Science.gov

Sample records for alpha decay widths

  1. High-resolution measurement of absolute {alpha}-decay widths in {sup 16}O

    SciTech Connect

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz.; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th.; Kruecken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2011-06-15

    By using a large-acceptance position-sensitive silicon detector array in coincidence with the high-resolution Munich Q3D spectrograph, unambiguous measurements have been made of the absolute {alpha}-particle decay widths from excited states in {sup 16}O* in the energy range 13.85 to 15.87 MeV. Carbon targets have been bombarded with 42-MeV {sup 6}Li beams to induce {sub 6}{sup 12}C({sub 3}{sup 6}Li, d){sub 8}{sup 16}O* reactions. The deuteron ejectiles were measured in the Q3D and the results gated by {sup 4}He+{sup 12}C breakup products detected in the silicon array, the efficiency of which was modeled using Monte Carlo simulations. By comparing total population and breakup-gated spectra, the following absolute {alpha}-decay widths have been measured with high resolution: {Gamma}{sub {alpha}}0/{Gamma}{sub tot} = 0.87{+-}0.11 (13.980 MeV), 1.04{+-}0.15 (14.302 MeV), 0.92{+-}0.10 (14.399 MeV), 0.59{+-}0.04 (14.815 MeV), 0.88{+-}0.18 (15.785 MeV), and {Gamma}{sub {alpha}}1/{Gamma}{sub tot}=1.14{+-}0.08 (14.660 MeV), 0.46{+-}0.06 (14.815 MeV).

  2. Alpha decay in electron surrounding

    SciTech Connect

    Igashov, S. Yu.; Tchuvil’sky, Yu. M.

    2013-12-15

    The influence of atomic electron shells on the constant of alpha decay of heavy and mediummass nuclei was considered in detail. A method for simultaneously taking into account the change in the potential-barrier shape and the effect of reflection of a diverging Coulomb wave in the classically allowed region was developed. The ratios of decay probabilities per unit time for a bare nucleus and the respective neutral atom were found for some alpha-decaying isotopes.

  3. Absolute decay width measurements in 16O

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th; Krücken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2012-09-01

    The reaction 126C(63Li, d)168O* at a 6Li bombarding energy of 42 MeV has been used to populate excited states in 16O. The deuteron ejectiles were measured using the high-resolution Munich Q3D spectrograph. A large-acceptance silicon-strip detector array was used to register the recoil and break-up products. This complete kinematic set-up has enabled absolute α-decay widths to be measured with high-resolution in the 13.9 to 15.9 MeV excitation energy regime in 16O; many for the first time. This energy region spans the 14.4 MeV four-α breakup threshold. Monte-Carlo simulations of the detector geometry and break-up processes yield detection efficiencies for the two dominant decay modes of 40% and 37% for the α+12C(g.s.) and a+12C(2+1) break-up channels respectively.

  4. Bremsstrahlung in {alpha} Decay Reexamined

    SciTech Connect

    Boie, H.; Scheit, H.; Jentschura, U. D.; Koeck, F.; Lauer, M.; Schwalm, D.; Milstein, A. I.; Terekhov, I. S.

    2007-07-13

    A high-statistics measurement of bremsstrahlung emitted in the {alpha} decay of {sup 210}Po has been performed, which allows us to follow the photon spectra up to energies of {approx}500 keV. The measured differential emission probability is in good agreement with our theoretical results obtained within the quasiclassical approximation as well as with the exact quantum mechanical calculation. It is shown that, due to the small effective electric dipole charge of the radiating system, a significant interference between the electric dipole and quadrupole contributions occurs, which is altering substantially the angular correlation between the {alpha} particle and the emitted photon.

  5. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    SciTech Connect

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  6. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations.

    PubMed

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green's function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states. PMID:26671378

  7. A Direct Measurement of the $W$ Decay Width

    SciTech Connect

    Vine, Troy

    2008-08-01

    A direct measurement of the W boson total decay width is presented in proton-antiproton collisions at √s = 1.96 TeV using data collected by the CDF II detector. The measurement is made by fitting a simulated signal to the tail of the transverse mass distribution in the electron and muon decay channels. An integrated luminosity of 350 pb-1 is used, collected between February 2002 and August 2004. Combining the results from the separate decay channels gives the decay width as 2.038 ± 0.072 GeV in agreement with the theoretical prediction of 2.093 ± 0.002 GeV. A system is presented for the management of detector calibrations using a relational database schema. A description of the implementation and monitoring of a procedure to provide general users with a simple interface to the complete set of calibrations is also given.

  8. Direct measurement of W boson decay width at DO

    NASA Astrophysics Data System (ADS)

    Xu, Qichun

    This thesis presents the first direct measurement of the W boson decay width, ΓW, with the W decay into an electron and neutrino final state using data collected by the DØ detector at the Tevatran collider. This analysis has used the W event sample collected in the Run I physics program. Backgrounds that contaminate the W sample are estimated using additional DØ data samples. Detailed Monte Carlo samples are used to template the transverse mass spectrum of the W events to extract the W decay width. Various sources of the systematic uncertainties of this measurement are investigated. The direct measurement result obtained in this thesis work is ΓW = 2.231+0.145-0.138(stat) +/- 0.092(sys) GeV. This result is consistent with the prediction of the Standard Model and the result from the indirect measurement from the DØ experiment.

  9. {lambda}(1520) {yields} {lambda}{gamma} Radiative-Decay Width

    SciTech Connect

    Vavilov, D.V.; Antipov, Yu.M.; Artamonov, A.V.; Batarin, V.A.; Victorov, V.A.; Golovkin, S.V.; Gorin, Yu.P.; Eroshin, O.V.; Kozhevnikov, A.P.; Konstantinov, A.S.; Kubarovsky, V.P.; Kurshetsov, V.F.; Landsberg, L.G.; Leontiev, V.M.; Molchanov, V.V.; Mukhin, V.A.; Patalakha, D.I.; Petrenko, S.V.; Petrukhin, A.I.; Kolganov, V.Z.

    2005-03-01

    The radiative decay {lambda}(1520) {yields} {lambda}{gamma} was recorded in the exclusive reaction p + N {yields} {lambda}(1520)K{sup +} + N at the SPHINX facility. The branching ratio for this decay and the corresponding partial width were found to be, respectively, Br[{lambda}(1520) {yields} {lambda}{gamma}] = (1.02 {+-} 0.21) x 10{sup -2} and {gamma}[{lambda}(1520) {yields} {lambda}{gamma}] = 159 {+-} 35 keV (the quoted errors are purely statistical, the systematic errors being within 15%)

  10. New Measurement of the π0 Radiative Decay Width

    NASA Astrophysics Data System (ADS)

    Larin, I.; McNulty, D.; Clinton, E.; Ambrozewicz, P.; Lawrence, D.; Nakagawa, I.; Prok, Y.; Teymurazyan, A.; Ahmidouch, A.; Asratyan, A.; Baker, K.; Benton, L.; Bernstein, A. M.; Burkert, V.; Cole, P.; Collins, P.; Dale, D.; Danagoulian, S.; Davidenko, G.; Demirchyan, R.; Deur, A.; Dolgolenko, A.; Dzyubenko, G.; Ent, R.; Evdokimov, A.; Feng, J.; Gabrielyan, M.; Gan, L.; Gasparian, A.; Gevorkyan, S.; Glamazdin, A.; Goryachev, V.; Gyurjyan, V.; Hardy, K.; He, J.; Ito, M.; Jiang, L.; Kashy, D.; Khandaker, M.; Kingsberry, P.; Kolarkar, A.; Konchatnyi, M.; Korchin, A.; Korsch, W.; Kowalski, S.; Kubantsev, M.; Kubarovsky, V.; Li, X.; Martel, P.; Matveev, V.; Mecking, B.; Milbrath, B.; Minehart, R.; Miskimen, R.; Mochalov, V.; Mtingwa, S.; Overby, S.; Pasyuk, E.; Payen, M.; Pedroni, R.; Ritchie, B.; Rodrigues, T. E.; Salgado, C.; Shahinyan, A.; Sitnikov, A.; Sober, D.; Stepanyan, S.; Stephens, W.; Underwood, J.; Vasiliev, A.; Vishnyakov, V.; Wood, M.; Zhou, S.

    2011-04-01

    High precision measurements of the differential cross sections for π0 photoproduction at forward angles for two nuclei, C12 and Pb208, have been performed for incident photon energies of 4.9-5.5 GeV to extract the π0→γγ decay width. The experiment was done at Jefferson Lab using the Hall B photon tagger and a high-resolution multichannel calorimeter. The π0→γγ decay width was extracted by fitting the measured cross sections using recently updated theoretical models for the process. The resulting value for the decay width is Γ(π0→γγ)=7.82±0.14(stat)±0.17(syst)eV. With the 2.8% total uncertainty, this result is a factor of 2.5 more precise than the current Particle Data Group average of this fundamental quantity, and it is consistent with current theoretical predictions.

  11. A New Measurement of the Pi0 Radiative Decay Width

    SciTech Connect

    Larin, I; Clinton, E; Ambrozewicz, P; Lawrence, D; Nakagawa, I; Prok, Y; Teymurazyan, A; Ahmidouch, A; Baker, K; Benton, L; Bernstein, A M; Burkert, V; Cole, P; Collins, P; Dale, D; Danagoulian, S; Davidenko, G; Demirchyan, R; Deur, A; Dolgolenko, A; Dzyubenko, Georgiy; Ent, R; Evdokimov, A; Feng, J; Gabrielyan, M; Gan, L; Gasparian, A; Gevorkyan, S; Glamazdin, A; Goryachev, V; Gyurjyan, V; Hardy, K; He, J; Ito, M; Jiang, L; Kashy, D; Khandaker, M; Kingsberry, P; Kolarkar, A; Konchatnyi, M; Korsch, W; Kowalski, S; Kubantsev, M; Kubarovsky, V; Li, X; Martel, P; Mecking, B; Milbrath, B; Minehart, R; Miskimen, R; Mochalov, V; Mtingwa, S; Overby, S; Pasyuk, E; Payen, M; Pedroni, R; Ritchie, B; Rodrigues, T E; Salgado, C; Shahinyan, A; Sitnikov, A; Sober, D; Stepanyan, S; Stephens, W; Underwood, J; Vishnyakov, V; Wood, M

    2011-04-01

    High precision measurements of the differential cross sections for $\\pi^0$ photoproduction at forward angles for two nuclei, $^{12}$C and $^{208}$Pb, have been performed for incident photon energies of 4.9 - 5.5 GeV to extract the ${\\pi^0 \\to \\gamma\\gamma}$ decay width. The experiment was done at Jefferson Lab using the Hall~B photon tagger and a high-resolution multichannel calorimeter. The ${\\pi^0 \\to \\gamma\\gamma}$ decay width was extracted by fitting the measured cross sections using recently updated theoretical models for the process. The resulting value for the decay width is $\\Gamma{(\\pi^0 \\to \\gamma\\gamma)} = 7.82 \\pm 0.14 ~({\\rm stat.}) \\pm 0.17 ~({\\rm syst.}) ~{\\rm eV}$. With the 2.8\\% total uncertainty, this result is a factor of 2.5 more precise than the current PDG average of this fundamental quantity and it is consistent with current theoretical predictions.

  12. Neutron decay widths of excited states of {sup 11}Be

    SciTech Connect

    Haigh, P. J.; Freer, M.; Ashwood, N. I.; Bloxham, T.; Curtis, N.; McEwan, P.; Bohlen, H. G.; Dorsch, T.; Kokalova, Tz.; Schulz, Ch.; Wheldon, C.

    2009-01-15

    The two-neutron transfer reaction {sup 9}Be({sup 16}O, {sup 14}O){sup 11}Be[{sup 10}Be +n] has been used to measure the branching ratios for the neutron decay of excited states of {sup 11}Be. The {sup 14}O ejectile was detected by a Q3D spectrometer at forward angles. The energies and angles of the {sup 10}Be fragments of the decaying {sup 11}Be* recoil were measured in coincidence with the {sup 14}O ejectile using a double-sided silicon strip detector array at backward angles. This enabled a kinematic reconstruction of the reaction to be performed. Theoretical decay branch ratios were calculated using barrier penetrability factors and were compared to the measured ratios to provide information on the relative reduced widths of the states. The decay widths have been used to link states in {sup 11}Be with a common structure and structurally to states in the daughter nucleus {sup 10}Be. The 3/2{sup -} 8.82-MeV state was identified as a candidate for a molecular band head.

  13. H I Lyman-alpha Equivalent Widths of Stellar Populations

    NASA Astrophysics Data System (ADS)

    Peña-Guerrero, María A.; Leitherer, Claus

    2013-12-01

    We have compiled a library of stellar Lyman-alpha (Lyα) equivalent widths in O and B stars using the model atmosphere codes CMFGEN and TLUSTY, respectively. The equivalent widths range from about 0 to 30 Å in absorption for early-O to mid-B stars. The purpose of this library is for the prediction of the underlying stellar Lyα absorption in stellar populations of star-forming galaxies with nebular Lyα emission. We implemented the grid of individual equivalent widths into the Starburst99 population synthesis code to generate synthetic Lyα equivalent widths for representative star formation histories. A starburst observed after 10 Myr will produce a stellar Lyα line with an equivalent width of ~ - 10 ± 4 Å in absorption for a Salpeter initial mass function. The lower value (deeper absorption) results from an instantaneous burst, and the higher value (shallower line) from continuous star formation. Depending on the escape fraction of nebular Lyα photons, the effect of stellar Lyα on the total profile ranges from negligible to dominant. If the nebular escape fraction is 10%, the stellar absorption and nebular emission equivalent widths become comparable for continuous star formation at ages of 10-20 Myr.

  14. Alpha Decay in the Complex-Energy Shell Model

    SciTech Connect

    Betan, R. Id

    2012-01-01

    Background: Alpha emission from a nucleus is a fundamental decay process in which the alpha particle formed inside the nucleus tunnels out through the potential barrier. Purpose: We describe alpha decay of 212Po and 104Te by means of the configuration interaction approach. Method: To compute the preformation factor and penetrability, we use the complex-energy shell model with a separable T = 1 interaction. The single-particle space is expanded in a Woods-Saxon basis that consists of bound and unbound resonant states. Special attention is paid to the treatment of the norm kernel appearing in the definition of the formation amplitude that guarantees the normalization of the channel function. Results: Without explicitly considering the alpha-cluster component in the wave function of the parent nucleus, we reproduce the experimental alpha-decay width of 212Po and predict an upper limit of T1/2 = 5.5 10 7 sec for the half-life of 104Te. Conclusions: The complex-energy shell model in a large valence configuration space is capable of providing a microscopic description of the alpha decay of heavy nuclei having two valence protons and two valence neutrons outside the doubly magic core. The inclusion of proton-neutron interaction between the valence nucleons is likely to shorten the predicted half-live of 104Te.

  15. Axial couplings and strong decay widths of heavy hadrons

    SciTech Connect

    William Detmold, C.-J. David Lin, Stefan Meinel

    2012-04-01

    We calculate the axial couplings of mesons and baryons containing a heavy quark in the static limit using lattice QCD. These couplings determine the leading interactions in heavy hadron chiral perturbation theory and are central quantities in heavy quark physics, as they control strong decay widths and the light-quark mass dependence of heavy hadron observables. Our analysis makes use of lattice data at six different pion masses, 227 MeV < m{sub {pi}} < 352 MeV, two lattice spacings, a = 0.085, 0.112 fm, and a volume of (2.7 fm){sup 3}. Our results for the axial couplings are g{sub 1} = 0.449(51), g{sub 2} = 0.84(20), and g{sub 3} = 0.71(13), where g{sub 1} governs the interaction between heavy-light mesons and pions and g{sub 2,3} are similar couplings between heavy-light baryons and pions. Using our lattice result for g{sub 3}, and constraining 1/m{sub Q} corrections in the strong decay widths with experimental data for {Sigma}{sub c}{sup (*)} decays, we obtain {Gamma}[{Sigma}{sub b}{sup (*)} {yields} {Lambda}{sub b} {pi}{sup {+-}}] = 4.2(1.0), 4.8(1.1), 7.3(1.6), 7.8(1.8) MeV for the {Sigma}{sub b}{sup +}, {Sigma}{sub b}{sup -}, {Sigma}{sub b}{sup *+}, {Sigma}{sub b}{sup *-} initial states, respectively. We also derive upper bounds on the widths of the {Xi}{sub b}{sup prime(*)} baryons.

  16. Heavy-light charm mesons spectroscopy and decay widths

    NASA Astrophysics Data System (ADS)

    Upadhyay, Alka; Batra, Meenakshi; Gupta, Pallavi

    2016-05-01

    We present the mass formula for heavy-light charm meson at one loop, using heavy quark effective theory. Formulating an effective Lagrangian, the masses of the ground state heavy mesons have been studied in the heavy quark limit, including leading corrections from finite heavy quark masses and nonzero light quark masses, using a constrained fit for the eight equations with 11 parameters including three coupling constants g, h, and g^' }. Masses determined using this approach are fitted to the experimentally known decay widths to estimate the strong coupling constants, showing a better match with available theoretical and experimental data.

  17. Alpha-Decay Half-Lives of Superheavy Nuclei

    SciTech Connect

    Budaca, A. I.; Silisteanu, I.; Silisteanu, A. O.; Anghel, C. I.

    2010-11-24

    Half-lives given by self-consistent models for the {alpha}-clustering and resonance scattering are calculated and compared with data and empirical estimates. The major influence of the pairing, deformed shell closures and screening corrections is evidenced in the systematics of half-lives and provides a convenient basis for the interpretation of observed trends of the data and for prediction of new results. The very small widths of {alpha}-resonances observed experimentally in fusion-evaporation reactions, are interpreted as resonance levels of radioactive products, and such a correlation contributes directly to the study of the nuclear structure on the basis of decay data.

  18. {alpha} Decay of Deformed Actinide Nuclei

    SciTech Connect

    Stewart, T.L.; Kermode, M.W.; Beachey, D.J.; Rowley, N.; Grant, I.S.; Kruppa, A.T.

    1996-07-01

    {alpha} decay through a deformed potential barrier produces significant mixing of angular momenta when mapped from the nuclear interior to the outside. Using experimental branching ratios and either semiclassical or coupled-channels transmission matrices, we have found that there is a set of internal amplitudes which is essentially constant for all even-even actinide nuclei. These same amplitudes also give good results for the known anisotropic {alpha}-particle emission of the favored decays of odd nuclei in the same mass region. {copyright} {ital 1996 The American Physical Society.}

  19. Exotic vector charmonium and its leptonic decay width

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Chiu, Wei-Feng; Gong, Ming; Gui, Long-Cheng; Liu, Zhao-Feng

    2016-08-01

    We propose a novel type of interpolating field operator, which manifests the hybrid-like configuration that the charm quark-antiquark pair recoils against gluonic degrees of freedom. A heavy vector charmonium-like state with a mass of 4.33(2),GeV is disentangled from the conventional charmonium states in the quenched approximation. This state has affinity for the hybrid-like operators but couples less to the relevant quark bilinear operator. We also try to extract its leptonic decay constant and give a tentative upper limit that it is less than one tenth of that of J/ψ, which corresponds to a leptonic decay width about dozens of eV. The connection of this state with X(4260) is also discussed. The numerical calculations were carried out on Tianhe-1A at the National Supercomputer Center (NSCC) in Tianjin and the GPU cluster at Hunan Normal University. This work is supported in part by the National Science Foundation of China (NSFC) (11575196, 11575197, 11335001, 11405053), Y.C. and Z.L. also acknowledge the support of NSFC (11261130311) (CRC 110 by DFG and NSFC)

  20. Alpha decay of {sup 181}Pb

    SciTech Connect

    Davids, C.N.; Henderson, D.J.; Hermann, R.

    1995-08-01

    The {alpha}-decay energy of {sup 181}Pb was measured as 7211(10) keV and 7044(15). In the first study the isotope was produced in {sup 90}Zr bombardments of {sup 94}Mo and, after traversing a velocity filter, implanted in a position-sensitive Si detector; no half life for {sup 181}Pb was reported. In the second study the isotope was produced in {sup 40}Ca bombardments of {sup 144}Sm and transported to a position in front of a Si(Au) surface barrier detector with a fast He-gas-jet capillary system; an estimate of 50 ms was determined for the {sup 181}Pb half life. Recently we investigated {sup 181}Pb {alpha} decay at ATLAS as part of a survey experiment in which a l-pnA beam of 400-MeV {sup 92}Mo was used to irradiate targets of {sup 89}Y, {sup 90,92,94}Zr, and {sup 92}Mo to examine yields for one- and two-nucleon evaporation products from symmetric cold-fusion reactions. Recoiling nuclei of interest were passed through the Fragment Mass Analyzer and implanted in a double-sided silicon strip detector for {alpha}-particle assay. With the {sup 90}Zr target we observed a group at 7065(20) keV which was correlated with A = 181 recoils and had a half life of 45(20) ms. Our new results for {sup 181}Pb therefore agreed with those of the second study. There was no indication in the {sup 90}Zr + {sup 92}Mo data of the 7211(10)-keV {alpha} particles seen by Keller et al. The interested reader is referred to the 1993 atomic mass evaluation wherein the input {alpha}-decay energies and resultant masses of the light Pb isotopes (including {sup 181}Pb) are discussed.

  1. Alpha-decay of light protactinium isotopes

    SciTech Connect

    Faestermann, T.; Gillitzer, A.; Hartel, K.; Henning, W.; Kienle, P.

    1987-12-10

    Light protactinium isotopes have been produced with /sup 204/Pb (/sup 19/F,xn) reactions. ..cap alpha..-activities with E/sub ..cap alpha../ = 9.90(5) MeV, T/sub 1/2/ = 53(10) ns and E/sub ..cap alpha../ = 9.65(5) MeV, T/sub 1/2/ = 0.78(16) ..mu..s could be attributed to the previously unobserved nuclei /sup 219/Pa and /sup 220/Pa with the help of excitation functions. The peak cross sections for the 4n and 3n evaporation channels are on the order of 10 ..mu..b. The decay energies as well as the halflives fit well into the systematics of these nuclei close to the magic neutron number N = 126. /sup 219/Pa is the shortest lived nuclide known with directly measured halflife.

  2. Electron Screening Effects on {alpha}-decay

    SciTech Connect

    Musumarra, A.; Bonasera, A.; Del Zoppo, A.; Di Pietro, A.; Figuera, P.; Kimura, S.; Lattuada, M.; Pellegriti, M. G.; Scuderi, V.; Torresi, D.; Farinon, F.; Geissel, H.; Knoebel, R.; Prochazka, A.; Scheidenberger, C.; Nociforo, C.; Behr, K.-H.; Bosch, F.; Boutin, D.; Bruenle, A.

    2009-08-26

    An open problem in Nuclear Astrophysics concerns the understanding of electron-screening effects on nuclear reaction rates at stellar energies. In this framework, we have proposed to investigate the influence of the electron cloud on {alpha}-decay by measuring Q-values and {alpha}-decay half-lives of fully stripped, H-like and He-like ions. These kinds of measurements have been feasible just recently for highly-charged radioactive nuclides by fragmentation of {sup 238}U at relativistic energies at the FRS-ESR facility at GSI. In this way it is possible to produce, efficiently separate and store highly-charged {alpha}-emitters. Candidates for the proposed investigation were carefully selected and will be studied by using the Schottky Mass Spectroscopy technique. In order to establish a solid reference data set, lifetimes and Q{sub {alpha}}-value measurements of the corresponding neutrals have been performed directly at the FRS, by implanting the separated ions into an active Silicon stopper.

  3. {alpha} decay of {sup 194}At

    SciTech Connect

    Andreyev, A. N.; Antalic, S.; Streicher, B.; Saro, S.; Venhart, M.; Ackermann, D.; Heinz, S.; Hessberger, F. P.; Kojouharov, I.; Kindler, B.; Lommel, B.; Mann, R.; Sulignano, B.; Bianco, L.; Page, R. D.; Sapple, P.; Thomson, J.; Franchoo, S.; Hofmann, S.; Huyse, M.

    2009-06-15

    Detailed {alpha}-decay studies of the neutron-deficient isotope {sup 194}At have been performed in the complete fusion reaction {sup 56}Fe+{sup 141}Pr{yields}{sup 194}At+3n at the velocity filter SHIP. Two {alpha}-decaying isomeric states with half-lives of T{sub 1/2}({sup 194}At{sup m1})=310(8) ms and T{sub 1/2}({sup 194}At{sup m2})=253(10) ms were identified in this nucleus. Their complex decays to the states in the daughter nucleus {sup 190}Bi are discussed in the article. We propose that similar to the case of the neighboring {sup 191,192,193,195}At isotopes, the oblate-deformed configurations based on the proton 1/2{sup +}[440] and/or 7/2{sup -}[514] Nilsson orbitals become important in {sup 194}At. A new isomeric state with the half-life of 175(8) ns was observed in {sup 190}Bi.

  4. Calculations of {alpha}-decay half-lives for heavy and superheavy nuclei

    SciTech Connect

    Qian Yibin; Ni Dongdong; Ren, Zhongzhou

    2011-04-15

    Systematic calculations on the {alpha}-decay half-lives of heavy and superheavy nuclei are performed within a deformed version of the cluster model, using the modified two-potential approach. The deformed Woods-Saxon potential is employed to calculate the {alpha}-decay width through a deformed barrier. For comparison the calculated {alpha}-decay half-lives in the empirical relations are also presented. The present study is initially restricted to even-even nuclei in the heavy mass region with N>126. Then the study is extended to the recently observed heaviest nuclei, including synthesized superheavy elements and isotopes. The {alpha}-decay half-lives obtained are found to be in good agreement with the experimental data.

  5. Complex-Energy Shell-Model Description of Alpha Decay

    SciTech Connect

    Id Betan, R.; Nazarewicz, Witold

    2011-01-01

    In his pioneering work of alpha decay, Gamow assumed that the alpha particle formed inside the nucleus tunnels through the barrier of the alpha-daughter potential. The corresponding metastable state can be viewed as a complex-energy solution of the time-independent Schroedinger equation with the outgoing boundary condition. The formation of the alpha cluster, missing in the original Gamow formulation, can be described within the R-matrix theory in terms of the formation amplitude. In this work, the alpha decay process is described by computing the formation amplitude and barrier penetrability in a large complex-energy configuration space spanned by the complex-energy eigenstates of the finite Woods-Saxon (WS) potential. The proper normalization of the decay channel is essential as it strongly modifies the alpha-decay spectroscopic factor. The test calculations are carried out for the ^{212}Po alpha decay.

  6. The gravity dependence of the H-alpha width in late-type stars

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.

    1985-01-01

    A theoretical gravity-scaling law for the H-alpha absorption width in late-type stars is developed. The derivation is based upon (1) the hydrostatic thickening of stellar chromospheres with decreasing surface gravity, and (2) a dependence of the H-alpha width upon opacity and Doppler width in a region subject to a chromospheric temperature rise. The scaling relation is approximately consistent with the mean gravity dependence deduced from the empirical correlation between H-alpha and Ca II K Wilson-Bappu widths. The calculations suggest that gravity variations in chromospheric-mass column density may, in addition to Doppler velocity enhancements, control the width-luminosity broadening of the H-alpha profile in late-type stars.

  7. Possible Stimulation of Nuclear alpha Decay by Superfluid Helium

    SciTech Connect

    Barabanov, A. L.

    2009-08-28

    It is suggested that superfluid helium (condensate of {sup 4}He atoms) may stimulate nuclear alpha decay in a situation when an alpha emitter moves through superfluid helium with fine-tuned velocity, so that the backward-emitted alpha particle is at rest in the laboratory frame. It is shown that the probability of stimulated alpha decay in this case may be sizable enough to be detected.

  8. Bilocal expansion of the Borel amplitude and the hadronic tau decay width

    SciTech Connect

    Cvetic, Gorazd; Lee, Taekoon

    2001-07-01

    The singular part of the Borel transform of a QCD amplitude near the infrared renormalon can be expanded in terms of higher order Wilson coefficients of the operators associated with the renormalon. In this paper we observe that this expansion gives nontrivial constraints on the Borel amplitude that can be used to improve the accuracy of the ordinary perturbative expansion of the Borel amplitude. In particular, we consider the Borel transform of the Adler function and its expansion around the first infrared renormalon due to the gluon condensate. Using the next-to-leading order (NLO) Wilson coefficient of the gluon condensate operator, we obtain an exact constraint on the Borel amplitude at the first IR renormalon. We then extrapolate, using judiciously chosen conformal transformations and Pade{prime} approximants, the ordinary perturbative expansion of the Borel amplitude in such a way that this constraint is satisfied. This procedure allows us to predict the O({alpha}{sub s}{sup 4}) coefficient of the Adler function, which gives a result consistent with the estimate by Kataev and Starshenko using a completely different method. We then apply this improved Borel amplitude to the tau decay width and obtain the strong coupling constant {alpha}{sub s}(M{sub z}{sup 2})=0.1193{+-}0.0007{sub exp.}{+-}0.0010{sub EW+CKM}{+-}0.0009{sub meth.}{+-}0.0003{sub evol.}. We then compare this result with those of other resummation methods.

  9. Decay width measurements of excited states in 14C

    NASA Astrophysics Data System (ADS)

    Haigh, P.; Ashwood, N.; Bloxham, T.; Curtis, N.; Freer, M.; Price, D.; Ziman, V.; Bohlen, H.; Kokalova, T.; Schulz, C.; von Oertzen, W.; Weldon, C.; Catford, W.; Harlin, C.

    2008-05-01

    Various excited states in 14C, above the α-decay threshold, are believed to possess a geometric arrangement of three α-particles covalently bound by the two delocalised valence neutrons. The 12C(16O, 14O)14C* reaction was studied at a beam energy of 234 MeV, at the ISL facility at the Hahn-Meitner-Institut (HMI), Berlin. The 14O ejectile was detected by a Q3D spectrometer at forward angles. The energies and angles of the excited 14C recoil break-up fragments were measured in coincidence using a double sided silicon strip detector array comprised of four detectors at backwards angles. A complete kinematic reconstruction of the reaction was performed to reconstruct the 14C* → 10Be + α and 14C* → 13C + n decay channels and the branching ratios of these decays were calculated. Neutron emission was found to be favoured for the 12.96, 14.87, 16.72 and 18.6 MeV states. Evidence for α-decay was found for the 14.87, 18.6 and 21.4 MeV states; which are candidates for the three bodied molecular cluster structure of 14C.

  10. Contributions to the width difference in the neutral D system from hadronic decays

    NASA Astrophysics Data System (ADS)

    Gershon, T.; Libby, J.; Wilkinson, G.

    2015-11-01

    Recent studies of several multi-body D0 meson decays have revealed that the final states are dominantly CP-even. However, the small value of the width difference between the two physical eigenstates of the D0-D‾0 system indicates that the total widths of decays to CP-even and CP-odd final states should be the same to within about a percent. The known contributions to the width difference from hadronic D0 decays are discussed, and it is shown that an apparent excess of quasi-CP-even modes is balanced, within current uncertainty, by interference effects in quasi-flavour-specific decays. Decay modes which may significantly affect the picture with improved measurements are considered.

  11. {alpha} decay of even-even superheavy elements

    SciTech Connect

    Denisov, V. Yu.; Khudenko, A. A.

    2010-03-15

    The {alpha}-decay half-lives of even-even superheavy elements within the range of proton number 104<=Z<=126, which can be formed by possible cold and hot fusion reactions, are calculated in the framework of various approaches for {alpha}-decay half-life evaluation and by using the Q values of {alpha} transitions obtained within different approximations for atomic masses. The dependencies of {alpha}-decay half-lives of superheavy elements on model approaches for both the Q values and half-life calculations are discussed in detail.

  12. Determination of the radiative decay width of the ηc meson

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Mankel, R.; Nau, A.; Nowak, S.; Reβing, D.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Eckstein, P.; Schmidtler, M.; Schramm, M.; Schubert, K. R.; Schwierz, R.; Waldi, R.; Reim, K.; Wegener, H.; Eckmann, R.; Kuipers, H.; Mai, O.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Knöpfle, K. T.; Spengler, J.; Krieger, P.; Macfarlane, D. B.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Frankl, C.; Schneider, M.; Weseler, S.; Kernel, G.; Kržan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Korolko, I.; Kostina, G.; Litvintsev, D.; Lubimov, V.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.; Argus Collaboration

    1994-10-01

    An analysis of the reaction γ → ηc was performed in five different decay channels of the ηc: KS0K±π∓, K+K-π+π-, 2 π+2 π-, φφ and 2 K+2 k-. A value Γγγ( ηc) = (11.3±4.2) keV was obtained for the radiative decay width by combining the results from the first four channels. Using our result on the two-photon width we also determined the branching ratio for the decay ηc → 2 K+2 K-.

