y.; Lopez, C.; Morales, F.; Plarre, K.; Randall, S.; van kempen, T.; Videla, L.; Villard, E.; Andreani, P.; Hibbard, J. E.; Tatematsu, K.

    2015-07-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum images of the asteroid 3 Juno obtained with an angular resolution of 0\\buildrel{\\prime\\prime}\\over{.} 042 (60 km at 1.97 AU). The data were obtained over a single 4.4 hr interval, which covers 60% of the 7.2 hr rotation period, approximately centered on local transit. A sequence of 10 consecutive images reveals continuous changes in the asteroid's profile and apparent shape, in good agreement with the sky projection of the three-dimensional model of the Database of Asteroid Models from Inversion Techniques. We measure a geometric mean diameter of 259 ± 4 km, in good agreement with past estimates from a variety of techniques and wavelengths. Due to the viewing angle and inclination of the rotational pole, the southern hemisphere dominates all of the images. The median peak brightness temperature is 215 ± 13 K, while the median over the whole surface is 197 ± 15 K. With the unprecedented resolution of ALMA, we find that the brightness temperature varies across the surface with higher values correlated to the subsolar point and afternoon areas and lower values beyond the evening terminator. The dominance of the subsolar point is accentuated in the final four images, suggesting a reduction in the thermal inertia of the regolith at the corresponding longitudes, which are possibly correlated to the location of the putative large impact crater. These results demonstrate ALMA's potential to resolve thermal emission from the surface of main belt asteroids and to measure accurately their position, geometric shape, rotational period, and soil characteristics. .

  7. ALMA OBSERVATIONS OF THE DEBRIS DISK AROUND THE YOUNG SOLAR ANALOG HD 107146

    SciTech Connect

    Ricci, L.; Carpenter, J. M.; Fu, B.; Hughes, A. M.; Corder, S.; Isella, A.

    2015-01-10

    We present the Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations at a wavelength of 1.25 mm of the debris disk surrounding the ∼100 Myr old solar analog HD 107146. The continuum emission extends from about 30 to 150 AU from the central star with a decrease in the surface brightness at intermediate radii. We analyze the ALMA interferometric visibilities using debris disk models with radial profiles for the dust surface density parameterized as (1) a single power law, (2) a single power law with a gap, and (3) a double power law. We find that models with a gap of radial width ∼8 AU at a distance of ∼80 AU from the central star, as well as double power-law models with a dip in the dust surface density at ∼70 AU provide significantly better fits to the ALMA data than single power-law models. We discuss possible scenarios for the origin of the HD 107146 debris disk using models of planetesimal belts in which the formation of Pluto-sized objects trigger disruptive collisions of large bodies, as well as models that consider the interaction of a planetary system with a planetesimal belt and spatial variation of the dust opacity across the disk. If future observations with higher angular resolution and sensitivity confirm the fully depleted gap structure discussed here, a planet with a mass of approximately a few Earth masses in a nearly circular orbit at ∼80 AU from the central star would be a possible explanation for the presence of the gap.

  8. ALMA Observations of the Debris Disk around the Young Solar Analog HD 107146

    NASA Astrophysics Data System (ADS)

    Ricci, L.; Carpenter, J. M.; Fu, B.; Hughes, A. M.; Corder, S.; Isella, A.

    2015-01-01

    We present the Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations at a wavelength of 1.25 mm of the debris disk surrounding the ~100 Myr old solar analog HD 107146. The continuum emission extends from about 30 to 150 AU from the central star with a decrease in the surface brightness at intermediate radii. We analyze the ALMA interferometric visibilities using debris disk models with radial profiles for the dust surface density parameterized as (1) a single power law, (2) a single power law with a gap, and (3) a double power law. We find that models with a gap of radial width ~8 AU at a distance of ~80 AU from the central star, as well as double power-law models with a dip in the dust surface density at ~70 AU provide significantly better fits to the ALMA data than single power-law models. We discuss possible scenarios for the origin of the HD 107146 debris disk using models of planetesimal belts in which the formation of Pluto-sized objects trigger disruptive collisions of large bodies, as well as models that consider the interaction of a planetary system with a planetesimal belt and spatial variation of the dust opacity across the disk. If future observations with higher angular resolution and sensitivity confirm the fully depleted gap structure discussed here, a planet with a mass of approximately a few Earth masses in a nearly circular orbit at ~80 AU from the central star would be a possible explanation for the presence of the gap.

  9. ALMA Resolves the Torus of NGC 1068: Continuum and Molecular Line Emission

    NASA Astrophysics Data System (ADS)

    García-Burillo, S.; Combes, F.; Ramos Almeida, C.; Usero, A.; Krips, M.; Alonso-Herrero, A.; Aalto, S.; Casasola, V.; Hunt, L. K.; Martín, S.; Viti, S.; Colina, L.; Costagliola, F.; Eckart, A.; Fuente, A.; Henkel, C.; Márquez, I.; Neri, R.; Schinnerer, E.; Tacconi, L. J.; van der Werf, P. P.

    2016-05-01

    We used the Atacama Large Millimeter Array (ALMA) to map the emission of the CO(6–5) molecular line and the 432 μm continuum emission from the 300 pc sized circumnuclear disk (CND) of the nearby Seyfert 2 galaxy NGC 1068 with a spatial resolution of ∼4 pc. These observations spatially resolve the CND and, for the first time, image the dust emission, the molecular gas distribution, and the kinematics from a 7–10 pc diameter disk that represents the submillimeter counterpart of the putative torus of NGC 1068. We fitted the nuclear spectral energy distribution of the torus using ALMA and near- and mid-infrared (NIR/MIR) data with CLUMPY torus models. The mass and radius of the best-fit solution for the torus are both consistent with the values derived from the ALMA data alone: {M}{{gas}}{{torus}}=(1+/- 0.3)× {10}5 {M}ȯ and R torus = 3.5 ± 0.5 pc. The dynamics of the molecular gas in the torus show strong non-circular motions and enhanced turbulence superposed on a surprisingly slow rotation pattern of the disk. By contrast with the nearly edge-on orientation of the H2O megamaser disk, we found evidence suggesting that the molecular torus is less inclined (i = 34°–66°) at larger radii. The lopsided morphology and complex kinematics of the torus could be the signature of the Papaloizou–Pringle instability, long predicted to likely drive the dynamical evolution of active galactic nuclei tori.

  10. ALMA OBSERVATIONS OF SPT-DISCOVERED, STRONGLY LENSED, DUSTY, STAR-FORMING GALAXIES

    SciTech Connect

    Hezaveh, Y. D.; Marrone, D. P.; Spilker, J. S.; Bothwell, M.; Fassnacht, C. D.; Vieira, J. D.; Aguirre, J. E.; Aird, K. A.; Aravena, M.; De Breuck, C.; Ashby, M. L. N.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Chapman, S. C.; and others

    2013-04-20

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 {mu}m imaging of four high-redshift (z = 2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.''5 resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1''-3'', consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpret the source structure. Lens models indicate that SPT0346-52, located at z = 5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 Multiplication-Sign 10{sup 13} L{sub Sun} and star formation surface density of 4200 M{sub Sun} yr{sup -1} kpc{sup -2}. We find magnification factors of 5 to 22, with lens Einstein radii of 1.''1-2.''0 and Einstein enclosed masses of 1.6-7.2 Multiplication-Sign 10{sup 11} M{sub Sun }. These observations confirm the lensing origin of these objects, allow us to measure their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.

  11. [Can strategy for primary health care be revitalized 30 years after Alma-Ata?].

    PubMed

    Lund, Stine; Probst, Helene Bilsted; Bygbjerg, Ib Christian

    2010-12-01

    Thirty years ago the Alma-Ata declaration on primary health care was developed. Implementation has been compounded by inadequate financing, changing disease patterns and immature health systems, and there is an ongoing discussion between selective and comprehensive primary health care supporters. Globally, child mortality for under-five-year-olds has been reduced by 50%, but there are still large regional differences. This year the WHO development report is about revitalisation of the primary health care strategy. Recognition of this strategy may be the best instrument to improve health globally. PMID:21129319

  12. Gaps, rings, and non-axisymmetric structures in protoplanetary disks. From simulations to ALMA observations

    NASA Astrophysics Data System (ADS)

    Flock, M.; Ruge, J. P.; Dzyurkevich, N.; Henning, Th.; Klahr, H.; Wolf, S.

    2015-02-01

    Aims: Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) of disks around young stars revealed distinct asymmetries in the dust continuum emission. In this work we wish to study axisymmetric and non-axisymmetric structures that are generated by the magneto-rotational instability in the outer regions of protoplanetary disks. We combine the results of state-of-the-art numerical simulations with post-processing radiative transfer (RT) to generate synthetic maps and predictions for ALMA. Methods: We performed non-ideal global 3D magneto-hydrodynamic (MHD) stratified simulations of the dead-zone outer edge using the FARGO MHD code PLUTO. The stellar and disk parameters were taken from a parameterized disk model applied for fitting high-angular resolution multi-wavelength observations of various circumstellar disks. We considered a stellar mass of M∗ = 0.5 M⊙ and a total disk mass of about 0.085 M∗. The 2D initial temperature and density profiles were calculated consistently from a given surface density profile and Monte Carlo radiative transfer. The 2D Ohmic resistivity profile was calculated using a dust chemistry model. We considered two values for the dust-to-gas mass ratio, 10-2 and 10-4, which resulted in two different levels of magnetic coupling. The initial magnetic field was a vertical net flux field. The radiative transfer simulations were performed with the Monte Carlo-based 3D continuum RT code MC3D. The resulting dust reemission provided the basis for the simulation of observations with ALMA. Results: All models quickly turned into a turbulent state. The fiducial model with a dust-to-gas mass ratio of 10-2 developed a large gap followed by a jump in surface density located at the dead-zone outer edge. The jump in density and pressure was strong enough to stop the radial drift of particles at this location. In addition, we observed the generation of vortices by the Rossby wave instability at the jump location close to 60 AU

  13. Alma Ata and health for all by the year 2000. The roles of academic institutions.

    PubMed

    Bryant, J H; Zuberi, R W; Thaver, I H

    1991-06-01

    The title of this article raises a complex set of questions. To begin, what happened at Alma Ata and the goal that emanated from it-Health for All by the Year 2000--are themselves controversial matters. At least there are some who are strongly critical of those events and ideas. Even without linking academic institutions with Alma Ata and HFA/2000, a controversy is spawned when one asks about the roles of such institutions in dealing with societal problems--which problems should a university address, and how deeply does a university become engaged in them, particularly if it carries the university out of the cloister into the trenches of societal conflict? Linking academic institutions with Alma Ata and HFA/2000 deepens the controversy but also provides a framework for examining the basic principles on which each is based, and for testing those principles against the realities of real world problems of health development. This article draws on recent critical assessments of both sides of the equation: a recent Consultative Committee to the Director General of WHO that analyzes the successes and failures of PHC development to date, and lays out conditions for greater effectiveness in the future; and the Technical Discussions of WHO on the Roles of Universities in the Strategy for Health for All that review traditional and progressive arguments about the roles of universities in their societies, and how HFA can be seen as fitting into that debate. The thinking contained in these documents provides ample opportunity to examine whether or not academic institutions should have a role that relates to Alma Ata and Health for All, and, in the end, takes the position that, indeed, this is an appropriate role for those universities prepared to make the commitment. The point is also made that such involvement cannot be effective if the scale of the institutional commitment is marginal--it must be substantial and institution-wide. An example is given of the Aga Khan University

  14. Tracing the disk, envelope and outflow cavity of VLA1623 with ALMA

    NASA Astrophysics Data System (ADS)

    Murillo, N. M.; Walsh, C.; van Dishoeck, E. F.; Bruderer, S.; Harsono, D.; Lai, S.-P.

    2016-05-01

    Our ALMA Cycle 0 and 2 observations in Band 6 provide tracers of the disk (C18O, 13CO), the envelope (13CO, DCO+) and the outflow and its cavity (12CO, 13CO, c-C3H2) towards VLA1623, a triple non-coeval system in ρ Ophiuchus (d˜120 pc). The observations are combined with simple chemical and physical models. We find differing circumstellar envelope and outflows. VLA1623 appears to not be as chemically rich as other deeply embedded sources.

  15. Engineering within the assembly, verification, and integration (AIV) process in ALMA

    NASA Astrophysics Data System (ADS)

    Lopez, Bernhard; McMullin, Joseph P.; Whyborn, Nicholas D.; Duvall, Eugene

    2010-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a joint project between astronomical organizations in Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA will consist of at least 54 twelve-meter antennas and 12 seven-meter antennas operating as an interferometer in the millimeter and sub-millimeter wavelength range. It will be located at an altitude above 5000m in the Chilean Atacama desert. As part of the ALMA construction phase the Assembly, Verification and Integration (AIV) team receives antennas and instrumentation from Integrated Product Teams (IPTs), verifies that the sub-systems perform as expected, performs the assembly and integration of the scientific instrumentation and verifies that functional and performance requirements are met. This paper aims to describe those aspects related to the AIV Engineering team, its role within the 4-station AIV process, the different phases the group underwent, lessons learned and potential space for improvement. AIV Engineering initially focused on the preparation of the necessary site infrastructure for AIV activities, on the purchase of tools and equipment and on the first ALMA system installations. With the first antennas arriving on site the team started to gather experience with AIV Station 1 beacon holography measurements for the assessment of the overall antenna surface quality, and with optical pointing to confirm the antenna pointing and tracking capabilities. With the arrival of the first receiver AIV Station 2 was developed which focuses on the installation of electrical and cryogenic systems and incrementally establishes the full connectivity of the antenna as an observing platform. Further antenna deliveries then allowed to refine the related procedures, develop staff expertise and to transition towards a more routine production process. Stations 3 and 4 deal with verification of the antenna with integrated electronics by the AIV Science Team and is not covered

  16. The ALMA view of the protostellar system HH212. The wind, the cavity, and the disk

    NASA Astrophysics Data System (ADS)

    Codella, C.; Cabrit, S.; Gueth, F.; Podio, L.; Leurini, S.; Bachiller, R.; Gusdorf, A.; Lefloch, B.; Nisini, B.; Tafalla, M.; Yvart, W.

    2014-08-01

    Context. Because it is viewed simply edge-on, the HH212 protostellar system is an ideal laboratory for studying the interplay of infall, outflow, and rotation in the earliest stages of low-mass star formation. Aims: We wish to exploit the unmatched combination of high angular resolution, high sensitivity, high-imaging fidelity, and spectral coverage provided by ALMA to shed light on the complex kinematics of the innermost central regions of HH212. Methods: We mapped the inner 10″ (4500 AU) of the HH212 system at ≃0.5″ resolution in several molecular tracers and in the 850 μm dust continuum using the ALMA interferometer in band 7 in the extended configuration of the Early Science Cycle 0 operations. Results: Within a single ALMA spectral set-up, we simultaneously identify all the crucial ingredients known to be involved in the star formation recipe: (i) the fast, collimated bipolar SiO jet driven by the protostar; (ii) the large-scale swept-up CO outflow; (iii) the flattened rotating and infalling envelope, with bipolar cavities carved by the outflow (in C17O(3-2)); and (iv) a rotating wide-angle flow that fills the cavities and surrounds the axial jet (in C34S(7-6)). In addition, the compact high-velocity C17O emission (±1.9-3.5 km s-1 from systemic) shows a velocity gradient along the equatorial plane consistent with a rotating disk of ≃0farcs2 = 90 AU around a ≃0.3 ± 0.1 M⊙ source. The rotating disk is possibly Keplerian. Conclusions: HH212 is the third Class 0 protostar with possible signatures of a Keplerian disk of radius ≥30 AU. The warped geometry in our CS data suggests that this large Keplerian disk might result from misaligned magnetic and rotation axes during the collapse phase. The wide-angle CS flow suggests that disk winds may be present in this source. Appendix A is available in electronic form at http://www.aanda.orgFinal reduced ALMA cubes (FITS) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp

  17. U.S. and European ALMA Partners Sign Agreement Green Light for World's Most Powerful Radio Observatory

    NASA Astrophysics Data System (ADS)

    2003-02-01

    Dr. Rita Colwell, director of the U.S. National Science Foundation (NSF), and Dr. Catherine Cesarsky, director general of the European Southern Observatory (ESO), today signed a historic agreement jointly to construct and operate ALMA, the Atacama Large Millimeter Array, the world's largest and most powerful radio telescope operating at millimeter and sub-millimeter wavelengths. "With this agreement, we usher in a new age of research in astronomy," said Dr. Colwell. "By working together in this truly global partnership, the international astronomy community will be able to ensure the research capabilities needed to meet the long-term demands of our scientific enterprise, and we will be able to study and understand our Universe in ways that have previously been beyond our vision." ALMA Array Artist's Conception of ALMA Array in Compact Configuration (Click on Image for Larger Version) Other Images Available: Artist's conception of the antennas for the Atacama Large Millimeter Array Moonrise over ALMA test equipment near Cerro Chajnantor, Chile VertexRSI antenna at the VLA test site Dr. Cesarsky also commented, "This agreement signifies the start of a great project of contemporary astronomy and astrophysics. Representing Europe, and in collaboration with many laboratories and institutes on this continent, we together look forward toward wonderful research projects. With ALMA, we may learn how the earliest galaxies in the Universe really looked like, to mention but one of the many eagerly awaited opportunities with this marvelous facility." When complete in 2011, ALMA will be an array of 64, 12-meter radio antennas that will work together as one telescope to study millimeter and sub-millimeter wavelength light from space. These wavelengths of the electromagnetic spectrum, which cross the critical boundary between infrared and microwave radiation, hold the key to understanding such processes as planet and star formation, the formation of early galaxies and galaxy

  18. Remote detection and mapping of organic molecules in Titan's atmosphere using ALMA

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin; Nixon, Conor A.; Charnley, Steven B.; Palmer, Maureen; Mumma, Michael J.; Molter, Edward; Teanby, Nicholas; Irwin, Patrick GJ; Kisiel, Zbigniew; Serigano, Joseph

    2016-06-01

    Titan is the largest moon of Saturn, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Atmospheric photochemistry results in the production of a wide range of complex organic molecules, including hydrocarbons, nitriles, aromatics and species of possible pre-biotic relevance. Studies of Titan's atmospheric chemistry thus provide a unique opportunity to explore the origin and evolution of complex organic matter in a primitive (terrestrial) planetary atmosphere. Underpinned by laboratory measurements, remote and in-situ observations of hydrocarbons, nitriles and oxygen-bearing species provide important new insights in this regard. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new facility, well suited to the study of molecular emission from Titan's upper and middle-atmosphere. This presentation will focus on results from our ongoing studies of Titan using ALMA during the period 2012-2014, including detection and mapping of rotational emission lines from molecules including HNC, CO, HC3N, CH3CN, C2H3CN and C2H5CN, as well minor isotopologues. Possible chemical formation pathways for these species will be discussed, and the the scope for improved understanding of non-aqueous organic chemistry through laboratory experiments and atmospheric/liquid-phase simulations under Titan-like conditions will be examined.

  19. FAINT END OF 1.3 mm NUMBER COUNTS REVEALED BY ALMA

    SciTech Connect

    Hatsukade, Bunyo; Ohta, Kouji; Seko, Akifumi; Yabe, Kiyoto; Akiyama, Masayuki

    2013-06-01

    We present the faint end of number counts at 1.3 mm (238 GHz) obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). Band 6 observations were carried out targeting 20 star-forming galaxies at z ∼ 1.4 in the Subaru/XMM-Newton Deep Survey field. In the observations, we serendipitously detect 15 sources (≥3.8σ, S{sub 1.3} {sub mm} = 0.15-0.61 mJy) other than the targeted sources. We create number counts by using these ''sub-mJy sources'', which probe the faintest flux range among surveys at millimeter wavelengths. The number counts are consistent with (flux-scaled) number counts at 850 μm and 870 μm obtained with gravitational lensing clusters. The ALMA number counts agree well with model predictions, which suggest that these sub-mJy populations are more like ''normal'' star-forming galaxies than ''classical'' submillimeter galaxies with intense star-forming activity. In this flux range, ∼80% of the extragalactic background light at 1.3 mm is resolved into individual sources.

  20. ALMA OBSERVATIONS OF THE OUTFLOW FROM SOURCE I IN THE ORION-KL REGION

    SciTech Connect

    Zapata, Luis A.; Rodriguez, Luis F.; Loinard, Laurent; Schmid-Burgk, Johannes; Menten, Karl M.; Curiel, Salvador

    2012-07-20

    In this Letter, we present sensitive millimeter SiO (J = 5-4; {nu} = 0) line observations of the outflow arising from the enigmatic object Orion Source I made with the Atacama Large Millimeter/Submillimeter Array (ALMA). The observations reveal that at scales of a few thousand AU, the outflow has a marked 'butterfly' morphology along a northeast-southwest axis. However, contrary to what is found in the SiO and H{sub 2}O maser observations at scales of tens of AU, the blueshifted radial velocities of the moving gas are found to the northwest, while the redshifted velocities are in the southeast. The ALMA observations are complemented with SiO (J = 8-7; {nu} = 0) maps (with a similar spatial resolution) obtained with the Submillimeter Array. These observations also show a similar morphology and velocity structure in this outflow. We discuss some possibilities to explain these differences at small and large scales across the flow.

  1. A cluster in the making: ALMA reveals the initial conditions for high-mass cluster formation

    NASA Astrophysics Data System (ADS)

    Rathborne, Jill

    2015-08-01

    Despite their importance, very little is known about the formation of star clusters. An understanding of their formation requires observations of their natal dust and gas well before the onset of star formation. In recent Galactic Plane surveys, one object, G0.253+0.016, stands out as extreme. Identified as a cold, dense, massive molecular clump devoid of prevalent star-formation, it has exactly the properties expected for a clump that may form an Arches-like cluster. Located at a distance of ~8.5 kpc, G0.253+0.016 lies ~100 pc from the Galactic Centre, in the Central Molecular Zone (CMZ).In this talk I will showcase our recent ALMA data of the 90 GHz continuum and line emission toward G0.253+0.016. The data are spectacular reveal a complex network of structures: there is emission on all spatial scales, the morphology of which ranges from small, compact regions to extended, filamentary structures that are seen in both emission and absorption. A statistical analysis of the structure within G0.253+0.016 demonstrates the dominance of turbulence. The talk will summarise our recent results and the emerging picture of cluster formation in the extreme, high-pressure environment of the CMZ that is revealed by the new ALMA data.

  2. ALMA Data Suggest the Presence of Spiral Structure in the Inner Wind of CW Leo

    NASA Astrophysics Data System (ADS)

    Ward, H.; Leen, D.

    2015-12-01

    Evolved low-mass stars lose a significant fraction of their mass through stellar winds. While the overall morphology of the stellar wind structure during the asymptotic giant branch (AGB) phase is thought to be roughly spherically symmetric, the morphology changes dramatically during the post-AGB and planetary nebula phase, during which bipolar and multi-polar structures are often observed. We have observed the close-by carbon-rich AGB star CW Leo using ALMA (Cycle 0) in band 9 around 650 GHz. The channel maps and position-velocity diagram of the 13CO J=6-5 line show a complex structure. Using detailed 3D radiative transfer models, we show that the curved structure in the position velocity map of the 13CO J=6-5 line can be explained by a spiral structure in the inner wind of CW Leo, probably induced by a binary companion. From modelling the ALMA data, we deduce that the potential orbital axis for the binary system lies at a position angle of 10 to 20 degrees to the north-east and that the spiral structure is seen almost edge-on. We infer an orbital period of 55 yr and a binary separation of 25 au (or 8.2 stellar radii). We tentatively estimate that the companion is an unevolved low-mass main sequence star.

  3. Results of reconnaissance for radioactive minerals in parts of the Alma district, Park County, Colorado

    USGS Publications Warehouse

    Pierson, Charles Thomas; Singewald, Quentin Dreyer

    1953-01-01

    Pitchblende was discovered in July 1951 in the Alma mining district, Park County, Colo., by the U. S. Geological Survey acting on behalf of the U. S. Atomic Energy Commission. The pitchblende is associated with Tertiary veins of three different geologic environments: (1) veins in pre-Cambrian rocks, (2) the London vein system in the footwall block of the London fault, and (3) veins in a mineralized area east of the Cooper Gulch fault. Pitchblende is probably not associated with silver-lead replacement deposits in dolomite. Secondary uranium minerals, as yet undetermined, are associated with pitchblende on two London vein system mine dumps and occur in oxidized vein material from dumps of mines in the other environments. Although none of the known occurrences is of commercial importance, the Alma district is considered a moderately favorable area in which to prospect for uranium ore because 24 of the 43 localities examined show anomalous radioactivity; samples from anomalously radioactive localities, which include mine dumps and some underground workings, have uranium contents ranging from 0.001 to 1.66 percent.

  4. Scientific and technological Challenges in the development of astronomical instrumentation: E-ELT & ALMA

    NASA Astrophysics Data System (ADS)

    Barrado, David; Gallego, Jesús

    2009-12-01

    The answers to the present astrophysical questions require the development of highly sophisticated instrumentation, which needs long-term scheduling and large assets of human and material resources, managed by consortia of several institutions. Spain has carried in the last years serious efforts in this direction (GTC, ESO, ESA), but there is still a notable offset between astronomical research at the theoretical and observational levels and the development of instrumentation. Now, the incorporation of new countries to ESO (in particular Spain) to ESO and several future big projects (ALMA, E-ELT, Cosmic Vision), raise the level of exigency. The goal of this workshop is to gather the scientific teams and the industries of the sector to expose their needs and projects, and share experiences. The workshop is aimed as well at serving as an echo to convince financing agencies and the astronomical community in general of the need to promote with decision the development of astrophysical instrumentation and the tools for the analysis of related data. The formation and acknowledgement of instrumentation astronomers will be a key factor for Spain to meet the requirements of its position in Astronomy in the next decades. Here, we present the contributions most closely related to the development of E-ELT, ALMA and ESA missions.

  5. MILLIMETER EMISSION STRUCTURE IN THE FIRST ALMA IMAGE OF THE AU Mic DEBRIS DISK

    SciTech Connect

    MacGregor, Meredith A.; Wilner, David J.; Rosenfeld, Katherine A.; Andrews, Sean M.; Matthews, Brenda; Booth, Mark; Hughes, A. Meredith; Chiang, Eugene; Graham, James R.; Kalas, Paul; Kennedy, Grant; Sibthorpe, Bruce

    2013-01-10

    We present 1.3 mm ALMA Cycle 0 observations of the edge-on debris disk around the nearby, {approx}10 Myr old, M-type star AU Mic. These observations obtain 0.''6 (6 AU) resolution and reveal two distinct emission components: (1) the previously known dust belt that extends to a radius of 40 AU and (2) a newly recognized central peak that remains unresolved. The cold dust belt of mass {approx}1 M{sub Moon} is resolved in the radial direction with a rising emission profile that peaks sharply at the location of the outer edge of the 'birth ring' of planetesimals hypothesized to explain the midplane scattered light gradients. No significant asymmetries are discerned in the structure or position of this dust belt. The central peak identified in the ALMA image is {approx}6 times brighter than the stellar photosphere, which indicates an additional emission process in the inner regions of the system. Emission from a stellar corona or activity may contribute, but the observations show no signs of temporal variations characteristic of radio-wave flares. We suggest that this central component may be dominated by dust emission from an inner planetesimal belt of mass {approx}0.01 M{sub Moon}, consistent with a lack of emission shortward of 25 {mu}m and a location {approx}<3 AU from the star. Future millimeter observations can test this assertion, as an inner dust belt should be readily separated from the central star at higher angular resolution.

  6. New Measurements of the Radio Photosphere of Mira Based on Data from the JVLA and ALMA

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Reid, M. J.; Menten, K. M.

    2015-07-01

    We present new measurements of the millimeter wavelength continuum emission from the long period variable Mira (o Ceti) at frequencies of 46, 96, and 229 GHz (λ ≈ 7, 3, and 1 mm) based on observations obtained with the Jansky Very Large Array (JVLA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The measured millimeter flux densities are consistent with a radio photosphere model derived from previous observations, where flux density {S}ν \\propto {ν }1.86. The stellar disk is resolved, and the measurements indicate a decrease in the size of the radio photosphere at higher frequencies, as expected if the opacity decreases at shorter wavelengths. The shape of the radio photosphere is found to be slightly elongated, with a flattening of ∼10%–20%. The data also reveal evidence for brightness non-uniformities on the surface of Mira at radio wavelengths. Mira’s hot companion, Mira B was detected at all three observed wavelengths, and we measure a radius for its radio-emitting surface of ≈ 2.0× {10}13 cm. The data presented here highlight the power of the JVLA and ALMA for the study of the atmospheres of evolved stars.

  7. Kennicutt-Schmidt Law in the Central Region of NGC 4321 as Seen by ALMA

    PubMed Central

    Azeez, Jazeel H.; Hwang, C.-Y.; Abidin, Zamri Z.; Ibrahim, Zainol A.

    2016-01-01

    We present the Atacama Large Millimeter/Sub-millimeter Array (ALMA) cycle-0 science verification data of the CO(1–0) line emission in the central region of NGC 4321 (also known as M100) at the distance of 17.1 Mpc and VLA, L-band data of HI of the same galaxy. We have drawn the center area of M100 in the 12CO(J = 1–0) line with the resolution of (3.87″ × 2.53″) as viewed by ALMA, along with HI and Spitzer 8 and 3.6 μm data. The relationship between the surface density of molecular gas mass ∑H2 and that of star formation rate ∑SFR has been investigated, in addition to the relationship between the surface density of the neutral atomic hydrogen mass and that of ∑SFR (Kennicutt–Schmidt law) in this galaxy with a high spatial resolution. The results indicate that a significant correlation exists between the SFR surface density and the molecular gas mass density in the ~2 kpc region. The power-law index has been determined for three regions: center, upper and lower arms. The value of this index in the center region is 1.13, which follows the traditional (K-S) law and indicates that the molecular gas is affected by star formation. PMID:27247251

  8. Kennicutt-Schmidt Law in the Central Region of NGC 4321 as Seen by ALMA.

    PubMed

    Azeez, Jazeel H; Hwang, C-Y; Abidin, Zamri Z; Ibrahim, Zainol A

    2016-01-01

    We present the Atacama Large Millimeter/Sub-millimeter Array (ALMA) cycle-0 science verification data of the CO(1-0) line emission in the central region of NGC 4321 (also known as M100) at the distance of 17.1 Mpc and VLA, L-band data of HI of the same galaxy. We have drawn the center area of M100 in the (12)CO(J = 1-0) line with the resolution of (3.87″ × 2.53″) as viewed by ALMA, along with HI and Spitzer 8 and 3.6 μm data. The relationship between the surface density of molecular gas mass ∑H2 and that of star formation rate ∑SFR has been investigated, in addition to the relationship between the surface density of the neutral atomic hydrogen mass and that of ∑SFR (Kennicutt-Schmidt law) in this galaxy with a high spatial resolution. The results indicate that a significant correlation exists between the SFR surface density and the molecular gas mass density in the ~2 kpc region. The power-law index has been determined for three regions: center, upper and lower arms. The value of this index in the center region is 1.13, which follows the traditional (K-S) law and indicates that the molecular gas is affected by star formation. PMID:27247251

  9. Resolved Images of the Protoplanetary Disk around HD 100546 with ALMA

    NASA Astrophysics Data System (ADS)

    Pineda, Jaime E.; Quanz, Sascha P.; Meru, Farzana; Mulders, Gijs D.; Meyer, Michael R.; Panić, Olja; Avenhaus, Henning

    2014-06-01

    The disk around the Herbig Ae/Be star HD 100546 has been extensively studied and it is one of the systems for which there are observational indications of ongoing and/or recent planet formation. However, up until now, no resolved image of the millimeter dust emission or the gas has been published. We present the first resolved images of the disk around HD 100546 obtained in Band 7 with the ALMA observatory. The CO (3-2) image reveals a gas disk that extends out to 350 au radius at the 3σ level. Surprisingly, the 870 μm dust continuum emission is compact (radius <60 au) and asymmetric. The dust emission is well matched by a truncated disk with an outer radius of ≈50 au. The lack of millimeter-sized particles outside 60 au is consistent with radial drift of particles of this size. The protoplanet candidate, identified in previous high-contrast NACO/VLT L' observations, could be related to the sharp outer edge of the millimeter-sized particles. Future higher angular resolution ALMA observations are needed to determine the detailed properties of the millimeter emission and the gas kinematics in the inner region (<2''). Such observations could also reveal the presence of a planet through the detection of circumplanetary disk material.

  10. RESOLVED IMAGES OF THE PROTOPLANETARY DISK AROUND HD 100546 WITH ALMA

    SciTech Connect

    Pineda, Jaime E.; Quanz, Sascha P.; Meru, Farzana; Meyer, Michael R.; Avenhaus, Henning; Mulders, Gijs D.; Panić, Olja

    2014-06-20

    The disk around the Herbig Ae/Be star HD 100546 has been extensively studied and it is one of the systems for which there are observational indications of ongoing and/or recent planet formation. However, up until now, no resolved image of the millimeter dust emission or the gas has been published. We present the first resolved images of the disk around HD 100546 obtained in Band 7 with the ALMA observatory. The CO (3-2) image reveals a gas disk that extends out to 350 au radius at the 3σ level. Surprisingly, the 870 μm dust continuum emission is compact (radius <60 au) and asymmetric. The dust emission is well matched by a truncated disk with an outer radius of ≈50 au. The lack of millimeter-sized particles outside 60 au is consistent with radial drift of particles of this size. The protoplanet candidate, identified in previous high-contrast NACO/VLT L' observations, could be related to the sharp outer edge of the millimeter-sized particles. Future higher angular resolution ALMA observations are needed to determine the detailed properties of the millimeter emission and the gas kinematics in the inner region (<2''). Such observations could also reveal the presence of a planet through the detection of circumplanetary disk material.

  11. An ALMA Search for Substructure, Fragmentation, and Hidden Protostars in Starless Cores in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Dunham, Michael M.; Offner, Stella S. R.; Pineda, Jaime E.; Bourke, Tyler L.; Tobin, John J.; Arce, Héctor G.; Chen, Xuepeng; Di Francesco, James; Johnstone, Doug; Lee, Katherine I.; Myers, Philip C.; Price, Daniel; Sadavoy, Sarah I.; Schnee, Scott

    2016-06-01

    We present an Atacama Large Millimeter/submillimeter Array (ALMA) 106 GHz (Band 3) continuum survey of the complete population of dense cores in the Chamaeleon I molecular cloud. We detect a total of 24 continuum sources in 19 different target fields. All previously known Class 0 and Class I protostars in Chamaeleon I are detected, whereas all of the 56 starless cores in our sample are undetected. We show that the Spitzer+Herschel census of protostars in Chamaeleon I is complete, with the rate at which protostellar cores have been misclassified as starless cores calculated as <1/56, or <2%. We use synthetic observations to show that starless cores collapsing following the turbulent fragmentation scenario are detectable by our ALMA observations when their central densities exceed ∼108 cm‑3, with the exact density dependent on the viewing geometry. Bonnor–Ebert spheres, on the other hand, remain undetected to central densities at least as high as 1010 cm‑3. Our starless core non-detections are used to infer that either the star-formation rate is declining in Chamaeleon I and most of the starless cores are not collapsing, matching the findings of previous studies, or that the evolution of starless cores are more accurately described by models that develop less substructure than predicted by the turbulent fragmentation scenario, such as Bonnor–Ebert spheres. We outline future work necessary to distinguish between these two possibilities.

  12. ALMA and PKS 1830-211: the Molecular Absorption and the Background Blazar

    NASA Astrophysics Data System (ADS)

    Muller, S.; PKS1830 Team

    2015-12-01

    The line of sight to the lensed blazar PKS1830-211 intercepts the disk of a foreground spiral galaxy at z=0.89, yielding absorption detected in 40+ molecular species. These molecules can be used as cosmological probes at a look-back time of more than half the present age of the Universe. We can determine their excitation and measure the temperature of the cosmic microwave background, compare their kinematics and set constraints on the variations of the fundamental constants, measure the isotopic ratios from different isotopologues and investigate the elemental enrichment from stellar processes, and, of course, investigate the chemistry in the disk of the absorber. Besides, we obtained ALMA data observed serendipitously at the time of a strong gamma-ray flare of the background blazar, allowing us to investigate its submm activity and the submm to gamma-ray connection. Last we present the first ALMA polarimetry results, with the highest Faraday rotation ever measured, revealing a strong magnetic field at the base of the jet in PKS 1830-211. In short, one target, but many and diverse science results !

  13. SXDF-ALMA 2-arcmin2 deep survey: 1.1-mm number counts

    NASA Astrophysics Data System (ADS)

    Hatsukade, Bunyo; Kohno, Kotaro; Umehata, Hideki; Aretxaga, Itziar; Caputi, Karina I.; Dunlop, James S.; Ikarashi, Soh; Iono, Daisuke; Ivison, Rob J.; Lee, Minju; Makiya, Ryu; Matsuda, Yuichi; Motohara, Kentaro; Nakanishi, Kouichiro; Ohta, Kouji; Tadaki, Ken-ich; Tamura, Yoichi; Wang, Wei-Hao; Wilson, Grant W.; Yamaguchi, Yuki; Yun, Min S.

    2016-06-01

    We report 1.1-mm number counts revealed with the Atacama Large Millimeter/submillimeter Array (ALMA) in the Subaru/XMM-Newton Deep Survey Field (SXDF). The advent of ALMA enables us to reveal millimeter-wavelength number counts down to the faint end without source confusion. However, previous studies are based on the ensemble of serendipitously detected sources in fields originally targeting different sources and could be biased due to the clustering of sources around the targets. We derive number counts in the flux range of 0.2-2 mJy by using 23 (≥4σ) sources detected in a continuous 2.0-arcmin2 area of the SXDF. The number counts are consistent with previous results within errors, suggesting that the counts derived from serendipitously detected sources are not significantly biased, although there could be field-to-field variation due to the small survey area. By using the best-fitting function of the number counts, we find that ˜40% of the extragalactic background light at 1.1 mm is resolved at S1.1mm > 0.2 mJy.

  14. ALMA Reveals a Galaxy-Scale Fountain of Cold Molecular Gas Pumped by a Black Hole

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant

    2016-01-01

    A new ALMA observation of the cool core brightest cluster galaxy in Abell 2597 reveals that a supermassive black hole can act much like a mechanical pump in a water fountain, driving a convective flow of molecular gas that drains into the black hole accretion reservoir, only to be pushed outward again in a jet-driven outflow that then rains back toward the galaxy center from which it came. The ALMA data reveal "shadows" cast by giant molecular clouds falling on ballistic trajectories towards the black hole in the innermost 500 parsecs of the galaxy, manifesting as deep redshifted continuum absorption features. The black hole accretion reservoir, fueled by these infalling cold clouds, powers an AGN that drives a jet-driven molecular outflow in the form of a 10 kpc-scale, billion solar mass expanding molecular bubble or plume. The molecular shell is permeated with young stars, perhaps triggered in situ by the jet. Buoyant X-ray cavities excavated by the propagating radio source may further uplift the molecular filaments, which are observed to fall inward toward the center of the galaxy from which they came, presumably keeping the fountain long-lived. The results show that cold molecular gas can couple to black hole growth via both feedback and feeding, in alignment with "cold chaotic accretion" models for the regulation of star formation in galaxies.

  15. The mechanical performances and the metrology system of the European ALMA antenna

    NASA Astrophysics Data System (ADS)

    Rampini, F.; Marchiori, G.; Biasi, R.; Stanghellini, S.; Ghedin, L.

    2010-07-01

    The Atacama Large Millimeter Array (ALMA) consists of a large number of 12 m diameter antennas that will operate up to 950GHz. The mechanical performances in terms of surface accuracy, pointing stability and residual delay are very tight. The antennas must work at full performances in free air during night and day with also the request to observe the sun. The mechanical performances are affected by all the not repeatable error sources and in particular by the temperature variations and wind component blowing from different directions. The design of the antenna has been done in order to have a very light and stiff structure, in particular all the elevation structure is in carbon fibre with also a very low thermal expansion coefficient, but to achieve the ALMA specification, two different systems able to predict the above error sources have been implemented in the control of the antenna. The first system is composed by a determined number of thermal sensors distributed in the alidade of the antenna (is the only part in steel ) and compensates the elevation axis deformation due to the temperature variation by means of a deformation matrix. The second system is based on two high accuracy inclinometers with a very short recovery time opportunely placed on the antenna and correct the wind induced errors. These innovative systems and instruments have been design and tested in the prototype antenna to the production phase.

  16. Results of the new metrology system of the European ALMA antenna

    NASA Astrophysics Data System (ADS)

    Rampini, F.; Marchiori, G.

    2012-09-01

    The Atacama Large Millimeter Array (ALMA) consists of a large number of 12m-diameter antennas that will operate up to 950GHz. To guarantee the scientific requirement in terms of pointing stability and residual delay, a dynamic and thermal Metrology System has to be integrated in the antenna. As a matter of fact, the antennas have to work at full performances in free air, in the night and in the day. Consequently, the performances are affected by all the nonrepeatable error sources, such as temperature variations and wind, blowing from different directions. The antenna is a very light and stiff structure, the elevation structure is in carbon fibre with also a very low thermal expansion coefficient, but in order to meet the ALMA specifications, thermal and dynamic corrections have to be applied. The Thermal Metrology is composed by a number of thermal sensors distributed on the antenna that compensate the elevation axis deformation due to temperature variations. The dynamic Metrology is based on two high-accuracy inclinometers with a very short recovery time, opportunely placed on the main structure. This report shows the results of the tests performed on the AEM antennas with both systems. The good performance of the systems, allowing the antenna to meet the specification during all observation condition and mode, is thus evident.

  17. The Space Infrared Interferometric Telescope (SPIRIT) and its Complementarity to ALMA

    NASA Technical Reports Server (NTRS)

    Leisawitz, Dave

    2007-01-01

    We report results of a pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. In each of these science domains, SPIRIT will yield information complementary to that obtainable with the James Webb Space Telescope (JWST)and the Atacama Large Millimeter Array (ALMA), and all three observatories could operate contemporaneously. Here we shall emphasize the SPIRIT science goals (1) and (2) and the mission's complementarity with ALMA.

  18. Interaction design challenges and solutions for ALMA operations monitoring and control

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; Cubaud, Pierre; Schwarz, Joseph; Primet, Romain; Schilling, Marcus; Barkats, Denis; Barrios, Emilio; Vila Vilaro, Baltasar

    2012-09-01

    The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that presents numerous challenges. From a software perspective, one critical issue is the design of graphical user interfaces for operations monitoring and control that scale to the complexity of the system and to the massive amounts of data users are faced with. Early experience operating the telescope with only a few antennas has shown that conventional user interface technologies are not adequate in this context. They consume too much screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load, impeding tasks that call for quick diagnosis and action. To address this challenge, the ALMA software division adopted a user-centered design approach. For the last two years, astronomers, operators, software engineers and human-computer interaction researchers have been involved in participatory design workshops, with the aim of designing better user interfaces based on state-of-the-art visualization techniques. This paper describes the process that led to the development of those interface components and to a proposal for the science and operations console setup: brainstorming sessions, rapid prototyping, joint implementation work involving software engineers and human-computer interaction researchers, feedback collection from a broader range of users, further iterations and testing.

  19. The New ALMA Prototype 12 M Telescope of the Arizona Radio Observatory

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.; Folkers, Thomas W.; Emerson, Nicholas J.; Freund, Robert; Lauria, Eugene F.; Forbes, David; Reiland, George P.; McColl, Martin

    2016-06-01

    The Arizona Radio Observatory (ARO) recently acquired the European 12 m prototype antenna of the Atacama Large Millimeter Array (ALMA) project from the European Southern Observatory (ESO). The antenna was located at the Very Large Array (VLA) site near Socorro, New Mexico. In November 2013, the 97 ton antenna was transported to Kitt Peak, Arizona in two major parts: the 40 ft. reflector and the base/receiver cabin. The antenna, which replaced the former NRAO 12 m telescope, was reassembled in the dome at Kitt Peak. Recommissioning began in January 2014, and scientific observations commenced in early 2015. The instrument is now fully operational with a measured surface accuracy of 53 microns, rms, and a pointing accuracy of 2 arc seconds. Further antenna improvements are in progress. The new 12 m currently supports a dual polarization, 3 mm receiver (84-116 GHz) with ALMA Band 3 sideband-separating mixers. A multiband receiver also covering the 4 mm (67 – 90 GHz), 2 mm (130-180 GHz) and 1 mm (210-280 GHz) regions with dual polarization, sideband-separating mixers is currently under construction. A new digital backend, the ARO Wideband Spectrometer (AROWS: 4 x 4 GHz total bandwidth ), is also in the development stage.

  20. An ALMA survey for disks orbiting low-mass stars in the TW Hya Association

    NASA Astrophysics Data System (ADS)

    Rodriguez, David R.; van der Plas, Gerrit; Kastner, Joel H.; Schneider, Adam C.; Faherty, Jacqueline K.; Mardones, Diego; Mohanty, Subhanjoy; Principe, David

    2015-10-01

    We carried out an ALMA survey of 15 confirmed or candidate low-mass (<0.2 M⊙) members of the TW Hya Association (TWA) with the goal of detecting molecular gas in the form of CO emission, as well as of providing constraints on continuum emission due to cold dust. Our targets have spectral types of M4-L0 and hence represent the extreme low end of the TWA's mass function. Our ALMA survey has yielded detections of 1.3 mm continuum emission around 4 systems (TWA 30B, 32, 33, and 34), suggesting the presence of cold dust grains. All continuum sources are unresolved. TWA 34 further shows 12CO(2-1) emission whose velocity structure is indicative of Keplerian rotation. Among the sample of known ~7-10 Myr-old star/disk systems, TWA 34, which lies just ~50 pc from Earth, is the lowest mass star thus far identified as harboring cold molecular gas in an orbiting disk.

  1. ALMA Science Verification Data: Millimeter Continuum Polarimetry of the Bright Radio Quasar 3C 286

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Nakanishi, K.; Paladino, R.; Hull, C. L. H.; Cortes, P.; Moellenbrock, G.; Fomalont, E.; Asada, K.; Hada, K.

    2016-06-01

    We present full-polarization observations of the compact, steep-spectrum radio quasar 3C 286 made with the Atacama Large Millimeter and Submillimeter Array (ALMA) at 1.3 mm. These are the first full-polarization ALMA observations, which were obtained in the framework of Science Verification. A bright core and a south–west component are detected in the total intensity image, similar to previous centimeter images. Polarized emission is also detected toward both components. The fractional polarization of the core is about 17%; this is higher than the fractional polarization at centimeter wavelengths, suggesting that the magnetic field is even more ordered in the millimeter radio core than it is further downstream in the jet. The observed polarization position angle (or electric vector position angle (EVPA)) in the core is ˜39◦, which confirms the trend that the EVPA slowly increases from centimeter to millimeter wavelengths. With the aid of multi-frequency VLBI observations, we argue that this EVPA change is associated with the frequency-dependent core position. We also report a serendipitous detection of a sub-mJy source in the field of view, which is likely to be a submillimeter galaxy.

  2. ALMA observations of a misaligned binary protoplanetary disk system in Orion

    SciTech Connect

    Williams, Jonathan P.; Mann, Rita K.; Francesco, James Di; Johnstone, Doug; Matthews, Brenda; Andrews, Sean M.; Ricci, Luca; Hughes, A. Meredith; Bally, John

    2014-12-01

    We present Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emission in CO 3-2, HCO{sup +} 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. The line-to-continuum ratios are similar for the two disks in each of the lines. From the resolved velocity gradients across each disk, we constrain the masses of the central stars, and show consistency with optical-infrared spectroscopy, both indicative of a high mass ratio ∼9. The small difference between the systemic velocities indicates that the binary orbital plane is close to face-on. The angle between the projected disk rotation axes is very high, ∼72°, showing that the system did not form from a single massive disk or a rigidly rotating cloud core. This finding, which adds to related evidence from disk geometries in other systems, protostellar outflows, stellar rotation, and similar recent ALMA results, demonstrates that turbulence or dynamical interactions act on small scales well below that of molecular cores during the early stages of star formation.

  3. Kennicutt-Schmidt Law in the Central Region of NGC 4321 as Seen by ALMA

    NASA Astrophysics Data System (ADS)

    Azeez, Jazeel H.; Hwang, C.-Y.; Abidin, Zamri Z.; Ibrahim, Zainol A.

    2016-06-01

    We present the Atacama Large Millimeter/Sub-millimeter Array (ALMA) cycle-0 science verification data of the CO(1–0) line emission in the central region of NGC 4321 (also known as M100) at the distance of 17.1 Mpc and VLA, L-band data of HI of the same galaxy. We have drawn the center area of M100 in the 12CO(J = 1–0) line with the resolution of (3.87″ × 2.53″) as viewed by ALMA, along with HI and Spitzer 8 and 3.6 μm data. The relationship between the surface density of molecular gas mass ∑H2 and that of star formation rate ∑SFR has been investigated, in addition to the relationship between the surface density of the neutral atomic hydrogen mass and that of ∑SFR (Kennicutt–Schmidt law) in this galaxy with a high spatial resolution. The results indicate that a significant correlation exists between the SFR surface density and the molecular gas mass density in the ~2 kpc region. The power-law index has been determined for three regions: center, upper and lower arms. The value of this index in the center region is 1.13, which follows the traditional (K-S) law and indicates that the molecular gas is affected by star formation.

  4. ALMA WILL DETERMINE THE SPECTROSCOPIC REDSHIFT z > 8 WITH FIR [O III] EMISSION LINES

    SciTech Connect

    Inoue, A. K.; Shimizu, I.; Tamura, Y.; Matsuo, H.; Okamoto, T.; Yoshida, N.

    2014-01-10

    We investigate the potential use of nebular emission lines in the rest-frame far-infrared (FIR) for determining spectroscopic redshift of z > 8 galaxies with the Atacama Large Millimeter/submillimeter Array (ALMA). After making a line emissivity model as a function of metallicity, especially for the [O III] 88 μm line which is likely to be the strongest FIR line from H II regions, we predict the line fluxes from high-z galaxies based on a cosmological hydrodynamics simulation of galaxy formation. Since the metallicity of galaxies reaches at ∼0.2 Z {sub ☉} even at z > 8 in our simulation, we expect the [O III] 88 μm line as strong as 1.3 mJy for 27 AB objects, which is detectable at a high significance by <1 hr integration with ALMA. Therefore, the [O III] 88 μm line would be the best tool to confirm the spectroscopic redshifts beyond z = 8.

  5. ALMA resolves extended star formation in high-z AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Simpson, J. M.; Stanley, F.; Alexander, D. M.; Daddi, E.; Mullaney, J. R.; Pannella, M.; Rosario, D. J.; Smail, Ian

    2016-03-01

    We present high-resolution (0.3 arcsec) Atacama Large Millimeter Array (ALMA) 870 μm imaging of five z ≈ 1.5-4.5 X-ray detected AGN (with luminosities of L2-8keV > 1042 erg s-1). These data provide a ≳20 times improvement in spatial resolution over single-dish rest-frame far-infrared (FIR) measurements. The sub-millimetre emission is extended on scales of FWHM ≈ 0.2 arcsec-0.5 arcsec, corresponding to physical sizes of 1-3 kpc (median value of 1.8 kpc). These sizes are comparable to the majority of z=1-5 sub-millimetre galaxies (SMGs) with equivalent ALMA measurements. In combination with spectral energy distribution analyses, we attribute this rest-frame FIR emission to dust heated by star formation. The implied star-formation rate surface densities are ≈20-200 M⊙ yr-1 kpc-2, which are consistent with SMGs of comparable FIR luminosities (i.e. LIR ≈ [1-5] × 1012 L⊙). Although limited by a small sample of AGN, which all have high-FIR luminosities, our study suggests that the kpc-scale spatial distribution and surface density of star formation in high-redshift star-forming galaxies is the same irrespective of the presence of X-ray detected AGN.