  13. New approach for alpha-decay calculations of deformed nuclei

    SciTech Connect

    Ni Dongdong; Ren Zhongzhou

    2010-06-15

    We present a new theoretical approach to evaluate alpha-decay properties of deformed nuclei, namely the multichannel cluster model (MCCM). The deformed alpha-nucleus potential is taken into full account, and the coupled-channel Schroedinger equation with outgoing wave boundary conditions is employed for quasibound states. Systematic calculations are carried out for well-deformed even-even nuclei with Z>=98 and isospin dependence of nuclear potentials is included in the calculations. Fine structure observed in alpha decay is well described by the four-channel microscopic calculation, which is performed for the first time in alpha-decay studies. The good agreement between experiment and theory is achieved for both total alpha-decay half-lives and branching ratios to the ground-state rotational band of daughter nuclei. Predictions on the branching ratios to high-spin daughter states are presented for superheavy nuclei, which may be important to interpret future observations.

  14. Microscopic calculation of {alpha}-decay half-lives with a deformed potential

    SciTech Connect

    Ni Dongdong; Ren Zhongzhou

    2009-11-15

    A new version of the generalized density-dependent cluster model is presented to describe an {alpha} particle tunneling through a deformed potential barrier. The microscopic deformed potential is numerically constructed in the double-folding model by the multipole expansion method. The decay width is computed using the coupled-channel Schroedinger equation with outgoing wave boundary conditions. We perform a systematic calculation on {alpha}-decay half-lives of even-even nuclei ranging from Z=52 to Z=104, including 65 well-deformed ones. The calculated {alpha}-decay half-lives are found to be in good agreement with the experimental values. There also exists good agreement with the available experimental branching ratios for well-deformed systems.

  15. Partial Decay Widths of Negative Parity Baryons in the 1/N{sub c} Expansion

    SciTech Connect

    Gonzalez de Urreta, Emiliano; Scoccola, Norberto; Jayalath, Chandala; Goity, Jose

    2013-04-01

    The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are given.

  16. Partial decay widths of negative parity baryons in the 1/N{sub c} expansion

    SciTech Connect

    Gonzalez de Urreta, E. J.; Scoccola, N. N.; Jayalath, C. P.; Goity, J. L.

    2013-03-25

    The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are given.

  17. Width of the exotic Xb(5568 ) state through its strong decay to Bs0π+

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2016-06-01

    The width of the newly observed exotic state Xb(5568 ) is calculated via its dominant strong decay to Bs0π+ using the QCD sum rule method on the light cone in conjunction with the soft-meson approximation. To this end, the vertex XbBsπ is studied and the strong coupling gXbBsπ is computed employing for Xb(5568 ) state the interpolating diquark-antidiquark current of the [s u ][b ¯d ¯] type. The obtained prediction for the decay width of Xb(5568 ) is confronted and a nice agreement found with the experimental data of the D0 Collaboration.

  18. Precision Measurement of {eta} --> {gamma} {gamma} Decay Width via the Primakoff Effect

    SciTech Connect

    Gan, Liping Gin

    2013-08-01

    A precision measurement of the {eta} --> {gamma} {gamma} decay width via the Primakoff effect is underway in Hall D at Jefferson Lab. The decay width will be extracted from measured differential cross sections at forward angles on two light targets, liquid hydrogen and 4He, using a 11.5 GeV tagged photon beam. Results of this experiment will not only potentially resolve a long standing discrepancy between the Primakoff and the collider measurements, but will also reduce the experimental uncertainty by a factor of two on the average value of previous experimental results listed by the Particle Data Group(PDG). It will directly improve all other eta partial decay widths which rely on the accuracy of the eta radiative decay width. The projected 3% precision on the {Gamma}({eta} --> {gamma} {gamma} ) measurement will have a significant impact on the experimental determination of the fundamental parameters in QCD, such as the ratio of light quark masses (m{sub u},m{sub d},m{sub s}) and the {eta} - {eta}' mixing angle. It will be a sensitive probe for understanding QCD symmetries and the origin and the dynamics of QCD symmetry breaking.

  19. Microscopic description of the anisotropy in alpha decay

    SciTech Connect

    Delion, D.S. ); Insolia, A. ); Liotta, R.J. )

    1994-06-01

    A microscopic description of alpha decay of odd mass nuclei is given for axially deformed nuclei. Realistic mean field+pairing residual interaction in a very large single particle basis is used. Systematics for At and Rn isotopes, as well as for [sup 221]Fr, are given. A pronounced anisotropic emission of alpha particles at low temperatures is predicted as a function of deformation for the At and Rn isotopes. This shows that alpha decay is an excellent tool to probe intrinsic deformations in nuclei.

  20. {alpha}-nucleus potentials, {alpha}-decay half-lives, and shell closures for superheavy nuclei

    SciTech Connect

    Mohr, Peter

    2006-03-15

    Systematic {alpha}-nucleus folding potentials are used to analyze {alpha}-decay half-lives of superheavy nuclei. Preformation factors of about several percent are found for all nuclei under study. The systematic behavior of the preformation factors and the volume integrals of the potentials allows predictions of {alpha}-decay energies and half-lives for unknown nuclei. Shell closures can be determined from measured {alpha}-decay energies using the discontinuity of the volume integral at shell closures. For the first time a double shell closure is predicted for Z{sub magic}=132,N{sub magic}=194, and A{sub magic}=326 from the systematics of folding potentials. The calculated {alpha}-decay half-lives remain far below 1 ns for superheavy nuclei with double shell closure and masses A>300 independent of the precise knowledge of the magic proton and neutron numbers.

  1. Discovery of the alpha decay of 109I

    NASA Astrophysics Data System (ADS)

    Mazzocchi, C.; Grzywacz, R.; Bingham, C. R.; Simpson, D.; Gross, C. J.; Rykaczewski, K. P.; Batchelder, J. C.; Liddick, S. N.; Page, R. D.; Korgul, A.; Krolas, W.; Ilyushkin, S.; Winger, J. A.; Hamilton, J. H.; Hwang, J. K.; Li, K.

    2006-10-01

    Alpha emission is a rich source for nuclear-structure information [1]. The alpha-particle energies Eα, corrected for the recoil effect, yield the difference between the ground-state masses of parent and daughter nuclides (Qα). Far from stability the determination of Qα often represents the only way to determine the masses of ground and isomeric states. The evolution of Qα values along an alpha-decay chain are also a probe for shell effects. In the region above ^100Sn an alpha-decay island occurs, its presence is related to the strong Z=50, N=50 double shell-closure. In an experiment performed at the Recoil Mass Separator of the HRIBF at Oak Ridge National Laboratory, the first evidence for the alpha-decay branch of the proton-emitter ^109I was obtained. The results and the consequences for nuclear masses in this region will be discussed. [1] E. Roeckl, Alpha decay, in: Nuclear Decay Modes, ed. D.N. Poenaru, IoP Publishing, 1996, p. 237.

  2. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    SciTech Connect

    Fasshauer, Elke; Kolorenč, Přemysl; Pernpointner, Markus

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  3. Quasiclassical description of bremsstrahlung accompanying {alpha} decay including quadrupole radiation

    SciTech Connect

    Jentschura, U. D.; Milstein, A. I.; Terekhov, I. S.; Boie, H.; Scheit, H.; Schwalm, D.

    2008-01-15

    We present a quasiclassical theory of {alpha} decay accompanied by bremsstrahlung with a special emphasis on the case of {sup 210}Po, with the aim of finding a unified description that incorporates both the radiation during the tunneling through the Coulomb wall and the finite energy E{sub {gamma}} of the radiated photon up to E{sub {gamma}}{approx}Q{sub {alpha}}/{radical}({eta}), where Q{sub {alpha}} is the {alpha}-decay Q-value and {eta} is the Sommerfeld parameter. The corrections with respect to previous quasiclassical investigations are found to be substantial, and excellent agreement with a full quantum mechanical treatment is achieved. Furthermore, we find that a dipole-quadrupole interference significantly changes the {alpha}-{gamma} angular correlation. We obtain good agreement between our theoretical predictions and experimental results.

  4. {alpha}-decay half-lives: Empirical relations

    SciTech Connect

    Denisov, V. Yu.; Khudenko, A. A.

    2009-05-15

    Sets of simple relations for evaluation of the half-lives of {alpha} transitions between the ground states of parent and daughter nuclei are presented. Experimental data for half-lives in 344 {alpha} emitters are used for obtaining the sets of equations. The sets of simple expressions are found for the whole data set as well as for heavy and light subsets of nuclei. Terms related to the orbital moment and parity of {alpha} transition are introduced for the case of {alpha} decay in even-odd, odd-even, and odd-odd nuclei. The electron screening effect is taken into account.

  5. a Measurement of the Positron-Electron Decay Width of the Neutral Z Boson

    NASA Astrophysics Data System (ADS)

    Yamartino, John Michael

    1994-01-01

    This thesis presents a measurement of the partial decay width of the Z^0 to e ^{+} e^{-} using data recorded by the SLD at the SLAC Linear Collider during the 1992 run. Based on 354 nb^{-1 } of data, the decay width, Gamma _{ee} is measured to be 82.4 +/- _sp{3.7}{3.6} +/- 0.8 MeV where the first error is statistical and the second is systematic. By combining this measurement of Gamma_{ee } with the SLD measurement of A_ {LR}, the magnitude of the effective vector and axial-vector coupling constants of the electron, g _sp{v}{e} and g_sp{a}{e}, are determined to be 0.024 +/- 0.011 and 0.498 +/- 0.011 respectively. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  6. Limits for the 3[alpha] branching ratio of the decay of the 7. 65 MeV, 0[sub 2][sup +] state in [sup 12]C

    SciTech Connect

    Freer, M.; Wuosmaa, A.H.; Betts, R.R.; Henderson, D.J.; Wilt, P. ); Zurmuehle, R.W.; Balamuth, D.P.; Barrow, S.; Benton, D.; Li, Q.; Liu, Z.; Miao, Y. )

    1994-04-01

    A study of the [sup 12]C([sup 12]C, 3[alpha])[sup 12]C reaction has been performed in order to determine the magnitude of the process by which the 7.65 MeV, 0[sub 2][sup +], state in [sup 12]C breaks up directly into three alpha particles, in contrast to the sequential decay through [sup 8]Be. The strength of this decay channel has important implications for the production rate of [sup 12]C in stellar nucleosynthesis. The present measurement indicates that the contribution of this decay process to the alpha width, [Gamma][sub [alpha

  7. Alpha- and EC-decay measurements of 257Rf

    NASA Astrophysics Data System (ADS)

    Heßberger, F. P.; Antalic, S.; Mistry, A. K.; Ackermann, D.; Andel, B.; Block, M.; Kalaninova, Z.; Kindler, B.; Kojouharov, I.; Laatiaoui, M.; Lommel, B.; Piot, J.; Vostinar, M.

    2016-07-01

    Alpha- and Electron capture (EC) decay properties of 257 Rf were investigated by measuring α - γ coincidences and correlations between conversion electrons (CE) emitted during the process of EC decay of 257Rf and α decays of the daughter isotope 257Lr. So far, previously unobserved α (8296 keV)- γ (557 keV) coincidences were measured and interpreted as decays of 257mRf ( 11/2-[725] into the 7/2-[743] level in 253No. A search of delayed coincidences between α particles and signals at E ≤ 1000 keV, which are interpreted as being due to CE emission, revealed a clear correlation between CE and α particles from the decay of 257Lr, which is regarded as a direct proof of the EC decay of 257gRf and 257mRf.

  8. Condensates and quasiparticles in inflationary cosmology: Mass generation and decay widths

    NASA Astrophysics Data System (ADS)

    Boyanovsky, Daniel

    2012-06-01

    During de Sitter inflation massless particles of minimally coupled scalar fields acquire a mass and a decay width thereby becoming quasiparticles. For bare massless particles nonperturbative infrared radiative corrections lead to a self-consistent generation of mass, for a quartic self-interaction M∝λ1/4H, and for a cubic self-interaction the mass is induced by the formation of a nonperturbative condensate leading to M∝λ1/3H2/3. These radiatively generated masses restore de Sitter invariance and result in anomalous scaling dimensions of superhorizon fluctuations. We introduce a generalization of the nonperturbative Wigner-Weisskopf method to obtain the time evolution of quantum states that include the self-consistent generation of mass and regulate the infrared behavior. The infrared divergences are manifest as poles in Δ=M2/3H2 in the single particle self-energies, leading to a rearrangement of the perturbative series nonanalytic in the couplings. A set of simple rules that yield the leading order infrared contributions to the decay width are obtained and implemented. The lack of kinematic thresholds entail that all particle states acquire a decay width, dominated by the emission and absorption of superhorizon quanta ∝(λ/H)4/3[H/kph(η)]6; λ[H/kph(η)]6 for cubic and quartic couplings respectively to leading order in M/H. The decay of single particle quantum states hastens as their wave vectors cross the Hubble radius and their width is related to the highly squeezed limit of the bi- or trispectrum of scalar fluctuations respectively.

  9. {alpha} decay of high-spin isomers in superheavy nuclei

    SciTech Connect

    Delion, D. S.; Liotta, R. J.; Wyss, R.

    2007-10-15

    Hindrance factors corresponding to {alpha} decay from two quasiparticle isomeric high K states are evaluated in superheavy nuclei. We found that the hindrance factors are very sensitive to the deformations and, therefore, they may constitute a powerful tool to extract spectroscopic information in these nuclei. The hindrance factors turn out to be very large, specially for nonaligned configurations. This indicates that if one of such states is reached the parent nucleus may become isomeric. It is also possible that {alpha} decay may not proceed through ground state to ground state chains but rather through excited states.

  10. New Measurement of the {pi}{sup 0} Radiative Decay Width

    SciTech Connect

    Larin, I.; McNulty, D.; Prok, Y.; Bernstein, A. M.; Kowalski, S.; Clinton, E.; Martel, P.; Miskimen, R.; Wood, M.; Ambrozewicz, P.; Ahmidouch, A.; Benton, L.; Danagoulian, S.; Demirchyan, R.; Gasparian, A.; Hardy, K.; Mtingwa, S.; Overby, S.; Payen, M.; Pedroni, R.

    2011-04-22

    High precision measurements of the differential cross sections for {pi}{sup 0} photoproduction at forward angles for two nuclei, {sup 12}C and {sup 208}Pb, have been performed for incident photon energies of 4.9-5.5 GeV to extract the {pi}{sup 0}{yields}{gamma}{gamma} decay width. The experiment was done at Jefferson Lab using the Hall B photon tagger and a high-resolution multichannel calorimeter. The {pi}{sup 0}{yields}{gamma}{gamma} decay width was extracted by fitting the measured cross sections using recently updated theoretical models for the process. The resulting value for the decay width is {Gamma}({pi}{sup 0}{yields}{gamma}{gamma})=7.82{+-}0.14(stat){+-}0.17(syst) eV. With the 2.8% total uncertainty, this result is a factor of 2.5 more precise than the current Particle Data Group average of this fundamental quantity, and it is consistent with current theoretical predictions.

  11. Stability against {alpha} decay of some recently observed superheavy elements

    SciTech Connect

    Roy Chowdhury, Partha; Gangopadhyay, G.; Bhattacharyya, Abhijit

    2011-02-15

    The probability of {alpha}-particle emission for some recently observed superheavy nuclei (SHN) are investigated. The {alpha}-decay half-lives of SHN are calculated in a quantum tunneling model with density-dependent M3Y (DDM3Y) effective nuclear interaction using theoretical and measured Q{sub {alpha}} values. We determine the density distribution of {alpha} and daughter nuclei from the relativistic mean-field (RMF) theory using FSUGold force, NL3, and TM1 parameter sets. The double-folded nuclear potential is numerically calculated in a more microscopic manner using these density distributions. The estimated values of {alpha}-decay half-lives are in good agreement with the recent data. We compare our results with recently detected {alpha}-decay chains from a new element with atomic number Z=117 reported by the Joint Institute for Nuclear Research, Dubna. Finally, we determine the half-lives of superheavy elements with Z=108-120 and neutron number N=152-190 to explore the long-standing predictions of the existence of an 'island of stability' due to possible spherical proton (Z{approx}114) and neutron (N{approx}184) shell closures.

  12. Measurement of Lifetime and Decay-Width Difference in B_{s};{0}-->J/psivarphi Decays.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-03-28

    We measure the mean lifetime tau=2/(Gamma_{L}+Gamma_{H}) and the decay-width difference DeltaGamma=Gamma_{L}-Gamma_{H} of the light and heavy mass eigenstates of the B_{s}{0} meson, B_{sL}{0} and B_{sH}{0}, in B_{s}{0}-->J/psivarphi decays using 1.7 fb;{-1} of data collected with the CDF II detector at the Fermilab Tevatron pp[over ] collider. Assuming CP conservation, a good approximation for the B_{s}{0} system in the standard model, we obtain DeltaGamma=0.076_{-0.063}{+0.059}(stat)+/-0.006(syst) ps{-1} and tau=1.52+/-0.04(stat)+/-0.02(syst) ps, the most precise measurements to date. Our constraints on the weak phase and DeltaGamma are consistent with CP conservation. PMID:18517856

  13. Discovery of {sup 109}Xe and {sup 105}Te: Superallowed {alpha} Decay near Doubly Magic {sup 100}Sn

    SciTech Connect

    Liddick, S. N.; Batchelder, J. C.; Grzywacz, R.; Bingham, C. R.; Mazzocchi, C.; Drafta, G.; Tantawy, M. N.; Page, R. D.; Darby, I. G.; Joss, D. T.; Thomson, J.; Rykaczewski, K. P.; Gross, C. J.; Goodin, C.; Hamilton, J. H.; Hwang, J. K.; Li, K.; Hecht, A. A.; Ilyushkin, S.; Korgul, A.

    2006-08-25

    Two new {alpha} emitters {sup 109}Xe and {sup 105}Te were identified through the observation of the {sup 109}Xe{yields}{sup 105}Te{yields}{sup 101}Sn {alpha}-decay chain. The {sup 109}Xe nuclei were produced in the fusion-evaporation reaction {sup 54}Fe({sup 58}Ni,3n){sup 109}Xe and studied using the Recoil Mass Spectrometer at the Holifield Radioactive Ion Beam Facility. Two transitions at E{sub {alpha}}=4062{+-}7 keV and E{sub {alpha}}=3918{+-}9 keV were interpreted as the l=2 and l=0 transitions from the 7/2{sup +} ground state in {sup 109}Xe (T{sub 1/2}=13{+-}2 ms) to the 5/2{sup +} ground state and a 7/2{sup +} excited state, located at 150{+-}13 keV in {sup 105}Te. The observation of the subsequent decay of {sup 105}Te marks the discovery of the lightest known {alpha}-decaying nucleus. The measured transition energy E{sub {alpha}}=4703{+-}5 keV and half-life T{sub 1/2}=620{+-}70 ns were used to determine the reduced {alpha}-decay width {delta}{sup 2}. The ratio {delta}{sub {sup 105}Te}{sup 2}/{delta}{sub {sup 213}Po}{sup 2} of {approx}3 indicates a superallowed character of the {alpha} emission from {sup 105}Te.

  14. Measuring the two-photon decay width of intermediate-mass Higgs bosons at a photon-photon collider

    SciTech Connect

    Ohgaki, T.; Takahashi, T.; Watanabe, I.

    1997-08-01

    The feasibility of a measurement of the partial decay width of the intermediate-mass Higgs boson into two photons at a photon-photon collider is studied by a simulation. The QCD radiative correction for quark pair background processes is taken into account for the realistic background estimation. It is found that the two-photon decay width can be measured with the statistical error of 7.6{percent} with about one year of experiment. The impact of the measurement of the two-photon decay width to look for the new physics beyond is demonstrated. {copyright} {ital 1997} {ital The American Physical Society}

  15. Next-to-leading order QCD corrections to the decay width H → Zγ

    NASA Astrophysics Data System (ADS)

    Bonciani, Roberto; Del Duca, Vittorio; Frellesvig, Hjalte; Henn, Johannes M.; Moriello, Francesco; Smirnov, Vladimir A.

    2015-08-01

    We present the analytic calculation of the two-loop QCD corrections to the decay width of a Higgs boson into a photon and a Z boson. The calculation is carried out using integration-by-parts identities for the reduction to master integrals of the scalar integrals, in terms of which we express the amplitude. The calculation of the master integrals is performed using differential equations applied to a set of functions suitably chosen to be of uniform weight. The final result is expressed in terms of logarithms and polylogarithmic functions Li2, Li3, Li4 and Li2,2.

  16. Mass spectra and leptonic decay widths of heavy quarkonia by using psi function

    NASA Astrophysics Data System (ADS)

    Abou-Salem, L. I.

    2004-10-01

    In this study, a non-relativistic two-body wave equation is used to describe the properties of heavy quark-antiquark systems with a potential proportional to the psgr-function. The wave equation is transformed into a true eigenvalue equation and solved numerically. Both the resonance masses and the leptonic decay widths of c\\bar c and b\\skew{-5}\\barb mesons are calculated. The obtained results showed that the quark-antiquark interaction in these systems could be described adequately by using this simple potential form which contains one adjustable parameter besides the quark masses.

  17. Determination of the sign of the decay width difference in the B(s)(0) system.

    PubMed

    Aaij, R; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; de Bruyn, K; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Constantin, F; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Voss, H; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-06-15

    The interference between the K+ K- S-wave and P-wave amplitudes in B(s)(0) → J/ψK+ K- decays with the K+ K- pairs in the region around the ϕ(1020) resonance is used to determine the variation of the difference of the strong phase between these amplitudes as a function of K+ K- invariant mass. Combined with the results from our CP asymmetry measurement in B(s)(0) → J/ψϕ decays, we conclude that the B(s)(0) mass eigenstate that is almost CP = +1 is lighter and decays faster than the mass eigenstate that is almost CP = -1. This determines the sign of the decay width difference ΔΓ(s) ≡ Γ(L) - Γ(H) to be positive. Our result also resolves the ambiguity in the past measurements of the CP violating phase ϕ(s) to be close to zero rather than π. These conclusions are in agreement with the standard model expectations. PMID:23004259

  18. Alpha-decay properties of /sup 205-208/Fr: Identification of /sup 206/Fr/sup m/

    SciTech Connect

    Ritchie, B.G.; Toth, K.S.; Carter, H.K.; Mlekodaj, R.L.; Spejewski, E.H.

    1981-05-01

    Alpha-particle and ..gamma..-ray spectral measurements were made for /sup 205-208/Fr. A new a emitter (T/sub 1/2/ = 0.7 +- 0.1 sec and E/sub a/ = 6.930 +- 0.005 MeV) was observed and identified with the decay of a previously unknown isomer in /sup 206/Fr. From the a particle and g ray intensities, a decay branching ratios were deduced for /sup 205-208/Fr utilizing available information concerning the nuclides' (electron capture+positron) decay properties. Reduced widths were calculated and compared with those of neighboring nuclei.

  19. Computational Model of Alpha-Decay Damage Accumulation in Zircon

    SciTech Connect

    Heinisch, Howard L.; Weber, William J.

    2005-01-01

    Atomic-scale computer simulations are used to study defect accumulation and amorphization due to alpha decay in zircon (ZrSiO4). The displacement cascades, which represent 234U recoil nuclei from alpha-decay of 238Pu in zircon, are generated using a crystalline binary collision model, and the stochastic production of defects in the crystal lattice, recombination of defects, and the identification of amorphous regions are followed within the framework of a kinetic Monte Carlo simulation. Within the model, amorphous regions are identified as those having a critical density of Zr vacancies. The simulation predicts the interstitial content and amorphous fraction as functions of dose that are consistent with experimental data at 300 K for 238Pu-doped zircon, which indicate that the kinetic Monte Carlo model for behavior in zircon at 300 K is reasonable.

  20. Cryogenic Detectors for Rare Alpha Decay Search: A New Approach

    NASA Astrophysics Data System (ADS)

    Casali, N.; Dubovik, A.; Nagorny, S.; Nisi, S.; Orio, F.; Pattavina, L.; Pirro, S.; Schäffner, K.; Tupitsyna, I.; Yakubovskaya, A.

    2016-08-01

    The detection of ^{148}Sm alpha decay with a precise measured half-life of ( {6.4_{-1.3}^{+1.2} }) × 10^{15}y and a Q-value of 1987.3 ± 0.5 keV was achieved by a new experimental approach, where a conventional ZnWO4 scintillating crystal doped with enriched ^{148}Sm isotope is operated as a cryogenic scintillating bolometer (phonon and light channel) at mK-temperatures.

  1. Alpha decay self-damage in cubic and monoclinic zirconolite

    SciTech Connect

    Clinard, F.W. Jr.; Land, C.C.; Peterson, D.E.; Rohr, D.L.; Roof, R.B.

    1981-01-01

    Samples of primarily-monoclinic /sup 238/Pu-doped zirconolite were stored at ambient temperature to allow accumulation of alpha decay self-damage to a dose of 1 x 10/sup 24/ ..cap alpha../m/sup 3/ (equivalent to a SYNROC age of approx. 10/sup 3/y). Bulk swelling reached 2.3 vol% with no tendency toward saturation, a damage response similar to that observed for cubic Pu-doped zirconolite. X-ray volumetric swelling at 4 x 10/sup 24/ ..cap alpha../m/sup 3/ was 1 vol%, considerably less than that for the cubic material. Changes in cell dimensions differed significantly from those reported by others for a monoclinic natural mineral. Extensive microcracking was observed, and is attributed at least partially to swelling differences between the matrix and minor phases.

  2. Decay widths of ground-state and excited {Xi}{sub b} baryons in a nonrelativistic quark model

    SciTech Connect

    Limphirat, Ayut; Kobdaj, Chinorat; Suebka, Prasart; Yan, Yupeng

    2010-11-15

    Decay processes of ground and excited bottom baryons are studied in the {sup 3}P{sub 0} nonrelativistic quark model with all model parameters fixed in the sector of light quarks. Using as an input the recent mass of {Xi}{sub b} and the theoretical masses of {Xi}{sub b}{sup *} and {Xi}{sub b}{sup '}, narrow decay widths are predicted for the ground-state bottom baryons {Xi}{sub b}{sup *} and {Xi}{sub b}{sup '}. The work predicts large decay widths, about 100 MeV for the {rho}-type orbital excitation states of {Xi}{sub b}.

  3. Measurement of Lifetime and Decay-Width Difference in B0s -> J/psi phi Decays

    SciTech Connect

    Aaltonen, : T.

    2007-12-01

    The authors measure the mean lifetime, {tau} = 2/({Lambda}{sub L} + {Lambda}{sub H}), and the decay-width difference, {Delta}{Lambda} = {Lambda}{sub L} - {Lambda}{sub H}, of the light and heavy mass eigenstates of the B{sub s}{sup 0} meson, B{sub sL}{sup 0} and B{sub sH}{sup 0}, in B{sub s}{sup 0} {yields} J/{psi}{phi} decays using 1.7 fb{sup -1} of data collected with the CDF II detector at the Fermilab Tevatron p{bar p} collider. Assuming CP conservation, a good approximation for the B{sub s}{sup 0} system in the standard model, they obtain {Delta}{Lambda} = 0.076{sub -0.063}{sup +0.059}(stat.) {+-} 0.006(syst.) ps{sup -1} and {tau} = 1.52 {+-} 0.04(stat.) {+-} 0.02(syst.) ps, the most precise measurements to date. The constraints on the weak phase and {Delta}{Lambda} are consistent with CP conservation.

  4. The analysis of predictability of recent alpha decay formulae and the alpha partial half-lives of some exotic nuclei

    SciTech Connect

    Dasgupta-Schubert, N.; Reyes, M. A.; Tamez, V. A.

    2009-04-20

    Alpha decay is one of the two main decay modes of the heaviest nuclei, (SHE), and constitutes one of the dominant decay modes of highly neutron deficient medium mass nuclei ('exotics'). Thus identifying and characterizing the alpha decay chains form a crucial part of the identification of SHE. We report the extension of the previously developed method for the detailed and systematic investigation of the reliability of the three main extant analytical formulae of alpha decay half-lives: the generalized liquid drop model based formula of Royer et al. (FR), the Sobiczewski modified semi-empirical Viola-Seaborg formula (VSS) and the recent phenomenological formula of Sobiczewski and Parkhomenko (SP)

  5. Comment on 'Two-photon decay width of the sigma meson'

    SciTech Connect

    Beveren, Eef van; Kleefeld, Frieder; Rupp, George; Scadron, Michael D.

    2009-05-01

    We comment on a recent paper by Giacosa, Gutsche, and Lyobovitskij [Phys. Rev. D 77, 034007 (2008)], in which it is argued that a quarkonium interpretation of the {sigma} meson should give rise to a much smaller two-photon decay width than commonly assumed. The reason for this claimed discrepancy is a term in the transition amplitude, necessary for gauge invariance, which allegedly is often omitted in the literature, including the work of the present authors. Here we show their claims to be incorrect by demonstrating, in the context of the quark-level linear {sigma} model, that the recently extracted experimental values are compatible with a qq assignment for the {sigma}, provided that meson loops are taken into account as well.

  6. Pair decay width of the Hoyle state and its role for stellar carbon production.

    PubMed

    Chernykh, M; Feldmeier, H; Neff, T; von Neumann-Cosel, P; Richter, A

    2010-07-01

    The pair decay width of the first excited 0+ state in 12C (the Hoyle state) is deduced from a novel analysis of the world data on inelastic electron scattering covering a wide momentum transfer range, thereby resolving previous discrepancies. The extracted value Γπ=(62.3±2.0) μeV is independently confirmed by new data at low momentum transfers measured at the S-DALINAC and reduces the uncertainty of the literature values by more than a factor of 3. A precise knowledge of Γπ is mandatory for quantitative studies of some key issues in the modeling of supernovae and of asymptotic giant branch stars, the most likely site of the slow-neutron nucleosynthesis process. PMID:20867703

  7. Unified formula of half-lives for {alpha} decay and cluster radioactivity

    SciTech Connect

    Ni Dongdong; Dong Tiekuang; Xu Chang; Ren Zhongzhou

    2008-10-15

    In view of the fact that {alpha} decay and cluster radioactivity are physically analogical processes, we propose a general formula of half-lives and decay energies for {alpha} decay and cluster radioactivity. This new formula is directly deduced from the WKB barrier penetration probability with some approximations. It is not only simple in form and easy to see the physical meanings but also shows excellent agreement with the experimental values. Moreover, the difference between two sets of parameters to separately describe {alpha} decay and cluster radioactivity is small. Therefore, we use only one set of adjustable parameters to simultaneously describe the {alpha} decay and cluster radioactivity data for even-even nuclei. The results are also satisfactory. This indicates that this formula successfully combines the phenomenological laws of {alpha} decay and cluster radioactivity. We expect it to be a significant step toward a unified phenomenological law of {alpha} decay and cluster radioactivity.

  8. Coupled-channels study of fine structure in the {alpha} decay of well deformed nuclei

    SciTech Connect

    Ni Dongdong; Ren Zhongzhou

    2011-06-15

    We formulate a theoretical model for the {alpha} decay of well-deformed even-even nuclei based on the coupled-channel Schroedinger equation. The {alpha}-decay half-lives and fine structures observed in {alpha} decay are well described by the five-channel microscopic calculations. Since the branching ratios to high-spin states are hard to understand in the traditional {alpha}-decay theories, this success could be important to interpret future observations of heavier nuclei. It is also found that the {alpha} transition to high-spin states is a powerful tool to probe the energy spectrum and deformation of daughter nuclei.

  9. In-medium decay widths of hidden and open charm vector mesons in a field theoretic model for composite hadrons

    NASA Astrophysics Data System (ADS)

    Mishra, Amruta; Misra, S. P.; Greiner, W.

    2015-07-01

    We calculate the decay widths of the charmonium states, J/ψ, ψ(3686) and ψ(3770), to D\\bar {D} pairs, as well as the decay width of D* → Dπ, in isospin asymmetric strange hadronic matter, using a field theoretical model for composite hadrons with quark constituents. For this purpose, we use the quark-antiquark pair creation term of the free Dirac Hamiltonian written in terms of the constituent quark field operators, and use explicit charmonium, D, \\bar {D}, D* and π states to evaluate the matrix elements for the charmonium as well as D* decay amplitudes. The medium modifications of the partial decay widths of charmonium to D\\bar {D} pair, arising from the mass modifications of the D(\\bar {D}) and the charmonium states calculated in a chiral effective model, are also included. The results of the present investigations are then compared with the decay widths computed earlier, in a model using light quark pair creation in 3P0 state. As in 3P0 model, the decay amplitude in the present model is multiplied with a strength parameter for the light quark pair creation, which is fitted from the observed vacuum decay width. The effects of the isospin asymmetry, the strangeness fraction of the hadronic matter on the masses of the charmonium states and D(\\bar {D}) mesons and hence on the decay widths, have also been studied. The isospin asymmetry effect is observed to be dominant for high densities, leading to appreciable difference in the decay channels of the charmonium to D+ D- and D0 \\bar {D0} pairs. The decay width of D* → Dπ in the hadronic matter has also been calculated within the composite quark model in the present work, accounting for the medium modifications of the D and D* masses. The density modifications of the charmonium states and D(D*) mesons, which are observed to be appreciable at high densities, will be of relevance in the compressed baryonic matter (CBM) experiments at the future facility of FAIR, GSI, where charmed hadrons will be produced

  10. Implications of Lyman-alpha equivalent widths in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shields, Joseph C.; Ferland, Gary J.