  6. An ALMA Spectral Scan of the Obscured Luminous Infrared Galaxy NGC 4418

    NASA Astrophysics Data System (ADS)

    Costagliola, F.; Sakamoto, K.; Aalto, S.; Muller, S.; Martín, S.

    2015-12-01

    Until recently, the study of the molecular interstellar medium of galaxies has been mostly focused on a few, relatively abundant, molecular species. Recent attempts at modeling the molecular emission of active galaxies have shown that standard high-density tracers do not provide univocal results and are not able to discriminate between different relevant environments (e.g., star-formation vs AGN). Spectral lines surveys allow us to explore the richness of the molecular spectrum of galaxies, provide tighter constrains to astrochemical models, and find new more sensitive tracers of specific gas properties. What started as a time-consuming pioneering work has become now routinely accessible with the advent of ALMA. Here we report the results of the first ALMA spectral scan of an obscured luminous infrared galaxy (LIRG), NGC 4418. The galaxy has a very compact IR core and narrow emission lines that make it the perfect target for the study of vibrationally excited molecules. More than 300 emission lines from 45 molecular species were identified and modeled via an LTE and NLTE analysis. The molecular excitation and abundances derived offer a unique insight into the chemistry of obscured LIRGs.

  7. Resolving the extended atmosphere and the inner wind of Mira (o Ceti) with long ALMA baselines

    NASA Astrophysics Data System (ADS)

    Wong, K. T.; Kamiński, T.; Menten, K. M.; Wyrowski, F.

    2016-05-01

    Context. High angular resolution (sub)millimetre observations of asymptotic giant branch (AGB) stars, now possible with the Atacama Large Millimeter/submillimeter Array (ALMA), allow direct imaging of these objects' photospheres. The physical properties of the molecular material around these regions, which until now has only been studied by imaging of maser emission and spatially unresolved absorption spectroscopy, can be probed with radiative transfer modelling and compared to hydrodynamical model predictions. The prototypical Mira variable, o Cet (Mira), was observed as a Science Verification target in the 2014 ALMA Long Baseline Campaign, offering the first opportunity to study these physical conditions in detail. Aims: With the longest baseline of 15 km, ALMA produces clearly resolved images of the continuum and molecular line emission/absorption at an angular resolution of ~30 mas at 220 GHz. Models are constructed for Mira's extended atmosphere to investigate the physics and molecular abundances therein. Methods: We imaged the data of 28SiO ν= 0, 2J = 5-4 and H2O v2 = 1JKa,Kc = 55,0-64,3 transitions and extracted spectra from various lines of sight towards Mira's extended atmosphere. In the course of imaging the emission/absorption, we encountered ambiguities in the resulting images and spectra that appear to be related to the performance of the CLEAN algorithm when applied to a combination of extended emission, and compact emission and absorption. We addressed these issues by a series of tests and simulations. We derived the gas density, kinetic temperature, molecular abundance, and outflow/infall velocities in Mira's extended atmosphere by modelling the SiO and H2O lines. Results: We resolve Mira's millimetre continuum emission and our data are consistent with a radio photosphere with a brightness temperature of 2611 ± 51 K. In agreement with recent results obtained with the Very Large Array, we do not confirm the existence of a compact region (<5 mas) of

  8. The Atacama Large Millimeter/Submillimeter Array (ALMA) - A Successful Three-Way International Partnership Without a Majority Stakeholder

    NASA Astrophysics Data System (ADS)

    Vanden Bout, Paul A.

    2013-04-01

    The Atacama Millimeter/Submillimeter Array (ALMA) is the largest ground-based astronomical facility built to date. It's size and challenging site required an international effort. This talk presents the partnership structure, management challenges, current status, and examples of early scientific successes.

  9. Formation, Detection and the Distribution of Complex Organic Molecules with the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Remijan, Anthony John

    2015-08-01

    The formation and distribution of complex organic material in astronomical environments continues to be a focused research area in astrochemistry. For several decades now, emphasis has been placed on the millimeter/submillimeter regime of the radio spectrum for trying to detect new molecular species and to constrain the chemical formation route of complex molecules by comparing and contrasting their relative distributions towards varying astronomical environments. This effort has been extremely laborious as millimeter/submillimeter facilities have been only able to detect and map the distribution of the strongest transition(s) of the simplest organic molecules. Even then, these single transition "chemical maps" have been very low spatial resolution because early millimeter/submillimeter facilities did not have access to broadband spectral coverage or the imaging capabilities to truly ascertain the morphology of the molecular emission. In the era of ALMA, these limitations have been greatly lifted. Broadband spectral line surveys now hold the key to uncovering the full molecular complexity in astronomical environments. In addition, searches for complex organic material is no longer limited to investigating the strongest lines of the simplest molecules toward the strongest sources of emission in the Galaxy. ALMA is issuing a new era of exploration as the search for complex molecules will now be available to an increased suite of sources in the Galaxy and our understanding of the formation of this complex material will be greatly increased as a result. This presentation will highlight the current and future ALMA capabilities in the search for complex molecules towards astronomical environments, highlight the recent searches that ALMA scientists have conducted from the start of ALMA Early Science and provide the motivation for the next suite of astronomical searches to investigate our pre-biotic origins in the universe.

  10. Closing the Loop for ALMA - Three antennas working in unison open new bright year for revolutionary observatory

    NASA Astrophysics Data System (ADS)

    2010-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) has passed a key milestone crucial for the high quality images that will be the trademark of this revolutionary new tool for astronomy. Astronomers and engineers have, for the first time, successfully linked three of the observatory's antennas at the 5000-metre elevation observing site in northern Chile. Having three antennas observing in unison paves the way for precise images of the cool Universe at unprecedented resolution, by providing the missing link to correct errors that arise when only two antennas are used. On 20 November 2009 the third antenna for the ALMA observatory was successfully installed at the Array Operations Site, the observatory's "high site" on the Chajnantor plateau, at an altitude of 5000 metres in the Chilean Andes. Later, after a series of technical tests, astronomers and engineers observed the first signals from an astronomical source making use of all three 12-metre diameter antennas linked together, and are now working around the clock to establish the stability and readiness of the system. "The first signal using just two ALMA antennas, observed in October, can be compared to a baby's first babblings," says Leonardo Testi, the European Project Scientist for ALMA at ESO. "Observing with a third antenna represents the moment when the baby says its very first, meaningful word - not yet a full sentence, but overwhelmingly exciting! The linking of three antennas is indeed the first actual step towards our goal of achieving precise and sharp images at submillimetre wavelengths." The successful linking of the antenna trio was a key test of the full electronic and software system now being installed at ALMA, and its success anticipates the future capabilities of the observatory. When complete, ALMA will have at least 66 high-tech antennas operating together as an "interferometer", working as a single, huge telescope probing the sky in the millimetre and submillimetre wavelengths of light

  11. ALMA OBSERVATIONS OF THE MASSIVE MOLECULAR OUTFLOW G331.512-0.103

    SciTech Connect

    Merello, Manuel; Bronfman, Leonardo; Garay, Guido; Lo, Nadia; Evans, Neal J. II; Nyman, Lars-Ake; Cortes, Juan R.; Cunningham, Maria R.

    2013-09-01

    The object of this study is one of the most energetic and luminous molecular outflows known in the Galaxy, G331.512-0.103. Observations with ALMA Band 7 (350 GHz; 0.86 mm) reveal a very compact, extremely young bipolar outflow and a more symmetric outflowing shocked shell surrounding a very small region of ionized gas. The velocities of the bipolar outflow are about 70 km s{sup -1} on either side of the systemic velocity. The expansion velocity of the shocked shell is {approx}24 km s{sup -1}, implying a crossing time of about 2000 yr. Along the symmetry axis of the outflow, there is a velocity feature, which could be a molecular ''bullet'' of high-velocity dense material. The source is one of the youngest examples of massive molecular outflow found associated with a high-mass star.

  12. ALMA-backed NIR high resolution integral field spectroscopy of the NUGA galaxy NGC 1433

    NASA Astrophysics Data System (ADS)

    Smajić, Semir; Moser, Lydia; Eckart, Andreas; Valencia-S., Mónica; Combes, Françoise; Horrobin, Matthew; García-Burillo, Santiago; García-Marín, Macarena; Fischer, Sebastian; Zuther, Jens

    2014-07-01

    Aims: We present the results of near-infrared (NIR) H- and K-band European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 1433. We investigate the central 500 pc of this nearby galaxy, concentrating on excitation conditions, morphology, and stellar content. NGC 1433 was selected from our extended NUGA(-south) sample, which was additionally observed with the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 1433 is a ringed, spiral galaxy with a main stellar bar in roughly east-west direction (PA 94°) and a secondary bar in the nuclear region (PA 31°). Several dusty filaments are detected in the nuclear region with the Hubble Space Telescope. ALMA detects molecular CO emission coinciding with these filaments. The active galactic nucleus is not strong and the galaxy is also classified as a low-ionization emission-line region (LINER). Methods: The NIR is less affected by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy, allowing us to analyse several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 10″ × 10″ field of view (FOV). Results: We present emission and absorption line measurements in the central kpc of NGC 1433. We detect a narrow Balmer line and several H2 lines. We find that the stellar continuum peaks in the optical and NIR in the same position, indicating that there is no covering of the center by a nuclear dust lane. A strong velocity gradient is detected in all emission lines at that position. The position angle of this gradient is at 155° whereas the galactic rotation is at a position angle of 201°. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation at the nucleus is caused by thermal excitation, i.e., shocks that can be associated with active galactic

  13. VLT/SPHERE- and ALMA-based shape reconstruction of asteroid (3) Juno

    NASA Astrophysics Data System (ADS)

    Viikinkoski, M.; Kaasalainen, M.; Ďurech, J.; Carry, B.; Marsset, M.; Fusco, T.; Dumas, C.; Merline, W. J.; Yang, B.; Berthier, J.; Kervella, P.; Vernazza, P.

    2015-09-01

    We use the recently released Atacama Large Millimeter Array (ALMA) and VLT/SPHERE science verification data, together with earlier adaptive-optics images, stellar occultation, and lightcurve data to model the 3D shape and spin of the large asteroid (3) Juno with the all-data asteroid modelling (ADAM) procedure. These data set limits on the plausible range of shape models, yielding reconstructions suggesting that, despite its large size, Juno has sizable unrounded features moulded by non-gravitational processes such as impacts. Based on observations collected at the European Southern Observatory, Paranal, Chile (prog. ID: 60.A-9379, 086.C-0785), and at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  14. A detailed view of the gas shell around R Sculptoris with ALMA

    NASA Astrophysics Data System (ADS)

    Maercker, M.; Vlemmings, W. H. T.; Brunner, M.; De Beck, E.; Humphreys, E. M.; Kerschbaum, F.; Lindqvist, M.; Olofsson, H.; Ramstedt, S.

    2016-02-01

    Context. During the asymptotic giant branch (AGB) phase, stars undergo thermal pulses - short-lived phases of explosive helium burning in a shell around the stellar core. Thermal pulses lead to the formation and mixing-up of new elements to the stellar surface. They are hence fundamental to the chemical evolution of the star and its circumstellar envelope. A further consequence of thermal pulses is the formation of detached shells of gas and dust around the star, several of which have been observed around carbon-rich AGB stars. Aims: We aim to determine the physical properties of the detached gas shell around R Sculptoris, in particular the shell mass and temperature, and to constrain the evolution of the mass-loss rate during and after a thermal pulse. Methods: We analyse 12CO(1-0), 12CO(2-1), and 12CO(3-2) emission, observed with the Atacama Large Millimeter/submillimeter Array (ALMA) during Cycle 0 and complemented by single-dish observations. The spatial resolution of the ALMA data allows us to separate the detached shell emission from the extended emission inside the shell. We perform radiative transfer modelling of both components to determine the shell properties and the post-pulse mass-loss properties. Results: The ALMA data show a gas shell with a radius of 19.̋5 expanding at 14.3 km s-1. The different scales probed by the ALMA Cycle 0 array show that the shell must be entirely filled with gas, contrary to the idea of a detached shell. The comparison to single-dish spectra and radiative transfer modelling confirms this. We derive a shell mass of 4.5 × 10-3 M⊙ with a temperature of 50 K. Typical timescales for thermal pulses imply a pulse mass-loss rate of 2.3 × 10-5 M⊙ yr-1. For the post-pulse mass-loss rate, we find evidence for a gradual decline of the mass-loss rate, with an average value of 1.6 × 10-5 M⊙ yr-1. The total amount of mass lost since the last thermal pulse is 0.03 M⊙, a factor four higher compared to classical models, with a

  15. Constraining turbulence mixing strength in transitional discs with planets using SPHERE and ALMA

    NASA Astrophysics Data System (ADS)

    de Juan Ovelar, M.; Pinilla, P.; Min, M.; Dominik, C.; Birnstiel, T.

    2016-06-01

    We investigate the effect that the turbulent mixing strength parameter αturb plays on near-infrared polarimetric and sub-millimetre interferometric imaging observations of transitional discs (TDs) with a gap carved by a planet. We generate synthetic observations of these objects with ALMA and VLT/SPHERE-ZIMPOL by combining hydrodynamical, dust evolution, radiative transfer and instrument models for values of α _{turb}=[10^{-4}, 10^{-3}, 10^{-2}]. We find that, through a combination of effects on the viscosity of the gas, the turbulent mixing and dust evolution processes, αturb strongly affects the morphology of the dust distribution that can be traced with these observations. We constrain the value of αturb to be within an order of magnitude of 10-3 in TD sources that show cavities in sub-mm continuum images while featuring continuous distribution of dust or smaller cavities in NIR-polarimetric images.

  16. An ALMA View of the Complex Circumstellar Environment of the Post-AGB Object HD 101584

    NASA Astrophysics Data System (ADS)

    Olofsson, H.; Vlemmings, W.; Maercker, M.; Humphreys, E.; Lindqvist, M.; Nyman, L.; Ramstedt, S.

    2015-12-01

    We use 12CO, 13CO, and C18O J = 2-1 lines and 1.3 mm continuum ALMA observations to study the circumstellar evolution of the binary HD 101584, a post-AGB star and a low-mass companion, which is most likely a post-common-envelope-evolution system. It is inferred that the circumstellar medium has a bipolar hour-glass structure, seen almost pole-on, formed by an energetic, ≍ 150 km s-1, jet. Significant amount of material resides in an unresolved central region. It is proposed that the circumstellar morphology is related to an event which took place ≍ 500 yr ago, possibly a capture event where the companion spiraled in towards the AGB star. However, the kinetic energy of the accelerated gas exceeds the released orbital energy. Hence, the observed phenomenon does not match current common-envelope scenarios, and another process must augment, or even dominate, the ejection process.

  17. CONSTRAINING THE PLANETARY SYSTEM OF FOMALHAUT USING HIGH-RESOLUTION ALMA OBSERVATIONS

    SciTech Connect

    Boley, A. C.; Payne, M. J.; Ford, E. B.; Shabram, M.; Corder, S.; Dent, W. R. F.

    2012-05-01

    The dynamical evolution of planetary systems leaves observable signatures in debris disks. Optical images trace micron-sized grains, which are strongly affected by stellar radiation and need not coincide with their parent body population. Observations of millimeter-sized grains accurately trace parent bodies, but previous images lack the resolution and sensitivity needed to characterize the ring's morphology. Here we present ALMA 350 GHz observations of the Fomalhaut debris ring. These observations demonstrate that the parent body population is 13-19 AU wide with a sharp inner and outer boundary. We discuss three possible origins for the ring and suggest that debris confined by shepherd planets is the most consistent with the ring's morphology.

  18. An ALMA view of the post-AGB object HD 101584

    NASA Astrophysics Data System (ADS)

    Olofsson, H.; Vlemmings, W.; Maercker, M.; Humphreys, E.; Lindqvist, M.; Nyman, L.; Ramstedt, S.

    2016-07-01

    ALMA cycles 1 and 3 observations of CO isotopologues and 1.3mm continuum are used in a study of the circumstellar environment of the binary HD 101584, a post-AGB star and a low-mass companion that is most likely a post-common-envelope-evolution system. These data are supplemented with new information from OH maser emission. It is inferred that the large- scale circumstellar medium has a bipolar hour-glass structure, seen almost pole-on, formed by an energetic, ≥⃒ 150 km s-1, jet. Significant amount of material still resides in the central region. It is proposed that the circumstellar morphology is related to an event which took place ≤⃒ 500 yr ago, possibly a capture event where the companion spiralled in towards the AGB star. Several observed features remain to be explained, and may hint to a more complicated scenario.

  19. Outflows and disks of brown dwarfs with SMA, CARMA and ALMA

    NASA Astrophysics Data System (ADS)

    Phan-Bao, Ngoc; Lee, Chin-Fei; Ho, Paul; Martín, Eduardo; Tho, Do D.

    2013-04-01

    Brown dwarfs are on the dividing line between planets and stars. Up to date, about 1,000 brown dwarfs, including the coolest known brown dwarfs with temperatures of ˜300 K as cool as the human body, have been discovered. However, the origin of these objects is still not well understood. Here we report our study of molecular outflows and disks of young very-low mass stars and brown dwarfs in ρ Ophiuchi and Taurus using the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The observations of brown dwarfs at early stages provide key information to understand their formation mechanism as well as planet formation around these very low-mass objects. We also discuss future observations of brown dwarfs with the Atacama Large Millimeter/submillimeter Array (ALMA).

  20. ALMA observations of warm molecular gas and cold dust in NGC 34

    SciTech Connect

    Xu, C. K.; Cao, C.; Lu, N.; Mazzarella, J. M.; Diaz-Santos, T.; Zhao, Y.-H.; Appleton, P.; Armus, L.; Lord, S.; Murphy, E. J.; Schulz, B.; Gao, Y.; Van der Werf, P.; Meijerink, R.; Evans, A. S.; Stierwalt, S.; Chu, J.; Sanders, D. B.; Haan, S.; Charmandaris, V.

    2014-05-20

    We present Atacama Large Millimeter Array (ALMA) Cycle-0 observations of the CO (6-5) line emission (rest-frame frequency = 691.473 GHz) and of the 435 μm dust continuum emission in the nuclear region of NGC 34, a local luminous infrared galaxy at a distance of 84 Mpc (1'' = 407 pc) which contains a Seyfert 2 active galactic nucleus (AGN) and a nuclear starburst. The CO emission is well resolved by the ALMA beam (0.''26 × 0.''23), with an integrated flux of f {sub CO(6-5)} = 1004 (± 151) Jy km s{sup –1}. Both the morphology and kinematics of the CO (6-5) emission are rather regular, consistent with a compact rotating disk with a size of 200 pc. A significant emission feature is detected on the redshifted wing of the line profile at the frequency of the H{sup 13}CN (8-7) line, with an integrated flux of 17.7 ± 2.1(random) ± 2.7(systematic) Jy km s{sup –1}. However, it cannot be ruled out that the feature is due to an outflow of warm dense gas with a mean velocity of 400 km s{sup –1}. The continuum is resolved into an elongated configuration, and the observed flux corresponds to a dust mass of M {sub dust} = 10{sup 6.97±0.13} M {sub ☉}. An unresolved central core (radius ≅ 50 pc) contributes 28% of the continuum flux and 19% of the CO (6-5) flux, consistent with insignificant contributions of the AGN to both emissions. Both the CO (6-5) and continuum spatial distributions suggest a very high gas column density (≳ 10{sup 4} M {sub ☉} pc{sup –2}) in the nuclear region at radius ≲ 100 pc.

  1. Detection of the Simplest Sugar, Glycolaldehyde, in a Solar-type Protostar with ALMA

    NASA Astrophysics Data System (ADS)

    Jørgensen, Jes K.; Favre, Cécile; Bisschop, Suzanne E.; Bourke, Tyler L.; van Dishoeck, Ewine F.; Schmalzl, Markus

    2012-09-01

    Glycolaldehyde (HCOCH2OH) is the simplest sugar and an important intermediate in the path toward forming more complex biologically relevant molecules. In this Letter we present the first detection of 13 transitions of glycolaldehyde around a solar-type young star, through Atacama Large Millimeter Array (ALMA) observations of the Class 0 protostellar binary IRAS 16293-2422 at 220 GHz (6 transitions) and 690 GHz (7 transitions). The glycolaldehyde lines have their origin in warm (200-300 K) gas close to the individual components of the binary. Glycolaldehyde co-exists with its isomer, methyl formate (HCOOCH3), which is a factor 10-15 more abundant toward the two sources. The data also show a tentative detection of ethylene glycol, the reduced alcohol of glycolaldehyde. In the 690 GHz data, the seven transitions predicted to have the highest optical depths based on modeling of the 220 GHz lines all show redshifted absorption profiles toward one of the components in the binary (IRAS 16293B) indicative of infall and emission at the systemic velocity offset from this by about 0farcs2 (25 AU). We discuss the constraints on the chemical formation of glycolaldehyde and other organic species—in particular, in the context of laboratory experiments of photochemistry of methanol-containing ices. The relative abundances appear to be consistent with UV photochemistry of a CH3OH-CO mixed ice that has undergone mild heating. The order of magnitude increase in line density in these early ALMA data illustrates its huge potential to reveal the full chemical complexity associated with the formation of solar system analogs.

  2. An ALMA Imaging Study of Methyl Formate (HCOOCH3) in Torsionally Excited States toward Orion KL

    NASA Astrophysics Data System (ADS)

    Sakai, Yusuke; Kobayashi, Kaori; Hirota, Tomoya

    2015-04-01

    We recently reported the first identification of rotational transitions of methyl formate (HCOOCH3) in the second torsionally excited state toward Orion Kleinmann-Low (KL), observed with the Nobeyama 45 m telescope. In combination with the identified transitions of methyl formate in the ground state and the first torsional excited state, it was found that there is a difference in rotational temperature and vibrational temperature, where the latter is higher. In this study, high spatial resolution analysis by using Atacama Large Millimeter/Submillimeter Array (ALMA) science verification data was carried out to verify and understand this difference. Toward the Compact Ridge, two different velocity components at 7.3 and 9.1 km s-1 were confirmed, while a single component at 7.3 km s-1 was identified toward the Hot Core. The intensity maps in the ground, first, and second torsional excited states have quite similar distributions. Using extensive ALMA data, we determined the rotational and vibrational temperatures for the Compact Ridge and Hot Core by the conventional rotation diagram method. The rotational temperature and vibrational temperatures agree for the Hot Core and for one component of the Compact Ridge. At the 7.3 km s-1 velocity component for the Compact Ridge, the rotational temperature was found to be higher than the vibrational temperature. This is different from what we obtained from the results by using the single-dish observation. The difference might be explained by the beam dilution effect of the single-dish data and/or the smaller number of observed transitions within the limited range of energy levels (≤30 K) of Eu in the previous study.

  3. Long Wavelength Observations of Thermal Emission from Pluto and Charon with ALMA

    NASA Astrophysics Data System (ADS)

    Butler, Bryan J.; Gurwell, Mark; Lellouch, Emmanuel; Moullet, Arielle; Moreno, Raphael; Bockelee-Morvan, Dominique; Biver, Nicolas; Fouchet, Thierry; Lis, Darek; Stern, Alan; Young, Leslie; Young, Eliot; Weaver, Hal; Boissier, Jeremie; Stansberry, John

    2015-11-01

    Long wavelength observations of Pluto can determine atmospheric temperatures, abundances, and vertical distributions for those molecules that have transitions at these wavelengths. In addition, observations of both Pluto and Charon can elucidate their surface and subsurface temperatures and surface compositions (and distribution, with enough resolution). We have used the Atacama Large Millimeter Array (ALMA) to observe the CO and HCN in the atmosphere of Pluto, and to observe thermal emission from the two bodies, where the resolution is enough to separate them (but not enough to resolve each individually). We report here on the thermal emission observations, and separately at this meeting on the CO [1] and HCN [2] observations. We observed the Pluto/Charon system with ALMA on June 12 and 13, 2015, at a wavelength of ~0.86 mm. Both days provide separate observations of the thermal emission from Pluto and Charon. We find a preliminary value of the brightness temperature of the two bodies of 35 K and 46 K with variation of less than 1 K between the two days and SNR of > 300 for Pluto and > 100 for Charon. This is similar to previous observations of the separate thermal emission of the two bodies with the Submillimeter Array (SMA) [3] and Very Large Array (VLA) [4]. We will discuss the implications of these measured brightness temperatures and the apparent lack of significant variation between the two days (longitudes).[1] Gurwell et al., this meeting. [2] Lellouch et al., this meeting. [3] Gurwell & Butler, BAAS 37, 2005. [4] Butler et al. BAAS 43, 2010.

  4. Quasi-Optical Verification of the Band 9 ALMA Front-End

    NASA Astrophysics Data System (ADS)

    Candotti, M.; Baryshev, A. M.; Trappe, N. A.; Hespery, R.; Murphy, J. A.; Barkhof, J.

    2005-05-01

    The front-end optical design for band 9 (600 to 720GHz) of the Atacama Large Millimeter Array (ALMA) is now completed. A frequency independent design approach is used to couple radiation to the two orthogonal polarized mixed detectors from the large 12m ALMA Cassegrain telescope. As it is a heterodyne receiver, two local oscillator beam paths are integrated into the front-end optical system. Due to the large number of interferometer elements (64 antenna units) to be built, installed and maintained in the remote site of the Atacama Desert, reliability of the optical system should be ensured. A modular and compact optical design is also important. In addition a cheaper fabrication process is considered, at these more tolerant higher frequencies, by milling the mirror surfaces near the surface roughness limit. In this paper we verify the optical design and estimate system efficiency by means of experimental measurement and software simulation comparisons. Precision planar scans of near field beam patterns (amplitude and phase) have been measured. Experimental beam measurements were taken at the output of the mirror coupling system (telescope focal plane location) for both polarization paths and for both local oscillator beam guides. At the same measurement locations, software simulations of a highly accurate geometrical model of the mirror coupling system were predicted using the commercial package GRASP8. These comparisons at some fundamental locations along the beam paths, allow the assessment of the quasi-optical beam coupling system design. The local oscillator power budget analysis is carried out from results obtained using GRASP8. In the conclusion we summarize the current status and describe future analysis plans.

  5. ALMA SUBMILLIMETER CONTINUUM IMAGING OF THE HOST GALAXIES OF GRB 021004 AND GRB 080607

    SciTech Connect

    Wang, Wei-Hao; Huang, Kui-Yun; Chen, Hsiao-Wen

    2012-12-20

    We report 345 GHz continuum observations of the host galaxies of gamma-ray bursts (GRBs) 021004 and 080607 at z > 2 using the Atacama Large Millimeter/Submillimeter Array (ALMA) in Cycle 0. Of the two bursts, GRB 021004 is one of the few GRBs that originate in a Lyman limit host, while GRB 080607 is classified as a 'dark burst' and its host galaxy is a candidate of dusty star-forming galaxy at z {approx} 3. With an order of magnitude improvement in the sensitivities of the new imaging searches, we detect the host galaxy of GRB 080607 with a flux of S{sub 345} = 0.31 {+-} 0.09 mJy and a corresponding infrared luminosity of L{sub IR} = (2.4-4.5) Multiplication-Sign 10{sup 11} L{sub Sun }. However, the host galaxy of GRB 021004 remains undetected and the ALMA observations allow us to place a 3{sigma} upper limit of L{sub IR} < 3.1 Multiplication-Sign 10{sup 11} L{sub Sun} for the host galaxy. The continuum imaging observations show that the two galaxies are not ultraluminous infrared galaxies, but are at the faintest end of the dusty galaxy population that gives rise to the submillimeter extragalactic background light. The derived star formation rates of the two GRB host galaxies are less than 100 M{sub Sun} yr{sup -1}, which are broadly consistent with optical measurements. The result suggests that the large extinction (A{sub V} {approx} 3) in the afterglow of GRB 080607 is confined along its particularly dusty sight line, and not representative of the global properties of the host galaxy.

  6. Integrating a university team in the ALMA software development process: a successful model for distributed collaborations

    NASA Astrophysics Data System (ADS)

    Mora, Matias; Ibsen, Jorge; Chiozzi, Gianluca; Troncoso, Nicolás; Tobar, Rodrigo; Araya, Mauricio; Avarias, Jorge; Hoffstadt, Arturo

    2010-07-01

    Observatories are not all about exciting new technologies and scientific progress. Some time has to be dedicated to the future engineers' generations who are going to be on the front line in a few years from now. Over the past six years, ALMA Computing has been helping to build up and collaborating with a well-organized engineering students' group at Universidad Técnica Federico Santa Maria in Chile. The Computer Systems Research Group (CSRG) currently has wide collaborations with national and international organizations, mainly in the astronomical observations field. The overall coordination and technical work is done primarily by students, working side-by-side with professional engineers. This implies not only using high engineering standards, but also advanced organization techniques. This paper aims to present the way this collaboration has built up an own identity, independently of individuals, starting from its origins: summer internships at international observatories, the open-source community, and the short and busy student's life. The organizational model and collaboration approaches are presented, which have been evolving along with the years and the growth of the group. This model is being adopted by other university groups, and is also catching the attention of other areas inside the ALMA project, as it has produced an interesting training process for astronomical facilities. Many lessons have been learned by all participants in this initiative. The results that have been achieved at this point include a large number of projects, funds sources, publications, collaboration agreements, and a growing history of new engineers, educated under this model.

  7. ALMA OBSERVATIONS OF THE COLDEST PLACE IN THE UNIVERSE: THE BOOMERANG NEBULA

    SciTech Connect

    Sahai, R.; Vlemmings, W. H. T.; Huggins, P. J.; Nyman, L.-Å.; Gonidakis, I.

    2013-11-10

    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of this ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.

  8. ALMA Imaging of the CO (6-5) Line Emission in NGC 7130*

    NASA Astrophysics Data System (ADS)

    Zhao, Yinghe; Lu, Nanyao; Xu, C. Kevin; Gao, Yu; Barcos-Munõz, Loreto; Díaz-Santos, Tanio; Appleton, Philip; Charmandaris, Vassilis; Armus, Lee; van der Werf, Paul; Evans, Aaron; Cao, Chen; Inami, Hanae; Murphy, Eric

    2016-04-01

    In this paper, we report our high-resolution (0.″20 × 0.″14 or ∼70 × 49 pc) observations of the CO(6-5) line emission, which probes warm and dense molecular gas, and the 434 μm dust continuum in the nuclear region of NGC 7130, obtained with the Atacama Large Millimeter Array (ALMA). The CO line and dust continuum fluxes detected in our ALMA observations are 1230 ± 74 Jy km s‑1 and 814 ± 52 mJy, respectively, which account for 100% and 51% of their total fluxes. We find that the CO(6-5) and dust emissions are generally spatially correlated, but their brightest peaks show an offset of ∼70 pc, suggesting that the gas and dust emissions may start decoupling at this physical scale. The brightest peak of the CO(6-5) emission does not spatially correspond to the radio continuum peak, which is likely dominated by an active galactic nucleus (AGN). This, together with our additional quantitative analysis, suggests that the heating contribution of the AGN to the CO(6-5) emission in NGC 7130 is negligible. The CO(6-5) and the extinction-corrected Pa-α maps display striking differences, suggestive of either a breakdown of the correlation between warm dense gas and star formation at linear scales of <100 pc or a large uncertainty in our extinction correction to the observed Pa-α image. Over a larger scale of ∼2.1 kpc, the double-lobed structure found in the CO(6-5) emission agrees well with the dust lanes in the optical/near-infrared images. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  9. Microwave Continuum Emission and Dense Gas Tracers in NGC 3627: Combining Jansky VLA and ALMA Observations

    NASA Astrophysics Data System (ADS)

    Murphy, Eric J.; Dong, Dillon; Leroy, Adam K.; Momjian, Emmanuel; Condon, James J.; Helou, George; Meier, David S.; Ott, Jürgen; Schinnerer, Eva; Turner, Jean L.

    2015-11-01

    We present Karl G. Jansky Very Large Array Ka band (33 GHz) and Atacama Large Millimeter Array (ALMA) Band 3 (94.5 GHz) continuum images covering the nucleus and two extranuclear star-forming regions within the nearby galaxy NGC 3627 (M 66), observed as part of the Star Formation in Radio Survey. Both images achieve an angular resolution of ≲2″, allowing us to map radio spectral indices and estimate thermal radio fractions at a linear resolution of ≲90 pc. The thermal fraction at 33 GHz reaches unity at and around the peaks of each H ii region; the spectral index between 33 and 94.5 GHz additionally becomes both increasingly negative and positive away from the H ii region peaks, indicating an increase of non-thermal emission from diffusing cosmic-ray electrons and the possible presence of cold dust, respectively. While the ALMA observations were optimized for collecting continuum data, they also detected line emission from the J=1\\to 0 transitions of HCN and HCO+. The peaks of dense molecular gas traced by these two spectral lines are spatially offset from the peaks of the continuum emission for both extranuclear star-forming regions, indicating that our data reach an angular resolution at which one can spatially distinguish sites of recent star formation from the sites of future star formation. Finally, we find trends of decreasing dense gas fraction and velocity dispersion with increasing star formation efficiency among the regions observed, indicating that the dynamical state of the dense gas, rather than its abundance, plays a more significant role in the star formation process.

  10. DETECTION OF THE SIMPLEST SUGAR, GLYCOLALDEHYDE, IN A SOLAR-TYPE PROTOSTAR WITH ALMA

    SciTech Connect

    Jorgensen, Jes K.; Bisschop, Suzanne E.; Favre, Cecile; Bourke, Tyler L.; Van Dishoeck, Ewine F.; Schmalzl, Markus E-mail: suzanne@snm.ku.dk E-mail: tbourke@cfa.harvard.edu E-mail: schmalzl@strw.leidenuniv.nl

    2012-09-20

    Glycolaldehyde (HCOCH{sub 2}OH) is the simplest sugar and an important intermediate in the path toward forming more complex biologically relevant molecules. In this Letter we present the first detection of 13 transitions of glycolaldehyde around a solar-type young star, through Atacama Large Millimeter Array (ALMA) observations of the Class 0 protostellar binary IRAS 16293-2422 at 220 GHz (6 transitions) and 690 GHz (7 transitions). The glycolaldehyde lines have their origin in warm (200-300 K) gas close to the individual components of the binary. Glycolaldehyde co-exists with its isomer, methyl formate (HCOOCH{sub 3}), which is a factor 10-15 more abundant toward the two sources. The data also show a tentative detection of ethylene glycol, the reduced alcohol of glycolaldehyde. In the 690 GHz data, the seven transitions predicted to have the highest optical depths based on modeling of the 220 GHz lines all show redshifted absorption profiles toward one of the components in the binary (IRAS 16293B) indicative of infall and emission at the systemic velocity offset from this by about 0.''2 (25 AU). We discuss the constraints on the chemical formation of glycolaldehyde and other organic species-in particular, in the context of laboratory experiments of photochemistry of methanol-containing ices. The relative abundances appear to be consistent with UV photochemistry of a CH{sub 3}OH-CO mixed ice that has undergone mild heating. The order of magnitude increase in line density in these early ALMA data illustrates its huge potential to reveal the full chemical complexity associated with the formation of solar system analogs.

  11. Spectral and morphological analysis of the remnant of supernova 1987A with ALMA and ATCA

    SciTech Connect

    Zanardo, Giovanna; Staveley-Smith, Lister; Indebetouw, Remy; Chevalier, Roger A.; Matsuura, Mikako; Barlow, Michael J.; Gaensler, Bryan M.; Fransson, Claes; Lundqvist, Peter; Manchester, Richard N.; Baes, Maarten; Kamenetzky, Julia R.; Lakićević, Maša; Marcaide, Jon M.; Meixner, Margaret; Ng, C.-Y.; Park, Sangwook; and others

    2014-12-01

    We present a comprehensive spectral and morphological analysis of the remnant of supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (λ 3.2 mm to 450 μm), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (S {sub ν}∝ν{sup –0.73}) and the thermal component originating from dust grains at T ∼ 22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localized west of the SN site, as the spectral analysis yields –0.4 ≲ α ≲ –0.1 across the western regions, with α ∼ 0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.

  12. Measurement of the Black Hole Mass in NGC 1332 with ALMA CO Observations

    NASA Astrophysics Data System (ADS)

    Barth, Aaron J.; Boizelle, Benjamin; Darling, Jeremiah K.; Baker, Andrew J.; Buote, David A.; Ho, Luis C.; Walsh, Jonelle

    2016-06-01

    ALMA has a powerful capability to resolve gas kinematics within the gravitational radius of influence of supermassive black holes in galaxy nuclei. We are carrying out a program to obtain ALMA CO(2-1) observations of early-type galaxies hosting circumnuclear dust disks in order to measure black hole masses. Our program is based on a two-stage observing plan: we first obtain 0.3″ resolution observations to search for evidence of rapidly rotating gas within the black hole's sphere of influence, and when it is found, we then propose higher-resolution observations to map the gas kinematics in detail in order to obtain accurate black hole mass measurements. We will present Cycle 2 observations of NGC 1332 at 0.3″ resolution and new Cycle 3 observations at 0.044″ resolution. The Cycle 2 observation demonstrates that CO emission is co-spatial with the circumnuclear dust disk, exhibiting a central upturn in rotation speed reaching 500 km/s relative to the systemic velocity. Rotational broadening and beam smearing produce complex and asymmetric line profiles near the disk center. Dynamical model fits to the 0.3″ resolution data are unable to provide tight constraints on the black hole mass, but point to a central mass likely to be in the range (4-8)×108 M⊙. The 0.044″-resolution Cycle 3 observations allow us to derive firmer constraints on the central mass, and we will present new model fitting results and the black hole mass measured from the Cycle 3 data.

  13. ALMA Observations of Warm Molecular Gas and Cold Dust in NGC 34

    NASA Astrophysics Data System (ADS)

    Xu, C. K.; Cao, C.; Lu, N.; Gao, Y.; van der Werf, P.; Evans, A. S.; Mazzarella, J. M.; Chu, J.; Haan, S.; Diaz-Santos, T.; Meijerink, R.; Zhao, Y.-H.; Appleton, P.; Armus, L.; Charmandaris, V.; Lord, S.; Murphy, E. J.; Sanders, D. B.; Schulz, B.; Stierwalt, S.

    2014-05-01

    We present Atacama Large Millimeter Array (ALMA) Cycle-0 observations of the CO (6-5) line emission (rest-frame frequency = 691.473 GHz) and of the 435 μm dust continuum emission in the nuclear region of NGC 34, a local luminous infrared galaxy at a distance of 84 Mpc (1'' = 407 pc) which contains a Seyfert 2 active galactic nucleus (AGN) and a nuclear starburst. The CO emission is well resolved by the ALMA beam (0.''26 × 0.''23), with an integrated flux of f CO(6-5) = 1004 (± 151) Jy km s-1. Both the morphology and kinematics of the CO (6-5) emission are rather regular, consistent with a compact rotating disk with a size of 200 pc. A significant emission feature is detected on the redshifted wing of the line profile at the frequency of the H13CN (8-7) line, with an integrated flux of 17.7 ± 2.1(random) ± 2.7(systematic) Jy km s-1. However, it cannot be ruled out that the feature is due to an outflow of warm dense gas with a mean velocity of 400 km s-1. The continuum is resolved into an elongated configuration, and the observed flux corresponds to a dust mass of M dust = 106.97 ± 0.13 M ⊙. An unresolved central core (radius ~= 50 pc) contributes 28% of the continuum flux and 19% of the CO (6-5) flux, consistent with insignificant contributions of the AGN to both emissions. Both the CO (6-5) and continuum spatial distributions suggest a very high gas column density (gsim 104 M ⊙ pc-2) in the nuclear region at radius <~ 100 pc. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  14. ALMA Detected Overdensity of Sub-millimeter Sources Around WISE/NVSS-selected z ~ 2 Dusty Quasars

    NASA Astrophysics Data System (ADS)

    Silva, Andrea; Sajina, Anna; Lonsdale, Carol; Lacy, Mark

    2015-06-01

    We study the environments of 49 WISE/NVSS-selected dusty, hyper-luminous, z ∼ 2 quasars using the Atacama Large Millimeter/Sub-millimeter Array (ALMA) 345 GHz images. We find that 17 of the 49 WISE/NVSS sources show additional sub-millimeter galaxies within the ALMA primary beam, probing scales within ∼150 kpc. We find a total of 23 additional sub-millimeter sources, four of which are in the field of a single WISE/NVSS source. The measured 870 μm source counts are ∼10× what is expected for unbiased regions, suggesting such hyper-luminous dusty quasars are excellent at probing high-density peaks.

  15. VizieR Online Data Catalog: ALMA 870um obs. of HerMES galaxies (Bussmann+, 2015)

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Riechers, D.; Fialkov, A.; Scudder, J.; Hayward, C. C.; Cowley, W. I.; Bock, J.; Calanog, J.; Chapman, S. C.; Cooray, A.; de Bernardis, F.; Farrah, D.; Fu, H.; Gavazzi, R.; Hopwood, R.; Ivison, R. J.; Jarvis, M.; Lacey, C.; Loeb, A.; Oliver, S. J.; Perez-Fournon, I.; Rigopoulou, D.; Roseboom, I. G.; Scott, D.; Smith, A. J.; Vieira, J. D.; Wang, L.; Wardlow, J.

    2016-02-01

    ALMA 870um data were obtained during Cycle 0 from 2012 June to December (Program 2011.0.00539.S; PI: D. Riechers). Optical imaging observations (ugriz) using the Gemini Multi-Object Spectrograph-South (GMOS-S) were conducted in queue mode during the 2013B semester as part of program GS-2013B-Q-77 (PI: R. S. Bussmann). (3 data files).

  16. VizieR Online Data Catalog: Faint ALMA 1.2mm sources down to ~0.02mJy (Fujimoto+, 2016)

    NASA Astrophysics Data System (ADS)

    Fujimoto, S.; Ouchi, M.; Ono, Y.; Shibuya, T.; Ishigaki, M.; Nagai, H.; Momose, R.

    2016-06-01

    We use 67 continuum maps obtained by ~120 pointing of the ALMA cycle 0-2 observations in Band 6/7 that accomplish high sensitivities and angular resolutions. For the mapping mode definitions, there are maps targeting field regions by single-pointing observations, referred to as "field" data, 4 and 62 out of which are taken from our programs and the ALMA archive, respectively. Two out of the four maps were taken in the ALMA cycle-0 Band 6 observations for the spectroscopically confirmed Lyα emitter (LAE) at z=6.595 (Himiko) and an LAE at z=6.511 (NB921-N-79144). See Ono et al. (2014ApJ...795....5O) for a summary of these observations. We also utilize two maps of newly obtained (ALMA cycle 2) field data of Bands 6 and 7 taken for spectroscopically confirmed LAEs at z=5.7 (NB816-S-61269) and at z=7.3 (NB101-S-2904). The NB816-S-61269 observations were carried out in the ALMA program of #2012.1.00602.S (PI: R. Momose) on 2014 May 20, Jun 19, and July 7 with 43 12m antennae array in the range of 18-650m baseline. The NB101-S-2904 data were taken in the ALMA program of #2012.1.00088.S (PI: M. Ouchi) on 2014 July 22 and August 6, 7, 14, and 18, with 55 12m antennae array in the extended configuration of 18-1300m baseline. See section 2.1 for further explanations. To increase the number of ALMA sources, we make full use of ALMA archival data of cycles 0 and 1 that became public by 2015 June. See references in table2 for the collected 62 maps and section 2.2.1 for further details. One-cluster data were taken for Abell 1689 (A1689) in ALMA cycle 0 and 1 observations (PI: J. Richard) of ALMA #2011.0.00319.S and #2012.1.00261.S (see section 2.2.2 for further explanations). (3 data files).

  17. Revealing a Detailed Mass Distribution of a High-density Core MC27/L1521F in Taurus with ALMA

    NASA Astrophysics Data System (ADS)

    Tokuda, Kazuki; Onishi, Toshikazu; Matsumoto, Tomoaki; Saigo, Kazuya; Kawamura, Akiko; Fukui, Yasuo; Inutsuka, Shu-ichiro; Machida, Masahiro N.; Tomida, Kengo; Tachihara, Kengo; André, Philippe

    2016-07-01

    We present the results of ALMA observations of dust continuum emission and molecular rotational lines toward a dense core MC27 (aka L1521F) in Taurus, which is considered to be at a very early stage of star formation. The detailed column density distributions on size scales from a few tens to ˜10,000 AU are revealed by combining the ALMA (12 m array + 7 m array) data with the published/unpublished single-dish data. The high angular resolution observations at 0.87 mm with a synthesized beam size of ˜0.″74 × 0.″32 reveal that a protostellar source, MMS-1, is not spatially resolved and lacks associated gas emission, while a starless high-density core, MMS-2, has substructures in both dust and molecular emission. The averaged radial column density distribution of the inner part of MC27/L1521F (r ≲ 3000 AU) is {N}{{{H}}2} ˜ {r}-0.4, clearly flatter than that of the outer part, ˜{r}-1.0. The complex velocity/spatial structure obtained with previous ALMA observations is located inside the inner flatter region, which may reflect the dynamical status of the dense core.

  18. Thermal structure and minor species distribution of Venus mesosphere by ALMA submm observations

    NASA Astrophysics Data System (ADS)

    Piccialli, Arianna; Moreno, Raphael; Encrenaz, Therese; Fouchet, Thierry; Lellouch, Emmanuel; Moullet, Arielle; Widemann, Thomas

    2015-11-01

    Venus upper atmosphere (70-150 km altitude) is a transition region characterized by a complex dynamics: strong retrograde zonal winds dominate the lower mesosphere while a solar-to-antisolar circulation is observed in the upper mesosphere/lower thermosphere. In addition, photochemical processes play an important role at these altitudes and affect the thermal structure and chemical stability of the entire atmosphere. Sulfur dioxide and water vapor are key species in the photochemical cycles taking place in the troposphere and mesosphere of Venus. They are carried by convective transport, together with the Hadley circulation, up to about 60 km where SO2 is photodissociated and oxydated, leading to the formation of H2SO4 which condenses in the clouds enshrouding the planet. Previous observations obtained by several instruments on board Venus Express and during ground-based campaigns have shown evidence of strong temporal variations, both on day-to-day as well as longer timescales, of density, temperature and SO2 abundance. Such strong variability is still not well understood.Submillimeter observations obtained with the Atacama Large Millimeter Array (ALMA) offer the possibility of probing Venus upper mesosphere and of monitoring minor species, winds and the thermal structure. A first set of observations was obtained on November 14, 15, 26 and 27, 2011 during the first ALMA Early Science observation cycle. These observations targeted SO2, SO, HDO and CO transitions around 345 GHz during four sequences of 30 minutes each. The Venus’ disk was about 11” with an illumination factor of 90%, so that mostly the dayside of the planet was mapped.Assuming nominal night-time and dayside CO abundance profiles from Clancy et al. 2013, we retrieved vertical temperature profiles over the entire disk as a function of latitude and local time for the four days of observation. Temperature profiles were later used to derive the abundances of minor species (HDO, SO, SO2) in each pixel

  19. The Cologne Database for Molecular Spectroscopy, Cdms, in Times of Herschel, SOFIA, and Alma

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Stutzki, Jürgen; Schlemmer, Stephan

    2009-06-01

    The CDMS provides in its catalog section atomic and molecular line lists for species that have been or may be observed in space by radio astronomical means. The line list of each molecule is gathered in an individual entry; minor isotopologs have separate entries, and the same applies to excited vibrational states with the exception of some diatomic molecules. With 5 to 10 new or updated entries each month, the CDMS catalog has been growing rapidly over the past 10 years: since February 2009, there have been more than 500 entries in the CDMS - with many more entries to be created. Entries are generated from fitting (mostly) laboratory data to accepted Hamiltonian models. Despite many dedicated laboratory spectroscopic investigations in recent years, accurate data is still lacking frequently - in particular at higher frequencies, for minor isotopic species, for excited vibrational states, or for somewhat larger molecules. While high frequency data are of special concern for the Herschel satellite, scheduled to be launched in mid-April 2009, or for the Stratospheric Observatory For Infrared Astronomy (SOFIA), the remaining issues mentioned above are important especially for telecope arrays such as the Atacama Large Millimeter Array (ALMA). The main features of the CDMS catalog will be described, including recent developments concerning new entries as well as available and planned features. In particular, we will discuss issues relevant for generating a consolidated database that also takes into account information from other databases. Attention will be given to laboratory spectroscopic needs for missions such as Herschel and SOFIA on one hand and for ALMA, the Expanded Very Large Array (EVLA), and other facilities on the other, both, in terms of general aspects and in terms of specific examples. Selected contributions from the Cologne spectroscopy laboratories to address these needs will be presented. H. S. P. Müller, S. Thorwirth, D. A. Roth, G. Winnewisser

  20. Morphology of Midlatitude Summer Nighttime Anomaly in NmF2 above Alma-Ata

    NASA Astrophysics Data System (ADS)

    Yakovets, Artur; Gordienko, Galina; Litvinov, Yuriy

    2016-04-01

    The morphology of the midlatitude summer nighttime anomaly in the diurnal behavior of the electron concentration maximum in the F2 layer (NmF2) over Alma-Ata in various seasons and at various solar activity levels was studied on the basis of the ionospheric vertical sounding over seven months of 2011 and the summer months of 1999, 2008, 2011, and 2012. The vast majority of data of the analyzed electron concentration measurements was obtained under low magnetic activity (Dst > -50 nT). Measurements during which moderate and high magnetic activity (Dst < -50 nT) was observed were rejected from the analysis. It was shown that the anomaly is not seen in the equinox months. The maximum effect of the anomaly is seen in the summer months (July-August). The maximum value of the electron concentration in the evening peak corresponds to the solar zenith angles, when the ionizing radiation almost ceases to reach the heights of the F2 layer maximum. The anomaly is distinctly manifested in the solar activity minimum but scarcely seen in the solar maximum. It was shown that the parameters of the summer anomaly at the boundary of the north-eastern Asia zone (Alma-Ata, 76.9 deg E) change insignificantly as compared to the parameters at its center (Japan, 130.0 deg E). The mechanisms of the formation of the anomaly and of its diurnal and seasonal behavior are discussed. Two factors determining the anomaly formation in the summer months are considered. First, the meridional wind changes its direction from polarward to equatorqard much earlier in summer (around 14.30 LT) in the middle latitudes than in other seasons, when the photoionizing radiation flux is still high. That is why photoionization, in combination with the rise of the ionosphere to the heights where the recombination rate is low, leads to the formation of an evening increase in NmF2. Second, in addition to the factor of an early change in the thermospheric wind direction, seasonal variations in the meridional wind

  1. Terahertz Desorption Emission Spectroscopy (THz DES) – ‘ALMA in the Lab’

    NASA Astrophysics Data System (ADS)

    Emile Auriacombe, Olivier Bruno Jacques; Fraser, Helen; Ellison, Brian; Ioppolo, Sergio; Rea, Simon

    2016-06-01

    ALMA is revolutionising our scope to identify and locate molecules that have been desorbed from ices, particularly complex organic molecules (COMS), which provide a vital link between interstellar and prebiotic chemistry. Explaining the existence of these molecules in star-forming regions relies on an empirical understanding of the chemistry that underpins their formation:- do COMS form predominantly in the solid-phase and then desorb to the gas phase, or do only “smaller” species, radials or ions desorb and then undergo gas-phase chemical reactions to generate larger COMS?-are the rotational state populations in COMS only attributable to equilibrium chemistry, or could their formation mechanisms and desorption processes affect the rotational state occupancy of these molecules, thereby directly tying certain species to solid-state origins?We have developed a novel laboratory method - THz Desorption Emission Spectroscopy (THz-DES) that combines “traditional” laboratory astrophysics high-vacuum ice experiments with a sensitive high-spectral-resolution terahertz total-power heterodyne radiometer 1,2, partially mirroring the spectral range of ALMA band 7 (275– 373 GHz). Ices are grown in situ on a cold-plate, situated in a vacuum cell, then (thermally) desorbed. The sub-mm emission spectra of the resultant gas-phase molecules are detected as a function of time, temperature, or distance from the surface. Our first THz DES results will be shown for pure and binary ice systems including H2O, N2O and CH3OH. They show good correlation with established methods e.g. TPD, with the advantage of exploiting the molecular spectroscopy to unravel surface dynamics, state-occupancy, and unequivocal molecular identification, as well as concurrently measuring desorption barriers and molecular yields. We will extend our technique to a broader frequency range, enabling us to detect radical and ion desorption, to differentiate between A and E populations of CH3OH or ortho

  2. Anatomy of a blazar in the (sub-)millimeter: ALMA observations of PKS 0521-365

    NASA Astrophysics Data System (ADS)

    Leon, S.; Cortes, P. C.; Guerard, M.; Villard, E.; Hidayat, T.; Ocaña Flaquer, B.; Vila-Vilaro, B.