    1993-01-01

    Results of photoionization calculations that examine the sensitivity of Ly-alpha emission to parameters describing the broadline clouds and incident radiation field are reported. The case of the Seyfert I galaxy NGC 5548 is considered, and good consistency is found with observed properties of the Ly-alpha zone for a cloud density of about 10 exp 11/cu cm and ratio of ionizing photon to hydrogen density near 0.2. Estimation of the cloud covering factor depends on the extrapolation of the EUV continuum. EUV cutoffs at 20 and 60 eV correspond to a range of covering factors between 0.8 and 0.5, which is larger than typically assumed in the past for luminous Seyferts. Equivalent width observations of Fairall 9 show that its continuum cannot be as soft as suggested by previous line ratio analyses and imply that its EUV continuum persists to 20 eV or more before cutting off. A method by which variability measurements can be combined with the present calculations to measure the distances to AGN, and hence the Hubble constant, is outlined.

  11. {alpha}-decay calculations of heavy and superheavy nuclei using effective mean-field potentials

    SciTech Connect

    Pei, J. C.; Lin, Z. J.; Xu, F. R.; Zhao, E. G.

    2007-10-15

    Using an effective potential that is based on the Skyrme-Hartree-Fock mean-field model, systematic {alpha}-decay properties of even-even heavy and superheavy nuclei have been investigated. Calculations do not raise any adjustable parameter. The obtained {alpha}-decay half-lives agree reasonably well with experimental data. The characteristics of the effective potential and the deformation effect on the {alpha} decay are discussed.

  12. alpha-decay half-lives and Q{sub a}lpha values of superheavy nuclei

    SciTech Connect

    Dong Jianmin; Zuo Wei; Gu Jianzhong; Wang Yanzhao; Peng Bangbao

    2010-06-15

    The alpha-decay half-lives of recently synthesized superheavy nuclei (SHN) are investigated by employing a unified fission model (UFM) where a new method to calculate the assault frequency of alpha emission is used. The excellent agreement with the experimental data indicates the UFM is a useful tool to investigate these alpha decays. It is found that the alpha-decay half-lives become more and more insensitive to the Q{sub a}lpha values as the atomic number increases on the whole, which is favorable for us to predict the half-lives of SHN. In addition, a formula is proposed to compute the Q{sub a}lpha values for the nuclei with Z>=92 and N>=140 with a good accuracy, according to which the long-lived SHN should be neutron rich. Several weeks ago, two isotopes of a new element with atomic number Z=117 were synthesized and their alpha-decay chains have been observed. The Q{sub a}lpha formula is found to work well for these nuclei, confirming its predictive power. The experimental half-lives are well reproduced by employing the UFM with the experimental Q{sub a}lpha values. This fact that the experimental half-lives are compatible with experimental Q{sub a}lpha values supports the synthesis of a new element 117 and the experimental measurements to a certain extent.

  13. Self-consistent calculations of alpha-decay energies

    SciTech Connect

    Tolokonnikov, S. V.; Lutostansky, Yu. S.; Saperstein, E. E.

    2013-06-15

    On the basis of the self-consistent theory of finite Fermi systems, the energies of alphadecay chains were calculated for several new superheavy nuclei discovered recently in experiments of the Dubna-Livermore Collaboration headed by Yu.Ts. Oganessian. The approach in question is implemented on the basis of the generalized method of the density functional proposed by Fayans and his coauthors. The version used here relies on the functional DF3-a proposed recently for describing a wide array of nuclear data, including data on superheavy nuclei. A detailed comparison of the results obtained on this basis with the predictions of different approaches, including the self-consistent Skyrme-Hartree-Fock method, the micro-macro method in the version developed by Sobiczewski and his coauthors, and the phenomenological method of Liran and his coauthors, is performed. The resulting alpha-decay energies are used to calculate respective lifetimes with the aid of the phenomenological Parkhomenko-Sobiczewski formula.

  14. Measurements of the top quark mass and decay width with the D0 detector

    SciTech Connect

    Ilchenko, Yuriy

    2011-11-01

    The top quark discovery in 1995 at Fermilab is one of the major proofs of the standard model (SM). Due to its unique place in SM, the top quark is an important particle for testing the theory and probing for new physics. This article presents most recent measurements of top quark properties from the D0 detector. In particular, the measurement of the top quark mass, the top antitop mass difference and the top quark decay width. The discovery of the top quark in 1995 confirmed the existence of a third generation of quarks predicted in the standard model (SM). Being the heaviest elementary particle known, the top quark appears to become an important particle in our understanding of the standard model and physics beyond it. Because of its large mass the top quark has a very short lifetime, much shorter than the hadronization time. The predicted lifetime is only 3.3 {center_dot} 10{sup -25}s. Top quark is the only quark whose properties can be studied in isolation. A Lorentz-invariant local Quantum Field Theory, the standard model is expected to conserve CP. Due to its unique properties, the top quark provides a perfect test of CPT invariance in the standard model. An ability to look at the quark before being hadronized allows to measure directly mass of the top quark and its antiquark. An observation of a mass difference between particle and antiparticle would indicate violation of CPT invariance. Top quark through its radiative loop correction to the W mass constrains the mass of the Higgs boson. A precise measurement of the top quark mass provides useful information to the search of Higgs boson by constraining its region of possible masses. Another interesting aspect is that the top quark's Yukawa coupling to the Higgs boson is very close to unity (0.996 {+-} 0.006). That implies it may play a special role in the electroweak symmetry breaking mechanism.

  15. Prediction of {alpha}-decay half-lives and Q{sub {alpha}} values of superheavy nuclei by a global potential for {alpha} + nucleus systems

    SciTech Connect

    Sahu, Basudeb

    2011-09-15

    An approach we have proposed recently for calculation of Q{sub {alpha}} energy and decay half-life T{sub 1/2}{sup {alpha}} on the {alpha} decay of radioactive heavy ions is applied to the evaluation of these two important parameters for the nuclei in the superheavy region Z = 112-118 for which experimental data are not available. It is shown that the {alpha} + nucleus potential represented by an exactly solvable potential used in the calculation could be expressed in terms of proton (Z) and neutron (N) numbers of the {alpha} emitter so that varieties of {alpha}-emitting nuclei differing in their Z and N values could be addressed for their decay properties without the help of any adjustable parameter and the results of Q{sub {alpha}} and T{sub 1/2}{sup {alpha}} for a nucleus are estimated without any prior knowledge of any one of these quantities. This procedure to obtain the values of Q{sub {alpha}} and T{sub 1/2}{sup {alpha}} works well to reproduce the known experimental results for superheavy nuclei and hence, the procedure is expected to provide proper information about these parameters in experiments on {alpha} decay of new nuclei in the superheavy region.

  16. Facial Width-To-Height Ratio Relates to Alpha Status and Assertive Personality in Capuchin Monkeys

    PubMed Central

    Lefevre, Carmen Emilia; Wilson, Vanessa A. D.; Morton, F. Blake; Brosnan, Sarah F.; Paukner, Annika; Bates, Timothy C.

    2014-01-01

    Social dominance hierarchies play a pivotal role in shaping the behaviour of many species, and sex differences within these hierarchies often exist. To date, however, few physical markers of dominance have been identified. Such markers would be valuable in terms of understanding the etiology of dominant behaviour and changes in social hierarchies over time. Animals may also use such traits to evaluate the potential dominance of others relative to themselves (i.e. a physical “cue”). Facial width-to-height ratio (fWHR), for example, has been suggested as a cue to dominance in humans, with links to both dominant behaviour and the perception of dominance in other individuals. Whether this association is present in non-human animals is currently not known. Therefore, here we examine within-species links between fWHR and dominant behaviour in 64 brown capuchin monkeys (Sapajus spp.) aged between 2 and 40 years. fWHR was positively associated with alpha status and with a dimensional rating of assertive personality in both males and females. Moreover, fWHR showed significant sexual dimorphism in adults but not juveniles, suggesting a developmental change may occur during puberty. In a sub-sample, sex differences were mediated by weight, suggesting fWHR dimorphism does not exceed what would be expected by differences in body weight. This is the first report of an association between face shape and behaviour in a non-human species. Results are discussed in terms of the role that face-behaviour associations might play within capuchin societies, and the possible selective forces that might have led to the evolution of fWHR-dominance associations in humans. PMID:24705247

  17. Coupled-channels study of fine structure in the {alpha} decay of platinum isotopes

    SciTech Connect

    Ni Dongdong; Ren Zhongzhou

    2011-09-15

    The fine structure observed in the {alpha} decay of deformed platinum isotopes is investigated using the recently developed five-channel formalism, based on the coupled-channel Schroedinger equation with outgoing wave boundary conditions. The internal effect of daughter states is taken into account in dealing with the interaction matrix and the {alpha}-cluster formation. The available experimental data concerning {alpha}-decay half-lives and fine structures are reproduced. Some predictions are made especially for the {alpha} decay of neutron-rich isotopes, which could guide future experiments.

  18. Fine structure of alpha decay to rotational states of heavy nuclei

    SciTech Connect

    Wang, Y. Z.; Dong, J. M.; Peng, B. B.; Zhang, H. F.

    2010-06-15

    To gain a better insight into alpha-decay fine structure, we calculate the relative intensities of alpha decay to 2{sup +} and 4{sup +} rotational states in the framework of the generalized liquid drop model (GLDM) and improved Royer's formula. The calculated relative intensities of alpha decay to 2{sup +} states are in good agreement with the experimental data. For the relative intensities of alpha decay to 4{sup +} states, a good agreement with experimental data is achieved for Th and U isotopes. The formula we obtain is useful for the analysis of experimental data of alpha-decay fine structure. In addition, some predicted relative intensities which are still not measured are provided for future experiments.

  19. Study of the D+s-->π- π+π+ Decay and Measurement of f0 Masses and Widths

    NASA Astrophysics Data System (ADS)

    Aitala, E. M.; Amato, S.; Anjos, J. C.; Appel, J. A.; Ashery, D.; Banerjee, S.; Bediaga, I.; Blaylock, G.; Bracker, S. B.; Burchat, P. R.; Burnstein, R. A.; Carter, T.; Carvalho, H. S.; Copty, N. K.; Cremaldi, L. M.; Darling, C.; Denisenko, K.; Devmal, S.; Fernandez, A.; Fox, G. F.; Gagnon, P.; Gobel, C.; Gounder, K.; Halling, A. M.; Herrera, G.; Hurvits, G.; James, C.; Kasper, P. A.; Kwan, S.; Langs, D. C.; Leslie, J.; Lundberg, B.; Magnin, J.; Massafferri, A.; Maytal-Beck, S.; Meadows, B.; de Mello Neto, J. R.; Mihalcea, D.; Milburn, R. H.; de Miranda, J. M.; Napier, A.; Nguyen, A.; D'Oliveira, A. B.; O'Shaughnessy, K.; Peng, K. C.; Perera, L. P.; Purohit, M. V.; Quinn, B.; Radeztsky, S.; Rafatian, A.; Reay, N. W.; Reidy, J. J.; Dos Reis, A. C.; Rubin, H. A.; Sanders, D. A.; Santha, A. K.; Santoro, A. F.; Schwartz, A. J.; Sheaff, M.; Sidwell, R. A.; Slaughter, A. J.; Sokoloff, M. D.; Solano, J.; Stanton, N. R.; Stefanski, R. J.; Stenson, K.; Summers, D. J.; Takach, S.; Thorne, K.; Tripathi, A. K.; Watanabe, S.; Weiss-Babai, R.; Wiener, J.; Witchey, N.; Wolin, E.; Yang, S. M.; Yi, D.; Yoshida, S.; Zaliznyak, R.; Zhang, C.

    2001-01-01

    From a sample of 848+/-44 D+s-->π- π+π+ decays, we find γ\\(D+s-->π- π+π+\\)/γ\\(D+s-->φπ+\\) = 0.245+/-0.028+0.019-0.012. Using a Dalitz plot analysis of this three body decay, we find significant contributions from the channels ρ0\\(770\\)π+, ρ0\\(1450\\)π+, f0\\(980\\)π+, f2\\(1270\\)π+, and f0\\(1370\\)π+. We also present the values obtained for masses and widths of the resonances f0\\(980\\) and f0\\(1370\\).

  20. Measurement of the radiative decay width Γ [ Λ (1520) → Λγ ] with the SPHINX spectrometer

    NASA Astrophysics Data System (ADS)

    Antipov, Yu. M.; Artamonov, A. V.; Batarin, V. A.; Vavilov, D. V.; Victorov, V. A.; Eroshin, O. V.; Golovkin, S. V.; Gorin, Yu. P.; Kolganov, V. Z.; Kozhevnikov, A. P.; Konstantinov, A. S.; Kubarovsky, V. P.; Kurshetsov, V. F.; Landsberg, L. G.; Leontiev, V. M.; Lomkatsi, G. S.; Molchanov, V. V.; Mukhin, V. A.; Nilov, A. F.; Patalakha, D. I.; Petrenko, S. V.; Smolyankin, V. T.; Sphinx Collaboration

    2004-12-01

    The radiative decay Λ (1520) → Λγ was measured directly in the study of the exclusive diffractive-like reaction p + N → Λ (1520)K+ + N, Λ (1520) → Λγ with the SPHINX spectrometer. The values of the branching and partial width of this radiative decay were obtained: BR [ Λ (1520) → Λγ ] = (1.02 ± 0.21 (stat) ± 0.15 (syst)) ×10-2 and Γ [ Λ (1520) → Λγ ] = 159 ± 33 (stat) ± 26 (syst) keV.

  1. Measurement of the radiative decay width Γ[Λ(1520)→Λγ] with the SPHINX spectrometer

    NASA Astrophysics Data System (ADS)

    Sphinx Collaboration; Antipov, Yu. M.; Artamonov, A. V.; Batarin, V. A.; Vavilov, D. V.; Victorov, V. A.; Eroshin, O. V.; Golovkin, S. V.; Gorin, Yu. P.; Kolganov, V. Z.; Kozhevnikov, A. P.; Konstantinov, A. S.; Kubarovsky, V. P.; Kurshetsov, V. F.; Landsberg, L. G.; Leontiev, V. M.; Lomkatsi, G. S.; Molchanov, V. V.; Mukhin, V. A.; Nilov, A. F.; Patalakha, D. I.; Petrenko, S. V.; Smolyankin, V. T.

    2004-12-01

    The radiative decay Λ(1520)→Λγ was measured directly in the study of the exclusive diffractive-like reaction p+N→Λ(1520)K++N, Λ(1520)→Λγ with the SPHINX spectrometer. The values of the branching and partial width of this radiative decay were obtained: BR[Λ(1520)→Λγ]=(1.02±0.21(stat)±0.15(syst))×10-2 and Γ[Λ(1520)→Λγ]=159±33(stat)±26(syst) keV.

  2. Systematics of {alpha}-decay half-lives around shell closures

    SciTech Connect

    Ismail, M.; Ellithi, A. Y.; Botros, M. M.; Adel, A.

    2010-02-15

    We present a systematic calculation of {alpha}-decay half-lives of even-even heavy and superheavy nuclei in the framework of the preformed {alpha} model. The microscopic {alpha}-daughter nuclear interaction potential is calculated by double-folding the density distributions of both {alpha} and daughter nuclei with a realistic effective Michigan three-Yukawa nucleon-nucleon interaction, and the microscopic Coulomb potential is calculated by folding the charge density distributions of the two interacting nuclei. The half-lives are found to be sensitive to the density dependence of the nucleon-nucleon interaction and the implementation of the Bohr-Sommerfeld quantization condition inherent in the Wentzel-Kramers-Brillouin approach. The {alpha}-decay half-lives obtained agree reasonably well with the available experimental data. Moreover, the study has been extended to the newly observed superheavy nuclei. The interplay of closed-shell effects in {alpha}-decay calculations is investigated. The {alpha}-decay calculations give the closed-shell effects of known spherical magicities, Z=82 and N=126, and further predict enhanced stabilities at N=152,162, and 184 for Z=100,108, and 114, owing to the stability of parent nuclei against {alpha} decays. It is worth noting that the aim of this work is not only to reproduce the experimental data better, but also to extend our understanding of {alpha}-decay half-lives around shell closures.

  3. Theoretical analysis of direct CP violation and differential decay width in in phase space around the resonances and

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Hua; Song, Ren; Su, Yu-Mo; Lü, Gang; Zheng, Bo

    2015-09-01

    We perform a theoretical study on direct CP violation in in phase space around the intermediate states and . The possible interference between the amplitudes corresponding to the two resonances is taken into account, and the relative strong phase of the two amplitudes is treated as a free parameter. Our analysis shows that by a properly chosen strong phase, both the CP violation strength and the differential decay width accommodate the experimental results.

  4. {alpha} decay chains in {sup 271-294}115 superheavy nuclei

    SciTech Connect

    Santhosh, K. P.; Priyanka, B.; Joseph, Jayesh George; Sahadevan, Sabina

    2011-08-15

    {alpha} decay of {sup 271-294}115 superheavy nuclei is studied using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The predicted {alpha} half-lives of {sup 287}115 and {sup 288}115 nuclei and their decay products are in good agreement with experimental values. Comparison of {alpha} and spontaneous fission half-lives predicts four-{alpha} chains and three-{alpha} chains, respectively, from {sup 287}115 and {sup 288}115 nuclei and are in agreement with experimental observation. Our study predicts two-{alpha} chains from {sup 273,274,289}115, three-{alpha} chains from {sup 275}115, and four-{alpha} chains consistently from {sup 284,285,286}115 nuclei. These observations will be useful for further experimental investigation in this region.

  5. {alpha} decay of {sup 216}Fr and {sup 212}At

    SciTech Connect

    Liang, C.F.; Paris, P.; Sheline, R.K.; Alexa, P.; Gizon, A.

    1996-11-01

    The alpha and coincident gamma decays of {sup 216}Fr and {sup 212}At in secular equilibrium with 0.8 s {sup 224}Pa and 26.1 ms {sup 220}Ac have been studied with emphasis on the level scheme of {sup 212}At. The level structure has been interpreted in terms of the shell model configurations {pi}({ital h}{sub 9/2}){sub 9/2}{sup 3}{nu}({ital g}{sub 9/2}), {pi}({ital h}{sub 9/2}){sub 0+}{sup 2}({ital f}{sub 7/2}){nu}({ital g}{sub 9/2}), and {pi}({ital h}{sub 9/2}){sub 9/2}{sup 3}{nu}({ital i}{sub 11/2}). These configurations are then compared with the calculated configurations in {sup 212}At and with the corresponding experimental configurations in {sup 210}Bi and {sup 212}Bi. In all three cases plots of the experimental energies vs the spin show the expected inverted parabola shape, but as we move farther away from the {sup 208}Pb closed shells, the inverted parabolas become more compressed. {copyright} {ital 1996 The American Physical Society.}

  6. {alpha}-decay energy formula for superheavy nuclei based on the liquid-drop model

    SciTech Connect

    Dong Tiekuang; Ren Zhongzhou

    2010-09-15

    A formula of {alpha}-decay energy for superheavy nuclei based on the method of macroscopic model plus shell corrections is proposed. The macroscopic part of this formula is derived from the Bethe-Weizsaecker binding energy formula, and the shell corrections at N=152 and N=162 are expressed by the Mexican hat wavelet functions. The parameters of this formula are obtained through fitting to 170 {alpha}-decay energies for nuclei ranging from Z=90 to Z=118 with N{>=}140. Numerical results show that 170 existing {alpha}-decay energies can be reproduced very well; the average and standard deviations between theoretical results and experimental data are 0.177 and 0.226 MeV, respectively. The {alpha}-decay energies of newly synthesized nuclei {sup 293,294}117 and their {alpha}-decay products are also reproduced very well. In addition, the {alpha}-decay energies for nuclei with Z=110-120 are predicted and compared with the results calculated by the macroscopic-microscopic model. Great differences are found for nuclei with Z{>=}116 and N{>=}176 due to the shell effects near the hypothetical doubly magic nucleus {sup 298}114{sub 184} in the macroscopic-microscopic model. Therefore, by comparing experimental {alpha}-decay energies measured in the future with the ones predicted by these two methods, one can obtain useful information about the next proton and neutron magic numbers.

  7. First measurement of the partial widths of 209Bi decay to the ground and to the first excited states.

    PubMed

    Beeman, J W; Biassoni, M; Brofferio, C; Bucci, C; Capelli, S; Cardani, L; Carrettoni, M; Clemenza, M; Cremonesi, O; Ferri, E; Giachero, A; Gironi, L; Gorla, P; Gotti, C; Nucciotti, A; Maiano, C; Pattavina, L; Pavan, M; Pessina, G; Pirro, S; Previtali, E; Sisti, M; Zanotti, L

    2012-02-10

    209Bi alpha decay to the ground and to the first excited state have been recently observed for the first time with a large BGO scintillating bolometer. The half-life of 209Bi is determined to be τ(1/2)=(2.01±0.08)×10(19) yr while the branching ratio for the ground-state to ground-state transition is (98.8±0.3)%. PMID:22401058

  8. ON THE (NON-)ENHANCEMENT OF THE Ly{alpha} EQUIVALENT WIDTH BY A MULTIPHASE INTERSTELLAR MEDIUM

    SciTech Connect

    Laursen, Peter; Duval, Florent; Oestlin, Goeran

    2013-04-01

    It has been suggested that radiative transfer effects may explain the unusually high equivalent widths (EWs) of the Ly{alpha} line, observed occasionally from starburst galaxies, especially at high redshifts. If the dust is locked up inside high-density clouds dispersed in an empty intercloud medium, the Ly{alpha} photons could scatter off of the surfaces of the clouds, effectively having their journey confined to the dustless medium. The continuum radiation, on the other hand, does not scatter, and would thus be subject to absorption inside the clouds. This scenario is routinely invoked when Ly{alpha} EWs higher than what is expected theoretically are observed, although the ideal conditions under which the results are derived usually are not considered. Here we systematically examine the relevant physical parameters in this idealized framework, testing whether any astrophysically realistic scenarios may lead to such an effect. It is found that although clumpiness indeed facilitates the escape of Ly{alpha}, it is highly unlikely that any real interstellar media should result in a preferential escape of Ly{alpha} over continuum radiation. Other possible causes are discussed, and it is concluded that the observed high EWs are more likely to be caused by cooling radiation from cold accretion and/or anisotropic escape of the Ly{alpha} radiation.

  9. Limits on the Higgs boson lifetime and width from its decay to four charged leptons

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.

    2015-10-01

    Constraints on the lifetime and width of the Higgs boson are obtained from H →Z Z →4 ℓ events using data recorded by the CMS experiment during the LHC run 1 with an integrated luminosity of 5.1 and 19.7 fb-1 at a center-of-mass energy of 7 and 8 TeV, respectively. The measurement of the Higgs boson lifetime is derived from its flight distance in the CMS detector with an upper bound of τH<1.9 ×10-13 s at the 95% confidence level (C.L.), corresponding to a lower bound on the width of ΓH>3.5 ×10-9 MeV . The measurement of the width is obtained from an off-shell production technique, generalized to include anomalous couplings of the Higgs boson to two electroweak bosons. From this measurement, a joint constraint is set on the Higgs boson width and a parameter fΛ Q that expresses an anomalous coupling contribution as an on-shell cross-section fraction. The limit on the Higgs boson width is ΓH<46 MeV with fΛ Q unconstrained and ΓH<26 MeV for fΛ Q=0 at the 95% C.L. The constraint fΛ Q<3.8 ×10-3 at the 95% C.L. is obtained for the expected standard model Higgs boson width.

  10. Identification of an {alpha}-decaying (9{sup -}) isomer in {sup 216}Fr

    SciTech Connect

    Kurcewicz, J.; Karny, M.; Korgul, A.; Kurcewicz, W.; Kurpeta, J.; Lewandowski, S.; Majorkiewicz, P.; Plochocki, A.; Wojtasiewicz, A.; Czarnacki, W.; Kasztelan, M.; Kisielinski, M.; Penttilae, H.; Roussiere, B.; Steczkiewicz, O.

    2007-11-15

    The {alpha} decay of the trans-lead isotopes {sup 212}At, {sup 216}Fr, and {sup 220}Ac was investigated by using mass-separated sources and analog as well as digital signal processing. By measuring {alpha}-{alpha} time correlations evidence was obtained for the occurrence of an {alpha}-decaying (9{sup -}) isomer in {sup 216}Fr. The {alpha}-decay energy and half-life amount to 9000(5) keV and 850(30) ns, respectively. The excitation energy of the isomer is compared with shell-model predictions for the high-spin members of the {pi}(h{sub 9/2}){nu}(g{sub 9/2}) multiplet, and the relevance of the new data concerning the search for reflection asymmetry is presented.

  11. New evaluation of the alpha and gamma emission intensities in the decay of (244)Cm.

    PubMed

    Badikov, Sergey A; Chechev, Valery P

    2016-03-01

    A method for self-consistent evaluation of the absolute emission probabilities for particles and photons accompanying radionuclide decays was applied to the evaluation of the (244)Cm alpha decay data. The absolute emission probabilities evaluated by the method meet the accurate balance relationships. The self-consistency of the results was reached through an iterative scheme of calculations, using the DDEP recommended probabilities for alpha transitions to the five (240)Pu highly excited levels as an initial approximation. PMID:26712410

  12. Theoretical and experimental determination of L -shell decay rates, line widths, and fluorescence yields in Ge

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Sampaio, J. M.; Madeira, T. I.; Parente, F.; Indelicato, P.; Marques, J. P.; Santos, J. P.; Hoszowska, J.; Dousse, J.-Cl.; Loperetti, L.; Zeeshan, F.; Müller, M.; Unterumsberger, R.; Beckhoff, B.

    2015-08-01

    Fluorescence yields (FYs) for the Ge L shell were determined by a theoretical and two experimental groups within the framework of the International Initiative on X-Ray Fundamental Parameters Collaboration. Calculations were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental value of the L3FY ωL 3 was determined at the Physikalisch-Technische Bundesanstalt undulator beamline of the synchrotron radiation facility BESSY II in Berlin, Germany, and the L α1 ,2 and L β1 line widths were measured at the Swiss Light Source, Paul Scherrer Institute, Switzerland, using monochromatized synchrotron radiation and a von Hamos x-ray crystal spectrometer. The measured fluorescence yields and line widths are compared to the corresponding calculated values.

  13. Radiative decay width measurements of neutral kaon excitations using the primakoff effect.

    PubMed

    Alavi-Harati, A; Alexopoulos, T; Arenton, M; Arisaka, K; Averitte, S; Barbosa, R F; Barker, A R; Barrio, M; Bellantoni, L; Bellavance, A; Belz, J; Bergman, D R; Blucher, E; Bock, G J; Bown, C; Bright, S; Cheu, E; Childress, S; Coleman, R; Corcoran, M D; Corti, G; Cox, B; Cunha, A; Erwin, A R; Ford, R; Glazov, A; Golossanov, A; Graham, G; Graham, J; Halkiadakis, E; Hamm, J; Hanagaki, K; Hidaka, S; Hsiung, Y B; Jejer, V; Jensen, D A; Kessler, R; Kobrak, H G E; LaDue, J; Lath, A; Ledovskoy, A; McBride, P L; Medvigy, D; Mikelsons, P; Monnier, E; Nakaya, T; Nelson, K S; Nguyen, H; O'Dell, V; Pordes, R; Prasad, V; Qi, X R; Quinn, B; Ramberg, E J; Ray, R E; Roodman, A; Schnetzer, S; Senyo, K; Shanahan, P; Shawhan, P S; Shields, J; Slater, W; Solomey, N; Somalwar, S V; Stone, R L; Swallow, E C; Taegar, S A; Tesarek, R J; Thomson, G B; Toale, P A; Tripathi, A; Tschirhart, R; Turner, S E; Wah, Y W; Wang, J; White, H B; Whitmore, J; Winstein, B; Winston, R; Yamanaka, T; Zimmerman, E D

    2002-08-12

    We use K(L)'s in the 100-200 GeV energy range to produce 147 candidate events of the axial vector pair K1(1270)-K1(1400) in the nuclear Coulomb field of a Pb target and determine the radiative widths Gamma(K1(1400)-->K0+gamma)=280.8+/-23.2(stat)+/-40.4(syst) keV and Gamma(K1(1270)-->K0+gamma)=73.2+/-6.1(stat)+/-28.3(syst) keV. These first measurements appear to be lower than the quark-model predictions. We also place upper limits on the radiative widths for K(*)(1410) and K(*)(2)(1430) and find that the latter is vanishingly small in accord with SU(3) invariance in the naive quark model. PMID:12190514

  14. B physics: measurement of partial widths and search for direct cp violation in d0 meson decays

    SciTech Connect

    Acosta, D.; The CDF Collaboration

    2005-04-04

    We present a measurement of relative partial widths and decay rate CP asymmetries in K{sup -}K{sup +} and {pi}{sup -}{pi}{sup +} decays of D{sup 0} mesons produced in p{bar p} collisions at {radical}s = 1.96TeV. We use a sample of 2 x 10{sup 5} D*{sup +} {yields} D{sup 0}{pi}{sup +} (and charge conjugate) decays with the D{sup 0} decaying to K{sup -}{pi}{sup +}, K{sup -}K{sup +}, and {pi}{sup -}{pi}{sup +}, corresponding to 123 pb{sup -1} of data collected by the Collider Detector at Fermilab II experiment at the Fermilab Tevatron collider. No significant direct CP violation is observed. We measure {Lambda}(D{sup 0} {yields} K{sup -}K{sup +})/{Lambda}(D{sup 0} {yields} K{sup -}{pi}{sup +}) = 0.0992 {+-} 0.0011 {+-} 0.0012, {Lambda}(D{sup 0} {yields} {pi}{sup -}{pi}{sup +})/{Lambda}(D{sup 0} {yields} K{sup -}{pi}{sup +}) = 0.03594 {+-} 0.00054 {+-} 0.00040, A{sub CP} (K{sup -}K{sup +}) = (2.0 {+-} 1.2 {+-} 0.6)%, and A{sub CP} ({pi}{sup -}{pi}{sup +}) = (1.0 {+-} 1.3 {+-} 0.6) %, where, in all cases, the first uncertainty is statistical and the second is systematic.

  15. Quantization in Classical Mechanics and Diffusion Mechanism of Alpha Decay, Proton and Cluster Radioactivity, Spontaneous Fission

    SciTech Connect

    Rusov, V. D.; Vlasenko, D. S.; Deliyergiyev, M. A.; Mavrodiev, S. Cht.

    2010-01-01

    Based on the Chetaev generalized theorem the Schroedinger equation as the stability condition of trajectories in classical dynamics in the presence of dissipative forces is derived. In the framework of this approach the alternative model for unified description of alpha decay, spontaneous fission, cluster and proton radioactivity and is developed. We show the possibility of the classical (without tunneling) description of radioactive decay of heavy nuclei, when the so called noise-induced transition or, in other words, the stochastic channel of radioactive decay conditioned by the Kramers diffusion mechanism is generated under certain conditions.Using the ENSDF nuclear data, we have found the parametrized solutions of the Kramers equation of the Langevin type by the Alexandrov dynamic auto-regularization method (REGN-Dubna program). These solutions describe with high-accuracy the dependences of half-life (the decay probability) of heavy radioactive nuclei on total kinetic energy of daughter decay products.Verification of the inverse problem solution in the framework of the universal Kramers description of alpha decay, spontaneous fission, cluster and proton radioactivity, which based on the newest experimental data for alpha-decay of even-even superheavy nuclei (Z = 114, 116, 118), shows good coincidence of the experimental and theoretical dependences of half-life on alpha-decay energy.

  16. Quantization in Classical Mechanics and Diffusion Mechanism of Alpha Decay, Cluster Radioactivity, Spontaneous Fission

    SciTech Connect

    Rusov, V. D.; Vlasenko, D. S.; Deliyergiyev, M. A.; Mavrodiev, S. Cht.

    2010-05-04

    Based on the Chetaev generalized theorem the Schredinger equation as the stability condition of trajectories in classical dynamics in the presence of dissipative forces is derived. In the framework of this approach the alternative model for unified description of alpha decay, spontaneous fission, cluster radioactivity and is developed. We show the possibility of the classical (without tunneling) description of radioactive decay of heavy nuclei, when the so called noise-induced transition or, in other words, the stochastic channel of radioactive decay conditioned by the Kramers diffusion mechanism is generated under certain conditions.Using the ENSDF nuclear data, we have found the parametrized solutions of the Kramers equation of the Langevin type by the Alexandrov dynamic auto-regularization method (REGN-Dubna program). These solutions describe with high-accuracy the dependences of half-life (the decay probability) of heavy radioactive nuclei on total kinetic energy of daughter decay products.Verification of the inverse problem solution in the framework of the universal Kramers description of alpha decay, spontaneous fission, cluster radioactivity, which based on the newest experimental data for alpha-decay of even-even superheavy nuclei (Z = 114, 116, 118), shows good coincidence of the experimental and theoretical dependences of half-life on alpha-decay energy.

  17. Identification of the ^109Xe -> ^105Te -> ^101Sn alpha-decay chain

    NASA Astrophysics Data System (ADS)

    Liddick, S. N.; Grzywacz, R.; Mazzocchi, C.; Bingham, C. R.; Drafta, G.; Korgul, A.; Tantawy, M. N.; Page, R. D.; Darby, I. G.; Joss, D. T.; Thomson, J.; Rykaczewski, K. P.; Gross, C. J.; Batchelder, J. C.; Goodin, C.; Hamilton, J. H.; Hwang, J. K.; Li, K..; Ilyushkin, S.; Winget, J. A.; Lagergren, K.; Krolas, W.; Hecht, A. A.

    2007-04-01

    The existence of a region of alpha emitting nuclei above ^100Sn is due to the presence of the Z=N=50 shell closures. The region is a fertile area to investigate possible enhanced correlations between neutrons and protons filling the same single-particle orbits and could lead to the observation of superallowed alpha decay as an approach is made towards ^100Sn. Nuclear structure studies in this region are problematic due to both a low probabilty for the production of neutron-defficient isotopes and the difficulty in detecting short-lived alpha decaying nuclei. The new isotope ^109Xe was produced at the HRIBF at Oak Ridge National Laboratory in the ^58Ni(^54Fe,3n) fusion evaporation reaction. A digital electronics aquisition system was used to identify ^105Te through the ^109Xe->^105Te ->^101Sn alpha-decay chain. This marks the closest approach to the N = Z line above ^100Sn. The superallowed character of the alpha decay of ^105Te and the prospects for reaching the alpha-decay chain ^108Xe->^104Te ->^100Sn will be discussed.

  18. Measurements of Charmless B Decays Related to alpha at BaBar

    SciTech Connect

    Lombardo, Vincenzo; /INFN, Milan

    2009-12-09

    We report recent measurements of the CKM angle {alpha} using data collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory. In addition to improved constraints on {alpha} from the decays B{sup {+-}} {yields} {rho}{sup {+-}}{rho}{sup 0}, we also present preliminary results of neutral and charged B meson decays to K{sub 1}(1270){pi} and K{sub 1}(1400){pi} and its impact on the estimate for the CKM angle {alpha} based on time-dependent analysis of CP-violating asymmetries in B{sup 0} {yields} a{sub 1}(1260){sup {+-}} {pi}{sup {-+}}. Moreover we report the first observation of the decay B {yields} a{sub 1}(1260){sup {+-}}a{sub 1}(1260){sup {-+}}; this mode can be used, in principle, to provide an independent measurement of {alpha}.

  19. Alpha Backgrounds for HPGe Detectors in Neutrinoless Double-Beta Decay Experiments

    SciTech Connect

    Johnson, R. A.; Burritt, T. H.; Elliott, S. R.; Gehman, V. M.; Guiseppe, V.E.; Wilkerson, J. F.

    2012-01-01

    The Majorana Experiment will use arrays of enriched HPGe detectors to search for the neutrinoless double-beta decay of 76Ge. Such a decay, if found, would show lepton-number violation and confirm the Majorana nature of the neutrino. Searches for such rare events are hindered by obscuring backgrounds which must be understood and mitigated as much as possible. A potentially important background contribution to this and other double-beta decay experiments could come from decays of alpha-emitting isotopes in the 232Th and 238U decay chains on or near the surfaces of the detectors. An alpha particle emitted external to an HPGe crystal can lose energy before entering the active region of the detector, either in some external-bulk material or within the dead region of the crystal. The measured energy of the event will only correspond to a partial amount of the total kinetic energy of the alpha and might obscure the signal from neutrinoless double-beta decay. A test stand was built and measurements were performed to quantitatively assess this background. We present results from these measurements and compare them to simulations using Geant4. These results are then used to measure the alpha backgrounds in an underground detector in situ. We also make estimates of surface contamination tolerances for double-beta decay experiments using solid-state detectors.

  20. Development of Automatic Alpha-Decay Track Measurement

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hidetaka; Endo, Yoko; Itoh, Hiroki; Kinbara, Shinji; Than Tint, Khin; Kyaw Soe, Myint; Mishina, Akihiro; Yoshida, Junya; Nakazawa, Kazuma

    In the emulsion analysis, alpha-rays with monochromatic energy which were emitted from natural radio isotope such as Thorium and Uranium series in the emulsion are used as calibration sources for range-energy relation. In J-PARC E07 experiment, this calibration method will be used to analysis double-lambda-hypernucleus events, and quick alpha track measurement using micrographs by image processing is being studied. Comparing the conventional method and the new semi-automatic measurement method, it was shown that the same results. New alpha track measurement method is the same quality as conventional method.

  1. The generalized liquid drop model alpha-decay formula: Predictability analysis and superheavy element alpha half-lives

    SciTech Connect

    Dasgupta-Schubert, N. Reyes, M.A.

    2007-11-15

    The predictive accuracy of the generalized liquid drop model (GLDM) formula for alpha-decay half-lives has been investigated in a detailed manner and a variant of the formula with improved coefficients is proposed. The method employs the experimental alpha half-lives of the well-known alpha standards to obtain the coefficients of the analytical formula using the experimental Q{sub {alpha}} values (the DSR-E formula), as well as the finite range droplet model (FRDM) derived Q{sub {alpha}} values (the FRDM-FRDM formula). The predictive accuracy of these formulae was checked against the experimental alpha half-lives of an independent set of nuclei (TEST) that span approximately the same Z, A region as the standards and possess reliable alpha spectroscopic data, and were found to yield good results for the DSR-E formula but not for the FRDM-FRDM formula. The two formulae were used to obtain the alpha half-lives of superheavy elements (SHE) and heavy nuclides where the relative accuracy was found to be markedly improved for the FRDM-FRDM formula, which corroborates the appropriateness of the FRDM masses and the GLDM prescription for high Z, A nuclides. Further improvement resulted, especially for the FRDM-FRDM formula, after a simple linear optimization over the calculated and experimental half-lives of TEST was used to re-calculate the half-lives of the SHE and heavy nuclides. The advantage of this optimization was that it required no re-calculation of the coefficients of the basic DSR-E or FRDM-FRDM formulae. The half-lives for 324 medium-mass to superheavy alpha decaying nuclides, calculated using these formulae and the comparison with experimental half-lives, are presented.

  2. Recent {alpha} decay half-lives and analytic expression predictions including superheavy nuclei

    SciTech Connect

    Royer, G.

    2008-03-15

    New recent experimental {alpha} decay half-lives have been compared with the results obtained from previously proposed formulas depending only on the mass and charge numbers of the {alpha} emitter and the Q{sub {alpha}} value. For the heaviest nuclei they are also compared with calculations using the Density-Dependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulas. The correct agreement allows us to make predictions for the {alpha} decay half-lives of other still unknown superheavy nuclei from these analytic formulas using the extrapolated Q{sub {alpha}} of G. Audi, A. H. Wapstra, and C. Thibault [Nucl. Phys. A729, 337 (2003)].

  3. KOLMOGOROV WIDTHS IN THE SPACE {\\tilde L}_q OF THE CLASSES {\\tilde W}_p^{\\overline \\alpha} AND {\\tilde H}_p^{\\overline \\alpha} OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES

    NASA Astrophysics Data System (ADS)

    Galeev, È. M.

    1986-04-01

    The author finds the order of the Kolmogorov widths d_N({\\tilde W}_p^{\\overline \\alpha} = \\bigcap_{i=1}^m {\\tilde W}_p^{\\alpha^i}, {\\tilde L}_q) for all 1 < p,q < \\infty, where {\\tilde W}_p^\\alpha is the class of periodic functions of several variables determined by a Weyl mixed fractional derivative, and d_N({\\tilde H}_p^{\\overline \\alpha} = \\bigcap_{i=1}^m {\\tilde H}_p^{\\alpha^i},{\\tilde L}_q) for p \\ge 2 or q \\ge 2, where {\\tilde H}_p^\\alpha is the class determined by a mixed difference. Bibliography: 28 titles.

  4. {alpha} decay of the new isotope {sup 206}Ac

    SciTech Connect

    Eskola, K.; Kuusiniemi, P.; Leino, M.; Cocks, J.F.; Enqvist, T.; Hurskanen, S.; Kettunen, H.; Trzaska, W.H.; Uusitalo, J.; Allatt, R.G.; Greenlees, P.T.; Page, R.D.

    1998-01-01

    The new neutron-deficient nuclide {sup 206}Ac was produced by bombarding a {sup 175}Lu target with 5.5 MeV/nucleon {sup 36}Ar ions. The evaporation residues were separated in flight by a gas-filled separator and subsequently identified by the {alpha}-{alpha} position and time correlation method. {sup 206}Ac was found to have two {alpha} particle emitting isomeric levels with half-lives of (22{sub {minus}5}{sup +9}) ms and (33{sub {minus}9}{sup +22}) ms, and with {alpha} particle energies of (7790{plus_minus}30) keV and (7750{plus_minus}20) keV, respectively. The former isomer is tentatively assigned to a J{sup {pi}}=3{sup +} level and the latter to a J{sup {pi}}=10{sup {minus}} level, both of which are also seen in the daughter and granddaughter nuclides {sup 202}Fr and {sup 198}At. Improved values of (27{sub {minus}6}{sup +11}) ms and (7693{plus_minus}25) keV for the half-life and {alpha} particle energy of {sup 207}Ac are also reported. {copyright} {ital 1998} {ital The American Physical Society}

  5. Alpha decay properties of superheavy nuclei Z = 126

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.

    2016-01-01

    We have studied the possible isotopes of superheavy nuclei Z = 126 in the range 288 ≤ A ≥ 339 by studying through their α-decay properties. α-Decay half-life for the isotopes of Z = 126 superheavy nuclei in the range 288 ≤ A ≥ 339 is performed within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The calculated α half-lives agree with the values computed using the Viola-Seaborg systematic, the universal curve of Poenaru et al. (2011) [61]; (2012) [62] and the analytical formulas of Royer (2000) [63]. To identify the mode of decay of these isotopes, the spontaneous-fission half-lives were also evaluated using the semiempirical relation given by Xu et al. (2008) [72]. As we could observe α chains consistently from the nuclei 288-306126, we have predicted that these nuclei could not be synthesized and detected experimentally via α decay as their decay half-lives are too small, which span the order 10-9 to 10-6 s. Most of the predicted, unknown nuclei in the range 307 ≤ A ≥ 326 were found to have relatively long half-lives. Of these the nuclei 307126, 318126, 319126, 320126 and 323-326126 were found to have long half-lives and hence could be sufficient to detect them if synthesized in a laboratory.

  6. The Remote Detection of Alpha-Radioactive Nucleus Decay

    NASA Astrophysics Data System (ADS)

    Gurkovskiy, Boris; Miroshnichenko, Vladimir; Onishchenko, Evgeny; Simakov, Andrey; Streil, Thomas

    Results of the new device design for the alpha-radiation remote detection are presented. Negative ions from the alpha particle tracks are detected by the discharge wire counter opened to air. Ion clusters being transferred from the particle tracks to the detector volume by an air flux. The detector works in a counting mode that provides sharp selectivity and accuracy of measurements. The basic parameters of the device are: detecting distance -0.5 m; measurement time -30 s; the square sensitivity -0.05 Bq/cm2.

  7. {alpha}-decay hindrance factors: A probe of mean-field wave functions

    SciTech Connect

    Karlgren, D.; Liotta, R.J.; Wyss, R.; Huyse, M.; Vel, K. van de; Duppen, P. van

    2006-06-15

    A simple model to calculate {alpha}-decay hindrance factors (HF) with special emphasis on the shape coexistence in the Pb-Po region is presented. Using deformation values obtained from potential energy surface (PES) calculations as the only input, hindrance factors for the {alpha} decay of Rn and Po isotopes are calculated. The fair agreement between experimental and theoretical hindrance factors suggest that the wave function obtained from the energy minima of the PES calculations contains an important part of the correlations that play a role for the {alpha} decay. The model is applicable to shape coexistence in the Po and Pb region when minima are well defined. The calculated HF that emerge from these calculations render a different interpretation than the commonly assumed n-particle n-hole picture of the intruder states in the Pb region.

  8. A QCD sum rule calculation of the X± (5568) → Bs0 π± decay width

    NASA Astrophysics Data System (ADS)

    Dias, J. M.; Khemchandani, K. P.; Martínez Torres, A.; Nielsen, M.; Zanetti, C. M.

    2016-07-01

    To understand the nature of the X (5568), recently observed in the mass spectrum of the Bs0 π± system by the D0 Collaboration, we have investigated, in a previous work, a scalar tetraquark (diquak-antidiquark) structure for it, within the two-point QCD sum rules method. We found that it is possible to obtain a stable value of the mass compatible with the D0 result, although a rigorous QCD sum rule constrained analysis led to a higher value of mass. As a continuation of our investigation, we calculate the width of the tetraquark state with same quark content as X (5568), to the channel Bs0 π±, using the three-point QCD sum rule. We obtain a value of (20.4 ± 8.7) MeV for the mass ∼ 5568 MeV, which is compatible with the experimental value of 21.9 ± 6.4 (sta)-2.5+5.0 (syst) MeV /c2. We find that the decay width to Bs0 π± does not alter much for a higher mass state.

  9. Ultraviolet observations of cool stars. IV - Intensities of Lyman-alpha and Mg II in epsilon Pegasi and epsilon Eridani, and line width-luminosity correlations

    NASA Technical Reports Server (NTRS)

    Mcclintock, W.; Linsky, J. L.; Henry, R. C.; Moos, H. W.

    1975-01-01

    A spectrometer on the Copernicus satellite has been used to confirm the existence of a line width-luminosity relation for the Ly-alpha and Mg II 2800-A chromospheric emission lines in K-type stars by observation of a K2 dwarf (epsilon Eri) and a K2 supergiant (epsilon Peg). Combined with previously reported observations of lines in three K giants (alpha Boo, alpha Tau, and beta Gem), the data are consistent with an identical dependence of line width on absolute visual magnitude for the Ca II K, Ly-alpha, and Mg II 2795-A lines. Surface fluxes of Ly-alpha, Mg II 2800-A, and O V 1218-A (upper limit) for epsilon Eri, and of Mg II 2800-A for epsilon Peg are also compared with values reported previously for the three giant stars.

  10. The solar O III spectrum. II - Longer wavelengths, line widths, and the He II Lyman alpha radiation field

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Behring, W. E.; Bhatia, A. K.

    1983-01-01

    The solar O III spectrum above 900 A is analyzed, including several visible and infrared lines which are important in nebular studies. The dependence of the line intensities on the rate of photoexcitation by He Ly-alpha is determined, and the observability of these lines in the solar spectrum is studied. The impact approximation is employed to calculate the expected line widths of the stronger solar O III lines. The photoexciting field at 304 A calculated from the observed intensities of the O III lines below 900 A (Bhatia et al., 1982) is compared with the field predicted by a recent model (Avrett et al., 1976). It is shown that additional radiation trapping must be present beyond that given by this model.

  11. Probing sensitivity to charged scalars through partial differential widths: τ →K π π ντ decays

    NASA Astrophysics Data System (ADS)

    Mileo, Nicolas; Kiers, Ken; Szynkman, Alejandro

    2015-04-01

    We define and test C P -even and C P -odd partial differential widths for the process τ →K π π ντ assuming that an intermediate heavy charged scalar contributes to the decay amplitude. Adopting a model-independent approach, we use a Monte Carlo simulation in order to study the number of events needed to recover information on the new physics from these observables. Our analysis of the C P -odd observables indicates that the magnitude of fHηP , which is related to the new-physics contribution, can be recovered with an uncertainty smaller than 3% for 3 ×1 06 events. This number of events would also allow one to retrieve certain parameters appearing in the Standard Model amplitude at the percent level. In addition, we discuss the possibility of using the proposed observables to study specific models involving two Higgs doublets, such as the aligned two-Higgs-doublet model. This analysis is undertaken within the context of the upcoming super B-factories, which are expected to provide a considerably larger number of events than that which was supplied by the B-factories. Moreover, a similar set of observables could be employed to study other decay modes such as τ →π π π ντ , τ →K K π ντ and τ →K K K ντ.

  12. Alpha-decay-induced fracturing in zircon - The transition from the crystalline to the metamict state

    NASA Technical Reports Server (NTRS)

    Chakoumakos, Bryan C.; Murakami, Takashi; Lumpkin, Gregory R.; Ewing, Rodney C.

    1987-01-01

    Zonation due to alpha-decay damage in a natural single crystal of zircon from Sri Lanka is discussed. The zones vary in thickness on a scale from one to hundreds of microns. The uranium and thorium concentrations vary from zone to zone such that the alpha decay dose is between 0.2 x 10 to the 16th and 0.8 x 10 to the 16th alpha-events per milligram. The transition from the crystalline to the aperiodic metamict state occurs over this dose range. At doses greater than 0.8 x 10 to the 16th alpha events/mg there is no evidence for long-range order. This type of damage will accumulate in actinide-bearing, ceramic nuclear waste forms. The systematic pattern of fractures would occur in crystalline phases that are zoned with respect to actinide radionuclides.

  13. The Electron Shell and Alpha Decay in Super-Heavy Nuclei

    NASA Astrophysics Data System (ADS)

    Igashov, S. Yu.; Tchuvil'Sky, Yu. M.

    2015-11-01

    The influence of the electron shell on the characteristics of the alpha decay of the 294118 isotope, as an example of a super-heavy atom, is studied theoretically. The calculation is based on direct solution of the Schrödinger equation. The rigorous quantum-mechanical approach being developed makes possible the outer boundary condition of the alpha-particle diverging wave to be taken into account properly. The effect under discussion depends on the behavior of the function of electron density both in the classically-forbidden and the classically-allowed areas of alpha-particle motion. A principally new effect - increasing of the decay rate originated by the part of electron shell located in the classically-allowed area - is revealed in the chosen example. The influence of relativistic properties of inner electrons, scenario of penetration of the alpha-particle through the atomic shell and finite size of nucleus are also studied.

  14. Correlation between {alpha}-Decay Energies of Superheavy Nuclei Involving the Effects of Symmetry Energy

    SciTech Connect

    Dong Jianmin; Zuo Wei; Scheid, Werner

    2011-07-01

    A formula for the relationship between the {alpha}-decay energies (Q values) of superheavy nuclei (SHN) is presented, which is composed of the effects of Coulomb energy and symmetry energy. It can be employed not only to validate the experimental observations and measurements to a large extent, but also to predict the Q values of heaviest SHN with a high accuracy generally which will be very useful for future experiments. Furthermore, the shell closures in superheavy region and the effect of the symmetry energy on the stability of SHN against {alpha} decay are discussed with the help of this formula.

  15. Theoretical studies on the alpha decay of 178-220Pb isotopes

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Sukumaran, Indu; Priyanka, B.

    2015-03-01

    The α decay half lives for the isotopes of Pb (Z = 82) nuclei in the range 178 ≤ A ≤ 220 have been studied systematically within the Coulomb and proximity potential model (CPPM) and also within CPPM with modified deformation dependent assault frequency. The half-lives have been evaluated using the experimental Q values. The computed half-lives are compared with the experimental data and also with the existing theoretical models and are found in good agreement. Using our model we could also demonstrate the influence of the neutron shell closure (N = 126) in the alpha decay half lives through the Geiger-Nuttall (GN) plots of ln ⁡ λ vs. ZE - 1 / 2, log10 ⁡T1/2 vs. Q - 1 / 2 and - ln ⁡ P vs. ZQ - 1 / 2. We have also studied the Universal curve of log10 ⁡T1/2 vs. - ln ⁡ P, where all the alpha transitions could be plotted as a single line. The study on the various forms of GN plots, with various variables, enabled us in developing a new, simple relation for the alpha decay half lives of the Pb isotopes and our study also revealed that CPPM and CPPM with the modified assault frequency are appropriate for the alpha decay studies of Pb isotopes and thus can be successfully applied to other alpha emitter nuclides.

  16. Competition between {alpha} decay and spontaneous fission for heavy and superheavy nuclei

    SciTech Connect

    Xu Chang; Ren Zhongzhou; Guo Yanqing

    2008-10-15

    We systematically investigate the {alpha}-decay and spontaneous fission half-lives for heavy and superheavy nuclei with proton number Z{>=}90. The {alpha}-decay half-lives are obtained by the deformed version of the density-dependent cluster model (DDCM). In the DDCM, the microscopic potential between the {alpha} particle and the daughter nucleus is evaluated numerically from the double-folding model with the M3Y interaction. The influence of the core deformation on the double-folding potential is also properly taken into account by the multipole expansion method. The spontaneous fission half-lives of nuclei from {sup 232}Th to {sup 286}114 are calculated with the parabolic potential approximation by taking nuclear structure effects into account. The agreement between theoretical results and the newly observed data is satisfactory for both {alpha} emitters and spontaneous fission nuclei. The competition between {alpha} decay and spontaneous fission is analyzed in detail and the branching ratios of these two decay modes are predicted for the unknown cases.

  17. A measurement of the electronic widths Γ ee of the ϒ(1 S), ϒ(2 S), and ϒ(4 S) resonances, and of the total decay width Γ of the ϒ(4 S)

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Mankel, R.; Nau, A.; Nowak, S.; Reßing, D.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Eckstein, P.; Schmidtler, M.; Schramm, M.; Schubert, K. R.; Schwierz, R.; Waldi, R.; Reim, K.; Wegener, H.; Eckmann, R.; Kuipers, H.; Mai, O.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Funk, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Knöpfle, K. T.; Spengler, J.; Krieger, P.; Macfarlane, D. B.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Frankl, C.; Schneider, M.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Barsuk, S.; Belyaev, I.; Chistov, R.; Danilov, M.; Gershtein, L.; Gershtein, Yu.; Golutvin, A.; Korolko, I.; Kostina, G.; Litvintsev, D.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.

    1995-12-01

    The partial decay width into electrons, Γ ee , of the ϒ(1 S) and ϒ(2 S) resonances have been measured with the detector ARGUS at the e + e - storage ring DORISII of DESY. Applying the formula of Kuraev and Fadin for the radiative corrections we find: Γ ee (ϒ(1 S))= (1.32±0.04±0.03) keV and Γ ee (ϒ(2 S))=(0.52±0.03±0.01) keV. The total decay width of the ϒ(4 S) resonance and its partial width into electrons have been determined as well. Fitting the data with a generalized Breit-Wigner function with an energy dependent decay width Γ( s) and a mass shift function m(s), we obtain the following resonance parameters: Γ( M 2)=(10.0±2.8±2.7) MeV, Γ ee =(0.28±0.05±0.01)keV and B ee =(2.77±0.50±0.49)·10-5. We argue that the disagrecment of this result with the world average originates from our more adequate parametrization of the observed ϒ(4 S) resonance cross section.

  18. Measurement of the 4. 8-MeV /sup 9/B state width by the reaction /sup 10/B(/sup 3/He,. cap alpha. )/sup 9/B(. cap alpha. ) /sup 5/Li at E( /sup 3/He) = 2. 3 and 5. 0 MeV

    SciTech Connect

    Arena, N.; Cavallaro, S.; Fazio, G.; Giardina, G.; Italiano, A.; Mezzanares, F.

    1986-10-13

    The analog of the 4.7-MeV state of the /sup 9/Be nucleus has been observed in its mirror /sup 9/B by the reaction /sup 10/B(/sup 3/He, ..cap alpha..)/sup 9/B(..cap alpha..) /sup 5/Li (g.s.) at E( /sup 3/He) = 2.3 and 5.0 MeV. The excitation energy and width of the state have been deduced. The value of 1.5 +- 0.3 MeV found for the width is in line with the value deduced by the reaction /sup 7/Li(/sup 3/He,n) /sup 9/B, but it is larger by a factor of about 4 than the one measured by the proton following the ..beta../sup +/ decay of the /sup 9/C nucleus.

  19. {alpha}-decay studies of the exotic N=125, 126, and 127 isotones

    SciTech Connect

    Xu Chang; Ren Zhongzhou

    2007-08-15

    The {alpha}-decay half-lives of the exotic N=125, 126, and 127 isotones (Po, Rn, Ra, Th, and U) are systematically studied by the density-dependent cluster model (DDCM). The influence of the neutron shell closure N=126 on the {alpha}-cluster formation and penetration probabilities is analyzed and discussed in detail. By combining the DDCM and a two-level microscopic model together, the experimental half-lives of {alpha} transitions to both the ground state and the excited state in the daughter nuclei are reproduced very well.

  20. Branching ratios of {alpha} decay to excited states of even-even nuclei

    SciTech Connect

    Wang, Y. Z.; Zhang, H. F.; Dong, J. M.; Royer, G.

    2009-01-15

    Branching ratios of {alpha} decay to members of the ground state rotational band and excited 0{sup +} states of even-even nuclei are calculated in the framework of the generalized liquid drop model (GLDM) by taking into account the angular momentum of the {alpha} particle and the excitation probability of the daughter nucleus. The calculation covers isotopic chains from Hg to Fm in the mass regions 180=}224. The calculated branching ratios of the {alpha} transitions are in good agreement with the experimental data and some useful predictions are provided for future experiments.

  1. Study of alpha-decay damage in a glass-bonded, sodalite ceramic waste.

    SciTech Connect

    Barber, T. L.; DiSanto, T.; Frank, S. M.; Goff, K. M.; Johnson, S. G.; Jue, J.-F.; Noy, M.; O'Holleran, T. P.

    2002-08-20

    A glass-bonded, sodalite ceramic waste form that contains fission products, uranium, and plutonium is intended for disposition in a geologic repository. Over the many years the waste is expected to be in the repository, there is a potential for waste form degradation due to alpha decay damage. To investigate the effects of alpha-decay damage in glass-bonded, sodalite ceramic waste forms, several waste forms were produced with a {sup 238}Pu loading of 1.8 weight percent. This loading is roughly ten times greater than the plutonium loading for all isotopes in the waste form intended for the repository. Due to the higher specific activity of {sup 238}Pu as well as a higher fraction of total plutonium, the same number of alpha decays per gram of material has been achieved after four years as a waste form of nominal composition after ten thousand years. This paper describes the results of different tests near the completion of a four-year study. Trends of these {sup 238}Pu-doped waste forms include volume expansion of crystalline phases and possible increases in the release rates of several elements in the chemical durability tests. There have not yet been any indications of macroscopic swelling by density measurements, amorphization by x-ray diffraction, or microstructural changes by electron microscopy. Overall, the observed changes to the waste form due to alpha-decay are not of sufficient magnitude yet to cause concern over waste form degradation.

  2. {alpha}-decay half-lives for neutral atoms and bare nuclei

    SciTech Connect

    Patyk, Zygmunt; Geissel, Hans; Litvinov, Yuri A.; Nociforo, Chiara; Musumarra, Agatino

    2008-11-15

    The influence of the electron cloud on the {alpha} decay constant is estimated by using relativistic electron binding energies to be a few per mil with an uncertainty of about one per mil. A few nuclides are suggested for measuring this influence in a storage ring.

  3. {alpha} decay studies of very neutron-deficient francium and radium isotopes

    SciTech Connect

    Uusitalo, J.; Leino, M.; Enqvist, T.; Grahn, T.; Greenlees, P.T.; Jones, P.; Julin, R.; Juutinen, S.; Keenan, A.; Kettunen, H.; Koivisto, H.; Kuusiniemi, P.; Leppaenen, A.-P.; Nieminen, P.; Pakarinen, J.; Rahkila, P.; Scholey, C.; Eskola, K.

    2005-02-01

    Very neutron-deficient francium and radium isotopes have been produced in fusion evaporation reactions using {sup 63}Cu and {sup 65}Cu ions on {sup 141}Pr targets and {sup 36}Ar ions on {sup 170}Yb targets. The gas-filled recoil separator RITU was employed to collect the fusion products and to separate them from the scattered beam. The activities were implanted into a position-sensitive silicon detector after passing through a gas-counter system. The isotopes were identified using spatial and time correlations between the implants and decays. Two new {alpha} decaying radium isotopes, {sup 201}Ra and {sup 202}Ra, were identified. The {alpha} decay energy and half-life of {sup 203}Ra were measured with improved precision. The {alpha} decay properties measured for the francium isotopes {sup 201}Fr,{sup 202}Fr,{sup 203}Fr, and {sup 204}Fr were confirmed, in many cases with improved precision. For the first time, a ({pi}s{sub 1/2}{sup -1})1/2{sup +} proton intruder state was identified in francium isotopes, namely in {sup 201}Fr and tentatively in {sup 203}Fr. The measured decay properties for the neutron-deficient odd-mass Fr isotopes suggest an onset of substantial deformation at N=112.

  4. Plutonium-238 alpha-decay damage study of the ceramic waste form.

    SciTech Connect

    Frank, S M; Barber, T L; Cummings, D G; DiSanto, T; Esh, D W; Giglio, J J; Goff, K M; Johnson, S G; Kennedy, J R; Jue, J-F; Noy, M; O'Holleran, T P; Sinkler, W

    2006-03-27

    An accelerated alpha-decay damage study of a glass-bonded sodalite ceramic waste form has recently been completed. The purpose of this study was to investigate the physical and chemical durability of the waste form after significant exposure to alpha decay. This accelerated alpha-decay study was performed by doping the ceramic waste form with {sup 238}Pu which has a much greater specific activity than {sup 239}Pu that is normally present in the waste form. The alpha-decay dose at the end of the four year study was approximately 1 x 10{sup 18} alpha-decays/gram of material. An equivalent time period for a similar dose of {sup 239}Pu would require approximately 1100 years. After four years of exposure to {sup 238}Pu alpha decay, the investigation observed little change to the physical or chemical durability of the ceramic waste form (CWF). Specifically, the {sup 238}Pu-loaded CWF maintained it's physical integrity, namely that the density remained constant and no cracking or phase de-bonding was observed. The materials chemical durability and phase stability also did not change significantly over the duration of the study. The only significant measured change was an increase of the unit-cell lattice parameters of the plutonium oxide and sodalite phases of the material and an increase in the release of salt components and plutonium of the waste form during leaching tests, but, as mentioned, these did not lead to any overall loss of waste form durability. The principal findings from this study are: (1) {sup 238}Pu-loaded CWF is similar in microstructure and phase composition to referenced waste form. (2) Pu was observed primarily as oxide comprised of aggregates of nano crystals with aggregates ranging in size from submicron to twenty microns in diameter. (3) Pu phases were primarily found in the intergranular glassy regions. (4) PuO phase shows expected unit cell volume expansion due to alpha decay damage of approximately 0.7%, and the sodalite phase unit cell volume

  5. {alpha}-decay properties of the new neutron deficient isotope {sup 212}Pa

    SciTech Connect

    Mitsuoka, S.; Ikezoe, H.; Ikuta, T.; Nagame, Y.; Tsukada, K.; Nishinaka, I.; Oura, Y.; Zhao, Y.L.

    1997-03-01

    The new neutron deficient isotope {sup 212}Pa has been produced in the {sup 182}W({sup 35}Cl,5n) reaction at a beam energy of 182.5 MeV. Evaporation residues have been separated with the JAERI recoil mass separator and identified on the basis of time- and position-correlated {alpha}-decay chains. The {alpha} decay from the ground state of {sup 212}Pa has been observed with an {alpha}-particle energy of 8.270(30) MeV and a half-life of 5.1{sub {minus}1.9}{sup +6.1} ms. {copyright} {ital 1997} {ital The American Physical Society}

  6. Alpha Decay Potential Barriers and Half-Lives and Analytical Formula Predictions for Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Royer, Guy; Zhang, Hongfei

    The α decay potential barriers are determined in the cluster-like shape path within a generalized liquid drop model including the proximity effects between the α particle and the daughter nucleus and adjusted to reproduce the experimental Qα. The α emission half-lives are determined within the WKB penetration probability. Calculations using previously proposed formulae depending only on the mass and charge of the alpha emitter and Qα are also compared with new experimental alpha-decay half-lives. The agreement allows to provide predictions for the α decay half-lives of other still unknown superheavy nuclei using the Qα determined from the 2003 atomic mass evaluation of Audi, Wapstra and Thibault.