    2016-02-01

    Aims: We aim at analyzing the (sub-)millimeter emission in a nearby blazar, PKS 0521-365, to study the synchrotron and thermal emission in the different components detected at low frequency. Methods: We analyzed the archive public data of the ALMA Cycle 0 where PKS 0521-365 is used as a calibrator. A total of 13 projects with 23 dataset were analyzed in Bands 3, 6, and 7 and combined. The whole set of data was combined and wavelet-filtered to obtain a deep image toward PKS 0521-365, reaching a dynamic range of 47 000. The individual emission flux was measured on different dates over a period of 11 months in various components. Finally we analyzed the spectral energy distribution (SED) in each different component, including the radio jet and counter jet. Results: The point sources detected in the field follow a similar distribution to previous studies. The blazar flux shows large variation especially in Band 3. Different components are observed: core, radio jet, and newly detected counter jet, hot spot (HS), and a disky structure roughly perpendicular to the jet. The HS emission is formed by a point source surrounded by an extended emission. The viewing angle of the jet is about 30° with a Doppler factor of δ = 1.6. The HS is at a distance of 19 kpc from the center. The SED analysis shows a strong variation in the core spectral index, especially in Band 3. The two components in the radio jet have roughly a flat spectral index in Bands 6 and 7. Conclusions: The different weak and extended components in PKS 0521-365 are detected with the ALMA data. The analysis of both jets constrains the geometrical distance of the HS to the center. The SED presents a different shape in time and frequency for each component. Finally, a new structure is detected roughly perpendicular to the radio jet. and a thermal emission origin is currently favored. Further observations at higher spatial resolution are needed to confirm that hypothesis. FITS files for all the images are only

  3. Resolving the stellar activity of the Mira AB binary with ALMA

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Ramstedt, S.; O'Gorman, E.; Humphreys, E. M. L.; Wittkowski, M.; Baudry, A.; Karovska, M.

    2015-05-01

    Aims: We present the size, shape, and flux densities at millimeter continuum wavelengths, based on ALMA science verification observations in Band 3 (~94.6 GHz) and Band 6 (~228.7 GHz), from the binary Mira A (o Ceti) and Mira B. Methods: The Mira AB system was observed with ALMA at a spatial resolution down to ~25 mas. The extended atmosphere of Mira A and the wind around Mira B sources were resolved, and we derived the sizes of Mira A and of the ionized region around Mira B. The spectral indices within Band 3 (between 89-100 GHz) and between Bands 3 and 6 were also derived. Results: The spectral index of Mira A is found to change from 1.71 ± 0.05 within Band 3 to 1.54 ± 0.04 between Bands 3 and 6. The spectral index of Mira B is 1.3 ± 0.2 in Band 3, in good agreement with measurements at longer wavelengths; however, it rises to 1.72 ± 0.11 between the bands. For the first time, the extended atmosphere of a star is resolved at these frequencies, and for Mira A the diameter is ~3.8 × 3.2 AU in Band 3 (with brightness temperature Tb ~ 5300 K) and ~4.0 × 3.6 AU in Band 6 (Tb ~ 2500 K). Additionally, a bright hotspot ~0.4 AU, with Tb ~ 10 000 K, is found on the stellar disk of Mira A. The size of the ionized region around the accretion disk of Mira B is found to be ~2.4 AU. Conclusions: The emission around Mira B is consistent with emission from a partially ionized wind of gravitationally bound material from Mira A close to the accretion disk of Mira B. The Mira A atmosphere does not fully match predictions with brightness temperatures in Band 3 significantly higher than expected, potentially owing to shock heating. The hotspot is very likely due to magnetic activity and could be related to the previously observed X-ray flare of Mira A. Appendices are available in electronic form at http://www.aanda.org

  4. Modeling the thermal emission from asteroid 3 Juno using ALMA observations and the KRC thermal model

    NASA Astrophysics Data System (ADS)

    Titus, Timothy N.; Li, Jian-Yang; Moullet, Arielle; Sykes, Mark V.

    2015-11-01

    Asteroid 3 Juno (hereafter referred to as Juno), discovered 1 September 1804, is the 11th largest asteroid in the Main Asteroid Belt (MAB). Containing approximately 1% of the mass in the MAB [1], Juno is the second largest S-type [2].As part of the observations acquired from Atacama Large Millimeter/submillimeter Array (ALMA) [3], 10 reconstructed images at ~60km/pixel resolution were acquired of Juno [4] that showed significant deviations from the Standard Thermal Model (STM) [5]. These deviations could be a result of surface topography, albedo variations, emissivity variations, thermal inertia variations, or any combination.The KRC thermal model [6, 7], which has been extensively used for Mars [e.g. 8, 9] and has been applied to Vesta [10] and Ceres [11], will be used to compare model thermal emission to that observed by ALMA at a wavelength of 1.33 mm [4]. The 10 images, acquired over a four hour period, captured ~55% of Juno’s 7.21 hour rotation. Variations in temperature as a function of local time will be used to constrain the source of the thermal emission deviations from the STM.This work is supported by the NASA Solar System Observations Program.References:[1] Pitjeva, E. V. (2005) Solar System Research 39(3), 176. [2] Baer, J. and S. R. Chesley (2008) Celestial Mechanics and Dynamical Astronomy, 100, 27-42. [3] Wootten A. et al. (2015) IAU General Assembly, Meeting #29, #2237199 [4] arXiv:1503.02650 [astro-ph.EP] doi: 10.1088/2041-8205/808/1/L2 [5] Lebofsky, L.A. eta al. (1986) Icarus, 68, 239-251. [6] Kieffer, H. H., et al. (1977) J. Geophys. Res., 82, 4249-4291. [7] Kieffer, Hugh H., (2013) Journal of Geophysical Research: Planets, Volume 118, Issue 3, pp. 451-470 [8] Titus, T. N., H. H. Kieffer, and P. N. Christensen (2003) Science, 299, 1048-1051. [9] Fergason, R. L. et al. (2012) Space Sci. Rev, 170, 739-773, doi:10.1007/s11214-012-9891-3. [10] Titus, T. N. et al. (2012) 43rd LPSC, held March 19-23, 2012 at The Woodlands, Texas. LPI Contribution No

  5. Implementing Kanban for agile process management within the ALMA Software Operations Group

    NASA Astrophysics Data System (ADS)

    Reveco, Johnny; Mora, Matias; Shen, Tzu-Chiang; Soto, Ruben; Sepulveda, Jorge; Ibsen, Jorge

    2014-07-01

    After the inauguration of the Atacama Large Millimeter/submillimeter Array (ALMA), the Software Operations Group in Chile has refocused its objectives to: (1) providing software support to tasks related to System Integration, Scientific Commissioning and Verification, as well as Early Science observations; (2) testing the remaining software features, still under development by the Integrated Computing Team across the world; and (3) designing and developing processes to optimize and increase the level of automation of operational tasks. Due to their different stakeholders, each of these tasks presents a wide diversity of importances, lifespans and complexities. Aiming to provide the proper priority and traceability for every task without stressing our engineers, we introduced the Kanban methodology in our processes in order to balance the demand on the team against the throughput of the delivered work. The aim of this paper is to share experiences gained during the implementation of Kanban in our processes, describing the difficulties we have found, solutions and adaptations that led us to our current but still evolving implementation, which has greatly improved our throughput, prioritization and problem traceability.

  6. A Community-Engaged Research Approach to Improve Mental Health Among Latina Immigrants: ALMA Photovoice.

    PubMed

    Perez, Georgina; Della Valle, Pamela; Paraghamian, Sarah; Page, Rachel; Ochoa, Janet; Palomo, Fabiana; Suarez, Emilia; Thrasher, Angela; Tran, Anh N; Corbie-Smith, Giselle

    2016-05-01

    Recent Latina immigrants are at increased risk of poor mental health due to stressors associated with adapting to life in the United States. Existing social and health care policies often do not adequately address the mental health concerns of new Latino populations. Amigas Latinas Motivando el Alma, a community-partnered research project, seeks to improve immigrant Latinas' mental health outcomes. Using Photovoice methodology, promotoras (lay health advisors) reflected on community factors affecting mental health through photography and guided discussion. Discussions were audio-recorded, transcribed, and coded using content analysis to identify salient themes. Promotoras reviewed codes to develop themes that they presented in community forums to reach local policy makers and to increase community awareness. These forums included an exhibit of the promotoras' photographs and discussion of action steps to address community concerns. Themes included transitioning to life in the United States, parenting, education, and combating racism. Nearly 150 stakeholders attended the community forums and proposed responses to promotoras' photographic themes. Our findings suggest that Photovoice provides an opportunity for Latinas and the larger community to identify issues that they find most important and to explore avenues for action and change by creating sustainable partnerships between the community and forum attendees. PMID:26202773

  7. Planetary Radio Astronomy: The 60 Years from Burke and Franklin to ALMA

    NASA Astrophysics Data System (ADS)

    Steffes, Paul G.

    2014-11-01

    For nearly 60 years, radio astronomy has played a major role in the characterization and monitoring of thermal structure, composition, and temporal changes of the planets and small bodies in our solar system. At this, the 60th anniversary of the initial detection of radio emission by a planet, the role radio astronomy has played in the early characterization of solar system objects, in raising basic scientific questions and motivating planetary exploration missions, and in providing insight into the structure and temporal variations of planets is explored. The evolution of the instrumentation capabilities from crude total-power, or bolometric measurements averaged over an entire planetary disk to today's instrumentation providing radio images of planets and comets with high spectral resolution is also discussed. Major developments such as precise total-power calibration, ultra-large apertures, microwave and millimeter-wave array technology, and supporting laboratory spectroscopy have played major roles in enhancing the effectiveness of radio astronomical observations. The newest generation instruments such as the upgraded Jansky Very Large Array (VLA) and the Altacama Large Millimeter Array (ALMA) now usher in a whole new level of capability in observation of solar system objects.

  8. Isotopic Ratios of Carbon and Oxygen in Titan’s CO using ALMA

    NASA Astrophysics Data System (ADS)

    Serigano, Joseph; Nixon, C. A.; Cordiner, M. A.; Irwin, P. G. J.; Teanby, N. A.; Charnley, S. B.; Lindberg, J. E.

    2016-04-01

    We report interferometric observations of carbon monoxide (CO) and its isotopologues in Titan’s atmosphere using the Atacama Large Millimeter/submillimeter Array (ALMA). The following transitions were detected: CO (J = 1–0, 2–1, 3–2, 6–5), 13CO (J = 2–1, 3–2, 6–5), C18O (J = 2–1, 3–2), and C17O (J = 3–2). Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code. We present the first spectroscopic detection of 17O in the outer solar system with C17O detected at >8σ confidence. The abundance of CO was determined to be 49.6 +/- 1.8 ppm, assumed to be constant with altitude, with isotopic ratios 12C/13C = 89.9 +/- 3.4, 16O/18O = 486 +/- 22, and 16O/17O = 2917 +/- 359. The measurements of 12C/13C and 16O/18O ratios are the most precise values obtained in Titan’s atmospheric CO to date. Our results are in good agreement with previous studies and suggest no significant deviations from standard terrestrial isotopic ratios.

  9. Protoplanetary Disks in the Orion OMC1 Region Imaged with ALMA

    NASA Astrophysics Data System (ADS)

    Eisner, J. A.; Bally, J. M.; Ginsburg, A.; Sheehan, P. D.

    2016-07-01

    We present ALMA observations of the Orion Nebula that cover the OMC1 outflow region. Our focus in this paper is on compact emission from protoplanetary disks. We mosaicked a field containing ∼600 near-IR-identified young stars, around which we can search for sub-millimeter emission tracing dusty disks. Approximately 100 sources are known proplyds identified with the Hubble Space Telescope. We detect continuum emission at 1 mm wavelengths toward ∼20% of the proplyd sample, and ∼8% of the larger sample of near-IR objects. The noise in our maps allows 4σ detection of objects brighter than ∼1.5 mJy, corresponding to protoplanetary disk masses larger than 1.5 M J (using standard assumptions about dust opacities and gas-to-dust ratios). None of these disks are detected in contemporaneous CO(2-1) or C18O(2-1) observations, suggesting that the gas-to-dust ratios may be substantially smaller than the canonical value of 100. Furthermore, since dust grains may already be sequestered in large bodies in Orion Nebula cluster (ONC) disks, the inferred masses of disk solids may be underestimated. Our results suggest that the distribution of disk masses in this region is compatible with the detection rate of massive planets around M dwarfs, which are the dominant stellar constituent in the ONC.

  10. Galactic center mini-spiral by ALMA: Possible origin of the central cluster

    NASA Astrophysics Data System (ADS)

    Tsuboi, Masato; Kitamura, Yoshimi; Miyoshi, Makoto; Uehara, Kenta; Tsutsumi, Takahiro; Miyazaki, Atsushi

    2016-04-01

    We present continuum images of the "Galactic center mini-spiral" in the 100, 250, and 340 GHz bands with analysis of the Cy.0 data acquired from the Atacama Large Millimeter/submillimeter Array (ALMA) archive. Good u-v coverage of the data and the "self-calibration" method give us the opportunity to obtain dynamic ranges of over 2 × 104 in the resultant maps of the 250 and 340 GHz bands. In particular, the image of the 340 GHz band has high dynamic ranges unprecedented in sub-millimeter waves. The angular resolutions attained are 1{^''.}57 × 1{^''.}33 in the 100 GHz band, 0{^''.}63 × 0{^''.}53 in the 250 GHz band, and 0{^''.}44 × 0{^''.}38 in the 340 GHz band, respectively. The continuum images clearly depict the "mini-spiral," which is an ionized gas stream in the vicinity of Sgr A*. We found a tight correlation between the dust emission peaks and the OB/WR stars in the northern arm of the "mini-spiral." The core mass function of the dust cores identified by the clumpfind algorithm would obey the flat power-law dN/dM ∝ M-1.5±0.4 on the high-mass side. These support the scenario that the star-forming cloud has fallen into the immediate vicinity of Sgr A* for the origin of the central cluster.

  11. HIGH-DENSITY MOLECULAR GAS PROPERTIES OF THE STARBURST GALAXY NGC 1614 REVEALED WITH ALMA

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2013-09-15

    We present the results of HCN/HCO{sup +}/HNC J = 4-3 transition line observations of the nearby starburst galaxy NGC 1614, obtained with ALMA Cycle 0. We find that high density molecular gas traced with these lines shows a velocity structure such that the northern (southern) side of the nucleus is redshifted (blueshifted) with respect to the nuclear velocity of this galaxy. The redshifted and blueshifted emission peaks are offset by {approx}0.''6 at the northern and southern sides of the nucleus, respectively. At these offset positions, observations at infrared >3 {mu}m indicate the presence of active dusty starbursts, supporting the picture that high-density molecular gas is the site of active starbursts. The enclosed dynamical mass within the central {approx}2'' in radius, derived from the dynamics of the high-density molecular gas, is {approx}10{sup 9} M{sub Sun }, which is similar to previous estimates. Finally, the HCN emission is weaker than HCO{sup +} but stronger than HNC for J = 4-3 for all starburst regions of NGC 1614, as seen for J = 1-0 transition lines in starburst-dominated galaxies.

  12. Stacking of Interferometric Data: New Tools for Stacking of ALMA Data

    NASA Astrophysics Data System (ADS)

    Knudsen, K. K.; Lindroos, L.; Vlemmings, W.; Conway, J.; Martí-Vidal, I.

    2015-12-01

    Radio and mm observations play an important role in determining the star formation properties of high-redshift galaxies. With the unprecedented sensitivity, ALMA now enable studies of faint , distant star-forming galaxies. However, most galaxies with low star formation rates at high redshift are too faint to be detected individually at these wavelengths. A way to study such galaxies is to use stacking. By averaging the emission of a large number of galaxies detected in optical or near-infrared surveys, we can achieve statistical detection. We investigate methods for stacking data from interferometric surveys. Interferometry poses unique challenges in stacking due to the nature of this data. We have compared stacking of uv-data with stacking of imaged data, the latter being the commonly used approach. Using simulated data, we find that uv-stacking may provide up to 50% less noise and that image based stacking systematically loses around 10% of the flux. More importantly, we find that the uv-stacking yield more robust results, especially in the case of (marginally) resolved sources and mosaicked data.

  13. Molecular Line Emission from Massive Protostellar Disks: Predictions for ALMA and the EVLA

    SciTech Connect

    Krumholz, M R; Klein, R I; McKee, C F

    2007-05-07

    We compute the molecular line emission of massive protostellar disks by solving the equation of radiative transfer through the cores and disks produced by the recent radiation-hydrodynamic simulations of Krumholz, Klein, & McKee. We find that in several representative lines the disks show brightness temperatures of hundreds of Kelvin over velocity channels {approx} 10 km s{sup -1} wide, extending over regions hundreds of AU in size. We process the computed intensities to model the performance of next-generation radio and submillimeter telescopes. Our calculations show that observations using facilities such as the EVLA and ALMA should be able to detect massive protostellar disks and measure their rotation curves, at least in the nearest massive star-forming regions. They should also detect significant sub-structure and non-axisymmetry in the disks, and in some cases may be able to detect star-disk velocity offsets of a few km s{sup -1}, both of which are the result of strong gravitational instability in massive disks. We use our simulations to explore the strengths and weaknesses of different observational techniques, and we also discuss how observations of massive protostellar disks may be used to distinguish between alternative models of massive star formation.

  14. ALMA Observations of a Gap and a Ring in the Protoplanetary Disk around TW Hya

    NASA Astrophysics Data System (ADS)

    Nomura, Hideko; Tsukagoshi, Takashi; Kawabe, Ryohei; Ishimoto, Daiki; Okuzumi, Satoshi; Muto, Takayuki; Kanagawa, Kazuhiro D.; Ida, Shigeru; Walsh, Catherine; Millar, T. J.; Bai, Xue-Ning

    2016-03-01

    We report the first detection of a gap and a ring in 336 GHz dust continuum emission from the protoplanetary disk around TW Hya, using the Atacama Large Millimeter/Submillimeter Array (ALMA). The gap and ring are located at around 25 and 41 au from the central star, respectively, and are associated with the CO snow line at ∼30 au. The gap has a radial width of less than 15 au and a mass deficit of more than 23%, taking into account that the observations are limited to an angular resolution of ∼15 au. In addition, the 13CO and C18O J=3-2 lines show a decrement in CO line emission throughout the disk, down to ∼10 au, indicating a freeze-out of gas-phase CO onto grain surfaces and possible subsequent surface reactions to form larger molecules. The observed gap could be caused by gravitational interaction between the disk gas and a planet with a mass less than super-Neptune (2{M}{{Neptune}}), or could be the result of the destruction of large dust aggregates due to the sintering of CO ice.

  15. Constraints on the CO Luminosity Function at z˜1 Using ALMA Archival Data

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y.; Kohno, K.; Tamura, Y.; Matsuda, Y.

    2015-12-01

    We report the constraints on the CO luminosity function using ALMA Cycle 0 archival data. We use band 6 data taken toward a z=0.1832 lensing cluster, Abell 1689 (4.7 arcmin2), to produce a 3-dimensional cube with a 30-km s-1 resolution and to search for millimeter emission line galaxies using CLUMPFIND. We do not detect any emitters above 5σ (σ = 2.5 mJy beam-1). However, this result provides upper limits to the CO luminosity function down to φ<3.3×10-2 Mpc-3 dex-1 at LVCO˜ 1.0×108 Jy kms-1 Mpc2. We also detect a 4σ candidate line emitter with SΔ V=0.894 Jy km s-1 and FWHM = 138 km s-1 at 241.03 GHz. The photometric redshift is z=0.853, which is estimated from optical/near-infrared data, suggesting the line may be 12CO(4-3) at z=0.913. The estimated molecular gas mass of this candidate indicates this candidate is extremely gas rich.

  16. THE PECULIAR DISTRIBUTION OF CH3CN IN IRC +10216 SEEN BY ALMA

    PubMed Central

    Agúndez, M.; Cernicharo, J.; Quintana-Lacaci, G.; Prieto, L. Velilla; Castro-Carrizo, A.; Marcelino, N.; Guélin, M.

    2015-01-01

    IRC +10216 is a circumstellar envelope around a carbon-rich evolved star which contains a large variety of molecules. According to interferometric observations, molecules are distributed either concentrated around the central star or as a hollow shell with a radius of ~15″. We present ALMA Cycle 0 band 6 observations of the J = 14 – 13 rotational transition of CH3CN in IRC +10216, obtained with an angular resolution of 0.″76×0.″61. The bulk of the emission is distributed as a hollow shell located at just ~2″ from the star, with a void of emission in the central region up to a radius of ~1″. This spatial distribution is markedly different from those found to date in this source for other molecules. Our analysis indicate that methyl cyanide is not formed neither in the stellar photosphere nor far in the outer envelope, but at radial distances as short as 1-2″, reaching a maximum abundance of ~ 0.02 molecules cm−3 at 2″ from the star. Standard chemical models of IRC +10216 predict that the bulk of CH3CN molecules should be present at a radius of ~ 15″, where other species such as polyyne radicals and cyanopolyynes are observed, with an additional inner component within 1″ from the star. The non-uniform structure of the circumstellar envelope and grain surface processes are discussed as possible causes of the peculiar distribution of methyl cyanide in IRC +10216. PMID:26709313

  17. Preliminary Work to Alma: Submillimeter Wave Spectroscopy of ^{18}O and D Species of Methyl Formate

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R.; Huet, T. R.; Møllendal, H.; Guillemin, J.-C.; Demyk, K.; Carvajal, M.; Kleiner, I.; Coudert, L. H.

    2009-06-01

    New radiotelescopes, working in the submillimeter range, will be operating in the next few years: ALMA, Herschel, and SOFIA. A large amount of laboratory work is required in order to account for the increased resolution and accuracy needed to analyze the numerous data which will be obtained with these new instruments. There is a strong interest of the astrophysical community in isotopic species for two main reasons: (i) Their detection provides us with key information about interstellar chemical modeling, especially for complex organic molecules, like methyl formate, as their formation mechanisms is not well understood yet. (ii) They are responsible for a large fraction of U-lines and their assignments are necessary to allow the detection of new species. In this context we continue a systematic study of the isotopic species of methyl formate (HCOOCH_3) initiated with H^{13}COOCH_3. Our next investigation of HCOO^{13}CH_3 allowed us the detection of 500 lines in Orion. The treatment of the data concerning methyl formate is not obvious due to the internal rotation of the methyl group. This treatment is different in case of a symmetric (CH_3) or an asymmetric (CHD_2) rotor part. We will report here on recent results obtained for DCOOCH_3, HCOOCHD_2, HC^{18}OOCH_3, and HCO^{18}OCH_3. [2] Willaert, Møllendal, Alekseev, et al. J. Mol. Struct. 795 (2006) [3] Carvajal, Margules, Tercero, et al. Astron. Astrophys. (2009) in press

  18. ALMA Imaging of HCN, CS, and Dust in Arp 220 and NGC 6240

    NASA Astrophysics Data System (ADS)

    Scoville, Nick; Sheth, Kartik; Walter, Fabian; Manohar, Swarnima; Zschaechner, Laura; Yun, Min; Koda, Jin; Sanders, David; Murchikova, Lena; Thompson, Todd; Robertson, Brant; Genzel, Reinhard; Hernquist, Lars; Tacconi, Linda; Brown, Robert; Narayanan, Desika; Hayward, Christopher C.; Barnes, Joshua; Kartaltepe, Jeyhan; Davies, Richard; van der Werf, Paul; Fomalont, Edward

    2015-02-01

    We report ALMA Band 7 (350 GHz) imaging at 0.''4-0.''6 resolution and Band 9 (696 GHz) at ~0.''25 resolution of the luminous IR galaxies Arp 220 and NGC 6240. The long wavelength dust continuum is used to estimate interstellar medium masses for Arp 220 east and west and NGC 6240 of 1.9, 4.2, and 1.6 × 109 M ⊙within radii of 69, 65, and 190 pc. The HCN emission was modeled to derive the emissivity distribution as a function of radius and the kinematics of each nuclear disk, yielding dynamical masses consistent with the masses and sizes derived from the dust emission. In Arp 220, the major dust and gas concentrations are at radii less than 50 pc in both counter-rotating nuclear disks. The thickness of the disks in Arp 220 estimated from the velocity dispersion and rotation velocities are 10-20 pc and the mean gas densities are nH_2 ˜ 10^5 cm-3 at R <50 pc. We develop an analytic treatment for the molecular excitation (including photon trapping), yielding volume densities for both the HCN and CS emission with n H2 ~ 2 × 105 cm-3. The agreement of the mean density from the total mass and size with that required for excitation suggests that the volume is essentially filled with dense gas, i.e., it is not cloudy or like swiss cheese.

  19. Investigating star formation properties of galaxies in massive clusters with Herschel and ALMA

    NASA Astrophysics Data System (ADS)

    Wu, John F.; Baker, Andrew J.; Aguirre, Paula; Barkats, D.; Halpern, Mark; Hilton, Matt; Hughes, John Patrick; Infante, Leopoldo; Lindner, Robert; Marriage, Tobias; Menanteau, Felipe; Sifon, Cristobal; Weiss, Axel; ACT Collaboration

    2016-01-01

    I will present results from an investigation of star formation properties of galaxies residing in two massive z ~ 1 clusters (including the 'El Gordo' merger) that were initially selected via their Sunyaev-Zeldovich decrements by the Atacama Cosmology Telescope (ACT) southern survey. This study uses new Herschel Space Observatory and Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations, which provide information about the dust and cold gas content of galaxies in our targeted clusters. We have detected CO (4-3) and [CI] in individual star-forming cluster galaxies, and also measured stacked continuum and spectral line fluxes at long (e.g., far-infrared, submillimeter, and radio) wavelengths. We use these results to explore the relations between star formation and local environment and cluster dynamical state.This work has been supported by (i) an award issued by JPL/Caltech in association with Herschel, which is a European Space Agency Cornerstone Mission with significant participation by NASA, and (ii) the National Science Foundation through award GSSP SOSPA2-018 from the National Radio Astronomy Observatory, which is operated under cooperative agreement by Associated Universities, Inc.

  20. AN ALMA DISK MASS FOR THE CANDIDATE PROTOPLANETARY COMPANION TO FW TAU

    SciTech Connect

    Kraus, Adam L.; Andrews, Sean M.; Bowler, Brendan P.; Herczeg, Gregory; Ireland, Michael J.; Liu, Michael C.; Metchev, Stanimir; Cruz, Kelle L.

    2015-01-01

    We present ALMA observations of the FW Tau system, a close binary pair of M5 stars with a wide-orbit (300 AU projected separation) substellar companion. The companion is extremely faint and red in the optical and near-infrared, but boasts a weak far-infrared excess and optical/near-infrared emission lines indicative of a primordial accretion disk of gas and dust. The component-resolved 1.3 mm continuum emission is found to be associated only with the companion, with a flux (1.78 ± 0.03 mJy) that indicates a dust mass of 1-2 M {sub ⊕}. While this mass reservoir is insufficient to form a giant planet, it is more than sufficient to produce an analog of the Kepler-42 exoplanetary system or the Galilean satellites. The mass and geometry of the disk-bearing FW Tau companion remains unclear. Near-infrared spectroscopy shows deep water bands that indicate a spectral type later than M5, but substantial veiling prevents a more accurate determination of the effective temperature (and hence mass). Both a disk-bearing ''planetary-mass'' companion seen in direct light or a brown dwarf tertiary viewed in light scattered by an edge-on disk or envelope remain possibilities.

  1. An ALMA continuum survey of circumstellar disks in the upper Scorpius OB association

    SciTech Connect

    Carpenter, John M.; Ricci, Luca; Isella, Andrea

    2014-05-20

    We present ALMA 880 μm continuum observations of 20 K- and M-type stars in the Upper Scorpius OB association (Upper Sco) that are surrounded by protoplanetary disks. These data are used to measure the dust content in disks around low-mass stars (0.1-1.6 M {sub ☉}) at a stellar age of 5-11 Myr. Thirteen sources were detected in the 880 μm dust continuum at ≥3σ with inferred dust masses between 0.3 and 52 M {sub ⊕}. The dust masses tend to be higher around the more massive stars, but the significance is marginal in that the probability of no correlation is p ≈ 0.03. The evolution in the dust content in disks was assessed by comparing the Upper Sco observations with published continuum measurements of disks around ∼1-2 Myr stars in the Class II stage in the Taurus molecular cloud. While the dust masses in the Upper Sco disks are on average lower than in Taurus, any difference in the dust mass distributions is significant at less than 3σ. For stellar masses between 0.49 M {sub ☉} and 1.6 M {sub ☉}, the mean dust mass in disks is lower in Upper Sco relative to Taurus by Δlog M {sub dust} = 0.44 ± 0.26.

  2. Galactic center mini-spiral by ALMA: Possible origin of the central cluster

    NASA Astrophysics Data System (ADS)

    Tsuboi, Masato; Kitamura, Yoshimi; Miyoshi, Makoto; Uehara, Kenta; Tsutsumi, Takahiro; Miyazaki, Atsushi

    2016-06-01

    We present continuum images of the "Galactic center mini-spiral" in the 100, 250, and 340 GHz bands with analysis of the Cy.0 data acquired from the Atacama Large Millimeter/submillimeter Array (ALMA) archive. Good u-v coverage of the data and the "self-calibration" method give us the opportunity to obtain dynamic ranges of over 2 × 104 in the resultant maps of the 250 and 340 GHz bands. In particular, the image of the 340 GHz band has high dynamic ranges unprecedented in sub-millimeter waves. The angular resolutions attained are 1{^''.}57 × 1{^''.}33 in the 100 GHz band, 0{^''.}63 × 0{^''.}53 in the 250 GHz band, and 0{^''.}44 × 0{^''.}38 in the 340 GHz band, respectively. The continuum images clearly depict the "mini-spiral," which is an ionized gas stream in the vicinity of Sgr A*. We found a tight correlation between the dust emission peaks and the OB/WR stars in the northern arm of the "mini-spiral." The core mass function of the dust cores identified by the clumpfind algorithm would obey the flat power-law dN/dM ∝ M-1.5±0.4 on the high-mass side. These support the scenario that the star-forming cloud has fallen into the immediate vicinity of Sgr A* for the origin of the central cluster.

  3. The CDMS view on molecular data needs of Herschel, SOFIA, and ALMA

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Endres, C. P.; Stutzki, J.; Schlemmer, S.

    2013-07-01

    The catalog section of the Cologne Database for Molecular Spectroscopy, CDMS, contains mostly rotational transition frequencies, with auxiliary information, of molecules observable in space. The frequency lists are generated mostly from critically evaluated laboratory data employing established Hamiltonian models. The CDMS has been online publicly for more than 12 years, e.g., via the short-cut http://www.cdms.de. Initially constructed as ascii tables, its inclusion into a database environment within the Virtual Atomic and Molecular Data Centre (VAMDC, http://www.vamdc.eu) has begun in June 2008. A test version of the new CDMS is about to be released. The CDMS activities have been part of the extensive laboratory spectroscopic investigations in Cologne. Moreover, these activities have also benefit from collaborations with other laboratory spectroscopy groups as well as with astronomers. We will provide some basic information on the CDMS and its participation in the VAMDC project. In addition, some recent detections of molecules as well as spectroscopic studies will be discussed to evaluate the spectroscopic data needs of Herschel, SOFIA, and ALMA in particular in terms of light hydrides, complex molecules, and metal containing species.

  4. A submillimeter line survey of low-mass protostars: prelude to ALMA and Herschel

    NASA Astrophysics Data System (ADS)

    van Dishoeck, E. F.; Jørgensen, J. K.; Maret, S.; Ceccarelli, C.; Caux, E.; Schöier, F. L.; Castets, A.; Tielens, A. G. G. M.

    2005-01-01

    The results from a single-dish molecular line survey of a set of 18 deeply embedded young stellar objects are summarized. More than 40 lines from 16 different species were observed with the JCMT, Onsala, IRAM 30m and SEST telescopes. The multi-transition data are analyzed using a temperature and density structure derived from models of the dust continuum emission. For the outer envelope (>300 AU), the data indicate a "drop" abundance profile for many species, with normal abundances in the outer- and innermost regions and highly depleted abundances in an intermediate zone. This zone is bounded at the outer edge by the density where the timescale for freeze-out becomes longer than the life-time of the core, and at the inner edge by the evaporation temperature of the species involved. In the innermost envelope (<300 AU), all ices evaporate resulting in jumps in the abundances of complex organic molecules such as CH3OH. A key project for Herschel will be to survey gas-phase water in these objects, whose abundance shows extreme variations with temperature. ALMA will be able to directly image the chemical variations throughout the envelope and zoom in on the inner hot core and protoplanetary disks on scales on tens of AU.

  5. IRAS 16547–4247: A NEW CANDIDATE OF A PROTOCLUSTER UNVEILED WITH ALMA

    SciTech Connect

    Higuchi, Aya E.; Saigo, Kazuya; Chibueze, James O.; Sanhueza, Patricio; Takakuwa, Shigehisa; Garay, Guido

    2015-01-10

    We present the results of continuum and {sup 12}CO(3-2) and CH{sub 3}OH(7-6) line observations of IRAS 16547–4247 made with the Atacama Large Millimeter/submillimeter Array (ALMA) at an angular resolution of ∼0.''5. The {sup 12}CO(3-2) emission shows two high-velocity outflows whose driving sources are located within the dust continuum peak. The alignment of these outflows does not coincide with that of the wide-angle, large-scale, bipolar outflow detected with the Atacama Pathfinder Experiment in previous studies. The CH{sub 3}OH(7-6) line emission traces an hourglass structure associated with the cavity walls created by the outflow lobes. Taking into account our results together with the position of the H{sub 2}O and class I CH{sub 3}OH maser clusters, we discuss two possible scenarios that can explain the hourglass structure observed in IRAS 16547–4247: (1) precession of a biconical jet, (2) multiple, or at least two, driving sources powering intersecting outflows. Combining the available evidence, namely, the presence of two cross-aligned bipolar outflows and two different H{sub 2}O maser groups, we suggest that IRAS 16547–4247 represents an early formation phase of a protocluster.

  6. Spectroscopic Confirmation of Ethyl Cyanide in Titan’s Atmosphere using ALMA

    NASA Astrophysics Data System (ADS)

    Palmer, Maureen Y.; Cordiner, Martin A.; Nixon, Conor A.; Kisiel, Zbigniew; Charnley, Steven B.; Teanby, Nick; Kuan, Yi-Jehng; Mumma, Michael J.

    2014-11-01

    In the last few decades, many molecular species have been detected in the atmosphere of Titan. The first detection of a new molecule on Titan using high-resolution microwave spectroscopy was by Bézard et al. (1993), who observed multiple emission lines from methyl cyanide (CH3CN) near 221 GHz. The presence of ethyl cyanide (CH3CH2CN) has long been predicted by photochemical models, and the protonated form (CH3CH2CNH+) was previously inferred from Cassini INMS measurements (Vuitton et al. 2006). Here, we present the first spectroscopic detection of ethyl cyanide in Titan's atmosphere, obtained using high spectral/spatial-resolution observations carried out with the Atacama Large Millimeter/sub-millimeter Array (ALMA). We have detected over 30 rotational emission lines from CH3CH2CN in the frequency range 220-350 GHz, and will present a preliminary model for the column density, as well as maps of the CH3CH2CN distribution in Titan's daylight hemisphere.References: Vuitton, Yelle, & Anicich 2006, ApJ, 647, L175.; Bézard, B., Marten, A., & Paubert, G. (1993). Detection of Acetonitrile on Titan. In AAS/Division for Planetary Sciences Meeting Abstracts #25.09, vol. 25 of Bulletin of the American Astronomical Society, (p. 1100).

  7. Cosmic Star-Formation History and Deep ALMA imaging of the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Dunlop, James

    2015-08-01

    I will give an overview of how recent work at UV, optical, infrared, mm and radio wavelengths have impacted on our current understanding of the cosmic evolution of co-moving star-formation rate density. I will review recent progress at redshifts z ~ 2 - 3, corresponding to the putative peak of star-formation activity. However, I will focus primarily on new results at the very highest redshifts, within 1 Gyr of the Big Bang, where dramatic recent observational progress with Hubble, Spitzer, Vista, and spectrographs on 8-m telescopes has enabled us to chart the rise of the early galaxy population back to redshifts z ~ 10, and to deduce the basic physical properties of galaxies at these early times. We have also been able to estimate the contribution of young galaxies to the reionization of the Universe, and I will show that the inferred progress of reionization is now in excellent agreement with new measurements of the Thomson scattering optical depth from microwave background observations with Planck. I will conclude with a discussion of how new results from deep ALMA imaging have the potential to clarify and complete our understanding of cosmic star-formation history.

  8. Revised spectroscopic parameters of SH(+) from ALMA and IRAM 30m observations.

    PubMed

    Müller, Holger S P; Goicoechea, Javier R; Cernicharo, José; Agúndez, Marcelino; Pety, Jérôme; Cuadrado, Sara; Gerin, Maryvonne; Dumas, Gaëlle; Chapillon, Edwige

    2014-09-19

    Hydrides represent the first steps of interstellar chemistry. Sulfanylium (SH(+)), in particular, is a key tracer of energetic processes. We used ALMA and the IRAM 30 m telescope to search for the lowest frequency rotational lines of SH(+) toward the Orion Bar, the prototypical photo-dissociation region illuminated by a strong UV radiation field. On the basis of previous Herschel/HIFI observations of SH(+), we expected to detect emission of the two SH(+) hyperfine structure (HFS) components of the NJ = 10-01 fine structure (FS) component near 346 GHz. While we did not observe any lines at the frequencies predicted from laboratory data, we detected two emission lines, each ~15 MHz above the SH(+) predictions and with relative intensities and HFS splitting expected for SH(+). The rest frequencies of the two newly detected lines are more compatible with the remainder of the SH(+) laboratory data than the single line measured in the laboratory near 346 GHz and previously attributed to SH(+). Therefore, we assign these new features to the two SH(+) HFS components of the NJ = 10-01 FS component and re-determine its spectroscopic parameters, which will be useful for future observations of SH(+), in particular if its lowest frequency FS components are studied. Our observations demonstrate the suitability of these lines for SH(+) searches at frequencies easily accessible from the ground. PMID:26525172

  9. Alma observations of nearby luminous infrared galaxies with various agn energetic contributions using dense gas tracers

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2014-07-01

    We present the results of our ALMA Cycle 0 observations, using HCN/HCO{sup +}/HNC J = 4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO{sup +} J = 4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J = 1-0 transition, while there is no clear difference in the HCN-to-HNC J = 4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO{sup +} J = 4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J = 4-3 emission relative to HCO{sup +} J = 4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.

  10. SXDF-ALMA 2 arcmin2 deep survey: Resolving and characterizing the infrared extragalactic background light down to 0.5 mJy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuki; Tamura, Yoichi; Kohno, Kotaro; Aretxaga, Itziar; Dunlop, James S.; Hatsukade, Bunyo; Hughes, David; Ikarashi, Soh; Ishii, Shun; Ivison, Rob J.; Izumi, Takuma; Kawabe, Ryohei; Kodama, Tadayuki; Lee, Minju; Makiya, Ryu; Matsuda, Yuichi; Nakanishi, Kouichiro; Ohta, Kouji; Rujopakarn, Wiphu; Tadaki, Ken-ichi; Umehata, Hideki; Wang, Wei-Hao; Wilson, Grant W.; Yabe, Kiyoto; Yun, Min S.

    2016-08-01

    We present a multiwavelength analysis of five submillimeter sources (S1.1mm = 0.54-2.02 mJy) that were detected during our 1.1 mm deep continuum survey in the Subaru/XMM-Newton Deep Survey Field (SXDF)-UDS-CANDELS field (2 arcmin2, 1σ = 0.055 mJy beam-1) using the Atacama Large Millimeter/submillimeter Array (ALMA). The two brightest sources correspond to a known single-dish (AzTEC) selected bright submillimeter galaxy (SMG), whereas the remaining three are faint SMGs newly uncovered by ALMA. If we exclude the two brightest sources, the contribution of the ALMA-detected faint SMGs to the infrared extragalactic background light is estimated to be ˜ 4.1^{+5.4}_{-3.0}Jy deg-2, which corresponds to ˜ 16^{+22}_{-12}% of the infrared extragalactic background light. This suggests that their contribution to the infrared extragalactic background light is as large as that of bright SMGs. We identified multiwavelength counterparts of the five ALMA sources. One of the sources (SXDF-ALMA3) is extremely faint in the optical to near-infrared region despite its infrared luminosity (L_IR˜eq 1× 10^{12} L_{⊙} or SFR ≃ 100 M⊙ yr-1). By fitting the spectral energy distributions at the optical-to-near-infrared wavelengths of the remaining four ALMA sources, we obtained the photometric redshifts (zphoto) and stellar masses (M*): zphoto ≃ 1.3-2.5, M* ≃ (3.5-9.5) × 1010 M⊙. We also derived their star formation rates (SFRs) and specific SFRs as ≃30-200 M⊙ yr-1 and ≃0.8-2 Gyr-1, respectively. These values imply that they are main sequence star-forming galaxies.

  11. 30 Doradus - Relating Young Stars Imaged by Spitzer and Hubble to the CO Molecular Gas Observed with ALMA

    NASA Astrophysics Data System (ADS)

    Nayak, Omnarayani; Meixner, Margaret; Indebetouw, Remy; Sabbi, Elena; De Marchi, Guido; Panagia, Nino

    2016-01-01

    The majority of star have masses less than 8 solar mass and form in clumps that are less than 1 pc in size. The sub-parsec scales in which star formation takes place makes it difficult to resolve the effects star formation and the surrounding dense gas have on each other. The Magellanic Clouds are more active in forming high mass stars as compared to the Milky Way. The SAGE and Heritage surveys combined with the Hubble Tarantula Treasury Project provide us the opportunity to study high-mass (>15 solar masses) and low-mass (<1 solar mass) star formation. ALMA observations cover a 60 pc x 30 pc region of CO gas slightly north of the R136 cluster in 30 Doradus. We find 16 young stellar objects and about a 100 pre-main-sequence stars within the ALMA footprint. We define young stellar objects to be very early stage stars that are about 10,000 years old and whose SEDs peak in the infrared, and we use pre-main-sequence-stars to refer to slightly older stars that can be seen in the optical. I will use dendrograms to analyze both the high- and low-mass star properties with respect to the CO gas structure observed with ALMA. Preliminary results show that not all massive young stellar objects are associated with CO gas, higher mass clumps tend to form higher mass stars and are more likely to have multiple young stars, and lower mass clumps tend to not be gravitationally bound however the larger clouds are bound. Looking at the interplay between dense molecular gas and the newly forming stars in a stellar nursery will shed light on how these stars formed: monolithic collapse or competitive accretion.

  12. THE ANATOMY OF AN EXTREME STARBURST WITHIN 1.3 Gyr OF THE BIG BANG REVEALED BY ALMA

    SciTech Connect

    Carilli, C. L.; Riechers, D.; Walter, F.; Maiolino, R.; Lentati, L.; Wagg, J.; McMahon, R.; Wolfe, A.

    2013-02-15

    We present further analysis of the [C II] 158 {mu}m fine structure line and thermal dust continuum emission from the archetype extreme starburst/active galactic nucleus (AGN) group of galaxies in the early universe, BRI 1202-0725 at z = 4.7, using the Atacama Large Millimeter Array. The group has long been noted for having a closely separated (26 kpc in projection) FIR-hyperluminous quasar host galaxy and an optically obscured submillimeter galaxy (SMG). A short ALMA test observation reveals a rich laboratory for the study of the myriad processes involved in clustered massive galaxy formation in the early universe. Strong [C II] emission from the SMG and the quasar have been reported earlier by Wagg et al. based on these observations. In this paper, we examine in more detail the imaging results from the ALMA observations, including velocity channel images, position-velocity plots, and line moment images. We present detections of [C II] emission from two Ly{alpha}-selected galaxies in the group, demonstrating the relative ease with which ALMA can detect the [C II] emission from lower star formation rate galaxies at high redshift. Imaging of the [C II] emission shows a clear velocity gradient across the SMG, possibly indicating rotation or a more complex dynamical system on a scale {approx}10 kpc. There is evidence in the quasar spectrum and images for a possible outflow toward the southwest, as well as more extended emission (a {sup b}ridge{sup )}, between the quasar and the SMG, although the latter could simply be emission from Ly{alpha}-1 blending with that of the quasar at the limited spatial resolution of the current observations. These results provide an unprecedented view of a major merger of gas-rich galaxies driving extreme starbursts and AGN accretion during the formation of massive galaxies and supermassive black holes within 1.3 Gyr of the big bang.

  13. Detectability of [C II] 158 μm Emission from High-Redshift Galaxies: Predictions for ALMA and SPICA

    NASA Astrophysics Data System (ADS)

    Nagamine, Kentaro; Wolfe, Arthur M.; Hernquist, Lars

    2006-08-01

    We discuss the detectability of high-redshift galaxies via [C II] 158 μm line emission by coupling an analytic model with cosmological smoothed particle hydrodynamics (SPH) simulations that are based on the concordance Λ cold dark matter (CDM) model. Our analytic model describes a multiphase interstellar medium (ISM) irradiated by the far-ultraviolet (FUV) radiation from local star-forming regions, and it calculates thermal and ionization equilibrium between cooling and heating. The model allows us to predict the mass fraction of a cold neutral medium (CNM) embedded in a warm neutral medium (WNM). Our cosmological SPH simulations include a treatment of radiative cooling/heating, star formation, and feedback effects from supernovae and galactic winds. Using our method, we make predictions for the [C II] luminosity from high-redshift galaxies that can be directly compared with upcoming observations by the Atacama Large Millimeter Array (ALMA) and the Space Infrared Telescope for Cosmology and Astrophysics (SPICA). We find that the number density of high-redshift galaxies detectable by ALMA and SPICA via [C II] emission depends significantly on the amount of neutral gas, which is highly uncertain. Our calculations suggest that, in a CDM universe, most [C II] sources at z=3 are faint objects with Sν<0.01 mJy. Lyman break galaxies (LBGs) brighter than RAB=23.5 mag are expected to have flux densities Sν=1-3 mJy depending on the strength of galactic wind feedback. The recommended observing strategy for ALMA and SPICA is to aim at very bright LBGs or star-forming DRG/BzK galaxies.

  14. Direct Imaging of the Water Snow Line at the Time of Planet Formation using Two ALMA Continuum Bands

    NASA Astrophysics Data System (ADS)

    Banzatti, A.; Pinilla, P.; Ricci, L.; Pontoppidan, K. M.; Birnstiel, T.; Ciesla, F.

    2015-12-01

    Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 between dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index αmm due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (αvisc < 10-3), the snow line produces a ringlike structure with a minimum at αmm ˜ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.

  15. The Fundamental Structure of UV-Irradiated Cloud Edges: Combined ALMA and IRAM-30m Observations of the Orion Bar

    NASA Astrophysics Data System (ADS)

    Goicoechea, J.; Cuadrado, S.; Pety, J.; Ag'undez, M.; Cernicharo, J.; Chapillon, E.; Dumas, G.; Fuente, A.; Gerin, M.; Joblin, C.; Marcelino, N.; Müller, H. S. P.; Pilleri, P.

    2015-12-01

    The Orion Bar is the prototypical photodissociation region (PDR) exposed to a far-UV radiation field (FUV) of a few 104 times the mean interstellar field. Because of its proximity and nearly edge-on orientation, it provides a unique laboratory to study the physical and chemical gradients of a strongly FUV-illuminated molecular cloud. Using ALMA at ˜350 GHz, we have observed a field-of-view of ˜40”×40” toward the Orion Bar PDR consisting of a mosaic of 27 Nyquist-sampled pointings. These observations provide an unprecedented high angular resolution view (˜1” or ˜414 AU at the distance to Orion) of the most exposed molecular cloud edge. In addition, ACA and IRAM-30m maps were used to produce the short-spacing visibilities filtered out by the ALMA array. These interferometric observations complement a complete line survey we have carried out using the IRAM-30m telescope between ˜80 GHz and ˜360 GHz. Despite being a harsh environment, over 60 species with up to 6 atoms have been identified, including main isotopologues (D, 13C, 18O, 17O, 34S, 33S, and 15N). The first molecular line images of the Orion Bar obtained with ALMA at ˜1” resolution reveal the fundamental structure in density and temperature of the molecular gas as well as its complex kinematics at an unprecedented spatial resolution. This early data set also allowed us to compute corrected line frequencies for SH+, an interesting hydride tracing reactions of S+ with vibrationally excited H2 in the PDR edge.

  16. Toward Precision Black Hole Masses with ALMA: NGC 1332 as a Case Study in Molecular Disk Dynamics

    NASA Astrophysics Data System (ADS)

    Barth, Aaron J.; Darling, Jeremy; Baker, Andrew J.; Boizelle, Benjamin D.; Buote, David A.; Ho, Luis C.; Walsh, Jonelle L.

    2016-05-01

    We present first results from a program of Atacama Large Millimeter/submillimeter Array (ALMA) CO(2–1) observations of circumnuclear gas disks in early-type galaxies. The program was designed with the goal of detecting gas within the gravitational sphere of influence of the central black holes (BHs). In NGC 1332, the 0.″3-resolution ALMA data reveal CO emission from the highly inclined (i≈ 83^\\circ ) circumnuclear disk, spatially coincident with the dust disk seen in Hubble Space Telescope images. The disk exhibits a central upturn in maximum line-of-sight velocity, reaching ±500 km s‑1 relative to the systemic velocity, consistent with the expected signature of rapid rotation around a supermassive BH. Rotational broadening and beam smearing produce complex and asymmetric line profiles near the disk center. We constructed dynamical models for the rotating disk and fitted the modeled CO line profiles directly to the ALMA data cube. Degeneracy between rotation and turbulent velocity dispersion in the inner disk precludes the derivation of strong constraints on the BH mass, but model fits allowing for a plausible range in the magnitude of the turbulent dispersion imply a central mass in the range of ∼(4–8) × 108 {M}ȯ . We argue that gas-kinematic observations resolving the BH’s projected radius of influence along the disk’s minor axis will have the capability to yield BH mass measurements that are largely insensitive to systematic uncertainties in turbulence or in the stellar mass profile. For highly inclined disks, this is a much more stringent requirement than the usual sphere-of-influence criterion.

  17. Direct Imaging of the Water Snow Line at the Time of Planet Formation using Two ALMA Continuum Bands

    NASA Astrophysics Data System (ADS)

    Banzatti, A.; Pinilla, P.; Ricci, L.; Pontoppidan, K. M.; Birnstiel, T.; Ciesla, F.

    2015-12-01

    Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 between dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index αmm due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (αvisc < 10‑3), the snow line produces a ringlike structure with a minimum at αmm ∼ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.

  18. ALMACAL I: First Dual-band Number Counts from a Deep and Wide ALMA Submillimeter Survey, Free from Cosmic Variance

    NASA Astrophysics Data System (ADS)

    Oteo, I.; Zwaan, M. A.; Ivison, R. J.; Smail, I.; Biggs, A. D.