  7. {alpha}-decay half-lives of the observed superheavy nuclei (Z=108-118)

    SciTech Connect

    Gambhir, Y.K.; Bhagwat, A.; Gupta, M.

    2005-03-01

    A systematic and comprehensive study of the decay half-lives of nuclei appearing in the observed {alpha}-decay chains of superheavy elements (Z=108-118) is presented. The calculation proceeds in three steps. First, the relativistic mean-field equations are solved in the axially symmetric deformed oscillator basis to obtain ground-state properties such as binding energies, radii, deformations, and densities. The results are in good agreement with the available experimental systematics, as expected. Next, the calculated densities are used in the double-folding prescription to determine the interaction potentials for the {alpha}-daughter systems. Finally, these potentials, along with calculated and experimental Q values, are used in the WKB approximation to estimate the decay half-lives. The calculated half-lives, which sensitively depend on Q values, qualitatively reproduce the experiment.

  8. Angular correlation measurements for 4-{alpha} decaying states in {sup 16}O

    SciTech Connect

    Wuosmaa, A.H.; Back, B.B.; Betts, R.R.

    1995-08-01

    Previous measurements of the {sup 12}C({sup 12}C,{sup 8}Be){sup 16}O{sup *}(4 {alpha}) reaction identified discrete levels in {sup 16}O which decay by breakup into 4 {alpha} particles through a number of different decay sequences, including {sup 16}O{sup *} {yields} {sup 8}Be + {sup 8}Be and {alpha} + {sup 12}C (O{sub 2}{sup +}). These states are observed in a range of excitation energies where resonances are observed in inelastic {alpha} + {sup 12}C scattering leading to the {sup 8}Be + {sup 8}Be and {alpha} + {sup 12}C final states. These resonances were associated with 4 {alpha}-particle chain configurations in {sup 16}O. Should the states populated in the {sup 12}C + {sup 12}C reaction possess this same extended structure, it would serve as an important piece of evidence supporting the idea that even more deformed structures are formed in the {sup 24}Mg compound system. In order to more firmly make this association, it is important to determine the spins of the states populated in the {sup 12}C + {sup 12}C reaction.

  9. Direct bound on the total decay width of the top quark in pp collisions at sqrt[s]=1.96 TeV.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2009-01-30

    We present the first direct experimental bound on the total decay width of the top quark, Gamma(t), using 955 pb(-1) of the Tevatron's pp collisions recorded by the Collider Detector at Fermilab. We identify 253 top-antitop pair candidate events. The distribution of reconstructed top quark mass from these events is fitted to templates representing different values of the top quark width. Using a confidence interval based on likelihood-ratio ordering, we extract an upper limit at 95% C.L. of Gamma(t)<13.1 GeV for an assumed top quark mass of 175 GeV/c(2). PMID:19257413

  10. Direct measurement of the W boson decay width in proton-antiproton collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Zhu, Jun-jie

    2004-10-01

    This dissertation describes a direct measurement of the W boson total decay width, {Lambda}{sub W}, using the D0 detector at the Fermilab Tevatron Collider. The measurement uses an integrated luminosity of 177.3 pb{sup -1} data, collected during the 2002-2003 run. The width is determined from the shape of the transverse mass distribution, M{sub T}, by fitting the data in the tail region 100 < M{sub T} < 200 GeV. The result if {Lambda}{sub W} = 2.011 {+-} 0.093(stat) {+-} 0.107(syst) GeV.

  11. {alpha}-decay spectroscopy of the new isotope {sup 192}At

    SciTech Connect

    Andreyev, A.N.; Antalic, S.; Streicher, B.; Saro, S.; Ackermann, D.; Muenzenberg, G.; Franchoo, S.; Hessberger, F.P.; Kojouharov, I.; Kindler, B.; Kuusiniemi, P.; Lommel, B.; Mann, R.; Sulignano, B.; Hofmann, S.; Huyse, M.; Lesher, S.R.; Duppen, P. van; Nishio, K.; Page, R.D.

    2006-02-15

    Decay properties of the new neutron-deficient nuclide {sup 192}At have been studied in the complete fusion reaction {sup 144}Sm({sup 51}V,3n){sup 192}At at the velocity filter SHIP. Two isomeric states with half-lives of 88(6) ms and 11.5(6) ms, respectively, and with complex {alpha}-decay schemes were identified in {sup 192}At. The decay pattern of one of the isomers suggests that it is based on the oblate-deformed {pi}2f{sub 7/2}x{nu}1i{sub 13/2} configuration, which confirms the expected onset of deformation in the At isotopes by approaching the neutron midshell at N=104.

  12. Measurement of the product of the leptonic width of the J/ψ meson and the branching ratio for its decay to hadrons

    SciTech Connect

    Kharlamova, T. A.; Collaboration: KEDR Collaboration

    2015-05-15

    A preliminary result of the KEDR/VEPP-4M experiment devoted to measuring the cross section for electron-positron annihilation to hadrons (e{sup +}e{sup −} → hadrons) in the energy region of J/ψ-resonance production is presented. The value found for the product of the J/ψ-meson width with respect to decay to electrons and the branching ratio for J/ψ-meson decay to hadrons is Γ{sub ee}B{sub h} = 4.67±0.04(stat.)± 0.22(syst.) keV.

  13. Theoretical and experimental {alpha} decay half-lives of the heaviest odd-Z elements and general predictions

    SciTech Connect

    Zhang, H. F.; Royer, G.

    2007-10-15

    Theoretical {alpha} decay half-lives of the heaviest odd-Z nuclei are calculated using the experimental Q{sub {alpha}} value. The barriers in the quasimolecular shape path are determined within a Generalized Liquid Drop Model (GLDM) and the WKB approximation is used. The results are compared with calculations using the Density-Dependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulas. The calculations provide consistent estimates for the half-lives of the {alpha} decay chains of these superheavy elements. The experimental data stand between the GLDM calculations and VSS ones in the most time. Predictions are provided for the {alpha} decay half-lives of other superheavy nuclei within the GLDM and VSS approaches using the recent extrapolated Q{sub {alpha}} of Audi, Wapstra, and Thibault [Nucl. Phys. A729, 337 (2003)], which may be used for future experimental assignment and identification.

  14. Selective alpha particle decay of 12C+12C resonances to excited 20Ne rotational bands observed in the 12C(12C,α)20Ne reaction

    NASA Astrophysics Data System (ADS)

    Ledoux, R. J.; Ordon¯Ez, C. E.; Bechara, M. J.; Al-Juwair, H. A.; Lavelle, G.; Cosman, E. R.

    1984-09-01

    Excitation functions of the 12C(12C,α)20Ne reaction were measured at θlab=7.5° between Ec.m.=14-40 MeV and angular distributions were measured from Ec.m.=17.8 to 20.6 MeV. Summed yields reveal prominent intermediate structure resonances over the entire range which correlate well to resonances previously observed in elastic data. The resonances show enhanced decays to excited rotational bands in 20Ne with reduced widths comparable to those for the elastic channel and an order of magnitude greater than those for the 20Ne ground state band. A discussion is given of the resonances as shape-isomeric states in a shell model secondary minimum in 24Mg, and of the selective alpha decay as being transitions to states of related configuration in 20Ne.

  15. Revisiting alpha decay-based near-light-speed particle propulsion.

    PubMed

    Zhang, Wenwu; Liu, Zhen; Yang, Yang; Du, Shiyu

    2016-08-01

    Interplanet and interstellar travels require long-term propulsion of spacecrafts, whereas the conventional schemes of propulsion are limited by the velocity of the ejected mass. In this study, alpha particles released by nuclear decay are considered as a potential solution for long-time acceleration. The principle of near-light-speed particle propulsion (NcPP) was elucidated and the stopping and range of ions in matter (SRIM) was used to predict theoretical accelerations. The results show that NcPP by means of alpha decay is feasible for long-term spacecraft propulsion and posture adjustment in space. A practical NcPP sail can achieve a speed >150km/s and reach the brink of the solar system faster than a mass equivalent solar sail. Finally, to significantly improve the NcPP sail, the hypothesis of stimulated acceleration of nuclear decay (SAND) was proposed, which may shorten the travel time to Mars to within 20 days. PMID:27161512

  16. Analytical expression for the {alpha}-decay half-life and understanding the data including very long life-times and superheavy nuclei

    SciTech Connect

    Sahu, Basudeb

    2008-10-15

    An analytically solvable composite potential that can closely reproduce the combined potential of an {alpha}+nucleus system consisting of attractive nuclear and repulsive electrostatic potentials is developed. The exact s-wave solution of the Schroedinger equation with this potential in the interior region and the outside Coulomb wave function are used to give a heuristic expression for the width or half-life of the quasibound state at the accurately determined resonance energy, called the Q value of the decaying system. By using the fact that for a relatively low resonance energy, the quasibound state wave function is quite similar to the bound state wave function where the amplitude of the wave function in the interaction region is very large as compared to the amplitude outside, the resonance energy could easily be calculated from the variation of relative probability densities of inside and outside waves as a function of energy. By considering recent {alpha}-decay systems, the applicability of the model is demonstrated with excellent explanations being found for the experimental data of Q values and half-lives of a vast range of masses including superheavy nuclei and nuclei with very long lifetimes (of order 10{sup 22} s). Throughout the application, by simply varying the value of a single potential parameter describing the flatness of the barrier, we obtain successful results in cases with as many as 70 pairs of {alpha}+daughter nucleus systems.

  17. Analysis of nuclear materials by energy dispersive x-ray fluorescence and spectral effects of alpha decay

    SciTech Connect

    Worley, Christopher G

    2009-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, {sup 239}Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect spectra from plutonium, americium, and a Pu-contaminated steel sample. The plutonium sample was also analyzed by wavelength dispersive XRF to demonstrate spectral differences observed when using these very different instruments.

  18. alpha-decay half-lives of superheavy elements with the Dirac-Brueckner-Hartree-Fock (DBHF) nucleon effective interaction

    SciTech Connect

    Zhang Dida; Ma Zhongyu; Chen Baoqiu; Shen Shuifa

    2010-04-15

    The nucleon effective interaction is calculated in the framework of the Dirac-Brueckner-Hartree-Fock approach, which has been illustrated to reproduce well the ground-state properties and the experimental data of proton and alpha particle scattering off nuclei. The nuclear potential of the alpha-nucleus is obtained by doubly folding the nucleon effective interaction with respect to the density distributions of both the alpha particle and daughter nucleus. We apply this new nuclear potential of the alpha-nucleus to investigate the alpha-decay half-lives of superheavy elements in the preformed cluster model along with the experimental decay energies Q{sub exp}. Good agreement with the experimental data is achieved. We also systematically calculate the alpha-decay half-lives for 19 isotope chains (Z=102-120) in this framework using the theoretical alpha-decay energies Q{sub th} extracted from the Moeller-Nix-Kratz mass table. The predicted results are compared with those obtained by using the same Q{sub th} but the nuclear potentials evaluated with M3Y effective interaction and also with the results calculated in the empirical formulas of the Viola-Seaberg-Sobiczewski formula.

  19. Anisotropic alpha decay from oriented odd-mass isotopes of some light actinides

    SciTech Connect

    Berggren, T. )

    1994-11-01

    Half-lives and anisotropies in the [alpha] decay of [sup 205,207,209]Rn, [sup 219]Rn, [sup 221]Fr, [sup 227,229]Pa, and [sup 229]U have been calculated using the reaction-theoretical formalism proposed by Jackson and Rhoades-Brown and adapted for axially symmetric deformed nuclei by Berggren and Olanders. The possibility of octupole deformation has been taken into account. In addition, a variant of triaxial octupole deformation has been considered tentatively in the case of [sup 227]Pa and [sup 229]Pa.

  20. Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation

    NASA Astrophysics Data System (ADS)

    Dube, Charu L.; Stennett, Martin C.; Gandy, Amy S.; Hyatt, Neil C.

    2016-03-01

    A surrogate approach of ion beam irradiation is employed to simulate alpha decay of actinides in iron phosphate nuclear waste glasses. Bismuth and helium ions of different energies have been selected for simulating glass matrix modification owing to radiolysis and ballistic damage due to recoil atoms. Structural modification and change in coordination number of network former were probed by employing Reflectance Fourier-Transform Infrared (FT-IR), and Raman spectroscopies as a consequence of ion irradiation. Depolymerisation is observed in glass sample irradiated at intermediate energy of 2 MeV. Helium blisters of micron size are seen in glass sample irradiated at low helium ion energy of 30 keV.

  1. Evidence for B- to rho0rho0 Decay and Implications for the CKM Angle alpha

    SciTech Connect

    Aubert, B.

    2007-01-03

    The authors search for the decays B{sup 0} {yields} {rho}{sup 0}{rho}{sup 0}, B{sup 0} {yields} {rho}{sup 0} f{sub 0}(980), and B{sup 0} {yields} f{sub 0}(980) f{sub 0}(980) in a sample of about 384 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC. They find evidence for B{sup 0} {yields} {rho}{sup 0}{rho}{sup 0} with 3.5{sigma} significance and measure the branching fraction {Beta} = (1.07 {+-} 0.33 {+-} 0.19) x 10{sup -6} and longitudinal polarization fraction f{sub L} = 0.87 {+-} 0.13 {+-} 0.04, where the first uncertainty is statistical, and the second is systematic. The uncertainty on the CKM unitarity angle {alpha} due to penguin contributions in B {yields} {rho}{rho} decays is 18{sup o} at the 1{sigma} level. They also set upper limits on the B{sup 0} {yields} {rho}{sup 0} f{sub 0}(980) and B{sup 0} {yields} f{sub 0}(980)f{sub 0}(980) decay rates.

  2. Experimental aspects of the adiabatic approach in estimating the effect of electron screening on alpha decay

    SciTech Connect

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2015-12-15

    Special features of the effect of the electron shell on alpha decay that have important experimental implications are studied within the adiabatic approach. The magnitude of the effect is about several tenths of a percent or smaller, depending on the transition energy and on the atomic number. A dominant role of inner shells is shown: more than 80% of the effect is saturated by 1s electrons. This circumstance plays a crucial role for experiments, making it possible to measure this small effect by a difference method in the same storage rings via a comparison of, for example, decay probabilities in bare nuclei and heliumlike ions. The reasons behind the relative success and the applicability limits of the frozen-shell model, which has been used to calculate the effect in question for more than half a century, are analyzed. An interesting experiment aimed at studying charged alpha-particle states is proposed. This experiment will furnish unique information for testing our ideas of the interplay of nonadiabatic and adiabatic processes.

  3. Effects of alpha beam on the parametric decay of a parallel propagating circularly polarized Alfven wave: Hybrid simulations

    SciTech Connect

    Gao, Xinliang; Lu, Quanming; Tao, Xin; Hao, Yufei; Wang, Shui

    2013-09-15

    Alfven waves with a finite amplitude are found to be unstable to a parametric decay in low beta plasmas. In this paper, the parametric decay of a circularly polarized Alfven wave in a proton-electron-alpha plasma system is investigated with one-dimensional (1-D) hybrid simulations. In cases without alpha particles, with the increase of the wave number of the pump Alfven wave, the growth rate of the decay instability increases and the saturation amplitude of the density fluctuations slightly decrease. However, when alpha particles with a sufficiently large bulk velocity along the ambient magnetic field are included, at a definite range of the wave numbers of the pump wave, both the growth rate and the saturation amplitude of the parametric decay become much smaller and the parametric decay is heavily suppressed. At these wave numbers, the resonant condition between the alpha particles and the daughter Alfven waves is satisfied, therefore, their resonant interactions might play an important role in the suppression of the parametric decay instability.

  4. Effects of alpha beam on the parametric decay of a parallel propagating circularly polarized Alfven wave: Hybrid simulations

    NASA Astrophysics Data System (ADS)

    Gao, Xinliang; Lu, Quanming; Tao, Xin; Hao, Yufei; Wang, Shui

    2013-09-01

    Alfven waves with a finite amplitude are found to be unstable to a parametric decay in low beta plasmas. In this paper, the parametric decay of a circularly polarized Alfven wave in a proton-electron-alpha plasma system is investigated with one-dimensional (1-D) hybrid simulations. In cases without alpha particles, with the increase of the wave number of the pump Alfven wave, the growth rate of the decay instability increases and the saturation amplitude of the density fluctuations slightly decrease. However, when alpha particles with a sufficiently large bulk velocity along the ambient magnetic field are included, at a definite range of the wave numbers of the pump wave, both the growth rate and the saturation amplitude of the parametric decay become much smaller and the parametric decay is heavily suppressed. At these wave numbers, the resonant condition between the alpha particles and the daughter Alfven waves is satisfied, therefore, their resonant interactions might play an important role in the suppression of the parametric decay instability.

  5. Swelling induced by alpha decay in monazite and zirconolite ceramics: A XRD and TEM comparative study

    NASA Astrophysics Data System (ADS)

    Deschanels, X.; Seydoux-Guillaume, A. M.; Magnin, V.; Mesbah, A.; Tribet, M.; Moloney, M. P.; Serruys, Y.; Peuget, S.

    2014-05-01

    Zirconolite and monazite matrices are potential ceramics for the containment of actinides (Np, Cm, Am, Pu) which are produced over the reprocessing of spent nuclear fuel. Actinides decay mainly through the emission of alpha particles, which in turn causes most ceramics to undergo structural and textural changes (amorphization and/or swelling). In order to study the effects of alpha decays on the above mentioned ceramics two parallel approaches were set up. The first involved the use of an external irradiation source, Au, which allowed the deposited recoil energy to be simulated. The second was based on short-lived actinide doping with 238Pu, (i.e. an internal source), via the incorporation of plutonium oxide into both the monazite and zirconolite structures during synthesis. In both types of irradiation experiments, the zirconolite samples became amorphous at room temperature with damage close to 0.3 dpa; corresponding to a critical dose of 4 × 1018 α g-1 (i.e. ∼1.3 × 1021 keV cm-3). Both zirconolite samples also showed the same degree of macroscopic swelling at saturation (∼6%), with ballistic processes being the predominant damaging effect. In the case of the monazite however, the macroscopic swelling and amorphization were dependent on the nature of the irradiation. Externally, (Au), irradiated samples became amorphous while also demonstrating a saturation swelling of up to 8%. In contrast to this, the swelling of the 238Pu doped samples was much smaller at ∼1%. Also, unlike the externally (Au) irradiated monazite these 238Pu doped samples remained crystalline up to 7.5 × 1018 α g-1 (0.8 dpa). XRD, TEM and swelling measurements were used to fully characterize and interpret this behavior. The low swelling and the conservation of the crystalline state of 238Pu doped monazite samples indicates that alpha annealing took place within this material.

  6. Constraints on the CKM Angle alpha in the B to rho rho Decays

    SciTech Connect

    Li, H.

    2004-11-03

    Using a data sample of 122 million {Upsilon}(4S) {yields} B{bar B} decays collected with BABAR detector at the PEP-II asymmetric B factory at SLAC, we measure the time-dependent-asymmetry parameters of the longitudinally polarized component in the B{sup 0} {yields} {rho}{sup +}{rho}{sup -} decay as C{sub L} = -0.23 {+-} 0.24(stat) {+-} 0.14(syst) and S{sub L} = -0.19 {+-} 0.33(stat) {+-} 0.11(syst). The B{sup 0} {yields} {rho}{sup 0}{rho}{sup 0} decay mode is also searched for in a data sample of about 227 million B{bar B} pairs. No significant signal is observed, and an upper limit of 1.1 x 10{sup -6} (90% C.L.) on the branching fraction is set. The penguin contribution to the CKM angle {alpha} uncertainty is measured to be 11{sup o}. All results are preliminary.

  7. Measurement of partial widths and search for direct CP violation in D0 meson decays to K-K+ and pi-pi+.

    PubMed

    Acosta, D; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Calafiura, P; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerri, C; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chu, M L; Chuang, S; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'agnello, S; Dell'orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J; Frisch, H; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Guenther, M; Guimaraes da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, M; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; Ncnulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A-S; Nigmanov, T; Nodulman, L; Norniella, O; Oesterberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reichold, A; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Ruiz, A; Ryan, D; Saarikko, H; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schemitz, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sisakyan, A; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stefanini, A; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, S; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vataga, E; Vejcik, S; Velev, G; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2005-04-01

    We present a measurement of relative partial widths and decay rate CP asymmetries in K-K+ and pi(-)pi(+) decays of D0 mesons produced in pp collisions at sqrt[s]=1.96 TeV. We use a sample of 2x10(5) D(*+)-->D0pi(+) (and charge conjugate) decays with the D0 decaying to K-pi(+), K-K+, and pi(-)pi(+), corresponding to 123 pb(-1) of data collected by the Collider Detector at Fermilab II experiment at the Fermilab Tevatron collider. No significant direct CP violation is observed. We measure Gamma(D0-->K-K+)/Gamma(D0-->K-pi(+))=0.0992+/-0.0011+/-0.0012, Gamma(D0-->pi(-)pi(+))/Gamma(D0-->K-pi(+))=0.035 94+/-0.000 54+/-0.000 40, A(CP)(K-K+)=(2.0+/-1.2+/-0.6)%, and A(CP)(pi(-)pi(+))=(1.0+/-1.3+/-0.6)%, where, in all cases, the first uncertainty is statistical and the second is systematic. PMID:15903906

  8. Structural dynamics of the alpha-neurotoxin-acetylcholine-binding protein complex: hydrodynamic and fluorescence anisotropy decay analyses.

    PubMed

    Hibbs, Ryan E; Johnson, David A; Shi, Jianxin; Hansen, Scott B; Taylor, Palmer

    2005-12-20

    The three-fingered alpha-neurotoxins have played a pivotal role in elucidating the structure and function of the muscle-type and neuronal alpha7 nicotinic acetylcholine receptors (nAChRs). To advance our understanding of the alpha-neurotoxin-nAChR interaction, we examined the flexibility of alpha-neurotoxin bound to the acetylcholine-binding protein (AChBP), which shares structural similarity and sequence identities with the extracellular domain of nAChRs. Because the crystal structure of five alpha-cobratoxin molecules bound to AChBP shows the toxins projecting radially like propeller "blades" from the perimeter of the donut-shaped AChBP, the toxin molecules should increase the frictional resistance and thereby alter the hydrodynamic properties of the complex. alpha-Bungarotoxin binding had little effect on the frictional coefficients of AChBP measured by analytical ultracentrifugation, suggesting that the bound toxins are flexible. To support this conclusion, we measured the anisotropy decay of four site-specifically labeled alpha-cobratoxins (conjugated at positions Lys(23), Lys(35), Lys(49), and Lys(69)) bound to AChBP and free in solution and compared their anisotropy decay properties with fluorescently labeled cysteine mutants of AChBP. The results indicated that the core of the toxin molecule is relatively flexible when bound to AChBP. When hydrodynamic and anisotropy decay analyses are taken together, they establish that only one face of the second loop of the alpha-neurotoxin is immobilized significantly by its binding. The results indicate that bound alpha-neurotoxin is not rigidly oriented on the surface of AChBP but rather exhibits segmental motion by virtue of flexibility in its fingerlike structure. PMID:16342951

  9. Alpha decay of [sup 216]At and the level structure of [sup 212]Bi

    SciTech Connect

    Liang, C.F.; Paris, P. ); Sheline, R.K. )

    1994-04-01

    The level structure of [sup 212]Bi has been studied by observing the alpha decay of [sup 216]At which is in secular equilibrium with [sup 220]Fr and [sup 224]Ac. Eight states are observed and tentatively assigned to the configuration [pi][ital h][sub 9/2][nu]([ital g][sub 9/2])[sup 3] and three to the configuration [pi][ital h][sub 9/2][nu]([ital g][sub 9/2])[sup 2][ital i][sub 11/2]. These two lowest configurations in [sup 212]Bi are compared with the corresponding configurations in [sup 210]Bi and the calculations of Warburton.

  10. Width measurement of the {sup 6}Li{sub 4.31} state by the {sup 7}Li({sup 3}He, {alpha}d){alpha} reaction

    SciTech Connect

    Arena, N.; Cavallaro, S.; D`Agostino, P.; D`Arrigo, A.; Fazio, G.; Giardina, G.; Sacchi, M.; Eremin, N.V.; Klochko, T.U.; Lombardi, M.

    1995-02-01

    The J{sup {pi}} = 2{sup +}, T = 0 {sup 6}Li state at E{sub x} = 4.31 MeV was populated by the {sup 7}Li({sup 3}He, {alpha}d){alpha} reaction performed at 4, 5, and 6 MeV {sup 3}He incident energies. The values obtained for {Gamma}({sup 6}Li{sub 4.31}) were compared with those deduced from the above reaction at E({sup 3}He) = 2.5 MeV. In contrast to the findings of other authors, no dependence of the above parameter on incident energy was observed. 23 refs., 1 fig., 2 tabs.

  11. Randall-Sundrum corrections to the width difference and CP-violating phase in B{sub s}{sup 0}-meson decays

    SciTech Connect

    Goertz, Florian; Pfoh, Torsten

    2011-11-01

    We study the impact of the Randall-Sundrum setup on the width difference {Delta}{Gamma}{sub s} and the CP-violating phase {phi}{sub s} in the B{sub s}{sup 0}-B{sub s}{sup 0} system. Our calculations are performed in the general framework of an effective theory, based on operator product expansion. The results can thus be used for many new-physics models. We find that the correction to the magnitude of the decay amplitude {Gamma}{sub 12}{sup s} is below 4% for a realistic choice of input parameters. The main modification in the {Delta}{Gamma}{sub s}/{beta}{sub s}-plane is caused by a new CP-violating phase in the mixing amplitude, which allows for a better agreement with the experimental results of the CDF and D0 Collaborations from B{sub s}{sup 0}{yields}J/{psi}{phi} decays. The best-fit value of the CP asymmetry S{sub {psi}{phi}} can be reproduced, while simultaneously the theoretical prediction for the semileptonic CP asymmetry A{sub SL}{sup s} can enter the 1{sigma} range.

  12. Leptonic widths of heavy quarkonia: QCD/NRQCD matching for the electromagnetic current at O(alpha_s v^2)

    NASA Astrophysics Data System (ADS)

    von Hippel, Georg

    2006-12-01

    We construct the S-wave part of the electromagnetic vector annihilation current to O(αs v2 ), where v is the non-relativistic quark velocity, for heavy quarks whose dynamics are described by the ¯ NRQCD action on the lattice. The NRQCD vector current for QQ annihilation is expressed as a linear combination of lattice operators with quantum numbers L = 0, J P = 1- , and the coefficients are determined by matching to the corresponding continuum current in QCD to O(v2 ) at one- loop. The annihilation channel gives a complex amplitude with Coulomb-exchange and infrared singularities, making a careful choice for the contours of integration and infrared subtraction functions in the numerical integration necessary. An automated vertex generation program written in Python is employed, allowing us to use a realistic NRQCD action and an improved gluon lattice action; a change in the definition of either action is easily accommodated in this procedure. The final result is applicable to simulations of electromagnetic decays of heavy quarkonia, notably the ϒ meson.

  13. A systematic study of proton, alpha and cluster decays in Rhenium isotopes using the effective liquid drop model

    NASA Astrophysics Data System (ADS)

    Joseph, Deepthy Maria; Ashok, Nithu; Joseph, Antony

    2016-01-01

    Employing the effective liquid drop model (ELDM), half-lives of proton and alpha decays and probable cluster decays are computed and analyzed for different proton-rich and neutron-rich isotopes of Rhenium. The investigation fortifies the phenomenon of cluster radioactivity (CR) in rare earth nuclei and also affirms the pivotal role played by neutron magicity in cluster decays. ELDM data is compared with that of universal decay law (UDL) model and found to be more efficient than the latter one. Apparently, cluster emissions slacken as the neutron number of daughter nucleus goes up and the linear nature of Geiger-Nuttall (G-N) plots stays unaltered even if the surface potential is incorporated.

  14. Tumour necrosis factor-alpha up-regulates decay-accelerating factor gene expression in human intestinal epithelial cells.

    PubMed Central

    Andoh, A; Fujiyama, Y; Sumiyoshi, K; Sakumoto, H; Okabe, H; Bamba, T

    1997-01-01

    The increased expression of decay-accelerating factor (DAF) has been detected in intestinal epithelial cells at the inflamed mucosa. In this study, we examined the effects of tumour necrosis factor (TNF)-alpha on DAF expression in three intestinal epithelial cell lines. DAF mRNA expression was evaluated by Northern blot analysis, and DAF protein expression was analysed by biotin labelling and immunoprecipitation. TNF-alpha induced a marked increase in DAF mRNA and protein expression in HT-29, T84 and Caco-2 cells. In HT-29 cells, the effects of TNF-a on DAF mRNA accumulation were observed in a dose-dependent manner; DAF mRNA accumulation reached a maximum at 3-6 hr, and then gradually decreased. These effects of TNF-alpha required de novo protein synthesis. Messenger RNA stability studies suggested that TNF-alpha partially regulated DAF gene expression by a posttranscriptional mechanism. Moreover, the combination of TNF-alpha and interleukin (IL)-4 induced an additive increase in DAF mRNA accumulation in HT-29 and T84 cells. In human intestinal epithelial cells, TNF-alpha acts as a potent inducer of DAF mRNA expression, indicating an important role for TNF-alpha in the regulation of DAF expression at the inflamed mucosa. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 PMID:9155641

  15. Improved Measurement of the Cabibbo-Kobayashi-Maskawa angle alpha using B0(B) --> rho+rho- decays.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Chevalier, N; Cottingham, W N; Kelly, M P; Cuhadar-Donszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bondioli, M; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Del Re, D; Hadavand, H K; Hill, E J; Macfarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Andreassen, R; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Zhang, J; Chen, A; Eckhart, E A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Spaan, B; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Klose, V; Lacker, H M; Maly, E; Nogowski, R; Otto, S; Petzold, A; Schott, G; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Mohapatra, A K; Cochran, J; Crawley, H B; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Pierini, M; Plaszczynski, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Parry, R J; Payne, D J; Touramanis, C; Cormack, C M; Di Lodovico, F; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hodgkinson, M C; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Viaud, B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Simi, G; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Christ, S; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Graziani, G; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M T; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kazuhito, S; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Soha, A; Stelzer, J; Strube, J; Su, D; Sullivan, M K; Thompson, J M; Va'vra, J; Wagner, S R; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Pan, Y; Prepost, R; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H

    2005-07-22

    We present results from an analysis of B(0)B(0)--> rho(+)rho(-) using 232 x 10(6) Gamma (4S) --> BB decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. We measure the longitudinal polarization fraction f(L) = 0.978 +/- 0.014(stat) + 0.021 / -0.029(syst) and the CP-violating parameters S(L)= -0.33 +/- 0.24(stat) + 0.08 / -0.14(syst) and C(L)= -0.03 +/- 0.18(stat) +/- 0.09(syst). Using an isospin analysis of B --> rhorho decays, we determine the unitarity triangle parameter alpha. The solution compatible with the standard model is alpha = (100 +/- 13) degrees. PMID:16090799

  16. Measurement of the CKM Angle Alpha at the BABAR Detector Using B Meson Decays to Rho Final States

    SciTech Connect

    Mihalyi, Attila; /Wisconsin U., Madison

    2006-10-16

    This thesis contains the results of an analysis of B{sup 0} {yields} {rho}{sup +}{rho}{sup -} using 232 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. From a fitted signal yield of 617 {+-} 52 events, the longitudinal polarizations fraction, f{sub L}, of the decay is measured to be 0.978 {+-} 0.014(stat){sub -0.029}{sup +0.021}(syst). The nearly fully longitudinal dominance of the B{sup 0} {yields} {rho}{sup +}{rho}{sup -} decay allows for a measurement of the time dependent CP parameters S{sub L} and C{sub L}, where the first parameter is sensitive to mixing induced CP violation and the second one to direct CP violation. From the same signal yield, these values are found to be S{sub L} = -0.33 {+-} 0.24(stat){sub -0.14}{sup +0.08}(syst) and C{sub L} = - 0.03 {+-} 0.18(stat) {+-} 0.09(syst). The CKM angle {alpha} is then determined, using these results and the branching fractions and polarizations of the decays B{sup 0} {yields} {rho}{sup 0}{rho}{sup 0} and B{sup +} {yields} {rho}{sup +}{rho}{sup 0}. This measurement is done with an isospin analysis, in which a triangle is constructed from the isospin amplitudes of these three decay modes. A {chi}{sup 2} expression that includes the measured quantities expressed as the lengths of the sides of the isospin triangles is constructed and minimized to determine a confidence level on {alpha}. Selecting the solution compatible with the Standard Model, one obtains {alpha} = 100{sup o} {+-} 13{sup o}.