    2016-05-01

    We have exploited ALMA calibration observations to carry out a novel, wide, and deep submillimeter (submm) survey, almacal. These calibration data comprise a large number of observations of calibrator fields in a variety of frequency bands and array configurations. By gathering together data acquired during multiple visits to many ALMA calibrators, it is possible to reach noise levels which allow the detection of faint, dusty, star-forming galaxies (DSFGs) over a significant area. In this paper, we outline our survey strategy and report the first results. We have analyzed data for 69 calibrators, reaching depths of ∼25 μJy beam‑1 at sub-arcsec resolution. Adopting a conservative approach based on ≥5σ detections, we have found 8 and 11 DSFGs in ALMA bands 6 and 7, respectively, with flux densities S 1.2 mm ≥ 0.2 mJy. The faintest galaxies would have been missed by even the deepest Herschel surveys. Our cumulative number counts have been determined independently at 870 μm and 1.2 mm from a sparse sampling of the astronomical sky, and are thus relatively free of cosmic variance. The counts are lower than reported previously by a factor of at least 2×. Future analyses will yield large, secure samples of DSFGs with redshifts determined via the detection of submm spectral lines. Uniquely, our strategy then allows for morphological studies of very faint DSFGs—representative of more normal star-forming galaxies than conventional submm galaxies—in fields where self-calibration is feasible, yielding milliarcsecond spatial resolution.

  19. Chemical Reactions in Protoplanetary Disks and Possibility of Detecting H2O Snowline Using Spectroscopic Observations with ALMA

    NASA Astrophysics Data System (ADS)

    Notsu, S.; Nomura, H.; Ishimoto, D.; Walsh, C.; Honda, M.; Millar, T. J.

    2015-12-01

    We calculate chemical reactions and obtain abundance distribution of H2O gas. We confirm that the abundance of H2O is high not only in the region inside H2 O snowline near the equatorial plane but also in the hot surface layer of outer disk. We also calculate velocity profiles of H2O emission lines, and find that we can obtain the information of H2O snowline through investigating the profiles of some line transitions that have small Einstein A coefficient and large excitation energy. Some useful H2O emission lines exist at sub-millimeter wavelength and are observable with ALMA.

  20. Quantum-limited 0.78-0.95-THz Waveguide SIS Mixers for the ALMA Band 10 Receivers

    NASA Astrophysics Data System (ADS)

    Kojima, Takafumi

    2010-02-01

    This thesis describes the demonstration and the application of a low noise Superconductor-Insulator-Superconductor (SIS) mixer for the Atacama Large Millimeter/submillimeter Array (ALMA) band 10 covering the frequency range of 0.787-0.950 THz. The ALMA is one of the largest ground-based astronomy projects for the next decade. The ALMA telescope covers atmospheric windows in the frequency range from 30 GHz to 0.95 THz, which is divided into 10 frequency bands. Band 10 receivers of the ALMA, which is the highest frequency band, are expected as a key frequency band, e.g. for imaging observations with the very high angular resolution to detect the gaps created by planets undergoing formation in the disk. To enable such a challenging observation, band 10 receivers requires ultimate performance with a Double SideBand (DSB) noise temperature below 230 K (5hf/kB) for 80% bandwidth and 344 K (7.5hf/kB) for 100% bandwidth over the 4-12 GHz intermediate frequency (IF) band. The final goal of this study is to develop low noise and wideband SIS mixers so as to meet the specifications and to enable such challenging observation of ALMA band 10 by demonstrating high performances for each component. SIS junctions should be the most sensitive mixing elements in this frequency. However, there have been no mixers currently available that satisfy the requirements of both low noise and wideband operation for the ALMA band-10 specification. This is because, thus far, well-established all-Nb SIS mixers can not be used due to radio frequency (RF) losses in their microstrip tuning circuits which increase significantly as a result of the onset of pair-breaking above the Nb gap frequency of 0.7 THz. For example, RF signals are attenuated by more than 60% per the wavelength in this frequency range. Besides, the RF fractional bandwidth of about 20% is a critical problem for achieving the specifications as well as the quantum limited sensitivity. Since an SIS junction has a large capacitance, RF

  1. CO GAS INSIDE THE PROTOPLANETARY DISK CAVITY IN HD 142527: DISK STRUCTURE FROM ALMA

    SciTech Connect

    Perez, S.; Casassus, S.; Van der Plas, G.; Christiaens, V.; Ménard, F.; Roman, P.; Cieza, L.; Hales, A. S.; Pinte, C.

    2015-01-10

    Inner cavities and annular gaps in circumstellar disks are possible signposts of giant planet formation. The young star HD 142527 hosts a massive protoplanetary disk with a large cavity that extends up to 140 AU from the central star, as seen in continuum images at infrared and millimeter wavelengths. Estimates of the survival of gas inside disk cavities are needed to discriminate between clearing scenarios. We present a spatially and spectrally resolved carbon monoxide isotopologue observations of the gas-rich disk HD 142527, in the J = 2-1 line of {sup 12}CO, {sup 13}CO, and C{sup 18}O obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). We detect emission coming from inside the dust-depleted cavity in all three isotopologues. Based on our analysis of the gas in the dust cavity, the {sup 12}CO emission is optically thick, while {sup 13}CO and C{sup 18}O emissions are both optically thin. The total mass of residual gas inside the cavity is ∼1.5-2 M {sub Jup}. We model the gas with an axisymmetric disk model. Our best-fit model shows that the cavity radius is much smaller in CO than it is in millimeter continuum and scattered light observations, with a gas cavity that does not extend beyond 105 AU (at 3σ). The gap wall at its outer edge is diffuse and smooth in the gas distribution, while in dust continuum it is manifestly sharper. The inclination angle, as estimated from the high velocity channel maps, is 28 ± 0.5 deg, higher than in previous estimates, assuming a fix central star mass of 2.2 M {sub ☉}.

  2. Protostellar Interferometric Line Survey (PILS): Constraining the formation of complex organic molecules with ALMA

    NASA Astrophysics Data System (ADS)

    Jorgensen, Jes K.; Coutens, Audrey; Bourke, Tyler L.; Favre, Cecile; Garrod, Robin; Lykke, Julie; Mueller, Holger; Oberg, Karin I.; Schmalzl, Markus; van der Wiel, Matthijs; van Dishoeck, Ewine; Wampfler, Susanne F.

    2015-08-01

    Understanding how, when and where complex organic and potentially prebiotic molecules are formed is a fundamental goal of astrochemistry and an integral part of origins of life studies. Already now ALMA is showing its capabilities for studies of the chemistry of solar-type stars with its high sensitivity for faint lines, high spectral resolution which limits line confusion, and high angular resolution making it possible to study the structure of young protostars on solar-system scales. We here present the first results from a large unbiased survey “Protostellar Interferometric Line Survey (PILS)” targeting one of the astrochemical template sources, the low-mass protostellar binary IRAS 16293-2422. The survey is more than an order of magnitude more sensitive than previous surveys of the source and provide imaging down to 25 AU scales (radius) around each of the two components of the binary. An example of one of the early highlights from the survey is unambiguous detections of the (related) prebiotic species glycolaldehyde, ethylene glycol (two lowest energy conformers), methyl formate and acetic acid. The glycolaldehyde-ethylene glycol abundance ratio is high in comparison to comets and other protostars - but agrees with previous measurements, e.g., in the Galactic Centre clouds possibly reflecting different environments and/or evolutionary histories. Complete mapping of this and other chemical networks in comparison with detailed chemical models and laboratory experiments will reveal the origin of complex organic molecules in a young protostellar system and investigate the link between these protostellar stages and the early Solar System.

  3. The Detection of a Hot Molecular Core in the Large Magellanic Cloud with ALMA

    NASA Astrophysics Data System (ADS)

    Shimonishi, Takashi; Onaka, Takashi; Kawamura, Akiko; Aikawa, Yuri

    2016-08-01

    We report the first detection of a hot molecular core outside our Galaxy based on radio observations with ALMA toward a high-mass young stellar object (YSO) in a nearby low metallicity galaxy, the Large Magellanic Cloud (LMC). Molecular emission lines of CO, C17O, HCO+, H13CO+, H2CO, NO, SiO, H2CS, 33SO, 32SO2, 34SO2, and 33SO2 are detected from a compact region (˜0.1 pc) associated with a high-mass YSO, ST11. The temperature of molecular gas is estimated to be higher than 100 K based on rotation diagram analysis of SO2 and 34SO2 lines. The compact source size, warm gas temperature, high density, and rich molecular lines around a high-mass protostar suggest that ST11 is associated with a hot molecular core. We find that the molecular abundances of the LMC hot core are significantly different from those of Galactic hot cores. The abundances of CH3OH, H2CO, and HNCO are remarkably lower compared to Galactic hot cores by at least 1–3 orders of magnitude. We suggest that these abundances are characterized by the deficiency of molecules whose formation requires the hydrogenation of CO on grain surfaces. In contrast, NO shows a high abundance in ST11 despite the notably low abundance of nitrogen in the LMC. A multitude of SO2 and its isotopologue line detections in ST11 imply that SO2 can be a key molecular tracer of hot core chemistry in metal-poor environments. Furthermore, we find molecular outflows around the hot core, which is the second detection of an extragalactic protostellar outflow. In this paper, we discuss the physical and chemical characteristics of a hot molecular core in the low metallicity environment.

  4. SHAPEMOL: the companion to SHAPE in the molecular era of ALMA and HERSCHEL

    NASA Astrophysics Data System (ADS)

    Santander-García, M.; Bujarrabal, V.; Alcolea, J.

    2013-05-01

    Modern instrumentation in radioastronomy constitutes a valuable tool for studying the Universe: ALMA will reach unprecedented sensitivities and spatial resolution, while Herschel/HIFI has opened a new window (most of the sub-mm and far infrared ranges are only accessible from space) for probing molecular warm gas (˜50-1000 K), complementing ground-based telescopes, which are better suited to study molecular molecular gas with temperatures under ˜100 K. On the other hand, the SHAPE software has emerged in the last few years as the standard tool for determinging the morphology and velocity field of different kinds of gaseous nebulae (mainly planetary nebulae, protoplanetary nebulae and nebulae around massive stars, although it can also be applied to H II regions and molecular clouds) via spatio-kinematical modelling. Standard SHAPE implements radiative transfer solving, but it is only available for atomic species and not for molecules. Being aware of the growing importance of the development of tools for easying the analyses of molecular data from new era observatories, we introduce the computer code shapemol, a plug-in for SHAPE with which we intend to fill the so far empty molecular niche. shapemol enables spatio-kinematic modeling with accurate non-LTE calculations of line excitation and radiative transfer in molecular species. This code has been succesfully tested in the study of the excitation conditions of the molecular envelope of the planetary nebula NGC 7027 using data from Herschel/HIFI and IRAM 30m. Currently, it allows radiative transfer solving in the ^{12}CO and ^{13}CO J=1-0 to J=17-16 lines. shapemol, used along SHAPE, allows to easily generate synthetic maps to test against interferometric observations, as well as synthetic line profiles to match single-dish observations.

  5. Debris Disks in the Scorpius–Centaurus OB Association Resolved by ALMA

    NASA Astrophysics Data System (ADS)

    Lieman-Sifry, Jesse; Hughes, A. Meredith; Carpenter, John M.; Gorti, Uma; Hales, Antonio; Flaherty, Kevin M.

    2016-09-01

    We present a CO(2-1) and 1240 μm continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.″5–1″ with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ∼10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3σ) CO detections. Twenty disks were detected in the continuum at the >3σ level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independent analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broadband spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.

  6. ALMA observations of cold molecular gas filaments trailing rising radio bubbles in PKS 0745-191

    NASA Astrophysics Data System (ADS)

    Russell, H. R.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Edge, A. C.; Combes, F.; Murray, N. W.; Parrish, I. J.; Salomé, P.; Sanders, J. S.; Baum, S. A.; Donahue, M.; Main, R. A.; O'Connell, R. W.; O'Dea, C. P.; Oonk, J. B. R.; Tremblay, G.; Vantyghem, A. N.; Voit, G. M.

    2016-05-01

    We present ALMA observations of the CO(1-0) and CO(3-2) line emission tracing filaments of cold molecular gas in the central galaxy of the cluster PKS 0745-191. The total molecular gas mass of 4.6± 0.3× 109 M_{⊙}, assuming a Galactic XCO factor, is divided roughly equally between three filaments each extending radially 3-5 kpc from the galaxy centre. The emission peak is located in the SE filament ˜ 1 arcsec (2 kpc) from the nucleus. The velocities of the molecular clouds in the filaments are low, lying within ± 100 { km s^{-1}} of the galaxy's systemic velocity. Their full width at half-maximum (FWHM) are less than 150 { km s^{-1},} which is significantly below the stellar velocity dispersion. Although the molecular mass of each filament is comparable to a rich spiral galaxy, such low velocities show that the filaments are transient and the clouds would disperse on < 107 yr time-scales unless supported, likely by the indirect effect of magnetic fields. The velocity structure is inconsistent with a merger origin or gravitational free-fall of cooling gas in this massive central galaxy. If the molecular clouds originated in gas cooling even a few kpc from their current locations their velocities would exceed those observed. Instead, the projection of the N and SE filaments underneath X-ray cavities suggests they formed in the updraft behind bubbles buoyantly rising through the cluster atmosphere. Direct uplift of the dense gas by the radio bubbles appears to require an implausibly high coupling efficiency. The filaments are coincident with low temperature X-ray gas, bright optical line emission and dust lanes indicating that the molecular gas could have formed from lifted warmer gas that cooled in situ.

  7. The assembly of `normal' galaxies at z ˜ 7 probed by ALMA

    NASA Astrophysics Data System (ADS)

    Maiolino, R.; Carniani, S.; Fontana, A.; Vallini, L.; Pentericci, L.; Ferrara, A.; Vanzella, E.; Grazian, A.; Gallerani, S.; Castellano, M.; Cristiani, S.; Brammer, G.; Santini, P.; Wagg, J.; Williams, R.

    2015-09-01

    We report new deep observations obtained with the Atacama Large Millimetre Array (ALMA) aimed at investigating the [C II]158 μm line and continuum emission in three spectroscopically confirmed Lyman break galaxies at 6.8 < z ≤ 7.1, i.e. well within the re-ionization epoch. With star formation rates of SFR ˜ 5-15M⊙ yr- 1 these systems are much more representative of the high-z galaxy population than other systems targeted in the past by millimetre observations. For the galaxy with the deepest observation we detect [C II] emission at redshift z = 7.107, fully consistent with the Ly α redshift, but spatially offset by 0.7 arcsec (4 kpc) from the optical emission. At the location of the optical emission, tracing both the Ly α line and the far-UV continuum, no [C II] emission is detected in any of the three galaxies, with 3σ upper limits significantly lower than the [C II] emission observed in lower redshift galaxies. These results suggest that molecular clouds in the central parts of primordial galaxies are rapidly disrupted by stellar feedback. As a result, [C II] emission mostly arises from more external accreting/satellite clumps of neutral gas. These findings are in agreement with recent models of galaxy formation. Thermal far-infrared continuum is not detected in any of the three galaxies. However, the upper limits on the infrared-to-UV emission ratio do not exceed those derived in metal- and dust-poor galaxies.

  8. Molecular gas in the x-ray bright group NGC 5044 as revealed by ALMA

    SciTech Connect

    David, Laurence P.; Forman, William; Vrtilek, Jan; Jones, Christine; O'Sullivan, Ewan; Lim, Jeremy; Combes, Francoise; Salome, Philippe; Edge, Alastair; Hamer, Stephen; Sun, Ming; Gastaldello, Fabio; Bardelli, Sandro; Temi, Pasquale; Ohyama, Youichi; Mathews, William; Giacintucci, Simona; Trung, Dinh-V

    2014-09-10

    An ALMA observation of the early-type galaxy NGC 5044, which resides at the center of an X-ray bright group with a moderate cooling flow, detected 24 molecular structures within the central 2.5 kpc. The masses of the molecular structures vary from 3 × 10{sup 5} M {sub ☉} to 10{sup 7} M {sub ☉} and the CO(2-1) linewidths vary from 15 to 65 km s{sup –1}. Given the large CO(2-1) linewidths, the observed structures are likely giant molecular associations (GMAs) and not individual giant molecular clouds (GMCs). Only a few of the GMAs are spatially resolved and the average density of these GMAs yields a GMC volume filling factor of about 15%. The masses of the resolved GMAs are insufficient for them to be gravitationally bound, however, the most massive GMA does contain a less massive component with a linewidth of 5.5 km s{sup –1} (typical of an individual virialized GMC). We also show that the GMAs cannot be pressure confined by the hot gas. Given the CO(2-1) linewidths of the GMAs (i.e., the velocity dispersion of the embedded GMCs) they should disperse on a timescale of about 12 Myr. No disk-like molecular structures are detected and all indications suggest that the molecular gas follows ballistic trajectories after condensing out of the thermally unstable hot gas. The 230 GHz luminosity of the central continuum source is 500 times greater than its low frequency radio luminosity and probably reflects a recent accretion event. The spectrum of the central continuum source also exhibits an absorption feature with a linewidth typical of an individual GMC and an infalling velocity of 250 km s{sup –1}.

  9. The mysterious morphology of MRC0943-242 as revealed by ALMA and MUSE

    NASA Astrophysics Data System (ADS)

    Gullberg, Bitten; De Breuck, Carlos; Lehnert, Matthew D.; Vernet, Joël; Bacon, Roland; Drouart, Guillaume; Emonts, Bjorn; Galametz, Audrey; Ivison, Rob; Nesvadba, Nicole P. H.; Richard, Johan; Seymour, Nick; Stern, Daniel; Wylezalek, Dominika

    2016-02-01

    We present a pilot study of the z = 2.923 radio galaxy MRC0943-242, where we combine information from ALMA and MUSE data cubes for the first time. Even with modest integration times, we disentangle the AGN and starburst dominated components. These data reveal a highly complex morphology as the AGN, starburst, and molecular gas components show up as widely separated sources in dust continuum, optical continuum, and CO line emission observations. CO(1-0) and CO(8-7) line emission suggest that there is a molecular gas reservoir offset from both the dust and the optical continuum that is located ~90 kpc from the AGN. The UV line emission has a complex structure in emission and absorption. The line emission is mostly due to a large scale ionisation cone energised by the AGN, and a Lyα emitting bridge of gas between the radio galaxy and a heavily star-forming set of components. Strangely, the ionisation cone has no Lyα emission. We find this is due to an optically thick layer of neutral gas with unity covering fraction spread out over a region of at least ~100 kpc from the AGN. Other less thick absorption components are associated with Lyα emitting gas within a few tens of kpc from the radio galaxy and are connected by a bridge of emission. We speculate that this linear structure of dust, Lyα and CO emission, and the redshifted absorption seen in the circum nuclear region may represent an accretion flow feeding gas into this massive AGN host galaxy.

  10. SPIRAL ARMS IN THE DISK OF HD 142527 FROM CO EMISSION LINES WITH ALMA

    SciTech Connect

    Christiaens, V.; Casassus, S.; Perez, S.; Van der Plas, G.; Ménard, F.

    2014-04-10

    In view of both the size of its gap and the previously reported asymmetries and near-infrared spiral arms, the transition disk of the Herbig Fe star HD 142527 constitutes a remarkable case study. This paper focuses on the morphology of the outer disk through ALMA observations of {sup 12}CO J = 2-1, {sup 12}CO J = 3-2, and {sup 13}CO J = 2-1. Both {sup 12}CO J = 2-1 and {sup 12}CO J = 3-2 show spiral features of different sizes. The innermost spiral arm (S1) is a radio counterpart of the first near-infrared spiral observed by Fukagawa, but it is shifted radially outward. However, the most conspicuous CO spiral arm (S2) lies at the outskirts of the disk and has not been detected before. It corresponds to a cold density structure, with both brightness and excitation temperatures of order 13±2 K and conspicuous in the {sup 12}CO J = 2-1 peak-intensity map, but faint in {sup 12}CO J = 3-2. There is also a faint counterarm (S3), at a point-symmetric location of S2 with respect to the star. These three spirals are modeled separately with two different formulae that approximate the loci of density maxima in acoustic waves due to embedded planets. S1 could be fit relatively well with these formulae, compared to S2 and S3. Alternative scenarios such as gravitational instability or external tidal interaction are discussed. The impact of channelization on spectrally and spatially resolved peak intensity maps is also briefly addressed.

  11. ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association

    NASA Astrophysics Data System (ADS)

    Barenfeld, Scott A.; Carpenter, John M.; Ricci, Luca; Isella, Andrea

    2016-08-01

    We present ALMA observations of 106 G-, K-, and M-type stars in the Upper Scorpius OB Association hosting circumstellar disks. With these data, we measure the 0.88 mm continuum and 12CO J = 3–2 line fluxes of disks around low-mass (0.14–1.66 M ⊙) stars at an age of 5–11 Myr. Of the 75 primordial disks in the sample, 53 are detected in the dust continuum and 26 in CO. Of the 31 disks classified as debris/evolved transitional disks, five are detected in the continuum and none in CO. The lack of CO emission in approximately half of the disks with detected continuum emission can be explained if CO is optically thick but has a compact emitting area (≲40 au), or if the CO is heavily depleted by a factor of at least ˜1000 relative to interstellar medium abundances and is optically thin. The continuum measurements are used to estimate the dust mass of the disks. We find a correlation between disk dust mass and stellar host mass consistent with a power-law relation of {M}{dust}\\propto {M}* 1.67+/- 0.37. Disk dust masses in Upper Sco are compared to those measured in the younger Taurus star-forming region to constrain the evolution of disk dust mass. We find that the difference in the mean of {log}({M}{dust}/{M}* ) between Taurus and Upper Sco is 0.64 ± 0.09, such that M dust/M * is lower in Upper Sco by a factor of ˜4.5.

  12. Debris Disks in the Scorpius–Centaurus OB Association Resolved by ALMA

    NASA Astrophysics Data System (ADS)

    Lieman-Sifry, Jesse; Hughes, A. Meredith; Carpenter, John M.; Gorti, Uma; Hales, Antonio; Flaherty, Kevin M.

    2016-09-01

    We present a CO(2-1) and 1240 μm continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.″5–1″ with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ˜10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3σ) CO detections. Twenty disks were detected in the continuum at the >3σ level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independent analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broadband spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.

  13. Spiral Arms in the Disk of HD 142527 from CO Emission Lines with ALMA

    NASA Astrophysics Data System (ADS)

    Christiaens, V.; Casassus, S.; Perez, S.; van der Plas, G.; Ménard, F.

    2014-04-01

    In view of both the size of its gap and the previously reported asymmetries and near-infrared spiral arms, the transition disk of the Herbig Fe star HD 142527 constitutes a remarkable case study. This paper focuses on the morphology of the outer disk through ALMA observations of 12CO J = 2-1, 12CO J = 3-2, and 13CO J = 2-1. Both 12CO J = 2-1 and 12CO J = 3-2 show spiral features of different sizes. The innermost spiral arm (S1) is a radio counterpart of the first near-infrared spiral observed by Fukagawa, but it is shifted radially outward. However, the most conspicuous CO spiral arm (S2) lies at the outskirts of the disk and has not been detected before. It corresponds to a cold density structure, with both brightness and excitation temperatures of order 13±2 K and conspicuous in the 12CO J = 2-1 peak-intensity map, but faint in 12CO J = 3-2. There is also a faint counterarm (S3), at a point-symmetric location of S2 with respect to the star. These three spirals are modeled separately with two different formulae that approximate the loci of density maxima in acoustic waves due to embedded planets. S1 could be fit relatively well with these formulae, compared to S2 and S3. Alternative scenarios such as gravitational instability or external tidal interaction are discussed. The impact of channelization on spectrally and spatially resolved peak intensity maps is also briefly addressed.

  14. The physics of water masers observable with ALMA and SOFIA: model predictions for evolved stars

    NASA Astrophysics Data System (ADS)

    Gray, M. D.; Baudry, A.; Richards, A. M. S.; Humphreys, E. M. L.; Sobolev, A. M.; Yates, J. A.

    2016-02-01

    We present the results of models that were designed to study all possible water maser transitions in the frequency range 0-1.91 THz, with particular emphasis on maser transitions that may be generated in evolved-star envelopes and observed with the ALMA and SOFIA telescopes. We used tens of thousands of radiative transfer models of both spin-species of H2O, spanning a considerable parameter space in number density, kinetic temperature and dust temperature. Results, in the form of maser optical depths, have been summarized in a master table. Maser transitions identified in these models were grouped according to loci of inverted regions in the density/kinetic temperature plane, a property clearly related to the dominant mode of pumping. A more detailed study of the effect of dust temperature on maser optical depth enabled us to divide the maser transitions into three groups: those with both collisional and radiative pumping schemes (22, 96, 209, 321, 325, 395, 941 and 1486 GHz), a much larger set that are predominantly radiatively pumped, and another large group with a predominantly collisional pump. The effect of accelerative and decelerative velocity shifts of up to 5 km s-1 was found to be generally modest, with the primary effect of reducing computed maser optical depths. More subtle asymmetric effects, dependent on line overlap, include maximum gains offset from zero shift by >1 km s-1, but these effects were predominantly found under conditions of weak amplification. These models will allow astronomers to use multitransition water maser observations to constrain physical conditions down to the size of individual masing clouds (size of a few astronomical units).

  15. Chemical complexity in protoplanetary disks in the era of ALMA and Rosetta

    NASA Astrophysics Data System (ADS)

    Walsh, C.

    2016-05-01

    Comets provide a unique insight into the molecular composition and complexity of the material in the primordial solar nebula. Recent results from the Rosetta mission, currently monitoring comet 67P/Churyumov-Gerasimenko in situ, and ALMA (the Atacama Large Millimeter/submillimeter Array) have demonstrated a tantalising link between the chemical complexity now confirmed in disks (via the detection of gas-phase cf.CH3CN Öberg et al. [13]) and that confirmed on the surface of 67P (Goesmann et al. [3]), raising questions concerning the chemical origin of such species (cloud or inheritance versus disk synthesis). Results from an astrochemical model of a protoplanetary disk are presented in which complex chemistry is included and in which it is assumed that simple ices only are inherited from the parent molecular cloud. The model results show good agreement with the abundances of several COMs observed on the surface of 67P with Philae/COSAC. Cosmic-ray and X-ray-induced photoprocessing of predominantly simple ices inherited by the protoplanetary disk is sufficient to generate a chemical complexity similar to that observed in comets. This indicates that the icy COMs detected on the surface of 67P may have a disk origin. The results also show that gas-phase cf.CH3CN is abundant in the inner warm disk atmosphere where hot gas-phase chemistry dominates and potentially erases the ice chemical signature. Hence, cf.CH3CN may not be an unambiguous tracer of the complex organic ice reservoir. However, a better understanding of the hot gas-phase chemistry of cf.CH3CN is needed to confirm this preliminary conclusion.

  16. Signatures of MRI-driven Turbulence in Protoplanetary Disks: Predictions for ALMA Observations

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.; Hughes, A. Meredith; Flaherty, Kevin M.; Bai, Xue-Ning; Armitage, Philip J.

    2015-08-01

    Spatially resolved observations of molecular line emission have the potential to yield unique constraints on the nature of turbulence within protoplanetary disks. Using a combination of local non-ideal magnetohydrodynamics (MHD) simulations and radiative transfer calculations, tailored to properties of the disk around HD 163296, we assess the ability of ALMA to detect turbulence driven by the magnetorotational instability (MRI). Our local simulations show that the MRI produces small-scale turbulent velocity fluctuations that increase in strength with height above the mid-plane. For a set of simulations at different disk radii, we fit a Maxwell-Boltzmann distribution to the turbulent velocity and construct a turbulent broadening parameter as a function of radius and height. We input this broadening into radiative transfer calculations to quantify observational signatures of MRI-driven disk turbulence. We find that the ratio of the peak line flux to the flux at line center is a robust diagnostic of turbulence that is only mildly degenerate with systematic uncertainties in disk temperature. For the CO(3-2) line, which we expect to probe the most magnetically active slice of the disk column, variations in the predicted peak-to-trough ratio between our most and least turbulent models span a range of approximately 15%. Additional independent constraints can be derived from the morphology of spatially resolved line profiles, and we estimate the resolution required to detect turbulence on different spatial scales. We discuss the role of lower optical depth molecular tracers, which trace regions closer to the disk mid-plane where velocities in MRI-driven models are systematically lower.

  17. ALMA IMAGING OF HCN, CS, AND DUST IN ARP 220 AND NGC 6240

    SciTech Connect

    Scoville, Nick; Manohar, Swarnima; Murchikova, Lena; Sheth, Kartik; Walter, Fabian; Zschaechner, Laura; Yun, Min; Koda, Jin; Sanders, David; Barnes, Joshua; Thompson, Todd; Robertson, Brant; Tacconi, Linda; Narayanan, Desika; Genzel, Reinhard; Davies, Richard; Hernquist, Lars; Brown, Robert; Hayward, Christopher C.; Kartaltepe, Jeyhan; and others

    2015-02-10

    We report ALMA Band 7 (350 GHz) imaging at 0.''4-0.''6 resolution and Band 9 (696 GHz) at ∼0.''25 resolution of the luminous IR galaxies Arp 220 and NGC 6240. The long wavelength dust continuum is used to estimate interstellar medium masses for Arp 220 east and west and NGC 6240 of 1.9, 4.2, and 1.6 × 10{sup 9} M {sub ☉}within radii of 69, 65, and 190 pc. The HCN emission was modeled to derive the emissivity distribution as a function of radius and the kinematics of each nuclear disk, yielding dynamical masses consistent with the masses and sizes derived from the dust emission. In Arp 220, the major dust and gas concentrations are at radii less than 50 pc in both counter-rotating nuclear disks. The thickness of the disks in Arp 220 estimated from the velocity dispersion and rotation velocities are 10-20 pc and the mean gas densities are n{sub H{sub 2}}∼10{sup 5} cm{sup –3} at R <50 pc. We develop an analytic treatment for the molecular excitation (including photon trapping), yielding volume densities for both the HCN and CS emission with n {sub H2} ∼ 2 × 10{sup 5} cm{sup –3}. The agreement of the mean density from the total mass and size with that required for excitation suggests that the volume is essentially filled with dense gas, i.e., it is not cloudy or like swiss cheese.

  18. ALMA observations of the submillimetre hydrogen recombination line from the type 2 active nucleus of NGC 1068

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Nakanishi, Kouichiro; Imanishi, Masatoshi; Kohno, Kotaro

    2016-07-01

    Hydrogen recombination lines at the submillimetre band (submm-RLs) can serve as probes of ionized gas without dust extinction. One therefore expects to probe the broad-line region (BLR) of an obscured (type 2) active galactic nucleus (AGN) with those lines. However, admitting the large uncertainty in the continuum level, here we report on the non-detection of both broad and narrow H26 α emission line (rest frequency = 353.62 GHz) towards the prototypical type 2 AGN of NGC 1068 with the Atacama Large Millimeter/submillimeter Array (ALMA). We also investigate the nature of BLR clouds that can potentially emit submm-RLs with model calculations. As a result, we suggest that clouds with an electron density (Ne) of ˜109 cm-3 can mainly contribute to broad submm-RLs in terms of the line flux. On the other hand, line flux from other density clouds would be insignificant considering their too large or too small line optical depths. However, even for the case of Ne ˜ 109 cm-3 clouds, we also suggest that the expected line flux is extremely low, which is impractical to detect even with ALMA.

  19. Measurement of the Black Hole Mass in NGC 1332 from ALMA Observations at 0.044 arcsecond Resolution

    NASA Astrophysics Data System (ADS)

    Barth, Aaron J.; Boizelle, Benjamin D.; Darling, Jeremy; Baker, Andrew J.; Buote, David A.; Ho, Luis C.; Walsh, Jonelle L.

    2016-05-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 3 observations of CO(2–1) emission from the circumnuclear disk in the E/S0 galaxy NGC 1332 at 0.″044 resolution. The disk exhibits regular rotational kinematics and central high-velocity emission (±500 km s‑1) consistent with the presence of a compact central mass. We construct models for a thin, dynamically cold disk in the gravitational potential of the host galaxy and black hole and fit the beam-smeared model line profiles directly to the ALMA data cube. Model fits successfully reproduce the disk kinematics out to r = 200 pc. Fitting models just to spatial pixels within projected r = 50 pc of the nucleus (two times larger than the black hole’s gravitational radius of influence), we find {M}{BH}=({6.64}-0.63+0.65)× {10}8 {M}ȯ . This observation demonstrates ALMA’s powerful capability to determine the masses of supermassive black holes by resolving gas kinematics on small angular scales in galaxy nuclei.

  20. The ALMA Patchy Deep Survey: a blind search for [C II] emitters at z ˜ 4.5

    NASA Astrophysics Data System (ADS)

    Matsuda, Y.; Nagao, T.; Iono, D.; Hatsukade, B.; Kohno, K.; Tamura, Y.; Yamaguchi, Y.; Shimizu, I.

    2015-07-01

    We present a result of a blind search for [C II] 158 μm emitters at z ˜ 4.5 using Atacama Large Millimeter Array (ALMA) Cycle 0 archival data. We collected extragalactic data covering at 330-360 GHz (band 7) from 8 Cycle 0 projects from which initial results have been already published. The total number of fields is 243 and the total on-source exposure time is 19.2 h. We searched for line emitters in continuum-subtracted data cubes with spectral resolutions of ˜50, 100, 300 and 500 km s-1. We could not detect any new line emitters above a 6σ significance level. This result provides upper limits to the [C II] luminosity function at z ˜ 4.5 over L_[C II] ˜ 10^8-10^{10} L_{⊙} or star formation rate, SFR ˜ 10-1000 M_^{⊙}yr-1. These limits are at least two orders of magnitude larger than the [C II] luminosity functions expected from the z ˜ 4 UV luminosity function or from numerical simulation. However, this study demonstrates that we would be able to better constrain the [C II] luminosity function and to investigate possible contributions from dusty galaxies to the cosmic star formation rate density by collecting Cycle 1+2 archival data as the ALMA Patchy Deep Survey.

  1. Sub-mm free-free emission from the winds of massive stars in the age of ALMA

    NASA Astrophysics Data System (ADS)

    Daley-Yates, S.; Stevens, I. R.; Crossland, T. D.

    2016-09-01

    The thermal radio and sub-mm emission from the winds of massive stars is investigated and the contribution to the emission due to the stellar wind acceleration region and clumping of the wind is quantified. Building upon established theory, a method for calculating the thermal radio and sub-mm emission using results for a line-driven stellar outflow according to Castor, Abbott & Klein (1975) is presented. The results show strong variation of the spectral index for 102 GHz <ν < 104 GHz. This corresponds both to the wind acceleration region and clumping of the wind, leading to a strong dependence on the wind velocity law and clumping parameters. The Atacama Large Millimeter/sub-mm Array (ALMA) is the first observatory to have both the spectral window and sensitivity to observe at the high frequencies required to probe the acceleration regions of massive stars. The deviations in the predicted flux levels as a result of the inclusion of the wind acceleration region and clumping are sufficient to be detected by ALMA, through deviations in the spectral index in different portions of the radio/sub-mm spectra of massive stars, for a range of reasonable mass-loss rates and distances. Consequently both mechanisms need to be included to fully understand the mass-loss rates of massive stars.

  2. ALMA Observation of the 658 GHz Vibrationally Excited H2O Maser in Orion KL Source I

    NASA Astrophysics Data System (ADS)

    Hirota, Tomoya; Kim, Mi Kyoung; Honma, Mareki

    2016-02-01

    We present an observational study of the vibrationally excited H2O line at 658 GHz ({ν }2 = 1, {1}{1,0}-1{}{0,1}) toward Orion KL using the Atacama Large Millimeter/Submillimeter Array (ALMA). This line is clearly detected at the position of the massive protostar candidate, Source I. The spatial structure is compact, with a size of about 100 AU, and is elongated along the northeast-southwest low-velocity (18 km -1) bipolar outflow traced by 22 GHz H2O masers, SiO masers, and thermal SiO lines. A velocity gradient can be seen perpendicular to the bipolar outflow. The overall spatial and velocity structure seems to be analogous to that of the 321 GHz H2O maser line previously detected with ALMA and vibrationally excited SiO maser emission. The brightness temperature of the 658 GHz H2O line is estimated to be higher than 2 × 104 K, implying that it is emitted via maser action. Our results suggest that the 658 GHz H2O maser line is emitted from the base of the outflow from a rotating and expanding accretion disk as observed for the SiO masers and the 321 GHz H2O maser. We also search for two other H2O lines at 646 GHz (9{}{7,3}-8{}{8,0} and {9}{7,2}-8{}{8,1}), but they are not detected in Orion KL.

  3. ALMA FOLLOWS STREAMING OF DENSE GAS DOWN TO 40 pc FROM THE SUPERMASSIVE BLACK HOLE IN NGC 1097

    SciTech Connect

    Fathi, Kambiz; Pinol-Ferrer, Nuria; Lundgren, Andreas A.; Wiklind, Tommy; Kohno, Kotaro; Izumi, Takuma; Martin, Sergio; Espada, Daniel; Hatziminaoglou, Evanthia; Imanishi, Masatoshi; Krips, Melanie; Matsushita, Satoki; Meier, David S.; Nakai, Naomasa; Sheth, Kartik; Turner, Jean; Van de Ven, Glenn

    2013-06-20

    We present a kinematic analysis of the dense molecular gas in the central 200 pc of the nearby galaxy NGC 1097, based on Cycle 0 observations with the Atacama Large Millimeter/submillimeter Array (ALMA). We use the HCN(4-3) line to trace the densest interstellar molecular gas (n{sub H{sub 2}}{approx}10{sup 8} cm{sup -3}), and quantify its kinematics, and estimate an inflow rate for the molecular gas. We find a striking similarity between the ALMA kinematic data and the analytic spiral inflow model that we have previously constructed based on ionized gas velocity fields on larger scales. We are able to follow dense gas streaming down to 40 pc distance from the supermassive black hole in this Seyfert 1 galaxy. In order to fulfill marginal stability, we deduce that the dense gas is confined to a very thin disk, and we derive a dense gas inflow rate of 0.09 M{sub Sun} yr{sup -1} at 40 pc radius. Combined with previous values from the H{alpha} and CO gas, we calculate a combined molecular and ionized gas inflow rate of {approx}0.2 M{sub Sun} yr{sup -1} at 40 pc distance from the central supermassive black hole of NGC 1097.

  4. ALMA-resolved salt emission traces the chemical footprint and inner wind morphology of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Decin, L.; Richards, A. M. S.; Millar, T. J.; Baudry, A.; De Beck, E.; Homan, W.; Smith, N.; Van de Sande, M.; Walsh, C.

    2016-07-01

    Context. At the end of their lives, most stars lose a significant amount of mass through a stellar wind. The specific physical and chemical circumstances that lead to the onset of the stellar wind for cool luminous stars are not yet understood. Complex geometrical morphologies in the circumstellar envelopes prove that various dynamical and chemical processes are interlocked and that their relative contributions are not easy to disentangle. Aims: We aim to study the inner-wind structure (R< 250 R⋆) of the well-known red supergiant VY CMa, the archetype for the class of luminous red supergiant stars experiencing high mass loss. Specifically, the objective is to unravel the density structure in the inner envelope and to examine the chemical interaction between gas and dust species. Methods: We analyse high spatial resolution (~0.̋24×0.̋13) ALMA science verification (SV) data in band 7, in which four thermal emission lines of gaseous sodium chloride (NaCl) are present at high signal-to-noise ratio. Results: For the first time, the NaCl emission in the inner wind region of VY CMa is spatially resolved. The ALMA observations reveal the contribution of up to four different spatial regions. The NaCl emission pattern is different compared to the dust continuum and TiO2 emission already analysed from the ALMA SV data. The emission can be reconciled with an axisymmetric geometry, where the lower density polar/rotation axis has a position angle of ~50° measured from north to east. However, this picture cannot capture the full morphological diversity, and discrete mass ejection events need to be invoked to explain localized higher-density regions. The velocity traced by the gaseous NaCl line profiles is significantly lower than the average wind terminal velocity, and much slower than some of the fastest mass ejections, signalling a wide range of characteristic speeds for the mass loss. Gaseous NaCl is detected far beyond the main dust condensation region. Realising the

  5. Giant molecular clouds in the Large Magellanic Cloud seen in sub-parsec scales by ALMA

    NASA Astrophysics Data System (ADS)

    Kawamura, Akiko; Onishi, Toshikazu; Harada, Ryohei; Morioka, Yuuki; Tokuda, Kazuki; Meixner, Margaret; Indebetouw, Remy; Sewilo, Marta; Nayak, Omnarayani; Saigo, Kazuya; Fukui, Yasuo

    2015-08-01

    Stars are formed in dense clumps of giant molecular clouds (GMCs), and kinetic energy and heavy elements are ejected from stars back into the interstellar medium through stellar winds and supernova explosions. This cycle drives the evolution of galaxies and thus, it is important to understand GMC evolution and star formation activities to obtain deeper knowledge of galaxy evolution.The Large Magellanic Cloud (LMC) offers an ideal laboratory to study how the interstellar medium evolves and how stars are formed throughout a galaxy at an unrivaled closeness to us with its nearly face-on view. It is known that young populous clusters like R136 are still being formed, making it possible to study also populous cluster formation, which is not currently observed in the Galaxy. We conducted a survey of the GMCs in the LMC by NANTEN and classified them into three types according to the activities of massive star formation, corresponding the evolutional sequence of the GMCs. One of the features of the GMCs in the LMC is that there are a large number of GMCs without active massive star formation unlike those of the Galaxy. Thus, the LMC is one of the most suitable galaxies to study the evolution of GMCs by investigating the star formation and natal GMCs with various star formation activities.We have started to obtain ALMA data of molecular cloud distributions in CO lines with sub-parsec to parsec scales for different types of GMCs, for example, one of the most active on-going star forming regions, N159 E/W, cluster forming GMCs like N206, and without active massive star formation, GMC 225, etc. The detailed studies of 13CO(2-1) observations, for e.g. in N159 West, show that many filaments are straight or curved distributions with a typical width of 0.5-1.0 pc and a length of 5-10 pc. N159W-S located toward an intersection of two filaments, where we also detected molecular outflows, we set up a hypothesis that the two filaments collided with each other ˜105 yrs ago and

  6. ALMA Survey of Lupus Protoplanetary Disks. I. Dust and Gas Masses

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Williams, J. P.; van der Marel, N.; Carpenter, J. M.; Guidi, G.; Hogerheijde, M.; Mathews, G. S.; Manara, C. F.; Miotello, A.; Natta, A.; Oliveira, I.; Tazzari, M.; Testi, L.; van Dishoeck, E. F.; van Terwisga, S. E.

    2016-09-01

    We present the first high-resolution sub-millimeter survey of both dust and gas for a large population of protoplanetary disks. Characterizing fundamental properties of protoplanetary disks on a statistical level is critical to understanding how disks evolve into the diverse exoplanet population. We use the Atacama Large Millimeter/Submillimeter Array (ALMA) to survey 89 protoplanetary disks around stars with {M}* \\gt 0.1 {M}ȯ in the young (1–3 Myr), nearby (150–200 pc) Lupus complex. Our observations cover the 890 μm continuum and the 13CO and C18O 3–2 lines. We use the sub-millimeter continuum to constrain {M}{{dust}} to a few Martian masses (0.2–0.4 M ⊕) and the CO isotopologue lines to constrain {M}{{gas}} to roughly a Jupiter mass (assuming an interstellar medium (ISM)-like [{CO}]/[{{{H}}}2] abundance). Of 89 sources, we detect 62 in continuum, 36 in 13CO, and 11 in C18O at \\gt 3σ significance. Stacking individually undetected sources limits their average dust mass to ≲ 6 Lunar masses (0.03 M ⊕), indicating rapid evolution once disk clearing begins. We find a positive correlation between {M}{{dust}} and M *, and present the first evidence for a positive correlation between {M}{{gas}} and M *, which may explain the dependence of giant planet frequency on host star mass. The mean dust mass in Lupus is 3× higher than in Upper Sco, while the dust mass distributions in Lupus and Taurus are statistically indistinguishable. Most detected disks have {M}{{gas}}≲ 1 {M}{{Jup}} and gas-to-dust ratios \\lt 100, assuming an ISM-like [{CO}]/[{{{H}}}2] abundance; unless CO is very depleted, the inferred gas depletion indicates that planet formation is well underway by a few Myr and may explain the unexpected prevalence of super-Earths in the exoplanet population.

  7. Measures of galaxy dust and gas mass with Herschel photometry and prospects for ALMA

    NASA Astrophysics Data System (ADS)

    Berta, S.; Lutz, D.; Genzel, R.; Förster-Schreiber, N. M.; Tacconi, L. J.

    2016-03-01

    Combining the deepest Herschel extragalactic surveys (PEP, GOODS-H, HerMES), and Monte Carlo mock catalogs, we explore the robustness of dust mass estimates based on modeling of broadband spectral energy distributions (SEDs) with two popular approaches: Draine & Li (2007, ApJ, 657, 810; DL07) and a modified blackbody (MBB). We analyze the cause, drivers, and trends of uncertainties and systematics in thorough detail. As long as the observed SED extends to at least 160-200 μm in the rest frame, Mdust can be recovered with a >3σ significance and without the occurrence of systematics. An average offset of a factor ~1.5 exists between DL07- and MBB-based dust masses, based on consistent dust properties. The performance of DL07 modeling turns out to be more robust than that of MBB since relative errors on Mdust are more mildly dependent on the maximum covered rest-frame wavelength and are less scattered. At the depth of the deepest Herschel surveys (in the GOODS-S field), it is possible to retrieve dust masses with a signal-to-noise ratio, S/N ≥ 3 for galaxies on the main sequence of star formation (MS) down to M∗ ~ 1010 [M⊙] up to z ~ 1. At higher redshift (z ≤ 2), the same result is only achieved for objects at the tip of the MS or for those objects lying above the tip owing to sensitivity and wavelength coverage limitations. Molecular gas masses, obtained by converting Mdust through the metallicity-dependent gas-to-dust ratio δGDR, are consistent with those based on the scaling of depletion time, τdep, and on CO sub-mm spectroscopy. Focusing on CO-detected galaxies at z> 1, the δGDR dependence on metallicity is consistent with the local relation, provided that a sufficient SED coverage is available. Once we established that Herschel-only and sub-mm-only estimates of dust masses can be affected by large uncertainties and possibly systematics in some cases, we combined far-IR Herschel data and sub-mm ALMA expected fluxes to study the advantages of a full

  8. Prospective Work for Alma: the Millimeterwave and Submillimeterwave Spectrum of 13C-GLYCOLALDEHYDE

    NASA Astrophysics Data System (ADS)

    Haykal, Imane; Margulès, Laurent; Huet, Therese R.; Motiyenko, Roman; Guillemin, J.-C.

    2011-06-01

    Glycolaldehyde has been identified in interstellar sources. The relative abundance ratios of the three isomers (acetic acid) : (glycolaldehyde) : (methylformate) were estimated . The detection of 13C_1 and 13C_2 isotopomers of methylformate has been recently reported in Orion, as a result of the detailled labororatory spectroscopic study. Therefore the spectroscopy of the 13C isotopomers of glycolaldehyde is investigated in laboratory in order to provide data for an astronomical search. The instrument ALMA will certainly be a good instrument to detect them. Up to now, only the microwave spectra of 13CH_2OH-CHO and of CH_2OH-13CHO have been observed several years ago in the 12-40 GHz range. Spectra of both species are presently recorded in Lille in the 150-950 GHz range with the new submillimetre-wave spectrometer based on harmonic generation of a microwave synthesizer source, using only solid-state devices, and coupled to a cell of 2.2 m length The absolute accuracy of the line positions is better than 30 KHz. The rotational structure of the ground state and of the three first excited vibrational states has been observed. Two 13C enriched samples were used. The analysis is in progress. This work is supported by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) and by the contract ANR-08-BLAN-0054 J. M. Hollis, S. N. Vogel, L. E. Snyder, et al., Astrophys. J. 554(2001) L81 R. A. H. Butler, F. C. De Lucia, D. T Petkie, et al., Astrophys. J. Supp. 134 (2001) 319 M. T. Beltran, C. Codella, S. Viti, R. Niri, R. Cesaroni, Astrophys. J. 690 (2009) L93. M. Carjaval, L. Margulès, B. Tercero et al., Astron. Astrophys. 500 (2009) 1109. K.-M. Marstokk and H. Møllendal, J. Mol. Struct. 16 (1973) 259. R. A. Motiyenko, L. Margulès, E. A. Alekseev et al., J. Mol. Spectrosc. 264 (2010) 94.

  9. ALMA observations of a z ≈ 3.1 protocluster: star formation from active galactic nuclei and Lyman-alpha blobs in an overdense environment

    NASA Astrophysics Data System (ADS)

    Alexander, D. M.; Simpson, J. M.; Harrison, C. M.; Mullaney, J. R.; Smail, I.; Geach, J. E.; Hickox, R. C.; Hine, N. K.; Karim, A.; Kubo, M.; Lehmer, B. D.; Matsuda, Y.; Rosario, D. J.; Stanley, F.; Swinbank, A. M.; Umehata, H.; Yamada, T.

    2016-09-01

    We exploit Atacama Large Interferometer Array (ALMA) 870 μm observations to measure the star formation rates (SFRs) of eight X-ray detected active galactic nuclei (AGNs) in a z ≈ 3.1 protocluster, four of which reside in extended Lyα haloes (often termed Lyman-alpha blobs: LABs). Three of the AGNs are detected by ALMA and have implied SFRs of ≈220-410 M⊙ yr-1; the non-detection of the other five AGNs places SFR upper limits of ≲210 M⊙ yr-1. The mean SFR of the protocluster AGNs (≈110-210 M⊙ yr-1) is consistent (within a factor of ≈0.7-2.3) with that found for co-eval AGNs in the field, implying that the galaxy growth is not significantly accelerated in these systems. However, when also considering ALMA data from the literature, we find evidence for elevated mean SFRs (up-to a factor of ≈5.9 over the field) for AGNs at the protocluster core, indicating that galaxy growth is significantly accelerated in the central regions of the protocluster. We also show that all of the four protocluster LABs are associated with an ALMA counterpart within the extent of their Lyα emission. The SFRs of the ALMA sources within the LABs (≈150-410 M⊙ yr-1) are consistent with those expected for co-eval massive star-forming galaxies in the field. Furthermore, the two giant LABs (with physical extents of ≳100 kpc) do not host more luminous star formation than the smaller LABs, despite being an order of magnitude brighter in Lyα emission. We use these results to discuss star formation as the power source of LABs.

  10. STAR FORMATION AND GAS KINEMATICS OF QUASAR HOST GALAXIES AT z {approx} 6: NEW INSIGHTS FROM ALMA

    SciTech Connect

    Wang Ran; Carilli, Chris L.; Wagg, Jeff; Walter, Fabian; Lentati, Lindley; Fan, Xiaohui; Narayanan, Desika; Riechers, Dominik A.; Bertoldi, Frank; Strauss, Michael A.; Cox, Pierre; Neri, Roberto; Omont, Alain; Menten, Karl M.; Knudsen, Kirsten K.; Jiang Linhua

    2013-08-10

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C II] 158 {mu}m fine structure line and dust continuum emission from the host galaxies of five redshift 6 quasars. We also report complementary observations of 250 GHz dust continuum and CO (6-5) line emission from the z = 6.00 quasar SDSS J231038.88+185519.7 using the IRAM facilities. The ALMA observations were carried out in the extended array at 0.''7 resolution. We have detected the line and dust continuum in all five objects. The derived [C II] line luminosities are 1.6 Multiplication-Sign 10{sup 9} to 8.7 Multiplication-Sign 10{sup 9} L{sub Sun} and the [C II]-to-FIR luminosity ratios are 2.9-5.1 Multiplication-Sign 10{sup -4}, which is comparable to the values found in other high-redshift quasar-starburst systems and local ultra-luminous infrared galaxies. The sources are marginally resolved and the intrinsic source sizes (major axis FWHM) are constrained to be 0.''3-0.''6 (i.e., 1.7-3.5 kpc) for the [C II] line emission and 0.''2-0.''4 (i.e., 1.2-2.3 kpc) for the continuum. These measurements indicate that there is vigorous star formation over the central few kpc in the quasar host galaxies. The ALMA observations also constrain the dynamical properties of the star-forming gas in the nuclear region. The intensity-weighted velocity maps of three sources show clear velocity gradients. Such velocity gradients are consistent with a rotating, gravitationally bound gas component, although they are not uniquely interpreted as such. Under the simplifying assumption of rotation, the implied dynamical masses within the [C II]-emitting regions are of order 10{sup 10}-10{sup 11} M{sub Sun }. Given these estimates, the mass ratios between the supermassive black holes and the spheroidal bulge are an order of magnitude higher than the mean value found in local spheroidal galaxies, which is in agreement with results from previous CO observations of high redshift quasars.