  17. Mitochondrial decay in the brains of old rats: ameliorating effect of alpha-lipoic acid and acetyl-L-carnitine.

    PubMed

    Long, Jiangang; Gao, Feng; Tong, Liqi; Cotman, Carl W; Ames, Bruce N; Liu, Jiankang

    2009-04-01

    To investigate the mitochondrial decay and oxidative damage resulting from aging, the activities/kinetics of the mitochondrial complexes were examined in the brains of young and old rats as well as in old rats fed R-alpha-lipoic acid plus acetyl-L-carnitine (LA/ALC). The brain mitochondria of old rats, compared with young rats, had significantly decreased endogenous antioxidants and superoxide dismutase activity; more oxidative damage to lipids and proteins; and decreased activities of complex I, IV and V. Complex I showed a decrease in binding affinity (increase in K(m)) for substrates. Feeding LA/ALC to old rats partially restored age-associated mitochondrial dysfunction to the levels of the young rats. These results indicate that oxidative mitochondrial decay plays an important role in brain aging and that a combination of nutrients targeting mitochondria, such as LA/ALC, could ameliorate mitochondrial decay through preventing mitochondrial oxidative damage. PMID:18846423

  18. Temperature dependence of decay time and intensity of alpha pulses in pure and thallium-activated cesium iodide

    USGS Publications Warehouse

    Senftle, F.E.; Martinez, P.; Alekna, V.P.

    1962-01-01

    The intensity and decay time of Po210 ?? particle scintillations produced in pure and thallium-activated cesium iodide have been measured with a fast electronic system as a function of temperature down to 77??K. Three modes of decay due to alpha excitation have been observed for CsI(Tl), and two for CsI. Other than the 7- and 0.55-??sec modes (at room temperature) reported in the literature for CsI(Tl), an additional temperature-independent mode of about 1.3 ??sec has been detected between 77 and 150??K. In CsI a fast temperature-dependent mode of decay (???100 nsec) was observed between 100-200??K in addition to the known principal mode. ?? 1962 The American Institute of Physics.

  19. Novel Manifestation of {alpha}-Clustering Structures: New '{alpha}+{sup 208}Pb' States in {sup 212}Po Revealed by Their Enhanced E1 Decays

    SciTech Connect

    Astier, A.; Porquet, M.-G.; Petkov, P.; Delion, D. S.; Schuck, P.

    2010-01-29

    Excited states in {sup 212}Po were populated by {alpha} transfer using the {sup 208}Pb({sup 18}O,{sup 14}C) reaction, and their deexcitation {gamma} rays were studied with the Euroball array. Several levels were found to decay by a unique E1 transition (E{sub {gamma}}<1 MeV) populating the yrast state with the same spin value. Their lifetimes were measured by the Doppler-shift attenuation method. The values, found in the range 0.1-1.4 ps, lead to very enhanced transitions, B(E1)=2x10{sup -2}-1x10{sup -3} W.u. These results are discussed in terms of an {alpha}-cluster structure which gives rise to states with non-natural-parity values, provided that the composite system cannot rotate collectively, as expected in the '{alpha}+{sup 208}Pb' case. Such states due to the oscillatory motion of the {alpha}-core distance are observed for the first time.

  20. Precise Determination of the Intensity of 226Ra Alpha Decay to the 186 keV Excited State

    SciTech Connect

    S.P. LaMont; R.J. Gehrke; S.E. Glover; R.H. Filby

    2001-04-01

    There is a significant discrepancy in the reported values for the emission probability of the 186 keV gamma-ray resulting from the alpha decay of 226 Ra to 186 keV excited state of 222 Rn. Published values fall in the range of 3.28 to 3.59 gamma-rays per 100 alpha-decays. An interesting observation is that the lower value, 3.28, is based on measuring the 186 keV gamma-ray intensity relative to the 226 Ra alpha-branch to the 186 keV level. The higher values, which are close to 3.59, are based on measuring the gamma-ray intensity from mass standards of 226 Ra that are traceable to the mass standards prepared by HÓNIGSCHMID in the early 1930''s. This discrepancy was resolved in this work by carefully measuring the 226 Ra alpha-branch intensities, then applying the theoretical E2 multipolarity internal conversion coefficient of 0.692±0.007 to calculate the 186 keV gamma-ray emission probability. The measured value for the alpha branch to the 186 keV excited state was (6.16±0.03)%, which gives a 186 keV gamma-ray emission probability of (3.64±0.04)%. This value is in excellent agreement with the most recently reported 186 keV gamma-ray emission probabilities determined using 226 Ra mass standards.

  1. Alpha-Decay Half-Life with a Generalized Liquid Drop Model by Using a Precise Decay Energy

    NASA Astrophysics Data System (ADS)

    Ma, Na Na; Zhang, Hai Fei; Dong, Jian Min; Zhang, Hong Fei

    Incorporating with the radial basis function (RBF) correction, the rms deviation of a new Weizsäcker-Skyrme-type nuclear mass formula [Haifei Zhang, et al., Nucl. Phys. A 929, 38 (2014)] has been significantly reduced from 493 keV to 323 keV by up to 34% to 2267 calculated atomic masses comparing with experimental data abstracted from AME12. With the Qα values calculated by this hybrid formula as inputs, the systematically evaluated α decay half-lives within the GLDM for the isotopic nuclei agree with the experimental ones.

  2. Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation

    NASA Astrophysics Data System (ADS)

    Peuget, S.; Delaye, J.-M.; Jégou, C.

    2014-01-01

    This paper presents an overview of the main results of the French research on the long-term behavior of SON68 nuclear glass towards alpha decay accumulation. The effect of the radiation damage induced by alpha decay and also helium build-up were investigated by examining glass specimens, doped with a short-lived actinide 244Cm, irradiated by light and heavy ions. Additionally, atomistic simulations by molecular dynamics have provided further information on the atomic-scale effects of the macroscopic phenomena observed. These studies have shown that some macroscopic properties vary with the accumulation of alpha decay, but then stabilize after integrated doses of the order of 4 × 1018 α g-1. For example, the glass density diminishes by about 0.6%, its Young's modulus by about 15%, and its hardness by about 30%, while its fracture toughness increases by around 50%. The SEM and TEM characterization showed that the glass is still homogeneous. No phase separation, crystallization or bubbles formation was noticed up to an alpha decay dose corresponding to several thousand years of disposal of nuclear glass canister. Moreover the initial alteration rate of the glass is not significantly affected by the glass damage induced by alpha decays or heavy ions irradiations. The comparison of the macroscopic evolutions of the Cm doped glass with those obtained for glasses irradiated with light or heavy ions (from either experimental and molecular dynamic studies) suggests that the macroscopic evolutions are induced by the nuclear interactions induced by the recoil nuclei of alpha decay. The analysis of the behavior of the glass structure subjected to ballistic effects with various spectroscopic studies, together with the results of atomistic modeling by molecular dynamics, have identified some slight changes in the local order around some cations. Moreover a modification of the medium-range order has also been demonstrated through changes in the bond angles between network

  3. Expected accuracy in a measurement of the CKM angle alpha using a Dalitz plot analysis of B0 ---> rho pi decays in the BTeV project

    SciTech Connect

    Shestermanov, K.E.; Vasiliev, A.N; Butler, J.; Derevschikov, A.A.; Kasper, P.; Kiselev, V.V.; Kravtsov, V.I.; Kubota, Y.; Kutschke, R.; Matulenko, Y.A.; Minaev, N.G.; /Serpukhov, IHEP /Fermilab /Minnesota U. /Syracuse U. /INFN, Milan

    2005-12-01

    A precise measurement of the angle {alpha} in the CKM triangle is very important for a complete test of Standard Model. A theoretically clean method to extract {alpha} is provided by B{sup 0} {yields} {rho}{pi} decays. Monte Carlo simulations to obtain the BTeV reconstruction efficiency and to estimate the signal to background ratio for these decays were performed. Finally the time-dependent Dalitz plot analysis, using the isospin amplitude formalism for tre and penguin contributions, was carried out. It was shown that in one year of data taking BTeV could achieve an accuracy on {alpha} better than 5{sup o}.

  4. Evidence for B(0) --> rho(0)rho(0) decays and implications for the Cabibbo-Kobayashi-Maskawa angle alpha.

    PubMed

    Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Pegna, D Lopes; Lynch, G; Mir, L M; Orimoto, T J; Osipenkov, I; Pripstein, M; Roe, N A; Ronan, M T; Tackmann, K; Wenzel, W A; Sanchez, P Del Amo; Barrett, M; Harrison, T J; Hart, A J; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Williams, D C; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Vetere, M Lo; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Nikolich, M B; Vazquez, W Panduro; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Diberder, F Le; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Lodovico, F Di; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; Nardo, G De; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Potter, C T; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Chauveau, J; David, P; Buono, L Del; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; Leruste, Ph; Malclès, J; Ocariz, J; Gladney, L; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Marco, E Di; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Gioi, L Li; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Roethel, W; Wilson, F F; Aleksan, R; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Ricca, G Della; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2007-03-16

    We search for the decays B(0) --> rho(0)rho(0), B(0) --> rho(0)f(0)(980), and B(0) --> f(0)(980)f(0)(980) in a sample of about 384 x 10(6) Upsilon(4S) --> BB[over] decays collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at Stanford Linear Accelerator Center. We find evidence for B(0) --> rho(0)rho(0) with 3.5 sigma significance and measure the branching fraction B = (1.07 +/- 0.33 +/- 0.19) x 10(-6) and longitudinal polarization fraction f(L) = 0.87 +/- 0.13 +/- 0.04, where the first uncertainty is statistical, and the second is systematic. The uncertainty on the Cabibbo-Kobayashi-Maskawa quark-mixing matrix unitarity angle alpha due to penguin contributions in B --> rho rho decays is 18 degrees at the 1 sigma level. We also set upper limits on the B(0) --> rho(0)f(0)(980) and B(0) --> f(0)(980)f(0)(980) decay rates. PMID:17501042

  5. Alpha particles accompanying the weak decay of {sub {lambda}}{sup 10}Be and {sub {lambda}}{sup 10}B hypernuclei

    SciTech Connect

    Majling, L. Kuzmin, V. A. Tetereva, T. V.

    2006-05-15

    The possibility of a detailed investigation of weak {lambda}N interaction in the {sub {lambda}}{sup 10}Be and {sub {lambda}}{sub /10}B hypernuclei, which stand out owing to their {alpha}{alpha}N{lambda} cluster structure, is discussed. The detection of a few groups of correlated {alpha}{alpha} pairs will furnish information about decays to specific states of product nuclei ({sup 8}Be*, {sup 8}Li, {sup 8}B), thereby paving the way to a phenomenological analysis of the weak decays of p-shell hypernuclei. The ratios of the intensities of individual alpha-particle groups to be measured in experiments at the cyclotron of the Joint Institute for Nuclear Research (JINR, Dubna) will provide a useful criterion for choosing an appropriate model of weak {lambda}N interaction. The current state of hypernuclear physics is briefly reviewed.

  6. {alpha}-decay of the new isotope {sup 187}Po: Probing prolate structures beyond the neutron mid-shell at N = 104

    SciTech Connect

    Andreyev, A.N.; Antalic, S.

    2006-04-15

    The new neutron-deficient isotope {sup 187}Po has been identified in the complete fusion reaction {sup 46}Ti+{sup 144}Sm{yields}{sup 187}Po+3n at the velocity filter SHIP. Striking features of the {sup 187}Po {alpha} decay are the strongly-hindered decay to the spherical ground state and unhindered decay to a surprisingly low-lying deformed excited state at 286 keV in the daughter nucleus {sup 183}Pb. Based on the potential energy surface calculations, the {sup 187}Po ground state and the 286 keV excited state in {sup 183}Pb were interpreted as being of prolate origin. The systematic deviation of the {alpha}-decay properties in the lightest odd-A Po isotopes relative to the smooth behavior in the even-A neighbors is discussed. Improved data for the decay of {sup 187}Bi{sup m,g} were also obtained.

  7. Alpha Decay Preformation Factors for Even-Even 280-316116 Superheavy Isotopes

    NASA Astrophysics Data System (ADS)

    Alsaif, Norah A. M.; Radiman, Shahidan; Yahaya, Redzuwan; Ahmed, Saad M. Saleh

    2016-06-01

    The success of the cluster formation model (CFM) in deriving an energy-dependent formula for the preformation factors of heavy nuclei has motivated us to expand this approach to the superheavy isotopes (SHI). In this paper, the alpha-cluster formation (preformation factor) behavior inside the parent nuclei of SHI with atomic number Z = 116 and neutron numbers 164 ≤ N ≤ 200 is determined using the alpha preformation formula contained within the CFM. The cluster formation energy of the alpha particles and the total energy of the parent nuclei are calculated on the basis of the various binding energies. Our results clearly show that the CFM remains valid for superheavy nuclei (SHN). In addition, our calculations reveal that the alpha clustering mechanism and formation probability in 280-316116 even-even SHI are similar to those of even-even heavy nuclei in a general sense.

  8. A Study of B0 to rho+rho- Decays and Constraints on theCKM Angle alpha

    SciTech Connect

    Aubert, B.

    2007-05-16

    The authors present results from an analysis of B{sup 0} {yields} {rho}{sup +}{rho}{sup -} decays using (383.6 {+-} 4.2) x 10{sup 6} B{bar B} pairs collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. The measurements of the B{sup 0} {yields} {rho}{sup +}{rho}{sup -} branching fraction, longitudinal polarization fraction f{sub L}, and the CP-violating parameters S{sub long} and C{sub long} are: {Beta}(B{sup 0} {yields} {rho}{sup +}{rho}{sup -}) = (25.5 {+-} 2.1(stat){sub -3.9}{sup +3.6}(syst)) x 10{sup -6}, f{sub L} = 0.992 {+-} 0.024(stat){sub -0.013}{sup +0.026}(syst), S{sub long} = -0.17 {+-} 0.20(stat){sub -0.06}{sup +0.05}(syst), C{sub long} = 0.01 {+-} 0.15(stat) {+-} 0.06(syst). The authors determine the unitarity triangle angle {alpha}, using an isospin analysis of B {yields} {rho}{rho} decays. One of the two solutions, {alpha} = [73.1, 117.0]{sup o} at 68% CL is compatible with standard model-based fits of existing data. Constraints on the unitarity triangle are also evaluated using an SU(3) symmetry based approach.

  9. Alpha-particle emission probabilities in the decay of 240Pu.

    PubMed

    Sibbens, G; Pommé, S; Altzitzoglou, T; García-Toraño, E; Janssen, H; Dersch, R; Ott, O; Sánchez, A Martín; Montero, M P Rubio; Loidl, M; Coron, N; de Marcillac, P; Semkow, T M

    2010-01-01

    Sources of enriched (240)Pu were prepared by vacuum evaporation on quartz substrates. High-resolution alpha-particle spectrometry of (240)Pu was performed with high statistical accuracy using silicon detectors and with low statistical accuracy using a bolometer. The alpha-particle emission probabilities of six transitions were derived from the spectra and compared with literature values. Additionally, some alpha-particle emission probabilities were derived from gamma-ray intensity measurements with a high-purity germanium detector. The alpha-particle emission probabilities of the three main transitions at 5168.1, 5123.6 and 5021.2 keV were derived from seven aggregate spectra analysed with five different fit functions and the results were compatible with evaluated data. Two additional weak peaks at 4863.5 and 4492.0 keV were fitted separately, using the exponential of a polynomial function to represent the underlying tailing of the larger peaks. The peak at 4655 keV could not be detected by alpha-particle spectrometry, while gamma-ray spectrometry confirms that its intensity is much lower than expected from literature. PMID:20106670

  10. Description of alpha decay and cluster radioactivity in the dinuclear system model

    NASA Astrophysics Data System (ADS)

    Kuklin, S. N.; Adamian, G. G.; Antonenko, N. V.

    2016-03-01

    A unified description of cluster radioactivity and α-decay of cold nuclei in the dinuclear system model is proposed. Quantum dynamical fluctuations along the charge (mass) asymmetry coordinate determine the spectroscopic factor, and tunneling along the relative distance coordinate determines the penetrability of the barrier of the nucleus-nucleus interaction potential. A new method for calculating the spectroscopic factor is proposed. The hindrance factors for the orbital angular momentum transfer are studied. A potential reason for the half-life to deviate from the Geiger-Nuttall law in α-decays of neutron-deficient nuclei 194, 196Rn is found. The fine structure of α-decays of U and Th isotopes is predicted and characterized. The model is used to describe α-decays from the rotational band of even-even nuclei. The known half-lives in the regions of "lead" and "tin" radioactivities are reproduced well, and the most probable cluster yields are predicted. The cluster decay of excited nuclei is discussed. The relation of cluster radioactivity to spontaneous fission and highly deformed nuclear states is analyzed.

  11. A Ly{alpha} EMITTER WITH AN EXTREMELY LARGE REST-FRAME EQUIVALENT WIDTH OF {approx}900 A AT z = 6.5: A CANDIDATE POPULATION III-DOMINATED GALAXY?

    SciTech Connect

    Kashikawa, Nobunari; Hayashi, Masao; Iye, Masanori; Nagao, Tohru; Ota, Kazuaki; Toshikawa, Jun; Ishizaki, Yoshifumi; Shibuya, Takatoshi; Egami, Eiichi; Jiang, Linhua; Ly, Chun; Malkan, Matthew A.; Matsuda, Yuichi; Shimasaku, Kazuhiro; Taniguchi, Yoshiaki; Shioya, Yasuhiro

    2012-12-20

    We have identified a very interesting Ly{alpha} emitter (LAE), whose Ly{alpha} emission line has an extremely large observed equivalent width of EW{sub 0} = 436{sup +422}{sub -{sub 149}} A, which corresponds to an extraordinarily large intrinsic rest-frame equivalent width of EW{sup int}{sub 0} = 872{sup +844}{sub -{sub 298}} A after the average intergalactic absorption correction. The object was spectroscopically confirmed to be a real LAE by its apparent asymmetric Ly{alpha} line profile detected at z = 6.538. The continuum emission of the object was definitely detected in our deep z'-band image; thus, its EW{sub 0} was reliably determined. Follow-up deep near-infrared spectroscopy revealed emission lines of neither He II {lambda}1640 as an apparent signature of Population III (Pop III) nor C IV {lambda}1549 as proof of an active nucleus. No detection of the short-lived He II {lambda}1640 line is not necessarily inconsistent with the interpretation that the underlying stellar population of the object is dominated by Pop III. We found that the observed extremely large EW{sub 0} of the Ly{alpha} emission and the upper limit on the EW{sub 0} of the He II {lambda}1640 emission can be explained by population synthesis models favoring a very young age less than 2-4 Myr and massive metal-poor (Z < 10{sup -5}) or even metal-free stars. The observed large EW{sub 0} of Ly{alpha} is insufficiently explained by Population I/II synthesis models with Z {>=} 10{sup -3}. However, we cannot conclusively rule out the possibility that this object is composed of a normal stellar population with a clumpy dust distribution, which could enhance the Ly{alpha} EW{sub 0}, though its significance is still unclear.

  12. Narrow Width Pentaquarks

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Sorba, P.

    A general study of pentaquarks built with four quarks in a L=1 state and an antiquark in S-wave shows that several of such states are forbidden by a selection rule, which holds in the limit of flavor symmetry, to decay into a baryon and a meson final state. We identify the most promising /line{10} multiplet for the classification of the Θ+ and Ξ-- particles recently discovered with the prediction of a narrow width for both of them.

  13. Isomers in three doubly odd Fr-At-Bi. alpha. -decay chains

    SciTech Connect

    Huyse, M.; Decrock, P.; Dendooven, P.; Reusen, G.; Van Duppen, P.; Wauters, J. )

    1992-10-01

    The {sup 206}Fr{r arrow}{sup 202}At{r arrow}{sup 198}Bi, {sup 204}Fr{r arrow}{sup 200}At{r arrow}{sup 196}Bi, and {sup 202}Fr{r arrow}{sup 198}At{r arrow}{sup 194}Bi {ital a}-decay chains have been studied by standard spectroscopic techniques using an on-line isotope separator. All the studied doubly odd isotopes have at least two isomers, which decay by a combination of the following decay modes: {ital a} emission, {beta}{sup +}/EC (electron capture) decay, and internal transition (IT). The internal transition, a highly retarded {ital E}3, is the {ital j}-forbidden transition between the ({pi}{ital h}{sub 9/2}{direct product}{nu}{ital i}{sub 13/2}){sub 10}{sup {minus}} and the ({pi}{ital h}{sub 9/2}{direct product}{nu}{ital f}{sub 5/2}){sub 7}{sup +} states. The {ital B}({ital E}3) values of these IT's together with their energy behavior as a function of the neutron and proton number, compared to the energy difference between the 13/2{sup +}({nu}{ital i}{sub 13/2}) and 5/2{sup {minus}}({nu}{ital f}{sub 5/2}) states in the odd-mass Pb isotones, indicate that these proton-neutron-coupled states have a rather pure shell-model character.

  14. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Li, Jian-Jun; Wang, A.-Qing; Chen, Yu; Zhao, Jun-Wu

    2010-09-01

    Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.

  15. Can a variable alpha induce limit cycle behavior and exponential luminosity decay in transient soft x ray sources?

    NASA Technical Reports Server (NTRS)

    Meirellesfilho, C.; Liang, Edison P.

    1994-01-01

    There has been, recently, a revival of the stability problem of accretion disks. Much of this renewed interest is due to recent observational data on transient soft X-ray novae, which are low-mass X-ray binaries. It is widely believed that nonsteady mass transfer from the secondary onto the compact primary, through an accretion disk, is the reason for the observed spectacular events in the form of often repetitive outbursts, with recurrence times ranging from 1 to 60 yr and duration time on the scale of months. Though not having reached yet a consensus about the nature of the mechanism that regulates the mass transfer, the disk thermal instability model seems to be favored by the fact that the rise in the hard X-ray luminosity is prior to the rise in the soft X-ray luminosity, while the mass transfer instability model seems to be hindered by the fact that the luminosity during quiescence is unable to trigger the thermal instability. However, it should be stressed that, remarkably, the X-ray light curves of these X-ray novae all show overall exponential decays, a feature quite difficult to reproduce in the framework of the viscous disk model, which yields powerlike luminosity decay. Taking into account this observational constraint, we have studied the temporal evolution of perturbations in the accretion rate, under the assumption that alpha is radial and parameter dependent. The chosen dependence is such that the model can reproduce limit cycle behavior (the system is locally unstable but globally stable). However, the kind of dependence we are looking for in alpha does not allow us to use the usual Shakura and Sunyaev procedure in the sense that we no longer can obtain a linearized continuity equation without explicit dependence on the accretion rate. This is so because now we cannot eliminate the accretion rate by using the angular momentum conservation equation.

  16. Predictions on the alpha decay half lives of superheavy nuclei with Z = 113 in the range 255 ≤ A ≤ 314

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Augustine, A.; Nithya, C.; Priyanka, B.

    2016-07-01

    An intense study of the alpha decay properties of the isotopes on superheavy element with Z = 113 has been performed within the Coulomb and proximity potential model for deformed nuclei (CPPMDN) within the wide range 255 ≤ A ≤ 314. The predicted alpha decay half lives of 278113 and 282113 and the alpha half lives of their decay products are in good agreement with the experimental data. 6α chains and 4α chains predicted respectively for 278113 and 282113 are in agreement with the experimental observation. Our study shows that the isotopes in the mass range 278 ≤ A ≤ 286 will survive fission and can be synthesized and detected in the laboratory via alpha decay. In our study, we have predicted 6α chains from 279113, 4α chains from 286113, 3α chains from 280,281,283113, 2α chains from 284113 and 1α chain from 285113. We hope that these predictions will be a guideline for future experimental investigations.

  17. {alpha}-decaying states in {sup 10,12}Be populated in the {sup 10}Be({sup 14}C,{sup 10,12}Be) reaction

    SciTech Connect

    Curtis, N.; Ashwood, N.I.; Bloxham, T.R.; Freer, M.; McEwan, P.; Price, D.L.; Baby, L.T.; Caussyn, D.D.; Spingler, D.; Wiedenhover, I.; Baldwin, T.D.; Catford, W.N.; Harlin, C.W.

    2006-05-15

    A search has been made for the {sup 6}He+{sup 6}He and {alpha} + {sup 8}He decay of the molecular rotational band in {sup 12}Be using the {sup 10}Be({sup 14}C,{sup 12}Be*){sup 12}C reaction at 88.5 MeV. Although the {alpha} + {sup 6}He decay of {sup 10}Be was observed in the data set there is no evidence for the breakup of {sup 12}Be. The cross-section upper limits for the {sup 10}Be({sup 14}C,{sup 6}He {sup 6}He){sup 12}C and {sup 10}Be({sup 14}C,{alpha} {sup 8}He){sup 12}C reactions are 50 and 300 nb respectively.

  18. Search for shape coexistence in {sup 188,190}Pb via fine structure in the alpha decay of {sup 192,194}Po

    SciTech Connect

    Ahmad, I.; Davids, C.; Janssens, R.V.F.

    1995-08-01

    The interaction between coexisting shapes in nuclei near closed shells was of great interest in the past decade. Excited 0{sup +} states at low energy can often be identified as the bandheads of structures with differing shapes built on those states, These structures were identified in {sup 190-198}Pb via beta decay and alpha decay {open_quotes}fine structure{close_quotes} studies. Coexistence of different shapes in Pb nuclei was predicted by Nilsson-Strutinsky calculations, in which both the oblate and prolate minima were predicted to have excitation energies near 1 MeV. It was our intention to continue the systematic study of the Pb nuclides by searching for excited O{sup +} states in {sup 188}Pb by observing the fine structure in the alpha decay of {sup 192}Po.

  19. Chemical and physical consequences of. cap alpha. and. beta. /sup -/ decay in the solid state

    SciTech Connect

    Young, J.P.; Haire, R.G.; Peterson, J.R.; Ensor, D.D.

    1984-01-01

    Interesting chemical and structural phenomena can occur when radioactive materials are stored in the solid state. Extensive studies have been made of both the chemical and physical status of progeny species that result from the ..cap alpha.. or ..beta.. /sup -/ day of actinide ions in several different compounds. The samples have been both initially pure actinide compounds - halides, oxides, etc. and actinides incorporated into other non-radioactive host materials, for example lanthanide halides. In general, the oxidation state of the actinide progeny is controlled by the oxidation state of its parent (a result of heredity). The structure of the progeny compound seems to be controlled by its host (a result of environment). These conclusions are drawn from solid state absorption spectral studies, and where possible, from x-ray diffraction studies of multi-microgram sized samples. 13 references, 4 figures, 4 tables.

  20. Extended systematics of alpha decay half lives for exotic superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Budaca, A. I.; Budaca, R.; Silisteanu, I.

    2016-07-01

    The experimentally available data on the α decay half lives and Qα values for 96 superheavy nuclei are used to fix the parameters for a modified version of the Brown empirical formula through two fitting procedures which enables its comparison with similar fits using Viola-Seaborg and Royer formulas. The new expressions provide very good agreement with experimental data having fewer or the same number of parameters. All formulas with the obtained parameters are then extrapolated to generate half lives predictions for 125 unknown superheavy α emitters. The nuclei where the employed empirical formulas maximally or minimally diverge are pointed out and a selection of 36 nuclei with exceptional superposition of predictions was made for experimental reference.

  1. {alpha}-decay properties of superheavy elements Z=113-125 in the relativistic mean-field theory with vector self-coupling of {omega} meson

    SciTech Connect

    Sharma, M.M.; Farhan, A.R.; Muenzenberg, G.

    2005-05-01

    We have investigated properties of {alpha}-decay chains of recently produced superheavy elements Z=115 and Z=113 using the new Lagrangian model NL-SV1 with inclusion of the vector self-coupling of the {omega} meson in the framework of relativistic mean-field theory. It is shown that the experimentally observed {alpha}-decay energies and half-lives are reproduced well by this Lagrangian model. Further calculations for the heavier elements with Z=117-125 show that these nuclei are superdeformed with a prolate shape in the ground state. A superdeformed shell closure at Z=118 lends an additional binding and an extra stability to nuclei in this region. Consequently, it is predicted that the corresponding Q{sub {alpha}} values provide {alpha}-decay half-lives for heavier superheavy nuclei within experimentally feasible conditions. The results are compared with those of macroscopic-microscopic approaches. A perspective of the difference in shell effects among various approaches is presented and its consequences for superheavy nuclei are discussed.

  2. The competition between alpha decay and spontaneous fission in odd-even and odd-odd nuclei in the range 99 ≤ Z ≤ 129

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Priyanka, B.

    2015-08-01

    The predictions on the mode of decay of the odd-even and odd-odd isotopes of heavy and superheavy nuclei with Z = 99- 129, in the range 228 ≤ A ≤ 336, have been done within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). A comparison of our calculated alpha half lives with the values computed using other theoretical models shows good agreement with each other. An extensive study on the spontaneous fission half lives of all the isotopes under study has been performed to identify the long-lived isotopes in the mass region. The study reveals that the alpha decay half lives and the mode of decay of the isotopes with Z = 109, 111, 113, 115 and 117, evaluated using our formalisms, agree well with the experimental observations. As our study on the odd-even and odd-odd isotopes of Z = 99- 129 predicts that, the isotopes 238,240-25499, 244,246-258101, 248,250,252-260,262103, 254,256,258-262,264105, 258,260,262-264,266107, 262,264,266-274109, 266,268-279111, 270-284,286113, 272-289,291115, 274-299117, 276-307119, 281-314121, 287-320,322123, 295-325125, 302-327127 and 309-329129 survive fission and have alpha decay channel as the prominent mode of decay, these nuclei could possibly be synthesized in the laboratory and this could be of great interest to the experimentalists. The behavior of these nuclei against the proton decay has also been studied to identify the probable proton emitters in this region of nuclei.

  3. Measurement of the CP-violating weak phase ϕs and the decay width difference ΔΓs using the Bs0 → J / ψ ϕ (1020) decay channel in pp collisions at √{ s} = 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El Sawy, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Radi, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Jarvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhardwaj, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Michelotto, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Dellacasa, G.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Barducci, D.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Thomas, L.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Sinthuprasith, T.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2016-06-01

    The CP-violating weak phase ϕs of the Bs0 meson and the decay width difference ΔΓs of the Bs0 light and heavy mass eigenstates are measured with the CMS detector at the LHC using a data sample of Bs0 → J / ψ ϕ (1020) →μ+μ-K+K- decays. The analysed data set corresponds to an integrated luminosity of 19.7fb-1 collected in pp collisions at a centre-of-mass energy of 8TeV. A total of 49 200 reconstructed Bs0 decays are used to extract the values of ϕs and ΔΓs by performing a time-dependent and flavour-tagged angular analysis of the μ+μ-K+K- final state. The weak phase is measured to be ϕs = - 0.075 ± 0.097 (stat) ± 0.031 (syst) rad, and the decay width difference is ΔΓs = 0.095 ± 0.013 (stat) ± 0.007 (syst) ps-1.

  4. Measurement of the CP-violating weak phase $\\mathrm{ \\phi_s }$ and the decay width difference $ \\Delta \\Gamma_{ \\mathrm{s} }$ using the $ \\mathrm{B^0_s} \\to \\mathrm{J} / \\psi \\phi(1020) $ decay channel in pp collisions at $\\sqrt{s} =$ 8 TeV

    SciTech Connect

    Khachatryan, Vardan

    2015-07-28

    The CP-violating weak phase φs of the B0 s meson and the decay width difference ΔΓs of the B0 s light and heavy mass eigenstates are measured with the CMS detector at the LHC using a data sample of B0 s →J/ψ φ(1020) → µ +µ -K+K- decays. Our analysed data set corresponds to an integrated luminosity of 19.7 fb-1 collected in pp collisions at a centre-of-mass energy of 8 TeV. Additionally, a total of 49 200 reconstructed B0 s decays are used to extract the values of φs and ΔΓs by performing a time-dependent and flavourtagged angular analysis of the µ +µ -K+K- final state. The weak phase is measured to be φs = -0.075 ± 0.097 (stat) ± 0.031 (syst) rad, and the decay width difference is ΔΓs = 0.095 ± 0.013 (stat) ± 0.007 (syst) ps-1 .

  5. Measurement of the CP-violating weak phase ϕs and the decay width difference ΔΓs using the Bs0 → J / ψ ϕ (1020) decay channel in pp collisions at √{ s} = 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El Sawy, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Radi, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Jarvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.