  11. Studying the Outflow-Core Interaction with ALMA Cycle 1 Observations of the HH46/47 Molecular Outflow

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Arce, H. G.; Mardones, D.; Dunham, M. M.; Garay, G.; Noriega-Crespo, A.; Corder, S.; Offner, S.

    2015-12-01

    We present preliminary analysis of ALMA cycle 1 12m array 12CO /13CO /C18O data of the HH 46/47 molecular outflow. 13CO and C18O trace relatively denser outflow material than 12CO and allow us to trace the outflow to lower velocities than what it possible using only the 12CO emission. Interestingly, the cavity wall of the red lobe can be seen at velocity as low as 0.2 km/s. Using C18O, we are now able to estimate the optical depth of 13CO, and then use the corrected 13CO emission to further and better correct the 12CO emission and estimate the mass, momentum, and kinetic energy of the outflow. Moreover, C18O reveals a flattened rotational structure at the center, likely to be a rotational envelope infalling onto an inner Keplerian disk.

  12. Interferometric Mapping of Magnetic Fields: The ALMA View of the Massive Star-forming Clump W43-MM1

    NASA Astrophysics Data System (ADS)

    Cortes, Paulo C.; Girart, Josep M.; Hull, Charles L. H.; Sridharan, Tirupati K.; Louvet, Fabien; Plambeck, Richard; Li, Zhi-Yun; Crutcher, Richard M.; Lai, Shih-Ping

    2016-07-01

    Here, we present the first results from ALMA observations of 1 mm polarized dust emission toward the W43-MM1 high-mass star-forming clump. We have detected a highly fragmented filament with source masses ranging from 14 M {}ȯ to 312 M {}ȯ , where the largest fragment, source A, is believed to be one of the most massive in our Galaxy. We found a smooth, ordered, and detailed polarization pattern throughout the filament, which we used to derived magnetic field morphologies and strengths for 12 out of the 15 fragments detected ranging from 0.2 to 9 mG. The dynamical equilibrium of each fragment was evaluated finding that all the fragments are in a super-critical state that is consistent with previously detected infalling motions toward W43-MM1. Moreover, there are indications suggesting that the field is being dragged by gravity as the whole filament is collapsing.

  13. The distribution and excitation of CH3OH in comet C/2012 K1 (PanSTARRS) from ALMA

    NASA Astrophysics Data System (ADS)

    Milam, Stefanie N.; Cordiner, Martin A.; Boissier, Jeremie; Charnley, Steven B.; Remijan, Anthony; Mumma, Michael; Villanueva, Geronimo; Paganini, Lucas; Bockelee-Morvan, Dominique; Crovisier, Jacques; Biver, Nicolas; Bonev, Boncho; Kuan, Yi-Jehng; Lis, Dariuz

    2015-11-01

    We present measurements of spatially and spectrally resolved CH3OH emission from the coma of comet C/2012 K1 (PanSTARRS) observed using the Atacama Large Millimeter/submillimeter Array (ALMA) in June 2014. The CH3OH emission is centrally peaked, with a spatial profile consistent with production from the sublimation of ices from the nucleus. From the detection of multiple lines of CH3OH in the J=7-6 and K=3-2 bands around 339 and 252 GHz, respectively, the line-of-sight average rotational excitation temperatures (Trot) have been derived as a function of spatial position across the coma. At the CH3OH peak, we find Trot=92 K, falling to about 40 K at a distance of 1000 km. The temperature does not fall monotonically but shows a double-peaked structure, indicative of a heating source at distances >=500 km from the nucleus.

  14. Exploring the molecular chemistry and excitation in obscured LIRGs: An ALMA mm-wave spectral scan of NGC 4418

    NASA Astrophysics Data System (ADS)

    Costagliola, F.; Sakamoto, K.; Muller, S.; Martín, S.; Aalto, S.

    2016-05-01

    The compact, obscured nuclei (CON) of luminous infrared galaxies (LIRG) combine large molecular columns with intense infrared (IR), ultra-violet (UV), and X- radiation and represent ideal laboratories for the study of the chemistry of the interstellar medium (ISM) under extreme conditions. Here we present the first ALMA wide-band spectral scan of a dusty LIRG, the CON NGC 4418. We derive molecular abundances and compare them with other Galactic and extragalactic sources. Our spectral scan confirms that the chemical complexity in the nucleus of NGC 4418 is one of the highest ever observed outside our Galaxy. We suggest that the galaxy may be a template for a new kind of chemistry and excitation, typical of CON.

  15. Towards detecting methanol emission in low-mass protoplanetary discs with ALMA: the role of non-LTE excitation

    NASA Astrophysics Data System (ADS)

    Parfenov, S. Yu.; Semenov, D. A.; Sobolev, A. M.; Gray, M. D.

    2016-08-01

    The understanding of organic content of protoplanetary discs is one of the main goals of the planet formation studies. As an attempt to guide the observational searches for weak lines of complex species in discs, we modelled the (sub)millimetre spectrum of gaseous methanol (CH3OH), one of the simplest organic molecules, in the representative T Tauri system. We used 1+1D disc physical model coupled to the gas-grain ALCHEMIC chemical model with and without 2D-turbulent mixing. The computed CH3OH abundances along with the CH3OH scheme of energy levels of ground and excited torsional states were used to produce model spectra obtained with the non-local thermodynamic equilibrium (non-LTE) 3D line radiative transfer code LIME. We found that the modelled non-LTE intensities of the CH3OH lines can be lower by factor of >10-100 than those calculated under assumption of LTE. Though population inversion occurs in the model calculations for many (sub)millimetre transitions, it does not lead to the strong maser amplification and noticeably high line intensities. We identify the strongest CH3OH (sub)millimetre lines that could be searched for with the Atacama Large Millimeter Array (ALMA) in nearby discs. The two best candidates are the CH3OH 50 - 40A+ (241.791 GHz) and 5-1 - 4-1E (241.767 GHz) lines, which could possibly be detected with the ˜5σ signal-to-noise ratio after ˜3 h of integration with the full ALMA array.

  16. revealing H{sub 2}D{sup +} depletion and compact structure in starless and protostellar cores with ALMA

    SciTech Connect

    Friesen, R. K.; Di Francesco, J.; Bourke, T. L.; Caselli, P.; Jørgensen, J. K.; Pineda, J. E.; Wong, M.

    2014-12-10

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H{sub 2}D{sup +} 1{sub 10}-1{sub 11} emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1N. The data reveal small-scale condensations within both cores, with mass upper limits of M ≲ 0.02 M {sub ☉} (∼20 M {sub Jup}). The SM1 condensation is consistent with a nearly symmetric Gaussian source with a width of only 37 AU. The SM1N condensation is elongated and extends 500 AU along its major axis. No evidence for substructure is seen in either source. A Jeans analysis indicates that these sources are unlikely to fragment, suggesting that both will form single stars. H{sub 2}D{sup +} is only detected toward SM1N, offset from the continuum peak by ∼150-200 AU. This offset may be due to either heating from an undetected, young, low-luminosity protostellar source or first hydrostatic core, or HD (and consequently H{sub 2}D{sup +}) depletion in the cold center of the condensation. We propose that SM1 is protostellar and that the condensation detected by ALMA is a warm (T ∼ 30-50 K) accretion disk. The less concentrated emission of the SM1N condensation suggests that it is still starless, but we cannot rule out the presence of a low-luminosity source, perhaps surrounded by a pseudodisk. These data observationally reveal the earliest stages of the formation of circumstellar accretion regions and agree with theoretical predictions that disk formation can occur very early in the star formation process, coeval with or just after the formation of a first hydrostatic core or protostar.

  17. Planck's Dusty GEMS. II. Extended [CII] emission and absorption in the Garnet at z = 3.4 seen with ALMA

    NASA Astrophysics Data System (ADS)

    Nesvadba, N.; Kneissl, R.; Cañameras, R.; Boone, F.; Falgarone, E.; Frye, B.; Gerin, M.; Koenig, S.; Lagache, G.; Le Floc'h, E.; Malhotra, S.; Scott, D.

    2016-08-01

    We present spatially resolved ALMA [CII] observations of the bright (flux density S350 = 400 mJy at 350 μm), gravitationally lensed, starburst galaxy PLCK G045.1+61.1 at z = 3.427, the "Garnet". This source is part of our set of "Planck's Dusty GEMS", discovered with the Planck's all-sky survey. Two emission-line clouds with a relative velocity offset of ~600 km s-1 extend towards north-east and south-west, respectively, of a small, intensely star-forming clump with a star-formation intensity of 220 M⊙ yr-1 kpc-2, akin to maximal starbursts. [CII] is also seen in absorption, with a redshift of +350 km s-1 relative to the brightest CO component. [CII] absorption has previously only been found in the Milky Way along sightlines toward bright high-mass star-forming regions, and this is the first detection in another galaxy. Similar to Galactic environments, the [CII] absorption feature is associated with [CI] emission, implying that this is diffuse gas shielded from the UV radiation of the clump, and likely at large distances from the clump. Since absorption can only be seen in front of a continuum source, the gas in this structure can definitely be attributed to gas flowing towards the clump. The absorber could be part of a cosmic filament or merger debris being accreted onto the galaxy. We discuss our results also in light of the on-going debate of the origin of the [CII] deficit in dusty star-forming galaxies. Based on data obtained with ALMA in program 2013.1.01230.S, and with EMIR on the IRAM 30 m telescope in program 223-13.

  18. Spatially resolved radio-to-far-infrared SED of the luminous merger remnant NGC 1614 with ALMA and VLA

    NASA Astrophysics Data System (ADS)

    Saito, Toshiki; Iono, Daisuke; Xu, Cong K.; Ueda, Junko; Nakanishi, Kouichiro; Yun, Min S.; Kaneko, Hiroyuki; Yamashita, Takuji; Lee, Minju; Espada, Daniel; Motohara, Kentaro; Kawabe, Ryohei

    2016-04-01

    We present the results of Atacama Large Millimeter/Submillimeter Array (ALMA) 108-, 233-, 352-, and 691-GHz continuum observations and Very Large Array (VLA) 4.81- and 8.36-GHz observations of the nearby luminous merger remnant NGC 1614. By analyzing the beam (1{^''.}0 × 1{^''.}0) and uv (≥45 kλ) matched ALMA and VLA maps, we find that the deconvolved source size of lower-frequency emission (≤108 GHz) is more compact (420 pc × 380 pc) compared to the higher-frequency emission (≥233 GHz) (560 pc × 390 pc), suggesting different physical origins for the continuum emission. Based on a spectral energy distribution (SED) model for a dusty starburst galaxy, it is found that the SED can be explained by three components: (1) non-thermal synchrotron emission (traced in the 4.81- and 8.36-GHz continua), (2) thermal free-free emission (traced in the 108-GHz continuum), and (3) thermal dust emission (traced in the 352- and 691-GHz continua). We also present the spatially resolved (sub-kpc scale) Kennicutt-Schmidt relation of NGC 1614. The result suggests a systematically shorter molecular gas depletion time in NGC 1614 (average τgas of 49-77 Myr and 70-226 Myr at the starburst ring and the outer region, respectively) than that of normal disk galaxies (˜2 Gyr) and a mid-stage merger VV 114 (= 0.1-1 Gyr). This implies that the star formation activities in (ultra-)luminous infrared galaxies are efficiently enhanced as the merger stage proceeds, which is consistent with the results from high-resolution numerical merger simulations.

  19. ALMA constraints on the faint millimetre source number counts and their contribution to the cosmic infrared background

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Maiolino, R.; De Zotti, G.; Negrello, M.; Marconi, A.; Bothwell, M. S.; Capak, P.; Carilli, C.; Castellano, M.; Cristiani, S.; Ferrara, A.; Fontana, A.; Gallerani, S.; Jones, G.; Ohta, K.; Ota, K.; Pentericci, L.; Santini, P.; Sheth, K.; Vallini, L.; Vanzella, E.; Wagg, J.; Williams, R. J.

    2015-12-01

    We have analysed 18 ALMA continuum maps in Bands 6 and 7, with rms down to 7.8 μJy, to derive differential number counts down to 60 μJy and 100 μJy at λ = 1.3 mm and λ = 1.1 mm, respectively. Furthermore, the non-detection of faint sources in the deepest ALMA field enabled us to set tight upper limits on the number counts down to 30 μJy. This is a factor of four deeper than the currently most stringent upper limit. The area covered by the combined fields is 9.5 × 10-4 deg2 at 1.1 mm and 6.6 × 10-4 deg2 at 1.3 mm. With respect to previous works, we improved the source extraction method by requiring that the dimension of the detected sources be consistent with the beam size. This method enabled us to remove spurious detections that have plagued the purity of the catalogues in previous studies. We detected 50 faint sources (at fluxes <1 mJy) with signal-to-noise (S/N) >3.5 down to 60 μJy, hence improving the statistics by a factor of four relative to previous studies. The inferred differential number counts are dN/ d(Log10S) = 1 × 105 deg2 at a 1.1 mm flux Sλ = 1.1 mm = 130 μJy, and dN/ d(Log10S) = 1.1 × 105 deg2 at a 1.3 mm flux Sλ = 1.3 mm = 60 μJy. At the faintest flux limits probed by our data, i.e. 30 μJy and 40 μJy, we obtain upper limits on the differential number counts of dN/ d(Log10S) < 7 × 105 deg2 and dN/ d(Log10S) < 3 × 105 deg2, respectively. Determining the fraction of cosmic infrared background (CIB) resolved by the ALMA observations was hampered by the large uncertainties plaguing the CIB measurements (a factor of four in flux). However, our results provide a new lower limit to CIB intensity of 17.2 Jy deg-2 at 1.1 mm and of 12.9 Jy deg-2 at 1.3 mm. Moreover, the flattening of the integrated number counts at faint fluxes strongly suggests that we are probably close to the CIB intensity. Our data imply that galaxies with star formation rate (SFR) < 40 M⊙/yr certainly contribute less than 50% to the CIB (and probably a much lower

  20. Malaria control in the African Region: perceptions and viewspoints on proceedings of the Africa Leaders Malaria Alliance (ALMA)

    PubMed Central

    2011-01-01

    Background In 2009 a total of 153,408 malaria deaths were reported in Africa. Eleven countries showed a reduction of more than 50% in either confirmed malaria cases or malaria admissions and deaths in recent years. However, many African countries are not on track to achieve the malaria component of the Millennium Development Goal (MDG) 6. The African Leaders Malaria Alliance (ALMA) working session at the 15th African Union Summit discussed the bottlenecks to achieving MDG 6 (specifically halting and beginning to reverse the incidence of malaria by 2015), success factors, and what countries needed to do to accelerate achievement of the MDG. The purpose of this article is to reflect on the proceedings of the ALMA working session. Methods Working methods of the session included speeches and statements by invited speakers and high-level panel discussions. Discussion The main bottlenecks identified related to the capacity of the health systems to deliver quality care and accessibility issues; need for strong, decentralized malaria-control programmes with linkages with other health and development sectors, the civil society and private sector entities; benefits of co-implementation of malaria control programmes with child survival or other public health interventions; systematic application of integrated promotive, preventive, diagnostic and case management interventions with full community participation; adapting approaches to local political, socio-cultural and administrative environments. The following prerequisites for success were identified: a clear vision and effective leadership of national malaria control programmes; high level political commitment to ensure adequate capacity in expertise, skill mix and number of managers, technicians and service providers; national ownership, intersectoral collaboration and accountability, as well as strong civil society and private sector involvement; functional epidemiological surveillance systems; and levering of African

  1. Strongly star-forming rotating disks in a complex merging system at z = 4.7 as revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Biggs, A.; Cresci, G.; Cupani, G.; D'Odorico, V.; Humphreys, E.; Maiolino, R.; Mannucci, F.; Molaro, P.; Nagao, T.; Testi, L.; Zwaan, M. A.

    2013-11-01

    We performed a kinematical analysis of the [CII] line emission of the BR 1202-0725 system at z ~ 4.7 using ALMA science verification observations. The most prominent sources of this system are a quasar (QSO) and a submillimeter galaxy (SMG), separated by a projected distance of about ~24 kpc and characterized by very high star formation rates, higher than ~1000 M⊙ yr-1. However, the ALMA observations reveal that these galaxies apparently have undisturbed rotating disks, which is at variance with the commonly accepted scenario in which strong star formation activity is induced by a major merger. We also detected faint components which, after spectral deblending, were spatially resolved from the main QSO and SMG emissions. The relative velocities and positions of these components are compatible with orbital motions within the gravitational potentials generated by the QSO host galaxy and the SMG, suggesting that they are smaller galaxies in interaction or gas clouds in accretion flows of tidal streams. Moreover, we did not find any clear spectral evidence for outflows caused by active galactic nuclei or stellar feedback. This suggests that the high star formation rates might be induced by interactions or minor mergers with these companions, which do not affect the large-scale kinematics of the disks, however. Alternatively, the strong star formation may be fueled by the accretion of pristine gas from the host halo. Our kinematical analysis also indicates that the QSO and the SMG have similar dynamical masses, mostly in the form of molecular gas, and that the QSO host galaxy and the SMG are seen close to face-on with slightly different disk inclinations: the QSO host galaxy is seen almost face-on (i ~ 15°), while the SMG is seen at higher inclinations (i ~ 25°). Finally, the ratio between the black hole mass of the QSO, obtained from new X-shooter spectroscopy, and the dynamical mass of the host galaxy is similar to value found in very massive local galaxies

  2. ALMA Observations of the Molecular Gas in the Debris Disk of the 30 Myr Old Star HD 21997

    NASA Technical Reports Server (NTRS)

    Kospal, A.; Moor, A.; Juhasz, A.; Abraham, P.; Apai, D.; Csengeri, T.; Grady, C. A.; Henning, Th.; Hughes, A. M.; Kiss, Cs.; Pascucci, I.; Schmalzl, M.

    2013-01-01

    The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO line observations with the Atacama Large Millimeter/submillimeter Array (ALMA). Here, we report on the detection of (12)CO and (13)CO in the J = 2-1 and J = 3-2 transitions and C(18)O in the J = 2-1 line. The gas exhibits a Keplerian velocity curve, one of the few direct measurements of Keplerian rotation in young debris disks. The measured CO brightness distribution could be reproduced by a simple star+disk system, whose parameters are r(sub in) < 26 AU, r(sub out) = 138 +/- 20 AU, Stellar M = 1.8 +0.5/-0.2 Solar M, and i = 32. Deg. 6 +/- 3 deg..1. The total CO mass, as calculated from the optically thin C(18)O line, is about (4-8) ×10(exp -2 ) Solar M, while the CO line ratios suggest a radiation temperature on the order of 6-9 K. Comparing our results with those obtained for the dust component of the HD 21997 disk from ALMA continuum observations by Moor et al., we conclude that comparable amounts of CO gas and dust are present in the disk. Interestingly, the gas and dust in the HD 21997 system are not colocated, indicating a dust-free inner gas disk within 55 AU of the star. We explore two possible scenarios for the origin of the gas. A secondary origin, which involves gas production from colliding or active planetesimals, would require unreasonably high gas production rates and would not explain why the gas and dust are not colocated. We propose that HD 21997 is a hybrid system where secondary debris dust and primordial gas coexist. HD 21997, whose age exceeds both the model predictions for disk clearing and the ages of the oldest T Tauri-like or transitional gas disks in the literature, may be a key object linking the primordial and the debris phases of disk evolution.

  3. ALMA observations of infalling flows toward the Keplerian disk around the class I protostar L1489 IRS

    SciTech Connect

    Yen, Hsi-Wei; Takakuwa, Shigehisa; Ohashi, Nagayoshi; Aikawa, Yuri; Aso, Yusuke; Koyamatsu, Shin; Machida, Masahiro N.; Saigo, Kazuya; Saito, Masao; Tomida, Kengo; Tomisaka, Kohji

    2014-09-20

    We have conducted ALMA observations in the 1.3 mm continuum and {sup 12}CO (2-1), C{sup 18}O (2-1), and SO (5{sub 6}-4{sub 5}) lines toward L1489 IRS, a Class I protostar surrounded by a Keplerian disk and an infalling envelope. The Keplerian disk is clearly identified in the {sup 12}CO and C{sup 18}O emission, and its outer radius (∼700 AU) and mass (∼0.005 M {sub ☉}) are comparable to those of disks around T Tauri stars. The protostellar mass is estimated to be 1.6 M {sub ☉} with the inclination angle of 66°. In addition to the Keplerian disk, there are blueshifted and redshifted off-axis protrusions seen in the C{sup 18}O emission pointing toward the north and the south, respectively, adjunct to the middle part of the Keplerian disk. The shape and kinematics of these protrusions can be interpreted as streams of infalling flows with a conserved angular momentum following parabolic trajectories toward the Keplerian disk, and the mass infalling rate is estimated to be ∼5 × 10{sup –7} M {sub ☉} yr{sup –1}. The specific angular momentum of the infalling flows (∼2.5 × 10{sup –3} km s{sup –1} pc) is comparable to that at the outer radius of the Keplerian disk (∼4.8 × 10{sup –3} km s{sup –1} pc). The SO emission is elongated along the disk major axis and exhibits a linear velocity gradient along the axis, which is interpreted to mean that the SO emission primarily traces a ring region in the flared Keplerian disk at radii of ∼250-390 AU. The local enhancement of the SO abundance in the ring region can be due to the accretion shocks at the centrifugal radius where the infalling flows fall onto the disk. Our ALMA observations unveiled both the Keplerian disk and the infalling gas onto the disk, and the disk can further grow by accreting material and angular momenta from the infalling gas.

  4. Studying the outflow-core interaction with ALMA Cycle 1 observations of the HH 46/47 molecular outflow

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Arce, Hector G.; Mardones, Diego; Dunham, Michael; Garay, Guido; Noriega-Crespo, Alberto; Corder, Stuartt; Offner, Stella; Cabrit, Sylvie

    2016-01-01

    We present ALMA Cycle 1 observations of the HH 46/47 molecular outflow which is driven by a low-mass Class 0/I protostar. Previous ALMA Cycle 0 12CO observation showed outflow cavities produced by the entrainment of ambient gas by the protostellar jet and wide-angle wind. Here we present analysis of observation of 12CO, 13CO, C18O and other species using combined 12m array and ACA observations. The improved angular resolution and sensitivity allow us to detect details of the outflow structure. Specially, we see that the outflow cavity wall is composed of two or more layers of outflowing gas, which separately connect to different shocked regions along the outflow axis inside the cavity, suggesting the outflow cavity wall is composed of multiple shells entrained by a series of jet bow-shock events. The new 13CO and C18O data also allow us to trace relatively denser and slower outflow material than that traced by the 12CO. These species are only detected within about 1 to 2 km/s from the cloud velocity, tracing the outflow to lower velocities than what is possible using only the 12CO emission. Interestingly, the cavity wall of the red lobe appears at very low outflow velocities (as low as ~0.2 km/s). In addition, 13CO and C18O allow us to correct for the CO optical depth, allowing us to obtain more accurate estimates of the outflow mass, momentum and kinetic energy. Applying the optical depth correction significantly increases the previous mass estimate by a factor of 14. The outflow kinetic energy distribution shows that even though the red lobe is mainly entrained by jet bow-shocks, most of the outflow energy is being deposited into the cloud at the base of the outflow cavity rather than around the heads of the bow shocks. The estimated total mass, momentum, and energy of the outflow indicate that the outflow has the ability to disperse the parent core. We found possible evidence for a slowly moving rotating outflow in CS. Our 13CO and C18O observations also trace a

  5. ALMA OBSERVATIONS OF THE MOLECULAR GAS IN THE DEBRIS DISK OF THE 30 Myr OLD STAR HD 21997

    SciTech Connect

    Kóspál, Á.; Moór, A.; Ábrahám, P.; Kiss, Cs.; Juhász, A.; Schmalzl, M.; Apai, D.; Csengeri, T.; Grady, C. A.; Henning, Th.; Hughes, A. M.; Pascucci, I.

    2013-10-20

    The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO line observations with the Atacama Large Millimeter/submillimeter Array (ALMA). Here, we report on the detection of {sup 12}CO and {sup 13}CO in the J = 2-1 and J = 3-2 transitions and C{sup 18}O in the J = 2-1 line. The gas exhibits a Keplerian velocity curve, one of the few direct measurements of Keplerian rotation in young debris disks. The measured CO brightness distribution could be reproduced by a simple star+disk system, whose parameters are r{sub in} < 26 AU, r{sub out} = 138 ± 20 AU, M{sub *}=1.8{sup +0.5}{sub -0.2} M{sub ☉}, and i = 32.°6 ± 3.°1. The total CO mass, as calculated from the optically thin C{sup 18}O line, is about (4-8) × 10{sup –2} M{sub ⊕}, while the CO line ratios suggest a radiation temperature on the order of 6-9 K. Comparing our results with those obtained for the dust component of the HD 21997 disk from ALMA continuum observations by Moór et al., we conclude that comparable amounts of CO gas and dust are present in the disk. Interestingly, the gas and dust in the HD 21997 system are not colocated, indicating a dust-free inner gas disk within 55 AU of the star. We explore two possible scenarios for the origin of the gas. A secondary origin, which involves gas production from colliding or active planetesimals, would require unreasonably high gas production rates and would not explain why the gas and dust are not colocated. We propose that HD 21997 is a hybrid system where secondary debris dust and primordial gas coexist. HD 21997, whose age exceeds both the model predictions for disk clearing and the ages of the oldest T Tauri-like or transitional gas disks in the literature, may be a key object linking the primordial and the debris phases of disk evolution.

  6. ALMA Census of Faint 1.2 mm Sources Down to ~ 0.02 mJy: Extragalactic Background Light and Dust-poor, High-z Galaxies

    NASA Astrophysics Data System (ADS)

    Fujimoto, Seiji; Ouchi, Masami; Ono, Yoshiaki; Shibuya, Takatoshi; Ishigaki, Masafumi; Nagai, Hiroshi; Momose, Rieko

    2016-01-01

    We present statistics of 133 faint 1.2 mm continuum sources detected in about 120 deep Atacama Large Millimeter/submillimeter Array (ALMA) pointing data that include all the archival deep data available by 2015 June. We derive number counts of 1.2 mm continuum sources down to 0.02 mJy partly with the assistance of gravitational lensing, and find that the total integrated 1.2 mm flux of the securely identified sources is {22.9}-5.6+6.7 Jy deg-2 which corresponds to {104}-25+31% of the extragalactic background light (EBL) measured by Cosmic Background Explorer observations. These results suggest that the major 1.2 mm EBL contributors are sources with 0.02 mJy, and that very faint 1.2 mm sources with ≲0.02 mJy contribute negligibly to the EBL with the possible flattening and/or truncation of number counts in this very faint flux regime. To understand the physical origin of our faint ALMA sources, we measure the galaxy bias bg by the counts-in-cells technique, and place a stringent upper limit of bg < 3.5 that is not similar to bg values of massive distant red galaxies and submillimeter galaxies but comparable to those of UV-bright, star-forming BzK galaxies (sBzKs) and Lyman break galaxies (LBGs). Moreover, in the optical and near-infrared (NIR) deep fields, we identify optical-NIR counterparts for 59% of our faint ALMA sources, the majority of which have luminosities, colors, and the IRX-β relation the same as sBzKs and LBGs. We thus conclude that about a half of our faint ALMA sources are dust-poor, high-z galaxies as known as sBzKs and LBGs in optical studies, and that these faint ALMA sources are not miniature (U)LIRGs simply scaled down with the infrared brightness.

  7. The ALMA and HST Views of the Molecular Gas and Star Formation in the Prototypical Barred Spiral Galaxy NGC 1097

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Regan, Michael W.; Kim, Taehyun; Kohno, Kotaro; Martin, Sergio; Villard, Eric; Onishi, Kyoko

    2016-01-01

    We mapped the entire inner disk of NGC 1097 (the circumnuclear ring, bar ends, the bar and inner spiral arms) using ALMA in the CO J=1-0 line at resolution of 1" (~65 pc). We also mapped the northern half of the bar in every other common molecular gas tracer at 3mm (HCN, HCO+, C18O, 13CO, C34S). Together these data provide the most detailed and highest resolution map of the molecular gas distribution and kinematics in a nearby barred spiral, rivalling the incredible maps seen for galaxies like M51 in the northern hemisphere. The data show the impact of the different environments in the galaxy as well as evidence for a multi-phased molecular medium. The data also evidence how the shear induced by the bar shock completely inhibits the star formation activity in the inner ends of the bar (clearly showing an anti-correlation between the strength of the CO line emission and Halpha emission). We will also present multiwavelength HST observations of the galaxy which are used to identify and map star clusters across the inner disk of the galaxy. We use these data to understand how star formation proceeds from one environment to the next across the galaxy.

  8. VLA and ALMA Imaging of the Massive Prestellar Core G11.92-0.61 MM2

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Brogan, C. L.; Cyganowski, C. J.; Schnee, S.

    2016-05-01

    We have obtained new Jansky Very Large Array (VLA) observations at X, K, and Ka bands (3 cm, 1.3 cm, and 0.9 cm) which have resolved the continuum emission from the most promising candidate for a massive pre-stellar core discovered to date: G11.92-0.61 MM2. As described in Cyganowski et al. ([1]), this bright dust continuum source (190 mJy at 1.1 mm) exhibits no spectral line emission in sub-arcsecond-resolution Submillimeter Array (SMA) images across 24 GHz of bandwidth, including the typical tracers CO, HCN, HCO+, and N2H+. Astrochemical models require high density (> 109 cm-3) and low temperature (< 20 K) to explain the rare chemistry of this massive (M ≥ 30 M⊙) object, which may exist in a fleeting evolutionary state. This source is well detected and elongated in VLA Ka-band (9 mm) continuum image with a 0.25'' beam (800 AU), is marginally detected in poorer resolution (1) K-band (1.3 cm) data, and is undetected at X-band (3 cm) with 0.25'' resolution. In combination with existing SMA millimeter wavelength data, our results provide an accurate spectral energy distribution of this source, constraining the dust grain emissivity index to 1.0-1.6 and the luminosity to 3-37 L⊙. Preliminary results from ALMA Band 7 images confirm that the dust emission from MM2 is resolved in an east-west direction.

  9. THE FIRST DETECTION OF THE 232 GHz VIBRATIONALLY EXCITED H{sub 2}O MASER IN ORION KL WITH ALMA

    SciTech Connect

    Hirota, Tomoya; Kim, Mi Kyoung; Honma, Mareki

    2012-09-20

    We investigated the ALMA science verification data of Orion KL and found a spectral signature of the vibrationally excited H{sub 2}O maser line at 232.68670 GHz ({nu}{sub 2} = 1, 5{sub 5,0}-6{sub 4,3}). This line has been detected previously in circumstellar envelopes of late-type stars but not in young stellar objects such as Orion KL. Thus, this is the first detection of the 232 GHz vibrationally excited H{sub 2}O maser in star-forming regions. The distribution of the 232 GHz maser is concentrated at the position of the radio Source I, which is remarkably different from other molecular lines. The spectrum shows a double-peak structure at the peak velocities of -2.1 and 13.3 km s{sup -1}. It appears to be consistent with the 22 GHz H{sub 2}O masers and 43 GHz SiO masers observed around Source I. Thus, the 232 GHz H{sub 2}O maser around Source I would be excited by the internal heating by an embedded protostar, being associated with either the root of the outflows/jets or the circumstellar disk around Source I, as traced by the 22 GHz H{sub 2}O masers or 43 GHz SiO masers, respectively.

  10. ALMA OBSERVATIONS OF {rho}-Oph 102: GRAIN GROWTH AND MOLECULAR GAS IN THE DISK AROUND A YOUNG BROWN DWARF

    SciTech Connect

    Ricci, L.; Testi, L.; Natta, A.; Scholz, A.; De Gregorio-Monsalvo, I.

    2012-12-20

    We present ALMA continuum and spectral line observations of the young brown dwarf {rho}-Oph 102 at about 0.89 mm and 3.2 mm. We detect dust emission from the disk at these wavelengths and derive an upper limit on the radius of the dusty disk of {approx}40 AU. The derived variation of the dust opacity with frequency in the millimeter (mm) provides evidence for the presence of mm-sized grains in the disk's outer regions. This result demonstrates that mm-sized grains are found even in the low-density environments of brown dwarf disks and challenges our current understanding of dust evolution in disks. The CO map at 345 GHz clearly reveals molecular gas emission at the location of the brown dwarf, indicating a gas-rich disk as typically found for disks surrounding young pre-main-sequence stars. We derive a disk mass of {approx}0.3%-1% of the mass of the central brown dwarf, similar to the typical values found for disks around more massive young stars.

  11. Distribution of Molecules in the Circumnuclear Disk and Surrounding Starburst Ring in the Seyfert Galaxy NGC 1068 Observed with ALMA

    NASA Astrophysics Data System (ADS)

    Takano, S.; Nakajima, T.; Kohno, K.; Harada, N.; Herbst, E.; Tamura, Y.; Izumi, T.; Taniguchi, A.; Tosaki, T.

    2015-12-01

    We report distributions of several molecular transitions including shock and dust related species (13CO and C18O J = 1-0, 13CN N = 1-0, CS J = 2-1, SO JN = 32-21, HNCO JKa,Kc = 50,5-40,4, HC3N J = 11-10, 12-11, CH3OH JK = 2K-1K, and CH3CN JK = 6K-5K) in the nearby Seyfert 2 galaxy NGC 1068 observed with ALMA. The central ˜1' (˜4.3 kpc) of this galaxy was observed in the 100 GHz region with an angular resolution of ˜4" x 2" (290 pc x 140 pc) to study the effects of an active galactic nucleus and its surrounding starburst ring on molecular abundances. We report a classification of molecular distributions into three main categories. Organic molecules such as CH3CN are found to be concentrated in the circumnuclear disk. In the starburst ring, the intensity of methanol at each clumpy region is not consistent with that of 13CO.

  12. Properties of Molecular Gas in Star-Forming Galaxies at z˜1.4 with ALMA

    NASA Astrophysics Data System (ADS)

    Seko, A.; Ohta, K.; Hatsukade, B.; Yabe, K.

    2015-12-01

    We made CO(J=5-4) observations of 20 star-forming galaxies at z˜1.4 with ALMA to study properties of molecular gas with respect to the stellar mass and metallicity. Almost all of our sample galaxies are on the main sequence of star-forming galaxies at this redshift. Uniqueness of the sample is gas phase metallicity is known for each galaxy. The metallicities of our sample galaxies are derived from near-infrared spectroscopic observations with Subaru/FMOS. The ranges of metallicity (12+log(O/H)) and stellar mass are 8.2-8.9 and 4×10 9-4×1011 M⊙, respectively. The stellar mass range covers lower mass than that in previous studies. We detected CO emission lines from 11 galaxies. Molecular gas mass is derived by adopting metallicity-dependent CO-to-H2 conversion factor. The derived molecular gas masses of detected galaxies are (3-11)×1010 M⊙. The molecular gas mass fractions are 0.25-0.94, and the fraction is lower in a more massive galaxy or a galaxy with higher metallicity. However, it is difficult to conclude which of stellar mass and metallicity is a main cause for the relations. We try to constrain the inflow and outflow rate by using an analytic chemical evolution model.

  13. The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Jørgensen, J. K.; van der Wiel, M. H. D.; Müller, H. S. P.; Lykke, J. M.; Bjerkeli, P.; Bourke, T. L.; Calcutt, H.; Drozdovskaya, M. N.; Favre, C.; Fayolle, E. C.; Garrod, R. T.; Jacobsen, S. K.; Ligterink, N. F. W.; Öberg, K. I.; Persson, M. V.; van Dishoeck, E. F.; Wampfler, S. F.

    2016-05-01

    Formamide (NH2CHO) has previously been detected in several star-forming regions and is thought to be a precursor for different prebiotic molecules. Its formation mechanism is still debated, however. Observations of formamide, related species, and their isopotologues may provide useful clues to the chemical pathways leading to their formation. The Protostellar Interferometric Line Survey (PILS) represents an unbiased, high angular resolution and sensitivity spectral survey of the low-mass protostellar binary IRAS 16293-2422 with the Atacama Large Millimeter/submillimeter Array (ALMA). For the first time, we detect the three singly deuterated forms of NH2CHO (NH2CDO, cis- and trans-NHDCHO), as well as DNCO towards the component B of this binary source. The images reveal that the different isotopologues are all present in the same region. Based on observations of the 13C isotopologues of formamide and a standard 12C/13C ratio, the deuterium fractionation is found to be similar for the three different forms with a value of about 2%. The DNCO/HNCO ratio is also comparable to the D/H ratio of formamide (~1%). These results are in agreement with the hypothesis that NH2CHO and HNCO are chemically related through grain-surface formation.

  14. ALMA Investigation of Vibrationally Excited HCN/HCO+/HNC Emission Lines in the AGN-Hosting Ultraluminous Infrared Galaxy IRAS 20551‑4250

    NASA Astrophysics Data System (ADS)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma

    2016-07-01

    We present the results of ALMA Cycle 2 observations of the ultraluminous infrared galaxy IRAS 20551‑4250 at HCN/HCO+/HNC J = 3–2 lines at both vibrational ground (v = 0) and vibrationally excited (v 2 = 1) levels. This galaxy contains a luminous buried active galactic nucleus (AGN), in addition to starburst activity, and our ALMA Cycle 0 data revealed a tentatively detected vibrationally excited HCN v 2 = 1f J = 4–3 emission line. In our ALMA Cycle 2 data, the HCN/HCO+/HNC J = 3–2 emission lines at v = 0 are clearly detected. The HCN and HNC v 2 = 1f J = 3–2 emission lines are also detected, but the HCO+ v 2 = 1f J = 3–2 emission line is not. Given the high energy level of v 2 = 1 and the resulting difficulty of collisional excitation, we compared these results with those of the calculation of infrared radiative pumping, using the available infrared 5–35 μm spectrum. We found that all of the observational results were reproduced if the HCN abundance was significantly higher than that of HCO+ and HNC. The flux ratio and excitation temperature between v 2 = 1f and v = 0, after correction for possible line opacity, suggests that infrared radiative pumping affects rotational (J-level) excitation at v = 0 at least for HCN and HNC. The HCN-to-HCO+ v = 0 flux ratio is higher than those of starburst-dominated regions, and will increase even more when the derived high HCN opacity is corrected. The enhanced HCN-to-HCO+ flux ratio in this AGN-hosting galaxy can be explained by the high HCN-to-HCO+ abundance ratio and sufficient HCN excitation at up to J = 4, rather than the significantly higher efficiency of infrared radiative pumping for HCN than HCO+.

  15. The Radial Distribution of H2 and CO in TW Hya as Revealed by Resolved ALMA Observations of CO Isotopologues

    NASA Astrophysics Data System (ADS)

    Schwarz, Kamber R.; Bergin, Edwin A.; Cleeves, L. Ilsedore; Blake, Geoffrey A.; Zhang, Ke; Öberg, Karin I.; van Dishoeck, Ewine F.; Qi, Chunhua

    2016-06-01

    CO is widely used as a tracer of molecular gas. However, there is now mounting evidence that gas phase carbon is depleted in the disk around TW Hya. Previous efforts to quantify this depletion have been hampered by uncertainties regarding the radial thermal structure in the disk. Here we present resolved ALMA observations of 13CO 3-2, C18O 3-2, 13CO 6-5, and C18O 6-5 emission in TW Hya, which allow us to derive radial gas temperature and gas surface density profiles, as well as map the CO abundance as a function of radius. These observations provide a measurement of the surface CO snowline at ˜30 AU and show evidence for an outer ring of CO emission centered at 53 AU, a feature previously seen only in less abundant species. Further, the derived CO gas temperature profile constrains the freeze out temperature of CO in the warm molecular layer to \\lt 21 K. Combined with the previous detection of HD 1-0, these data constrain the surface density of the warm H2 gas in the inner ˜30 AU such that {{{Σ }}}{warm{gas}}={4.7}-2.9+3.0 {{g}} {{cm}}-2{(R/10{au})}-1/2. We find that CO is depleted by two orders of magnitude from R=10{--}60 {{AU}}, with the small amount of CO returning to the gas phase inside the surface CO snowline insufficient to explain the overall depletion. Finally, this new data is used in conjunction with previous modeling of the TW Hya disk to constrain the midplane CO snowline to 17–23 AU.

  16. Morphology and Kinematics of Warm Molecular Gas in the Nuclear Region of Arp 220 as Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Rangwala, Naseem; Maloney, Philip R.; Wilson, Christine D.; Glenn, Jason; Kamenetzky, Julia; Spinoglio, Luigi

    2015-06-01

    We present Atacama Large Millimeter Array (ALMA) Cycle-0 observations of the CO J = 6-5 line in the advanced galaxy merger Arp 220. This line traces warm molecular gas, which dominates the total CO luminosity. The CO emission from the two nuclei is well resolved by the 0\\buildrel{\\prime\\prime}\\over{.} 39× 0\\buildrel{\\prime\\prime}\\over{.} 22 beam and the exceptional sensitivity and spatial/spectral resolution reveal new complex features in the morphology and kinematics of the warm gas. The line profiles are asymmetric between the red and blue sides of the nuclear disks and the peak of the line emission is offset from the peak of the continuum emission in both nuclei by about 100 pc in the same direction. CO self-absorption is detected at the centers of both nuclei but it is much deeper in the eastern nucleus. We also clearly detect strong, highly redshifted CO absorption located near the southwest side of each nucleus. For the eastern nucleus, we reproduce the major line profile features with a simple kinematic model of a highly turbulent, rotating disk with a substantial line center optical depth and a large gradient in the excitation temperature. The red/blue asymmetries and line-to-continuum offset are likely produced by absorption of the blue (SW) sides of the two nuclei by blueshifted, foreground molecular gas; the mass of the absorber is comparable to the nuclear warm gas mass (˜{{10}8} {{M}⊙ }). We measure an unusually high {{L}CO}/{{L}FIR} ratio in the eastern nucleus, suggesting there is an additional energy source, such as mechanical energy from shocks, present in this nucleus.

  17. ALMA Resolves the Properties of Star-forming Regions in a Dense Gas Disk at z ˜ 3

    NASA Astrophysics Data System (ADS)

    Swinbank, A. M.; Dye, S.; Nightingale, J. W.; Furlanetto, C.; Smail, Ian; Cooray, A.; Dannerbauer, H.; Dunne, L.; Eales, S.; Gavazzi, R.; Hunter, T.; Ivison, R. J.; Negrello, M.; Oteo-Gomez, I.; Smit, R.; van der Werf, P.; Vlahakis, C.

    2015-06-01

    We exploit long baseline ALMA submillimeter observations of the lensed star-forming galaxy SDP 81 at z = 3.042 to investigate the properties of the interstellar medium (ISM) on scales of 50-100 pc. The kinematics of the 12CO gas within this system are well described by a rotationally supported disk with an inclination-corrected rotation speed, {{v}rot} = 320 ± 20 km s-1, and a dynamical mass of {{M}dyn} = (3.5 ± 1.0)× 1010 {{M}⊙ } within a radius of 1.5 kpc. The disk is gas-rich and unstable, with a Toomre parameter, Q = 0.30 ± 0.10, and so into star-forming regions with Jeans length {{L}J} ˜ 130 pc. We identify five star-forming regions within the ISM on these scales and show that their scaling relations between luminosity, line widths, and sizes are significantly offset from those typical of molecular clouds in local galaxies (Larson’s relations). These offsets are likely to be caused by the high external hydrostatic pressure for the ISM, {{P}tot}/{{k}B}˜ 40-20+30 × 107 K cm-3, which is ˜104× higher than the typical ISM pressure in the Milky Way. The physical conditions of the star-forming ISM and giant molecular clouds appear to be similar to those found in the densest environments in the local universe, such as those in the Galactic center.

  18. The evolution of interstellar medium mass probed by dust emission: Alma observations at z = 0.3-2

    SciTech Connect

    Scoville, N.; Manohar, S.; Aussel, H.; Sheth, K.; Scott, K. S.; Sanders, D.; Ivison, R.; Pope, A.; Capak, P.; Vanden Bout, P.; Kartaltepe, J.; Robertson, B.; Lilly, S.

    2014-03-10

    The use of submillimeter dust continuum emission to probe the mass of interstellar dust and gas in galaxies is empirically calibrated using samples of local star-forming galaxies, Planck observations of the Milky Way, and high-redshift submillimeter galaxies. All of these objects suggest a similar calibration, strongly supporting the view that the Rayleigh-Jeans tail of the dust emission can be used as an accurate and very fast probe of the interstellar medium (ISM) in galaxies. We present ALMA Cycle 0 observations of the Band 7 (350 GHz) dust emission in 107 galaxies from z = 0.2 to 2.5. Three samples of galaxies with a total of 101 galaxies were stellar-mass-selected from COSMOS to have M {sub *} ≅ 10{sup 11} M {sub ☉}: 37 at z ∼ 0.4, 33 at z ∼ 0.9, and 31 at z = 2. A fourth sample with six infrared-luminous galaxies at z = 2 was observed for comparison with the purely mass-selected samples. From the fluxes detected in the stacked images for each sample, we find that the ISM content has decreased by a factor ∼6 from 1 to 2 × 10{sup 10} M {sub ☉} at both z = 2 and 0.9 down to ∼2 × 10{sup 9} M {sub ☉} at z = 0.4. The infrared-luminous sample at z = 2 shows a further ∼4 times increase in M {sub ISM} compared with the equivalent non-infrared-bright sample at the same redshift. The gas mass fractions are ∼2% ± 0.5%, 12% ± 3%, 14% ± 2%, and 53% ± 3% for the four subsamples (z = 0.4, 0.9, and 2 and infrared-bright galaxies).

  19. Properties of Interstellar Medium in Star-Forming Galaxies at z~1.4 revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Seko, Akifumi; Ohta, Kouji; Hatsukade, Bunyo; Yabe, Kiyoto

    2015-08-01

    We made CO(J=5-4) observations of 20 star-forming galaxies at z~1.4 with ALMA to study properties of molecular gas with respect to the stellar mass and metallicity. Almost all of our sample galaxies are on the main sequnece of star-forming galaxies at this redshift. Uniqueness of the sample is gas phase metallicity is known for each galaxy. The metallicities of our sample galaxies are derived from near-infrared spectoscopic observations with Subaru/FMOS. The ranges of metallicity (12+log(O/H)) and stellar mass are 8.2-8.9 and 4×109 - 4×1011 Msun, respectively. The stellar mass range covers lower mass than that in previous studies. We detected CO emission lines from 11 galaxies. Molecular gas mass is derived by adopting metallicity-dependent CO-to-H2 conversion factor. The derived molecular gas masses of detected galaxies are (3-11)×1010 Msun. The molecular gas mass fractions are 0.25-0.94, and the fractions is lower in a more massive galaxy or a galaxy with higher metallicity. Stacking analysis also shows the same trends. However, it is difficult to conclude which of stellar mass and metallicity is a main cause for the relations. We try to constrain the inflow and outflow rate at z~1.4 by using an analytic chemical evolution model, in which gas in a galaxy is accumulated by inflow and consumed by star formation and outflow. The results is consistent with that from Hα luminosity assuming the Kennicutt-Schmidt law. Dust thermal continuum emissions are also observed, thus we would like to mention the evolution of gas-to-dust ratio in galaxies.

  20. Sub-kpc star formation law in the local luminous infrared galaxy IC 4687 as seen by ALMA

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, M.; Colina, L.; García-Burillo, S.; Planesas, P.; Usero, A.; Alonso-Herrero, A.; Arribas, S.; Cazzoli, S.; Emonts, B.; Piqueras López, J.; Villar-Martín, M.

    2016-03-01

    We analyze the spatially resolved (250 pc scales) and integrated star formation (SF) law in the local luminous infrared galaxy (LIRG) IC 4687. This is one of the first studies of the SF law on a starburst LIRG at these small spatial scales. We combined new interferometric ALMA CO(2-1) data with existing HST/NICMOS Paα narrowband imaging and VLT/SINFONI near-IR integral field spectroscopy to obtain accurate extinction-corrected SF rate (SFR) and cold molecular gas surface densities (Σgas and ΣSFR). We find that IC 4687 forms stars very efficiently with an average depletion time (tdep) of 160 Myr for the individual 250 pc regions. This is approximately one order of magnitude shorter than the tdep of local normal spirals and also shorter than that of main-sequence high-z objects, even when we use a Galactic αCO conversion factor. This result suggests a bimodal SF law in the ΣSFR∝ΣgasN representation. A universal SF law is recovered if we normalize the Σgas by the global dynamical time. However, at the spatial scales studied here, we find that the SF efficiency (or tdep) does not depend on the local dynamical time for this object. Therefore, an alternative normalization (e.g., free-fall time) should be found if a universal SF law exists at these scales. A FITS file for the reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A44

  1. ALMA Observations of the Transition from Infall Motion to Keplerian Rotation around the Late-phase Protostar TMC-1A

    NASA Astrophysics Data System (ADS)

    Aso, Yusuke; Ohashi, Nagayoshi; Saigo, Kazuya; Koyamatsu, Shin; Aikawa, Yuri; Hayashi, Masahiko; Machida, Masahiro N.; Saito, Masao; Takakuwa, Shigehisa; Tomida, Kengo; Tomisaka, Kohji; Yen, Hsi-Wei

    2015-10-01

    We have observed the Class I protostar TMC-1A with the Atacama Millimeter/submillimeter Array (ALMA) in the emissions of 12CO and C18O (J = 2–1) and 1.3 mm dust continuum. Continuum emission with a deconvolved size of 0.″50 × 0.″37, perpendicular to the 12CO outflow, is detected. It most likely traces a circumstellar disk around TMC-1A, as previously reported. In contrast, a more extended structure is detected in C18O, although it is still elongated with a deconvolved size of 3.″3 × 2.″2, indicating that C18O traces mainly a flattened envelope surrounding the disk and the central protostar. C18O shows a clear velocity gradient perpendicular to the outflow at higher velocities, indicative of rotation, while an additional velocity gradient along the outflow is found at lower velocities. The radial profile of the rotational velocity is analyzed in detail, finding that it is given as a power law ∝r‑a with an index of ∼0.5 at higher velocities. This indicates that the rotation at higher velocities can be explained as Keplerian rotation orbiting a protostar with a dynamical mass of 0.68 {M}ȯ (inclination corrected). The additional velocity gradient of C18O along the outflow is considered to be mainly infall motions in the envelope. Position–velocity diagrams made from models consisting of an infalling envelope and a Keplerian disk are compared with the observations, revealing that the observed infall velocity is ∼0.3 times smaller than the free-fall velocity yielded by the dynamical mass of the protostar. Magnetic fields could be responsible for the slow infall velocity. A possible scenario of Keplerian disk formation is discussed.

  2. ALMA Early Science Observations of Outbursting Stellar Systems:Disk Masses for FU Ori and EXor Objects

    NASA Astrophysics Data System (ADS)

    Cieza, Lucas A.; Prieto, Jose Luis; Zhu, Zhaohuan; Tobin, John J.; Williams, Jonathan P.; Hales, Antonio; Casassus, Simon; Principe, David; Schreiber, Matthias R.

    2016-01-01

    It is believed that low-mass stars build a significant fraction of their total mass during short outbursts of enhanced accretion (up to 10E-4 MSOLAR /yr). The most dramatic episodic accretion events known in Young Stellar Objects (YSOs) are FU Ori and EXor outbursts. FU Ori objects are characterized by a sudden brightening of 5 magnitudes or more within one year and remain bright for decades. EXor objects have lower amplitude outbursts on shorter timescales (months to years). Here we present an ALMA 230 GHz (1.3 mm / band-6) mini-survey of 8 outbursting sources (three FU Ori and ve EXor objects) in Orion with 1" (450 AU) resolution. We present continuum, 12CO, 13CO, and C18O line images and derive dust and (when possible) gas disk masses. The disk masses derived from the line observations are systematically lower (by factors of 3-5) than those calculated from the continuum and adopting the standard gas-to-dust ratio of 100, which agrees with results on T Tauri disks in Taurus. After beam deconvolution, we nd that the disks are remarkably compact (r = 70-150 AU). The 1.3 mm fuxes of the outbursting sources span over three orders of magnitude, but the FU Ori objects are signi cantly brighter than the EXor objects. The inferred disk masses for the brightest objects are > 0.1 Msolar , rendering gravitational instability a likely outburst mechanism. On the other hand, the inferred disk masses for the faintest targets are ~ 1-5 MJUP , and thus an alternative mechanism must be responsible for their outbursts.

  3. ALMA Observations of the Largest Proto-Planetary Disk in the Orion Nebula, 114-426: A CO Silhouette

    NASA Astrophysics Data System (ADS)

    Bally, John; Mann, Rita K.; Eisner, Josh; Andrews, Sean M.; Di Francesco, James; Hughes, Meredith; Johnstone, Doug; Matthews, Brenda; Ricci, Luca; Williams, Jonathan P.

    2015-07-01

    We present ALMA observations of the largest protoplanetary disk in the Orion Nebula, 114-426. Detectable 345 GHz (856 μm) dust continuum is produced only in the 350 AU central region of the ˜1000 AU diameter silhouette seen against the bright {{H}}α background in Hubble Space Telescope images. Assuming optically thin dust emission at 345 GHz, a gas-to-dust ratio of 100, and a grain temperature of 20 K, the disk gas-mass is estimated to be 3.1+/- 0.6 Jupiter masses. If most solids and ices have been incorporated into large grains, however, this value is a lower limit. The disk is not detected in dense-gas tracers such as HCO+ J = 4-3, HCN J = 4-3, or CS = 7-6. These results may indicate that the 114-426 disk is evolved and depleted in some light organic compounds found in molecular clouds. The CO J = 3-2 line is seen in absorption against the bright 50-80 K background of the Orion A molecular cloud over the full spatial extent and a little beyond the dust continuum emission. The CO absorption reaches a depth of 27 K below the background CO emission at VLSR ≈ 6.7 km s{}-1 ˜ 0.″52 (210 AU) northeast and 12 K below the background CO emission at VLSR ≈ 9.7 km s{}-1 ˜ 0.″34 (140 AU) southwest of the suspected location of the central star, implying that the embedded star has a mass less than 1 M{}⊙ .

  4. ALMA Observations of the Galactic Center: SiO Outflows and High Mass Star Formation Near Sgr A

    NASA Technical Reports Server (NTRS)

    Yusef-Zadeh, F.; Royster, M.; Wardle, M.; Arendt, R.; Bushouse, H.; Gillessen, S.; Lis, D.; Pound, M. W.; Roberts, D. A.; Whitney, B.; Wooten, A.

    2013-01-01

    Using ALMA observations of the Galactic center with a spatial resolution of 2.61" x 0.97 ", we detected 11 SiO (5-4) clumps of molecular gas in the within 0.6pc (15") of Sgr A*, interior of the 2-pc circumnuclear molecular ring. Three SiO (5-4) clumps closest to Sgr A* show the largest central velocities of approximately 150 kilometers per second and broadest asymmetric linewidths with total linewidths FWZI approximately 110-147 kilometers per second. Other clumps are distributed mainly to the NE of the ionized minispiral with narrow linewidths of FWHM approximately 11-27 kilometers per second. Using CARMA data, LVG modeling of the broad velocity clumps, the SiO (5-4) and (2-1) line ratios constrain the column density N(SiO) approximately 10(exp 14) per square centimeter, and the H2 gas density n(sub H2) = (3-9) x 10(exp 5) per cubic centimeter for an assumed kinetic temperature 100-200K. The SiO (5-4) clumps with broad and narrow linewidths are interpreted as highly embedded protostellar outflows, signifying an early stage of massive star formation near Sgr A* in the last 104 years. Additional support for the presence of YSO outflows is that the luminosities and velocity widths lie in the range detected from protostellar outflows in star forming regions in the Galaxy. Furthermore, SED modeling of stellar sources along the N arm show two YSO candidates near SiO clumps supporting in-situ star formation near Sgr A*. We discuss the nature of star formation where the gravitational potential of the black hole dominates. In particular, we suggest that external radiative pressure exerted on self-shielded molecular clouds enhance the gas density, before the gas cloud become gravitationally unstable near Sgr A*.

  5. The Radial Distribution of H2 and CO in TW Hya as Revealed by Resolved ALMA Observations of CO Isotopologues

    NASA Astrophysics Data System (ADS)

    Schwarz, Kamber R.; Bergin, Edwin A.; Cleeves, L. Ilsedore; Blake, Geoffrey A.; Zhang, Ke; Öberg, Karin I.; van Dishoeck, Ewine F.; Qi, Chunhua

    2016-06-01

    CO is widely used as a tracer of molecular gas. However, there is now mounting evidence that gas phase carbon is depleted in the disk around TW Hya. Previous efforts to quantify this depletion have been hampered by uncertainties regarding the radial thermal structure in the disk. Here we present resolved ALMA observations of 13CO 3-2, C18O 3-2, 13CO 6-5, and C18O 6-5 emission in TW Hya, which allow us to derive radial gas temperature and gas surface density profiles, as well as map the CO abundance as a function of radius. These observations provide a measurement of the surface CO snowline at ∼30 AU and show evidence for an outer ring of CO emission centered at 53 AU, a feature previously seen only in less abundant species. Further, the derived CO gas temperature profile constrains the freeze out temperature of CO in the warm molecular layer to \\lt 21 K. Combined with the previous detection of HD 1-0, these data constrain the surface density of the warm H2 gas in the inner ∼30 AU such that {{{Σ }}}{warm{gas}}={4.7}-2.9+3.0 {{g}} {{cm}}-2{(R/10{au})}-1/2. We find that CO is depleted by two orders of magnitude from R=10{--}60 {{AU}}, with the small amount of CO returning to the gas phase inside the surface CO snowline insufficient to explain the overall depletion. Finally, this new data is used in conjunction with previous modeling of the TW Hya disk to constrain the midplane CO snowline to 17–23 AU.

  6. The 2014 ALMA Long Baseline Campaign: First Results from High Angular Resolution Observations toward the HL Tau Region

    NASA Astrophysics Data System (ADS)

    ALMA Partnership; Brogan, C. L.; Pérez, L. M.; Hunter, T. R.; Dent, W. R. F.; Hales, A. S.; Hills, R. E.; Corder, S.; Fomalont, E. B.; Vlahakis, C.; Asaki, Y.; Barkats, D.; Hirota, A.; Hodge, J. A.; Impellizzeri, C. M. V.; Kneissl, R.; Liuzzo, E.; Lucas, R.; Marcelino, N.; Matsushita, S.; Nakanishi, K.; Phillips, N.; Richards, A. M. S.; Toledo, I.; Aladro, R.; Broguiere, D.; Cortes, J. R.; Cortes, P. C.; Espada, D.; Galarza, F.; Garcia-Appadoo, D.; Guzman-Ramirez, L.; Humphreys, E. M.; Jung, T.; Kameno, S.; Laing, R. A.; Leon, S.; Marconi, G.; Mignano, A.; Nikolic, B.; Nyman, L.-A.; Radiszcz, M.; Remijan, A.; Rodón, J. A.; Sawada, T.; Takahashi, S.; Tilanus, R. P. J.; Vila Vilaro, B.; Watson, L. C.; Wiklind, T.; Akiyama, E.; Chapillon, E.; de Gregorio-Monsalvo, I.; Di Francesco, J.; Gueth, F.; Kawamura, A.; Lee, C.-F.; Nguyen Luong, Q.; Mangum, J.; Pietu, V.; Sanhueza, P.; Saigo, K.; Takakuwa, S.; Ubach, C.; van Kempen, T.; Wootten, A.; Castro-Carrizo, A.; Francke, H.; Gallardo, J.; Garcia, J.; Gonzalez, S.; Hill, T.; Kaminski, T.; Kurono, Y.; Liu, H.-Y.; Lopez, C.; Morales, F.; Plarre, K.; Schieven, G.; Testi, L.; Videla, L.; Villard, E.; Andreani, P.; Hibbard, J. E.; Tatematsu, K.

    2015-07-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0.″ 075 (10 AU) to 0.″ 025 (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analog HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46\\buildrel{\\circ}\\over{.} 72+/- 0\\buildrel{\\circ}\\over{.} 05) and position angle (+138\\buildrel{\\circ}\\over{.} 02+/- 0\\buildrel{\\circ}\\over{.} 07). We obtain a high-fidelity image of the 1.0 mm spectral index (α), which ranges from α ˜ 2.0 in the optically thick central peak and two brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, and we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for subsequent dark rings, consistent with some degree of grain growth and evolution. Additional clues that the rings arise from planet formation include an increase in their central offsets with radius and the presence of numerous orbital resonances. At a resolution of 35 AU, we resolve the molecular component of the disk in HCO+ (1-0) which exhibits a pattern over LSR velocities from 2-12 km s-1 consistent with Keplerian motion around a ˜1.3 {M}⊙ star, although complicated by absorption at low blueshifted velocities. We also serendipitously detect and resolve the nearby protostars XZ Tau (A/B) and LkHα358 at 2.9 mm. .

  7. Properties of the Interstellar Medium in Star-Forming Galaxies at z ~ 1.4 Revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Seko, Akifumi; Ohta, Kouji; Yabe, Kiyoto; Hatsukade, Bunyo; Akiyama, Masayuki; Iwamuro, Fumihide; Tamura, Naoyuki; Dalton, Gavin

    2016-03-01

    We conducted observations of 12CO(J = 5-4) and dust thermal continuum emission toward 20 star-forming galaxies on the main sequence at z ˜ 1.4 using ALMA to investigate the properties of the interstellar medium. The sample galaxies are chosen to trace the distributions of star-forming galaxies in diagrams of stellar mass versus star formation rate and stellar mass versus metallicity. We detected CO emission lines from 11 galaxies. The molecular gas mass is derived by adopting a metallicity-dependent CO-to-H2 conversion factor and assuming a CO(5-4)/CO(1-0) luminosity ratio of 0.23. Masses of molecular gas and its fractions (molecular gas mass/(molecular gas mass + stellar mass)) for the detected galaxies are in the ranges of (3.9-12) × 1010 M⊙ and 0.25-0.94, respectively; these values are significantly larger than those in local spiral galaxies. The molecular gas mass fraction decreases with increasing stellar mass; the relation holds for four times lower stellar mass than that covered in previous studies, and the molecular gas mass fraction decreases with increasing metallicity. Stacking analyses also show the same trends. Dust thermal emissions were clearly detected from two galaxies and marginally detected from five galaxies. Dust masses of the detected galaxies are (3.9-38) × 107 M⊙. We derived gas-to-dust ratios and found they are 3-4 times larger than those in local galaxies. The depletion times of molecular gas for the detected galaxies are (1.4-36) × 108 yr while the results of the stacking analysis show ˜3 × 108 yr. The depletion time tends to decrease with increasing stellar mass and metallicity though the trend is not so significant, which contrasts with the trends in local galaxies.

  8. ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2013-10-01

    We present results from our ALMA Cycle 0 observations, at the frequencies around the HCN, HCO{sup +}, and HNC J = 4-3 transition lines, of the luminous infrared galaxy IRAS 20551–4250 at z = 0.043, which is known to host an energetically important obscured active galactic nucleus (AGN). In addition to the targeted HCN, HCO{sup +}, and HNC J = 4-3 emission lines, two additional strong emission lines are seen, which we attribute to H{sub 2}S and CH{sub 3}CN(+CCH). The HCN-to-HCO{sup +} J = 4-3 flux ratio (∼0.7) is higher than in the other starburst-dominated galaxy (∼0.2) observed in our ALMA Cycle 0 program. We tentatively (∼5σ) detected the vibrationally excited (v {sub 2} = 1) HCN J = 4-3 (l = 1f) emission line, which is important for testing an infrared radiative pumping scenario for HCN. This is the second detection of this molecular transition in external galaxies. The most likely reason for this detection is not only the high flux of this emission line, but also the small molecular line widths observed in this galaxy, suggesting that vibrational excitation of HCN may be relatively common in AGN-hosting galaxies.

  9. ALMA: the completion of the 25 Europeans antennas: focus on main performances, problems found during erection and lessons learned

    NASA Astrophysics Data System (ADS)

    Marchiori, Gianpietro; Rampini, Francesco; Giacomel, Luigino; Giacomel, Stefano; Marcuzzi, Enrico; Formentin, Federico

    2014-07-01

    The 2013 saw the completion of the Atacama Large Millimeter Array (ALMA). The array consists of 66 antennas and operates in Chile at the Chajnantor plateau at 5000 m altitude. 25 of the 12 meter diameter antennas have been delivered by the AEM consortium constituted by Thales Alenia Space France, Thales Alenia Space Italy, European Industrial Engineering (EIE GROUP), and MT Mechatronics. The purpose of this paper is to present a summary of the results obtained by the antennas during the different test campaign and a summary of the problems aroused during the erection and the assembly phases and the relative lesson learned. The results of the engineering performances and antenna systems, performed during the acceptance phases of the first antennas, have shown the full correspondence between what was expected during the design phase and what has been achieved in the final product, with a difference of less than 10% and the trend tends to be conservative. As for "on sky antennas performances", all the tests done in the 25 antennas showed excellent results. The antenna All Sky Pointing Error and Offset Pointing Error with and without metrology correction turned to be always excellent. The Fast Motion Capability with the tracking requirements after a step motion was better than an order of magnitude compared to the requests. Four years of on-site activities and the various phases of construction and assembly of 25 antennas have been a major challenge for the European Consortium. The problems encountered in this phase were many and varied: interfaces issues, design and foundation problems, manufacturing and assembly errors, electrical installation, shipment delays, human errors, adverse weather conditions, financial aspects, schedule, etc. The important is being prepared with an "a priori", that is a risk assessment which helps ensuring the best solution for the complete customer satisfaction of the scientific and technical requests. Despite the already excellent

  10. Warm water deuterium fractionation in IRAS 16293-2422. The high-resolution ALMA and SMA view

    NASA Astrophysics Data System (ADS)

    Persson, M. V.; Jørgensen, J. K.; van Dishoeck, E. F.

    2013-01-01

    Context. Measuring the water deuterium fractionation in the inner warm regions of low-mass protostars has so far been hampered by poor angular resolution obtainable with single-dish ground- and space-based telescopes. Observations of water isotopologues using (sub)millimeter wavelength interferometers have the potential to shed light on this matter. Aims: To measure the water deuterium fractionation in the warm gas of the deeply-embedded protostellar binary IRAS 16293-2422. Methods: Observations toward IRAS 16293-2422 of the 53,2 - 44,1 transition of H218O at 692.07914 GHz from Atacama Large Millimeter/submillimeter Array (ALMA) as well as the 31,3 - 22,0 of H218O at 203.40752 GHz and the 31,2 - 22,1 transition of HDO at 225.89672 GHz from the Submillimeter Array (SMA) are presented. Results: The 692 GHz H218O line is seen toward both components of the binary protostar. Toward one of the components, "source B", the line is seen in absorption toward the continuum, slightly red-shifted from the systemic velocity, whereas emission is seen off-source at the systemic velocity. Toward the other component, "source A", the two HDO and H218O lines are detected as well with the SMA. From the H218O transitions the excitation temperature is estimated at 124 ± 12 K. The calculated HDO/H2O ratio is (9.2 ± 2.6) × 10-4 - significantly lower than previous estimates in the warm gas close to the source. It is also lower by a factor of ~5 than the ratio deduced in the outer envelope. Conclusions: Our observations reveal the physical and chemical structure of water vapor close to the protostars on solar-system scales. The red-shifted absorption detected toward source B is indicative of infall. The excitation temperature is consistent with the picture of water ice evaporation close to the protostar. The low HDO/H2O ratio deduced here suggests that the differences between the inner regions of the protostars and the Earth's oceans and comets are smaller than previously thought

  11. Exploring molecular complexity with ALMA (EMoCA): Deuterated complex organic molecules in Sagittarius B2(N2)

    NASA Astrophysics Data System (ADS)

    Belloche, A.; Müller, H. S. P.; Garrod, R. T.; Menten, K. M.

    2016-03-01

    Context. Deuteration is a powerful tracer of the history of the cold prestellar phase in star-forming regions. Apart from methanol, little is known about deuterium fractionation of complex organic molecules in the interstellar medium, especially in regions forming high-mass stars. Aims: Our goal is to detect deuterated complex organic molecules toward the high mass star-forming region Sagittarius B2 (Sgr B2) and derive the level of deuteration for these molecules. Methods: We use a complete 3-mm spectral line survey performed with the Atacama Large Millimeter/submillimeter Array (ALMA) to search for deuterated complex organic molecules toward the hot molecular core Sgr B2(N2). We constructed population diagrams and integrated intensity maps to fit rotational temperatures and emission sizes for each molecule. Column densities are derived by modeling the full spectrum under the assumption of local thermodynamic equilibrium. We compare the results to predictions of two astrochemical models that treat the deuteration process. Results: We report the detection of CH2DCN toward Sgr B2(N2) with a deuteration level of 0.4%, and tentative detections of CH2DOH, CH2DCH2CN, the chiral molecule CH3CHDCN, and DC3N with levels in the range 0.05%-0.12%. A stringent deuteration upper limit is obtained for CH3OD (<0.07%). Upper limits in the range 0.5-1.8% are derived for the three deuterated isotopologues of vinyl cyanide, the four deuterated species of ethanol, and CH2DOCHO. Ethyl cyanide is less deuterated than methyl cyanide by at least a factor five. The [CH2DOH]/[CH3OD] abundance ratio is higher than 1.8. It may still be consistent with the value obtained in Orion KL. Except for methyl cyanide, the measured deuteration levels lie at least a factor four below the predictions of current astrochemical models. The deuteration levels in Sgr B2(N2) are also lower than in Orion KL by a factor of a few up to a factor ten. Conclusions: The discrepancy between the deuteration levels of

  12. Bright [C ii] and Dust Emission in Three z > 6.6 Quasar Host Galaxies Observed by ALMA

    NASA Astrophysics Data System (ADS)

    Venemans, Bram P.; Walter, Fabian; Zschaechner, Laura; Decarli, Roberto; De Rosa, Gisella; Findlay, Joseph R.; McMahon, Richard G.; Sutherland, Will J.

    2016-01-01

    We present ALMA detections of the [C ii] 158 μm emission line and the underlying far-infrared (FIR) continuum of three quasars at 6.6 < z < 6.9 selected from the VIKING survey. The [C ii] line fluxes range between 1.6 and 3.4 Jy km s-1 ([C ii] luminosities ˜(1.9-3.9) × 109 L⊙). We measure continuum flux densities of 0.56-3.29 mJy around 158 μm (rest frame), with implied FIR luminosities of (0.6-7.5) × 1012 L⊙ and dust masses Md = (0.7-24) × 108 M⊙. In one quasar we derive a dust temperature of {30}-9+12 K from the continuum slope, below the canonical value of 47 K. Assuming that the [C ii] and continuum emission are powered by star formation, we find star formation rates from 100 to 1600 M⊙ yr-1 based on local scaling relations. The L[C ii]/LFIR ratios in the quasar hosts span a wide range from (0.3-4.6) × 10-3, including one quasar with a ratio that is consistent with local star-forming galaxies. We find that the strength of the L[C ii] and 158 μm continuum emission in z ≳ 6 quasar hosts correlates with the quasar's bolometric luminosity. In one quasar, the [C ii] line is significantly redshifted by ˜1700 km s-1 with respect to the Mg ii broad emission line. Comparing to values in the literature, we find that, on average, the Mg ii is blueshifted by 480 km s-1 (with a standard deviation of 630 km s-1) with respect to the host galaxy redshift, i.e., one of our quasars is an extreme outlier. Through modeling we can rule out a flat rotation curve for our brightest [C ii] emitter. Finally, we find that the ratio of black hole mass to host galaxy (dynamical) mass is higher by a factor of 3-4 (with significant scatter) than local relations.

  13. Exploring molecular complexity with ALMA (EMoCA): Alkanethiols and alkanols in Sagittarius B2(N2)

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Belloche, Arnaud; Xu, Li-Hong; Lees, Ronald M.; Garrod, Robin T.; Walters, Adam; van Wijngaarden, Jennifer; Lewen, Frank; Schlemmer, Stephan; Menten, Karl M.

    2016-03-01

    Context. Over the past five decades, radio astronomy has shown that molecular complexity is a natural outcome of interstellar chemistry, in particular in star forming regions. However, the pathways that lead to the formation of complex molecules are not completely understood and the depth of chemical complexity has not been entirely revealed. In addition, the sulfur chemistry in the dense interstellar medium is not well understood. Aims: We want to know the relative abundances of alkanethiols and alkanols in the Galactic center source Sagittarius B2(N2), the northern hot molecular core in Sgr B2(N), whose relatively small line widths are favorable for studying the molecular complexity in space. Methods: We investigated spectroscopic parameter sets that were able to reproduce published laboratory rotational spectra of ethanethiol and studied effects that modify intensities in the predicted rotational spectrum of ethanol. We used the Atacama Large Millimeter Array (ALMA) in its Cycles 0 and 1 for a spectral line survey of Sagittarius B2(N) between 84 and 114.4 GHz. These data were analyzed by assuming local thermodynamic equilibrium (LTE) for each molecule. Our observations are supplemented by astrochemical modeling; a new network is used that includes reaction pathways for alkanethiols for the first time. Results: We detected methanol and ethanol in their parent 12C species and their isotopologs with one 12C atom substituted by 13C; the latter were detected for the first time unambiguously in the case of ethanol. The 12C/13C ratio is ~25 for both molecules. In addition, we identified CH318 OH with a 16O/18O ratio of ~180 and a 13CH3OH/CH318 OH ratio of ~7.3. Upper limits were derived for the next larger alkanols normal- and iso-propanol. We observed methanethiol, CH3SH, also known as methyl mercaptan, including torsionally excited transitions for the first time. We also identified transitions of ethanethiol (or ethyl mercaptan), though not enough to claim a secure

  14. ALMA observations of the host galaxy of GRB 090423 at z = 8.23: deep limits on obscured star formation 630 million years after the big bang

    SciTech Connect

    Berger, E.; Zauderer, B. A.; Chary, R.-R.; Laskar, T.; Chornock, R.; Davies, J. E.; Tanvir, N. R.; Stanway, E. R.; Levan, A. J.; Levesque, E. M.

    2014-12-01

    We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F {sub ν}(222 GHz) ≲ 33 μJy and F {sub ν}(3.6 μm) ≲ 81 nJy. The FIR limit is about 20 times fainter than the luminosity of the local ULIRG Arp 220 and comparable to the local starburst M 82. Comparing this with model spectral energy distributions, we place a limit on the infrared (IR) luminosity of L {sub IR}(8-1000 μm) ≲ 3 × 10{sup 10} L {sub ☉}, corresponding to a limit on the obscured star formation rate of SFR{sub IR}≲5 M {sub ☉} yr{sup –1}. For comparison, the limit on the unobscured star formation rate from Hubble Space Telescope rest-frame ultraviolet (UV) observations is SFR{sub UV} ≲ 1 M {sub ☉} yr{sup –1}. We also place a limit on the host galaxy stellar mass of M {sub *} ≲ 5 × 10{sup 7} M {sub ☉} (for a stellar population age of 100 Myr and constant star formation rate). Finally, we compare our millimeter observations to those of field galaxies at z ≳ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z ≳ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.

  15. Radio Jet Feedback and Star Formation in Heavily Obscured, Hyperluminous Quasars at Redshifts ∼ 0.5–3. I. ALMA Observations

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Lacy, M.; Kimball, A. E.; Blain, A.; Whittle, M.; Wilkes, B.; Stern, D.; Condon, J.; Kim, M.; Assef, R. J.; Tsai, C.-W.; Efstathiou, A.; Jones, S.; Eisenhardt, P.; Bridge, C.; Wu, J.; Lonsdale, Colin J.; Jones, K.; Jarrett, T.; Smith, R.

    2015-11-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm (345 GHz) data for 49 high-redshift (0.47 < z < 2.85), luminous (11.7\\lt {log}({L}{{bol}}/{L}ȯ )\\lt 14.2) radio-powerful active galactic nuclei (AGNs), obtained to constrain cool dust emission from starbursts concurrent with highly obscured radiative-mode black hole (BH) accretion in massive galaxies that possess a small radio jet. The sample was selected from the Wide-field Infrared Survey Explorer with extremely steep (red) mid-infrared colors and with compact radio emission from NVSS/FIRST. Twenty-six sources are detected at 870 μm, and we find that the sample has large mid- to far-infrared luminosity ratios, consistent with a dominant and highly obscured quasar. The rest-frame 3 GHz radio powers are 24.7\\lt {log}({P}\\text{3.0 GHz}/{{{W}} {Hz}}-1)\\lt 27.3, and all sources are radio-intermediate or radio-loud. BH mass estimates are 7.7 < log(MBH/M⊙) < 10.2. The rest-frame 1–5 μm spectral energy distributions are very similar to the “Hot DOGs” (hot dust-obscured galaxies), and steeper (redder) than almost any other known extragalactic sources. ISM masses estimated for the ALMA-detected sources are 9.9 < log (MISM/M⊙) < 11.75 assuming a dust temperature of 30 K. The cool dust emission is consistent with star formation rates reaching several thousand M⊙ yr‑1, depending on the assumed dust temperature, but we cannot rule out the alternative that the AGN powers all the emission in some cases. Our best constrained source has radiative transfer solutions with approximately equal contributions from an obscured AGN and a young (10–15 Myr) compact starburst.

  16. Radio Jet Feedback and Star Formation in Heavily Obscured, Hyperluminous Quasars at Redshifts ˜ 0.5-3. I. ALMA Observations

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Lacy, M.; Kimball, A. E.; Blain, A.; Whittle, M.; Wilkes, B.; Stern, D.; Condon, J.; Kim, M.; Assef, R. J.; Tsai, C.-W.; Efstathiou, A.; Jones, S.; Eisenhardt, P.; Bridge, C.; Wu, J.; Lonsdale, Colin J.; Jones, K.; Jarrett, T.; Smith, R.

    2015-11-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm (345 GHz) data for 49 high-redshift (0.47 < z < 2.85), luminous (11.7\\lt {log}({L}{{bol}}/{L}⊙ )\\lt 14.2) radio-powerful active galactic nuclei (AGNs), obtained to constrain cool dust emission from starbursts concurrent with highly obscured radiative-mode black hole (BH) accretion in massive galaxies that possess a small radio jet. The sample was selected from the Wide-field Infrared Survey Explorer with extremely steep (red) mid-infrared colors and with compact radio emission from NVSS/FIRST. Twenty-six sources are detected at 870 μm, and we find that the sample has large mid- to far-infrared luminosity ratios, consistent with a dominant and highly obscured quasar. The rest-frame 3 GHz radio powers are 24.7\\lt {log}({P}\\text{3.0 GHz}/{{{W}} {Hz}}-1)\\lt 27.3, and all sources are radio-intermediate or radio-loud. BH mass estimates are 7.7 < log(MBH/M⊙) < 10.2. The rest-frame 1-5 μm spectral energy distributions are very similar to the “Hot DOGs” (hot dust-obscured galaxies), and steeper (redder) than almost any other known extragalactic sources. ISM masses estimated for the ALMA-detected sources are 9.9 < log (MISM/M⊙) < 11.75 assuming a dust temperature of 30 K. The cool dust emission is consistent with star formation rates reaching several thousand M⊙ yr-1, depending on the assumed dust temperature, but we cannot rule out the alternative that the AGN powers all the emission in some cases. Our best constrained source has radiative transfer solutions with approximately equal contributions from an obscured AGN and a young (10-15 Myr) compact starburst.

  17. ALMA OBSERVATIONS OF WARM DENSE GAS IN NGC 1614—BREAKING OF THE STAR FORMATION LAW IN THE CENTRAL KILOPARSEC

    SciTech Connect

    Xu, C. K.; Cao, C.; Lu, N.; Diaz-Santos, T.; Zhao, Y.-H.; Mazzarella, J. M.; Appleton, P.; Armus, L.; Murphy, E. J.; Gao, Y.; Herrero-Illana, R.; Privon, G.; Evans, A. S.; König, S.; Aalto, S.; Charmandaris, V.; Chu, J.; Haan, S.; Inami, H.; and others

    2015-01-20

    We present ALMA Cycle-0 observations of the CO (6-5) line emission and of the 435 μm dust continuum emission in the central kiloparsec of NGC 1614, a local luminous infrared galaxy at a distance of 67.8 Mpc (1{sup ′′}=329 pc). The CO emission is well resolved by the ALMA beam (0.''26 × 0.''20) into a circumnuclear ring, with an integrated flux of f {sub CO(6-5)} = 898 (± 153) Jy km s{sup –1}, which is 63(± 12)% of the total CO (6-5) flux measured by Herschel. The molecular ring, located between 100 pc

  18. High-resolution ALMA observations of SDP.81. I. The innermost mass profile of the lensing elliptical galaxy probed by 30 milli-arcsecond images

    NASA Astrophysics Data System (ADS)

    Tamura, Yoichi; Oguri, Masamune; Iono, Daisuke; Hatsukade, Bunyo; Matsuda, Yuichi; Hayashi, Masao

    2015-08-01

    We report the detailed modeling of the mass profile of a z = 0.2999 massive elliptical galaxy using 30 milli-arcsecond resolution 1 mm Atacama Large Millimeter/submillimeter Array (ALMA) images of the galaxy-galaxy lensing system SDP.81. The detailed morphology of the lensed multiple images of the z = 3.042 infrared-luminous galaxy, which is found to consist of tens of ≲ 100 pc-sized star-forming clumps embedded in a ˜ 2 kpc disk, are well reproduced by a lensing galaxy modeled by an isothermal ellipsoid with a 400 pc core. The core radius is consistent with that of the visible stellar light, and the mass-to-light ratio of {˜} 2 M_{⊙} L_{⊙}^{-1} is comparable to the locally measured value, suggesting that the inner 1 kpc region is dominated by luminous matter. The position of the predicted mass centroid is consistent to within ≃ 30 mas with a non-thermal source detected with ALMA, which likely traces an active galactic nucleus of the foreground elliptical galaxy. While the black hole mass and the core radius of the elliptical galaxy are degenerate, a point source mass of > 3 × 108 M⊙ mimicking a supermassive black hole is required to explain the non-detection of a central image of the background galaxy. The required mass is consistent with the prediction from the well-known correlation between black hole mass and host velocity dispersion. Our analysis demonstrates the power of high resolution imaging of strong gravitational lensing for studying the innermost mass profile and the central supermassive black hole of distant elliptical galaxies.

  19. ALMA Observations of Warm Dense Gas in NGC 1614—Breaking of the Star Formation Law in the Central Kiloparsec

    NASA Astrophysics Data System (ADS)

    Xu, C. K.; Cao, C.; Lu, N.; Gao, Y.; Diaz-Santos, T.; Herrero-Illana, R.; Meijerink, R.; Privon, G.; Zhao, Y.-H.; Evans, A. S.; König, S.; Mazzarella, J. M.; Aalto, S.; Appleton, P.; Armus, L.; Charmandaris, V.; Chu, J.; Haan, S.; Inami, H.; Murphy, E. J.; Sanders, D. B.; Schulz, B.; van der Werf, P.

    2015-01-01

    We present ALMA Cycle-0 observations of the CO (6-5) line emission and of the 435 μm dust continuum emission in the central kiloparsec of NGC 1614, a local luminous infrared galaxy at a distance of 67.8 Mpc (1{\\prime \\prime }= 329 pc). The CO emission is well resolved by the ALMA beam (0.''26 × 0.''20) into a circumnuclear ring, with an integrated flux of f CO(6-5) = 898 (± 153) Jy km s-1, which is 63(± 12)% of the total CO (6-5) flux measured by Herschel. The molecular ring, located between 100 pc < r < 350 pc from the nucleus, looks clumpy and includes seven unresolved (or marginally resolved) knots with median velocity dispersion of ~40 km s-1. These knots are associated with strong star formation regions with ΣSFR ~ 100 M ⊙ yr-1 kpc-2 and Σ Gas˜ 104 {M}_⊙ pc-2. The non-detections of the nucleus in both the CO (6-5) line emission and the 435 μm continuum rule out, with relatively high confidence, a Compton-thick active galactic nucleus in NGC 1614. Comparisons with radio continuum emission show a strong deviation from an expected local correlation between ΣGas and ΣSFR, indicating a breakdown of the Kennicutt-Schmidt law on the linear scale of ~100 pc. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  20. ALMA Observations of a High-density Core in Taurus: Dynamical Gas Interaction at the Possible Site of a Multiple Star Formation

    NASA Astrophysics Data System (ADS)

    Tokuda, Kazuki; Onishi, Toshikazu; Saigo, Kazuya; Kawamura, Akiko; Fukui, Yasuo; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro; Machida, Masahiro N.; Tomida, Kengo; Tachihara, Kengo

    2015-08-01

    It is crucially important to observe dense cores in order to investigate the initial condition of star formation since protostars are formed via dynamical collapse of dense cores, inhering the physical properties from their natal dense cores. Here we present the results of ALMA Cycle 0 and Cycle 1 observations of dust continuum emission and molecular rotational lines toward a dense core, MC27 (aka L1521F), which is considered to be very close to the first protostellar core phase.The Cycle 0 observations revealed complex structures at the center. We found a few starless high-density cores, one of which (MMS2) has a very high density of ~107 cm-3, around the very low-luminousity protostar detected by Spitzer. A very compact bipolar outflow with a dynamical timescale of a few hundred years was found toward the protostar. The HCO+ (3-2) observation shows several cores associated with an arc-like structure whose length is ~2000 AU, possibly due to the dynamical gas interaction. These complex structures suggest that the initial condition of star formation is highly dynamical in nature, which is considered to be a key factor in understanding fundamental issues of star formation such as origins of the stellar multiplicity and the initial mass function. These initial Cycle 0 results were published by Tokuda et al. (2014). Matsumoto et al. (2015) investigated the arc-like structures by performing numerical simulations.Detailed column density distribution with the size from ~100 to ~10000 AU scale are revealed by combining the 12m array data with the 7m array data of the ALMA Compact Array as well as with the single dish MAMBO data. Our preliminary analysis shows that the averaged radial column density distribution of the inner part (r < 2000 AU) is N(H2)~r-0.4, clearly flatter than that of the outer part, ~r-1.3. We detected the above-mentioned complex structure inside the inner flatter region, which may reflect the dynamical status of the dense core. The Cycle 1

  1. The jet and the disk of the HH 212 low-mass protostar imaged by ALMA: SO and SO2 emission

    NASA Astrophysics Data System (ADS)

    Podio, L.; Codella, C.; Gueth, F.; Cabrit, S.; Bachiller, R.; Gusdorf, A.; Lee, C.-F.; Lefloch, B.; Leurini, S.; Nisini, B.; Tafalla, M.

    2015-09-01

    Context. The investigation of the disk formation and jet launching mechanism in protostars is crucial to understanding the earliest stages of star and planet formation. Aims: We aim to constrain the physical and dynamical properties of the molecular jet and disk of the HH 212 protostellar system at unprecedented angular scales, exploiting the capabilities of the Atacama Large Millimeter Array (ALMA). Methods: The ALMA observations of HH 212 in emission lines from sulfur-bearing molecules, SO 98-87, SO 1011-1010, SO282,6-71,7, are compared with simultaneous CO 3-2, SiO 8-7 data. The molecules column density and abundance are estimated using simple radiative transfer models. Results: SO 98-87 and SO282,6-71,7 show broad velocity profiles. At systemic velocity, they probe the circumstellar gas and the cavity walls. Going from low to high blue- and red-shifted velocities the emission traces the wide-angle outflow and the fast (~100-200 km s-1), collimated (~90 AU) molecular jet revealing the inner knots with timescales ≤50 yr. The jet transports a mass-loss rate ≥ 0.2-2 × 10-6 M⊙ yr-1, implying high ejection efficiency (≥ 0.03-0.3). The SO and SO2 abundances in the jet are ~ 10-7-10-6. SO 1011-1010 emission is compact and shows small-scale velocity gradients, indicating that it originates partly from the rotating disk previously seen in HCO+ and C17O, and partly from the base of the jet. The disk mass is ≥ 0.002-0.013 M⊙ and the SO abundance in the disk is ~ 10-8-10-7. Conclusions: SO and SO2 are effective tracers of the molecular jet in the inner few hundreds AU from the protostar. Their abundances indicate that 1-40% of sulfur is in SO and SO2 due to shocks in the jet/outflow and/or to ambipolar diffusion at the wind base. The SO abundance in the disk is 3-4 orders of magnitude larger than in evolved protoplanetary disks. This may be due to an SO enhancement in the accretion shock at the envelope-disk interface or in spiral shocks if the disk is partly

  2. ALMA observation of 158 μm [C II] line and dust continuum of a z = 7 normally star-forming galaxy in the epoch of reionization

    SciTech Connect

    Ota, Kazuaki; Walter, Fabian; Da Cunha, Elisabete; González-López, Jorge; Decarli, Roberto; Hodge, Jacqueline A.; Ohta, Kouji; Hatsukade, Bunyo; Nagai, Hiroshi; Iye, Masanori; Kashikawa, Nobunari; Carilli, Chris L.; Egami, Eiichi; Jiang, Linhua; Riechers, Dominik A.; Bertoldi, Frank; Cox, Pierre; Neri, Roberto; Weiss, Axel

    2014-09-01

    We present ALMA observations of the [C II] line and far-infrared (FIR) continuum of a normally star-forming galaxy in the reionization epoch, the z = 6.96 Lyα emitter (LAE) IOK-1. Probing to sensitivities of σ{sub line} = 240 μJy beam{sup –1} (40 km s{sup –1} channel) and σ{sub cont} = 21 μJy beam{sup –1}, we found the galaxy undetected in both [C II] and continuum. Comparison of ultraviolet (UV)-FIR spectral energy distribution (SED) of IOK-1, including our ALMA limit, with those of several types of local galaxies (including the effects of the cosmic microwave background, CMB, on the FIR continuum) suggests that IOK-1 is similar to local dwarf/irregular galaxies in SED shape rather than highly dusty/obscured galaxies. Moreover, our 3σ FIR continuum limit, corrected for CMB effects, implies intrinsic dust mass M {sub dust} < 6.4 × 10{sup 7} M {sub ☉}, FIR luminosity L {sub FIR} < 3.7 × 10{sup 10} L {sub ☉} (42.5-122.5 μm), total IR luminosity L {sub IR} < 5.7 × 10{sup 10} L {sub ☉} (8-1000 μm), and dust-obscured star formation rate (SFR) < 10 M {sub ☉} yr{sup –1}, if we assume that IOK-1 has a dust temperature and emissivity index typical of local dwarf galaxies. This SFR is 2.4 times lower than one estimated from the UV continuum, suggesting that <29% of the star formation is obscured by dust. Meanwhile, our 3σ [C II] flux limit translates into [C II] luminosity, L {sub [C} {sub II]} < 3.4 × 10{sup 7} L {sub ☉}. Locations of IOK-1 and previously observed LAEs on the L {sub [C} {sub II]} versus SFR and L {sub [C} {sub II]}/L {sub FIR} versus L {sub FIR} diagrams imply that LAEs in the reionization epoch have significantly lower gas and dust enrichment than AGN-powered systems and starbursts at similar/lower redshifts, as well as local star-forming galaxies.

  3. Exploring Molecular Complexity with Alma (EMoCA): High-Angular Observations of SAGITTARIUS~B2(N) at 3~mm

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Belloche, Arnaud; Menten, Karl M.; Garrod, Robin T.

    2015-06-01

    Sagittarius (Sgr for short) B2 is the most massive and luminous star-forming region in our Galaxy, located close to the Galactic Center. We have carried out a molecular line survey with the IRAM~30~m telescope toward its two major sites of star-formation, Sgr~B2(M) and (N). Toward the latter source, which is particularly rich in Complex Organic Molecules (COMs), we detected three molecules for the first time in space, aminoacetonitrile, ethyl formate, and n}-propyl cyanide. We have recently obtained ALMA data of Sgr~B2(N) between ˜84 and ˜111~GHz within Cycle~0 and one additional setup up to 114.4~GHz within Cycle~1. At angular resolutions of 1.8'' and 1.4'', respectively, the two main hot cores, the prolific Sgr~B2(N-LMH) (or Sgr~B2(N)-SMA1) and the likely less evolved Sgr~B2(N)-SMA2 are well separated, and line confusion is reduced greatly for the latter. As a consequence, we have been able to identify the first branched alkyl molecule in space, iso-propyl cyanide, toward Sgr~B2(N)-SMA2. Our ongoing analyses include investigations of cyanides and isocyanides, alkanols and thioalkanols, and deuterated molecules among others. We will present some of our results. A. Belloche et al., A&A 559 (2013) Art. No. A47. A. Belloche et al., Science 345 (2014) 1584.

  4. ALMA OBSERVATIONS OF A HIGH-DENSITY CORE IN TAURUS: DYNAMICAL GAS INTERACTION AT THE POSSIBLE SITE OF A MULTIPLE STAR FORMATION

    SciTech Connect

    Tokuda, Kazuki; Onishi, Toshikazu; Saigo, Kazuya; Kawamura, Akiko; Fukui, Yasuo; Inutsuka, Shu-ichiro; Tachihara, Kengo; Matsumoto, Tomoaki; Machida, Masahiro N.; Tomida, Kengo

    2014-07-01

    Starless dense cores eventually collapse dynamically, forming protostars inside them, and the physical properties of the cores determine the nature of the forming protostars. We report ALMA observations of dust continuum emission and molecular rotational lines toward MC27 or L1521F, which is considered to be very close to the first protostellar core phase. We found a few starless high-density cores, one of which has a very high density of ∼10{sup 7} cm{sup –3}, within a region of several hundred AU around a very low-luminosity protostar detected by Spitzer. A very compact bipolar outflow with a dynamical timescale of a few hundred years was found toward the protostar. The molecular line observation shows several cores with an arc-like structure, possibly due to the dynamical gas interaction. These complex structures revealed in the present observations suggest that the initial condition of star formation is highly dynamical in nature, which is considered to be a key factor in understanding fundamental issues of star formation such as the formation of multiple stars and the origin of the initial mass function of stars.

  5. Submillimeter ALMA Observations of the Dense Gas in the Type-1 Active Nucleus of NGC 1097 and NGC 7469 for a Robust Energy Diagnostic

    NASA Astrophysics Data System (ADS)

    Izumi, T.

    2015-12-01

    We present the 100 pc scale views of the dense molecular gas in the central kpc regions of nearby galaxies hosting a type-1 active galactic nucleus (AGN), NGC 1097 and NGC 7469, traced by HCN(4-3), HCO+(4-3), CS(7-6), and CO(3-2) lines, based on our ALMA cycle 0 and 1 observations. We supplemented our observations with data from literature and found enhanced ratios of HCN(4-3)/HCO+(4-3) and HCN(4-3)/CS(7-6) in AGNs, compared to starburst galaxies, which can be used as a new diagnostic method of galactic energy sources. Although several mechanisms can lead to different line ratios, our non-LTE analysis using multi-J interferometric data of NGC 1097 revealed a high [HCN]/[HCO+] abundance ratio in the nucleus. Interestingly, the HCN(4-3)/HCO+(4-3) line ratio in NGC 7469 is just as half as that in NGC 1097, although AGN luminosity of NGC 7469 is ˜ 1000 times higher than that of NGC 1097. We interpret these results qualitatively in the framework of high temperature chemistry and a receding XDR model.

  6. Interpreting major industrial landscapes: Social follow-up on meanings, the case of two aluminium smelters, Alcan (Alma, Canada) and Pechiney (Dunkirk, France)

    SciTech Connect

    Fortin, Marie-Jose . E-mail: marie-jose_fortin@uqac.ca; Gagnon, Christiane . E-mail: christiane_gagnon@uqac.ca

    2006-11-15

    Landscape is becoming an object of growing social concern and, as such, an object of mediation between major industrial producers and local communities. The question of the capacity of environmental assessment to address this issue is thus raised. Until now, landscape studies have focused on visual aspects, although subjective dimensions such as perceptions and meanings have been recognised. The research in this article concerns the subjective dimensions, and is presented with a view to further the understanding of the process of the social interpretation of landscape as it relates to heavy industrial sites. Within a socioconstructivist perspective, two case studies (a longitudinal follow-up and an ex-post) of two aluminum smelters, one in Alma (Quebec, Canada) and the other in Dunkirk (France) were conducted. The results show that nearby residents' interpretations of landscape varied according to three sets of factors related to 1) the dynamics of regional development and the historical place of industry in the community, 2) the relationship between residents and the industry and local governance capacities, and 3) the social impacts experienced. To conclude, three ways of using qualitative methodologies for social and environmental follow-up in a socioconstructivist approach to landscape are proposed.

  7. Report on the Workshop Interstellar Medium and Star Formation with ALMA: Looking to the Future. A Workshop to Honour Tom Wilson held at Consejo Superior de Investigaciones Científicas, Madrid, Spain, 16-17 June 2008

    NASA Astrophysics Data System (ADS)

    Martin-Pintado, Jesus

    2008-12-01

    In June 2008, a group of friends and colleagues of Tom Wilson gathered in Madrid to honour his scientific career in a workshop on ALMA organised by three of his PhD students. The workshop was devoted to reviewing recent progress in our understanding of the main topics of research that Tom has pursued during his career: the physics and chemistry of the interstellar medium and how stars form. Specific topics included Hii regions, molecular clouds, clumps, cores, outflows and masers in Galactic and extragalactic environments, mainly from an observational perspective.

  8. Infalling–Rotating Motion and Associated Chemical Change in the Envelope of IRAS 16293–2422 Source A Studied with ALMA

    NASA Astrophysics Data System (ADS)

    Oya, Yoko; Sakai, Nami; López-Sepulcre, Ana; Watanabe, Yoshimasa; Ceccarelli, Cecilia; Lefloch, Bertrand; Favre, Cécile; Yamamoto, Satoshi

    2016-06-01

    We have analyzed rotational spectral line emission of OCS, CH3OH, HCOOCH3, and H2CS observed toward the low-mass Class 0 protostellar source IRAS 16293–2422 Source A at a sub-arcsecond resolution (∼0.″6 × 0.″5) with ALMA. Significant chemical differentiation is found on a scale of 50 au. The OCS line is found to trace well the infalling–rotating envelope in this source. On the other hand, the distributions of CH3OH and HCOOCH3 are found to be concentrated around the inner part of the infalling–rotating envelope. With a simple ballistic model of the infalling–rotating envelope, the radius of the centrifugal barrier (a half of the centrifugal radius) and the protostellar mass are evaluated from the OCS data to be from 40 to 60 au and from 0.5 to 1.0 M ⊙, respectively, assuming the inclination angle of the envelope/disk structure to be 60° (90° for the edge-on configuration). Although the protostellar mass is correlated with the inclination angle, the radius of the centrifugal barrier is not. This is the first indication of the centrifugal barrier of the infalling–rotating envelope in a hot corino source. CH3OH and HCOOCH3 may be liberated from ice mantles by weak accretion shocks around the centrifugal barrier and/or by protostellar heating. The H2CS emission seems to come from the disk component inside the centrifugal barrier in addition to the envelope component. The centrifugal barrier plays a central role not only in the formation of a rotationally supported disk but also in the chemical evolution from the envelope to the protoplanetary disk.

  9. An ALMA view of the interstellar medium of the z = 4.77 lensed starburst SPT-S J213242-5802.9

    NASA Astrophysics Data System (ADS)

    Béthermin, M.; De Breuck, C.; Gullberg, B.; Aravena, M.; Bothwell, M. S.; Chapman, S. C.; Gonzalez, A. H.; Greve, T. R.; Litke, K.; Ma, J.; Malkan, M.; Marrone, D. P.; Murphy, E. J.; Spilker, J. S.; Stark, A. A.; Strandet, M.; Vieira, J. D.; Weiß, A.; Welikala, N.

    2016-02-01

    We present ALMA detections of the [NII] 205 μm and CO(12-11) emission lines, and the tentative detection of [CI] - for the strongly lensed (μ = 5.7 ± 0.5) dusty, star-forming galaxy SPT-S J213242-5802.9 (hereafter SPT2132-58) at z = 4.77. The [NII] and CO(12-11) lines are detected at 11.5 and 8.5σ levels, respectively, by our band 6 observations. The [CI] line is detected at 3.2σ after a reanalysis of existing band 3 data. The [CI] luminosity implies a gas mass of (3.8 ± 1.2) × 1010M⊙, and, consequently, a very short depletion timescale of 34 ± 13 Myr and a CO luminosity to gas mass conversion factor αCO of 1.0 ± 0.3 M⊙ (K km s-1 pc2)-1. SPT2132-58 is an extreme starburst with an intrinsic star formation rate of 1100 ± 200 M⊙/yr. We find a [CII]/[NII] ratio of 26 ± 6, which is the highest ratio reported at z > 4. This suggests that SPT2132-58 hosts an evolved interstellar medium (0.5 Z⊙< Z < 1.5 Z⊙), which may be dominated by photodissociation regions. The CO(2-1) and CO(5-4) transitions have lower CO to far-infrared ratios than local and high-redshift samples, while CO(12-11) is similar to these samples, suggesting the presence of an additional very excited component or an active galactic nucleus.

  10. ALMA 0.1–0.2 arcsec Resolution Imaging of the NGC 1068 Nucleus: Compact Dense Molecular Gas Emission at the Putative AGN Location

    NASA Astrophysics Data System (ADS)

    俊, Masatoshi Imanishi (今 西 昌; 郎, Kouichiro Nakanishi (中 西 康 一; 磨, Takuma Izumi (泉 拓

    2016-05-01

    We present the results of our ALMA Cycle 2 high angular resolution (0.″1–0.″2) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J = 3–2 and HCO+ J = 3–2 emission lines. For the first time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ˜1.1 mm (˜266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.″5–2.″0 on the eastern and western sides of the AGN. The estimated intrinsic molecular emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ˜10 pc and ˜several × 105 M ⊙, respectively. HCN-to-HCO+ J = 3–2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially-resolved component at ˜2.″0 on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited (v 2 = 1f) J = 3–2 emission lines were detected for HCN and HCO+ across the field of view.

  11. The Dragonfly Galaxy. II. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2

    NASA Astrophysics Data System (ADS)

    Emonts, B. H. C.; De Breuck, C.; Lehnert, M. D.; Vernet, J.; Gullberg, B.; Villar-Martín, M.; Nesvadba, N.; Drouart, G.; Ivison, R.; Seymour, N.; Wylezalek, D.; Barthel, P.