    2016-06-01

    The CP-violating weak phase ϕs of the Bs0 meson and the decay width difference ΔΓs of the Bs0 light and heavy mass eigenstates are measured with the CMS detector at the LHC using a data sample of Bs0 → J / ψ ϕ (1020) →μ+μ-K+K- decays. The analysed data set corresponds to an integrated luminosity of 19.7fb-1 collected in pp collisions at a centre-of-mass energy of 8TeV. A total of 49 200 reconstructed Bs0 decays are used to extract the values of ϕs and ΔΓs by performing a time-dependent and flavour-tagged angular analysis of the μ+μ-K+K- final state. The weak phase is measured to be ϕs = - 0.075 ± 0.097 (stat) ± 0.031 (syst) rad, and the decay width difference is ΔΓs = 0.095 ± 0.013 (stat) ± 0.007 (syst) ps-1.

  6. Energy levels of {sup 251}Cf populated in the {alpha} decay of {sub 100}{sup 255}Fm and EC decay of {sub 99}{sup 251}Es

    SciTech Connect

    Ahmad, I.; Greene, J.P.; Moore, E.F.; Kondev, F.G.; Chasman, R.R.; Porter, C.E.; Felker, L.K.

    2005-11-01

    Gamma-ray singles spectra of extremely pure (chemically and isotopically) samples of {sup 255}Fm, with strengths of {approx}1 mCi, have been measured with a high-resolution 2-cm{sup 2}x10-mm germanium LEPS detector and with a 25% Ge spectrometer. Gamma rays with intensities as low as 1.0x10{sup -6}% per {sup 255}Fm {alpha} decay have been identified. The electron spectrum of a mass-separated {sup 251}Es source was measured with a cooled Si(Li) electron spectrometer. The spectrum provided the conversion coefficients of low-energy transitions in {sup 251}Cf and thereby their multipolarities. The present measurements confirm the previous assignments of single-particle states in {sup 251}Cf. These include 1/2{sup +}[620], 0.0 keV; 7/2{sup +}[613], 106.30 keV; 3/2{sup +}[622], 177.59 keV; 11/2{sup -}[725], 370.47 keV; 9/2{sup -}[734], 433.91 keV; 5/2{sup +}[622], 543.98 keV; 1/2{sup -}[750], 632.0 keV; 9/2{sup +}[615], 683 keV; and 9/2{sup +}[604], 974.0 keV. A vibrational band was identified in previous studies at 981.4 keV and given an assignment of {l_brace}7/2{sup +}[613]x2{sup -}{r_brace}3/2{sup -}. Three new vibrational bands are identified in the present work at 942.5, 1086.5, and 1250.0 keV with tentative assignments {l_brace}7/2{sup +}[613]x1{sup -}{r_brace}5/2{sup -},{l_brace}7/2{sup +}[613]x1{sup -}{r_brace}9/2{sup -}, and {l_brace}7/2{sup +}[613]x0{sup +}{r_brace}7/2{sup +}, respectively. A level was identified at 1185.5 keV with spin of 5/2 or 7/2 but it was not given any configuration assignment. Another level was identified at 1077.5 keV and given a spin of 9/2. Again, no configuration could be assigned to this level.

  7. Energy levels of {sup 249}Bk populated in the {alpha} decay of {sub 99}{sup 253}Es and {beta}{sup -} decay of {sub 96}{sup 249}Cm

    SciTech Connect

    Ahmad, I.; Kondev, F.G.; Moore, E.F.; Carpenter, M.P.; Chasman, R.R.; Greene, J.P.; Janssens, R.V.F.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Hoff, R.W.; Evans, J.E.; Lougheed, R.W.; Porter, C.E.; Felker, L.K.

    2005-05-01

    The level structure of {sup 249}Bk has been investigated by measuring the {gamma}-ray spectra of an extremely pure {sup 253}Es sample obtained by milking this nuclide from {sup 253}Cf source material produced in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Additional information on the {sup 249}Bk levels was obtained from the {beta}{sup -}-decay study of {sup 249}Cm, produced by neutron irradiation of {sup 248}Cm. Using the results of the present study together with the data from previous {sup 248}Cm({alpha},t) and {sup 248}Cm({sup 3}He,d) reactions, the following single-particle states have been identified in {sup 249}Bk: 7/2{sup +}[633], 0.0 keV; 3/2{sup -}[521], 8.78 keV; 1/2{sup +}[400], 377.55 keV; 5/2{sup +}[642], 389.17 keV; 1/2{sup -}[530], 569.20 keV; 1/2{sup -}[521], 643.0 keV; 5/2{sup -}[523], 672.9 keV; and 9/2{sup +}[624], 1075.1 keV. Four vibrational bands were identified at 767.9, 932.2, 1150.7, and 1223.0 keV with tentative assignments of {l_brace}7/2{sup +} [633] x1{sup -}{r_brace}9/2{sup -}, {l_brace}7/2{sup +} [633] x 0{sup -}{r_brace}7/2{sup -}, {l_brace}7/2{sup +} [633] x 1{sup -}{r_brace}5/2{sup -}, and {l_brace}7/2{sup +} [633] x 0{sup +}{r_brace}7/2{sup +}, respectively. A band at 899.9 keV was observed in {gamma}-{gamma} coincidence measurements and given a tentative spin assignment of 3/2. It is possibly associated with a 2{sup -} phonon coupled to the ground state, with configuration {l_brace}7/2{sup +} [633] x 2{sup -}{r_brace}3/2{sup -}. Three levels at 624.3, 703.5, and 769.1 keV were assigned spins of 5/2, 7/2, and 9/2, respectively. These could be the members of the 3/2{sup +} [651] band, expected in this energy region.

  8. Spatially and temporally resolved electron number density measurements in a decaying laser-induced plasma using hydrogen-alpha line profiles

    NASA Astrophysics Data System (ADS)

    Parigger, Christian; Plemmons, D. H.; Lewis, J. W. L.

    1995-06-01

    A Nd:YAG laser was operated at 1064 nm and with 6-ns pulse duration to achieve optical breakdown in gaseous hydrogen at pressures of 150 and 810 Torr. Spatially and temporally resolved laser-induced emission spectra were measured early in the plasma decay. With hydrogen-alpha line profiles, electron number density values were determined along the laser beam plasma in the range 1019 to 1016 cc -1.

  9. First observation of {alpha} decay of {sup 190}Pt to the first excited level (E{sub exc}=137.2 keV) of {sup 186}Os

    SciTech Connect

    Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Laubenstein, M.; Nisi, S.; Danevich, F. A.; Nagorny, S. S.; Polischuk, O. G.; Tretyak, V. I.; Incicchitti, A.

    2011-03-15

    The {alpha} decays of naturally occurring platinum isotopes, which are accompanied by the emission of {gamma} quanta, have been searched for deep underground (3600 m water equivalent) at the Gran Sasso National Laboratories of the INFN (Italy). A sample of Pt with a mass of 42.5 g and a natural isotopic composition has been measured with a low background HP Ge detector (468 cm{sup 3}) during 1815 h. The {alpha} decay of {sup 190}Pt to the first excited level of {sup 186}Os (J{sup {pi}}=2{sup +}, E{sub exc}=137.2 keV) has been observed for the first time, with the half-life determined as T{sub 1/2}=2.6{sub -0.3}{sup +0.4}(stat.){+-}0.6(syst.)x10{sup 14} yr. The T{sub 1/2} limits for the {alpha} decays of other Pt isotopes have been determined at the level of T{sub 1/2}{approx_equal}10{sup 16}-10{sup 20} yr. These limits have been set for the first time or they are better than those known from earlier experiments.

  10. Experimental Identification of Spin-Parities and Single-Particle Configurations in {sup 257}No and Its {alpha}-Decay Daughter {sup 253}Fm

    SciTech Connect

    Asai, M.; Tsukada, K.; Ichikawa, S.; Nagame, Y.; Nishinaka, I.; Akiyama, K.; Sakama, M.; Ishii, T.; Osa, A.; Oura, Y.; Sueki, K.; Shibata, M.

    2005-09-02

    {alpha}-{gamma} and {alpha}-electron coincidence spectroscopy for a short-lived heavy actinide nucleus {sup 257}No (T{sub 1/2}=24.5 s) has been performed using a gas-jet transport system and an on-line isotope separator. Spin-parities of excited states in {sup 253}Fm fed by the {alpha} decay of {sup 257}No have been identified on the basis of the measured internal conversion coefficients. The {nu}3/2{sup +}[622] configuration has been assigned to the ground state of {sup 257}No as well as to the 124.1 keV level in {sup 253}Fm. It was found that the ground-state configuration of {sup 257}No is different from that of lighter N=155 isotones.

  11. Competition between alpha-decay and spontaneous fission at isotopes of superheavy elements Rf, Db, and Sg

    SciTech Connect

    Anghel, Claudia Ioana; Silisteanu, Andrei Octavian

    2015-12-07

    The most important decay modes for heavy and superheavy nuclei are their α-decay and spontaneous fission. This work investigates the evolution and the competition of these decay modes in long isotopic sequences. The partial half-lives are given by minimal sets of parameters extracted from the fit of experimental data and theoretical results. A summary of the experimental and calculated α-decay and spontaneous fission half-lives of the isotopes of elements Rf, Db, and Sg is presented. Some half-life extrapolations for nuclides not yet known are also obtained.

  12. Model-independent constraints on the weak phase {alpha} (or {phi}{sub 2}) and QCD penguin pollution in B{yields}{pi}{pi} decays

    SciTech Connect

    Xing Zhizhong; Zhang He

    2005-03-01

    We present an algebraic isospin approach towards a more straightforward and model-independent determination of the weak phase {alpha} (or {phi}{sub 2}) and QCD penguin pollution in B{yields}{pi}{pi} decays. The world averages of current experimental data allow us to impose some useful constraints on the isospin parameters of B{yields}{pi}{pi} transitions. We find that the magnitude of {alpha} (or {phi}{sub 2}) extracted from the indirect CP violation in the {pi}{sup +}{pi}{sup -} mode is in agreement with the standard-model expectation from other indirect measurements, but its fourfold discrete ambiguity has to be resolved in the near future.

  13. Study of the decay B0(B- 0)-->rho+rho-, and constraints on the Cabibbo-Kobayashi-Maskawa angle alpha.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Lynch, G; Merchant, A M; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Shelkov, V G; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Cuhadar-Donszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; Zhang, J; Zhang, L; Chen, A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q L; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Sundermann, J E; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Lavin, D; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Cormack, C M; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; Green, M G; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Cristinziani, M; De Nardo, G; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Elsen, E E; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Rubin, A E; Sekula, S J; Tan, P; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-12-01

    Using a data sample of 89 x 10(6) Upsilon(4S)-->BB decays collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC, we measure the B0(B (0))-->rho(+)rho(-) branching fraction as [30+/-4(stat)+/-5(syst)]x10(-6) and a longitudinal polarization fraction of f(L)=0.99+/-0.03(stat)+0.04-0.03(syst). We measure the time-dependent-asymmetry parameters of the longitudinally polarized component of this decay as C(L)=-0.17+/-0.27(stat)+/-0.14(syst) and S(L)=-0.42+/-0.42(stat)+/-0.14(syst). We exclude values of alpha between 19 degrees and 71 degrees (90% C.L.). PMID:15601142

  14. ENERGY-DEPENDENT GAMMA-RAY BURST PULSE WIDTH DUE TO THE CURVATURE EFFECT AND INTRINSIC BAND SPECTRUM

    SciTech Connect

    Peng, Z. Y.; Ma, L.; Zhao, X. H.; Yin, Y.; Bao, Y. Y.

    2012-06-20

    Previous studies have found that the width of the gamma-ray burst (GRB) pulse is energy dependent and that it decreases as a power-law function with increasing photon energy. In this work we have investigated the relation between the energy dependence of the pulse and the so-called Band spectrum by using a sample including 51 well-separated fast rise and exponential decay long-duration GRB pulses observed by BATSE (Burst and Transient Source Experiment on the Compton Gamma Ray Observatory). We first decompose these pulses into rise and decay phases and find that the rise widths and the decay widths also behave as a power-law function with photon energy. Then we investigate statistically the relations between the three power-law indices of the rise, decay, and total width of the pulse (denoted as {delta}{sub r}, {delta}{sub d}, and {delta}{sub w}, respectively) and the three Band spectral parameters, high-energy index ({alpha}), low-energy index ({beta}), and peak energy (E{sub p} ). It is found that (1) {alpha} is strongly correlated with {delta}{sub w} and {delta}{sub d} but seems uncorrelated with {delta}{sub r}; (2) {beta} is weakly correlated with the three power-law indices, and (3) E{sub p} does not show evident correlations with the three power-law indices. We further investigate the origin of {delta}{sub d}-{alpha} and {delta}{sub w}-{alpha}. We show that the curvature effect and the intrinsic Band spectrum could naturally lead to the energy dependence of the GRB pulse width and also the {delta}{sub d}-{alpha} and {delta}{sub w}-{alpha} correlations. Our results hold so long as the shell emitting gamma rays has a curved surface and the intrinsic spectrum is a Band spectrum or broken power law. The strong {delta}{sub d}-{alpha} correlation and inapparent correlations between {delta}{sub r} and the three Band spectral parameters also suggest that the rise and decay phases of the GRB pulses have different origins.

  15. The Higgs-boson decay H\\;\\to \\;{gg} up to {\\alpha }_{s}^{5}-order under the minimal momentum space subtraction scheme

    NASA Astrophysics Data System (ADS)

    Zeng, Dai-Min; Wang, Sheng-Quan; Wu, Xing-Gang; Shen, Jian-Ming

    2016-07-01

    We study the Higgs-boson decay width {{Γ }}(H\\to {gg}) up to {α }s5 order under the minimal momentum space subtraction (mMOM) scheme. A major uncertainty of a finite-order perturbative quantum chromodymaics (pQCD) prediction is the perceived ambiguity in setting the renormalization scale. In the present paper, to achieve a precise pQCD prediction without renormalization scale uncertainty, we adopt the principle of maximum conformality (PMC) to set the renormalization scale of the process. The PMC has a solid theoretical foundation, which is based on renormalization group invariance and utilizes the renormalization group equation to fix the renormalization scale of the process. The key point of the application of the PMC is how to correctly set the {β i } terms of the process to achieve the correct α s -running behavior at each perturbative order. It is found that the ambiguities in dealing with the {β i } terms of the decay width {{Γ }}(H\\to {gg}) under the \\bar{{{MS}}} scheme can be avoided by using the physical mMOM scheme. For this purpose, for the first time we provide the PMC scale-setting formulas within the mMOM scheme up to a four-loop level. By using the PMC, it is found that a more reliable pQCD prediction on {{Γ }}(H\\to {gg}) can indeed be achieved under the mMOM scheme. As a byproduct, the convergence of the resultant pQCD series has been greatly improved due to the elimination of renormalon terms. By taking the newly measured Higgs mass, M H = 125.09 ± 0.21 ± 0.11 GeV, our PMC prediction of the decay width is, {{Γ }}(H\\to {gg}){| }{{mMOM,}{{PMC}}}=339.3+/- {1.7}-2.4+3.7 keV, in which the first error is from the Higgs mass uncertainty and the second error is the residual renormalization scale dependence by varying the initial renormalization scale {μ }r\\in [{M}H/2,4{M}H].

  16. Mitochondrial Decay in the Brains of Old Rats: Ameliorating Effect of Alpha-Lipoic Acid and Acetyl-L-carnitine

    PubMed Central

    Long, Jiangang; Gao, Feng; Tong, Liqi; Cotman, Carl W.; Ames, Bruce N.

    2009-01-01

    To investigate the mitochondrial decay and oxidative damage resulting from aging, the activities/kinetics of the mitochondrial complexes were examined in the brains of young and old rats as well as in old rats fed R-α-lipoic acid plus acetyl-L-carnitine (LA/ALC). The brain mitochondria of old rats, compared with young rats, had significantly decreased endogenous antioxidants and superoxide dismutase activity; more oxidative damage to lipids and proteins; and decreased activities of complex I, IV and V. Complex I showed a decrease in binding affinity (increase in Km) for substrates. Feeding LA/ALC to old rats partially restored age-associated mitochondrial dysfunction to the levels of the young rats. These results indicate that oxidative mitochondrial decay plays an important role in brain aging and that a combination of nutrients targeting mitochondria, such as LA/ALC, could ameliorate mitochondrial decay through preventing mitochondrial oxidative damage. PMID:18846423

  17. Some comments on. cap alpha. /sub s/ and. lambda. /sub anti MS/

    SciTech Connect

    Durand, B.

    1984-09-01

    Some new determinations of the strong coupling constant ..cap alpha../sub s/ from hadronic and leptonic decay widths of quarkonia are added to the accumulation of data on ..cap alpha../sub s/ as a function of Q. When compared with the renormalization group prediction of 1/..cap alpha../sub s/ vs 1n Q, parameterized by the QCD scale parameter ..lambda../sub anti MS/, these new points do very little to resolve whether ..cap alpha../sub s/ runs as predicted, and if so, on which ..lambda../sub anti MS/ curve. 6 references.

  18. Measurement of the Branching Fraction, Polarization, and CP Asymmetries in B0->rho0rho0 Decay, and Implications for the CKM Angle alpha

    SciTech Connect

    Aubert, B

    2008-09-10

    We study B{sup 0} {yields} {rho}{sup 0}{rho}{sup 0} decays in a sample of 465 x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} events collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider located at the Stanford Linear Accelerator Center (SLAC). We measure the branching fraction {Beta} = (0.92 {+-} 0.32 {+-} 0.14) x 10{sup -6} and longitudinal polarization fraction f{sub L} = 0.75{sub -0.14}{sup +0.11} {+-} 0.04, where the first uncertainty is statistical and the second is systematic. The evidence for the B{sup 0} {yields} {rho}{sup 0}{rho}{sup 0} signal has a significance of 3.1 standard deviations, including systematic uncertainties. We investigate the proper-time dependence of the longitudinal component in the decay and measure the CP-violating coefficients S{sub L}{sup 00} = (0.3 {+-} 0.7 {+-} 0.2) and C{sub L}{sup 00} = (0.2 {+-} 0.8 {+-} 0.3). They study the implication of these results for the unitarity triangle angle {alpha}.

  19. MALDI in-source decay of high mass protein isoforms: application to alpha- and beta-tubulin variants.

    PubMed

    Calligaris, David; Villard, Claude; Terras, Lionel; Braguer, Diane; Verdier-Pinard, Pascal; Lafitte, Daniel

    2010-07-15

    Tubulin is one of the major targets in cancer chemotherapy and the target of more than twenty percent of the cancer chemotherapic agents. The modulation of isoform content has been hypothesized as being a cause of resistance to treatment. Isoform differences lie mostly in the C-terminus part of the protein. Extensive characterization of this polypeptide region is therefore of critical importance. MALDI-TOF fragmentation of tubulin C-terminal domains was tested using synthetic peptides. Then, isotypes from HeLa cells were successfully characterized for the first time by in-source decay (ISD) fragmentation of their C-terminus coupled to a pseudo MS(3) technique named T(3)-sequencing. The fragmentation occurred in-source, preferentially generating y(n)-series ions. This approach required guanidination for the characterization of the beta(III)-tubulin C-terminus peptide. This study is, to our knowledge, the first example of reflectron in-source decay (reISD) of the C-terminus of a 50 kDa protein. This potentially occurs via a CID-like mechanism occurring in the MALDI plume. There are now new avenues for top-down characterization of important clinical biomarkers such as beta(III)-tubulin isotypes, a potential marker of drug resistance and tumor progression. This paper raises the challenge of protein isotypes characterization for early cancer detection and treatment monitoring. PMID:20552990

  20. Remarks concerning the O(Z. cap alpha. /sup 2/) corrections to Fermi decays, conserved-vector-current predictions, and universality

    SciTech Connect

    Sirlin, A.

    1987-06-01

    Finite-nuclear-size contributions to the O(Z..cap alpha../sup 2/) corrections to Fermi decays are studied for realistic nuclear-charge distributions. In conjunction with the results of Koslowsky et al. and recent papers by the author and Zucchini and by Jaus and Rasche, these refinements lead to an average value scrFt = 3070.6 +- 1.6 s for the accurately measured superallowed Fermi transitions. Correspondingly, V/sub u//sub d/ = 0.9744 +- 0.0010 and V/sub u//sub d/ /sup 2/+V/sub us/ /sup 2/+V/sub ub/ /sup 2/ = 0.9979 +- 0.0021 in good agreement with the three-generation standard model at the level of its quantum corrections. The agreement with conserved-vector-current predictions is very good, with each of the eight transitions differing from the average by <1sigma. The consequences of using two other calculations of the nuclear mismatch correction delta/sub c/, Wilkinson's microscopic analysis and the recent results of Ormand and Brown, are briefly discussed. A useful upper bound on scrFt, independent of the delta/sub c/ calculation, is given.

  1. Theory of two-step two-proton decays of nuclei

    SciTech Connect

    Kadmensky, S. G. Ivankov, Yu. V.

    2014-12-15

    A general theory of many-body diagonal and nondiagonal one-proton decays of spherical and deformed nuclei is developed on the basis of an approach not employing R-matrix theory in describing deep-subbarrier alpha and one-proton decays of nuclei but relying on integral formulas for the widths with respect to these decays. With the aid of this theory and by means of a diagram technique, a formalism is developed for describing two-step two-proton decays of a (Z, A) parent nucleus, which proceed as two successive time-separated one-proton decays of the parent and intermediate [(Z − 1, A − 1)] nuclei, these decays being related by the Green’s function for the intermediate nucleus, G(Z − 1, A − 1). It is shown that, upon taking into account, in this Green’s function, intermediate-nucleus states that are on- and off-shell states for the decaying system, there arise, respectively, sequential and virtual two-proton decays of parent nuclei. Expressions for the widths with respect to sequential and virtual two-proton decays from the ground and excited states of spherical and deformed nuclei and for the angular and energy distributions of emitted protons are obtained.

  2. Resonances and resonance widths

    SciTech Connect

    Collins, T.

    1986-05-01

    Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

  3. Diatomic predissociation line widths

    NASA Technical Reports Server (NTRS)

    Child, M. S.

    1973-01-01

    Predissociation by rotation and curve crossing in diatomic molecules is discussed. The pattern of predissociation line widths is seen as providing a highly sensitive yardstick for the determination of unknown potential curves. In addition, the computation of such a pattern for given potential curves is considered a matter of routine, unless the predissociation happens to occur from an adiabatic potential curve. Analytic formulas are used to provide physical insight into the details of the predissociation pattern, to the extent that a direct inversion procedure is developed for determination of the repulsive potential curves for Type 1 predissociations.

  4. Measurement of Branching Fractions of B decays to K1(1270)pi and K1(1400)pi and Determination of the CKM angle alpha from B0 --> a1(1260) /- pi-/

    SciTech Connect

    Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G. /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-10-30

    We report measurements of the branching fractions of neutral and charged B meson decays to final states containing a K{sub 1}(1270) or K{sub 1}(1400) meson and a charged pion. The data, collected with the BABAR detector at the SLAC National Accelerator Laboratory, correspond to 454 million B{bar B} pairs produced in e{sup +}e{sup -} annihilation. We measure the branching fractions {Beta}(B{sup 0} {yields} K{sub 1}(1270){sup +}{pi}{sup -} + K{sub 1}(1400){sup +}{pi}{sup -}) = 3.1{sub 0.7}{sup +0.8} x 10{sup -5} and {Beta}(B{sup +} {yields} K{sub 1}(1270){sup 0}{pi}{sup +} + K{sub 1}(1400){sup 0}{pi}{sup +}) = 2.9{sub -1.7}{sup +2.9} x 10{sup -5} (< 8.2 x 10{sup -5} at 90% confidence level), where the errors are statistical and systematic combined. The B{sup 0} decay mode is observed with a significance of 7.5{sigma}, while a significance of 3.2{sigma} is obtained for the B{sup +} decay mode. Based on these results, we estimate the weak phase {alpha} = (79 {+-} 7 {+-} 11){sup o} from the time dependent CP asymmetries in B{sup 0} {yields} a{sub 1}(1260){sup {+-}}{pi}{sup {-+}} decays.

  5. Rapid postexposure decay of. cap alpha. /sub 2u/-globulin and hyaline droplets in the kidneys of gasoline-treated male rats

    SciTech Connect

    Garg, B.D.; Olson, M.J.; Demyan, W.F.; Roy, A.K.

    1988-01-01

    Renal ..cap alpha../sub 2u/-globulin content increased to 210% of control within 18 h of a single oral dose of gasoline (2.0 ml/kg) in male rats; maximal levels (320% of control) were attained following gasoline administration for 3 d. Increases in renal ..cap alpha../sub 2u/-globulin caused by gasoline were accompanied by concurrent proliferation of hyaline droplets. However, within 3 d of terminating gasoline administration renal ..cap alpha../sub2u/-globulin content decreased to the same level as that in unexposed rats, although renal hyaline droplet number returned to pretreatment levels somewhat more slowly. The conjoint effect of postexposure recovery and estradiol (an inhibitor of hepatic ..cap alpha../sub 2u/-globulin synthesis) administration was also determined in male rats. On postexposure of 3, 6, and 9, estradiol treatment (1 mg/kg, sc, 4 d, starting on d 9 of gasoline treatment) decreased renal ..cap alpha../sub 2u/-globulin content to 75%, 59%, and 48%, respectively, of that in rats allowed to recover from gasoline with no hormone treatment. Hepatic ..cap alpha../sub 2u/-globulin content in estradiol-treated rats was decreased by 74%, 97%, and 96% at the same intervals. Estradiol treatment during recovery from gasoline also appeared to increase the removal of accumulated hyaline droplets from the renal cortex. Thus, accumulation of ..cap alpha../sub 2u/-globulin-containing hyaline droplets after subacute exposure of male rats to gasoline is rapidly reversible, dependent on continuous exposure to gasoline and maintenance of the normal rate of hepatic ..cap alpha../sub 2u/-globulin synthesis. These results emphasize the dynamic state of renal cortical hyaline droplets and suggest strongly that gasoline hydrocarbons cause hyaline droplet accumulation by prolonging the half-time degradation of ..cap alpha../sub 2u/-globulin.

  6. Hypernuclear Weak Decays

    NASA Astrophysics Data System (ADS)

    Itonaga, K.; Motoba, T.

    The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.

  7. Event counting alpha detector

    DOEpatents

    Bolton, Richard D.; MacArthur, Duncan W.

    1996-01-01

    An electrostatic detector for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure.

  8. Event counting alpha detector

    DOEpatents

    Bolton, R.D.; MacArthur, D.W.

    1996-08-27

    An electrostatic detector is disclosed for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure. 6 figs.

  9. Evaluation of partial widths and branching ratios from resonance wave functions

    SciTech Connect

    Goldzak, Tamar; Gilary, Ido; Moiseyev, Nimrod

    2010-11-15

    A quantum system in a given resonance state has different open channels for decay. Partial widths are the decay rates of the resonance (metastable) state into the different open channels. Here we present a rigorous derivation of the partial widths from the solution of a time-dependent Schroedinger equation with outgoing boundary conditions. We show that the sum of the partial widths obtained from the resonance wave function is equal to the total width. The difference with respect to previous studies on partial widths and branching ratios is discussed.

  10. Bounds on the width, mass difference and other properties of X(3872)π+π-J/ψ decays

    SciTech Connect

    Choi, S. -K.; Olsen, S. L.; Trabelsi, K.; Adachi, I.; Aihara, H.; Arinstein, K.; Asner, D. M.; Aushev, T.; Bakich, A. M.; Barberio, E.; Bay, A.; Belous, K.; Bhardwaj, V.; Bhuyan, B.; Bischofberger, M.; Bondar, A.; Bozek, A.; Bračko, M.; Brodzicka, J.; Brovchenko, O.; Browder, T. E.; Chang, P.; Chen, A.; Chen, P.; Cheon, B. G.; Chilikin, K.; Cho, I. -S.; Cho, K.; Choi, Y.; Dalseno, J.; Doležal, Z.; Drásal, Z.; Drutskoy, A.; Eidelman, S.; Epifanov, D.; Fast, J. E.; Gaur, V.; Gabyshev, N.; Garmash, A.; Goh, Y. M.; Golob, B.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; Horii, Y.; Hoshi, Y.; Hou, W. -S.; Hsiung, Y. B.; Hyun, H. J.; Iijima, T.; Inami, K.; Ishikawa, A.; Itoh, R.; Iwabuchi, M.; Iwasaki, Y.; Iwashita, T.; Joshi, N. J.; Julius, T.; Kang, J. H.; Katayama, N.; Kawasaki, T.; Kichimi, H.; Kim, H. J.; Kim, H. O.; Kim, J. B.; Kim, J. H.; Kim, K. T.; Kim, M. J.; Kim, S. K.; Kim, Y. J.; Kinoshita, K.; Ko, B. R.; Kobayashi, N.; Koblitz, S.; Kodyš, P.; Korpar, S.; Križan, P.; Kuhr, T.; Kumita, T.; Kuzmin, A.; Kwon, Y. -J.; Lange, J. S.; Lee, M. J.; Lee, S. -H.; Li, J.; Li, X.; Li, Y.; Libby, J.; Lim, C. -L.; Liu, C.; Liu, Y.; Liventsev, D.; Louvot, R.; Matvienko, D.; McOnie, S.; Miyabayashi, K.; Miyata, H.; Miyazaki, Y.; Mizuk, R.; Mohanty, G. B.; Mussa, R.; Nagasaka, Y.; Nakano, E.; Nakao, M.; Natkaniec, Z.; Neubauer, S.; Nishida, S.; Nishimura, K.; Nitoh, O.; Ogawa, S.; Ohshima, T.; Okuno, S.; Onuki, Y.; Pakhlov, P.; Pakhlova, G.; Park, H.; Park, H. K.; Park, K. S.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Poluektov, A.; Röhrken, M.; Ryu, S.; Sahoo, H.; Sakai, K.; Sakai, Y.; Sanuki, T.; Schneider, O.; Schwanda, C.; Schwartz, A. J.; Senyo, K.; Seon, O.; Sevior, M. E.; Shapkin, M.; Shebalin, V.; Shibata, T. -A.; Shiu, J. -G.; Simon, F.; Singh, J. B.; Smerkol, P.; Sohn, Y. -S.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Sumihama, M.; Sumiyoshi, T.; Tatishvili, G.; Teramoto, Y.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Vahsen, S. E.; Varner, G.; Varvell, K. E.; Vinokurova, A.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Wang, X. L.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yabsley, B. D.; Yamashita, Y.; Yamauchi, M.; Yuan, C. Z.; Zhang, C. C.; Zhilich, V.; Zhulanov, V.; Zupanc, A.; Zyukova, O.

    2011-09-07

    We present results from a study of X(3872)→ππJ/ψ decays produced via exclusive B→KX(3872) decays. We determine the mass to be MX(3872)=(3871.85±0.27(stat)±0.19(syst)) MeV, a 90% confidence level upper limit on the natural width of ΓX(3872)<1.2 MeV, the product branching fraction B(B+→K+X(3872))×B(X(3872)→π+π-J/ψ)=(8.63±0.82(stat)±0.52(syst))×10-6, and a ratio of branching fractions B(B0→K0X(3872))/B(B+→K+X(3872))=0.50±0.14(stat)±0.04(syst). The difference in mass between the X(3872)→π+π-J/ψ signals in B+ and B0 decays is ΔMX(3872)=(-0.71±0.96(stat)±0.19(syst)) MeV. A search for a charged partner of the X(3872) in the decays B0→K-X+ or B+→K0X+, X+→π+π0J/ψ resulted in upper limits on the product branching fractions for these processes that are well below expectations for the case that the X(3872) is the neutral member of an isospin triplet. In addition, we examine possible JPC quantum number assignments for the X(3872) based on comparisons of angular correlations between final state particles in X(3872)→π+π-J/ψ decays with simulated data for JPC values of 1++ and 2-+. We examine the influence of ρ-ω interference in the M(π+π-) spectrum. The analysis is based on a 711 fb-1 data sample that contains 772×106 BB meson pairs collected at the Υ(4S) resonance in the Belle detector at the KEKB e+e- collider.

  11. Bounding the Higgs boson width through interferometry.

    PubMed

    Dixon, Lance J; Li, Ye

    2013-09-13

    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum. PMID:24074073

  12. Excited levels of /sup 238/Np from spectroscopic measurements of the /sup 237/Np(n,. gamma. )/sup 238/Np reaction and /sup 242m/Am alpha decay

    SciTech Connect

    Hoff, R.; Ruhter, W.; Mann, L.

    1981-06-01

    The gamma rays and conversion electrons emitted following neutron capture in a /sup 237/Np target have been measured by use of the GAMS and BILL spectrometers at Grenoble. Gamma ray and alpha particle measurements of /sup 242m/Am alpha decay (Ge(Li)..gamma.. singles, ..gamma..-..gamma.. coincidences, ..cap alpha.. singles) have been made at Livermore. The data from these measurements have been combined with earlier measurements (Ionescu 1979, Asaro 1964) to produce a more detailed level scheme for /sup 238/Np. Approximately 36 levels have been identified from all of the experimental evidence. The experimentally-observed bandhead energies can be compared with predicted values derived from a simple linear addition of excitation energies observed in neighboring odd-mass nuclei. Values for the Gallagher-Moszkowski splitting of each configurational pair were obtained from theoretical calculations (Piepenbring 1978). We have assigned configurations to ten rotational bands whose bandhead energies range from 0 to 342 keV and which represent all but one of the configurations predicted to occur below 385 keV.

  13. Width of nonlinear resonance

    SciTech Connect

    Ohnuma, S.

    1984-03-01

    Two approximations are made, one essential and the other not so essential but convenient to keep the analytical treatment manageable: (1) Only one nonlinear resonance is considered at a time so that the treatment is best suited when the tune is close to one resonance only. To improve this approximation, one must go to the next order which involves a canonical transformation of dynamical variables. Analytical treatment of more than one resonance is not possible for general cases. (2) In the formalism using the action-angle variables, the Hamiltonian can have terms which are independent of the angle variables. These terms are called phase-independent terms or shear terms. The tune is then a function of the oscillation amplitudes. In the lowest-order treatment, the (4N)-pole components but not the (4N + 2)-pole components contribute to this dependence. In deriving the resonance width analytically, one ignores these terms in the Hamiltonian for the sake of simplicity. If these are retained, one needs at least three extra parameters and the analytical treatment becomes rather unwieldy.

  14. Stability of {sup 248–254}Cf isotopes against alpha and cluster radioactivity

    SciTech Connect

    Santhosh, K.P. Biju, R.K.

    2013-07-15

    Stability of {sup 248–254}Cf nuclei against alpha and cluster emissions is studied within our Coulomb and proximity potential model (CPPM). It is found that these nuclei are stable against light clusters (except alpha particles) and unstable against heavy cluster (A{sub 2}≥40) emissions. For heavy cluster emissions the daughter nuclei lead to doubly magic {sup 208}Pb or the neighbouring one. The effects of quadrupole and hexadecapole deformations of parent nuclei, daughter nuclei and emitted cluster on half lives are also studied. The computed alpha decay half life values (including quadrupole deformation β{sub 2}) are in close agreement with experimental data. Inclusion of quadrupole deformation reduces the height and width of the barrier (increases the barrier penetrability) and hence half life decreases. -- Highlights: •{sup 248–254}Cf parents are stable against light clusters (except alpha particles) and are unstable against heavy clusters ({sup 46}Ar, {sup 48,50}Ca etc.). •For the case of heavy cluster emissions the daughter nuclei are doubly magic {sup 208}Pb or neighbouring one. •The alpha decay half lives are in agreement with experimental data. •The cluster decay half lives decrease with the inclusion of quadrupole deformation.

  15. Nuclear-structure dependence of O (. alpha. ) corrections to Fermi decays and the value of the Kobayashi-Maskawa matrix element V sub ud

    SciTech Connect

    Jaus, W.; Rasche, G. )

    1990-01-01

    We calculate nuclear-structure corrections to the {ital ft} values of the eight accurately measured superallowed {beta}{sup +} decays. The statistical fit for the average {ital ft} value is very good. The resulting new value for the matrix element of the Kobayashi-Maskawa (KM) matrix is {vert bar}{ital V}{sub {ital ud}}{vert bar}=0.9735(5). The error in {vert bar}{ital V}{sub {ital ud}}{vert bar} has thus been reduced by 50%. Combining this value for {vert bar}{ital V}{sub {ital ud}}{vert bar} with the presently accepted results from kaon-, hyperon-, and {ital B}-decay constraints, the unitarity of the KM matrix for three generations of quarks seems to be violated.

  16. The Width of a Proof

    ERIC Educational Resources Information Center

    Hanna, Gila

    2014-01-01

    This paper's aim is to discuss the concept of width of a proof put forward by Timothy Gowers. It explains what this concept means and attempts to show how it relates to other concepts discussed in the existing literature on proof and proving. It also explores how the concept of width of a proof might be used productively in the mathematics…

  17. Phase width reduction project summary

    SciTech Connect

    Clark, D.J.; Xie, Z.Q.; McMahan, M. A.

    1999-11-01

    The purpose of the phase width reduction project, 1993--96, was to reduce the phase width of the 88-Inch Cyclotron beam on target from 5--10 ns to 1--2 ns for certain experiments, such as Gammasphere, which use time-of-flight identification. Since reducing the phase width also reduces beam intensity, tuning should be done to also optimize the transmission. The Multi-turn Collimator slits in the cyclotron center region were used to collimate the early turns radially, thus reducing the phase width from about 5 ns to 1--2 ns FWHM for a Gammasphere beam. The effect of the slits on phase width was verified with a Fast Faraday Cup and with particle and gamma-ray detectors in the external beamline.

  18. Evolution of the Iron K-Alpha Emission Line in the Black Hole Candidate GX339-4 During and Outburst Decay Phase

    NASA Technical Reports Server (NTRS)

    Feng, Y.; Zhang, S.-N.; Chen, W.; Cui, Wei

    1999-01-01

    The evolution of the iron K-alpha line emission feature was found from the black hole candidate GX339-4 when its X-ray flux (2 to 10 keV) decreased significantly. With RXTE observations, a broad line emission feature around 7 keV was detected in its quiescent and low flux state; while in the high flux state, an emission line feature around 6.4 keV was detected. A similar 6.4 keV line feature was also detected with previous ASCA observations in a high flux state. We consider that the evolution could be the evidence of the variations in the geometric structure and the physical properties of the accretion flow when the accretion rate changed. This is because that the 7 keV line feature can be produced by the radiative recombination cascade, collisional excitation, and fluorescence of Fe XXVI and Fe XXV, which can exist in a very high temperature plasma; while the 6.4 keV line feature can be produced by fluorescent K-alpha line emission of neutral iron atoms in the cold accretion disk. (copyright) 1999 American Astronomical Society. All rights reserved.

  19. Search for CP violation in hyperon decays.

    SciTech Connect

    Zyla, Piotr; Chan, A.; Chen, Y.C.; Ho, C.; Teng, P.K.; Choong, W.S.; Gidal, G.; Fu, Y.; Gu, P.; Jones, T.D.; Luk, K.B.; Turko, B.; James, C.; Volk, J.; Felix, J.; Burnstein, R.A.; Chakrovorty, A.; Kaplan, D.M.; Lederman, L.M.; Luebke, W.; Rajaram, D.; Rubin, H.A.; Solomey, N.; Torun, Y.; White, C.G.; White, S.L.; Leros, N.; Perroud, J.P.; Gustafson, H.R.; Longo, M.J.; Lopez, F.; Park H.K.; Clark, K.; Jenkins, M.; Dukes, E.C.; Durandet, C.; Holmstrom, T.; Huang, M.; Lu, L.; Nelson, K.S.

    2002-10-25

    Direct CP violation in nonleptonic hyperon decays can be established by comparing the decays of hyperons and anti-hyperons. For {Xi} decay to {Lambda} {pi} followed by {Lambda} to p{pi}, the proton distribution in the rest frame of Lambda is governed by the product of the decay parameters {alpha}{sub {Xi}} {alpha}{sub {Lambda}}. The asymmetry A{sub {Xi}{Lambda}}, proportional to the difference of {alpha}{sub {Xi}}{alpha}{sub {Lambda}} of the hyperon and anti-hyperon decays, vanishes if CP is conserved. We report on an analysis of a fraction of 1997 and 1999 data collected by the Hyper CP (E871) collaboration during the fixed-target runs at Fermilab. The preliminary measurement of the asymmetry is {Alpha}{sub {Xi}{Lambda}} = [-7 {+-} 12(stat) {+-} 6.2(sys)] x 10{sup -4}, an order of magnitude better than the present limit.

  20. Modeling Solar Lyman Alpha Irradiance

    NASA Technical Reports Server (NTRS)

    Pap, J.; Hudson, H. S.; Rottman, G. J.; Willson, R. C.; Donnelly, R. F.; London, J.

    1990-01-01

    Solar Lyman alpha irradiance is estimated from various solar indices using linear regression analyses. Models developed with multiple linear regression analysis, including daily values and 81-day running means of solar indices, predict reasonably well both the short- and long-term variations observed in Lyman alpha. It is shown that the full disk equivalent width of the He line at 1083 nm offers the best proxy for Lyman alpha, and that the total irradiance corrected for sunspot effect also has a high correlation with Lyman alpha.

  1. Analytic expressions for {alpha} particle preformation in heavy nuclei

    SciTech Connect

    Zhang, H. F.; Wang, Y. J.; Dong, J. M.; Royer, G.

    2009-11-15

    Experimental {alpha} decay energies and half-lives are investigated systematically to extract {alpha} particle preformation in heavy nuclei. Formulas for the preformation factors are proposed that can be used to guide microscopic studies on preformation factors and perform accurate calculations of the {alpha} decay half-lives. There is little evidence for the existence of an island of long stability of superheavy nuclei.

  2. Recent Results on the CKM Angle Alpha

    SciTech Connect

    Mihalyi, A.; /Wisconsin U., Madison

    2005-10-18

    The method to measure the CKM angle {alpha} and the modes sensitive to it are discussed. It is shown that the B {yields} {rho}{rho} decays provide the most stringent constraint on {alpha}, which is found to be {alpha} = 96{sup o} {+-} 10{sup o}(stat) {+-} 4{sup o}(syst){+-} 13{sup o}(penguin).

  3. The Lyman alpha coronagraph

    NASA Technical Reports Server (NTRS)

    Kohl, J. L.; Reeves, E. M.; Kirkham, B.

    1977-01-01

    The rocket-borne Lyman alpha coronagraph (RLAC) is to be used in the absence of a natural solar eclipse to determine coronal temperatures from measurements of the line width of Lyman-alpha and to determine neutral hydrogen densities of coronal material from the absolute intensity. The coronagraph consists of a 75-cm Fastie-Ebert scanning spectrometer with an AMR 641 photoelectric detection system, an off-axis parabolic primary mirror, and an occulting system. A special optical arrangement achieves rejection of radiation from the solar disk.

  4. Decays of New Nuclides and Isomers Beyond the Proton Drip Line--The Influence of Neutron Configurations

    SciTech Connect

    Page, R. D.; Bianco, L.; Darby, I. G.; Joss, D. T.; Cooper, R. J.; Grahn, T.; Judson, D. S.; Sapple, P. J.; Thomson, J.; Simpson, J.; Labiche, M.; O'Donnell, D.; Al-Khalili, J. S.; Cannon, A. J.; Stevenson, P. D.; Suckling, E. B.; Eeckhaudt, S.; Greenlees, P. T.; Jones, P. M.; Julin, R.

    2008-11-11

    The energy of the vh{sub 9/2} orbital in nuclei above N = 82 drops rapidly in energy relative to the vf{sub 7/2} orbital as the occupancy of the {pi}h{sub 11/2} orbital increases. These two neutron orbitals become nearly degenerate as the proton drip line is approached. In this work, we have discovered the new nuclides {sup 161}Os and {sup 157}W, and studied the decays of the proton emitter {sup 160}Re in detail. The {sup 161}Os and {sup 160}Re nuclei were produced in reactions of 290, 300 and 310 MeV {sup 58}Ni ions with an isotopically enriched {sup 106}Cd target, separated in-flight using the RITU separator and implanted into the GREAT spectrometer. The {sup 161}Os{alpha} a decays populated the new nuclide {sup 157}W, which decayed by {beta}-particle emission. The {beta} decay fed the known {alpha}-decaying 1/2{sup +} and 11/2{sup -} states in {sup 157}Ta, which is consistent with a vf{sub 7/2} ground state in {sup 157}W. The measured {alpha}-decay energy and half-life for {sup 161}Os correspond to a reduced {alpha}-decay width that is compatible with s-wave {alpha}-particle emission, implying that its ground state is also a vf{sub 7/2} state. Over 7000 {sup 160}Re nuclei were produced and the {gamma} decays of a new isomeric state feeding the {pi}d{sub 3/2} level in {sup 160}Re were discovered, but no evidence for the proton or a decay of the expected {pi}h{sub 11/2} state could be found. The isomer decays offer a natural explanation for this non-observation and provides a striking example of the influence of the near degeneracy of the vh{sub 9/2} and vf{sub 7/2} orbitals on the properties of nuclei in this region.

  5. The width of the Roper resonance in baryon chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Gegelia, Jambul; Meißner, Ulf-G.; Yao, De-Liang

    2016-09-01

    We calculate the width of the Roper resonance at next-to-leading order in a systematic expansion of baryon chiral perturbation theory with pions, nucleons, and the delta and Roper resonances as dynamical degrees of freedom. Three unknown low-energy constants contribute up to the given order. One of them can be fixed by reproducing the empirical value for the width of the Roper decay into a pion and a nucleon. Assuming that the remaining two couplings of the Roper interaction take values equal to those of the nucleon, the result for the width of the Roper decaying into a nucleon and two pions is consistent with the experimental value.

  6. Autoionization widths by Stieltjes imaging applied to Lanczos pseudospectra

    SciTech Connect

    Kopelke, S.; Gokhberg, K.; Cederbaum, L. S.; Tarantelli, F.; Averbukh, V.

    2011-01-14

    Excited states of atoms and molecules lying above the ionization threshold can decay by electron emission in a process commonly known as autoionization. The autoionization widths can be calculated conveniently using Fano formalism and discretized atomic and molecular spectra by a standard procedure referred to as Stieltjes imaging. The Stieltjes imaging procedure requires the use of the full discretized spectrum of the final states of the autoionization, making its use for poly-atomic systems described by high-quality basis sets impractical. Following our previous work on photoionization cross-sections, here we show that also in the case of autoionization widths, the full diagonalization bottleneck can be overcome by the use of Lanczos pseudospectra. We test the proposed method by calculating the well-documented autoionization widths of inner-valence-excited neon and apply the new technique to autoionizing states of hydrofluoric acid and benzene.

  7. On the maximal diphoton width

    NASA Astrophysics Data System (ADS)

    Salvio, Alberto; Staub, Florian; Strumia, Alessandro; Urbano, Alfredo

    2016-03-01

    Motivated by the 750 GeV diphoton excess found at LHC, we compute the maximal width into γγ that a neutral scalar can acquire through a loop of charged fermions or scalars as function of the maximal scale at which the theory holds, taking into account vacuum (meta)stability bounds. We show how an extra gauge symmetry can qualitatively weaken such bounds, and explore collider probes and connections with Dark Matter.

  8. Glueball decay in holographic QCD

    SciTech Connect

    Hashimoto, Koji; Tan, C.-I; Terashima, Seiji

    2008-04-15

    Using holographic QCD based on D4-branes and D8-anti-D8-branes, we have computed couplings of glueballs to light mesons. We describe glueball decay by explicitly calculating its decay widths and branching ratios. Interestingly, while glueballs remain less well understood both theoretically and experimentally, our results are found to be consistent with the experimental data for the scalar glueball candidate f{sub 0}(1500). More generally, holographic QCD predicts that decay of any glueball to 4{pi}{sup 0} is suppressed, and that mixing of the lightest glueball with qq mesons is small.

  9. Background canceling surface alpha detector

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.

    1996-01-01

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone.

  10. Background canceling surface alpha detector

    DOEpatents

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.

    1996-06-11

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone. 5 figs.

  11. a Selection Rule for Multiquark Decays

    NASA Astrophysics Data System (ADS)

    Buccella, F.

    By assuming SU(6)CS symmetry for pentaquark decays one finds a selection rule, which strongly reduces the number of states able to decay into a baryon and a meson final state and allows an intriguing identification for the Θ+ particle recently discovered with the prediction of a narrow width.

  12. Workshop on Precision Measurements of $\\alpha_s$

    SciTech Connect

    Bethke, Siegfried; Hoang, Andre H.; Kluth, Stefan; Schieck, Jochen; Stewart, Iain W.; Aoki, S.; Beneke, M.; Bethke, S.; Blumlein, J.; Brambilla, N.; Brodsky, S.; /MIT, LNS

    2011-10-01

    These are the proceedings of the Workshop on Precision Measurements of {alpha}{sub s} held at the Max-Planck-Institute for Physics, Munich, February 9-11, 2011. The workshop explored in depth the determination of {alpha}{sub s}(m{sub Z}) in the {ovr MS} scheme from the key categories where high precision measurements are currently being made, including DIS and global PDF fits, {tau}-decays, electro-weak precision observables and Z-decays, event-shapes, and lattice QCD. These proceedings contain a short summary contribution from the speakers, as well as the lists of authors, conveners, participants, and talks.

  13. Charm nonleptonic decays and final state interactions

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Lusignoli, M.; Pugliese, A.

    1996-02-01

    A global previous analysis of two-body nonleptonic decays of D mesons has been extended to the decays involving light scalar mesons. The allowance for final state interaction also in nonresonant channels provides a fit of much improved quality and with less symmetry breaking in the axial charges. We give predictions for about 50 decay branching ratios yet to be measured. We also discuss long distance contributions to the difference ΔΓ between the DS and DL widths.

  14. Alpha Particle

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Term that is sometimes used to describe a helium nucleus, a positively charged particle that consists of two protons and two neutrons, bound together. Alpha particles, which were discovered by Ernest Rutherford (1871-1937) in 1898, are emitted by atomic nuclei that are undergoing alpha radioactivity. During this process, an unstable heavy nucleus spontaneously emits an alpha particle and transmut...

  15. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  16. Decay properties of {sup 265}Sg(Z=106) and {sup 266}Sg(Z=106)

    SciTech Connect

    Tuerler, A.; Dressler, R.; Eichler, B.; Gaeggeler, H.W.; Jost, D.T. |; Schaedel, M.; Bruechle, W.; Gregorich, K.E.; Trautmann, N.; Taut, S.

    1998-04-01

    The presently known most neutron-rich isotopes of element 106 (seaborgium, Sg), {sup 265}Sg and {sup 266}Sg, were produced in the fusion reaction {sup 22}Ne+{sup 248}Cm at beam energies of 121 and 123 MeV. Using the On-Line Gas chemistry Apparatus OLGA, a continuous separation of Sg was achieved within a few seconds. Final products were assayed by {alpha}-particle and spontaneous fission (SF) spectrometry. {sup 265}Sg and {sup 266}Sg were identified by observing time correlated {alpha}-{alpha}-({alpha}) and {alpha}-SF decay chains. A total of 13 correlated decay chains of {sup 265}Sg (with an estimated number of 2.8 random correlations) and 3 decay chains of {sup 266}Sg (0.6 random correlations) were identified. Deduced decay properties were T{sub 1/2}=7.4{sub {minus}2.7}{sup +3.3} s (68{percent} c.i.) and E{sub {alpha}}=8.69 MeV (8{percent}), 8.76 MeV (23{percent}), 8.84 MeV (46{percent}), and 8.94 MeV (23{percent}) for {sup 265}Sg; and T{sub 1/2}=21{sub {minus}12}{sup +20} s (68{percent} c.i.) and E{sub {alpha}}=8.52 MeV (33{percent}) and 8.77 MeV (66{percent}) for {sup 266}Sg. The resolution of the detectors was between 50{endash}100 keV (full width at half maximum). Upper limits for SF of {le}35{percent} and {le}82{percent} were established for {sup 265}Sg and {sup 266}Sg, respectively. The upper limits for SF are given with a 16{percent} error probability. Using the lower error limits of the half-lives of {sup 265}Sg and {sup 266}Sg, the resulting lower limits for the partial SF half-lives are T{sub 1/2}{sup SF}({sup 265}Sg){ge}13 s and T{sub 1/2}{sup SF}({sup 266}Sg){ge}11 s. Correspondingly, the partial {alpha}-decay half-lives are between T{sub 1/2}{sup {alpha}}({sup 265}Sg)=4.7{endash}16.5 s (68{percent} c.i.) and T{sub 1/2}{sup {alpha}}({sup 266}Sg)=9{endash}228 s (68{percent} c.i.), using the upper and lower error limits of the half-lives of {sup 265}Sg and {sup 266}Sg. The lower limit on the partial SF half-life of {sup 266}Sg is in good agreement with

  17. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., FLAG, AND SUPPLEMENTAL OPERATIONS Approval of Routes: Domestic and Flag Operations § 121.95 Route width... routes in the case of certificate holders conducting flag operations) have a width equal to...

  18. Alpha Schottky junction energy source

    NASA Astrophysics Data System (ADS)

    Litz, Marc S.; Fan, Zhaoyang; Carroll, James J.; Bayne, Stephen

    2012-06-01

    Isotope batteries offer solutions for long-lived low-power sensor requirements. Alpha emitting isotopes have energy per decay 103 times that of beta emitters. Alpha particles are absorbed within 20 μm of most materials reducing shielding mitigation. However, damage to materials from the alphas limits their practical use. A Schottky Barrier Diode (SBD) geometry is considered with an alpha emitting contact-layer on a diamond-like crystal semiconductor region. The radiation tolerance of diamond, the safety of alpha particles, combined with the internal field of the SBD is expected to generate current useful for low-power electronic devices over decades. Device design parameters and calculations of the expected current are described.

  19. 23 CFR 658.15 - Width.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.15 Width. (a) No State shall impose a width limitation of more or less than 102 inches, or its approximate metric equivalent, 2.6 meters (102.36 inches)...

  20. 23 CFR 658.15 - Width.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.15 Width. (a) No State shall impose a width limitation of more or less than 102 inches, or its approximate metric equivalent, 2.6 meters (102.36 inches)...

  1. 23 CFR 658.15 - Width.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.15 Width. (a) No State shall impose a width limitation of more or less than 102 inches, or its approximate metric equivalent, 2.6 meters (102.36 inches)...

  2. 23 CFR 658.15 - Width.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.15 Width. (a) No State shall impose a width limitation of more or less than 102 inches, or its approximate metric equivalent, 2.6 meters (102.36 inches)...

  3. 23 CFR 658.15 - Width.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.15 Width. (a) No State shall impose a width limitation of more or less than 102 inches, or its approximate metric equivalent, 2.6 meters (102.36 inches)...

  4. Tooth Decay

    MedlinePlus

    ... decay starts in the outer layer, called the enamel. Without a filling, the decay can get deep into the tooth and its nerves and cause a toothache or abscess. To help prevent cavities Brush your teeth every day with a fluoride toothpaste Clean between ...

  5. Improved determination of the width of the top quark

    SciTech Connect

    Abazov V. M.; Abbott B.; Acharya B. S.; Adams M.; Adams T.; Alexeev G. D.; Alkhazov G.; Alton A.; Alverson G.; Aoki M.; Askew A.; Asman B.; Atkins S.; Atramentov O.; Augsten K.; Avila C.; BackusMayes J.; Badaud F.; Bagby L.; Baldin B.; Bandurin D. V.; Banerjee S.; Barberis E.; Baringer P.; Barreto J.; Bartlett J. F.; Bassler U.; Bazterra V.; Bean A.; Begalli M.; Belanger-Champagne C.; Bellantoni L.; Beri S. B.; Bernardi G.; Bernhard R.; Bertram I.; Besancon M.; Beuselinck R.; Bezzubov V. A.; Bhat P. C.; Bhatia S.; Bhatnagar V.; Blazey G.; Blessing S.; Bloom K.; Boehnlein A.; Boline D.; Boos E. E.; Borissov G.; Bose T.; Brandt A.; Brandt O.; Brock R.; Brooijmans G.; Bross A.; Brown D.; Brown J.; Bu X. B.; Buehler M.; Buescher V.; Bunichev V.; Burdin S.; Burnett T. H.; Buszello C. P.; Calpas B.; Camacho-Perez E.; Carrasco-Lizarraga M. A.; Casey C. K.; Castilla-Valdez H.; Chakrabarti S.; Chakraborty D.; Chan M.; Chandra A.; Chapon E.; Chen G.; Chevalier-Thery S.; Cho D. K.; Cho S. W.; Choi S.; Choudhary B.; Cihangir S.; Claes D.; Clutter J.; Cooke M.; Cooper W. E.; Corcoran M.; Couderc F.; Cousinou M. -C.; Croc A.; Cutts D.; Das A.; Davies G.; de Jong S. J.; De La Cruz-Burelo E.; Deliot F.; Demina R.; Denisov D.; Denisov S. P.; Desai S.; Deterre C.; DeVaughan K.; Diehl H. T.; Diesburg M.; Ding P. F.; Dominguez A.; Dorland T.; Dubey A.; Dudko L. V.; Duggan D.; Duperrin A.; Dutt S.; Dyshkant A.; Eads M.; Edmunds D.; Ellison J.; Elvira V. D.; Enari Y.; Evans H.; Evdokimov A.; Evdokimov V. N.; Facini G.; Ferbel T.; Fiedler F.; Filthaut F.; Fisher W.; Fisk H. E.; Fortner M.; Fox H.; Fuess S.; Garcia-Bellido A.; Garcia-Guerra G. A.; Gavrilov V.; Gay P.; Geng W.; Gerbaudo D.; Gerber C. E.; Gershtein Y.; Ginther G.; Golovanov G.; Goussiou A.; Graf C. P.; Grannis P. D.; Greder S.; Greenlee H.; Greenwood Z. D.; Gregores E. M.; Grenier G.; Gris Ph.; Grivaz J. -F.; Grohsjean A.; Gruenendahl S.; Gruenewald M. W.; Guillemin T.; Gutierrez G.; Gutierrez P.; Haas A.; Hagopian S.; Haley J.; Han L.; Harder K.; Harel A.; Hauptman J. M.; Hays J.; Head T.; Hebbeker T.; Hedin D.; Hegab H.; Heinson A. P.; Heintz U.; Hensel C.; La Cruz I. Heredia-De; Herner K.; Hesketh G.; Hildreth M. D.; Hirosky R.; Hoang T.; Hobbs J. D.; Hoeneisen B.; Hohlfeld M.; Hubacek Z.; Hynek V.; Iashvili I.; Ilchenko Y.; Illingworth R.; Ito A. S.; Jabeen S.; Jaffre M.; Jamin D.; Jayasinghe A.; Jesik R.; Johns K.; Johnson M.; Jonckheere A.; Jonsson P.; Joshi J.; Jung A. W.; Juste A.; Kaadze K.; Kajfasz E.; Karmanov D.; Kasper P. A.; Katsanos I.; Kehoe R.; Kermiche S.; Khalatyan N.; Khanov A.; Kharchilava A.; Kharzheev Y. N.; Kohli J. M.; Kozelov A. V.; Kraus J.; Kulikov S.; Kumar A.; Kupco A.; Kurca T.; Kuzmin V. A.; Lammers S.; Landsberg G.; Lebrun P.; Lee H. S.; Lee S. W.; Lee W. M.; Lellouch J.; Li H.; Li L.; Li Q. Z.; Lietti S. M.; Lim J. K.; Lincoln D.; Linnemann J.; Lipaev V. V.; Lipton R.; Liu Y.; Lobodenko A.; Lokajicek M.; de Sa R. Lopes; Lubatti H. J.; Luna-Garcia R.; Lyon A. L.; Maciel A. K. A.; Mackin D.; Madar R.; Magana-Villalba R.; Malik S.; Malyshev V. L.; Maravin Y.; Martinez-Ortega J.; McCarthy R.; McGivern C. L.; Meijer M. M.; Melnitchouk A.; Menezes D.; Mercadante P. G.; Merkin M.; et al.

    2012-05-04

    We present an improved determination of the total width of the top quark, {Gamma}{sub t}, using 5.4 fb{sup -1} of integrated luminosity collected by the D0 Collaboration at the Tevatron p{bar p} Collider. The total width {Gamma}{sub t} is extracted from the partial decay width {Gamma}(t {yields} Wb) and the branching fraction {Beta}(t {yields} Wb). {Gamma}(t {yields} Wb) is obtained from the t-channel single top-quark production cross section and {Beta}(t {yields} Wb) is measured in t{bar t} events. For a top mass of 172.5 GeV, the resulting width is {Gamma}{sub t} = 2.00{sub -0.43}{sup +0.47} GeV. This translates to a top-quark lifetime of {tau}{sub t} = (3.29{sub -0.63}{sup +0.90}) x 10{sup -25} s. We also extract an improved direct limit on the Cabibbo-Kobayashi-Maskawa quark-mixing matrix element 0.81 < |V{sub tb}| {le} 1 at 95% C.L. and a limit of |V{sub tb}| < 0.59 for a high-mass fourth-generation bottom quark assuming unitarity of the fourth-generation quark-mixing matrix.

  6. Determination of the width of the top quark.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Åsman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bazterra, V; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calpas, B; Camacho-Pérez, E; Carrasco-Lizarraga, M A; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Ćwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; DeVaughan, K; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Joshi, J; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Novaes, S F; Nunnemann, T; Obrant, G; Orduna, J; Osman, N; Osta, J; Otero y Garzón, G J; Owen, M; Padilla, M; Pangilinan, M; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petrillo, G; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strauss, E; Strauss, M; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Welty-Rieger, L; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2011-01-14

    We extract the total width of the top quark, Γ(t), from the partial decay width Γ(t → Wb) measured using the t-channel cross section for single top-quark production and from the branching fraction B(t → Wb) measured in tt events using up to 2.3  fb(-1) of integrated luminosity collected by the D0 Collaboration at the Tevatron pp Collider. The result is Γ(t) = 1.99(-0.55)(+0.69)  GeV, which translates to a top-quark lifetime of τ(t) = (3.3(-0.9)(+1.3)) × 10(-25)   s. Assuming a high mass fourth generation b' quark and unitarity of the four-generation quark-mixing matrix, we set the first upper limit on |V(tb')| < 0.63 at 95% C.L. PMID:21405220

  7. Anisotropic. cap alpha. -emission of on-line separated isotopes

    SciTech Connect

    Wouters, J.; Vandeplassche, D.; van Walle, E.; Severijns, N.; Van Haverbeke, J.; Vanneste, L.

    1987-12-10

    The technical realization of particle detection at very low temperatures (4K) has made it possible to study for the first time the anisotropic ..cap alpha..-decay of oriented nuclei which have been produced, separated and implanted on line. The measured ..cap alpha..-angular distributions reveal surprising new results on nuclear aspects as well as in solid state physics. The nuclear structure information from these data questions the older ..cap alpha..-decay theoretical interpretation and urges for a reaxamination of the earliest work on anisotropic ..cap alpha..-decay.

  8. Auger width of metastable states in antiprotonic helium

    SciTech Connect

    Revai, J.; Kruppa, A.T.

    1998-01-01

    Auger decay probabilities of metastable states in antiprotonic helium are derived using a minimal extension of the existing bound-state wave functions to account for the electron continuum. Calculations were performed for the Born-Oppenheimer wave functions of Shimamura [Phys. Rev. A {bold 46}, 3776 (1992)] and the variational wave functions of Korobov [Phys. Rev. A {bold 54}, 1749 (1996)]. Our results suggest that the overall accuracy of the Auger widths calculated from the presently available bound-state wave functions is not sufficient. {copyright} {ital 1998} {ital The American Physical Society}

  9. Ground state energy and width of {sup 7}He from {sup 8}Li proton knockout

    SciTech Connect

    Denby, D. H.; DeYoung, P. A.; Hall, C. C.; Baumann, T.; Bazin, D.; Spyrou, A.; Breitbach, E.; Howes, R.; Brown, J.; Frank, N.; Gade, A.; Mosby, S. M.; Peters, W. A.; Thoennessen, M.; Hinnefeld, J.; Hoffman, C. R.; Jenson, R. A.; Luther, B.; Olson, C. W.; Schiller, A.

    2008-10-15

    The ground state energy and width of {sup 7}He has been measured with the Modular Neutron Array (MoNA) and superconducting dipole Sweeper magnet experimental setup at the National Superconducting Cyclotron Laboratory. {sup 7}He was produced by proton knockout from a secondary {sup 8}Li beam. The measured decay energy spectrum is compared to simulations based on Breit-Wigner line shape with an energy-dependent width for the resonant state. The energy of the ground state is found to be 400(10) keV with a full-width at half-maximum of 125({sub -15}{sup +40}) keV.

  10. Width of the level at E sub x congruent 18 MeV in sup 5 Li

    SciTech Connect

    Arena, N.; Cavallaro, S. Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania, Italy); D'Arrigo, A.; Fazio, G.; Giardina, G.; Italiano, A.; Herman, M.; Lombardi, M.

    1989-09-01

    The {alpha}{alpha} bidimensional spectra for the {sup 6}Li({sup 3}He, {alpha}{ital p}){sup 4}He reaction at 11, 13, and 14 MeV incident energy have been measured. The {sup 5}Li state at {ital E}{sub {ital x}}=(17.9{plus minus}0.4) MeV has been observed and its width has been determined as (3.5{plus minus}0.8) MeV. The excitation energy is in line with the shell-model calculations while the {Gamma} value is the first quantitative estimate of the width of the above state.