    2015-12-01

    The Dragonfly Galaxy (MRC 0152-209), at redshift z ~ 2, is one of the most vigorously star-forming radio galaxies in the Universe. What triggered its activity? We present ALMA Cycle 2 observations of cold molecular CO(6-5) gas and dust, which reveal that this is likely a gas-rich triple merger. It consists of a close double nucleus (separation ~4 kpc) and a weak CO-emitter at ~10 kpc distance, all of which have counterparts in HST/NICMOS imagery. The hyper-luminous starburst and powerful radio-AGN were triggered at this precoalescent stage of the merger. The CO(6-5) traces dense molecular gas in the central region, and complements existing CO(1-0) data, which reveal more widespread tidal debris of cold gas. We also find ~1010 M⊙ of molecular gas with enhanced excitation at the highest velocities. At least 20-50% of this high-excitation, high-velocity gas shows kinematics that suggests it is being displaced and redistributed within the merger, although with line-of-sight velocities of |v| < 500 km s-1, this gas will probably not escape the system. The processes that drive the redistribution of cold gas are likely related to either the gravitational interaction between two kpc-scale discs, or starburst/AGN-driven outflows. We estimate that the rate at which the molecular gas is redistributed is at least [Ṁentity!#x2009!]~ 1200 ± 500 M⊙ yr-1, and could perhaps even approach the star formation rate of ~3000 ± 800 M⊙ yr-1. The fact that the gas depletion and gas redistribution timescales are similar implies that dynamical processes can be important in the evolution of massive high-z galaxies.

  12. Morphology and kinematics of the gas envelope of protostar L1527 as obtained from ALMA observations of the C18O(2-1) line emission

    NASA Astrophysics Data System (ADS)

    Tuan-Anh, P.; Nhung, P. T.; Hoai, D. T.; Diep, P. N.; Phuong, N. T.; Thao, N. T.; Darriulat, P.

    2016-09-01

    Using ALMA observations of the C18O(2-1) line emission of the gas envelope of protostar L1527, we have reconstructed its morphology and kinematics under the assumption of axisymmetry about the west-east axis. The main original contribution to our understanding of the formation process of L1527 is the presentation of a simple 3D parameterisation based solely on regions that are not dominated by absorption. In the explored range (˜0.7 to 5 arcsec from the star) the model reproduces observations better than earlier attempts. The main results include: a measurement of the rotation velocity that confirms its evolution to Keplerian toward short distances; a measurement of the mean in-fall velocity, 0.43±0.10 km s-1, lower than free fall velocity, with no evidence for the significant r-dependence suggested by an earlier analysis; a measurement of the central mass, 0.23±0.06 M⊙ within a distance of 1.5 arcsec from the star, in agreement with earlier estimates obtained from a different range of distances; evidence for a strong disc plane depression of the in-falling flux resulting in an X shaped flow possibly caused by the freeze-out of CO molecules on dust grains; a measurement of the accretion rate, 3.5±1.0 10-7M⊙ yr-1at a distance of 1 arcsec (140 au) from the star; evidence for a 10° tilt of the symmetry plane of the envelope about the line of sight, cancelling below ˜3 arcsec from the star, but matching infrared observations and being also apparent on the sky map of the mean Doppler velocity.

  13. Humoral responses of broiler chickens challenged with NDV following supplemental treatment with extracts of Aloe vera, Alma millsoni, Ganoderma lucidum and Archachatina marginata

    PubMed Central

    Eghafona, Nosahkare'Odeh

    2015-01-01

    Aim of the study The significance of nutritional supplements for immunity has been documented. Locally sourced extracts used in alternative medicine were studied to determine their potential effects on antibody production and humoral responses in viral challenged birds. Method Three hundred and eighty birds were distributed into 19 groups of 20 birds each. Following acclimatization for 16 days, they were fed with standard broilers feed and water ad libitum. Group A was supplemented with Aloe vera (AV) extract, group B was given Alma millsoni (AM) extract, group C was given Archachatina marginata (AMS) extract and group D was given Ganoderma lucidum (GL) extract, and group E was the control group. Extract concentrations of 50 mg, 100 mg and 150 mg were given to three subsets of each treatment group for 30 days. Birds were then challenged with intramuscular administration of 0.2 ml of 50% Embryo Lethal Dose of saline suspension of the challenge strain of Newcastle Disease Virus (NDV) on the 30th day, and were examined for clinical signs and symptoms. Serum from venous blood was used for antibody and immunological assay. Results Aloe vera at 50 µg and A. millsoni extracts supplementations yielded a significant antibody titre (p < 0.001). The difference within the AMS, GL and AV groups and the control group was not statistically significant (p < 0.05). Conclusion Unlike the extract of Ganoderma and A. marginata, pretreatment with A. millsoni extract and a lower dosage of Aloe vera enhanced the ability to mount humoral responses against viral infection in broiler chickens. PMID:26648773

  14. ALMA results of the pseudodisk, rotating disk, and jet in the continuum and HCO{sup +} in the protostellar system HH 212

    SciTech Connect

    Lee, Chin-Fei; Hirano, Naomi; Shang, Hsien; Ho, Paul T. P.; Krasnopolsky, Ruben; Zhang, Qizhou

    2014-05-10

    HH 212 is a nearby (400 pc) Class 0 protostellar system showing several components that can be compared with theoretical models of core collapse. We have mapped it in the 350 GHz continuum and HCO{sup +} J = 4-3 emission with ALMA at up to ∼0.''4 resolution. A flattened envelope and a compact disk are seen in the continuum around the central source, as seen before. The HCO{sup +} kinematics shows that the flattened envelope is infalling with small rotation (i.e., spiraling) into the central source, and thus can be identified as a pseudodisk in the models of magnetized core collapse. Also, the HCO{sup +} kinematics shows that the disk is rotating and can be rotationally supported. In addition, to account for the missing HCO{sup +} emission at low-redshifted velocity, an extended infalling envelope is required, with its material flowing roughly parallel to the jet axis toward the pseudodisk. This is expected if it is magnetized with an hourglass B-field morphology. We have modeled the continuum and HCO{sup +} emission of the flattened envelope and disk simultaneously. We find that a jump in density is required across the interface between the pseudodisk and the disk. A jet is seen in HCO{sup +} extending out to ∼500 AU away from the central source, with the peaks upstream of those seen before in SiO. The broad velocity range and high HCO{sup +} abundance indicate that the HCO{sup +} emission traces internal shocks in the jet.

  15. An alma survey of sub-millimeter galaxies in the extended Chandra deep field south: Sub-millimeter properties of color-selected galaxies

    SciTech Connect

    Decarli, R.; Walter, F.; Hodge, J. A.; Rix, H.-W.; Schinnerer, E.; Smail, I.; Swinbank, A. M.; Karim, A.; Simpson, J. M.; Chapman, S.; Coppin, K. E. K.; Cox, P.; Dannerbauer, H.; Greve, T. R.; Ivison, R.; Knudsen, K. K.; Lindroos, L.; Van der Werf, P.; Weiß, A.

    2014-01-10

    We study the sub-millimeter properties of color-selected galaxies via a stacking analysis applied for the first time to interferometric data at sub-millimeter wavelengths. We base our study on 344 GHz ALMA continuum observations of ∼20''-wide fields centered on 86 sub-millimeter sources detected in the LABOCA Extended Chandra Deep Field South (ECDFS) Sub-millimeter Survey. We select various classes of galaxies (K-selected, star-forming sBzK galaxies, extremely red objects, and distant red galaxies) according to their optical/near-infrared fluxes. We find clear, >10σ detections in the stacked images of all these galaxy classes. We include in our stacking analysis Herschel/SPIRE data to constrain the dust spectral energy distribution of these galaxies. We find that their dust emission is well described by a modified blackbody with T {sub dust} ≈ 30 K and β = 1.6 and infrared luminosities of (5-11) × 10{sup 11} L {sub ☉} or implied star formation rates of 75-140 M {sub ☉} yr{sup –1}. We compare our results with those of previous studies based on single-dish observations at 870 μm and find that our flux densities are a factor 2-3 higher than previous estimates. The discrepancy is observed also after removing sources individually detected in ALESS maps. We report a similar discrepancy by repeating our analysis on 1.4 GHz observations of the whole ECDFS. Hence, we find tentative evidence that galaxies that are associated in projected and redshift space with sub-mm bright sources are brighter than the average population. Finally, we put our findings in the context of the cosmic star formation rate density as a function of redshift.

  16. ISM Masses and the Star formation Law at Z = 1 to 6: ALMA Observations of Dust Continuum in 145 Galaxies in the COSMOS Survey Field

    NASA Astrophysics Data System (ADS)

    Scoville, N.; Sheth, K.; Aussel, H.; Vanden Bout, P.; Capak, P.; Bongiorno, A.; Casey, C. M.; Murchikova, L.; Koda, J.; Álvarez-Márquez, J.; Lee, N.; Laigle, C.; McCracken, H. J.; Ilbert, O.; Pope, A.; Sanders, D.; Chu, J.; Toft, S.; Ivison, R. J.; Manohar, S.

    2016-04-01

    ALMA Cycle 2 observations of long-wavelength dust emission in 145 star-forming galaxies are used to probe the evolution of the star-forming interstellar medium (ISM). We also develop a physical basis and empirical calibration (with 72 low-z and z ∼ 2 galaxies) for using the dust continuum as a quantitative probe of ISM masses. The galaxies with the highest star formation rates (SFRs) at < z> = 2.2 and 4.4 have gas masses up to 100 times that of the Milky Way and gas mass fractions reaching 50%–80%, i.e., gas masses 1-4× their stellar masses. We find a single high-z star formation law: {SFR}=35 {M}{mol}0.89× {(1+z)}z=20.95× {({sSFR})}{MS}0.23 {M}ȯ yr‑1—an approximately linear dependence on the ISM mass and an increased star formation efficiency per unit gas mass at higher redshift. Galaxies above the main sequence (MS) have larger gas masses but are converting their ISM into stars on a timescale only slightly shorter than those on the MS; thus, these “starbursts” are largely the result of having greatly increased gas masses rather than an increased efficiency of converting gas to stars. At z > 1, the entire population of star-forming galaxies has ∼2–5 times shorter gas depletion times than low-z galaxies. These shorter depletion times indicate a different mode of star formation in the early universe—most likely dynamically driven by compressive, high-dispersion gas motions—a natural consequence of the high gas accretion rates.

  17. ALMA 0.1-0.2 arcsec Resolution Imaging of the NGC 1068 Nucleus: Compact Dense Molecular Gas Emission at the Putative AGN Location

    NASA Astrophysics Data System (ADS)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma

    2016-05-01

    We present the results of our ALMA Cycle 2 high angular resolution (0.″1-0.″2) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J = 3-2 and HCO+ J = 3-2 emission lines. For the first time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ˜1.1 mm (˜266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.″5-2.″0 on the eastern and western sides of the AGN. The estimated intrinsic molecular emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ˜10 pc and ˜several × 105 M ⊙, respectively. HCN-to-HCO+ J = 3-2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially-resolved component at ˜2.″0 on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited (v 2 = 1f) J = 3-2 emission lines were detected for HCN and HCO+ across the field of view.

  18. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    SciTech Connect

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P.; Brandt, W. N.; Bertoldi, F.; Karim, A.; De Breuck, C.; Chapman, S. C.; Coppin, K. E. K.; Da Cunha, E.; Hodge, J. A.; Schinnerer, E.; Dannerbauer, H.; Greve, T. R.; Ivison, R. J.; Knudsen, K. K.; Poggianti, B. M.; and others

    2014-06-20

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z {sub phot} = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z {sub phot} = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M {sub *} = (8 ± 1) × 10{sup 10} M {sub ☉}, although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M{sub H} distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  19. ISM Masses and the Star formation Law at Z = 1 to 6: ALMA Observations of Dust Continuum in 145 Galaxies in the COSMOS Survey Field

    NASA Astrophysics Data System (ADS)

    Scoville, N.; Sheth, K.; Aussel, H.; Vanden Bout, P.; Capak, P.; Bongiorno, A.; Casey, C. M.; Murchikova, L.; Koda, J.; Álvarez-Márquez, J.; Lee, N.; Laigle, C.; McCracken, H. J.; Ilbert, O.; Pope, A.; Sanders, D.; Chu, J.; Toft, S.; Ivison, R. J.; Manohar, S.

    2016-04-01

    ALMA Cycle 2 observations of long-wavelength dust emission in 145 star-forming galaxies are used to probe the evolution of the star-forming interstellar medium (ISM). We also develop a physical basis and empirical calibration (with 72 low-z and z ˜ 2 galaxies) for using the dust continuum as a quantitative probe of ISM masses. The galaxies with the highest star formation rates (SFRs) at < z> = 2.2 and 4.4 have gas masses up to 100 times that of the Milky Way and gas mass fractions reaching 50%-80%, i.e., gas masses 1-4× their stellar masses. We find a single high-z star formation law: {SFR}=35 {M}{mol}0.89× {(1+z)}z=20.95× {({sSFR})}{MS}0.23 {M}⊙ yr-1—an approximately linear dependence on the ISM mass and an increased star formation efficiency per unit gas mass at higher redshift. Galaxies above the main sequence (MS) have larger gas masses but are converting their ISM into stars on a timescale only slightly shorter than those on the MS; thus, these “starbursts” are largely the result of having greatly increased gas masses rather than an increased efficiency of converting gas to stars. At z > 1, the entire population of star-forming galaxies has ˜2-5 times shorter gas depletion times than low-z galaxies. These shorter depletion times indicate a different mode of star formation in the early universe—most likely dynamically driven by compressive, high-dispersion gas motions—a natural consequence of the high gas accretion rates.

  20. Advances In Cryogenic Monolithic Millimeter-wave Integrated Circuit (MMIC) Low Noise Amplifiers For CO Intensity Mapping and ALMA Band 2

    NASA Astrophysics Data System (ADS)

    Samoska, Lorene; Cleary, Kieran; Church, Sarah E.; Cuadrado-Calle, David; Fung, Andy; gaier, todd; gawande, rohit; Kangaslahti, Pekka; Lai, Richard; Lawrence, Charles R.; Readhead, Anthony C. S.; Sarkozy, Stephen; Seiffert, Michael D.; Sieth, Matthew

    2016-01-01

    We will present results of the latest InP HEMT MMIC low noise amplifiers in the 30-300 GHz range, with emphasis on LNAs and mixers developed for CO intensity mapping in the 40-80 GHz range, as well as MMIC LNAs suitable for ALMA Band 2 (67-90 GHz). The LNAs have been developed together with NGC in a 35 nm InP HEMT MMIC process. Recent results and a summary of best InP low noise amplifier data will be presented. This work describes technologies related to the detection and study of highly redshifted spectral lines from the CO molecule, a key tracer for molecular hydrogen. One of the most promising techniques for observing the Cosmic Dawn is intensity mapping of spectral-spatial fluctuations of line emission from neutral hydrogen (H I), CO, and [C II]. The essential idea is that instead of trying to detect line emission from individual galaxies, one measures the total line emission from a number of galaxies within the volume defined by a spectral-spatial pixel. Fluctuations from pixel to pixel trace large scale structure, and the evolution with redshift is revealed as a function of receiver frequency. A special feature of CO is the existence of multiple lines with a well-defined frequency relationship from the rotational ladder, which allows the possibility of cleanly separating the signal from other lines or foreground structure at other redshifts. Making use of this feature (not available to either HI or [C II] measurements) requires observing multiple frequencies, including the range 40-80 GHz, much of which is inaccessible from the ground or balloons.Specifically, the J=1->0 transition frequency is 115 GHz; J=2->1 is 230 GHz; J=3->2 is 345 GHz, etc. At redshift 7, these lines would appear at 14.4, 28.8, and 43.2 GHz, accessible from the ground. Over a wider range of redshifts, from 3 to 7, these lines would appear at frequencies from 14 to 86 GHz. A ground-based CO Intensity mapping experiment, COMAP, will utilize InP-based HEMT MMIC amplifier front ends in the

  1. Exploring the molecular chemistry and excitation in obscured luminous infrared galaxies. An ALMA mm-wave spectral scan of NGC 4418

    NASA Astrophysics Data System (ADS)

    Costagliola, F.; Sakamoto, K.; Muller, S.; Martín, S.; Aalto, S.; Harada, N.; van der Werf, P.; Viti, S.; Garcia-Burillo, S.; Spaans, M.

    2015-10-01

    Context. Extragalactic observations allow the study of molecular chemistry and excitation under physical conditions which may differ greatly from those found in the Milky Way. The compact, obscured nuclei (CON) of luminous infrared galaxies (LIRG) combine large molecular columns with intense infrared (IR), ultra-violet (UV), and X- radiation and represent ideal laboratories for the study of the chemistry of the interstellar medium (ISM) under extreme conditions. Aims: Our aim was to obtain for the first time a multi-band spectral scan of a LIRG, and to derive molecular abundances and excitation to be compared to other Galactic and extragalactic environments. Methods: We obtained an ALMA Cycle 0 spectral scan of the dusty LIRG NGC 4418, spanning a total of 70.7 GHz in bands 3, 6, and 7. We use a combined local thermal equilibrium (LTE) and non-LTE (NLTE) fit of the spectrum in order to identify the molecular species and to derive column densities and excitation temperatures. We derive molecular abundances and compare them with other Galactic and extragalactic sources by means of a principal component analysis. Results: We detect 317 emission lines from a total of 45 molecular species, including 15 isotopic substitutions and 6 vibrationally excited variants. Our LTE/NLTE fit find kinetic temperatures from 20 to 350 K, and densities between 105 and 107 cm-3. The spectrum is dominated by vibrationally excited HC3N, HCN, and HNC, with vibrational temperatures from 300 to 450 K. We find that the chemistry of NCG 4418 is characterized by high abundances of HC3N, SiO, H2S, and c-HCCCH but a low CH3OH abundance. A principal component analysis shows that NGC 4418 and Arp 220 share very similar molecular abundances and excitation, which clearly set them apart from other Galactic and extragalactic environments. Conclusions: Our spectral scan confirms that the chemical complexity in the nucleus of NGC 4418 is one of the highest ever observed outside our Galaxy. The similar

  2. Filamentary structure and Keplerian rotation in the high-mass star-forming region G35.03+0.35 imaged with ALMA

    NASA Astrophysics Data System (ADS)

    Beltrán, M. T.; Sánchez-Monge, Á.; Cesaroni, R.; Kumar, M. S. N.; Galli, D.; Walmsley, C. M.; Etoka, S.; Furuya, R. S.; Moscadelli, L.; Stanke, T.; van der Tak, F. F. S.; Vig, S.; Wang, K.-S.; Zinnecker, H.; Elia, D.; Schisano, E.

    2014-11-01

    Context. Theoretical scenarios propose that high-mass stars are formed by disk-mediated accretion. Aims: To test the theoretical predictions on the formation of massive stars, we wish to make a thorough study at high-angular resolution of the structure and kinematics of the dust and gas emission toward the high-mass star-forming region G35.03+0.35, which harbors a disk candidate around a B-type (proto)star. Methods: We carried out ALMA Cycle 0 observations at 870 μm of dust of typical high-density, molecular outflow, and cloud tracers with resolutions of < 0''&dotbelow;5. Complementary Subaru COMICS 25 μm observations were carried out to trace the mid-infrared emission toward this star-forming region. Results: The submillimeter continuum emission has revealed a filamentary structure fragmented into six cores, called A-F. The filament could be in quasi-equilibrium taking into account that the mass per unit length of the filament, 200-375 M⊙/pc, is similar to the critical mass of a thermally and turbulently supported infinite cylinder, ~335 M⊙/pc. The cores, which are on average separated by ~0.02 pc, have deconvolved sizes of 1300-3400 AU, temperatures of 35-240 K, H2 densities >107 cm -3, and masses in the range 1-5 M⊙, and they are subcritical. Core A, which is associated with a hypercompact Hii region and could be the driving source of the molecular outflow observed in the region, is the most chemically rich source in G35.03+0.35 with strong emission of typical hot core tracers such as CH3CN. Tracers of high density and excitation show a clear velocity gradient along the major axis of the core, which is consistent with a disk rotating about the axis of the associated outflow. The PV plots along the SE-NW direction of the velocity gradient show clear signatures of Keplerian rotation, although infall could also be present, and they are consistent with the pattern of an edge-on Keplerian disk rotating about a star with a mass in the range 5-13 M⊙. The high

  3. Brown dwarf disks with ALMA

    SciTech Connect

    Ricci, L.; Isella, A.; Testi, L.; De Gregorio-Monsalvo, I.; Natta, A.; Scholz, A.

    2014-08-10

    We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.

  4. Sub-kiloparsec ALMA Imaging of Compact Star-forming Galaxies at z ~ 2.5: Revealing the Formation of Dense Galactic Cores in the Progenitors of Compact Quiescent Galaxies

    NASA Astrophysics Data System (ADS)

    Barro, G.; Kriek, M.; Pérez-González, P. G.; Trump, J. R.; Koo, D. C.; Faber, S. M.; Dekel, A.; Primack, J. R.; Guo, Y.; Kocevski, D. D.; Muñoz-Mateos, J. C.; Rujoparkarn, W.; Seth, K.

    2016-08-01

    We present spatially resolved Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm dust continuum maps of six massive, compact, dusty star-forming galaxies at z ∼ 2.5. These galaxies are selected for their small rest-frame optical sizes ({r}{{e,F160W}}∼ 1.6 kpc) and high stellar mass densities that suggest that they are direct progenitors of compact quiescent galaxies at z ∼ 2. The deep observations yield high far-infrared (FIR) luminosities of {L}{{IR}}={10}12.3-12.8 {L}ȯ and star formation rates (SFRs) of SFR = 200–700 M ⊙ yr‑1, consistent with those of typical star-forming “main sequence” galaxies. The high spatial resolution (FWHM ∼ 0.″12–0.″18) ALMA and Hubble Space Telescope photometry are combined to construct deconvolved, mean radial profiles of their stellar mass and (UV+IR) SFR. We find that the dusty, nuclear IR–SFR overwhelmingly dominates the bolometric SFR up to r ∼ 5 kpc, by a factor of over 100× from the unobscured UV–SFR. Furthermore, the effective radius of the mean SFR profile ({r}{{e,SFR}}∼ 1 kpc) is ∼30% smaller than that of the stellar mass profile. The implied structural evolution, if such nuclear starburst last for the estimated gas depletion time of Δt = ±100 Myr, is a 4× increase of the stellar mass density within the central 1 kpc and a 1.6× decrease of the half-mass–radius. This structural evolution fully supports dissipation-driven, formation scenarios in which strong nuclear starbursts transform larger, star-forming progenitors into compact quiescent galaxies.

  5. Sub-kiloparsec ALMA Imaging of Compact Star-forming Galaxies at z ~ 2.5: Revealing the Formation of Dense Galactic Cores in the Progenitors of Compact Quiescent Galaxies

    NASA Astrophysics Data System (ADS)

    Barro, G.; Kriek, M.; Pérez-González, P. G.; Trump, J. R.; Koo, D. C.; Faber, S. M.; Dekel, A.; Primack, J. R.; Guo, Y.; Kocevski, D. D.; Muñoz-Mateos, J. C.; Rujoparkarn, W.; Seth, K.

    2016-08-01

    We present spatially resolved Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm dust continuum maps of six massive, compact, dusty star-forming galaxies at z ˜ 2.5. These galaxies are selected for their small rest-frame optical sizes ({r}{{e,F160W}}˜ 1.6 kpc) and high stellar mass densities that suggest that they are direct progenitors of compact quiescent galaxies at z ˜ 2. The deep observations yield high far-infrared (FIR) luminosities of {L}{{IR}}={10}12.3-12.8 {L}ȯ and star formation rates (SFRs) of SFR = 200–700 M ⊙ yr‑1, consistent with those of typical star-forming “main sequence” galaxies. The high spatial resolution (FWHM ˜ 0.″12–0.″18) ALMA and Hubble Space Telescope photometry are combined to construct deconvolved, mean radial profiles of their stellar mass and (UV+IR) SFR. We find that the dusty, nuclear IR–SFR overwhelmingly dominates the bolometric SFR up to r ˜ 5 kpc, by a factor of over 100× from the unobscured UV–SFR. Furthermore, the effective radius of the mean SFR profile ({r}{{e,SFR}}˜ 1 kpc) is ˜30% smaller than that of the stellar mass profile. The implied structural evolution, if such nuclear starburst last for the estimated gas depletion time of Δt = ±100 Myr, is a 4× increase of the stellar mass density within the central 1 kpc and a 1.6× decrease of the half-mass–radius. This structural evolution fully supports dissipation-driven, formation scenarios in which strong nuclear starbursts transform larger, star-forming progenitors into compact quiescent galaxies.

  6. ALMA imaging of gas and dust in a galaxy protocluster at redshift 5.3: [C II] emission in 'typical' galaxies and dusty starbursts ≈1 billion years after the big bang

    SciTech Connect

    Riechers, Dominik A.; Carilli, Christopher L.; Capak, Peter L.; Yan, Lin; Scoville, Nicholas Z.; Smolčić, Vernesa; Schinnerer, Eva; Yun, Min; Cox, Pierre; Bertoldi, Frank; Karim, Alexander

    2014-12-01

    We report interferometric imaging of [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) and OH({sup 2}Π{sub 1/2} J = 3/2→1/2) emission toward the center of the galaxy protocluster associated with the z = 5.3 submillimeter galaxy (SMG) AzTEC-3, using the Atacama Large (sub)Millimeter Array (ALMA). We detect strong [C II], OH, and rest-frame 157.7 μm continuum emission toward the SMG. The [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) emission is distributed over a scale of 3.9 kpc, implying a dynamical mass of 9.7 × 10{sup 10} M {sub ☉}, and a star formation rate (SFR) surface density of Σ{sub SFR} = 530 M {sub ☉} yr{sup –1} kpc{sup –2}. This suggests that AzTEC-3 forms stars at Σ{sub SFR} approaching the Eddington limit for radiation pressure supported disks. We find that the OH emission is slightly blueshifted relative to the [C II] line, which may indicate a molecular outflow associated with the peak phase of the starburst. We also detect and dynamically resolve [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) emission over a scale of 7.5 kpc toward a triplet of Lyman-break galaxies with moderate UV-based SFRs in the protocluster at ∼95 kpc projected distance from the SMG. These galaxies are not detected in the continuum, suggesting far-infrared SFRs of <18-54 M {sub ☉} yr{sup –1}, consistent with a UV-based estimate of 22 M {sub ☉} yr{sup –1}. The spectral energy distribution of these galaxies is inconsistent with nearby spiral and starburst galaxies, but resembles those of dwarf galaxies. This is consistent with expectations for young starbursts without significant older stellar populations. This suggests that these galaxies are significantly metal-enriched, but not heavily dust-obscured, 'normal' star-forming galaxies at z > 5, showing that ALMA can detect the interstellar medium in 'typical' galaxies in the very early universe.

  7. Adaptations of a tropical swamp worm, alma emini, for subsistence in a H2S-rich habitat: evolution of endosymbiotic bacteria, sulfide metabolizing bodies, and novel processes of elimination of neutralized sulfide complexes

    PubMed

    Maina; Maloiy

    1998-01-01

    The epithelial cell lining of the respiratory groove of Alma emini, an oligochaete glossoscolecid worm that lives in a hydrogen sulfide (H2S)-rich tropical swamp, was investigated by transmission electron microscopy to determine the underlying structural adaptations which enable the worm to subsist in a highly inimical habitat. The epithelium of the respiratory groove is made up of squamous cells with a highly amplified free epithelial surface. The cells are tightly packed with electron dense sulfur metabolizing bodies (SMBs) and contain endosymbiotic bacteria. Presence of sulfur in the electron dense SMBs was confirmed by X-ray microanalysis. Certain eukaryotic cells with prominent filopodia-like cytoplasmic extensions were observed under the epithelial cells and in the muscle tissue. The cells contained numerous heteromorphic endosymbiotic bacteria and scattered SMBs. Both the SMBs and the bacteria are reckoned to be involved in scavenging and detoxifying H2S. The removal of sulfide complexes was observed to occur through excision of blebs formed by epithelial cell membrane elaborations and by exocytosis of crystalline-like particles. These adaptive stratagems generally correspond with those that have been adopted by many marine and hydrothermal vent organisms that occupy sulfide-rich biomes. The congruent adaptive stratagems and ultrastructural morphologies in such a diverse community of organisms have been imposed by a common need to neutralize the insidious effects of H2S in their environments. Copyright 1998 Academic Press. PMID:9774530

  8. Characteristics of Alumni Donors Who Volunteer at Their Alma Mater

    ERIC Educational Resources Information Center

    Weerts, David J.; Ronca, Justin M.

    2008-01-01

    In the competitive marketplace of higher education, colleges and university leaders increasingly rely on the influence and service of their alumni to further institutional goals. Because of their demonstrated financial commitment to the institution, alumni donors are often enlisted to serve important roles as volunteers and political advocates.…

  9. TRANSITION DISK CHEMISTRY AND FUTURE PROSPECTS WITH ALMA

    SciTech Connect

    Cleeves, L. Ilsedore; Bergin, Edwin A.; Bethell, Thomas J.; Calvet, Nuria; Fogel, Jeffrey K. J.; Sauter, Juergen; Wolf, Sebastian

    2011-12-10

    We explore the chemical structure of a disk that contains a large central gap of R {approx} 45 AU, as is commonly seen in transitional disk systems. In our chemical model of a disk with a cleared inner void, the midplane becomes revealed to the central star so that it is directly irradiated. The midplane material at the truncation radius is permissive to reprocessed optical heating radiation, but opaque to the photodissociating ultraviolet, creating an environment abundant in gas-phase molecules. Thus the disk midplane, which would otherwise for a full disk be dominated by near complete heavy element freeze-out, should become observable in molecular emission. If this prediction is correct this has exciting prospects for observations with the Atacama Large Millimeter/Submillimeter Array, as the inner transition region should thus be readily detected and resolved, especially using high-J rotational transitions excited in the high density midplane gas. Therefore, such observations will potentially provide us with a direct probe of the physics and chemistry at this actively evolving interface.

  10. Indigenous Digital Storytelling in Video: Witnessing with Alma Desjarlais

    ERIC Educational Resources Information Center

    Iseke, Judy M.

    2011-01-01

    Indigenous digital storytelling in video is a way of witnessing the stories of Indigenous communities and Elders, including what has happened and is happening in the lives and work of Indigenous peoples. Witnessing includes acts of remembrance in which we look back to reinterpret and recreate our relationship to the past in order to understand the…

  11. The Marriage of Alma Mater to Adam Smith.

    ERIC Educational Resources Information Center

    Buescher, John B.

    1987-01-01

    Businesses and universities must be encouraged to act from their traditional positions of strength, based on the longest view and the broadest interests. They must examine carefully their potential sources of conflict as well as opportunities for benefit before engaging in alliances that may become complex and difficult to manage. (MSE)

  12. Saving Alma Mater: A Rescue Plan for America's Public Universities

    ERIC Educational Resources Information Center

    Garland, James C.

    2009-01-01

    America's public universities educate 80% of our nation's college students. But in the wake of rising demands on state treasuries, changing demographics, growing income inequality, and legislative indifference, many of these institutions have fallen into decline. Tuition costs have skyrocketed, class sizes have gone up, the number of courses…

  13. Teacher History: Student Historians, Faculty Biographies, and the "Alma Mater"

    ERIC Educational Resources Information Center

    Stofferahn, Steven A.

    2009-01-01

    When his department chair asked him a few years ago to take over as faculty advisor to their university's chapter of the Phi Alpha Theta history honor society, the author readily accepted. Not only would it provide a great opportunity to get to know some of their best students better, it would also help a junior faculty member like himself fulfill…

  14. The ionosphere above Alma Ata during a solar eclipse

    NASA Technical Reports Server (NTRS)

    Rudina, M. P.; Kozina, P. Y.

    1972-01-01

    The eclipse effect was manifested during the second phase: the ionization of the F1- and F2-layers decreased and the minimum effective heights of E and F2 increased due to recombination processes. The manner in which electron density is distributed over the levels was ascertained from analysis of N(t) curves.

  15. ALMA observations of a candidate molecular outflow in an obscured quasar

    SciTech Connect

    Sun, Ai-Lei; Greene, Jenny E.; Zakamska, Nadia L.; Nesvadba, Nicole P. H.

    2014-08-01

    We present Atacama Large Millimeter/Submillimeter Array CO (1-0) and CO (3-2) observations of SDSS J135646.10+102609.0, an obscured quasar and ultra-luminous infrared galaxy with two merging nuclei and a known 20 kpc scale ionized outflow. The total molecular gas mass is M{sub mol}≈9{sub −6}{sup +19}×10{sup 8} M{sub ☉}, mostly distributed in a compact rotating disk at the primary nucleus (M{sub mol} ≈ 3 × 10{sup 8} M{sub ☉}) and an extended tidal arm (M{sub mol} ≈ 5 × 10{sup 8} M{sub ☉}). The tidal arm is one of the most massive molecular tidal features known; we suggest that it is due to the lower chance of shock dissociation in this elliptical/disk galaxy merger. In the spatially resolved CO (3-2) data, we find a compact (r ≈ 0.3 kpc) high-velocity (v ≈ 500 km s{sup –1}) redshifted feature in addition to the rotation at the N nucleus. We propose a molecular outflow as the most likely explanation for the high-velocity gas. The outflowing mass of M{sub mol} ≈ 7 × 10{sup 7} M{sub ☉} and the short dynamical time of t{sub dyn} ≈ 0.6 Myr yield a very high outflow rate of M-dot{sub mol}≈350 M{sub ☉} yr{sup –1} and can deplete the gas in a million years. We find a low star formation rate (<16 M{sub ☉} yr{sup –1} from the molecular content and <21 M{sub ☉} yr{sup –1} from the far-infrared spectral energy distribution decomposition) that is inadequate to supply the kinetic luminosity of the outflow ( E-dot ≈3×10{sup 43} erg s{sup –1}). Therefore, the active galactic nucleus (AGN), with a bolometric luminosity of 10{sup 46} erg s{sup –1}, likely powers the outflow. The momentum boost rate of the outflow ( p-dot /(L{sub bol}/c)≈3) is lower than typical molecular outflows associated with AGNs, which may be related to its compactness. The molecular and ionized outflows are likely two distinct bursts induced by episodic AGN activity which varies on a timescale of 10{sup 7} yr.

  16. ALMA RESOLVES 30 DORADUS: SUB-PARSEC MOLECULAR CLOUD STRUCTURE NEAR THE CLOSEST SUPER STAR CLUSTER

    SciTech Connect

    Indebetouw, Remy; Brogan, Crystal; Leroy, Adam; Hunter, Todd; Kepley, Amanda E-mail: cbrogan@nrao.edu; and others

    2013-09-01

    We present Atacama Large (sub)Millimeter Array observations of 30 Doradus-the highest resolution view of molecular gas in an extragalactic star formation region to date ({approx}0.4 pc Multiplication-Sign 0.6 pc). The 30Dor-10 cloud north of R136 was mapped in {sup 12}CO 2-1, {sup 13}CO 2-1, C{sup 18}O 2-1, 1.3 mm continuum, the H30{alpha} recombination line, and two H{sub 2}CO 3-2 transitions. Most {sup 12}CO emission is associated with small filaments and clumps ({approx}<1 pc, {approx}10{sup 3} M{sub Sun} at the current resolution). Some clumps are associated with protostars, including ''pillars of creation'' photoablated by intense radiation from R136. Emission from molecular clouds is often analyzed by decomposition into approximately beam-sized clumps. Such clumps in 30 Doradus follow similar trends in size, linewidth, and surface density to Milky Way clumps. The 30 Doradus clumps have somewhat larger linewidths for a given size than predicted by Larson's scaling relation, consistent with pressure confinement. They extend to a higher surface density at a given size and linewidth compared to clouds studied at 10 pc resolution. These trends are also true of clumps in Galactic infrared-dark clouds; higher resolution observations of both environments are required. Consistency of clump masses calculated from dust continuum, CO, and the virial theorem reveals that the CO abundance in 30 Doradus clumps is not significantly different from the Large Magellanic Cloud mean, but the dust abundance may be reduced by {approx}2. There are no strong trends in clump properties with distance from R136; dense clumps are not strongly affected by the external radiation field, but there is a modest trend toward lower dense clump filling fraction deeper in the cloud.

  17. Gas Dynamics and Outflow in the Barred Starburst Galaxy NGC 1808 Revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Hatakeyama, Takuya; Miyamoto, Yusuke

    2016-05-01

    NGC 1808 is a nearby barred starburst galaxy with an outflow from the nuclear region. To study the inflow and outflow processes related to star formation and dynamical evolution of the galaxy, we have carried out 12CO (J=1-0) mapping observations of the central r ∼ 4 kpc of NGC 1808 using the Atacama Large Millimeter/submillimeter Array. Four distinct components of molecular gas are revealed at high spatial resolution of 2″ (∼100 pc): (1) a compact (r < 200 pc) circumnuclear disk (CND), (2) r ∼ 500 pc ring, (3) gas-rich galactic bar, and (4) spiral arms. Basic geometric and kinematic parameters are derived for the central 1 kpc region using tilted-ring modeling. The derived rotation curve reveals multiple mass components that include (1) a stellar bulge, (2) a nuclear bar and molecular CND, and (3) an unresolved massive (∼107 M ⊙) core. Two systemic velocities, 998 km s‑1 for the CND and 964 km s‑1 for the 500 pc ring, are revealed, indicating a kinematic offset. The pattern speed of the primary bar, derived by using a cloud-orbit model, is 56 ± 11 km s‑1 kpc‑1. Noncircular motions are detected associated with a nuclear spiral pattern and outflow in the central 1 kpc region. The ratio of the mass outflow rate to the star formation rate is {\\dot{M}}{out}/{SFR}∼ 0.2 in the case of optically thin CO (1–0) emission in the outflow, suggesting low efficiency of star formation quenching.

  18. ALMA probes the molecular gas reservoirs in the changing-look Seyfert galaxy Mrk 590

    NASA Astrophysics Data System (ADS)

    Koay, J. Y.; Vestergaard, M.; Casasola, V.; Lawther, D.; Peterson, B. M.

    2016-01-01

    We investigate if the active galactic nucleus (AGN) of Mrk 590, whose supermassive black hole was until recently highly accreting, is turning off due to a lack of central gas to fuel it. We analyse new subarcsecond resolution Atacama Large Millimetre/submilllimetre Array maps of the 12CO(3-2) line and 344 GHz continuum emission in Mrk 590. We detect no 12CO(3-2) emission in the inner 150 pc, constraining the central molecular gas mass to M(H2) ≲ 1.6 × 105 M⊙, no more than a typical giant molecular gas cloud, for a CO luminosity to gas mass conversion factor of αCO ˜ 0.8 M⊙ (K km s- 1 pc2)- 1. However, there is still potentially enough gas to fuel the black hole for another 2.6 × 105 yr assuming Eddington-limited accretion. We therefore cannot rule out that the AGN may just be experiencing a temporary feeding break, and may turn on again in the near future. We discover a ring-like structure at a radius of ˜1 kpc, where a gas clump exhibiting disturbed kinematics and located just ˜200 pc west of the AGN, may be refuelling the centre. Mrk 590 does not have significantly less gas than other nearby AGN host galaxies at kpc scales, confirming that gas reservoirs at these scales provide no direct indication of on-going AGN activity and accretion rates. Continuum emission detected in the central 150 pc likely originates from warm AGN-heated dust, although contributions from synchrotron and free-free emission cannot be ruled out.

  19. SI-BEARING MOLECULES TOWARD IRC+10216: ALMA UNVEILS THE MOLECULAR ENVELOPE OF CWLEO

    PubMed Central

    Prieto, L. Velilla; Cernicharo, J.; Quintana–Lacaci, G.; Agúndez, M.; Castro–Carrizo, A.; Fonfŕia, J. P.; Marcelino, N.; Zúñiga, J.; Requena, A.; Bastida, A.; Lique, F.; Guélin, M.

    2015-01-01

    We report the detection of SiS rotational lines in high-vibrational states as well as SiO and SiC2 lines in their ground vibrational state toward IRC+10216 during the Atacama Large Millimeter Array Cycle 0. The spatial distribution of these molecules shows compact emission for SiS and a more extended emission for SiO and SiC2, and also proves the existence of an increase in the SiC2 emission at the outer shells of the circumstellar envelope. We analyze the excitation conditions of the vibrationally excited SiS using the population diagram technique, and we use a large velocity gradient model to compare with the observations. We found moderate discrepancies between the observations and the models that could be explained if SiS lines detected are optically thick. Additionally, the line profiles of the detected rotational lines in the high energy vibrational states show a decreasing linewidth with increasing energy levels. This may be evidence that these lines could be excited only in the inner shells, i.e., the densest and hottest, of the circumstellar envelope of IRC+10216. PMID:26688711

  20. Weak Turbulence in the HD 163296 Protoplanetary Disk Revealed by ALMA CO Observations

    NASA Astrophysics Data System (ADS)

    Flaherty, Kevin M.; Hughes, A. Meredith; Rosenfeld, Katherine A.; Andrews, Sean M.; Chiang, Eugene; Simon, Jacob B.; Kerzner, Skylar; Wilner, David J.

    2015-11-01

    Turbulence can transport angular momentum in protoplanetary disks and influence the growth and evolution of planets. With spatially and spectrally resolved molecular emission line measurements provided by (sub)millimeter interferometric observations, it is possible to directly measure non-thermal motions in the disk gas that can be attributed to this turbulence. We report a new constraint on the turbulence in the disk around HD 163296, a nearby young A star, determined from Atacama Large Millimeter/submillimeter Array Science Verification observations of four CO emission lines (the CO(3-2), CO(2-1), 13CO(2-1), and C18O(2-1) transitions). The different optical depths for these lines permit probes of non-thermal line-widths at a range of physical conditions (temperature and density) and depths into the disk interior. We derive stringent limits on the non-thermal motions in the upper layers of the outer disk such that any contribution to the line-widths from turbulence is <3% of the local sound speed. These limits are approximately an order of magnitude lower than theoretical predictions for full-blown magnetohydrodynamic turbulence driven by the magnetorotational instability, potentially suggesting that this mechanism is less efficient in the outer (R ≳ 30 AU) disk than has been previously considered.

  1. Is the Alma Ata vision of comprehensive primary health care viable? Findings from an international project

    PubMed Central

    Labonté, Ronald; Sanders, David; Packer, Corinne; Schaay, Nikki

    2014-01-01

    Background The 4-year (2007–2011) Revitalizing Health for All international research program (http://www.globalhealthequity.ca/projects/proj_revitalizing/index.shtml) supported 20 research teams located in 15 low- and middle-income countries to explore the strengths and weaknesses of comprehensive primary health care (CPHC) initiatives at their local or national levels. Teams were organized in a triad comprised of a senior researcher, a new researcher, and a ‘research user’ from government, health services, or other organizations with the authority or capacity to apply the research findings. Multiple regional and global team capacity-enhancement meetings were organized to refine methods and to discuss and assess cross-case findings. Objective Most research projects used mixed methods, incorporating analyses of qualitative data (interviews and focus groups), secondary data, and key policy and program documents. Some incorporated historical case study analyses, and a few undertook new surveys. The synthesis of findings in this report was derived through qualitative analysis of final project reports undertaken by three different reviewers. Results Evidence of comprehensiveness (defined in this research program as efforts to improve equity in access, community empowerment and participation, social and environmental health determinants, and intersectoral action) was found in many of the cases. Conclusions Despite the important contextual differences amongst the different country studies, the similarity of many of their findings, often generated using mixed methods, attests to certain transferable health systems characteristics to create and sustain CPHC practices. These include:  Well-trained and supported community health workers (CHWs) able to work effectively with marginalized communities Effective mechanisms for community participation, both informal (through participation in projects and programs, and meaningful consultation) and formal (though program management structures) Co-partnership models in program and policy development (in which financial and knowledge supports from governments or institutions are provided to communities, which retain decision-making powers in program design and implementation) Support for community advocacy and engagement in health and social systems decision making These characteristics, in turn, require a political context that supports state responsibilities for redistributive health and social protection measures. PMID:25150030

  2. ALMA observations of the Antennae galaxies. I. A new window on a prototypical merger

    SciTech Connect

    Whitmore, Bradley C.; Brogan, Crystal; Evans, Aaron; Hibbard, John; Leroy, Adam; Remijan, Anthony; Sheth, Kartik; Chandar, Rupali; Johnson, Kelsey; Privon, George

    2014-11-10

    We present the highest spatial resolution (≈0.''5) CO (3-2) observations to date of the 'overlap' region in the merging Antennae galaxies (NGC 4038/39), taken with the Atacama Large Millimeter/submillimeter Array. We report on the discovery of a long (3 kpc), thin (aspect ratio 30/1), filament of CO gas that breaks up into roughly 10 individual knots. Each individual knot has a low internal velocity dispersion (≈10 km s{sup –1}); the dispersion of the ensemble of knots in the filament is also low (≈10 km s{sup –1}). At the other extreme, we find that the individual clouds in the supergiant molecular cloud 2 region discussed by Wilson and collaborators have a large range of internal velocity dispersions (10 to 80 km s{sup –1}), and a large dispersion among the ensemble (≈80 km s{sup –1}). Other large-scale features observed in CO emission, and their correspondence with historical counterparts using observations in other wavelengths, are also discussed. We compare the locations of small-scale CO features with a variety of multi-wavelength observations, in particular broad- (BVIJH) and narrow-band data (H{sub α} and Pa{sub β}) taken with the Hubble Space Telescope, and radio (3.6 cm) continuum observations taken with the Karl G. Jansky Very Large Array. This comparison leads to the development of an evolutionary classification system that provides a framework for studying the sequence of star cluster formation and evolution—from diffuse supergiant molecular clouds (SGMCs) to proto, embedded, emerging, young, intermediate/old clusters. The relative timescales have been assessed by determining the fractional population of sources at each evolutionary stage. The main uncertainty in this estimate is the identification of four regions as candidate protoclusters (i.e., strong compact CO emission but no clearly associated radio emission). Using the evolutionary framework, we estimate that the maximum age range of clusters in a single GMC is ≈10 Myr, which suggests that the molecular gas is removed over this timescale, resulting in the cessation of star formation and the destruction of the GMC within a radius of about 200 pc.

  3. Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Indebetouw, R.; Matsuura, M.; Dwek, E.; Zanardo, G.; Barlow, M. J.; Baes, M.; Bouchet, P.; Burrows, D. N.; Chevalier, R.; Clayton, G. C.; Fransson, C.; Gaensler, B.; Kirshner, R.; Lakićević, M.; Long, K. S.; Lundqvist, P.; Martí-Vidal, I.; Marcaide, J.; McCray, R.; Meixner, M.; Ng, C.-Y.; Park, S.; Sonneborn, G.; Staveley-Smith, L.; Vlahakis, C.; van Loon, J.

    2014-02-01

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 μm, 870 μm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 M ⊙). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  4. EXTREME DUST DISKS IN Arp 220 AS REVEALED BY ALMA

    SciTech Connect

    Wilson, C. D.; Rangwala, N.; Glenn, J.; Maloney, P. R.; Spinoglio, L.; Pereira-Santaella, M.

    2014-07-10

    We present new images of Arp 220 from the Atacama Large Millimeter/submillimeter Array with the highest combination of frequency (691 GHz) and resolution (0.''36 × 0.''20) ever obtained for this prototypical ultraluminous infrared galaxy. The western nucleus is revealed to contain warm (200 K) dust that is optically thick (τ{sub 434} {sub μm} = 5.3), while the eastern nucleus is cooler (80 K) and somewhat less opaque (τ{sub 434} {sub μm} = 1.7). We derive full width at half-maximum diameters of 76 × ≤ 70 pc and 123 × 79 pc for the western and eastern nucleus, respectively. The two nuclei combined account for (83{sub −38}{sup +65} (calibration) {sub −34}{sup +0} (systematic))% of the total infrared luminosity of Arp 220. The luminosity surface density of the western nucleus (log (σT{sup 4})=14.3±0.2{sub −0.7}{sup +0} in units of L {sub ☉} kpc{sup –2}) appears sufficiently high to require the presence of an active galactic nucleus (AGN) or a ''hot starburst'', although the exact value depends sensitively on the brightness distribution adopted for the source. Although the role of any central AGN remains open, the inferred mean gas column densities of (0.6-1.8) × 10{sup 25} cm{sup –2} mean that any AGN in Arp 220 must be Compton-thick.

  5. ALMA Multi-line Observations of the IR-bright Merger VV 114

    NASA Astrophysics Data System (ADS)

    Saito, Toshiki; Iono, Daisuke; Yun, Min S.; Ueda, Junko; Nakanishi, Kouichiro; Sugai, Hajime; Espada, Daniel; Imanishi, Masatoshi; Motohara, Kentaro; Hagiwara, Yosiaki; Tateuchi, Ken; Lee, Minju; Kawabe, Ryohei

    2015-04-01

    We present Atacama Large Millimeter/submillimeter Array cycle 0 observations of the molecular gas and dust in the IR-bright mid-stage merger VV 114 obtained at 160-800 pc resolution. The main aim of this study is to investigate the distribution and kinematics of the cold/warm gas and to quantify the spatial variation of the excitation conditions across the two merging disks. The data contain 10 molecular lines, including the first detection of extranuclear CH3OH emission in interacting galaxies, as well as continuum emission. We map the 12CO(3-2)/12CO(1-0) and the 12CO(1-0)/13CO(1-0) line ratio at 800 pc resolution (in the units of K km s-1), and find that these ratios vary from 0.2-0.8 and 5-50, respectively. Conversely, the 200 pc resolution HCN(4-3)/HCO+(4-3) line ratio shows low values (<0.5) at a filament across the disks except for the unresolved eastern nucleus which is three times higher (1.34 ± 0.09). We conclude from our observations and a radiative transfer analysis that the molecular gas in the VV 114 system consists of five components with different physical and chemical conditions, i.e., (1) dust-enshrouded nuclear starbursts and/or active galactic nuclei, (2) widespread star-forming dense gas, (3) merger-induced shocked gas, (4) quiescent tenuous gas arms without star formation, and (5) H2 gas mass of (3.8 ± 0.7) × 107 {{M}⊙ } (assuming a conversion factor of αCO = 0.8 {{M}⊙ } {{(K km {{s}-1} p{{c}2})}-1}) at the tip of the southern tidal arm, as a potential site of tidal dwarf galaxy formation.

  6. ALMA reveals sunburn: CO dissociation around AGB stars in the globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.; Lagadec, E.; Sloan, G. C.; Boyer, M. L.; Matsuura, M.; Smith, R. J.; Smith, C. L.; Yates, J. A.; van Loon, J. Th.; Jones, O. C.; Ramstedt, S.; Avison, A.; Justtanont, K.; Olofsson, H.; Blommaert, J. A. D. L.; Goldman, S. R.; Groenewegen, M. A. T.

    2015-11-01

    Atacama Large Millimetre Array observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars should be ˜1.2-3.5 × 10-7 M⊙ yr-1. We would naïvely expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 47 Tuc, we conclude that CO should be dissociated abnormally close to the stars. We estimate that the CO envelopes will be truncated at a few hundred stellar radii from their host stars and that the line intensities are about two orders of magnitude below our current detection limits. The truncation of CO envelopes should be important for AGB stars in dense clusters. Observing the CO (3-2) and higher transitions and targeting stars far from the centres of clusters should result in the detections needed to measure the outflow velocities from these stars.

  7. Hail to Thee, Our Alma Mater: Alumni Role Identity and the Relationship to Institutional Support Behaviors

    ERIC Educational Resources Information Center

    McDearmon, J. Travis

    2013-01-01

    With the decline in state and federal support for higher education continuing to plague colleges and universities across the U.S., many institutions are looking to increase the levels of support annually received from alumni and other constituencies. Research on alumni relations in American colleges and universities has historically focused on…

  8. ALMA HINTS AT THE PRESENCE OF TWO COMPANIONS IN THE DISK AROUND HD 100546

    SciTech Connect

    Walsh, Catherine; Juhász, Attila; Pinilla, Paola; Harsono, Daniel; Mathews, Geoffrey S.; Hogerheijde, Michiel R.; Dent, William R. F.; Birnstiel, T.; Meeus, Gwendolyn; Nomura, Hideko; Aikawa, Yuri; Millar, T. J.; Sandell, Göran

    2014-08-10

    HD 100546 is a well-studied Herbig Be star-disk system that likely hosts a close-in companion with compelling observational evidence for an embedded protoplanet at 68 AU. We present Atacama Large Millimeter/Submillimeter Array observations of the HD 100546 disk which resolve the gas and dust structure at (sub)millimeter wavelengths. The CO emission (at 345.795 GHz) originates from an extensive molecular disk (390 ± 20 AU in radius) whereas the continuum emission is more compact (230 ± 20 AU in radius), suggesting radial drift of the millimeter-sized grains. The CO emission is similar in extent to scattered light images indicating well-mixed gas and micrometer-sized grains in the disk atmosphere. Assuming azimuthal symmetry, a single-component power-law model cannot reproduce the continuum visibilities. The visibilities and images are better reproduced by a double-component model: a compact ring with a width of 21 AU centered at 26 AU and an outer ring with a width of 75 ± 3 AU centered at 190 ± 3 AU. The influence of a companion and protoplanet on the dust evolution is investigated. The companion at 10 AU facilitates the accumulation of millimeter-sized grains within a compact ring, ≈20-30 AU, by ≈10 Myr. The injection of a protoplanet at 1 Myr hastens the ring formation (≈1.2 Myr) and also triggers the development of an outer ring (≈100-200 AU). These observations provide additional evidence for the presence of a close-in companion and hint at dynamical clearing by a protoplanet in the outer disk.

  9. Coming Home: "Hermanos Academicos" Reflect on Past and Present Realities as Professors at Their Alma Mater

    ERIC Educational Resources Information Center

    Reddick, Richard J.; Saenz, Victor B.

    2012-01-01

    In this article, Richard J. (Rich) Reddick and Victor B. Saenz, two assistant professors of color, utilize scholarly personal narrative to reflect on their trajectory from undergraduates at a predominantly White institution--one prominently mired in a legacy of discrimination and exclusion toward people of color--to faculty members at that same…

  10. ALMA MEASUREMENTS OF THE HNC AND HC{sub 3}N DISTRIBUTIONS IN TITAN'S ATMOSPHERE

    SciTech Connect

    Cordiner, M. A.; Nixon, C. A.; Serigano, J.; Charnley, S. B.; Milam, S. N.; Mumma, M. J.; Villanueva, G.; Paganini, L.; Teanby, N. A.; Irwin, P. G. J.; Lis, D. C.; Kuan, Y.-J.; Remijan, A. J.

    2014-11-10

    We present spectrally and spatially resolved maps of HNC and HC{sub 3}N emission from Titan's atmosphere, obtained using the Atacama Large Millimeter/submillimeter Array on 2013 November 17. These maps show anisotropic spatial distributions for both molecules, with resolved emission peaks in Titan's northern and southern hemispheres. The HC{sub 3}N maps indicate enhanced concentrations of this molecule over the poles, consistent with previous studies of Titan's photochemistry and atmospheric circulation. Differences between the spectrally integrated flux distributions of HNC and HC{sub 3}N show that these species are not co-spatial. The observed spectral line shapes are consistent with HNC being concentrated predominantly in the mesosphere and above (at altitudes z ≳ 400 km), whereas HC{sub 3}N is abundant at a broader range of altitudes (z ≈ 70-600 km). From spatial variations in the HC{sub 3}N line profile, the locations of the HC{sub 3}N emission peaks are shown to be variable as a function of altitude. The peaks in the integrated emission from HNC and the line core (upper atmosphere) component of HC{sub 3}N (at z ≳ 300 km) are found to be asymmetric with respect to Titan's polar axis, indicating that the mesosphere may be more longitudinally variable than previously thought. The spatially integrated HNC and HC{sub 3}N spectra are modeled using the NEMESIS planetary atmosphere code and the resulting best-fitting disk-averaged vertical mixing ratio profiles are found to be in reasonable agreement with previous measurements for these species. Vertical column densities of the best-fitting gradient models for HNC and HC{sub 3}N are 1.9 × 10{sup 13} cm{sup –2} and 2.3 × 10{sup 14} cm{sup –2}, respectively.

  11. DUST PRODUCTION AND PARTICLE ACCELERATION IN SUPERNOVA 1987A REVEALED WITH ALMA

    SciTech Connect

    Indebetouw, R.; Chevalier, R.; Matsuura, M.; Barlow, M. J.; Dwek, E.; Zanardo, G.; Baes, M.; Bouchet, P.; Burrows, D. N.; Clayton, G. C.; Fransson, C.; Lundqvist, P.; Gaensler, B.; Kirshner, R.; Lakićević, M.; Long, K. S.; Meixner, M.; Martí-Vidal, I.; Marcaide, J.; and others

    2014-02-10

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 μm, 870 μm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 M {sub ☉}). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  12. Si-bearing Molecules Toward IRC+10216: ALMA Unveils the Molecular Envelope of CWLeo

    NASA Astrophysics Data System (ADS)

    Velilla Prieto, L.; Cernicharo, J.; Quintana-Lacaci, G.; Agúndez, M.; Castro-Carrizo, A.; Fonfría, J. P.; Marcelino, N.; Zúñiga, J.; Requena, A.; Bastida, A.; Lique, F.; Guélin, M.

    2015-06-01

    We report the detection of SiS rotational lines in high-vibrational states as well as SiO and SiC2 lines in their ground vibrational state toward IRC+10216 during the Atacama Large Millimeter Array Cycle 0. The spatial distribution of these molecules shows compact emission for SiS and a more extended emission for SiO and SiC2 and also proves the existence of an increase in the SiC2 emission at the outer shells of the circumstellar envelope (CSE). We analyze the excitation conditions of the vibrationally excited SiS using the population diagram technique, and we use a large velocity gradient model to compare with the observations. We found moderate discrepancies between the observations and the models that could be explained if SiS lines detected are optically thick. Additionally, the line profiles of the detected rotational lines in the high-energy vibrational states show a decreasing linewidth with increasing energy levels. This may be evidence that these lines could be excited only in the inner shells, i.e., the densest and hottest, of the CSE of IRC+10216.

  13. Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    NASA Technical Reports Server (NTRS)

    Indebetouw, R.; Matsuura, M.; Dwek, E.; Zanardo, G.; Barlow, M. J.; Baes, M.; Bouchet, P.; Burrows, D. N.; Chevalier, R.; Clayton, G. C.; Fransson, C.; Gaensler, B.; Kirshner, R.; Lakicevic, M.; Long, K. S.; Lundqvist, P.; Marti-Vidal, I.; Marcaide, J.; McCray, R.; Meixner, M.; Ng, C.-Y.; Park, S.; Sonneborn, G.; Staveley-Smith, L.; vanLoon, J.

    2014-01-01

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/ Submillimeter Array to observe SN1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 µm, 870 µm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 Solar Mass). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  14. Skipping Out on Alma Mater: Some Problems Involving the Collection of Federal Student Loans.

    ERIC Educational Resources Information Center

    Leonard, Kevin J.

    1980-01-01

    Present law respecting collection of federal student loans, regulatory and other sanctions against default, and strategies against bankruptcy are outlined and analyzed. (Journal availability: Columbia Journal of Law and Social Problems, Box 7, Columbia University School of Law, 435 W. 116th St., New York, NY 10027, $5.00.) (MSE)

  15. Factors Associated with Non-Traditional and Traditional Undergraduate Alumni Giving to Alma Maters

    ERIC Educational Resources Information Center

    Johnson, Elizabeth Ann Miller

    2013-01-01

    Both public and private institutions of higher education face revenue shortfalls. In order to close budget gaps, colleges and universities must identify new revenue sources. Historically alumni are large providers of voluntary support to higher education institutions, but the numbers of alumni contributing financially is decreasing. The purpose of…

  16. ALMA imprint of intergalactic dark structures in the gravitational lens SDP.81

    NASA Astrophysics Data System (ADS)

    Inoue, Kaiki Taro; Minezaki, Takeo; Matsushita, Satoki; Chiba, Masashi

    2016-04-01

    We present an analysis of the Atacama Large Millimeter/submillimeter Array long baseline science verification data of the gravitational lens system SDP.81. We fit the positions of the brightest clumps at redshift z = 3.042 and a possible active galactic nucleus component of the lensing galaxy at redshift z = 0.2999 in the band 7 continuum image using a canonical lens model, a singular isothermal ellipsoid plus an external shear. Then, we measure the ratio of fluxes in some apertures at the source plane where the lensed images are inversely mapped. We find that the aperture flux ratios of band 7 continuum image are perturbed by 10-20 per cent with a significance at 2 ˜ 3σ level. Moreover, we measure the astrometric shifts of multiply lensed images near the caustic using the CO(8-7) line. Using a lens model best fitted to the band 7 continuum image, we reconstruct the source image of the CO(8-7) line by taking linear combination of inverted quadruply lensed images. At the 50th channel (rest-frame velocity 28.6 km s-1) of the CO(8-7) line, we find an imprint of astrometric shifts of the order of 0.01 arcsec in the source image. Based on a semi-analytic calculation, we find that the observed anomalous flux ratios and the astrometric shifts can be explained by intergalactic dark structures in the line of sight. A compensated homogeneous spherical clump with a mean surface mass density of the order of 108 M⊙ h-1 arcsec-2 can explain the observed anomaly and astrometric shifts simultaneously.

  17. Prospective Work for Alma: the Millimeterwave and Submillimeterwave Spectrum of Deuterated Glycolaldehyde

    NASA Astrophysics Data System (ADS)

    Bouchez, A.; Margulès, L.; Motiyenko, R. A.; Walters, A.; Bottinelli, S.; Ceccarelli, C.; Kahane, C.; Guillemin, J.-C.

    2011-06-01

    Glycoaldehyde, a sugar-related interstellar prebiotic molecule has been detected in two star-forming regions, Sgr B2(N) and G31.41+0.31. The detection of this new species increases the list of Complex Organic Molecules detected in the ISM and adds a further level to the chemical complexity present in space. For many years, astronomers have been struggling to understand the origin of such high chemical complexity in the ISM. The study of deuteration may provide crucial hints. In this context, we have measured in the laboratory the spectra of the deuterated isotopologues of glycoaldehyde: CH_2OD-CHO, CHDOH-CHO, CH_2OH-CDO and CHDOH-CDO. Previous laboratory work on the D-isotopologues was restricted to less than 26 GHz. New spectra between 150 and 630 GHz were measured in Lille with a solid-state submillimetre-wave spectrometer. This work is supported by the contract ANR-08-BLAN-0225 and by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS). Hollis, J. M.; Lovas, F. J.; Jewell, P. R., ApJL 540, (2000) L107 Halfen, D. T.; Apponi, A. J.; Woolf, N.; Polt, R.; Ziurys, L. M., ApJ, 639, (2006) 237 Beltrán, M. T.; Codella, C.; Viti, S.; Neri, R.; Cesaroni, R., ApJ, 690, (2009) L93 Ceccarelli, C.; Caselli, P.; Herbst, E.; et al., (eds.), University of Arizona Press, Tucson, 951, (2007) 47 Marstokk, K.-M.; Mollendal H.,J. Mol. Struct. 7, (1971) 101

  18. Exploring Molecular Complexity with ALMA: Deuterated complex organic molecules in Sgr B2

    NASA Astrophysics Data System (ADS)

    Belloche, A.; Müller, H. S. P.; Garrod, R. T.; Menten, K. M.

    2016-05-01

    Apart from the case of methanol, little is known about deuterium fractionation of complex organic molecules in the interstellar medium, especially in high mass star forming regions. We take advantage of the EMoCA spectral line survey to search for deuterated complex organic molecules toward the hot molecular core Sgr B2(N2). We report the secure detection of CH2DCN with a deuteration level of 0.4% and tentative detections of CH2DOH, CH2DCH2CN, CH3CHDCN, and DC3N with levels in the range 0.05-0.12%. Except for methyl cyanide, the measured deuteration levels lie at least a factor of four below the predictions of current astrochemical models. They are also lower than in Orion KL by a factor of a few up to a factor ten. These discrepancies and differences may be due to the higher temperatures that prevail in the Galactic Center region compared to nearby clouds, or they may result from a lower overall abundance of deuterium itself in the Galactic Center region by up to a factor ten.

  19. ALMA 690 GHz OBSERVATIONS OF IRAS 16293-2422B: INFALL IN A HIGHLY OPTICALLY THICK DISK

    SciTech Connect

    Zapata, Luis A.; Loinard, Laurent; Rodriguez, Luis F.; Hernandez-Hernandez, Vicente; Takahashi, Satoko; Trejo, Alfonso; Parise, Berengere

    2013-02-10

    We present sensitive, high angular resolution ({approx}0.''2) submillimeter continuum and line observations of IRAS 16293-2422B made with the Atacama Large Millimeter/Submillimeter Array. The 0.45 mm continuum observations reveal a single and very compact source associated with IRAS 16293-2422B. This submillimeter source has a deconvolved angular size of about 400 mas (50 AU) and does not show any inner structure inside of this diameter. The H{sup 13}CN, HC{sup 15}N, and CH{sub 3}OH line emission regions are about twice as large as the continuum emission and reveal a pronounced inner depression or ''hole'' with a size comparable to that estimated for the submillimeter continuum. We suggest that the presence of this inner depression and the fact that we do not see an inner structure (or a flat structure) in the continuum are produced by very optically thick dust located in the innermost parts of IRAS 16293-2422B. All three lines also show pronounced inverse P-Cygni profiles with infall and dispersion velocities larger than those recently reported from observations at lower frequencies, suggesting that we are detecting faster and more turbulent gas located closer to the central object. Finally, we report a small east-west velocity gradient in IRAS 16293-2422B that suggests that its disk plane is likely located very close to the plane of the sky.

  20. AN INFRARED-LUMINOUS MERGER WITH TWO BIPOLAR MOLECULAR OUTFLOWS: ALMA AND SMA OBSERVATIONS OF NGC 3256

    SciTech Connect

    Sakamoto, Kazushi; Aalto, Susanne; Combes, Francoise; Evans, Aaron; Peck, Alison

    2014-12-20

    We report Atacama Large Millimeter/sub-millimeter Array and Submillimeter Array observations of the infrared-luminous merger NGC 3256, the most luminous galaxy within z = 0.01. Both of the two merger nuclei separated by 5'' (0.8 kpc) have a molecular gas concentration, a nuclear disk, with Σ{sub mol} > 10{sup 3} M {sub ☉} pc{sup –2}. The northern nucleus is more massive and is surrounded by molecular spiral arms. Its nuclear disk is face-on, while the southern nuclear disk is almost edge-on. The high-velocity molecular gas in the system can be resolved into two molecular outflows from the two nuclei. The one from the northern nucleus is part of a starburst-driven superwind seen nearly pole-on. Its maximum velocity is >750 km s{sup –1} and its mass outflow rate is >60 M {sub ☉} yr{sup –1} for a conversion factor X{sub CO}=N{sub H{sub 2}}/I{sub CO(1−0)} of 1 × 10{sup 20} cm{sup –2} (K km s{sup –1}){sup –1}. The molecular outflow from the southern nucleus is a highly collimated bipolar jet seen nearly edge-on. Its line-of-sight velocity increases with distance, out to 300 pc from the nucleus, to the maximum de-projected velocity of ∼2000 km s{sup –1} for the estimated inclination and ≳1000 km s{sup –1} taking into account the uncertainty. Its mass outflow rate is estimated to be >50 M {sub ☉} yr{sup –1} for the same X {sub CO}. This southern outflow has indications of being driven by a bipolar radio jet from an active galactic nucleus that recently weakened. The sum of these outflow rates, although subject to the uncertainty in the molecular mass estimate, either exceeds or compares to the total star formation rate. The feedback from nuclear activity through molecular outflows is therefore significant in the gas consumption, and hence evolution, of this system.

  1. A RECENT ACCRETION BURST IN THE LOW-MASS PROTOSTAR IRAS 15398-3359: ALMA IMAGING OF ITS RELATED CHEMISTRY

    SciTech Connect

    Jørgensen, Jes K.; Brinch, Christian; Lindberg, Johan E.; Bisschop, Suzanne E.; Visser, Ruud; Bergin, Edwin A.; Sakai, Nami; Yamamoto, Satoshi; Harsono, Daniel; Van Dishoeck, Ewine F.; Persson, Magnus V.

    2013-12-20

    Low-mass protostars have been suggested to show highly variable accretion rates throughout their evolution. Such changes in accretion, and related heating of their ambient envelopes, may trigger significant chemical variations on different spatial scales and from source-to-source. We present images of emission from C{sup 17}O, H{sup 13}CO{sup +}, CH{sub 3}OH, C{sup 34}S and C{sub 2}H toward the low-mass protostar IRAS 15398-3359 on 0.''5 (75 AU diameter) scales with the Atacama Large Millimeter/submillimeter Array at 340 GHz. The resolved images show that the emission from H{sup 13}CO{sup +} is only present in a ring-like structure with a radius of about 1-1.''5 (150-200 AU) whereas the CO and other high dipole moment molecules are centrally condensed toward the location of the central protostar. We propose that HCO{sup +} is destroyed by water vapor present on small scales. The origin of this water vapor is likely an accretion burst during the last 100-1000 yr increasing the luminosity of IRAS 15398-3359 by a factor of 100 above its current luminosity. Such a burst in luminosity can also explain the centrally condensed CH{sub 3}OH and extended warm carbon-chain chemistry observed in this source and furthermore be reflected in the relative faintness of its compact continuum emission compared to other protostars.

  2. AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: NEAR-INFRARED MORPHOLOGIES AND STELLAR SIZES

    SciTech Connect

    Chen, Chian-Chou; Smail, Ian; Swinbank, A. M.; Simpson, J. M.; Ma, Cheng-Jiun; Alexander, D. M.; Danielson, A. L. R.; Edge, A. C.; Biggs, A. D.; Ivison, R. J.; Brandt, W. N.; Chapman, S. C.; Coppin, K. E. K.; Dannerbauer, H.; Greve, T. R.; Karim, A.; Menten, Karl M.; Schinnerer, E.; Walter, F.; Wardlow, J. L.; and others

    2015-02-01

    We analyze Hubble Space Telescope WFC3/H {sub 160}-band observations of a sample of 48 Atacama Large Millimeter/submillimeter Array detected submillimeter galaxies (SMGs) in the Extended Chandra Deep Field South field, to study their stellar morphologies and sizes. We detect 79% ± 17% of the SMGs in the H {sub 160}-band imaging with a median sensitivity of 27.8 mag, and most (80%) of the nondetections are SMGs with 870 μm fluxes of S {sub 870} < 3 mJy. With a surface brightness limit of μ {sub H} ∼ 26 mag arcsec{sup –2}, we find that 82% ± 9% of the H {sub 160}-band-detected SMGs at z = 1-3 appear to have disturbed morphologies, meaning they are visually classified as either irregulars or interacting systems, or both. By determining a Sérsic fit to the H {sub 160} surface brightness profiles, we derive a median Sérsic index of n = 1.2 ± 0.3 and a median half-light radius of r{sub e} = 4.4{sub −0.5}{sup +1.1} kpc for our SMGs at z = 1-3. We also find significant displacements between the positions of the H {sub 160} component and 870 μm emission in these systems, suggesting that the dusty starburst regions and less-obscured stellar distribution are not colocated. We find significant differences in the sizes and the Sérsic index between our z = 2-3 SMGs and z ∼ 2 quiescent galaxies, suggesting that a major transformation of the stellar light profile is needed in the quenching processes if SMGs are progenitors of the red-and-dead z ∼ 2 galaxies. Given the short-lived nature of SMGs, we postulate that the majority of the z = 2-3 SMGs with S {sub 870} ≳ 2 mJy are early/mid-stage major mergers.

  3. ALMA OBSERVATIONS OF THE IRDC CLUMP G34.43+00.24 MM3: HOT CORE AND MOLECULAR OUTFLOWS

    SciTech Connect

    Sakai, Takeshi; Sakai, Nami; Yamamoto, Satoshi; Foster, Jonathan B.; Sanhueza, Patricio; Jackson, James M.; Kassis, Marc; Furuya, Kenji; Aikawa, Yuri; Hirota, Tomoya

    2013-09-20

    We have observed a cluster forming clump (MM3) associated with the infrared dark cloud G34.43+00.24 in the 1.3 mm continuum and the CH{sub 3}OH, CS, {sup 13}CS, SiO, CH{sub 3}CH{sub 2}CN, and HCOOCH{sub 3} lines with the Atacama Large Millimeter/submillimeter Array and in K-band with the Keck telescope. We have found a young outflow toward the center of this clump in the SiO, CS, and CH{sub 3}OH lines. This outflow is likely driven by a protostar embedded in a hot core, which is traced by the CH{sub 3}CH{sub 2}CN, HCOOCH{sub 3}, {sup 13}CS, and high excitation CH{sub 3}OH lines. The size of the hot core is about 800 × 300 AU in spite of its low mass (<1.1 M {sub ☉}), suggesting a high accretion rate or the presence of multiple star system harboring a few hot corinos. The outflow is highly collimated, and the dynamical timescale is estimated to be less than 740 yr. In addition, we have also detected extended emission of SiO, CS, and CH{sub 3}OH, which is not associated with the hot core and the outflow. This emission may be related to past star formation activity in the clump. Although G34.43+00.24 MM3 is surrounded by a dark feature in infrared, it has already experienced active formation of low-mass stars in an early stage of clump evolution.

  4. ALMA Imaging and Gravitational Lens Models of South Pole Telescope—Selected Dusty, Star-Forming Galaxies at High Redshifts

    NASA Astrophysics Data System (ADS)

    Spilker, J. S.; Marrone, D. P.; Aravena, M.; Béthermin, M.; Bothwell, M. S.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; de Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; Litke, K.; Ma, J.; Malkan, M.; Rotermund, K. M.; Strandet, M.; Vieira, J. D.; Weiss, A.; Welikala, N.

    2016-08-01

    The South Pole Telescope has discovered 100 gravitationally lensed, high-redshift, dusty, star-forming galaxies (DSFGs). We present 0.″5 resolution 870 μ {{m}} Atacama Large Millimeter/submillimeter Array imaging of a sample of 47 DSFGs spanning z=1.9{--}5.7, and construct gravitational lens models of these sources. Our visibility-based lens modeling incorporates several sources of residual interferometric calibration uncertainty, allowing us to properly account for noise in the observations. At least 70% of the sources are strongly lensed by foreground galaxies ({μ }870μ {{m}}\\gt 2), with a median magnification of {μ }870μ {{m}}=6.3, extending to {μ }870μ {{m}}\\gt 30. We compare the intrinsic size distribution of the strongly lensed sources to a similar number of unlensed DSFGs and find no significant differences in spite of a bias between the magnification and intrinsic source size. This may indicate that the true size distribution of DSFGs is relatively narrow. We use the source sizes to constrain the wavelength at which the dust optical depth is unity and find this wavelength to be correlated with the dust temperature. This correlation leads to discrepancies in dust mass estimates of a factor of two compared to estimates using a single value for this wavelength. We investigate the relationship between the [C ii] line and the far-infrared luminosity and find that the same correlation between the [C ii]/{L}{{FIR}} ratio and {{{Σ }}}{{FIR}} found for low-redshift star-forming galaxies applies to high-redshift galaxies and extends at least two orders of magnitude higher in {{{Σ }}}{{FIR}}. This lends further credence to the claim that the compactness of the IR-emitting region is the controlling parameter in establishing the “[C ii] deficit.”

  5. ALMA observations of the T Tauri binary system AS 205: evidence for molecular winds and/or binary interactions

    SciTech Connect

    Salyk, Colette; Pontoppidan, Klaus; Corder, Stuartt; Muñoz, Diego; Zhang, Ke; Blake, Geoffrey A.

    2014-09-01

    In this study, we present high-resolution millimeter observations of the dust and gas disk of the T Tauri star AS 205 N and its companion, AS 205 S, obtained with the Atacama Large Millimeter Array. The gas disk around AS 205 N, for which infrared emission spectroscopy demonstrates significant deviations from Keplerian motion that has been interpreted as evidence for a disk wind, also displays significant deviations from Keplerian disk emission in the observations presented here. Detections near both AS 205 N and S are obtained in 1.3 mm continuum, {sup 12}CO 2-1, {sup 13}CO 2-1, and C{sup 18}O 2-1. The {sup 12}CO emission is extended up to ∼2'' from AS 205 N, and both {sup 12}CO and {sup 13}CO display deviations from Keplerian rotation at all angular scales. Two possible explanations for these observations hold up best to close scrutiny—tidal interaction with AS 205 S or disk winds (or a combination of the two)—and we discuss these possibilities in some detail.

  6. ALMA Deep Field in SSA22: A Concentration of Dusty Starbursts in a z = 3.09 Protocluster Core

    NASA Astrophysics Data System (ADS)

    Umehata, H.; Tamura, Y.; Kohno, K.; Ivison, R. J.; Alexander, D. M.; Geach, J. E.; Hatsukade, B.; Hughes, D. H.; Ikarashi, S.; Kato, Y.; Izumi, T.; Kawabe, R.; Kubo, M.; Lee, M.; Lehmer, B.; Makiya, R.; Matsuda, Y.; Nakanishi, K.; Saito, T.; Smail, I.; Yamada, T.; Yamaguchi, Y.; Yun, M.

    2015-12-01

    We report the results of 1.‧5 × 3‧ mapping at 1.1 mm with the Atacama Large Millimeter/submillimeter Array toward the central region of the z = 3.09 SSA22 protocluster. By combining our source catalog with archival spectroscopic redshifts, we find that eight submillimeter galaxies (SMGs) with flux densities, S1.1 mm = 0.7-6.4 mJy (LIR ˜ 1012.1-1013.1 L⊙) are at z = 3.08-3.10. Not only are these SMGs members of the protocluster, but they in fact reside within the node at the junction of the 50 Mpc scale filamentary three-dimensional structure traced by Lyα emitters in this field. The eight SMGs account for a star formation rate density (SFRD) ˜10 M⊙ yr-1 Mpc-3 in the node, which is two orders of magnitudes higher than the global SFRD at this redshift. We find that four of the eight SMGs host an X-ray-luminous active galactic nucleus. Our results suggest that the vigorous star formation activity and the growth of supermassive black holes (SMBHs) occurred simultaneously in the densest regions at z ˜ 3, which may correspond to the most active historical phase of the massive galaxy population found in the core of the clusters in the present universe. Two SMGs are associated with Lyα blobs, implying that the two populations coexist in high-density environments for a few cases.

  7. Retreat from Alma Ata? The WHO's report on Task Shifting to community health workers for AIDS care in poor countries.

    PubMed

    Campbell, C; Scott, K

    2011-01-01

    This paper examines the potential of community health worker (CHW) programmes, as proposed by the 2008 World Health Organisation (WHO) document Task Shifting to tackle health worker shortages, to contribute to HIV/AIDS prevention and treatment and various Millennium Development Goals in low-income countries. It examines the WHO proposal through a literature review of factors that have facilitated the success of previous CHW experiences. The WHO has taken account of five key lessons learnt from past CHW programmes (the need for strong management, appropriate selection, suitable training, adequate retention structures and good relationships with other healthcare workers). It has, however, neglected to emphasise the importance of a sixth lesson, the 'community embeddedness' of CHWs, found to be of critical importance to the success of past CHW programmes. We have no doubt that the WHO plans will increase the number of workers able to perform medically oriented tasks. However, we argue that without community embeddedness, CHWs will be unable to successfully perform the socially oriented tasks assigned to them by the WHO, such as health education and counselling. We locate the WHO's neglect of community embeddedness within the context of a broader global public health trend away from community-focused primary healthcare towards biomedically focused selective healthcare. PMID:19916089

  8. News and Views: ALMA examines Centaurus A; WMAP team wins Gruber Prize; EUCLID moves closer to launch

    NASA Astrophysics Data System (ADS)

    2012-08-01

    Charles Bennett (right) and the team behind the Wilkinson Microwave Anisotropy Probe received the 2012 Gruber Prize, in recognition of the precision of their results that have turned an “appealing scenario into precise science”. ESA's dark energy and dark matter mission, EUCLID, has received approval from the Science Programme Committee to move into the full contruction phase, ahead of launch in 2020.

  9. ALMA REDSHIFTS OF MILLIMETER-SELECTED GALAXIES FROM THE SPT SURVEY: THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES

    SciTech Connect

    Weiss, A.; De Breuck, C.; Aravena, M.; Biggs, A. D.; Marrone, D. P.; Bothwell, M.; Vieira, J. D.; Bock, J. J.; Aguirre, J. E.; Aird, K. A.; Ashby, M. L. N.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Bethermin, M.; Brodwin, M.; Chapman, S. C.; and others

    2013-04-10

    Using the Atacama Large Millimeter/submillimeter Array, we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensed dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope. The sources were selected to have S{sub 1.4{sub mm}} > 20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S{sub 843{sub MHz}} < 6 mJy) or far-infrared counterparts (S{sub 100{sub {mu}m}} < 1 Jy, S{sub 60{sub {mu}m}} < 200 mJy). We robustly detect 44 line features in our survey, which we identify as redshifted emission lines of {sup 12}CO, {sup 13}CO, C I, H{sub 2}O, and H{sub 2}O{sup +}. We find one or more spectral features in 23 sources yielding a {approx}90% detection rate for this survey; in 12 of these sources we detect multiple lines, while in 11 sources we detect only a single line. For the sources with only one detected line, we break the redshift degeneracy with additional spectroscopic observations if available, or infer the most likely line identification based on photometric data. This yields secure redshifts for {approx}70% of the sample. The three sources with no lines detected are tentatively placed in the redshift desert between 1.7 < z < 2.0. The resulting mean redshift of our sample is z-bar = 3.5. This finding is in contrast to the redshift distribution of radio-identified DSFGs, which have a significantly lower mean redshift of z-bar = 2.3 and for which only 10%-15% of the population is expected to be at z > 3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.

  10. Alma view of G0.253+0.016: Can cloud-cloud collision form the cloud?

    SciTech Connect

    Higuchi, Aya E.; Chibueze, James O.; Habe, Asao; Takahira, Ken; Takano, Shuro E-mail: ahiguchi@mx.ibaraki.ac.jp

    2014-06-01

    We present the results of the sulfur monoxide, SO, line emission observations of G0.253+0.016 with the Atacama Large Millimeter/Submillimeter Array at an angular resolution of 1.''7. The dense and massive molecular cloud of G0.253+0.016 is highly sub-structured, yet it shows no obvious signs of cluster formation. We found three outstanding features of the cloud from the SO emission, namely, shell structure with a radius of 1.3 pc, large velocity gradients of 20 km s{sup –1} pc{sup –1} with the cloud, and cores with large velocity dispersions (30-40 km s{sup –1}) around the shell structure. We suggest that these large-velocity dispersion cores will form high-mass stars in the future. In an attempt to explore the formation scenario of the dense cloud, we compared our results with numerical simulations; therefore, we propose that G0.253+0.016 may have formed due to a cloud-cloud collision process.

  11. Synthetic observations of the evolution of starless cores in a molecular cloud simulation: Comparisons with JCMT data and predictions for alma

    SciTech Connect

    Mairs, Steve; Johnstone, Doug; Offner, Stella S. R.; Schnee, Scott

    2014-03-01

    Interpreting the nature of starless cores has been a prominent goal in star formation for many years. In order to characterize the evolutionary stages of these objects, we perform synthetic observations of a numerical simulation of a turbulent molecular cloud. We find that nearly all cores that we detect are associated with filaments and eventually form protostars. We conclude that observed starless cores that appear Jeans unstable are only marginally larger than their respective Jeans masses (within a factor of three). We note single dish observations such as those performed with the James Clerk Maxwell Telescope appear to miss significant core structure on small scales because of beam averaging. Finally, we predict that interferometric observations with Atacama Large Millimeter Array Cycle 1 will resolve the important small-scale structure, which has so far been missed by millimeter wavelength observations.

  12. Synthetic Observations of the Evolution of Starless Cores in a Molecular Cloud Simulation: Comparisons with JCMT Data and Predictions for ALMA

    NASA Astrophysics Data System (ADS)

    Mairs, Steve; Johnstone, Doug; Offner, Stella S. R.; Schnee, Scott

    2014-03-01

    Interpreting the nature of starless cores has been a prominent goal in star formation for many years. In order to characterize the evolutionary stages of these objects, we perform synthetic observations of a numerical simulation of a turbulent molecular cloud. We find that nearly all cores that we detect are associated with filaments and eventually form protostars. We conclude that observed starless cores that appear Jeans unstable are only marginally larger than their respective Jeans masses (within a factor of three). We note single dish observations such as those performed with the James Clerk Maxwell Telescope appear to miss significant core structure on small scales because of beam averaging. Finally, we predict that interferometric observations with Atacama Large Millimeter Array Cycle 1 will resolve the important small-scale structure, which has so far been missed by millimeter wavelength observations.

  13. ALMA OBSERVATIONS OF THE IRDC CLUMP G34.43+00.24 MM3: 278 GHz CLASS I METHANOL MASERS

    SciTech Connect

    Yanagida, Takahiro; Sakai, Takeshi; Hirota, Tomoya; Sanhueza, Patricio; Sakai, Nami; Yamamoto, Satoshi; Foster, Jonathan B.; Jackson, James M.; Furuya, Kenji; Aikawa, Yuri

    2014-10-10

    We have observed a molecular clump (MM3) associated with the infrared dark cloud G34.43+00.24 in the CH{sub 3}OH J{sub K}  = 9{sub –1}-8{sub 0} E, 5{sub 0}-4{sub 0} E, and 5{sub –1}-4{sub –1} E lines at sub-arcsecond resolution by using the Atacama Large Millimeter/submillimeter Array. By comparing the CH{sub 3}OH J{sub K}  = 9{sub –1}-8{sub 0} E emission with the CH{sub 3}OH 5{sub 0}-4{sub 0} E and 5{sub –1}-4{sub –1} E emission, we have found that the CH{sub 3}OH J{sub K}  = 9{sub –1}-8{sub 0} E emission is masing. We have clearly shown that the CH{sub 3}OH J{sub K}  = 9{sub –1}-8{sub 0} masers arise from the post shocked gas in the interacting regions between the outflows and ambient dense gas. Toward the strongest peak of the CH{sub 3}OH maser emission, SiO J = 6-5 emission is very weak. This indicates that the CH{sub 3}OH maser emission traces relatively old shocks or weak shocks.

  14. ALMA observations of 99 GHz free-free and H40α line emission from star formation in the centre of NGC 253

    NASA Astrophysics Data System (ADS)

    Bendo, G. J.; Beswick, R. J.; D'Cruze, M. J.; Dickinson, C.; Fuller, G. A.; Muxlow, T. W. B.

    2015-06-01

    We present Atacama Large Millimeter/submillimeter Array observations of 99.02 GHz free-free and H40α emission from the centre of the nearby starburst galaxy NGC 253. We calculate electron temperatures of 3700-4500 K for the photoionized gas, which agrees with previous measurements. We measure a photoionizing photon production rate of (3.2 ± 0.2) × 1053 s-1 and a star formation rate of 1.73 ± 0.12 M⊙ yr-1 within the central 20 × 10 arcsec, which fall within the broad range of measurements from previous millimetre and radio observations but which are better constrained. We also demonstrate that the dust opacities are ˜3 dex higher than inferred from previous near-infrared data, which illustrates the benefits of using millimetre star formation tracers in very dusty sources.

  15. The Dense Gas in the Largest Molecular Complexes of the Antennae: HCN and HCO+ Observations of NGC 4038/39 Using ALMA

    NASA Astrophysics Data System (ADS)

    Schirm, Maximilien R. P.; Wilson, Christine D.; Madden, Suzanne C.; Clements, Dave L.

    2016-06-01

    We present observations of the dense molecular gas tracers {HCN}, {HNC}, and {{HCO}}+ in the J=1-0 transition using the Atacama Large Millimeter/submillimeter Array. We supplement our data sets with previous observations of {CO} J=1-0, which trace the total molecular gas content. We separate the Antennae into seven bright regions in which we detect emission from all three molecules, including the nuclei of NGC 4038 and NGC 4039, five super giant molecular complexes in the overlap region, and two additional bright clouds. We find that the ratio of {L}{HCN}/{L}{CO}, which traces the dense molecular gas fraction, is greater in the two nuclei ({L}{HCN}/{L}{CO} ∼ \\quad 0.07-0.08) than in the overlap region ({L}{HCN}/{L}{CO} \\lt 0.05). We attribute this to an increase in pressure due to the stellar potential within the nuclei; a similar effect to what has been seen previously in the Milky Way and nearby spiral galaxies. Furthermore, the ratio of {L}{HNC}/{L}{HCN} ∼ \\quad 0.3-0.4 does not vary by more than a factor of 1.5 between regions. By comparing our measured ratios to photon dominated region (PDR) models including mechanical heating, we find that the ratio of {L}{HNC}/{L}{HCN} is consistent with mechanical heating contributing ≳5%–10% of the PDR surface heating to the total heating budget. Finally, the ratio of {L}{HCN}/{L}{HCO+} varies from ∼1 in the nucleus of NGC 4038 down to ∼0.5 in the overlap region. The lower ratio in the overlap region may be due to an increase in the cosmic ray rate from the increased supernova rate within this region.

  16. Landscape structure and management alter the outcome of a pesticide ERA: Evaluating impacts of endocrine disruption using the ALMaSS European Brown Hare model.

    PubMed

    Topping, Chris J; Dalby, Lars; Skov, Flemming

    2016-01-15

    There is a gradual change towards explicitly considering landscapes in regulatory risk assessment. To realise the objective of developing representative scenarios for risk assessment it is necessary to know how detailed a landscape representation is needed to generate a realistic risk assessment, and indeed how to generate such landscapes. This paper evaluates the contribution of landscape and farming components to a model based risk assessment of a fictitious endocrine disruptor on hares. In addition, we present methods and code examples for generation of landscape structures and farming simulation from data collected primarily for EU agricultural subsidy support and GIS map data. Ten different Danish landscapes were generated and the ERA carried out for each landscape using two different assumed toxicities. The results showed negative impacts in all cases, but the extent and form in terms of impacts on abundance or occupancy differed greatly between landscapes. A meta-model was created, predicting impact from landscape and farming characteristics. Scenarios based on all combinations of farming and landscape for five landscapes representing extreme and middle impacts were created. The meta-models developed from the 10 real landscapes failed to predict impacts for these 25 scenarios. Landscape, farming, and the emergent density of hares all influenced the results of the risk assessment considerably. The study indicates that prediction of a reasonable worst case scenario is difficult from structural, farming or population metrics; rather the emergent properties generated from interactions between landscape, management and ecology are needed. Meta-modelling may also fail to predict impacts, even when restricting inputs to combinations of those used to create the model. Future ERA may therefore need to make use of multiple scenarios representing a wide range of conditions to avoid locally unacceptable risks. This approach could now be feasible Europe wide given the landscape generation methods presented. PMID:26490527

  17. 13. PORT PROFILE VIEW OF BARN DOOR RUDDER, SCOW SCHOONER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. PORT PROFILE VIEW OF BARN DOOR RUDDER, SCOW SCHOONER ALMA. NOTE RIGGING THAT ALLOWS STEERING WHEEL TO BE RAISED FOR VIEWING OVER HAY STACKS - Scow Schooner ALMA, Hyde Street Pier, San Francisco, San Francisco County, CA

  18. Cross-sections of two-prong exclusive reactions in ¯pp Interactions at22.4 GeV/c: Alma Ata-Dubna-Helsinki-Moscow-Prague Collaboration

    NASA Astrophysics Data System (ADS)

    Batyunya, B. V.; Boguslavsky, I. V.; Bruncko, D.; Gramenitsky, I. M.; Lednický, R.; Medved, K. S.; Vrba, V.; Boos, E. G.; Ermilova, D. I.; Temiraliev, T.; Dementiev, R. K.; Rud, V. I.; Korzhavina, I. A.; Tikhonova, L. A.; Levonian, S. V.; Herynek, I.; Lokajíček, M.; Řídký, J.; Šimák, V.; Valkárová, A.; Kanazirsky, H.; Zlatanov, Z.; Villanen, P.; Walck, E.

    1988-03-01

    The results of the cross-section determination of some two-prong final states with one neutral particle (1 C-fits) in ¯ pp-interactions at 22.4 GeV/ c are presented. These results have been obtained from pictures of the HBC “Ludmila”. The methodical problems of the reaction selection are presented, the fulfilling of CP-invariance channels is demonstrated and the energetic behaviour of their cross-sections is analysed.

  19. From SEST to ALMA, from NTT to OWL: of vision, dreams and realities. Perspectives from the Directors General, past and present: Harry van der Laan, ESO Director General, 1988 - 1992

    NASA Astrophysics Data System (ADS)

    van der Laan, Harry

    2002-09-01

    ESO has come a long way since in 1987 the first rocks were blasted at the NTT site on La Silla. Those were exciting days, when SEST came online and soon after the VLT programme was getting up to speed upon its approval in December 1987. It was not an easy time for staff or management: taking up the role of main contractor for its own design and construction programme rather than finding an industrial consultant to do so was an enormous challenge. It was not obvious that it could be done, for more than ninety per cent of ESO's staff capacity was occupied with running La Silla, operating Headquarter services and constructing the NTT. The VLT Blue Book and the bag of money Council had allocated to its realization were necessary but by no means sufficient. For the new, formidable task, manpower had to be found and trained, manpower both reassigned and newly recruited.

  20. Witnessing the Birth of the Red Sequence: ALMA High-resolution Imaging of [C II] and Dust in Two Interacting Ultra-red Starbursts at z = 4.425

    NASA Astrophysics Data System (ADS)

    Oteo, I.; Ivison, R. J.; Dunne, L.; Smail, I.; Swinbank, A. M.; Zhang, Z.-Y.; Lewis, A.; Maddox, S.; Riechers, D.; Serjeant, S.; Van der Werf, P.; Biggs, A. D.; Bremer, M.; Cigan, P.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Eales, S.; Ibar, E.; Messias, H.; Michałowski, M. J.; Pérez-Fournon, I.; van Kampen, E.

    2016-08-01

    Exploiting the sensitivity and spatial resolution of the Atacama Large Millimeter/submillimeter Array, we have studied the morphology and the physical scale of the interstellar medium—both gas and dust—in SGP 38326, an unlensed pair of interacting starbursts at z = 4.425. SGP 38326 is the most luminous star bursting system known at z > 4, with a total IR luminosity of L IR ˜ 2.5 × 1013 L ⊙ and a star formation rate of ˜ 4500 M ⊙ yr‑1. SGP 38326 also contains a molecular gas reservoir among the most massive yet found in the early universe, and it is the likely progenitor of a massive, red-and-dead elliptical galaxy at z ˜ 3. Probing scales of ˜0.″1 or ˜800 pc we find that the smooth distribution of the continuum emission from cool dust grains contrasts with the more irregular morphology of the gas, as traced by the [C ii] fine structure emission. The gas is also extended over larger physical scales than the dust. The velocity information provided by the resolved [C ii] emission reveals that the dynamics of the two interacting components of SGP 38326 are each compatible with disk-like, ordered rotation, but also reveals an ISM which is turbulent and unstable. Our observations support a scenario where at least a subset of the most distant extreme starbursts are highly dissipative mergers of gas-rich galaxies.

  1. Witnessing the Birth of the Red Sequence: ALMA High-resolution Imaging of [C II] and Dust in Two Interacting Ultra-red Starbursts at z = 4.425

    NASA Astrophysics Data System (ADS)

    Oteo, I.; Ivison, R. J.; Dunne, L.; Smail, I.; Swinbank, A. M.; Zhang, Z.-Y.; Lewis, A.; Maddox, S.; Riechers, D.; Serjeant, S.; Van der Werf, P.; Biggs, A. D.; Bremer, M.; Cigan, P.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Eales, S.; Ibar, E.; Messias, H.; Michałowski, M. J.; Pérez-Fournon, I.; van Kampen, E.

    2016-08-01

    Exploiting the sensitivity and spatial resolution of the Atacama Large Millimeter/submillimeter Array, we have studied the morphology and the physical scale of the interstellar medium—both gas and dust—in SGP 38326, an unlensed pair of interacting starbursts at z = 4.425. SGP 38326 is the most luminous star bursting system known at z > 4, with a total IR luminosity of L IR ∼ 2.5 × 1013 L ⊙ and a star formation rate of ∼ 4500 M ⊙ yr‑1. SGP 38326 also contains a molecular gas reservoir among the most massive yet found in the early universe, and it is the likely progenitor of a massive, red-and-dead elliptical galaxy at z ∼ 3. Probing scales of ∼0.″1 or ∼800 pc we find that the smooth distribution of the continuum emission from cool dust grains contrasts with the more irregular morphology of the gas, as traced by the [C ii] fine structure emission. The gas is also extended over larger physical scales than the dust. The velocity information provided by the resolved [C ii] emission reveals that the dynamics of the two interacting components of SGP 38326 are each compatible with disk-like, ordered rotation, but also reveals an ISM which is turbulent and unstable. Our observations support a scenario where at least a subset of the most distant extreme starbursts are highly dissipative mergers of gas-rich galaxies.

  2. Olivine in Almahata Sitta - Curiouser and Curiouser

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Herrin, J.; Mikouchi, T.; Satake, W.; Kurihara, T.; Sandford, S. A.; Milam, S. N.; Hagiya, K.; Ohsumi, K.; Friedrich, J. M.; Jeniskens, P.; Shaddad, M. H.; Le, L.; Robinson, G. A.

    2010-01-01

    Almahata Sitta (hereafter Alma) is an anomalous, polymict ureilite. Anomalous features include low abundance of olivine, large compositional range of silicates, high abundance and large size of pores, crystalline pore wall linings, and overall finegrained texture. Tomography suggests the presence of foliation, which is known from other ureilites. Alma pyroxenes and their interpretation are discussed in two companion abstracts. In this abstract we discuss the composition of olivine in Alma, which is indicative of the complexity of this meteorite.

  3. MARINE SULFUR CYCLE. Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle.

    PubMed

    Alcolombri, Uria; Ben-Dor, Shifra; Feldmesser, Ester; Levin, Yishai; Tawfik, Dan S; Vardi, Assaf

    2015-06-26

    Algal blooms produce large amounts of dimethyl sulfide (DMS), a volatile with a diverse signaling role in marine food webs that is emitted to the atmosphere, where it can affect cloud formation. The algal enzymes responsible for forming DMS from dimethylsulfoniopropionate (DMSP) remain unidentified despite their critical role in the global sulfur cycle. We identified and characterized Alma1, a DMSP lyase from the bloom-forming algae Emiliania huxleyi. Alma1 is a tetrameric, redox-sensitive enzyme of the aspartate racemase superfamily. Recombinant Alma1 exhibits biochemical features identical to the DMSP lyase in E. huxleyi, and DMS released by various E. huxleyi isolates correlates with their Alma1 levels. Sequence homology searches suggest that Alma1 represents a gene family present in major, globally distributed phytoplankton taxa and in other marine organisms. PMID:26113722

  4. Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle

    NASA Astrophysics Data System (ADS)

    Alcolombri, Uria; Ben-Dor, Shifra; Feldmesser, Ester; Levin, Yishai; Tawfik, Dan S.; Vardi, Assaf

    2015-06-01

    Algal blooms produce large amounts of dimethyl sulfide (DMS), a volatile with a diverse signaling role in marine food webs that is emitted to the atmosphere, where it can affect cloud formation. The algal enzymes responsible for forming DMS from dimethylsulfoniopropionate (DMSP) remain unidentified despite their critical role in the global sulfur cycle. We identified and characterized Alma1, a DMSP lyase from the bloom-forming algae Emiliania huxleyi. Alma1 is a tetrameric, redox-sensitive enzyme of the aspartate racemase superfamily. Recombinant Alma1 exhibits biochemical features identical to the DMSP lyase in E. huxleyi, and DMS released by various E. huxleyi isolates correlates with their Alma1 levels. Sequence homology searches suggest that Alma1 represents a gene family present in major, globally distributed phytoplankton taxa and in other marine organisms.

  5. The DataCapturer component for the Atacama Large Millimeter Array

    NASA Astrophysics Data System (ADS)

    Hafok, H.; Caillat, M.; McMullin, J.

    2006-07-01

    We describe the data capture process (DataCapturer) for the Atacama Large Millimeter Array (ALMA) control software. This is implemented as a JAVA-based CORBA-component running in the framework of the ALMA Common Software (ACS). During an observation, data (e.g., visibilities) and meta-data (e.g., information describing the state of the hardware, antennas, source, etc) flow through the control system and need to be recorded. All meta-data flows through the DataCapturer component where it is collected and organized as an ALMA Science Data model (ASDM) dataset and then written to the ALMA archive data base. DataCapturer is the interface between the telescope and the science domain. In the telescope domain it gets raw information from the control system and the correlator and produces science formated data for ALMA subsystems in the science domain. ASDM data is delivered to the Quicklook display sub-system and the telescope calibration sub-system of the ALMA Software. The final dataset is stored at the end of a sequence of observations (combined in an execution block) in the ALMA science archive.

  6. Close to the Sky

    NASA Astrophysics Data System (ADS)

    2007-11-01

    Today, a new ALMA outreach and educational book was publicly presented to city officials of San Pedro de Atacama in Chile, as part of the celebrations of the anniversary of the Andean village. ESO PR Photo 50a/07 ESO PR Photo 50a/07 A Useful Tool for Schools Entitled "Close to the sky: Biological heritage in the ALMA area", and edited in English and Spanish by ESO in Chile, the book collects unique on-site observations of the flora and fauna of the ALMA region performed by experts commissioned to investigate it and to provide key initiatives to protect it. "I thank the ALMA project for providing us a book that will surely be a good support for the education of children and youngsters of San Pedro de Atacama. Thanks to this publication, we expect our rich flora and fauna to be better known. I invite teachers and students to take advantage of this educational resource, which will be available in our schools", commented Ms. Sandra Berna, the Mayor of San Pedro de Atacama, who was given the book by representatives of the ALMA global collaboration project. Copies of the book 'Close to the sky' will be donated to all schools in the area, as a contribution to the education of students and young people in northern Chile. "From the very beginning of the project, ALMA construction has had a firm commitment to environment and local culture, protecting unique flora and fauna species and preserving old estancias belonging to the Likan Antai culture," said Jacques Lassalle, who represented ALMA at the hand-over. "Animals like the llama, the fox or the condor do not only live in the region where ALMA is now being built, but they are also key elements of the ancient Andean constellations. In this sense they are part of the same sky that will be explored by ALMA in the near future." ESO PR Photo 50c/07 ESO PR Photo 50c/07 Presentation of the ALMA book The ALMA Project is a giant, international observatory currently under construction on the high-altitude Chajnantor site in Chile

  7. 100 History-Making Ethnic Women

    ERIC Educational Resources Information Center

    York, Sherry

    2004-01-01

    A list of hundred history-making ethnic women who have created history in their respective fields and become successful writers is presented. The list includes Alma Flor Ada, Julia Alvarez and Oprah Winfrey.

  8. 78 FR 61381 - National Register of Historic Places; Notification of Pending Nominations and Related Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... Hessdale Rd., Alma, 13000856 MISSOURI Lincoln County Downtown Troy Historic District, Bounded by Annie Ave., 2nd, Marble & Court Sts., Troy, 13000857 St. Louis Independent city Dorris Row, 1105-9 Olive St.,...

  9. 94. DAM TAINTER GATE OPERATING MACHINERY METHOD OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    94. DAM - TAINTER GATE OPERATING MACHINERY - METHOD OF ATTACHING LIFTING CHAINS TO DRUMS OF HOIST - LAKESIDE TYPE (ML-4&5-55/34-FS), February 1938 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 4, Alma, Buffalo County, WI